
Designing Integrated High Quality Linux
Applications

Avi Alkalay

avi at br.ibm.com
avi at unix.sh

Senior IT and Software Architect :: Linux Market Developer
IBM Linux Impact Team :: ibm.com/linux

Copyright © 2002 by Avi Alkalay

v2.1, 2002−08−24

Revision History

Revision 2.1 24 Aug 2002 Revised by: avi

Rewrite of the /opt /usr/local section.Cosmetics on graphical user interface and plugins sections.Fixed screens
and programlistings width.

Revision 2.0 07 May 2002 Revised by: avi

Final XML conversion. Files reorganization.

Revision 1.9.9 20 Apr 2002 Revised by: avi

Included other document locations.

Revision 1.98 14 Apr 2002 Revised by: avi

Title changed from "Creating" to "Designing".

Revision 1.97 09 Apr 2002 Revised by: avi

Converted to XML 4.1.2, and started to use real XSLT. Spell checked the english version.

Revision 1.96 23 Mar 2002 Revised by: avi

Better HTML style sheets.

Revision 1.95 17 Mar 2002 Revised by: avi

Last chapter: One Body, Many Souls. Created appendix. Still have to translate some words here and there.

Revision 1.9 16 Mar 2002 Revised by: avi

Added universal software table with FHS.

Revision 1.7 16 Mar 2002 Revised by: avi

Everything is now translated except some words.

Revision 1.3 27 Feb 2002 Revised by: avi

Translated and reviewed the most important section of the article: The /opt and /usr/local section.

Revision 1.2 23 Feb 2002 Revised by: avi

http://ibm.com/linux

English translation at 65%. Doing some corrections to potuguese version also.

Revision 1.1 17 Feb 2002 Revised by: avi

Started english translation.

Revision 1.0 16 Feb 2002 Revised by: avi

First final version of proposed skeleton.

Revision 0.9.6 16 Feb 2002 Revised by: avi

Finished Plugin chapter.

Revision 0.9.5 15 Feb 2002 Revised by: avi

Finished chapter about boot and subsystems.

Revision 0.9.4 14 Feb 2002 Revised by: avi

Finished chapter describing the boot process.

Revision 0.9.3 08 Feb 2002 Revised by: avi

Text and style updates.

Revision 0.9.2 07 Feb 2002 Revised by: avi

Text updates.

Revision 0.9 06 Feb 2002 Revised by: avi

First translation to DocBook.

Table of Contents
1. Introduction...1

2. User Friendly: Guaranteed Success..2
2.1. Embrace the Install−and−Use Paradigm...2

3. The Four Universal Parts of Any Software..3

1st :: The Software on its own: the body...4

2nd :: Configuration Files: the soul...5

3rd :: Content..6

4th :: Logs, Dumps etc..7
3.1. Practical Examples..7
3.2. The Importance of Clear Separation Between Four Parts..8
3.3. One Body, Many Souls...10

4. Linux Directory Hierarchy: Oriented to the Software Parts..11
4.1. FHS Summary...11
4.2. Examples Using the FHS..12
4.3. Developer, Do Not Install in /opt or /usr/local !...13

5. Provide Architecture for Extensions and Plugins..15
5.1. Abstracting About Plugins..15

6. Allways Provide RPM Packages of Your Softwares..16
6.1. Software Package Modularization..16

7. Security: The Omnipresent Concept...17

8. Graphical User Interface..18
8.1. KDE, GNOME, Java or Motif?..18
8.2. Web Interface: Access from Anywhere..18
8.3. Wizards and Graphical Installers..18

9. Starting Your Software Automatically on Boot...20
9.1. From BIOS to Subsystems..20
9.2. Runlevels..20
9.3. The Subsystems..21
9.4. Turning Your Software Into a Subsystem..22
9.5. Packaging Your Boot Script...24

A. Red Hat, About the Filesystem Structure..26

Why Share a Common Structure?..27

Designing Integrated High Quality Linux Applications

i

Table of Contents
B. About this Document...28

Designing Integrated High Quality Linux Applications

ii

1. Introduction
Linux is becoming more and more popular, and many Software vendors are porting their products from other
platformas. This document (article) tries to clarify some issues and give tips on how to create Linux
applications highly integrated to the Operating System, security and easy of use.

The examples run on Red Hat Linux, and should be compatible with other distributions based on Red Hat
(Conectiva, Turbolinux, Caldera, PLD, Mandrake, etc).

1. Introduction 1

http://www.redhat.com/
http://www.conectiva.com.br/
http://www.turbolinux.com/
http://www.calderasys.com/
http://www.pld.org.pl/
http://www.mandrakelinux.com/

2. User Friendly: Guaranteed Success
The user−friendly concept is missassociated with a good GUI (graphical user interface). In fact, it is much
more than that. In systems like Linux (with more server−like characteristics), the user measures how easy a
Software is, mainly in the installation and initial configuration. He can even forget how easy were to install
and use a certain product, but it will never forget that a Software package has a complex configuration and
installation process. A migration or new installation allways will be a nightmare, making the user avoid it.

2.1. Embrace the Install−and−Use Paradigm

Imagine you'll install that expansive product your company bought from ACME, and realized you'll have to
do the following:

To have a manual that shows the installation process step−by−step. We know that a manual is the last
thing the user reads

1.

Read some README files2.
Uncompress huge files in your disk (after downloading them from net our CD), to create the
installation environment

3.

Read more README files that appeared in the installation environment4.
Comprehend that the installation requires you to execute in a special way some provided script (the
inconvenient ./install.sh)

5.

Uncomfortably answer some questions that the script does, like target directory, user for the
installation, etc. To make it worse, it frequently happens in a terminal that has a missconfigured
backspace

6.

After the installation, configure some environment variables in your profile, like $PATH, $LIBPATH,
$ACMEPROGRAM_DATA_DIR, $ACMEPROGRAM_BIN_DIR, etc

7.

Edit OS files to include the presence of the new product (e.g. /etc/inetd.conf,
/etc/inittab)

8.

And the worse: Change security permissions of OS directories and files to let the product run OK9.

Sounds familiar? Who never faced this sad situation, that inducts the user to make mistakes? If your products'
installation process sound like Uncompress−Copy−Configure−ConfigureMore−Use, like this one, you have a
problem, and the user won't like it.

Users like to feel that your Product integrates well with the OS. You should not demand that the OS adapt
himself to your Product (changing environment variables, etc). It must let the user Install−and−Use.

The Install−And−Use glory is easily achieved using a 3 ingredients receipt:

Understanding the Four Universal Parts of Any Software1.
Understanding how they are related to Linux's directory hierarchy2.
Aggressively use a package system, for process automation and leverage first items. In our case is
RPM.

3.

We'll discuss here what are these ingredients and how to implement them.

2. User Friendly: Guaranteed Success 2

3. The Four Universal Parts of Any Software
The file set of any Application Software, graphical, server−side, commercial, open/free, monolithic etc, has
allways four universal parts:

3. The Four Universal Parts of Any Software 3

1st :: The Software on its own: the body
The executables, libraries, static−data files, examples, manuals and documentation, etc. Regular users must
have read−only access to these files. They are changed only when the system administrator makes an upgrade
in this Software.

1st :: The Software on its own: the body 4

2nd :: Configuration Files: the soul
These are files that define how the Software will run, how to use the Content, security, performance etc.
Without them, the Software on its own is usually useless.

Depending on your Software, specific privileged users may change these files, to make the Software behave
as they want.

It is important to provide documentation about the configuration files.

2nd :: Configuration Files: the soul 5

3rd :: Content
Is what receives all the user attention. Is what the user delegated to be managed by your Product. Is what
makes a user throw away your product and use the competitors', if it gets damaged.

Are the tables of a database system, the documents for a text editor, the images and HTML pages of a
web−server, the servlets and EJBs of an Application Server, etc.

3rd :: Content 6

4th :: Logs, Dumps etc
Server Software use to generate access logs, trace files problem determination, temporary files etc. Other
types of softwares also use this files, but it is less common.

It is the last class of file, but many times they are the most problem generator for a system administrator,
because their volume can surpass even the content size. Due this fact, it is important for you to think in some
methodology or facility for this issue, while you are in design time.

3.1. Practical Examples

Let's see how universal is this concept analyzing some types of softwares:

Table 1. Universality of 4 Parts

Software on its
Own

Configurations Content Logs, Dumps etc

Data Base
Server

Binaries, libraries,
documentations.

Files that define the
directory of the data
files. For this type of
Software, the
remaining
configurations usually
are in special tables
inside the database.

Table files, index files, etc.
This software use to have
whole trees under the same
directory. And many times
they need several
filesystems to guarantee
performance. Their local in
the system is defined by
they Configurations.

For DBs, there are the
backup, generated in a
daily basis. And the logs
are used by the DBA to
define indexing strategy.
His local on the system
is also defined by the
Configurations.

Text
Processor

The same,
templates, modular
file format filters,
etc

As a user−oriented
Software, its
configurations must be
put in each user's
$HOME directory, and
are files that defines
standard fonts and
tabulation, etc.

The documents generated
by the user, and they go
some place in his $HOME

They show as temporary
files that can be huge.
User can define their
location with a
user−friendly dialog
(that saves it in some
Configuration file)

MP3
generator

Same, audio
modular filters

Each user has a
configuration file in his
$HOME, and contains
bitrate preferences etc

Similar to Text Editor Similar to Text Editor

Web
Server

Similar to Data
Base

Files that define the
Content directory,
network and
performance
parameters, security,
etc

Directories where the
webmaster deposits his
creativity. Again defined
by the Configurations

Preciouses access logs,
vital for Marketing
Intelligence, that are
generated in a location
and format defined by
Configurations

e−Mail
Server

Similar to
Database and
Web−Server

Files that define how to
access user database,
mail routing rules, etc

The preciouses users mail
boxes. Again defined by
the Configurations

Mail transfer log, virus
detection log, etc. Again
defined by the

4th :: Logs, Dumps etc 7

Configurations

Pay attention that the Software on its Own contains all your product business logic, which could be useless if
you hadn't a Configuration to define how to work with a data bundle, provided by the user. So, Configurations
are what connects your product to the user.

We can use a metaphor about a Sculptor (business logic), that needs Bronze (content) and a Theme or
Inspiration (configuration) from a Mecenas (user), to produce a beautiful work (content). He make annotations
in his Journal (logs) about his day−by−day activities, to report to his Mecenas (user).

3.2. The Importance of Clear Separation Between Four Parts

OK, so let's be more practical. The fact is, if we correctly use the universal parts concept, we greatly improve
the quality of our Product. We'll do that simply separating, encapsulating, each one of these parts in different
system directories (having only different files for each part is not sufficient). There is a standard called FHS
that defines the Linux directories for each part, and we'll discuss it later in Section 4.

By now let's see the value of this separation to the user:

He gains a clear vision about where is each part, specially his Configurations and Content, and he
feels your Product as something completely under control. The clareza brings ease of use, security
and confidence in your Product. And in practice it permits him manipulate each part independently

1.

It is clear now that, for instance, when backing up, user action is needed only for Configurations and
Content (the puritans will also backup some logs). The user don't have to care about Software on its
Own, because it is safe, original, on the product CD, in his shelf.

2.

For upgrades, the new package will overwrite only the business logic, leaving intact the user's
precious Configurations and Content. Here is very important to keep old content and configuration
compatible, or to provide some tools help migration of data

3.

The logs being kept in a separate filesystem (obviously suggested in your documentation), avoids that
their exaggerated growth interfere with the Content, or with the stability of the whole system

4.

If your Software follows some directory standards, the user don't have to reconfigure his system or
environment to use it. He will simply Install−and−Use.

5.

Let's make some exercise with separation using as example a system called MySoftware, in which the
business logic is in Example 1 and the configuration is in Example 2.

Example 1. A Shell program referring an external configuration file

#!/bin/sh

###
##
/usr/bin/MySoftware
##
Business logic of MyProgram system.
Do not change nothing in this file. All configuration can be
made on /etc/MySoftware.conf
##
We'll not support any modifications made here.
##

Designing Integrated High Quality Linux Applications

4th :: Logs, Dumps etc 8

http://www.pathname.com/fhs/

Default configuration file
CONF=/etc/MySoftware.conf

Minimal content directories
MIN_CONTENT_PATH=/var/www:/var/MySoftware/www

if [−r "$CONF"]; then
 . "$CONF"
fi

All the content I'll serve are the "minimal" plus the ones provided
by the user in the configuration file $CONF
CONTENT_PATH=$MIN_CONTENT_PATH:$CONF_CONTENT_PATH

.

.

.

Definition of the configuration file name.

Definition of some static parameters.

The configuration is readed from an external file, if exists.

After reading the configuration file, all content directories −− user's + product's −− goes together in
the $CONTENT_PATH, that will be used from now on.

Example 2. File containing only the configurations for MySoftware

###
##
/etc/MySoftware.conf
##
Configuration parameters for MySoftware.
Change as much as you want.
##

Content directory.
A ':' separated list of directories for your content.
The directories /var/www and /var/MySofware are already there, so
include here your special directories, if any.
CONF_CONTENT_PATH=/var/NewInstance:/var/NewInstance2

Your e−mail address, for notifications.
EMAIL=john@mycompany.com

Logs directory
LOG_DIR=/var/log/myInstance

These are user defined parameters.

Designing Integrated High Quality Linux Applications

4th :: Logs, Dumps etc 9

3.3. One Body, Many Souls

When I was a system administrator for IBM e−business Hosting Services, I was fascinated by Apache's
flexibility letting us do things like this:

bash# /usr/sbin/httpd &
bash# /usr/sbin/httpd −f /etc/httpd/dom1.com.br.conf &
bash# /usr/sbin/httpd −f /etc/httpd/dom2.com.br.conf &
bash# /usr/sbin/httpd −f /etc/httpd/dom3.com.br.conf &

If we don't pass any parameter (like the first example), Apache loads its default, hardcoded configuration file
from /etc/httpd/conf/httpd.conf. We built other configs, one for each customer, with a
completely different structure, IP address, loaded modules, content directory, passwords, domains, log
strategy etc.

This same concept is used by a text editor of a multiuser desktop (like Linux). When the code is loaded, it
looks for a configuration file on the user's $HOME, and depending who invoked him (user A or B), it will
appear differently because each user has its own personal configuration.

The obvious conclusion is that the Software's body (business logic) is pure e completely oriented by his
manipulator's spirit (configuration). But the competitive advantage lays on how easy we switch from one
spirit to another, like in Apache's example. It is very healthy to promote it to your user. You'll be letting him
create intimacy, reliability, confort with your Product.

We used this approach with many different Softwares in that e−business Hosting time, and it was extremely
usefull for maintenance etc. In a version migration we had total control over where were each of its parts, and
upgraded and downgraded Software with no waste of time, with obvious success.

But there were some Products that refused to work this way. They had so many hardcoded parameters, that we
couldn't see what divided the body from their spirit (or other parts). These Softwares were marked as bad guys
and discarded/replaced as soon as possible.

We concluded that the good guys Softwares were intuitively blessed by their developer's four parts vision.
And they made our life easyer. In fact, in that time we formulated this theory, that continues to prove itself.

Do you want to deploy bad guy or good guy Software?

Designing Integrated High Quality Linux Applications

4th :: Logs, Dumps etc 10

http://httpd.apache.org/

4. Linux Directory Hierarchy: Oriented to the
Software Parts
By now, all discussion are OS independent. On Linux, the Four Software Parts theory is expressed in his
directory structure, which is classified and documented in the Filesystem Hierarchy Standard. The FHS is part
of the LSB (Linux Standard Base), which makes him a good thing because all the industry is moving
thowards it, and is a constant preoccupation to all distributions. FHS defines in which directories each peace
of Apache, Samba, Mozilla, KDE and your Software must go, and you don't have any other reason to not use
it while thinking in developing your Software, but I'll give you some more:

FHS is a standard, and we can't live without standards1.
This is the most basic OS organization, that are related to access levels and security, where users
intuitively find each type of file, etc

2.

Makes user's life easyer3.

This last reason already justifies FHS adoption, so allways use the FHS !!!

More about FHS importance and sharing the same directory structure can be found in Red Hat website.

4.1. FHS Summary

So let's summarize what the FHS has to say about Linux directories:

Linux system directories

/usr/bin
Directory for the executables that are accessed by all users (everybody have this directory in their
$PATH). The main files of your Software will probably be here. You should never create a
subdirectory under this folder.

/bin
Like /usr/bin, but here you'll find only boot process vital executables, that are simple and small.
Your Software (being high−level) probably doesn't have nothing to install here.

/usr/sbin
Like /usr/bin, but contains only the executables that must be accessed by the administrator (root
user). Regular users should never have this directory in their $PATH. If your Software is a daemon,
This is the directory for some of executables.

/sbin
Like /usr/sbin, but only for the boot process vital executables, and that will be accessed by
sysadmin for some system maintaining. Commands like fsck (filesystem check), init (father of all
processes), ifconfig (network configuration), mount, etc can be found here. It is the system's most
vital directory.

/usr/lib
Contains dynamic libraries and support static files for the executables at /usr/bin and
/usr/sbin. You can create a subdirectory like /usr/lib/myproduct to contain your helper
files, or dynamic libraries that will be accessed only by your Software, without user intervention. A
subdirectory here can be used as a container for plugins and extensions.

/lib
Like /usr/lib but contains dynamic libraries and support static files needed in the boot process.

4. Linux Directory Hierarchy: Oriented to the Software Parts 11

http://www.pathname.com/fhs/
http://www.linuxbase.org/
http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/ref-guide/ch-filesystem.html

You'll never find an executable at /bin or /sbin that needs a library that is outside this directory.
Kernel modules (device drivers) are under /lib.

/etc
Contains configuration files. If your Software uses several files, put them under a subfolder like
/etc/myproduct/

/var
The name comes from "variable", because everything that is under this directory changes frequently,
and the package system (RPM) doesn't keep control of. Usually /var is mounted over a separate
high−performance partition. In /var/log logfiles grow up. For web content we use /var/www,
and so on.

/home
Contains the user's (real human beings) home directories. Your Software package should never install
files here (in installation time). If your business logic requires a special UNIX user (not a human
being) to be created, you should assign him a home directory under /var or other place outside
/home. Please, never forget that.

/usr/share/doc, /usr/share/man
The "share" word is used because what is under /usr/share is platform independent, and can be
shared among several machines across a network filesystem. Therefore this is the place for manuals,
documentations, examples etc.

/usr/local, /opt
These are obsolete folders. When UNIX didn't have a package system (like RPM), sysadmins needed
to separate an optional (or local) Software from the main OS. These were the directories used for that.

You may think is a bad idea to break your Software (as a whole) in many pieces, instead of keeping it all
under a self−contained directory. But a package system (RPM) has a database that manages it all for you in a
very professional way, taking care of configuration files, directories etc. And if you spread your Software
using the FHS, beyond the user friendliness, you'll bring an intuitive way to the sysadmin configure it, and
work better with performance and security.

4.2. Examples Using the FHS

Now that we know where each part of our software must be installed, lets review the Universal Parts Table
applied to the FHS.

Table 2. Same Software, applying FHS

Software on its Own Configurations Content Logs, Dumps etc

Data Base
Server

/usr/bin/, /usr/lib/,
/usr/share/doc/mydb/,
/usr/share/doc/mydb/examples/

/etc/mydb/
/var/db/instance1/,
/var/db/instance2/,
etc

/var/db/instance1/transactions/,
/var/log/db/access−instance1.log,
/var/log/db/access−instance2.log

Text
Editor

/usr/bin/, /usr/lib/,
/usr/lib/myeditor/plugins/,
/usr/share/myeditor/templates/,
/usr/share/doc/myeditor/

$HOME/.myeditor.conf $HOME/Docs/ $HOME/.myeditor−tmp/

MP3
Generator

/usr/bin/, /usr/lib/,
/usr/lib/mymp3/plugins/,
/usr/share/doc/mymp3/

$HOME/.mymp3.conf $HOME/Music/ $HOME/.mymp3−tmp/

Designing Integrated High Quality Linux Applications

4. Linux Directory Hierarchy: Oriented to the Software Parts 12

Web
Server

/usr/sbin/, /usr/bin/,
/usr/lib/httpd−modules/,
/usr/share/doc/httpd/,
/usr/share/doc/httpd/examples/

/etc/httpd/,
/etc/httpd/instance1/,
/etc/httpd/instance2/

/var/www/,
/var/www/instance1/,
/var/www/instance2/

/var/logs/httpd/,
/var/logs/httpd/instance1/,
/var/logs/httpd/instance2/

E−Mail
Server

/usr/sbin/, /usr/bin/,
/usr/lib/,
/usr/share/doc/mymail/

/etc/mail/,
/etc/mailserver.cf

/var/mail/
/var/spool/mailqueue/,
/var/logs/mail.log

4.3. Developer, Do Not Install in /opt or /usr/local !

If you are a systems administrator, this section is not for you. This is a subject for developers and packagers,
to make sysadmin's life easyer.

The /opt and /usr/local directories are used by sysadmins to manualy non−packaged files (without
RPM) of a software, precisely to not loose control over those files. Notice how separated this folder are from
the rest of the system.

A manual installation process (without RPM, or based on simple file copy) is documented in forgoten
document inside a drawer (if it was documented), and inside the head of who made installation. If he moves to
another job, that installations becomes obscure to the rest of the team, and is a time bomb.

With RPM is different. RPM (or any other package system) is an installation "process" by itself. It is
self−documented in his database and pre and post−install actions, which permits total control. Turns
installations independent from who did it, turning installtions in a business process.

Installations based on coping files into /opt or /usr/local are far from providing the organization,
system visibility and control that RPM provides. I can say /opt and /usr/local would be obsoleted when
all softwares become RPMized.

It is very important to Linux evolution and popularization (especially in the desktop battlefield), that
developers stop using this hell directories, and start using the FHS. After reading this section, if you still think
this folders are good business, please drop me an e−mail.

Products that are entirely installed under one directory, use the self−contained approach, that has several
problems:

Forces the user to change environment variables like $PATH and $LD_LIBRARY_PATH to use your
product easily.

1.

Puts files in non−standard places, complicating system integration, and future installation of
extensions to your product.

2.

The sysadmin probably didn't prepared disk space in these partitions, generating problems in
installation time.

3.

It is an accepted approach only for pure graphical application, without the command line concept.
This is why it were well accepted in Windows. But...

4.

...even using this approach, you can't avoid installing or changing files in standard locations to, for
instance, make your icons appear in the user desktop.

5.

Many developers believe that the "self−contained" approach let them work with several versions of the same
product, for testing purposes, or whatever. Yes, agree, with this or any good reason in the planet. But
remember that a High Quality Software (or Commercial Grade Software) objective is to be practical for the

Designing Integrated High Quality Linux Applications

4. Linux Directory Hierarchy: Oriented to the Software Parts 13

final user, and not to be easy to their developers and testers. Invite yourself to visit an unexperienced user (but
potential customer) and watch him installing your product.

Developer, don't be afraid of spreading your files according to FHS because RPM will keep an eye on them.

If you have a business reason to let the user work with several versions of your Product simultaneously (or
any other reason), make a relocatable package, which is described in the Maximum RPM book. Be also aware
about the implications of using this feature, described in the same book.

Red Hat and derivated distributions allways use the directory standard, instead of /opt or /usr/local.
Read what Red Hat says about this subject, and think about it.

The Makefiles of an OpenSource Software that is portable to other UNICES must have the standard
installation in /usr/local for compatibility reasons. But must also give the option, and induct the
packager, to create the package using FHS specifications.

Designing Integrated High Quality Linux Applications

4. Linux Directory Hierarchy: Oriented to the Software Parts 14

http://www.rpm.org/max-rpm/ch-rpm-reloc.html
http://www.rpm.org/max-rpm/
http://www.rpm.org/max-rpm/s1-rpm-reloc-wrinkles.html

5. Provide Architecture for Extensions and Plugins
You'll probably let other Software vendors plug extensions to your product. Since you are the author of the
initial Software, is your responsability to organize it in such a way that the user can simply install the
extension RPM and use it, without forcing him modify any configuration file. It is again the famous
Install−and−Use that guarantees ease−of−use.

Well, and extension is nothing more that some files in a right format (DLLs that implements the API your
Software defined), put in the right folders (directories your Software looks for extensions).

We can see many applications requesting the user to change configuration files to "declare" the presence of a
new plugin. This is a bad approach that must be avoided because makes user's or plugin provider's life harder.

The most important thing to consider in your plugin architecture is to not share files between plugins and your
Software. You should provide an architecture where plugins will be able to fully install and uninstall
themselves by simply putting and removing files in specific directories, documented in you Software. Good
candidates are /usr/lib/myproduct/plugins as the plugins directory, and
/etc/myproduct/plugins as the plugins configuration files directory. Your Software and plugins must
be sufficient intelligent to know how to find files, specially configurations, in these directories.

Using this approach, no post−install procedures is required from the user, and from the plugin provider.

5.1. Abstracting About Plugins

I would like to close this subject inviting the reader a se abstratir and think about any Software can be treated
as an extension to the lower level Software. In the same way a third party plugin is an extension to your
Software, your Software is also an extension to the OS (lower level). This is where all the Integration (from
the title of this document) magic lives. So we can apply all the ease−of−use concepts we discussed before to
the plugin architecture design of your Software.

5. Provide Architecture for Extensions and Plugins 15

6. Allways Provide RPM Packages of Your
Softwares
This is extremely important for many reasons:

Ease−of−use. This is allways the primordial motivation.1.
Automates some tasks that must be made before and after the installation of your Software. Again
bringing ease−of−use.

2.

Intelligently manages configuration files, documentation etc, providing more control in an upgrade3.
Manages interdependencies with other packages and versions, guaranteeing good functionality.4.
Lets you distribute Software with your company's digital signature, and makes integrity checks
(MD5) in each file, guaranteeing precedence, and reporting unwanted file modification.

5.

Provides tools to let interact with your graphic installer.6.

But a good package is not only put together your files in a RPM. FHS must be followed, configuration and
documentation files must be marked as is, and pre− and post−install scripts must be robust, to not let them
damage the system (remember that installation processes is done by root).

Know well RPM because it can bring much power and facilities to you and your user. There are a lot of
documentation available about RPM on the Internet:

The book Maximum RPM, also available on−line and in printable PostScript format.•
RPM−HOWTO which is smaller and more straight−forward.•
www.rpm.org•

6.1. Software Package Modularization

You should give user the option to install only the part of your Software he wants. Imagine your Software has
a client part and a server part, and both use files and libraries in common. You should break them in 3 RPMs.
For instance, lets say the name of your product is MyDB, so you'll provide the packages:

MyDB−common−1.0−3.i386.rpm1.
MyDB−server−1.0−3.i386.rpm2.
MyDB−client−1.0−3.i386.rpm3.

and last 2 packages depends on the first. If the user is installing a client profile, he will use:

MyDB−common−1.0−3.i386.rpm1.
MyDB−client−1.0−3.i386.rpm2.

If he is installing a server profile:

MyDB−common−1.0−3.i386.rpm1.
MyDB−server−1.0−3.i386.rpm2.

This approach will help the user save disk space, and be aware of how your Software is organized.

6. Allways Provide RPM Packages of Your Softwares 16

http://www.redhat.com/docs/books/max-rpm/
http://www.rpm.org/max-rpm/
http://www.rpm.org/local/maximum-rpm.ps.gz
http://www.rpm.org/RPM-HOWTO/
http://www.rpm.org/

7. Security: The Omnipresent Concept
From a very general perspective, security is synonym of order, conscience. And insecure is everything that
makes a system stop without the user wish. So besides open network ports, or weak cryptography (that are
beyond the scope of this document), applications that inducts the user to use it only as root, or make him
change files in inappropriate places, is considered insecure. We can say the same for the apps that fills a
filesystem that is vital to the OS.

Many standards appeared from good practices discussed and developed in conjunction for a long time. So you
should know and use them when you'll package your software, because they are key for you to achieve a good
organization (security) level.

7. Security: The Omnipresent Concept 17

8. Graphical User Interface
Everybody loves graphical interfaces. Many times they make our life easyer, and this way helps to popularize
a Software, because the learning curve get smaller. But for the everyday use, a command with many options
and a good manual becomes much more practical, making scripts easy, remote access, etc. So the suggestion
is, whenever is possible, to provide both interfaces: graphical for the beginners, and the powerfull command
line for the expert.

8.1. KDE, GNOME, Java or Motif?

Better then a simple graphical interface is a consistent integrated desktop. So developer, please do not
reinvent the wheel using proprietary libraries. Today's Linux desktop is full−featured, complete APIs that
makes your life easier.

The desktops today in Linuxland are KDE and GNOME. Try to allways use one of them, or both.

KDE is the most outstanding, offering a true consistent desktop, flexible, with an extremely elegant
architecture, using components (like Microsoft's COM and COM+), intercommunication, performance etc. It
is constantly evolving, and is developed in C++. Its applications have an familiar integrated look−and−feel, is
light and mature. People say that KDE 3 is shiny diamond, ready to be used, and is my first suggestion to you.

GNOME also brings the integrated desktop proposal, but it is far from the maturity and ease−of−use of KDE.
From the other side, is very well supported by the comunity, and good improvements are appearing.

Motif isn't an integrated desktop. It is a widgets library (button, scrollbar etc), plus a window−manager. It was
born commercial, is mature and popular in commercial applications. But is considered obsolete in front of
KDE and GNOME, that integrates the desktop. Motif source code was opened by the OpenGroup and because
that was renamed to OpenMotif.

Java is being used more and more for graphical interfaces, specially in server Software, where the graphics are
only helpers to configuration and administration.

8.2. Web Interface: Access from Anywhere

Nowadays every desktop has a browser, and if your Product is a server application, the Web Interface is the
right choice, because it lets a user administer it from anywhere. But keep in mind the security and
organization of your CGIs, because they use to be front doors for crackers. Web interface (CGI) is completely
different programming paradigm. Try to understand it conceptually first, starting from "how a web−server
works", "what is a URL", etc, to get on this without compromising your Product's security.

8.3. Wizards and Graphical Installers

Specially for a commercial Product, your Software must provide a graphical installer. Believe me, they are
impressive in a demonstration, and CIOs love them.

More then just installation, a wizard helps in the initial configuration of your Product, collects info like
activation key etc, and shows the developer license.

8. Graphical User Interface 18

http://www.kde.org/
http://www.gnome.org/
http://www.opengroup.org/
http://www.openmotif.org/
http://java.sun.com/

A wizard should not do more than this:

Ask which modules to install, experienced by the user as checkboxes.1.
Get the necessary info to build an initial configuration (the soul) for the Software.2.
Install the selected modules, that are in fact RPM files. Each checkbox must represent one or more
RPMs, because each RPM is a indivisible (atomic) portion of a Software.

3.

After RPMs installation, change the configuration (soul) files (marked this way in the RPMs), or
create some content, based on the data the user gave to the wizard.

4.

So the wizard hides the RPM installation and writes initial personalization. RPM is still responsable for
putting all your software files in the correct places. This role should never be of your installer. Think that an
experienced user (there are a lot of them in the Linux world) should be able to reproduce your Product
installation without the graphical help, using only RPM commands. In fact, in big data centers, where people
make mass installations, a graphical installer only disturbs.

RPM provides tools that help your graphical installer interact with them, like installation percentage viewer.
Documentation for use are allways in the RPM manual (man rpm) and in the Maximum RPM book.

Designing Integrated High Quality Linux Applications

8. Graphical User Interface 19

http://www.rpm.org/max-rpm/

9. Starting Your Software Automatically on Boot
The way Linux starts (and stops) all its subsystems is very simple and modular. Lets you define initialization
order, runlevels etc

9.1. From BIOS to Subsystems

Lets review what happens when we boot Linux:

The BIOS or a bootloader (lilo, zlilo, grub, etc) loads Linux Kernel from disk to memory, with some
parameters defined in the bootloader configuration. We can see this process watching the dots that
appear in the screen. Kernel file stays in the /boot directory, and is accessed only at this moment.

1.

In memory, Kernel code starts to run, detecting a series of vital devices, disk partitions etc.2.
On of the last things Kernel does is to mount the / (root) filesystem, that obrigatoriamente must
contain the /etc, /sbin, /bin and /lib directories.

3.

Immediately behind, calls the program called init (/sbin/init) and passes the control to him.4.
The init command will read his configuration file (/etc/inittab) which defines the system
runlevel, and some Shell scripts to be run.

5.

These scripts will continue the setup of system's minimal infrastructure, mounting other filesystems
(according to /etc/fstab), activating swap space (virtual memory), etc.

6.

The last step, and most interesting for you, is the execution of the special script called
/etc/rc.d/rc, which initializes the subsystems according to a directory structure under
/etc/rc.d. The name rc comes from run commands.

7.

9.2. Runlevels

The runlevels mechanism lets Linux initialize itself in different ways. And also lets us change from one
profile (runlevel) to another without rebooting.

The default runlevel is defined in /etc/inittab with a line like this:

Example 3. Default runlevel (3, in this case) line in /etc/inittab

id:3:initdefault:

Runlevels are numbers from 0 to 6 and each one of them is used following this standard:

0
Halts the system. Turning to this runlevel, all subsystems are softly deactivated before the shutdown.
Don't use it in the initdefault line of /etc/inittab.

1
Mono−user mode. Only vital subsystems are initialized because it is used for system maintenance. No
user authentication (login) is required in this runlevel. A command line is directly returned to the user.

3, 2
3 is used when a system is in full production. Take it as the runlevel your software will run. 2 is
historical and is like 3, but without NFS.

4

9. Starting Your Software Automatically on Boot 20

Not used. You can define it as you want, but is uncommon.
5

Like 3 plus a graphical login. It is ideal for a desktop workstation. Use 3 if the machine will be used
as a server, for security and performance reasons.

6
Like runlevel 0, but after complete stop, the machine is rebooted. Don't use it in the initdefault line of
/etc/inittab.

You can switch from one runlevel to another using the telinit command. And you can see the current runlevel
and the last one with the runlevel command. See bellow how we switched from runlevel 3 to 5.

bash# runlevel
N 3
bash# telinit 5
bash# runlevel
3 5
bash#

9.3. The Subsystems

Subsystems examples are a web−server, data base server, OS network layer etc. We'll not consider a user
oriented application (like a text editor) as a subsystem.

Linux provides an elegant and modular way to organize the subsystems initialization. An important fact to
think is about subsystems interdependencies. For instance, it makes no sense to start a web−server before
basic networking subsystem is active.

Subsystems are organized under the /etc/init.d and /etc/rc.d/rcN.d directories:

/etc/init.d
All installed Subsystems put in this directory a control program, which is a script that follows a
simple standard described bellow. This is a simplified listing of this directory:

Example 4. Subsystems installed in /etc/init.d

bash:/etc/init.d# ls −l
−rwxr−xr−x 1 root root 9284 Aug 13 2001 functions
−rwxr−xr−x 1 root root 4984 Sep 5 00:18 halt
−rwxr−xr−x 1 root root 5528 Nov 5 09:44 firewall
−rwxr−xr−x 1 root root 1277 Sep 5 21:09 keytable
−rwxr−xr−x 1 root root 487 Jan 30 2001 killall
−rwxr−xr−x 1 root root 7958 Aug 15 17:20 network
−rwxr−xr−x 1 root root 1490 Sep 5 07:54 ntpd
−rwxr−xr−x 1 root root 2295 Jan 30 2001 rawdevices
−rwxr−xr−x 1 root root 1830 Aug 31 09:29 httpd
−rwxr−xr−x 1 root root 1311 Aug 15 14:18 syslog

/etc/rc.d/rcN.d (N is the runlevel indicator)
These directories must contain only special symbolic links to the scripts in /etc/init.d. This is
how it looks:

Example 5. /etc/rc3.d listing

Designing Integrated High Quality Linux Applications

9. Starting Your Software Automatically on Boot 21

bash:/etc/rc3.d# ls −l
lrwxrwxrwx 1 root root 18 Jan 14 11:59 K92firewall −> ../init.d/firewall
lrwxrwxrwx 1 root root 17 Jan 14 11:59 S10network −> ../init.d/network
lrwxrwxrwx 1 root root 16 Jan 14 11:59 S12syslog −> ../init.d/syslog
lrwxrwxrwx 1 root root 18 Jan 14 11:59 S17keytable −> ../init.d/keytable
lrwxrwxrwx 1 root root 20 Jan 14 11:59 S56rawdevices −> ../init.d/rawdevices
lrwxrwxrwx 1 root root 16 Jan 14 11:59 S56xinetd −> ../init.d/xinetd
lrwxrwxrwx 1 root root 18 Jan 14 11:59 S75httpd −> ../init.d/httpd
lrwxrwxrwx 1 root root 11 Jan 13 21:45 S99local −> ../rc.local

Pay attention that all link names has a prefix starting with letter K (from Kill, to deactivate) or S (from
Start, to activate), and a 2 digit number that defines the boot activation priority. In our example we
have HTTPd (priority 75) starting after the Network (priority 10) subsystem. And the Firewalling
subsystem will be deactivated (K) in this runlevel.

So to make your Software start automatically in the boot process, it must be a subsystem, and we'll see how
to do it in the following section.

9.4. Turning Your Software Into a Subsystem

Your Software's files will spread across the filesystems, but you'll want to provide a simple and consistent
interface to let the user at least start and stop it. Subsystems architecture promotes this ease−of−use, also
providing a way (non obrigatoria) to be automatically started on system initialization. You just have to create
your /etc/init.d script following a standard to make it functional.

Example 6. Skeleton of a Subsystem control program in /etc/init.d

#!/bin/sh
#
/etc/init.d/mysystem
Subsystem file for "MySystem" server
#
chkconfig: 2345 95 05
description: MySystem server daemon
#
processname: MySystem
config: /etc/MySystem/mySystem.conf
config: /etc/sysconfig/mySystem
pidfile: /var/run/MySystem.pid

source function library
. /etc/rc.d/init.d/functions

pull in sysconfig settings
[−f /etc/sysconfig/mySystem] && . /etc/sysconfig/mySystem

RETVAL=0
prog="MySystem"
.
.
.

start() {
 echo −n $"Starting $prog:"
 .
 .

Designing Integrated High Quality Linux Applications

9. Starting Your Software Automatically on Boot 22

 .
 RETVAL=$?
 ["$RETVAL" = 0] && touch /var/lock/subsys/$prog
 echo
}

stop() {
 echo −n $"Stopping $prog:"
 .
 .
 .
 killproc $prog −TERM
 RETVAL=$?
 ["$RETVAL" = 0] && rm −f /var/lock/subsys/$prog
 echo
}

reload() {
 echo −n $"Reloading $prog:"
 killproc $prog −HUP
 RETVAL=$?
 echo
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 reload)
 reload
 ;;
 condrestart)
 if [−f /var/lock/subsys/$prog] ; then
 stop
 # avoid race
 sleep 3
 start
 fi
 ;;
 status)
 status $prog
 RETVAL=$?
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|reload|condrestart|status}"
 RETVAL=1
esac
exit $RETVAL

Although these are comments, they are used by chkconfig command and must be present. This
particular line defines that on runlevels 2,3,4 and 5, this subsystem will be activated with priority 95
(one of the lasts), and deactivated with priority 05 (one of the firsts).

Designing Integrated High Quality Linux Applications

9. Starting Your Software Automatically on Boot 23

Besides your Software's own configuration, this script can also have a configuration file. The standard
place for it is under /etc/sysconfig directory, and in our case we call it mySystem. This code
line reads this configuration file.

Your script can have many functions, but it is obrigatorios the implementation of start and stop
methods, because they are responsible for (de)activation of your Subsystem on boot. Other methods
can be called from the command line, and you can define as much as you want.

After defining the script actions, the command line is analyzed and the requested method (action) is
called.

If this script is executed without any parameter, it will return a help message like this:
bash# /etc/init.d/mysystem
Usage: mysystem {start|stop|restart|reload|condrestart|status}

Here you put your Software's specific command.

The mysystem subsystem methods you implemented will be called by users with the service command like
this example:

Example 7. service command usage

bash# service mysystem start
Starting MySystem: [OK]
bash# service mysystem status
Subsysten MySystem is active with pid 1234
bash# service mysystem reload
Reloading MySystem: [OK]
bash# service mysystem stop
Stopping MySystem: [OK]
bash#

You don't have to worry about managing the symbolic links in /etc/rc.d/rcN.d. The chkconfig
command makes it for you, based on the control comments defined in the beginning of your script.

Example 8. Using the chkconfig command

bash# chkconfig −−add mysystem
bash# chkconfig −−del mysystem

Read the chkconfig manual page to see what more it can do for you.

9.5. Packaging Your Boot Script

When you'll create the RPM, put your Subsystem script in /etc/init.d and do not include any
/etc/rc.d/rcN.d link, because it is a user decision to make your subsystem automatic or not. If you
include them and the user makes any change, the RPM file inventory will become inconsistent.

The symbolic links must be created and removed dynamically by the post−installation and pre−uninstallation
process of your package, using the chkconfig command. This approach guarantees 100% package and
filesystem consistency.

Designing Integrated High Quality Linux Applications

9. Starting Your Software Automatically on Boot 24

Designing Integrated High Quality Linux Applications

9. Starting Your Software Automatically on Boot 25

A. Red Hat, About the Filesystem Structure
This text was taken from The Official Red Hat Linux Reference Guide

A. Red Hat, About the Filesystem Structure 26

http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/ref-guide/ch-filesystem.html

Why Share a Common Structure?
An operating system's filesystem structure is its most basic level of organization. Almost all of the ways an
operating system interacts with its users, applications, and security model are dependent upon the way it stores
its files on a primary storage device (normally a hard disk drive). It is crucial for a variety of reasons that
users, as well as programs at the time of installation and beyond, be able to refer to a common guideline to
know where to read and write their binary, configuration, log, and other necessary files.

A filesystem can be seen in terms of two different logical categories of files:

Shareable vs. unsharable files1.
Variable vs. static files2.

Shareable files are those that can be accessed by various hosts; unsharable files are not available to any other
hosts. Variable files can change at any time without system administrator intervention (whether active or
passive); static files, such as documentation and binaries, do not change without an action from the system
administrator or an agent that the system administrator has placed in motion to accomplish that task.

The reason for looking at files in this way has to do with the type of permissions given to the directory that
holds them. The way in which the operating system and its users need to utilize the files determines the
directory where those files should be placed, whether the directory is mounted read−only or read−write, and
the level of access allowed on each file. The top level of this organization (/ directory)is crucial, as the access
to the underlying directories can be restricted or security problems may manifest themselves if the top level is
left disorganized (security=organization) or without a widely−utilized structure.

However, simply having a structure does not mean very much unless it is a standard. Competing structures
can actually cause more problems than they fix. Because of this, Red Hat has chosen the most widely−used
filesystem structure and extended it only slightly to accommodate special files used within Red Hat Linux.

Why Share a Common Structure? 27

B. About this Document
This document must be distributed under the terms of GNU Free Documentation License, which makes him
sufficiently free. Everybody in invited to contribute to his content and ideas.

Copyright 2002, Avi Alkalay.

This document is published in the following locations:

Main distribution [pt_BR] [XML Source]•
LinuxDoc, as a HOWTO [single page] [PDF]•
Linux and Main essay (24th March 2002)•

It was written originally in brazilian portuguese, and then translated to english. SGML and the
more−then−incredible DocBook was used, that made possible this document being distributed in other
formats, found in website.

It got ready (potuguese+english) in mid march 2002. Everything changed after this epoch is cosmetics.

I wrote it to help commercial companies and OpenSource developers make plug−and−play, easy−to−use
software for Linux, and this way improve Linux usability and popularity.

All concepts (from a high level perspective) described here, can be used in any UNIX flavor, or even other
OS, like Windows. Maybe some day I'll write one of these for Windows....or Mac....

B. About this Document 28

http://www.gnu.org/copyleft/fdl.html
http://avi.alkalay.net/linux/docs/HighQuality/
http://avi.alkalay.net/linux/docs/HighQuality/HighQuality.pt.html
http://avi.alkalay.net/linux/docs/HighQuality/highquality.tar.gz
http://en.tldp.org/HOWTO/HighQuality-Apps-HOWTO/
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/HighQuality-Apps-HOWTO.html
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/pdf/HighQuality-Apps-HOWTO.pdf
http://www.linuxandmain.org/essay/avi.html

	Table of Contents
	1. Introduction
	2. User Friendly: Guaranteed Success
	2.1. Embrace the Install-and-Use Paradigm

	3. The Four Universal Parts of Any Software
	1st :: The Software on its own: the body
	2nd :: Configuration Files: the soul
	3rd :: Content
	4th :: Logs, Dumps etc
	3.1. Practical Examples
	3.2. The Importance of Clear Separation Between Four Parts
	3.3. One Body, Many Souls

	4. Linux Directory Hierarchy: Oriented to the Software Parts
	4.1. FHS Summary
	4.2. Examples Using the FHS
	4.3. Developer, Do Not Install in /opt or /usr/local !

	5. Provide Architecture for Extensions and Plugins
	5.1. Abstracting About Plugins

	6. Allways Provide RPM Packages of Your Softwares
	6.1. Software Package Modularization

	7. Security: The Omnipresent Concept
	8. Graphical User Interface
	8.1. KDE, GNOME, Java or Motif?
	8.2. Web Interface: Access from Anywhere
	8.3. Wizards and Graphical Installers

	9. Starting Your Software Automatically on Boot
	9.1. From BIOS to Subsystems
	9.2. Runlevels
	9.3. The Subsystems
	9.4. Turning Your Software Into a Subsystem
	9.5. Packaging Your Boot Script

	A. Red Hat, About the Filesystem Structure
	Why Share a Common Structure?
	B. About this Document

