
C editing with VIM HOWTO

 Siddharth Heroor

Revision History

Revision v1.0 Jan 14, 2001 Revised by: sh

Second Revision. Corrected some typos.

Revision v0.1 Dec 04, 2000 Revised by: sh

First Revision. I would love to have your feedback

This document gives an introduction to editing C and other language files, whose syntax is similar, like C++
and Java in vi/VIM.

Table of Contents

1. Introduction...1

2. Moving around..2
2.1. w, e and b keystrokes..2
2.2. {, }, [[and]] keystrokes...3
2.3. % keystroke...6

3. Jumping to random positions in C files..7
3.1. ctags..7
3.2. marks...8
3.3. gd keystroke..9

4. Auto−Completing Words...11

5. Formating automatically..13
5.1. Restricting column width..13
5.2. Automatically indent code..13
5.3. Comments...13

6. Multi−file editing...15

7. Quickfix..16

8. Copyright...20

9. References..21

 C editing with VIM HOWTO

i

1. Introduction
The purpose of this document is to introduce the novice VIM user to the editing options available in VIM for
C files. The document introduces some commands and keystrokes which will help in improving the
productivity of programmers using VIM to edit C files.

The scope of the document is to describe how one can edit C files with VIM. However most of what is
described is also applicable for vi. Plus what is mentioned here about editing C files is more or less applicable
to C++, Java and other similar languages.

1. Introduction 1

2. Moving around.

2.1. w, e and b keystrokes

One can use the w, e and b keys to move around a file. VIM is capable of recognizing the different tokens
within a C expression.

Consider the following C code

Figure 1. A C snippet

 ...
 if((NULL == x) 38;38; y > z)
 ...

Assume that the cursor is positioned at the beginning of the if statement. By pressing w once the cursor jumps
to the first (. By typing w again the cursor moves to NULL. Next time the cursor will move to the == token.
Further keystrokes will take you as follows. x...)... &&... y... >... z... and finally)...

e is similar to w only that it takes you to the end of the current word and not to the beginning of the next
word.

b does the exact opposite of w. It moves the cursor in the opposite direction. So you can moving backwards

2. Moving around. 2

using the b keystroke.

2.2. {, }, [[and]] keystrokes

The { and } keys are used to move from paragraph to paragraph. When editing C files these keys have a
slightly different meaning. Here a paragraph is taken as a bunch of lines separated by an empty line.

For Example

Figure 2. Another C snippet

The above snippet shows two paragraphs. One can easily move from the beginning of one to the other, by
using the { and } keys. { will take the cursor to the paragraph above and } will take the cursor to the paragraph
below.

Many people have the coding style where a logical set of statements are grouped together and separated by
one or more blank lines.

For Example

Figure 3. Another C snippet

 C editing with VIM HOWTO

2.2. {, }, [[and]] keystrokes 3

The { and } keys are very useful in such situations. One can very easily move from one "paragraph" to
another.

Another set of keys which are useful are the [[and]] keys. These keys allow you to jump to the previous { or
next { in the first column.

For Example

Figure 4. The next snippet of C code

 C editing with VIM HOWTO

2.2. {, }, [[and]] keystrokes 4

Lets say you were editing foo() and now you want to edit bar(). Just type]] and the cursor will take you to the
opening { of the bar() function. The reverse is slightly different. If you were in the middle of bar() and you
type [[the cursor will move to the first { above i.e. the beginning of bar() itself. One has to type [[again to
move to the beginning of foo(). The number of keystrokes can be minimized by typing 2[[to take the cursor
to the beginning of the previous function.

Another set of similar keystrokes are the][and [] keystrokes.][takes the cursor to next } in the first column.
If you were editing foo() and wanted to go to the end of foo() then][will take you there. Similarly if you
were editing bar() and wanted to go to the end of foo() then [] would take the cursor there.

The way to remember the keystrokes is by breaking them up. The first keystroke will indicated whether to
move up or down. [will move up and] will move down. The next keystroke indicates the type of brace to
match. If it same same as the previous keystroke then the cursor will move to {. If the keystroke is different
then the cursor will move to }.

One caveat of the]],][, [[and [] keystrokes is that they match the braces which are in the first column. If one
wants to match all braces upwards and downwards regardless of whether its in the first column or not is not
possible. The VIM documentation has a workaround. One has to map the keystrokes to find the braces.
Without spending too much time on mapping, the suggested mappings are

:map [[?{<CTRL−VCTRL−M>w99[{

:map][/}<CTRL−VCTRL−M>b99]}

:map]] j0[[%/{<CTRL−VCTRL−M>

 C editing with VIM HOWTO

2.2. {, }, [[and]] keystrokes 5

:map [] k$][%?}<CTRL−VCTRL−M>

2.3. % keystroke

The % is used to match the item under the cursor. The item under the cursor can be a parenthesis, a curly
bracket or a square bracket. By pressing the % key the cursor will jump to the corresponding match.

Amongst other things, the % keystroke can be used to match #if, #ifdef, #else #elif and #endif also.

This keystroke is very useful in validating code that one has written. For Example

Figure 5. The next snippet of C code

Checking the above code will involve checking the correctness of the parenthesis. The % can be used to
jump from one (to its corresponding) and vice versa. Thus, one can find which opening parenthesis
corresponds to which closing parenthesis and use the information to validate the code.

Similarly the % can also be used to jump from a { to its corresponding }.

 C editing with VIM HOWTO

2.3. % keystroke 6

3. Jumping to random positions in C files

3.1. ctags

A Tag is a sort of placeholder. Tags are very useful in understanding and editing C. Tags are a set of
book−marks to each function in a C file. Tags are very useful in jumping to the definition of a function from
where it is called and then jumping back.

Take the following example.

Figure 6. Tags Example

Lets say that you are editing the function foo() and you come across the function bar(). Now, to see what
bar() does, one makes uses of Tags. One can jump to the definition of bar() and then jump back later. If need
be, one can jump to another function called within bar() and back.

To use Tags one must first run the program ctags on all the source files. This creates a file called tags. This
file contains pointers to all the function definitions and is used by VIM to take you to the function definition.

The actual keystrokes for jumping to and fro are CTRL−] and CTRL−T. By hitting CTRL−] in foo() at the
place where bar() is called, takes the cursor to the beginning of bar(). One can jump back from bar() to foo()
by just hitting CTRL−T.

3. Jumping to random positions in C files 7

ctags are called by

$ ctags options file(s)

To make a tags file from all the *.c files in the current directory all one needs to say is

$ ctags *.c

In case of a source tree which contains C files in different sub directories, one can call ctags in the root
directory of the source tree with the −R option and a tags file containing Tags to all functions in the source
tree will be created. For Example.

$ ctags −R *.c

There are many other options to use with ctags. These options are explained in the man file for ctags.

3.2. marks

Marks are place−holders like Tags. However, marks can be set at any point in a file and is not limited to only
functions, enums etc.. Plus marks have be set manually by the user.

By setting a mark there is no visible indication of the same. A mark is just a position in a file which is
remembered by VIM. Consider the following code

Figure 7. The marks example

 C editing with VIM HOWTO

3.2. marks 8

Suppose you are editing the line x++; and you want to come back to that line after editing some other line.
You can set a mark on that line with the keystroke m' and come back to the same line later by hitting ''.

VIM allows you to set more than one mark. These marks are stored in registers a−z, A−Z and 1−0. To set a
mark and store the same in a register say j, all one has to hit is mj. To go back to the mark one has to hit 'j.

Multiple marks are really useful in going back and fro within a piece of code. Taking the same example, one
might want one mark at x++; and another at y=x; and jump between them or to any other place and then jump
back.

Marks can span across files. To use such marks one has to use upper−case registers i.e. A−Z. Lower−case
registers are used only within files and do not span files. That's to say, if you were to set a mark in a file foo.c
in register "a" and then move to another file and hit 'a, the cursor will not jump back to the previous location.
If you want a mark which will take you to a different file then you will need to use an upper−case register.
For example, use mA instead of ma. I'll talk about editing multiple files in a later section.

3.3. gd keystroke

Consider the following piece of code.

Figure 8. The third example

 C editing with VIM HOWTO

3.3. gd keystroke 9

For some reason you've forgotten what y and z are and want to go to their declaration double quick. One way
of doing this is by searching backwards for y or z. VIM offers a simpler and quicker solution. The
gd keystroke stands for Goto Declaration. With the cursor on "y" if you hit gd the cursor will take you to the
declaration :− struct Y y;.

A similar keystroke is gD. This takes you to the global declaration of the variable under the cursor. So if one
want to go to the declaration of x, then all one needs to do is hit gD and the cursor will move to the
declaration of x.

 C editing with VIM HOWTO

3.3. gd keystroke 10

4. Auto−Completing Words
Consider the following code

Figure 9. Auto−completion example

The function A_Very_Long_Function_Name() can be quite exasperating to type over and over again. While
still in insert−mode, one can auto−complete a word by either searching forwards or backwards. In function,
Another_Function() one can type A_Very... and hit CTRL−P. The first matching word will be displayed
first. In this case it would be A_Very_Long_Variable_Name. To complete it correctly, one can hit
CTRL−P again and the search continues upwards to the next matching word, which is
A_Very_Long_Function_Name. As soon as the correct word is matched you can continue typing. VIM
remains in insert−mode during the entire process.

Similar to CTRL−P is the keystroke CTRL−N. This searches forwards instead of backwards. Both the
keystrokes continue to search until they hit the top or bottom.

Both CTRL−P and CTRL−N are part of a mode known as CTRL−X mode. CTRL−X mode is a sub−mode
of the insert mode. So you can enter this mode when you are in the insert−mode. To leave CTRL−X mode
you can hit any keystroke other than CTRL−X, CTRL−P and CTRL−N. Once you leave CTRL−X mode you
return to insert−mode.

CTRL−X mode allows you do auto−completion in a variety of ways. One can even autocomplete filenames.

4. Auto−Completing Words 11

This is particularly useful when you have to include header files. Using CTRL−X mode you can include a file
foo.h using the following mechanism.

 #include "f CTRL−X CTRL−F"

That's CTRL−X CTRL−F. I know... I know... Its sounds like emacs ;−). There are other things you can do in
the CTRL−X mode. One of them is dictionary completion. Dictionary completion allows one to specify a file
containing a list of words which are used for completion. By default the dictionary option is not set. This
option is set by the command :set dictionary=file. Typically one can put in C keywords, typedefs, #defines
in the dictionary file. C++ and Java programmers may be interested in adding class names as well.

The format of a dictionary file is simple. Just put a word you want in line by itself. So a C dictionary file
would look something like this.

Figure 10. A sample dictionary file

To use the dictionary completion, one needs to hit CTRL−X CTRL−K. The completion is similar to the
CTRL−P and CTRL−N keystrokes. So... to type "typedef" all one needs to do is t CTRL−X CTRL−K and
poof... the name completed.

 C editing with VIM HOWTO

4. Auto−Completing Words 12

5. Formating automatically

5.1. Restricting column width

One often has to restrict the column width to 80 or 75 or whatever. One can set this quite easily by using the
command

:set textwidth=80

To do this automatically just put the command in your .vimrc.

In addition to textwidth you may want the text to wrap at a certain column. Often such choices are dictated by
the terminal one is using or it could just be by choice. The command for such a case is

:set wrapwidth=60

The above command makes the text wrap at 60 columns.

5.2. Automatically indent code

While coding in C, one often indents inner−blocks of code. To do this automatically while coding, VIM has
an option called cindent. To set this, just use the command

:set cindent

By setting cindent, code is automatically beautified. To set this command automatically, just add it to your
.vimrc

5.3. Comments

VIM also allows you to auto−format comments. You can split comments into 3 stages: The first part, the
middle part and the end part. For example your coding style requirements may require comments to be in the
following style

 /*
 * This is the comment
 */

In such a case the following command can be used

:set comments=sl:/*,mb:*,elx:*/

Let me decipher the command for you. The commands has three parts. The first part is sl:/*. This tells VIM

5. Formating automatically 13

that three piece comments begin with /*. The next part tells VIM that the middle part of the comment is *.
The last part of the command tells vim a couple of things. One that the command should end with */ and that
it should automatically complete the comment when you hit just /.

Let me give another example. Lets say your coding guidelines are as follows

 /*
 ** This is the comment
 */

In such a situation you can use following command for comments

:set comments=sl:/*,mb:**,elx:*

to insert a comment just type /* and hit enter. The next line will automatically contain the **. After you've
finished the comment just hit enter again and another ** will be inserted. However to end the comment you
want a */ and not **/. VIM is quite clever here. You don't need to delete the last * and replace it with /.
Instead, just hit / and VIM will recognise it as the end of the comment and will automatically change the line
from ** to */.

For more info hit :h comments

 C editing with VIM HOWTO

5. Formating automatically 14

6. Multi−file editing
One often needs to edit more than one file at a time. For example one maybe editing a header file and a
source file at the same time. To edit more than one file at a time, invoke VIM using the following command

$ vim file1 file2 ...

Now you can edit the first file and move onto the next file using the command

:n

You can jump back using the command

:e#

It may be useful while coding if you could see both the files at the same time and switch between the two. In
other words, it would be useful if the screen was split and you could see the header file at the top and the
source file at the bottom. VIM has such a command to split the screen. To invoke i, simply say :split

The same file will be displayed in both the windows. Whatever command is invoked, will affect only the
window in focus. So one can edit another file in another window by using the command :e file2

After executing that command, you'll find that there are two files visible. One window shows the first file and
the other shows the second file. To switch between the files one has to use the keystroke CTRL−W
CTRL−W. To learn more about split windows, just run help on it.

6. Multi−file editing 15

7. Quickfix
When coding in C one often has a edit−compile−edit cycle. Typically you would edit C file using some the
things I've mentioned earlier, save the file, compile the code and go to the error(s) and start editing again.
VIM helps save the cycle time slightly using a mode called quickfix. Basically, one has to save the compiler
errors in a file and open the file with VIM using the command

$ vim −q compiler_error_file

VIM automatically opens the file containing the error and positions the cursor at the location of the first error.

There is a shortcut to the cycle. Using the command "make", one can automatically compile code and goto
the position where the first error occurs. To invoke the make command type the following

:make

Basically, this command calls make in a shell and goes to the first error. However, if you are not compiling
using make and are compiling using a command such as cc, then you have to set a variable called makeprg to
the command you want invoked when you use the make command. For eg. :set makeprg=cc\ foo.c

After setting makeprg, you can just call the make command and quickfix will come into play.

After you have corrected the first error, the next thing to do would be go to the next error and correct that.
The following command is used go to the next error. :cn

To go back, you can use the command :cN

Let me demonstrate this using an example. Consider the following code

Figure 11. Quickfile Program Listing

7. Quickfix 16

As you can see there is an error on line number 5. The file is saved as test.c and makeprg is set using the
command

:set makeprg=gcc\ test.c

Next the make command is invoked using the command :make. gcc gives an error and the output of the make
command is something like this

Figure 12. :make error

 C editing with VIM HOWTO

7. Quickfix 17

On pressing RETURN, the cursor moves to line number 6.

Now, the command :cn will move the cursor to the line number 4.

To move back to the previous error, one can use the command :cN and the cursor will move back to the line
6.

After correcting the error on line 5 and adding "return 1;", one can run :make again and the output will be

Figure 13. No Error

 C editing with VIM HOWTO

7. Quickfix 18

That was just a small example. You can use quickfix to solve your compile time problems and hopefully
reduce the edit−compile−edit cycle.

 C editing with VIM HOWTO

7. Quickfix 19

8. Copyright
Copyright (c) 2000,2001 Siddharth Heroor.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front−Cover Texts, and with no Back−Cover Texts. A copy of the license can be
found at http://www.gnu.org/copyleft/fdl.html

8. Copyright 20

http://www.gnu.org/copyleft/fdl.html

9. References
You can get more information on VIM and download it at http://www.vim.org

9. References 21

http://www.vim.org

	Table of Contents
	1. Introduction
	2. Moving around.
	2.1. w, e and b keystrokes
	2.2. {, }, [[and]] keystrokes
	2.3. % keystroke

	3. Jumping to random positions in C files
	3.1. ctags
	3.2. marks
	3.3. gd keystroke

	4. Auto-Completing Words
	5. Formating automatically
	5.1. Restricting column width
	5.2. Automatically indent code
	5.3. Comments

	6. Multi-file editing
	7. Quickfix
	8. Copyright
	9. References

