Linux PCMCIA HOWTO

Linux PCMCIA HOWTO

Table of Contents

LINUX PCMCIA HOWTOetieiiiiiie ettt ettt e ekt e e ekt e e 41kt e e 4k et e e e ek bt e e ekt e e e e e e e e e annneee e 1

David Hinds,dahinds@users.sourceforge.nel.......cccccvvvvviiiiiiiiiiie e 1

1. GenerainformationandhardwarGeqUIrEMENES............ccevveiiiiiieeieee e, 1

2. CompilationandinStallationcocoiiiiiei i, 1
3. ResolvinginstallationandconfigurationproblEMS............uuiiiiiiiiiiiiiiiiiiieeeeeeeeee e 1

N oY= 10 1= LA L0 1= Y= L0 (= Tt 1
LT A0 AV L1010 (0] 0] 03N z
6. DealingWith UNSUPPOIMEAIAS.uuuuiuuriuriiiiiiieiiriereteerererrerrerrreerrerrereresrreesareraesrrereaerraerarerrrrerrrree 2
7. Debuggingips andprogrammingnformMation.............uuuueruurriirririiieeiieerreereeeeeereeeeeeererre e 2

1. GenerainformationandhardwarGeqUIrEMENLES...........cccvveeiieiieeeie e, 2
I a0 o (U o3 1T TR :

2. CompilationandinStAllAtiONL...........ccoiie bbb a e e b e st e a s e st aratrasraaarrnrraeenanenees 5
2.1 PrerequisiteNAKErNEISELUD.ccoiiiiiee it ee s e e bbbt br e b et e b br e b b e raranrranrrnerees 5
2.2KernelPCMCIA SUPPOIL ..o —— 6
T 121y 7= 11 F= 1T o T {

A A= L (U] 001 01110 1= PSPPSR &

RedHat, CalderaManaIake.c...oeeeeee ettt e et e et e e e e e e et e et e e e e e e e e ernens 11
S P 1oAY r= T PP 1.

3. ResolvinginstallationandconfigurationproblEMS.............uuuiviiiiiiiiiiiiie - 12
3.1 BasePCMCIA kernelmoduleSHdO NOLIOAM. .. .c.uueereeeeee ettt ettt e et e e e e e e e e e e e e et reeanaeees 13

3.2Someclientdriver ModuleSHdO NOLIOAMc.unieeeeeie ettt e e e e e e e e e aenaas 14

3.3ISA INterruptSCanfailUIES........cco oo —————— 15

3.410 PO SCANTAIIUIESo —————————— 15
3.5 MemorypProbefailureS.......cccoviviiiiiiie 16
3.6 Failureto detectcardinSertioNnSANArEMOVALS...........uu.ieiieeiieiieee e e e e e e s e e s e ebaeeeaees 17
3.7 InterruptdeliVery PrODIEIMS. ... ———————— 17
3.8 SySteMIEeSOUICESIANVALIONcceee e ———— 18
3.9 Resourceconflict only with two cardSINSErted..........ccoooeiiiiiii e 18
3.10DeviceconfigurationdOESNOt COMPIELE.uuuuuriiiiriiiiiiiieieeererererreerreesreeeeeereereeeererrerereeererereeeeeees 19
N oY= 1o 1= L aT0 L= Y= L0 =) TP 19
4.1 Toolsfor configuringandmonitoringPCMCIA AEVICES.......covvvvviiiiiiiiiiiiieeieeeeeeeeeeeee e, 19

The cardmgrconfiguratioNd@EMON........cuvviiiiiiiiiiieeeeeeeeeee et a e e e e e 19
The SOCKEIStAUSIIE, STADeev i ieeee e e ettt et e e et e et e et e et e e e e e e 20

The cardctlandCardiNFOULIIITIES.ccvueeeee ettt ettt ettt et e et e et e e et e e e e e e e e e eeenans 20
TatSY =TT aTo FoTaTo L=y (=Tt To (o= 1o PP 21
CardServicesandAdvancedPowerManagEMENL..........uuuuuuuurrurrrrirrrrerrrrrrerrreereeerrereere—————. 21

Linux PCMCIA HOWTO

Table of Contents

Linux PCMCIA HOWTO

Shuttingdownthe PCMCIA SYSEEIMcooeiii i 21
4.2 Overviewof the PCMCIA configurationSCripts..........ccooeeeiiieiiiiee e, 22
4.3PCMCIA NEIWOIKAGAPIELSeevieiiiiiiiieieeee ettt e aaaaaeeas 23
NS oo e [V o o T L a1 () £ PP 23
CommentsAboUtSPECIfICCAIAS......cvvviiiiiiiiieeeeeeeee e, 25
Diagnaosingproblemswith NEtWOrKadaPtEES.........uuuuuurrrriririiirierreeriirrrrrrrerrrerrrrrrrr——————————————————. 25
4.4 PCMCIA serialandMOdEMAEVICES.cccuvunieiitiieee et e e et e e et e e st e e e st eessab e e s s et e s s eaaa s 26
Y=o LYo o Fo = L A1) (=) 27
CommentsAaboUtSPECIfICCAIAS......cvviiiiiiiiiiieieeeee 27
Diagnosingproblemswith SEHaldeVICES...........cvvvviiiiiiiiiiiiii e 28
4.5 PCMCIA parallelport EVICES.ccoiiie i i ee e ee oottt aaneenneanneeneennnes 28
ParalleldeViCEPArAMETIELS.ccviiiiiiieieeeeeee ettt 29
Diagnosingproblemswith parallelport deVICES...........cooeeiiiiiei i 29
4.6 PCMCIA SCSIAUAPLEIS. ... uttteeieee e e e e ettt eeeeseaaabasaeeeeeeaaaasstsaaeaaeeesesassrsnes 29
SCSIdEVICEPAIAMEBLELS.o ——— 31
CommentsAboUtSPECIfICCAIAS......cviiiiiiiiiiieeeeceeee e, 32
Diagnaosingproblemswith SCSIadapters........ccooviiiiiiiiii i, 32
4.7 PCMCIA MEMOIYCAIUS. .. . uuuutuuueuunrinniuustussssnsessssssesssssseesressseeeaeesees..e.....—...—.rrrerre.——.——————————. 32
I AT YA [NV =Y 0Tz L= L0 A= (= = TP 33

Using linearflash MEMOIYCAIAS.uuuuuviiiiiiiiieiiieiiieireeseeeseeeseeeeeeereeeeeeeeeeeeereeeereereeeteereaeeaeeeaaeaaeeess 34
4. 8BPCMCIA ATA/IDE CAIOOIIVESceeuieeeieeeee ettt ettt et e e et e e e e e e et e e e reeaareeenaeeetareeanaeees 34

LT A0 AV L1010 (0] 0] T3 PP 3€
5.1 ResourcallocatioNfOr PCIMCIA QEVICES.uiiee ettt e et e e et e et e e et e et e e e e e e e eeenans 36

Linux PCMCIA HOWTO

Table of Contents

Linux PCMCIA HOWTO

7.5 Writing CardServicesdriversfor NEWCANAS..........oooiieiiiii e s 49
7.6 Guidelinesfor PCMCIA clieNt driVEr QULNOLS. ... cveeeeieeeee ettt et e e e e e e e 49
7.7 Guidelinesfor LinuX distribUtiONMAINTAINEES. ...« cevrneereeeeeee et e et e et e et e e ee e e e e e e e e e e e eeeaeerenns 51

Linux PCMCIA HOWTO
David Hinds, dahinds@users.sourceforge.net.

v2.118, 06 December 2003

This document describes how to install and use PCMCIA Card Services for Linux, and answers some
frequently asked questions. The latest version of this document can always be found at

http://pcmcia—cs.sourceforge.net.

1._General information and hardware requirements

¢ 1.1 Introduction

1.2 Copyright notice and disclaimer

« 1.3 What is the latest version, and where can | get it?

» 1.4 What systems are supported?

» 1.5 What cards are supported?

« 1.6 When will my favorite (unsupported) card become supported?
« 1.7 Mailing lists and other information sources

2._Compilation and installation

» 2.1 Prerequisites and kernel setup

» 2.2 Kernel PCMCIA support

» 2.3 Installation

2.4 Startup options

« 2.5 System resource settings

» 2.6 Notes about specific Linux distributions

3._Resolving installation and configuration problems

* 3.1 Base PCMCIA kernel modules do not load
* 3.2 Some client driver modules do not load

» 3.3 ISA interrupt scan failures

* 3.4 10 port scan failures

« 3.5 Memory probe failures

» 3.6 Failure to detect card insertions and removals
« 3.7 Interrupt delivery problems

» 3.8 System resource starvation

» 3.9 Resource conflict only with two cards inserted
» 3.10 Device configuration does not complete

4. Usage and features

* 4.1 Tools for configuring and monitoring PCMCIA devices
» 4.2 Overview of the PCMCIA configuration scripts

Linux PCMCIA HOWTO 1

mailto:dahinds@users.sourceforge.net
http://pcmcia-cs.sourceforge.net

Linux PCMCIA HOWTO

» 4.3 PCMCIA network adapters

* 4.4 PCMCIA serial and modem devices
» 4.5 PCMCIA patrallel port devices

* 4.6 PCMCIA SCSI adapters

* 4.7 PCMCIA memory cards
* 4.8 PCMCIA ATA/IDE card drives

* 4.9 Multifunction cards

5._Advanced topics

* 5.1 Resource allocation for PCMCIA devices

« 5.2 PCl interrupt configuration problems and solutions
» 5.3 How can | have separate device setups for home and work?
» 5.4 Booting from a PCMCIA device

6._Dealing with unsupported cards

6.1 Configuring unrecognized cards
6.2 Adding support for an NE2000—compatible ethernet card
» 6.3 PCMCIA floppy interface cards

7._Debugging tips and programming information

e 7.1 Submitting useful problem reports
» 7.2 Interpreting kernel trap reports

» 7.3 Low level PCMCIA debugging aids
7.4 /proc/bus/pccard

» 7.5 Writing Card Services drivers for new cards
» 7.6 Guidelines for PCMCIA client driver authors

» 7.7 Guidelines for Linux distribution maintainers

neral information and hardware r irement

1.1 Introduction

Card Services for Linux is a complete PCMCIA or “"PC Card" support package. It includes a set of loadable
kernel modules that implement a version of the Card Services applications program interface, a set of client
drivers for specific cards, and a card manager daemon that can respond to card insertion and removal even
loading and unloading drivers on demand. It supports ““hot swapping" of most card types, so cards can be
safely inserted and ejected at any time.

This software is a work in progress. It contains bugs, and should be used with caution. I'll do my best to fix
problems that are reported to me, but if you don't tell me, | may never know. If you use this code, | hope you
will send me your experiences, good or bad!

If you have any suggestions for how this document could be improved, please let me know (

dahinds@users.sourceforge.net).

5. Advanced topics 2

mailto:dahinds@users.sourceforge.net

Linux PCMCIA HOWTO
1.2 Copyright notice and disclaimer

Copyright (c) 1998-2002 David A. Hinds

This document may be reproduced or distributed in any form without my prior permission. Modified versions
of this document, including translations into other languages, may be freely distributed, provided that they al
clearly identified as such, and this copyright is included intact.

This document may be included in commercial distributions without my prior consent. While it is not
required, | would like to be informed of such usage. If you intend to incorporate this document in a publishec
work, please contact me to make sure you have the latest available version.

This document is provided ~AS IS", with no express or implied warranties. Use the information in this
document at your own risk.

1.3 What is the latest version, and where can | get it?

The current major release of Card Services is version 3.2, and minor updates or bug fixes are numbered 3.2
3.2.2, and so on.

Source code for the latest version is available on the web at http://pcmcia-cs.sourceforge.net, as
pcmcia—cs—3.2.7.tar.gz. You may find more than one release number here. It is up to you to decide
which version is more appropriate, but the CHANGES file will summarize the most important differences.

Pre—compiled drivers are included with current releases of essentially all major Linux distributions, including
Slackware, Debian, Red Hat, Caldera, and SUSE, among others. So generally there is no need to compile tt
drivers from scratch.

1.4 What systems are supported?

This package should run on almost Intel-based Linux—capable laptop. It also runs on some Alpha, PowerP(
ARM, and MIPS platforms. Most common socket controllers are supported. Card docks for desktop systems
should work as long as they use a supported controller, and are plugged directly into the ISA or PCI bus, as
opposed to SCSI-to-PCMCIA or IDE-to—PCMCIA adapters. The following controllers are recognized by
the supplied socket drivers:

« Cirrus Logic (now Basis Communications) PD6710, PD6720, PD6722, PD6729, PD6730, PD6832

* ENE Technology CB1211, CB1225, CB1410, CB1420

« Intel i82365sl B, C, and DF steps, 82092AA

» O2Micro 0Z6729, 0Z6730, 0Z6812, 0Z6832, 0Z6833, 026836, 0Z6860, 026922, OZ6933,
076912

* Omega Micro 82C365G, 82C092G

* Ricoh RF5C296, RF5C396, RL5C465, RL5C466, RL5C475, RL5C476, RL5C477, RL5C478

* SMC 34C90

» Texas Instruments PCI1031, PCI1130, PCI1131, PCI1210, PCI1211, PCI1220, PCI1221, PCI1225,
PCI1250A, PCI1251A, PCI1251B, PCI1410, PCI1410A, PCI1420, PCI1450, PCI1451A, PCI1510,
PCI1520, PCI1620, PCI4410, PCI4410A, PCl4450, PCl4451, PCI4510, PCI4520, PCI7410,
PCI7510, PCI7610

» Toshiba ToPIC95, ToPIC97, ToPIC100 (experimental, incomplete)

1.2 Copyright notice and disclaimer 3

http://pcmcia-cs.sourceforge.net

Linux PCMCIA HOWTO

» Vadem VG465, VG468, VG469

« VLSI Technologies 82C146, VCF94365

* VIA VT83C469

» Databook DB86082, DB86082A, DB86084, DB86084A, DB86072, DB86082B

Other controllers that are register compatible with the Intel i82365sl will generally work, as well.

Due to the rapid pace of technological change for laptop hardware, new controllers appear frequently, and
there may be delays between when a new model appears on the market, and when driver support becomes
available.

Support for Toshiba's ToPIC bridges was hindered for a long time by a lack of sufficiently detailed technical
documentation. While some datasheets have been available, a few idiosyncracies of the ToPIC chips were |
adequately explained. Toshiba has given some direct technical help on some of these issues, and | think the
major ones have been resolved. However, with the introduction of kernel PCMCIA support in 2.4.* and later
kernels, some new Toshiba bugs may have cropped up in the new socket driver code.

The Motorola 6AHCO5GA controller used in some Hyundai laptops is not supported. The custom host
controller in the HP Omnibook 600 is also unsupported.

1.5 What cards are supported?

The current release includes drivers for a variety of ethernet cards, a driver for modem and serial port cards
several SCSI adapter drivers, a driver for ATA/IDE drive cards, and memory card drivers that should suppor
most SRAM cards and some flash cards. The SUPPORTED.CARDS file included with each release of Card
Services lists all cards that are known to work in at least one actual system.

The likelihood that a card not on the supported list will work depends on the type of card. Essentially all
modems should work with the supplied driver. Some network cards may work if they are OEM versions of
supported cards. Other types of IO cards (frame buffers, sound cards, etc) will not work until someone write:
the appropriate drivers.

1.6 When will my favorite (unsupported) card become
supported?

Unfortunately, they usually don't pay me to write device drivers, so if you would like to have a driver for your
favorite card, you are probably going to have to do at least some of the work. Ideally, I'd like to work towards
a model like the Linux kernel, where | would be responsible mainly for the ““core" driver code and other
authors would contribute and maintain client drivers for specific cards. The SUPPORTED.CARDS file
mentions some cards for which driver work is currently in progress. | will try to help where | can, but be
warned that debugging kernel device drivers by email is not particularly effective.

1.7 Mailing lists and other information sources

The Linux PCMCIA information page is_at http://pcmcia—cs.sourceforge.net, and has bug tracking, support
and feature requests, and a variety of PCMCIA related message forums. Users can request email notificatio
of new responses to particular questions, or notification for all new messages in a given category. | hope the
this will become a useful repository of information, for questions that go beyond the scope of the HOWTO.

1.5 What cards are supported? 4

http://pcmcia-cs.sourceforge.net

Linux PCMCIA HOWTO

The Linux Laptop Page at http://www.linux—on-laptops.com has links to a vast number of sites that have
information about configuring specific types of laptops for Linux. There is also a searchable database of
system configuration information, and pointers to a variety of laptop—related mailing lists.

installati

2.1 Prerequisites and kernel setup

Before starting, you should think about whether you really need to compile the PCMCIA package yourself.
All common Linux distributions come with pre—compiled driver packages. Generally, you only need to install
the drivers from scratch if you need a new feature of the current drivers, or if you've updated and/or
reconfigured your kernel in a way that is incompatible with the drivers included with your Linux distribution.
While compiling the package is not technically difficult, it does require some general Linux familiarity.

The following things should be installed on your system before you begin:

*« A20, 2.2, 2.4, or 2.6 series kernel source tree.
« An appropriate set of module utilities.
* (Optional) the “"XForms" X11 user interface toolkit.

You need to have a complete linux source tree for your kernel, not just an up—to—date kernel image. The
driver modules contain some references to kernel source files. While you may want to build a new kernel to
remove unnecessary drivers, installing PCMCIA does not require you to do so.

Current “stable" kernel sources and patches are available from ftp:/ftp.kernel.org/publ/linux/kernel/v2.4.
Current module utilities can be found in the same locations.

In the Linux kernel source tree, the Documentation/Changes file describes the versions of all sorts of

other system components that are required for that kernel release. You may want to check through this and
verify that your system is up to date, especially if you have updated your kernel. If you are using a
development kernel, be sure that you are using the right combination of shared libraries and module tools.

On x86 based systems, if you plan to use 16—bit PC Card devices, you should also enable CONFIG_ISA, fo
recent kernels. These cards behave much like ISA devices, and the PCMCIA drivers use CONFIG_ISA to
judge whether a platform supports ISA bus interrupts.

When configuring your kernel, if you plan on using a PCMCIA ethernet card, you should turn on networking
support but turn off the normal Linux network card drivers, including the ““pocket and portable adapters". Th
PCMCIA network card drivers are all implemented as loadable modules. Any drivers compiled into your
kernel will only waste space.

If you want to use SLIP, PPP, or PLIP, you do need to either configure your kernel with these enabled, or us
the loadable module versions of these drivers.

In order to use a PCMCIA token ring adapter, your kernel should be configured with “"Token Ring driver
support" (CONFIG_TR) enabled, though you should leave CONFIG_IBMTR off.

If you want to use a PCMCIA IDE adapter, your kernel should be configured with
CONFIG_BLK_DEV_IDE_PCMCIA enabled, for 2.0.* kernels. Newer kernels do not require a special

2. Compilation and installation 5

http://www.linux-on-laptops.com
ftp://ftp.kernel.org/pub/linux/kernel/v2.4

Linux PCMCIA HOWTO

configuration setting.

If you will be using a PCMCIA SCSI adapter, then enable CONFIG_SCSI when configuring your kernel.
Also, enable any top level drivers (SCSI disk, tape, cdrom, generic) that you expect to use. All low-level
drivers for particular host adapters should be disabled, as they will just take up space.

This package includes an X-based card status utility called cardinfo. This utility is based on a freely
distributed user interface toolkit called the XForms Library. This library is available as a separate package
with most Linux distributions. If you would like to build cardinfo, you should install XForms and all the
normal X header files and libraries before configuring the PCMCIA package. This tool is completely optional

2.2 Kernel PCMCIA support

PCMCIA driver support is included in the 2.4 and later linux kernel trees. While it shares most of the same
code with the standalone PCMCIA driver package, there are some important differences. The kernel PCMC
support is also still evolving.

The kernel PCMCIA code has the same functionality as the driver side of the pcmcia—cs package. It does nq
eliminate the need to install the pcmcia—cs package, since it requires the same user tools (cardmgr,

cardctl, /etc/pcmcia/* files). The drivers in pcmcia—cs can still be built for 2.4 kernels, so you have a

choice of using either the in—kernel PCMCIA drivers, or the drivers included in pcmcia—cs. With 2.5 and late
kernels, the standalone drivers cannot be used.

To use the kernel PCMCIA drivers, configure the kernel with CONFIG_HOTPLUG, CONFIG_PCMCIA, and
usually CONFIG_CARDBUS enabled. On x86 based systems, CONFIG_ISA should also be enabled. The
drivers can either be built into the kernel or built as modules. PCMCIA client driver options are listed in their
regular driver categories; thus, PCMCIA network drivers are in a submenu of network drivers, and PCMCIA
serial drivers are in a submenu of character drivers.

In the standalone pcmcia—cs drivers, the i82365 module supports both ISA-to—PCMCIA,
PCI-to—-PCMCIA, and PCl-to—CardBus bridges. The CardBus socket driver in the 2.4 tree is the
yenta_socket driver. It is selected by the CONFIG_CARDBUS option. In your PCMCIA startup options,
this driver should be specified in place of the i82365 driver. The kernel version of the i82365 driver,
selected by CONFIG_182365, only supports ISA-to—PCMCIA bridges. PCI-to—-PCMCIA bridges that are
not CardBus capable, like the Cirrus PD6729, are not supported at all by the kernel PCMCIA drivers.

When compiling the standalone PCMCIA package, the Configure script decides whether or not to build any
kernel modules by looking at the value of the CONFIG_PCMCIA option in your kernel configuration. If
CONFIG_PCMCIA is enabled, then by default, no driver components are built. If CONFIG_PCMCIA is
disabled, then all the modules will be built and installed. It is safe to compile the user tools (cardmgr, cardctl
etc) in a PCMCIA package whose version number differs from the PCMCIA version number in the kernel
source tree. The kernel PCMCIA header files take precedence over the ones included in the PCMCIA
package, if CONFIG_PCMCIA is enabled.

2.3 Installation

Here is a synopsis of the installation process:

» Unpack pcmcia—cs—3.2.?.tar.gz in /usr/src.
* Run ““make config" in the new pcmcia—-cs-3.2.? directory.

2.2 Kernel PCMCIA support 6

Linux PCMCIA HOWTO

* Run “"make all", then “"make install".
» Customize the startup script and the option files in /etc/pcmcia for your site, if needed.

If you plan to install any contributed client drivers not included in the core PCMCIA distribution, unpack eact
of them in the top-level directory of the PCMCIA source tree. Then follow the normal build instructions. The
extra drivers will be compiled and installed automatically.

Running ““make config" prompts for a few configuration options, and checks out your system to verify

that it satisfies all prerequisites for installing PCMCIA support. In most cases, you'll be able to just accept all
the default configuration options. Be sure to carefully check the output of this command in case there are
problems. The following options are available:

Linux kernel source directory?
This is the location of the source tree for the kernel you want to use with PCMCIA. Often this is
lusr/src/linux, but the default location depends on what Linux distribution you're using (or on
where you've chosen to place your kernel source tree).

Build 'trusting' versions of card utilities?
Some of the support utilities (cardctl and cardinfo) can be compiled either in ““safe" or
“trusting” forms. The ““safe" forms prevent non—root users from modifying card configurations. The
“trusting” forms permit ordinary users to issue commands to suspend and resume cards, reset card:
and change the current configuration scheme. The default is to build the safe forms.

Include 32-bit (CardBus) card support?
This option must be selected if you wish to use 32-bit CardBus cards. It is not required for CardBus
bridge support, if you only plan to use 16-bit PC Cards.

Include PnP BIOS resource checking?
This builds additional code into the PCMCIA core module to communicate with a system's PnP BIOS
to obtain resource information for built—in ““motherboard" devices (serial and parallel ports, sound,
etc), to help avoid resource conflicts. If enabled, some extra resource files will be created under
/proc/bus/pccard, and the Ispnp and setpnp tools can be used to view and manipulate PnP
BIOS devices. However, this setting causes problems on some laptops and is not turned on by defal

Module install directory?
The directory that new kernel modules will be installed into. Normally this should be the subdirectory
of /lib/modules that matches your kernel version.

How to set kernel-specific options?
There are a few kernel configuration options that affect the PCMCIA tools. The configuration script
can deduce these from the running kernel (the default and most common case). Alternatively, if you
are compiling for installation on another machine, it can read the configuration from a kernel source
tree, or each option can be set interactively.

The Configure script can also be executed non-interactively, for automatic builds or to quickly reconfigure
after a kernel update. Some additional less—frequently—used options can be only be set from the command
line. Running ““Configure ——help" lists all available options.

Running “make all" followed by ““make install" will build and then install the kernel modules and
utility programs. Kernel modules are installed under /lib/modules/<version>/pcmcia. The
cardmgr and cardctl programs are installed in /shin. If cardinfo is built, it is installed in
{usr/bin/X11.

Configuration files will be installed in the /etc/pcmcia directory. If you are installing over an older
version, your old config scripts will be backed up before being replaced. The saved scripts will be given an
*.0O extension.

2.2 Kernel PCMCIA support 7

Linux PCMCIA HOWTO

If you don't know what kind of host controller your system uses, you can use the pcic_probe utility in the
cardmgr/ subdirectory to determine this. There are several major types: the Databook TCIC-2 type and the
Intel i82365SL—compatible type. With the kernel PCMCIA subsystem, Intel compatible controllers are furthe
subdivided into ISA-bus 16-bit bridges, and PCl-based CardBus bridges.

In a few cases, the pcic_probe command will be unable to determine your controller type automatically. If
you have a Halikan NBD 486 system, it has a TCIC-2 controller at an unusual location: you'll need to edit
rc.pcmcia to load the tcic module, and also set the PCIC_OPTS parameter to

“tcic_base=0x02c0".

On some old pre—PCI systems using Cirrus controllers, including the NEC Versa M, the BIOS puts the
controller in a special suspended state at system startup time. On these systems, the pcic_probe command
will fail to find any known host controller. If this happens, edit rc.pcmcia and set PCIC to i82365, and
PCIC_OPTS to “wakeup=1".

2.4 Startup options

The PCMCIA startup script recognizes several groups of startup options, set via environment variables.
Multiple options should be separated by spaces and enclosed in quotes. Placement of startup options depel
on the Linux distribution used. They may be placed directly in the startup script, or they may be kept in a
separate option file. See the Notes about specific Linux distributions for specifics. The following variables ca
be set:

PCMCIA
This variable specifies whether PCMCIA support should be started up, or not. If it is set to anything
other than ““yes", then the startup script will be disabled.

PCIC
This identifies the PC Card Interface Controller driver module. There are several options: "tcic",
7i82365", and (for the kernel PCMCIA subsystem) “yenta_socket". Virtually all current controllers
are in the i82365" group for the standalone drivers, and “yenta_socket" for the kernel drivers. This
is the only mandatory option setting.

PCIC_OPTS
This specifies options for the PCIC module. Some host controllers have optional features that may o
may not be implemented in a particular system. In some cases, it is impossible for the socket driver 1
detect if these features are implemented. See the corresponding man page for a complete descriptio
of the available options.

CORE_OPTS
This specifies options for the pcmcia_core module, which implements the core PC Card driver
services. See “"man pcmcia_core" for more information.

CARDMGR_OPTS
This specifies options to be passed to the cardmgr daemon. See ““man cardmgr" for more
information.

SCHEME
If set, then the PC Card configuration scheme will be initialized to this at driver startup time. See the

Overview of the PCMCIA configuration scripts for a discussion of schemes.

The low level socket drivers, tcic and i82365, have various bus timing parameters that may need to be
adjusted for certain systems with unusual bus clocking. Symptoms of timing problems can include card
recognition problems, lock—-ups under heavy loads, high error rates, or poor device performance. Only certa
host bridges have adjustable timing parameters: check the corresponding man page to see what options are

2.4 Startup options 8

Linux PCMCIA HOWTO

available for your controller. Here is a brief summary:

* ISA-bus Cirrus controllers have numerous configurable timing parameters. The most important
seems to be the cmd_time flag, which determines the length of PCMCIA bus cycles. Fast 486
systems (i.e., DX4-100) seem to often benefit from increasing this from 6 (the default) to 12 or 16.

» The Cirrus PD6729 PCI controller has the fast_pci flag, which should be set if the PCI bus speed
is greater than 25 MHz.

» For Vadem VG-468 controllers, the async_clock flag changes the relative clocking of PCMCIA
bus and host bus cycles. Setting this flag adds extra wait states to some operations. However, | have
yet to hear of a laptop that needs this.

» The pcmcia_core module has the cis_speed parameter for changing the memory speed used
for accessing a card's Card Information Structure (CIS). On some systems, increasing this paramete
(i.e., slowing down card accesses) may fix card recognition problems.

« Another pcmcia_core parameter, io_speed, can be used to slow down accesses to 10 cards. It
may help in certain cases with systems that have out—-of-spec PCMCIA bus timing.

« This is not a timing issue, but if you have more than one ISA-to—PCMCIA controller in your system
or extra sockets in a laptop docking station, the i82365 module should be loaded with the
extra_sockets parameter set to 1. This should not be necessary for detection of
PCI-to—-PCMCIA or PCI-to—CardBus bridges.

Here are some timing settings for a few old systems:

* On the ARM Pentium-90 or Midwest Micro Soundbook Plus, use ““freq_bypass=1
cmd_time=8".

* On a Compag Presario 1220, try ““setup_time=1".

* On a Midwest Micro Soundbook Elite, use “cmd_time=12".

* On a Gateway Liberty, try “"cmd_time=16".

* On a Samsung SENS 810, use “fast_pci=1".

Card readers for desktop systems

While almost all PCMCIA card readers and card docks work fine under Linux, some require special startup
options because they do not behave exactly like laptop PCMCIA bridges. PCI card readers, in particular, me
handle interrupts differently. Some of the following parameter settings are only available for the 82365
module in the standalone drivers; the kernel's yenta_socket driver is not configurable.

 The Linksys ProConnect PCMRDWR and Antec DataChute ISA card readers are ISA Plug and
Play" devices. To use these, you must first activate them with the Linux isapnp tools. See the man
pages for pnpdump and isapnp for more information.

* For Chase CardPORT and Altec ISA card readers using the Cirrus PD6722 ISA-to—PCMCIA bridge
the 182365 driver should be loaded with a ““has_ring=0" parameter to prevent irg 15 conflicts.

 For Elan P-series PCI card readers based on the Cirrus PD6729 PCI-to—PCMCIA bridge chip, the
i82365 driver requires a "'irg_mode=1" parameter.

* For the Sycard PCChost1200 host adapter, the i82365 driver requires a ~“p2cclk=1" parameter.

« For the Alex Electronics PCICBI host adapter based on the Tl 1221 bridge, the i82365 driver
requires “p2cclk=1 irg_mode=0" as well as PCMCIA driver release 3.1.23 or later.

» With SCM Microsystems SBP series PCI card readers (which are also being distributed with Lucent
WaveLAN IEEE cards), and for the Synchrotech PCM-CR-PC2IF and PCM-CR-PC2IR, itis
necessary to specify “"irg_mode=0" for the i82365 module, to force use of PCI interrupts.

* For the ActionTec PC 750 card reader, and for the Antec Datachute PCI card reader, the i82365

Card readers for desktop systems 9

Linux PCMCIA HOWTO

driver requires a "irg_list=0" parameter, to indicate that ISA interrupts are unavailable.

» The PLX Technologies PCI9052 (also sold as the Linksys WDT11) is not a general purpose PCMCI/
card reader at all: it is a PCI interface card for use with certain wireless adapters, that makes them
look like ordinary PCI devices. These devices are not supported.

2.5 System resource settings

Card Services should automatically avoid allocating 10 ports and interrupts already in use by other standard
devices. It will also attempt to detect conflicts with unknown devices, but this is not completely reliable. In
some cases, you may heed to explicitly exclude resources for a device in /etc/pcmcia/config.opts.

Here are some resource settings for specific laptop types. View this list with suspicion: it may give useful
hints for solving problems, but it is inevitably out of date and certainly contains mistakes. Corrections and
additions are welcome.

« On the AMS SoundPro, exclude irq 10.

* On some AMS TravelPro 5300 models, use memory 0xc8000—-0xcffff.

* On the BMX 486DX2-66, exclude irg 5, irg 9.

* On the Chicony NB5, use memory 0xda000—-0xdffff.

* On the Compagq Presario 900Z, exclude port 0x3b0—-0x3bb.

» On the Compag Presario 1020, exclude port 0x2f8-0x2ff, irq 3, irq 5.

» On the Compag Presario 2120EA, exclude irq 10.

« On the Dell Inspiron 7000, exclude irq 3, irq 5.

* On the Dell Inspiron 8000, exclude port 0x800—-0x8ff.

* On the Fujitsu C series, exclude port 0x200-0x27f.

* On the HP Omnibook 4000C, exclude port 0x300—-0x30f.

* On the HP Omnibook 4100, exclude port 0x220-0x22f.

« On the IBM ThinkPad 380, and maybe the 385 and 600 series, exclude port 0x230-0x233, and irq 5

* On IBM ThinkPad 600 and 770 models with internal modems, exclude port 0x2f8—0x2ff.

* On the IBM ThinkPad 600E and 770Z, change the high memory window to 0x60000000—-0x60ffffff.

« On the Micron Millenia Transport, exclude irq 5, irq 9.

* On the NEC Versa M, exclude irq 9, port 0x2e0-2ff.

* On the NEC Versa P/75, exclude irq 5, irq 9.

* On the NEC Versa S, exclude irq 9, irq 12.

» On the NEC Versa 6000 series, exclude port 0x2f8—0x33f, irq 9, irq 10.

* On the NEC Versa SX, exclude port 0x300—-0x31f.

» On the ProStar 9200, Altima Virage, and Acquiline Hurricane DX4-100, exclude irq 5, port
0x330-0x35f. Maybe use memory 0xd8000—-0xdffff.

* On the Siemens Nixdorf SIMATIC PG 720C, use memory 0xc0000-0xcffff, port 0x300—-0x3bf.

e On the Tl TravelMate 5000, use memory 0xd4000-0xdffff.

* On the Toshiba Satellite 4030CDS, exclude irq 9.

* On the Toshiba T4900 CT, exclude irg 5, port 0x2e0—-0x2e8, port 0x330-0x338.

» On the Toshiba Tecra 8000, exclude irq 3, irq 5, irq 9.

* On the Twinhead 5100, HP 4000, Sharp PC-8700 and PC-8900, exclude irq 9 (sound), irq 12.

* On an MPC 800 Series, exclude irg 5, port 0x300—-0x30f for the CD—ROM.

PowerBook specific settings

On PowerPC based PowerBook systems, the default system resources in /etc/pcmcia/config.opts
file are no good at all. Replace all the 10 port and window definitions with something like:

2.5 System resource settings 10

Linux PCMCIA HOWTO

include port 0x100—-0x4ff, port 0x1000—-0x17ff
include memory 0x80000000—-0x80ffffff

2.6 Notes about specific Linux distributions

This section is incomplete. Corrections and additions are welcome.

Debian

Debian uses a System V boot script arrangement. The PCMCIA startup script is installed as
letc/init.d/pcmcia. New packages use /etc/default/pcmcia for startup options; older versions

used /etc/pcmcia.conf for this purpose. Debian's syslog configuration will place kernel messages in
/var/log/messages and cardmgr messages in /var/log/daemon.log.

Debian distributes the PCMCIA system in two packages: the ~“pcmcia—cs" package contains cardmgr and
other tools, man pages, and configuration scripts; and the ~“pcmcia—modules" package contains the kernel
driver modules.

Starting with 3.1.25, a clean PCMCIA install will identify Debian systems and create a special
network.opts file that, in the absence of other network configuration settings, uses Debian's ifup and
ifdown commands to configure a network card based on settings in /etc/network/interfaces.

Red Hat, Caldera, Mandrake

These distributions use a System V boot script organization. The PCMCIA startup script is installed as
/etc/rc.d/init.d/pcmcia, and boot options are kept in /etc/sysconfig/pcmcia. Beware that

installing the Red Hat package may install a default boot option file that has PCMCIA disabled. To enable
PCMCIA, the "PCMCIA" variable should be set to “yes". Red Hat's default syslogd configuration will
record all interesting messages in /var/log/messages.

Red Hat's PCMCIA package contains a replacement for the network setup script,

letc/pemcia/network, which meshes with the Red Hat linuxconf configuration system. This is

convenient for the case where just one network adapter is used, with one set of network parameters, but do
not have the full flexibility of the regular PCMCIA network script. Compiling and installing a clean PCMCIA
source distribution will overwrite the network script, breaking the link to the Red Hat tools. If you prefer
using the Red Hat tools, either use only Red Hat RPM's, or replace /etc/pcmcia/network.opts with

the following:

if [—f /etc/sysconfig/network—-scripts/ifcfg—-$2] ; then
start_fn () {
. letc/sysconfig/network-scripts/ifcfg—$1
if ["SONBOOT" = "yes"] ; then /sbin/ifup $1 ; fi
}
stop_fn () {
Isbin/ifdown $1

}
fi

Starting with the 3.1.22 release, the PCMCIA installation script will automatically append a variant of this to
the default network.opts file, so this problem should no longer be an issue.

2.6 Notes about specific Linux distributions 11

Linux PCMCIA HOWTO

If you do use linuxconf (or netconf) to configure your network interface, leave the ““kernel module",
/O port", and “irq" parameters blank. Setting these parameters may interfere with proper operation of the
PCMCIA subsystem.

At boot time, when the Red Hat network subsystem starts up, it may say —Delaying ethO initialization" and
“[FAILED]". This is actually not a failure: it means that this network interface will not be initialized until
after the PCMCIA network device is configured.

Red Hat bundles their slightly modified PCMCIA source distribution with their kernel sources, rather than as
a separate source package. When preparing to build a new set of PCMCIA drivers, you will generally want t
install Red Hat's kernel-source RPM (kernel-source-*.i386.rpm), and not the kernel SRPM
(kernel=*.src.rpm). The SRPM is tailored for building their kernel RPM files, which is not exactly

what you want. With Red Hat 7.0, the kernel-source RPM also includes a mis—configured PCMCIA source
tree; if you want to use it, delete their PCMCIA config.out file and re—do "make config".

Slackware

Slackware uses a BSD boot script arrangement. The PCMCIA startup script is installed as
letc/rc.d/rc.pcmcia, and boot options are specified in rc.pcmcia itself. The PCMCIA startup
script is invoked from /etc/rc.d/rc.S.

SuSE

SUSE uses a System V init script arrangement, with init scripts stored under /etc/init.d. The PCMCIA
startup script is installed as /etc/init.d/pcmcia, and startup options are kept in /etc/rc.config.

Before release 7.0, init scripts were kept under /sbin/init.d. In early SUSE releases (pre-5.3), the

PCMCIA startup script was somewhat limited and did not allow PCMCIA startup variables to be overridden
from the lilo boot prompt.

SuSE 8.0 includes both the standalone PCMCIA modules, and the 2.4 kernel PCMCIA subsystem modules.
new variable, PCMCIA_SYSTEM, is available in /etc/sysconfig/pcmcia to choose between these. It
can be set to either “kernel” or “external”.

To look up current PCMCIA issues in SUSE's support database, go to
http://sdb.suse.de/cgi—bin/sdbsearch_en.cgi?stichwort=PCMCIA.

lving inst

This section describes some of the most common failure modes for the PCMCIA subsystem. Try to match
your symptoms against the examples. This section only describes general failures that are not specific to a
particular client driver or type of card.

Before trying to diagnose a problem, you have to know where your system log is kept (see Notes about
specific Linux distributions). You should also be familiar with basic diagnostic tools like dmesg and Ismod.
Also, be aware that most driver components (including all the kernel modules) have their own individual mar
pages.

In 3.1.15 and later releases, the debug-tools subdirectory of the PCMCIA source tree has a few scripts to
help diagnose some of the most common configuration problems. The test_setup script checks your

Slackware 12

http://sdb.suse.de/cgi-bin/sdbsearch_en.cgi?stichwort=PCMCIA

Linux PCMCIA HOWTO

PCMCIA installation for completeness. The test_network and test_modem scripts will try to diagnose
problems with PCMCIA network and modem cards. These scripts can be particularly helpful if you are
unfamiliar with Linux and are not sure how to approach a problem.

Try to define your problem as narrowly as possible. If you have several cards, try each card in isolation, and
in different combinations. Try cold Linux boots, versus warm boots from Windows. Compare booting with
cards inserted, versus inserting cards after boot. If you normally use your laptop docked, try it undocked. An
sometimes, two sockets will behave differently.

For debugging problems in the device configuration scripts, it may be useful to start cardmgr with the " -v"
option. With a 3.1.23 or later PCMCIA package, this will cause most important script actions to be recorded
in the system log.

It is nearly impossible to debug driver problems encountered when attempting to install Linux via a PCMCIA
device. Even if you can identify the problem based on its symptoms, installation disks are difficult to modify,
especially without access to a running Linux system. Customization of installation disks is completely
dependent on the choice of Linux distribution, and is beyond the scope of this document. In general, the bes
course of action is to install Linux using some other means, obtain the latest drivers, and then debug the
problem if it persists.

3.1 Base PCMCIA kernel modules do not load

Symptoms:

» Kernel version mismatch errors are reported when the PCMCIA startup script runs.
« After startup, Ismod does not show any PCMCIA modules.
« cardmgr reports “"no pcmcia driver in /proc/devices" in the system log.

Kernel modules contain version information that is checked against the current kernel when a module is
loaded. The type of checking depends on the setting of the CONFIG_MODVERSIONS kernel option. If this |
false, then the kernel version number is compiled into each module, and insmod checks this for a match witl
the running kernel. If CONFIG_MODVERSIONS is true, then each symbol exported by the kernel is given a
sort of checksum. These codes are all compared against the corresponding codes compiled into a module.
intent was for this to make modules less version—dependent, because the checksums would only change if .
kernel interface changed, and would generally stay the same across minor kernel updates. In practice, the
checksums have turned out to be even more restrictive, because many kernel interfaces depend on
compile—time kernel option settings. Also, the checksums turned out to be an excessively pessimistic judge
compatibility.

The practical upshot of this is that kernel modules are closely tied to both the kernel version, and the setting
many kernel configuration options. Generally, a set of modules compiled for one 2.2.19 kernel will not load
against some other 2.2.19 kernel unless special care is taken to ensure that the two were built with similar
configurations. This makes distribution of precompiled kernel modules a tricky business.

You have several options:
« If you obtained precompiled drivers as part of a Linux distribution, verify that you are using an

unmodified kernel as supplied with that distribution. If you intend to use precompiled modules, you
generally must stick with the corresponding kernel.

3.1 Base PCMCIA kernel modules do not load 13

Linux PCMCIA HOWTO

« If you have reconfigured or upgraded your kernel, you will probably need to compile and install the
PCMCIA package from scratch. This is easily done if you already have the kernel source tree
installed. See Compilation and installation for detailed instructions.

« In some cases, incompatibilities in other system components can prevent correct loading of kernel
modules. If you have upgraded your own kernel, pay attention to the ““minimal requirements" for
module utilities and binutils listed in the Documentation/Changes file in the kernel source code
tree.

3.2 Some client driver modules do not load
Symptoms:

» The base modules (pcmcia_core, ds, i82365) load correctly.
« Inserting a card gives a high beep + low beep pattern.
« cardmgr reports version mismatch errors in the system log.

Some of the driver modules require kernel services that may or may not be present, depending on kernel
configuration. For instance, the SCSI card drivers require that the kernel be configured with SCSI support,
and the network drivers require a networking kernel. If a kernel lacks a necessary feature, insmod may
report undefined symbols and refuse to load a particular module. Note that insmod error messages do not
distinguish between version mismatch errors and missing symbol errors.

Specifically:

» The serial client driver serial_cs requires the kernel serial driver to be enabled with
CONFIG_SERIAL. This driver may be built as a module.

 Support for multiport serial cards or multifunction cards that include serial or modem devices require:
CONFIG_SERIAL_SHARE_IRQ to be enabled.

» The SCSI client drivers require that CONFIG_SCSI be enabled, along with the appropriate top level
driver options (CONFIG_BLK_DEV_SD, CONFIG_BLK DEV_SR, etc for 2.2 and later kernels).
These may be built as modules.

» The network client drivers require that CONFIG_INET is enabled. Kernel networking support cannot
be compiled as a module.

» The token-ring client requires that the kernel be compiled with CONFIG_TR enabled.

There are two ways to proceed:
» Rebuild your kernel with the necessary features enabled.
« If the features have been compiled as modules, then modify /etc/pcmcia/config to preload

these modules.

The /etc/pcmcial/config file can specify that additional modules need to be loaded for a particular
client. For example, for the serial driver, one would use:

device "serial_cs"
class "serial" module "misc/serial", "serial_cs"

Module paths are specified relative to the top-level module directory for the current kernel version; if no
relative path is given, then the path defaults to the pcmcia subdirectory.

3.2 Some client driver modules do not load 14

Linux PCMCIA HOWTO
3.3 ISA interrupt scan failures
Symptoms:

» The system locks up when the PCMCIA drivers are loaded, even with no cards present.
» The system log shows a successful host controller probe just before the lock—up, but does not show
interrupt probe results.

After identifying the host controller type, the socket driver probes for free ISA bus interrupts. The probe
involves programming the controller for each apparently free interrupt, then generating a “soft" interrupt, to
see if the interrupt can be detected correctly. In some cases, probing a particular interrupt can interfere with
another system device.

The reason for the probe is to identify interrupts which appear to be free (i.e., are not reserved by any other
Linux device driver), yet are either not physically wired to the host controller, or are connected to another
device that does not have a driver.

In the system log, a successful probe might look like:

Intel PCIC probe:
T1 1130 CardBus at mem 0x10211000, 2 sockets

ISA irgs (scanned) = 5,7,9,10 status change on irq 10
There are two ways to proceed:

» The ISA interrupt probe can be restricted to a list of interrupts using the irq_list parameter for the
socket drivers. For example, “irg_list=5,9,10" would limit the scan to three interrupts. All
16-bit PCMCIA devices will be restricted to using these interrupts (assuming they pass the probe).
You may need to use trial and error to find out which interrupts can be safely probed.

» The interrupt probe can be disabled entirely by loading the socket driver with the ~"do_scan=0"
option. In this case, a default interrupt list will be used, which just avoids interrupts already allocated
for other devices.

In either case, the probe options can be specified using the PCIC_OPTS definition in the PCMCIA startup
script, for example:

PCIC_OPTS="irg_list=5,9,10"

It should be noted that /proc/interrupts is completely useless when it comes to diagnosing interrupt

probe problems. The probe is sensible enough to never attempt to use an interrupt that is already in use by
another Linux driver. So, the PCMCIA drivers are already using all the information in

Iproc/interrupts. Depending on system design, an inactive device can still occupy an interrupt and

cause trouble if it is probed for PCMCIA.

3.4 10 port scan failures
Symptoms:

» The system locks up when cardmgr is first started. For 3.1.24, the lockup happens even with no
cards present; for 3.1.25, a card must be inserted.

3.3 ISA interrupt scan failures 15

Linux PCMCIA HOWTO

» The system log shows a successful host controller probe, including interrupt probe results, but does
not show 10 probe results.
* In some cases, the |0 probe will succeed, but report large numbers of random exclusions.

When cardmgr processes IO port ranges listed in /etc/pcmcia/config.opts, the kernel probes these

ranges to detect latent devices that occupy IO space but are not associated with a Linux driver. The probe i
read-only, but in rare cases, reading from a device may interfere with an important system function, resultin
in a lock-up.

Your system user's guide may include a map of system devices, showing their IO and memory ranges. The:
can be explicitly excluded in config.opts.

Alternatively, if the probe is unreliable on your system, it can be disabled by setting CORE_OPTS to
“probe_io=0". In this case, you should be very careful to specify only genuinely available ranges of ports
in config.opts, instead of using the default settings.

3.5 Memory probe failures
Symptoms:

» The core drivers load correctly when no cards are present, with no errors in the system log.
» The system freezes and/or reboots as soon as any card is inserted, before any beeps are heard.

Or alternately:

« All card insertions generate a high beep followed by a low beep.
« All cards are identified as “"anonymous memory cards".
» The system log reports that various memory ranges have been excluded.

The core modules perform a memory scan at the time of first 16—bit card insertion. This scan can potentially
interfere with other memory mapped devices. Also, pre—3.0.0 driver packages perform a more aggressive s
than more recent drivers. The memory window is defined in /etc/pcmcia/config.opts. The default

window is large, so it may help to restrict the scan to a narrower range. Reasonable ranges to try include
0xd0000-0xdffff, OxcO000—-0xcffff, Oxc8000—0xcffff, or Oxd8000—-0xdffff.

If you have DOS or Windows PCMCIA drivers, you may be able to deduce what memory region those drivel
use. Note that DOS memory addresses are often specified in ““segment" form, which leaves off the final he»
digit (so an absolute address of 0xd0000 might be given as 0xd000). Be sure to add the extra digit back whe
making changes to config.opts.

Changing BIOS settings affecting how devices are mapped can sometimes be useful. Try changing settings
BIOS shadowing, or "Plug and Play OS support".

In unusual cases, a memory probe failure can indicate a timing register setup problem with the host controll
See the Startup options section for information about dealing with common timing problems. This really only
applies to ISA-to—-PCMCIA bus bridges.

* ¢S: warning: no high memory space available!

3.5 Memory probe failures 16

Linux PCMCIA HOWTO

CardBus bridges can allocate memory windows outside of the 640KB-1MB ““memory hole" in the ISA bus
architecture. It is generally a good idea to configure CardBus bridges to use high memory windows, becaust
these are unlikely to conflict with other devices. Also, CardBus cards may require large memory windows,
which may be difficult or impossible to fit into low memory. Card Services will preferentially allocate
windows in high memory for CardBus bridges, if both low and high memory windows are defined in
config.opts. The default config.opts includes several candidate high memory windows, one of

which will work in most cases.

3.6 Failure to detect card insertions and removals
Symptoms:

 Cards are detected and configured properly if present at boot time.
» The drivers do not respond to insertion and removal events, either by recording events in the system
log, or by beeping.

In most cases, the socket driver (i82365 or tcic) will automatically probe and select an appropriate

interrupt to signal card status changes. The automatic interrupt probe doesn't work on some Intel-compatibl
controllers, including Cirrus chips and the chips used in some IBM ThinkPads. If a device is inactive at prob:
time, its interrupt may also appear to be available. In these cases, the socket driver may pick an interrupt th:
is used by another device.

With the 182365 and tcic drivers, the irg_list option can be used to limit the interrupts that will be

tested. This list limits the set of interrupts that can be used by PCMCIA cards as well as for monitoring card
status changes. The cs_irg option can also be used to explicitly set the interrupt to be used for monitoring
card status changes.

If you can't find an interrupt number that works, there is also a polled status mode: both i82365 and tcic

will accept a poll_interval=100 option, to poll for card status changes once per second. This option

should also be used if your system has a shortage of interrupts available for use by PCMCIA cards. Especiz
for systems with more than one host controller, there is little point in dedicating interrupts for monitoring carc
status changes.

All these options should be set in the PCIC_OPTS= line in either /etc/rc.d/rc.pcmcia or
letc/sysconfig/pcmcia, depending on your site setup.

3.7 Interrupt delivery problems
Symptoms:

 Cards appear to be configured successfully, but don't work.
« Serial and modem cards may respond very sluggishly.
» Network cards may report “interrupt(s) dropped", and/or transmit timeouts.

The most simple interrupt delivery problems are due to conflicts with other system devices. These can
generally be resolved by excluding problem interrupts in /etc/pcmcia/config.opts. To test, just

exclude interrupts one by one until either the problem is fixed or you run out of interrupts. If no interrupts
work, then device conflicts are probably not the problem.

3.6 Failure to detect card insertions and removals 17

Linux PCMCIA HOWTO

For CardBus bridges, a variety of other interrupt delivery issues may come into play. For a complete
discussion, see PCI interrupt delivery problems.

3.8 System resource starvation
Symptoms:

* When a card is inserted, it is identified correctly but cannot be configured (high/low beep pattern).
» One of the following messages will appear in the system log:

RequestlO: Resource in use

RequestIRQ: Resource in use

RequestWindow: Resource in use

GetNextTuple: No more items

could not allocate nn 10 ports for CardBus socket n
could not allocate nnK memory for CardBus socket n
could not allocate interrupt for CardBus socket n

Interrupt starvation often indicates a problem with the interrupt probe (see Interrupt scan failures). In some
cases, the probe will seem to work, but only report one or two available interrupts. Check your system log to
see if the scan results look sensible. Disabling the probe and selecting interrupts manually should help.

If the interrupt probe is not working properly, the socket driver may allocate an interrupt for monitoring card
insertions, even when interrupts are too scarce for this to be a good idea. You can switch the controller to
polled mode by setting PCIC_OPTS to poll_interval=100'". Or, if you have a CardBus controller and

an older version of the PCMCIA drivers, try ““pci_csc=1", which selects a PClI interrupt (if available) for
card status changes.

In some cases, kernel misconfiguration can also produce an apparent interrupt shortage. On 2.4 and later
kernels, if CONFIG_ISA is not enabled, then the PCMCIA drivers will assume no ISA bus interrupts are
available.

IO port starvation is fairly uncommon, but sometimes happens with cards that require large, contiguous,
aligned regions of 10 port space, or that only recognize a few specific 10 port positions. The default 10 port
ranges in /etc/pcmcia/config.opts are normally sufficient, but may be extended. If this is the

problem, try uncommenting the ““include port 0x1000-0x17ff" line in config.opts. In rare

cases, starvation may indicate that the 10 port probe failed (see 10 port scan failures).

Memory starvation is also uncommon with the default memory window settings in config.opts. CardBus
cards may require larger memory regions than typical 16-bit cards. Since CardBus memory windows can b

mapped anywhere in the host's PCI address space (rather than just in the 640K-1MB ““hole" in PC systems
it is helpful to specify large memory windows in high memory, such as 0xa0000000—-0xaOffffff.

3.9 Resource conflict only with two cards inserted
Symptoms:

» Two cards each work fine when used separately.
* When both cards are inserted, only one works.

3.8 System resource starvation 18

Linux PCMCIA HOWTO

This usually indicates a resource conflict with a system device that Linux does not know about. PCMCIA
devices are dynamically configured, so, for example, interrupts are allocated as needed, rather than
specifically assigned to particular cards or sockets. Given a list of resources that appear to be available, car
are assigned resources in the order they are configured. In this case, the card configured last is being assig
a resource that in fact is not free.

Check the system log to see what resources are used by the non-working card. Exclude these in
letc/pecmcia/config.opts, and restart the cardmgr daemon to reload the resource database.

3.10 Device configuration does not complete
Symptoms:

* When a card is inserted, exactly one high beep is heard.
» Subsequent card insertions and removals may be ignored.

This indicates that the card was identified successfully, however, cardmgr has been unable to complete the
configuration process for some reason. The most likely reason is that a step in the card setup script has
blocked. A good example would be the network script blocking if a network card is inserted with no actual
network hookup present.

To pinpoint the problem, you can manually run a setup script to see where it is blocking. The scripts are in t
letc/pcmcia directory. They take two parameters: a device name, and an action. The cardmgr daemon
records the configuration commands in the system log. For example, if the system log shows that the
command "./network start eth0" was the last command executed by cardmgr, the following command
would trace the script:

sh —x /etc/pcmcia/network start ethO

4. Usage and features

4.1 Tools for configuring and monitoring PCMCIA devices

If the modules are all loaded correctly, the output of the Ismod command should look like the following,
when no cards are inserted:

Module Size Used by

ds 5640 2

82365 15452 2

pcmcia_core 30012 3 [ds i82365]

The system log should also include output from the socket driver describing the host controller(s) found and
the number of sockets detected.

The cardmgr configuration daemon

The cardmgr daemon is responsible for monitoring PCMCIA sockets, loading client drivers when needed,

and running user-level scripts in response to card insertions and removals. It records its actions in the syste
log, but also uses beeps to signal card status changes. The tones of the beeps indicate success or failure o
particular configuration steps. Two high beeps indicate that a card was identified and configured successfull

3.10 Device configuration does not complete 19

Linux PCMCIA HOWTO

A high beep followed by a low beep indicates that a card was identified, but could not be configured for som
reason. One low beep indicates that a card could not be identified.

The cardmgr daemon configures cards based on a database of known card types kept in
letc/pecmcia/config. This file describes the various client drivers, then describes how to identify
various cards, and which driver(s) belong with which cards. The format of this file is described in the
pcmcia(5) man page.

The socket status file, stab

Cardmgr records device information for each socket in /var/lib/pcmcia/stab. Here is a sample
stab listing:

Socket 0: Adaptec APA-1460 SIimSCSI

0 scsi ahalb52x_cs O sda 8 0
0 scsi ahalb2x_cs 1 scd0 11 O
Socket 1: Serial or Modem Card

1 serial serial_cs 0 ttyS1 5 65

For the lines describing devices, the first field is the socket, the second is the device class, the third is the
driver name, the fourth is used to number multiple devices associated with the same driver, the fifth is the
device name, and the final two fields are the major and minor device humbers for this device (if applicable).
See the stab man page for more info.

In 2.4 and later kernels, hot plut PCI drivers for CardBus cards are not managed by cardmgr; they are
managed by the hotplug subsystem. See http://linux—hotplug.sourceforge.net for information about this
facility. When cardmgr sees a card that is owned by a hot plug PCI driver, it will ignore that card. There
will be one beep when these cards are inserted or ejected, but they will be identified only as a “"CardBus
hotplug device" in the system log and stab file.

The cardctl and cardinfo utilities

The cardctl command can be used to check the status of a socket, or to see how it is configured. It can also
be used to alter the configuration status of a card. Here is an example of the output of the ““cardctl
config" command:

Socket 0:
not configured
Socket 1:
Vcc = 5.0, Vppl = 0.0, Vpp2 = 0.0
Card type is memory and 1/O
IRQ 3 is dynamic shared, level mode, enabled
Speaker output is enabled
Function 0:
Config register base = 0x0800
Option = 0x63, status = 0x08
1/0 window 1: 0x0280 to 0x02bf, auto sized
1/0 window 2: 0x02f8 to 0x02ff, 8 bit

Or “cardctl ident", to get card identification information:

Socket 0:
no product info available
Socket 1:

The socket status file, stab 20

http://linux-hotplug.sourceforge.net

Linux PCMCIA HOWTO

product info: "LINKSYS", "PCMLM336", "A", "0040052D6400"
manfid: 0x0143, OxcOab
function: 0 (multifunction)

The ““cardctl suspend" and ““cardctl resume" commands can be used to shut down a card without
unloading its associated drivers. The “cardctl reset" command attempts to reset and reconfigure a card.
““cardctl insert" and "“cardctl eject" mimic the actions performed when a card is physically

inserted or ejected, including loading or unloading drivers, and configuring or shutting down devices.

If you are running X, the cardinfo utility produces a graphical display showing the current status of all
PCMCIA sockets, similar in content to ~"cardctl config". It also provides a graphical interface to most
other cardctl functions.

Inserting and ejecting cards

In theory, you can insert and remove PCMCIA cards at any time. However, it is a good idea not to eject a ce
that is currently being used by an application program. Kernels older than 1.1.77 would often lock up when
serial/modem cards were ejected, but this should be fixed now.

Some card types cannot be safely hot ejected. Specifically, ATA/IDE and SCSI interface cards are not
hot-swap-safe. This is unlikely to be fixed, because a complete solution would require significant changes t
the Linux block device model. Also, it is generally not safe to hot eject CardBus cards of any type. This is
likely to improve gradually as hot swap bugs in the CardBus drivers are found and fixed. For these card type
(IDE, SCsSI, CardBus), it is recommended that you always use "cardctl eject" before ejecting.

Card Services and Advanced Power Management

Card Services can be compiled with support for APM (Advanced Power Management) if you've configured
your kernel with APM support. The APM kernel driver is maintained by Stephen Rothwell
(Stephen.Rothwell@canb.auug.org.au). The apmd daemon is maintained by Avery Pennarun
(apenwarr@worldvisions.ca), with more information available at
http://www.worldvisions.ca/~apenwarr/apmd/. The PCMCIA modules will automatically be configured for
APM if a compatible version is detected on your system.

Whether or not APM is configured, you can use "cardctl suspend" before suspending your laptop, and
““cardctl resume" after resuming, to cleanly shut down and restart your PCMCIA cards. This will not

work with a modem that is in use, because the serial driver isn't able to save and restore the modem operati
parameters.

APM seems to be unstable on some systems. If you experience trouble with APM and PCMCIA on your
system, try to narrow down the problem to one package or the other before reporting a bug.

Some drivers, notably the PCMCIA SCSI drivers, cannot recover from a suspend/resume cycle. When using
PCMCIA SCSiI card, always use "cardctl eject" prior to suspending the system.

Shutting down the PCMCIA system

To unload the entire PCMCIA package, invoke rc.pcmcia with:

/etc/rc.d/rc.pcmcia stop

Inserting and ejecting cards 21

http://www.worldvisions.ca/~apenwarr/apmd/

Linux PCMCIA HOWTO

This script will take several seconds to run, to give all client drivers time to shut down gracefully. If a device
is currently in use, the shutdown will be incomplete, and some kernel modules may not be unloaded. To avc
this, use ““cardctl eject" to shut down all sockets before invoking rc.pcmcia. The exit status of the

cardctl command will indicate if any sockets could not be shut down.

4.2 Overview of the PCMCIA configuration scripts

The following information applies to cards that are managed by cardmgr. In 2.4 and later kernels, if the
kernel PCMCIA subsystem is active, then CardBus cards are managed by the hotplug subsystem and the
PCMCIA scripts are not used.

Each PCMCIA device has an associated " "class" that describes how it should be configured and managed.

Classes are associated with device drivers in /etc/pcmcia/config. There are currently five 10 device

classes (network, SCSI, cdrom, fixed disk, and serial) and two memory device classes (memory and FTL). F
each class, there are two scripts in /etc/pcmcia: a main configuration script (i.e., /etc/pcmcia/scsi

for SCSI devices), and an options script (i.e., /etc/pcmcia/scsi.opts). The main script for a device

will be invoked to configure that device when a card is inserted, and to shut down the device when the card

removed. For cards with several associated devices, the script will be invoked for each device.

The config scripts start by extracting some information about a device from the stab file. Each script
constructs a ~"device address", that uniquely describes the device it has been asked to configure, in the
ADDRESS shell variable. This is passed to the *.opts script, which should return information about how a
device at this address should be configured. For some devices, the device address is just the socket numbe
For others, it includes extra information that may be useful in deciding how to configure the device. For
example, network devices pass their hardware ethernet address as part of the device address, so the
network.opts script could use this to select from several different configurations.

The first part of all device addresses is the current PCMCIA ““scheme". This parameter is used to support
multiple sets of device configurations based on a single external user—specified variable. One use of schem
would be to have a “"home" scheme, and a ~work" scheme, which would include different sets of network
configuration parameters. The current scheme is selected using the “cardctl scheme" command. The
default if no scheme is set is “default”.

There are a few additional shell variables that can be used in *.opts files in addition to ADDRESS:

SOCKET, CLASS, DRIVER, INSTANCE, DEVICE, MAJOR, MINOR
These correspond to individual fields from one line in the stab file. See its man page for details.
PRODID_1, PRODID_2, PRODID_3, PRODID_4, MANFID, FUNCID
These are equivalent to the output of “cardctl info" and give more detailed card identification
information.

As the *.opts files are just shell scripts, it is not required that they follow the form of the examples, which
just return settings based on ADDRESS.

As a general rule, when configuring Linux for a laptop, PCMCIA devices should only be configured from the
PCMCIA device scripts. Do not try to configure a PCMCIA device the same way you would configure a
permanently attached device. However, some Linux distributions provide PCMCIA packages that are hooke
into those distributions' own device configuration tools. In that case, some of the following sections may not
apply; ideally, this will be documented by the distribution maintainers.

4.2 Overview of the PCMCIA configuration scripts 22

Linux PCMCIA HOWTO
4.3 PCMCIA network adapters

Linux ethernet-type network interfaces normally have names like ethQ, ethl, and so on. Token-ring
adapters are handled similarly, however they are named tr0, trl, and so on. The ifconfig command is
used to view or modify the state of a network interface. A peculiarity of Linux is that network interfaces do
not have corresponding device files under /dev, so do not be surprised when you do not find them.

When an ethernet card is detected, it will be assigned the first free interface name, which will normally be
eth0. Cardmgr will run the /etc/pcmcia/network script to configure the interface, which normally

reads network settings from /etc/pcmcia/network.opts. The network and network.opts

scripts will be executed only when your ethernet card is actually present. If your system has an automatic
network configuration facility, it may or may not be PCMCIA-aware. Consult the documentation of your
Linux distribution and the Notes about specific Linux distributions to determine if PCMCIA network devices
should be configured with the automatic tools, or by editing network.opts.

The device address passed to network.opts consists of four comma-separated fields: the scheme, the
socket number, the device instance, and the card's hardware ethernet address. The device instance is used
number devices for cards that have several network interfaces, so it will usually be 0. If you have several
network cards used for different purposes, one option would be to configure the cards based on socket
position, as in:

case "$ADDRESS" in
’O,,*)

definitions for network card in socket 0
,1’,’,*)

definitions for network card in socket 1

esac

Alternatively, they could be configured using their hardware addresses, as in:

case "$ADDRESS" in
*** 00:80:C8:76:00:B1)
definitions for a D—-Link card

,,*,08:00:5A:44:80:01)

definitions for an IBM card
esac

Network device parameters
The following parameters can be defined in network.opts:

IF_PORT
Specifies the ethernet transceiver type, for certain 16—bit cards that do not autodetect. See "man
ifport" and ““man mii—-tool" for more information.

BOOTP
A boolean (y/n) value: indicates if the host's IP address and routing information should be obtained
using the BOOTP protocol, with bootpc or pump.

DHCP
A boolean (y/n) value: indicates if the host's IP address and routing information should be obtained
from a DHCP server. The network script first looks for dhcpced, then dhclient, then pump.

4.3 PCMCIA network adapters 23

Linux PCMCIA HOWTO

DHCP_HOSTNAME
Specifies a hostname to be passed to dhcpcd or pump, for inclusion in DHCP messages.
IPADDR
The IP address for this interface.
NETMASK, BROADCAST, NETWORK
Basic network parameters: see the networking HOWTO for more information.
GATEWAY
The IP address of a gateway for this host's subnet. Packets with destinations outside this subnet will
be routed to this gateway.
DOMAIN
The local network domain name for this host, to be used in creating /etc/resolv.conf.
SEARCH
A search list for host name lookup, to be added to /etc/resolv.conf. DOMAIN and SEARCH are
mutually exclusive: see “man resolver" for more information.
DNS_1, DNS_2,DNS_3
Host names or IP addresses for nameservers for this interface, to be added to /etc/resolv.conf
MOUNTS
A space-separated list of NFS mount points to be mounted for this interface.
IPX_FRAME, IPX_NETNUM
For IPX networks: the frame type and network number, passed to the ipx_interface command.
NO_CHECK, NO_FUSER
Boolean (y/n) settings for card eject policy. If NO_CHECK is set, then "cardctl eject" will shut
down a device even if there are open connections. If NO_FUSER is set, then the script will not chec}
for busy NFS mounts or kill processes using those mounts.

For example:

case "$ADDRESS" in

’'*,*)
IF_PORT="10base2"
BOOTP="n"
IPADDR="10.0.0.1"
NETMASK="255.255.255.0"
NETWORK="10.0.0.0"
BROADCAST="10.0.0.255"
GATEWAY="10.0.0.1"
DOMAIN="domain.org"
DNS_1="dnsl.domain.org"

esac

To automatically mount and unmount NFS filesystems, first add all these filesystems to /etc/fstab, but
include noauto in the mount options. In network.opts, list the filesystem mount points in the MOUNTS
variable. It is especially important to use either cardctl or cardinfo to shut down a network card when
NFS mounts are active. It is not possible to cleanly unmount NFS filesystems if a network card is simply
ejected without warning.

In addition to the usual network configuration parameters, the network.opts script can specify extra

actions to be taken after an interface is configured, or before an interface is shut down. If network.opts
defines a shell function called start_fn, it will be invoked by the network script after the interface is
configured, and the interface name will be passed to the function as its first (and only) argument. Similarly, i
it is defined, stop_fn will be invoked before shutting down an interface.

4.3 PCMCIA network adapters 24

Linux PCMCIA HOWTO

The transceiver type for some (mostly old) cards must be manually be selected using the IF_PORT setting.
This can either be a numeric value, or a keyword identifying the transceiver type. All the network drivers
default to either autodetect the interface if possible, or 10baseT otherwise. The ifport command can be
used to check or set the current transceiver type. For example:

ifport ethO 10base2
#

ifport ethO

ethO 2 (10base2)

Most modern 10/100baseT cards use a ~“media independent interface" (Mll) transceiver that automatically
selects line speed and duplex setting. The mii—-tool command can be used to monitor and control the
behavior of the MII interface.

Comments about specific cards

« With IBM CCAE and Socket EA cards, the transceiver type (10base2, 10baseT, AUI) needs to be se
when the network device is configured. Make sure that the transceiver type reported in the system lo
matches your connection.

» The Farallon EtherWave is actually based on the 3Com 3¢589, with a special transceiver. Though th
EtherWave uses 10baseT-style connections, its transceiver requires that the 3¢589 be configured in
10base2 mode.

« If you have trouble with an IBM CCAE, NE4100, Thomas Conrad, or Kingston adapter, try
increasing the memory access time with the mem_speed=# option to the pcnet_cs module. An
example of how to do this is given in the standard config.opts file. Try speeds of up to 1000 (in
nanoseconds).

» For the New Media Ethernet adapter, on some systems, it may be necessary to increase the 10 port
access time with the io_speed=# option when the pcmcia_core module is loaded. Edit
CORE_OPTS in the startup script to set this option.

» The multicast support in the New Media Ethernet driver is incomplete. The latest driver will function
with multicast kernels, but will ignore multicast packets. Promiscuous mode should work properly.

» The driver used by the IBM and 3Com token ring adapters seems to behave very badly if the cards ¢
not connected to a ring when they get initialized. Always connect these cards to the net before they
are powered up. If ifconfig reports the hardware address as all 0's, this is likely to be due to a
memaory window configuration problem.

« Some Linksys, D-Link, and IC-Card 10baseT/10base2 cards have a unique way of selecting the
transceiver type that isn't handled by the Linux drivers. One workaround is to boot DOS and use the
vendor—supplied utility to select the transceiver, then warm boot Linux. Alternatively, a Linux utility
to perform this function is available_at http://pcmcia—cs.sourceforge.net/ftp/extras/diport.c.

 16-hit PCMCIA cards have a maximum performance of 1.5-2 MB/sec. That means that any 16-bit
100baseT card (i.e., any card that uses the pcnet_cs, 3c574_cs, smc91c92_cs, or
xirc2ps_cs driver) will never achieve full 100baseT throughput. Only CardBus network adapters
can fully exploit 100baseT data rates.

» For WaveLAN wireless network adapters, Jean Tourrilhes (jt@hpl.hp.com) has put together a

wireless HOWTO at http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/.
Diagnosing problems with network adapters
« In 3.1.15 and later PCMCIA releases, the test_network script in the debug-tools

subdirectory of the PCMCIA source tree will spot some common problems.

Comments about specific cards 25

http://pcmcia-cs.sourceforge.net/ftp/extras/dlport.c
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/

Linux PCMCIA HOWTO

« Is your card recognized as an ethernet card? Check the system log and make sure that cardmgr
identifies the card correctly and starts up one of the network drivers. If it doesn't, your card might still
be usable if it is compatible with a supported card. This will be most easily done if the card claims to
be “"NE2000 compatible".

« Is the card configured properly? If you are using a supported card, and it was recognized by
cardmgr, but still doesn't work, there might be an interrupt or port conflict with another device. Find
out what resources the card is using (from the system log), and try excluding these in
/etc/pecmcial/config.opts to force the card to use something different.

« If your card seems to be configured properly, but sometimes locks up, particularly under high load,
you may need to try changing your socket driver timing parameters. See the Startup options section
for more information.

« If you get “"Network is unreachable" messages when you try to access the network, then the routing
information specified in /etc/pcmcia/network.opts is incorrect. This exact message is an
absolutely foolproof indication of a routing error. On the other hand, mis—configured cards will
usually fail silently.

« If you are trying to use DHCP to configure your network interface, try testing things with a static IP
address instead, to rule out a DHCP configuration problem.

» To diagnose problems in /etc/pcmcia/network.opts, start by trying to ping other systems on
the same subnet using their IP addresses. Then try to ping your gateway, and then machines on oth
subnets. Ping machines by name only after trying these simpler tests.

» Make sure your problem is really a PCMCIA one. It may help to see see if the card works under DOS
with the vendor's drivers. Double check your maodifications to the /etc/pcmcia/network.opts
script. Make sure your drop cable, " T" jack, terminator, etc are working.

 Use real network cables. Don't even think about using that old phone cord you found in your
basement. And this means Category 5 cable for 100baseT. It really matters.

4.4 PCMCIA serial and modem devices

Linux serial devices are accessed via the /dev/ttyS* and /dev/cua* special device files. In pre-2.2

kernels, the ttyS* devices were for incoming connections, such as directly connected terminals, and the
cua* devices were for outgoing connections, such as modems. Use of cua* devices is deprecated in current
kernels, and ttyS* can be used for all applications. The configuration of a serial device can be examined anc
modified with the setserial command.

When a serial or modem card is detected, it will be assigned to the first available serial device slot. This will
usually be /devi/ttyS1 (cual) or /dev/ttyS2 (cua2), depending on the number of built-in serial

ports. The ttyS* device is the one reported in stab. The default serial device option script,
letc/pecmcia/serial.opts, will link the device file to /dev/modem as a convenience. For pre-2.2

kernels, the link is made to the cua* device.

Do not try to use /etc/rc.d/rc.serial to configure a PCMCIA modem. This script should only be

used to configure non—-removable devices. Modify /etc/pcmcia/serial.opts if you want to do

anything special to set up your modem. Also, do not try to change the 10 port and interrupt settings of a seri
device using setserial. This would tell the serial driver to look for the device in a different place, but

would not change how the card's hardware is actually configured. The serial configuration script allows you-
specify other setserial options, as well as whether a line should be added to /etc/inittab for this

port.

The device address passed to serial.opts has three comma-separated fields: the first is the scheme, the
second is the socket number, and the third is the device instance. The device instance may take several val

4.4 PCMCIA serial and modem devices 26

Linux PCMCIA HOWTO

for cards that support multiple serial ports, but for single—port cards, it will always be 0. If you commonly use
more than one modem, you may want to specify different settings based on socket position, as in:

case "$ADDRESS" in

’O,)
Options for modem in socket 0
LINK=/dev/imodemO

1%
Options for modem in socket 1
LINK=/dev/modem1

esac

If a PCMCIA modem is already configured when Linux boots, it may be incorrectly identified as an ordinary
built—in serial port. This is harmless, however, when the PCMCIA drivers take control of the modem, it will
be assigned a different device slot. It is best to either parse stab or use /dev/imodem, rather than expecting
a PCMCIA modem to always have the same device assignment.

If you configure your kernel to load the basic Linux serial port driver as a module, you must edit
/etc/pecmcia/config to indicate that this module must be loaded. Edit the serial device entry to read:

device "serial_cs"
class "serial" module "misc/serial", "serial_cs"

Serial device parameters
The following parameters can be defined in serial.opts:

LINK
Specifies a path for a symbolic link to be created to the ““callout" device (e.g., /dev/cua* for
pre—2.2, or /dev/ttyS* for 2.2 kernels).

SERIAL_OPTS
Specifies options to be passed to the setserial command.

INITTAB
If specified, this will be used to construct an inittab entry for the device.

NO_CHECK, NO_FUSER
Boolean (y/n) settings for card eject policy. If NO_CHECK is true, then "“cardctl eject" will
shut down a device even if it is busy. If NO_FUSER is true, then the script will not try to kill
processes using an ejected device.

For example:

case "$ADDRESS" in
’'*)
LINK="/dev/imodem"

SERIAL_OPTS=""
INITTAB="/shin/getty"

Comments about specific cards

» The Uniden Data 2000 Wireless CDPD card has some special dialing strings for initiating SLIP and
PPP mode. For SLIP, use "ATDT2"; for PPP, "ATDTO".

Serial device parameters 27

Linux PCMCIA HOWTO

» Socket 10 revision H serial port cards have a faster-than—normal clock rate for the UART. The card"
actual baud rate is four times faster than the serial driver thinks it is. To work around the problem,
specify SERIAL_OPTS="baud_base 460800" in /etc/pcmcia/serial.opts.

Diagnosing problems with serial devices

« In 3.1.15 and later PCMCIA releases, the test_modem script in the debug-tools subdirectory of
the PCMCIA source tree will spot some common problems.

« Is your card recognized as a modem? Check the system log and make sure that cardmgr identifies

the card correctly and starts up the serial_cs driver. If it doesn't, you may need to add a new entry

to your /etc/pcmcia/config file so that it will be identified properly. See the Configuring

unrecognized cards section for details.

Is the modem configured successfully by serial_cs? Again, check the system log and look for

messages from the serial_cs driver. If you see “‘register_serial() failed", you may have an 1/O port

conflict with another device. Another tip—off of a conflict is if the device is reported to be an 8250;

most modern modems should be identified as 16550A UART's. If you think you're seeing a port

conflict, edit /etc/pcmcia/config.opts and exclude the port range that was allocated for the

modem.

Is there an interrupt conflict? If the system log looks good, but the modem just doesn't seem to work,

try using setserial to change the irq to 0, and see if the modem works. This causes the serial

driver to use a slower polled mode instead of using interrupts. If this seems to fix the problem, it is

likely that some other device in your system is using the interrupt selected by serial_cs. You should

add a line to /etc/pcmcia/config.opts to exclude this interrupt.

« If the modem seems to work only very, very slowly, this is an almost certain indicator of an interrupt
conflict.

» Make sure your problem is really a PCMCIA one. It may help to see if the card works under DOS
with the vendor's drivers. Also, don't test the card with something complex like SLIP or PPP until you
are sure you can make simple connections. If simple things work but SLIP does not, your problem is
most likely with SLIP, not with PCMCIA.

« If you get kernel messages indicating that the serial_cs module cannot be loaded, it means that your
kernel does not have serial device support. If you have compiled the serial driver as a module, you
must modify /etc/pcmcia/config to indicate that the serial module should be loaded before
serial_cs.

4.5 PCMCIA parallel port devices

The Linux parallel port driver is layered so that several high—level device types can share use of the same Ic
level port driver. Printer devices are accessed via the /dev/Ip* special device files. The configuration of a
printer device can be examined and modified with the tunelp command.

The parport_cs module depends on the parport and parport_pc drivers, which may be either

compiled into the kernel or compiled as modules. The layered driver structure means that any top-level
parallel drivers (such as the plip driver, the printer driver, etc) must be compiled as modules. These drivers
only recognize parallel port devices at module startup time, so they need to be loaded after any PC Card
parallel devices are configured.

The device address passed to parport.opts has three comma-separated fields: the first is the scheme, the
second is the socket number, and the third is the device instance. The device instance may take several val
for cards that support multiple parallel ports, but for single—port cards, it will always be 0. If you commonly
use more than one such card, you may want to specify different settings based on socket position, as in:

Diagnosing problems with serial devices 28

Linux PCMCIA HOWTO

case "$ADDRESS" in

’O,)
Options for card in socket O
LINK=/dev/printer0

1%
Options for card in socket 1
LINK=/dev/printerl

esac

Parallel device parameters
The following parameters can be defined in parport.opts:

LINK
Specifies a path for a symbolic link to be created to the printer port.

LP_OPTS
Specifies options to be passed to the tunelp command.

NO_CHECK, NO_FUSER
Boolean (y/n) settings for card eject policy. If NO_CHECK is true, then “cardctl eject" will
shut down a device even if it is busy. If NO_FUSER is true, then the script will not try to kill
processes using an ejected device.

For example:

case "$ADDRESS" in

’'*,*)
LINK="/dev/printer"
LP_OPTS=""

Diagnosing problems with parallel port devices

« Is there an interrupt conflict? If the system log looks good, but the port just doesn't seem to work, try
using tunelp to change the irq to 0, and see if things improve. This switches the driver to polling
mode. If this seems to fix the problem, it is likely that some other device in your system is using the
interrupt selected by parport_cs. You should add a line to /etc/pcmcia/config.opts to
exclude this interrupt.

« If you get kernel messages indicating that the parport_cs module cannot be loaded, it means that
your kernel does not have parallel device support. If you have compiled the parallel driver as a
module, you may need to modify /etc/pcmcia/config to indicate that the parport and
parport_pc modules should be loaded before parport_cs.

4.6 PCMCIA SCSI adapters

All the currently supported PCMCIA SCSI cards are work—alikes of one of the following ISA bus cards: the
Qlogic, the Adaptec AHA-152X, or the Future Domain TMC-16x0. The PCMCIA drivers are built by
linking some PCMCIA-specific code (in glogic_cs.c, ahal52x_cs.c, or fdomain_cs.c) with the

normal Linux SCSI driver, pulled from the Linux kernel source tree. The Adaptec APA1480 CardBus driver
is based on the kernel aic7xxx PCI driver. Due to limitations in the Linux SCSI driver model, only one
removable card per driver is supported.

Parallel device parameters 29

Linux PCMCIA HOWTO

When a new SCSI host adapter is detected, the SCSI drivers will probe for devices. Check the system log tc
make sure your devices are detected properly. New SCSI devices will be assigned to the first available SCS
device files. The first SCSI disk will be /dev/sda, the first SCSI tape will be /dev/st0, and the first

CD-ROM wiill be /dev/scdO.

A list of SCSI devices connected to this host adapter will be shown in stab, and the SCSI configuration
script, /etc/pcmcia/scsi, will be called once for each attached device, to either configure or shut down

that device. The default script does not take any actions to configure SCSI devices, but will properly unmour
filesystems on SCSI devices when a card is removed.

The device addresses passed to scsi.opts are complicated, because of the variety of things that can be
attached to a SCSI adapter. Addresses consist of either six or seven comma-separated fields: the current
scheme, the device type, the socket number, the SCSI channel, ID, and logical unit number, and optionally,
the partition number. The device type will be ““sd" for disks, st for tapes, “sr" for CD—ROM devices, and
“sg" for generic SCSI devices. For most setups, the SCSI channel and logical unit number will be 0. For dis
devices with several partitions, scsi.opts will first be called for the whole device, with a five—field

address. The script should set the PARTS variable to a list of partitions. Then, scsi.opts will be called for
each partition, with the longer six—field addresses.

If your kernel does not have a top—level driver (disk, tape, etc) for a particular SCSI device, then the device
will not be configured by the PCMCIA drivers. As a side effect, the device's name in stab will be something
like “sd#nnnn" where “"nnnn" is a four—digit hex number. This happens when cardmgr is unable to translate
a SCSI device ID into a corresponding Linux device name.

It is possible to modularize the top—level SCSI drivers so that they are loaded on demand. To do so, you he
to edit /etc/pcmcia/config to tell cardmgr which extra modules need to be loaded when your adapter
is configured. For example:

device "ahal52x_cs"
class "scsi" module "scsi/scsi_mod", "scsi/sd_mod", "ahal52x_cs"

would say to load the core SCSI module and the top-level disk driver module before loading the regular
PCMCIA driver module.

Always turn on SCSI devices before powering up your laptop, or before inserting the adapter card, so that tt
SCSI bus is properly terminated when the adapter is configured. Also be very careful about ejecting a SCSI
adapter. Be sure that all associated SCSI devices are unmounted and closed before ejecting the card. The |
way to ensure this is to use either cardctl or cardinfo to request card removal before physically ejecting

the card. For now, all SCSI devices should be powered up before plugging in a SCSI adapter, and should st
connected until after you unplug the adapter and/or power down your laptop.

There is a potential complication when using these cards that does not arise with ordinary ISA bus adapters
The SCSI bus carries a " “termination power" signal that is necessary for proper operation of ordinary passiv
SCSI terminators. PCMCIA SCSI adapters do not supply termination power, so if it is required, an external
device must supply it. Some external SCSI devices may be configured to supply termination power. Others,
such as the Zip Drive and the Syquest EZ-Drive, use active terminators that do not depend on it. In some
cases, it may be necessary to use a special terminator block such as the APS SCSI Sentry 2, which has an
external power supply. When configuring your SCSI device chain, be aware of whether or not any of your
devices require or can provide termination power.

Parallel device parameters 30

Linux PCMCIA HOWTO

SCSI device parameters

The following parameters can be defined in scsi.opts:

LINK

Specifies a path for a symbolic link to be created to this device.
DO_FSTAB

A boolean (y/n) setting: specifies if an entry should be added to /etc/fstab for this device.
DO_FSCK

A boolean (y/n) setting: specifies if the filesystem should be checked before being mounted, with
“fsck -Ta".

DO_MOUNT

A boolean (y/n) setting: specifies if this device should be automatically mounted at card insertion
time.

FSTYPE, OPTS, MOUNTPT

The filesystem type, mount options, and mount point to be used for the fstab entry and/or mounting
the device.

NO_CHECK, NO_FUSER
Boolean (y/n) settings for card eject policy. If NO_CHECK is true, then "“cardctl eject" will
shut down a device even if it is busy. If NO_FUSER is true, then the script will not try to kill
processes using an ejected device.

For example, here is a script for configuring a disk device at SCSI ID 3, with two partitions, and a CD-ROM
at SCSI ID 6:

case "$ADDRESS" in

,sd,,0,3,0)
This device has two partitions...
PARTS="1 2"

5d,,0,3,0,1)
Options for partition 1:
update /etc/fstab, and mount an ext2 fs on /usrl
DO_FSTAB="y"; DO_FSCK="y" ; DO_MOUNT="y"
FSTYPE="ext2"
OoPTS=""
MOUNTPT="/usr1"

5d,,0,3,0,2)
Options for partition 2:
update /etc/fstab, and mount an MS-DOS fs on /usr2
DO_FSTAB="y"; DO_FSCK="y" ; DO_MOUNT="y"
FSTYPE="msdos"
OoPTS=""
MOUNTPT="/usr2"

.sr1,,0,6,0)
Options for CD—ROM at SCSI ID 6
PARTS=""
DO_FSTAB="y"; DO_FSCK="n"; DO_MOUNT="y"
FSTYPE="is09660"
OPTS="ro"
MOUNTPT="/cdrom"

esac

SCSI device parameters 31

Linux PCMCIA HOWTO

Comments about specific cards

» The Adaptec APA-1480 CardBus card needs a large 10 port window (256 contiguous ports aligned
on a 256-port boundary). It may be necessary to expand the 1O port regions in
/etc/pecmcia/config.opts to guarantee that such a large window can be found.

» The Adaptec APA-460 SIimSCSI adapter is not supported. This card was originally sold under the
Trantor name, and when Adaptec merged with Trantor, they continued to sell the Trantor card with a
Adaptec label. The APA-460 is not compatible with any existing Linux driver.

« | have had one report of a bad interaction between the New Media Bus Toaster and a UMAX Astra
1200s scanner. Due to the complexity of the SCSI protocol, when diagnosing problems with SCSI
devices, it is worth considering that incompatible combinations like this may exist and may not be
documented.

Diagnosing problems with SCSI adapters

« With the ahal52x_cs driver (used by Adaptec, New Media, and a few others), it seems that SCSI
disconnect/reconnect support is a frequent source of trouble with tape drives. To disable this
“feature," add the following to /etc/pcmcia/config.opts:

module "ahal52x_cs" opts "reconnect=0"
« Also with the ahal52x_cs driver, certain devices seem to require a longer startup delay, controlled
via the reset_delay module parameter. The Yamaha 4416S CDR drive is one such device. The
result is the device is identified successfully, then hangs the system. In such cases, try:

module "ahal52x_cs" opts "reset_delay=500"

 Another potential source of SCSI device probe problems is probing of multiple LUN's. If you see
successful detection of a device, followed by SCSI bus timeouts when LUN 1 for that device is
probed, then disable the kernel's CONFIG_SCSI_MULTI_LUN option.

« If you have compiled SCSI support as modules (CONFIG_SCSl is "'m"), you may need to modify
letc/pemcia/config to load the SCSI modules before the appropriate *_cs driver is loaded.

« If you get ““aborting command due to timeout" messages when the SCSI bus is probed, you almost
certainly have an interrupt conflict.

« If the host driver reports “"no SCSI devices found", verify that your kernel was compiled with the
appropriate top—level SCSI drivers for your devices (i.e., disk, tape, CD—-ROM, and/or generic). If a
top-level driver is missing, devices of that type will be ignored.

4.7 PCMCIA memory cards

The memory_cs driver handles all types of memory cards, as well as providing direct access to the PCMCIA
memory address space for cards that have other functions. When loaded, it creates a combination of charac
and block devices. See the man page for the module for a complete description of the device haming schen
Block devices are used for disk-like access (creating and mounting filesystems, etc). The character devices
are for "raw" unbuffered reads and writes at arbitrary locations.

The device address passed to memory.opts consists of two fields: the scheme, and the socket number. The
options are applied to the first common memory partition on the corresponding memory card.

Some flash memory cards, and most simple static RAM cards, lack a “"Card Information Structure" (CIS),

which is the system PCMCIA cards use to identify themselves. Normally, cardmgr will assume that any
card that lacks a CIS is a simple memory card, and load the memory_cs driver. Thus, a common side effect

Comments about specific cards 32

Linux PCMCIA HOWTO

of a general card identification problem is that other types of cards may be misdetected as memory cards.

There is another issue to consider when handling memory cards that do not have CIS information. At startuj
time, the PCMCIA package tries to use the first detected card to determine what memory regions are usable
for PCMCIA. The memory scan can be fooled if that card is a simple memory card. If you plan to use
memory cards often, it is best to limit the memory windows in /etc/pcmcia/config.opts to

known-good regions.

The memory_cs driver uses a heuristic to guess the capacity of these cards. The heuristic does not work for
write protected cards, and may make mistakes in some other cases as well. If a card is misdetected, its size
should then be explicitly specified when using commands such as dd or mkfs. The memory_cs module

also has a parameter for overriding the size detection. See the man page.

Memory device parameters
The following parameters can be specified in memory.opts:

DO_FSTAB
A boolean (y/n) setting: specifies if an entry should be added to /etc/fstab for this device.
DO_FSCK
A boolean (y/n) setting: specifies if the filesystem should be checked before being mounted, with
“fsck -Ta".
DO_MOUNT
A boolean (y/n) setting: specifies if this device should be automatically mounted at card insertion
time.
FSTYPE, OPTS, MOUNTPT
The filesystem type, mount options, and mount point to be used for the fstab entry and/or mounting
the device.
NO_CHECK, NO_FUSER
Boolean (y/n) settings for card eject policy. If NO_CHECK is true, then "“cardctl eject" will
shut down a device even if it is busy. If NO_FUSER is true, then the script will not try to kill
processes using an ejected device.

Here is an example of a script that will automatically mount memory cards based on which socket they are
inserted into:

case "$ADDRESS" in

*,0,0)
Mount filesystem, but don't update /etc/fstab
DO_FSTAB="n"; DO_FSCK="y"; DO_MOUNT="y"
FSTYPE="ext2" ; OPTS=""
MOUNTPT="/mem0"

*1,0)
Mount filesystem, but don't update /etc/fstab
DO_FSTAB="n"; DO_FSCK="y"; DO_MOUNT="y"
FSTYPE="ext2" ; OPTS=""
MOUNTPT="/mem1"

esac

Memory device parameters 33

Linux PCMCIA HOWTO
Using linear flash memory cards

The following information applies only to so—called "linear flash" memory cards. Many flash cards, including
all SmartMedia and CompactFlash cards, actually include circuitry to emulate an IDE disk device. Those
cards are thus handled as IDE devices, hot memory cards.

There are two major formats for flash memory cards: the FTL or “flash translation layer" style, and the
Microsoft Flash File System. The FTL format is generally more flexible because it allows any ordinary
high-level filesystem (ext2, ms—dos, etc) to be used on a flash card as if it were an ordinary disk device. Th
FFS is a completely different filesystem type. Linux cannot currently handle cards formated with FFS.

To use a flash memory card as an ordinary disk—like block device, first create an FTL partition on the device
with the ftl_format command. This layer hides the device—specific details of flash memory programming
and make the card look like a simple block device. For example:

ftl_format —i /dev/memO0cOc

Note that this command accesses the card through the ““raw" memory card interface. Once formatted, the c
can be accessed as an ordinary block device via the ftl_cs driver. For example:

mke2fs /dev/ftlOcO
mount —t ext2 /dev/ftl0cO /mnt

Device naming for FTL devices is tricky. Minor device numbers have three parts: the card number, the regio
number on that card, and optionally, the partition within that region. A region can either be treated as a singl
block device with no partition table (like a floppy), or it can be partitioned like a hard disk device. The
“ftloc0" device is card 0, common memory region 0, the entire region. The “ftl0cOpl" through " ftl0cOp4"
devices are primary partitions 1 through 4 if the region has been partitioned.

Configuration options for FTL partitions can be given in ftl.opts, which is similar in structure to

memory.opts. The device address passed to ftl.opts consists of three or four fields: the scheme, the

socket number, the region number, and optionally, the partition number. Most flash cards have just one flasl
memory region, so the region number will generally always be zero.

Intel Series 100 flash cards use the first 128K flash block to store the cards' configuration information. To
prevent accidental erasure of this information, ftl_format will automatically detect this and skip the first
block when creating an FTL partition.

4.8 PCMCIA ATA/IDE card drives

ATA/IDE drive support is based on the regular kernel IDE driver. This includes SmartMedia and
CompactFlash devices: these flash memory cards are set up so that they emulate an IDE interface. The
PCMCIA-specific part of the driver is ide_cs. Be sure to use cardctl or cardinfo to shut down an
ATA/IDE card before ejecting it, as the driver has not been made ““hot—swap—proof".

The device addresses passed to ide.opts consist of either three or four fields: the current scheme, the
socket number, the drive's serial number, and an optional partition number. The ide_info command can be
used to obtain an IDE device's serial number. As with SCSI devices, ide.opts is first called for the entire
device. If ide.opts returns a list of partitions in the PARTS variable, the script will then be called for each
partition.

Using linear flash memory cards 34

Linux PCMCIA HOWTO

ATAJ/IDE fixed—disk device parameters
The following parameters can be specified in ide.opts:

DO_FSTAB
A boolean (y/n) setting: specifies if an entry should be added to /etc/fstab for this device.
DO_FSCK
A boolean (y/n) setting: specifies if the filesystem should be checked before being mounted, with
“fsck -Ta".
DO_MOUNT
A boolean (y/n) setting: specifies if this device should be automatically mounted at card insertion
time.
FSTYPE, OPTS, MOUNTPT
The filesystem type, mount options, and mount point to be used for the fstab entry and/or mounting
the device.
NO_CHECK, NO_FUSER
Boolean (y/n) settings for card eject policy. If NO_CHECK is true, then "“cardctl eject" will
shut down a device even if it is busy. If NO_FUSER is true, then the script will not try to kill
processes using an ejected device.

Here is an example ide.opts file to mount the first partition of any ATA/IDE card on /mnt.

case "$ADDRESS" in
’'*,1)
DO_FSTAB="y"; DO_FSCK="y"; DO_MOUNT="y"
FSTYPE="msdos"
OoPTS=""
MOUNTPT="/mnt"

A
PARTS="1"

esac

Diagnosing problems with ATA/IDE adapters

« An 10 port conflict may cause the IDE driver to misdetect the drive geometry and report " INVALID
GEOMETRY: 0 PHYSICAL HEADS?". To fix, try excluding the selected IO port range in
/etc/pecmcia/config.opts.

« Some IDE drives violate the PCMCIA specification by requiring more time to spin up than the
maximum allowed card setup time. This may result in ““timed out during reset" messages at card
detect time. Adjust the unreset_delay and/or unreset_limit parameters for the
pcmcia_core module to give a drive more time to spin up; see the pcmcia_core man page for
parameter details. For example:

CORE_OPTS="unreset_delay=400"
* To use an ATA/IDE CD-ROM device, your kernel must be compiled with
CONFIG_BLK _DEV_IDECD enabled. This will normally be the case for standard kernels, however it
is something to be aware of if you compile a custom kernel.
« A common error when using IDE drives is try to mount the wrong device file. Generally, you want to
mount a partition of the device, not the entire device (i.e., /dev/hdel, not /dev/hde).
» The Linux IDE driver may have trouble configuring certain removable-media drives if no media is

ATA/IDE fixed—disk device parameters 35

Linux PCMCIA HOWTO

present at insertion time. The IBM Portable DriveBay has this problem.
« Some kernels will report a pair of “drive_cmd" errors at insertion time. These errors can be ignored:
they pop up when a removable IDE device does not accept the IDE “door lock" command.

4.9 Multifunction cards

A single interrupt can be shared by several drivers, such as the serial driver and an ethernet driver: in fact, t
PCMCIA specification requires all card functions to share the same interrupt. Normally, all card functions are
available without having to swap drivers. All Linux kernels support this kind of interrupt sharing.

Simultaneous use of two card functions is "“tricky" and various hardware vendors have implemented interruj
sharing in their own incompatible (and sometimes proprietary) ways. The drivers for some cards (Ositech Jg
of Diamonds, 3Com 3c¢562 and related cards, Linksys cards) properly support simultaneous access, but oth
(older Megahertz cards in particular) do not. If you have trouble using a card with both functions active, try
using each function in isolation. That may require explicitly doing an "ifconfig down" to shut down a
network interface and use a modem on the same card.

5._Advanced topics

5.1 Resource allocation for PCMCIA devices

In theory, it should not really matter which interrupt is allocated to which device, as long as two devices are
not configured to use the same interrupt. In /etc/pcmcia/config.opts you'll find a place for
excluding interrupts that are used by non—-PCMCIA devices.

Similarly, there is no way to directly specify the I/O addresses for a card to use. The
/etc/pcmcial/config.opts file allows you to specify ranges of ports available for use by any card, or
to exclude ranges that conflict with other devices.

After modifying /etc/pcmcia/config.opts, you can reinitialize cardmgr with ~“kill -HUP".

The interrupt used to monitor card status changes is chosen by the low-level socket driver module (i82365
or tcic) before cardmgr parses /etc/pcmcia/config, so it is not affected by changes to this file. To

set this interrupt, use the cs_irg= option when the socket driver is loaded, by setting the PCIC_OPTS
variable in /etc/rc.d/rc.pcmcia.

All the client card drivers have a parameter called irg_list for specifying which interrupts they may try to
allocate. These driver options should be set in your /etc/pcmcia/config file. For example:

device "serial_cs"

module "serial_cs" opts "irg_list=8,12"

would specify that the serial driver should only use irg 8 or irq 12. Regardless of irg_list settings, Card
Services will never allocate an interrupt that is already in use by another device, or an interrupt that is
excluded in the config file.

4.9 Multifunction cards 36

Linux PCMCIA HOWTO
5.2 PClI interrupt configuration problems and solutions

Most of the following discussion applies to 2.2 and earlier kernels. With 2.4 and later kernels, the PCI
subsystem has more complete responsibility for PCI interrupt management. The following tips may help
diagnose a problem, though some workarounds described here may not be available.

An overview of PCI interrupt routing issues

Each PCI slot has four PClI interrupt pins, INTA through INTD. Single function devices will only use the
INTA pin; multifunction devices may use multiple INT pins. On the processor side, on x86 single processor
systems, incoming hardware interrupts are directed to interrupt requests (irq's) numbered 0..15. The PCI
interrupt router, usually part of the PCI-to-ISA host bridge, determines how incoming PCI interrupts are
mapped to CPU irqg numbers. Most modern bridge chips have several PCl interrupt inputs, known as PIRQ1
PIRQ2, etc, each of which can be routed to any CPU irq number. So we might have something like:

PCl slot 1 INTA ——> router PIRQ1 ——> CPU irq 9
PCl slot 1 INTB ——> router PIRQ2 ——> CPU irq 10

PCI slot 2 INTA ——> router PIRQ2 ——> CPU irq 10
PCl slot 2 INTB ——> router PIRQ1 ——> CPU irq 9

Multiple INT pins are often connected to the same PIRQ pin. Usually, the connections from INT pins to PIRC
pins are arranged to spread installed devices out as much as possible, to give the OS the most flexibility for
choosing how interrupts are shared. The mapping from bridge PIRQ pins to CPU irg numbers can be obtain
by reading registers in the interrupt router. The mapping from INT pins to the router's PIRQ pins, however,
depends on how the board designer decided to connect things up, and cannot be directly determined by driy
software.

For most PCI devices, the OS does not need to understand the interrupt router details. Each PCI device ha:s
configuration register, the PCI Interrupt Line Register, that the BIOS initializes with the appropriate CPU irq
number for that device. Unfortunately, the BIOS generally will not configure PCI interrupts for CardBus
bridge devices.

The PCI BIOS's Interrupt Routing Table is a data structure that contains information about the mapping fromn
PCI INT pins to the PIRQ pins on the PCI interrupt router. The routing information in the table is stored in a
somewhat unhelpful form, however. For each device's INT pins, the table specifies a “link value". All
interrupts with the same link value are wired to the same PIRQ pin; however, the meaning of the link values
defined by the chipset vendor.

Several tools are available for examining PCI interrupt routing information:

Ispci, /proc/pci
These will show you resource information (including interrupt assignments, where they are known)
for all your PCI devices.

dump_pirq
This is in the debug-tools directory of the PCMCIA source distribution. It dumps the contents of
your PCl interrupt routing table, if available. It also scans for known interrupt routers and dumps thei
current interrupt steering settings.

Several PCMCIA module parameters affect PCI interrupt routing:

5.2 PCl interrupt configuration problems and solutions 37

Linux PCMCIA HOWTO

pcmcia_core module: cb_pci_irg=n
This option specifies one interrupt number to be used to program the PCI interrupt router for all
CardBus sockets that do not already have an interrupt assignment. It only has any effect on systems
that have a PCI irg routing table, and a known interrupt router.

i82365 module: irg_mode=n
Most CardBus bridges offer several methods for delivering interrupts to the host. The i82365 module
by default assumes that a bridge can deliver both PCI and ISA interrupts, since this is normal for
laptops. A setting of ““irg_mode=0" can be used to force a bridge to use only PClI interrupts. See
the man page for the i82365 module for a description of what other values mean for different bridge
types.

i82365 module: irq_list=n,n,...
This parameter lists which ISA interrupt(s) can be used for PCMCIA. If no ISA interrupts are
available, specify “irg_list=0". Note that ““irg_mode=0" implies ""irg_list=0".

i82365 module: pci_irg_list=n,n,...
This option specifies a list of PCI interrupt numbers to use for CardBus sockets. It differs from
cb_pci_irg, because it does not actually program the PCI interrupt router; it can be used when you
know the PCI interrupts are already set up a certain way, even if you do not know how the router
works.

If you are having problems that you think may be related to PCI interrupt configuration, you should first
verify that you have a reasonably current PCMCIA driver package. Also carefully look at the startup
messages when the PCMCIA kernel modules are loaded. You should see something like:

Linux PCMCIA Card Services 3.1.18
kernel build: 2.2.14-5.0 #1 Tue May 9 10:44:24 PDT 2000
options: [pci] [cardbus] [apm] [pnp]
PCI routing table version 1.0 at Oxfdf30
Intel PCIC probe:
TI 1125 rev 02 PCl-to—CardBus at slot 00:07, mem 0x20000000
host opts [0]: [ring] [serial pci & irq] [pci irg 11] ...
host opts [0]: [ring] [serial pci & irq] [pci irg 11] ...
ISA irgs (scanned) = 3,4,7 PCI status changes

The “PCI routing table" message indicates that a valid routing table was found. The “host opts"
lines indicate the interrupt delivery mode and whether or not a PCl interrupt could be determined for each
socket. And the final line indicates the results of the scan for available interrupts.

CardBus bridge is not detected by the PCI BIOS
Symptoms:

« Intel PCIC probe: not found.
» The bridge does not show up in Ispci or in /proc/pci.

The Lucent/SCM PCIl-to—CardBus adapters seem to confuse the PCI BIOS on some older systems. Lucent
says that this card is only supported on systems that have a BIOS that supports the PCI 2.2 specification, ol
are PC99 compliant. Some older systems will not detect the Lucent card at all, and if the system can't detec
the Linux drivers cannot use it. The only possible resolutions are a BIOS upgrade, or using a different
motherboard or CardBus adapter.

CardBus bridge is not detected by the PCI BIOS 38

Linux PCMCIA HOWTO

PCI interrupt delivery problems
Symptoms:

» Cards seem to be configured correctly, but do not work.
« /procl/interrupts shows a count of O for interrupts assigned to PCMCIA drivers.

CardBus bridges usually support two types of interrupts, PCI and ISA. Partly for historical reasons, it has
become conventional to use PCI interrupts for signaling card insertion and removal events, and for CardBus
card interrupts; and ISA interrupts for 16-bit cards. Since version 3.1.9, this is the scheme that the Linux
PCMCIA system will use by default. Most CardBus bridges support multiple methods for delivering
interrupts to the host CPU. Methods include ““parallel” interrupts, where each supported irq has a dedicated
pin on the bridge; various serial interrupt protocols, where one or two pins are used to communicate with an
interrupt controller; and hybrids, where PCI interrupts might be signalled using dedicated pins, while ISA
interrupts are delivered via a serial controller.

In general, it is the responsibility of the BIOS to program a bridge for the appropriate interrupt delivery
method. However, there are systems that do this incorrectly, and in some cases, there is no way for softwar
safely detect the correct delivery method. The i82365 module reports the bridge mode at startup time, and
has a parameter, irq_mode, that can be used to reconfigure it. Not all bridges support this parameter, and tt
meaning of irg_mode depends on the bridge type. See the i82365 man page for a description of what
values are supported by your bridge. In some cases, a bridge may function correctly in more than one interr
mode.

Most PCMCIA card readers that fit in a PCI bus slot only provide PCI interrupt routing. The Linux drivers
assume that all bridges have ISA interrupt capability, since that is generally correct on laptops. With a card
reader, it will generally be necessary to use the irg_mode parameter to specify a ~"PCI only" interrupt
delivery mode; the value of the parameter depends on the bridge type, so check the i82365 man page. A fe\
PCI card readers require an irg_mode that permits ISA interrupts, but those interrupts are not actually
connected; in that case, use irg_list=0".

Check the system log and verify that the CardBus bridge has a PCI interrupt assignment. If it does not, then
resolve that problem first, then return here if the symptoms persist. Next, experiment with different values fo
the irg_mode parameter.

No PCI interrupt assignment; valid routing table
Symptoms:

» The Intel PCIC probe reports "no pci irq" for each socket.
» There is a routing table, and the router type is supported.

When a routing table is present, the pcmcia_core module will try to automatically configure the PCI

interrupt router, but only does so when it has a safe and unambiguous choice for what PCI interrupt to use. |
there are several valid choices, then you must use the ““cb_pci_irg=..." option to specify which

interrupt to assign. Your best bet is to pick the most lightly used interrupt that is already assigned to another
PCI device.

Moving the card to another slot sometimes offers a quick solution. If that slot shares its interrupt with an
already—configured device, then the PCMCIA drivers will have no trouble figuring out the assignment.

PCl interrupt delivery problems 39

Linux PCMCIA HOWTO

No PCI interrupt assignment; unknown interrupt router
Symptoms:

» The Intel PCIC probe reports ""no pci irq" for each socket.
» There is a routing table, but the router is an unknown type.

Adding support for a new interrupt router is tricky but not a big job. First determine, from a datasheet, how
your interrupt router steers PCI interrupts. Then, see if you can guess the meaning of the link values from th
output of dump_pirg. Usually this is reasonably obvious. Most routers have four PIRQ pins, and the link
values might be something like 1,2,3,4, or 0x10,0x18,0x20,0x28, or 0x60,0x61,0x62,0x63. The values are
usually chosen so that they can be easily converted to the location of the appropriate interrupt steering
register. Finally, add small functions to modules/pci_fixup.c to get/set the interrupt steering

information for this router, using the other routers as examples.

No PCI interrupt assignment; no routing table
Symptoms:

» The Intel PCIC probe reports ""no pci irq" for each socket.
« No interrupt routing table is found.

Without an interrupt routing table, we cannot tell how interrupts from the CardBus bridge are directed to CPl
irg numbers. All hope is not lost: you may be able to guess the PCI interrupt assignment and use the
“pci_irg_list=..." option to pass this information to the i82365 module. Good guesses might

include the interrupt(s) assigned to other PCI devices, the interrupt(s) used under Windows, or any other
interrupts that are unaccounted for.

You may also want to experiment with putting the adapter in different PCI slots, for each pci_irg_list
you try. You are trying to find a slot that shares its interrupt with an already—configured device, and might
need to try several slots to find one.

5.3 How can | have separate device setups for home and
work?

This is fairly easy using ““scheme" support. Use two configuration schemes, called "“home" and “work". He
is an example of a network.opts script with scheme-specific settings:

case "$ADDRESS" in

work,*,* *)
definitions for network card in work scheme

home,** *|default,*,*,*)
definitions for network card in home scheme

esac

The first part of a device address is always the configuration scheme. In this example, the second "“case"
clause will select for both the “"home" and ““default” schemes. So, if the scheme is unset for any reason, it v

No PCI interrupt assignment; unknown interrupt router 40

Linux PCMCIA HOWTO

default to the “"home" setup.

Now, to select between the two sets of settings, run either:

cardctl scheme home

or

cardctl scheme work

The cardctl command does the equivalent of shutting down all your cards and restarting them. The
command can be safely executed whether or not the PCMCIA system is loaded, but the command may fail |
you are using other PCMCIA devices at the time (even if their configurations are not explicitly dependant on
the scheme setting).

To find out the current scheme setting, run:
cardctl scheme

By default, the scheme setting is persistent across boots. This can have undesirable effects if networking is
initialized for the wrong environment. Optionally, you can set the initial scheme value with the SCHEME
startup option (see Startup options for details). It is also possible to set the scheme from the lilo boot
prompt. Since lilo passes unrecognized options to init as environment variables, a value for SCHEME (or
any other PCMCIA startup option) at the boot prompt will be propagated into the PCMCIA startup script.

To save even more keystrokes, schemes can be specified in lilo's configuration file. For instance, you could
have:

root = /dev/hdal
read-only
image = /boot/vmlinuz
label = home
append = "SCHEME=home"
image = /boot/vmlinuz
label =work
append = "SCHEME=work"

Typing “home" or ““work" at the boot prompt would then boot into the appropriate scheme.

5.4 Booting from a PCMCIA device

Having the root filesystem on a PCMCIA device is tricky because the Linux PCMCIA system is not designec
to be linked into the kernel. Its core components, the loadable kernel modules and the user mode cardmgr
daemon, depend on an already running system. The kernel's "initrd" facility works around this requirement |
allowing Linux to boot using a temporary ram disk as a minimal root image, load drivers, and then re-mount
a different root filesystem. The temporary root can configure PCMCIA devices and then re-mount a
PCMCIA device as root.

The initrd image absolutely must reside on a bootable device: this generally cannot be put on a PCMCIA

device. This is a BIOS limitation, not a kernel limitation. It is useful here to distinguish between ““boot-able"
devices (i.e., devices that can be booted), and ““root—able" devices (i.e., devices that can be mounted as ro
“Boot—-able" devices are determined by the BIOS, and are generally limited to internal floppy and hard disk

5.4 Booting from a PCMCIA device 41

Linux PCMCIA HOWTO

drives. "Root-able" devices are any block devices that the kernel supports once it has been loaded. The ini
facility makes more devices "root-able", not ““boot-able".

Some Linux distributions will allow installation to a device connected to a PCMCIA SCSI adapter, as an
unintended side—effect of their support for installs from PCMCIA SCSI CD-ROM devices. However, at
present, no Linux installation tools support configuring an appropriate “initrd" to boot Linux with a PCMCIA
root filesystem. Setting up a system with a PCMCIA root thus requires that you use another Linux system to
create the “initrd" image. If another Linux system is not available, another option would be to temporarily
install a minimal Linux setup on a non—PCMCIA drive, create an initrd image, and then reinstall to the
PCMCIA target.

The Linux Bootdisk-HOWTO has some general information about setting up boot disks but nothing specific
to initrd. The main initrd document is included with recent kernel source code distributions, in
linux/Documentation/initrd.txt. Before beginning, you should read this document. A familiarity

with lilo is also helpful. Using initrd also requires that you have a kernel compiled with
CONFIG_BLK_DEV_RAM and CONFIG_BLK_DEV_INITRD enabled.

This is an advanced configuration technique, and requires a high level of familiarity with Linux and the
PCMCIA system. Be sure to read all the relevant documentation before starting. The following cookbook
instructions should work, but deviations from the examples will quickly put you in uncharted and
““unsupported" territory, and you will be on your own.

This method absolutely requires that you use a PCMCIA driver release of 2.9.5 or later. Older PCMCIA
packages or individual components will not work in the initrd context. Do not mix components from different
releases.

The pcinitrd helper script

The pcinitrd script creates a basic initrd image for booting with a PCMCIA root partition. The image

includes a minimal directory heirarchy, a handful of device files, a few binaries, shared libraries, and a set of
PCMCIA driver modules. When invoking pcinitrd, you specify the driver modules that you want to be
included in the image. The core PCMCIA components, pcmcia_core and ds, are automatically included.

As an example, say that your laptop uses an i82365-compatible host controller, and you want to boot Linux
with the root filesystem on a hard drive attached to an Adaptec SlimSCSI adapter. You could create an
appropriate initrd image with:

pcinitrd —v initrd pcmcia/i82365.0 pcmcia/ahal52x_cs.o

To customize the initrd startup sequence, you could mount the image using the ““loopback" device with a
command like:

mount —o loop —t ext2 initrd /mnt

and then edit the linuxrc script. The configuration files will be installed under /etc in the image, and can
also be customized. See the man page for pcinitrd for more information.

Creating an initrd boot floppy

After creating an image with pcinitrd, you can create a boot floppy by copying the kernel, the compressed
initrd image, and a few support files for lilo to a clean floppy. In the following example, we assume that the

The pcinitrd helper script 42

Linux PCMCIA HOWTO
desired PCMCIA root device is /dev/sdal;

mke2fs /dev/fd0

mount /dev/fd0 /mnt

mkdir /mnt/etc /mnt/boot /mnt/dev
cp —a /dev/fd0 /dev/sdal /mnt/dev
cp [kernel-image] /mnt/vmlinuz
cp /boot/boot.b /mnt/boot/boot.b
gzip < [initrd—image] > /mnt/initrd

Create /mnt/etc/lilo.conf with the contents:

boot=/dev/fd0

compact

image=/vmlinuz
label=linux
initrd=/initrd
read-only
root=/dev/sdal

Finally, invoke lilo with:

lilo =r /mnt

When lilo is invoked with —r, it performs all actions relative to the specified alternate root directory. The
reason for creating the device files under /mnt/dev was that lilo will not be able to use the files in /dev
when it is running in this alternate—-root mode.

Installing an initrd image on a non-Linux drive

One common use of the initrd facility would be on systems where the internal hard drive is dedicated to
another operating system. The Linux kernel and initrd image can be placed in a non—Linux partition, and
lilo or LOADLIN can be set up to boot Linux from these images.

Assuming that you have a kernel has been configured for the appropriate root device, and an initrd image
created on another system, the easiest way to get started is to boot Linux using LOADLIN, as:

LOADLIN <kernel> initrd=<initrd—image>

Once you can boot Linux on your target machine, you could then install lilo to allow booting Linux
directly. For example, say that /dev/hdal is the non-Linux target partition and /mnt can be used as a
mount point. First, create a subdirectory on the target for the Linux files:

mount /dev/hdal /mnt

mkdir /mnt/linux

cp [kernel-image] /mnt/linux/vmlinuz
cp [initrd—image] /mnt/linux/initrd

In this example, say that /dev/sdal is the desired Linux root partition, a SCSI hard drive mounted via a
PCMCIA SCSI adapter. To install lilo, create a lilo.conf file with the contents:

boot=/dev/hda
map=/mnt/linux/map
compact
image=/mnt/linux/vmlinuz

Installing an initrd image on a non-Linux drive 43

Linux PCMCIA HOWTO

label=linux
root=/dev/sdal
initrd=/mnt/linux/initrd
read-only
other=/dev/hdal
table=/dev/hda
label=windows

The boot= line says to install the boot loader in the master boot record of the specified device. The root=
line identifies the desired root filesystem to be used after loading the initrd image, and may be unnecessary
the kernel image is already configured this way. The other= section is used to describe the other operating
system installed on /dev/hdal.
To install lilo in this case, use:

lilo —C lilo.conf
Note that in this case, the lilo.conf file uses absolute paths that include /mnt. | did this in the example

because the target filesystem may not support the creation of Linux device files for the boot= and root=
options.

6._Dealing with unsupported cards

6.1 Configuring unrecognized cards

Assuming that your card is supported by an existing driver, all that needs to be done is to add an entry to
/etc/pcmcial/config to tell cardmgr how to identify the card, and which driver(s) need to be linked

up to this card. Check the man page for pcmcia for more information about the config file format. If you
insert an unknown card, cardmgr will normally record some identification information in the system log that
can be used to construct the config entry. This information can also be displayed with the “cardctl

ident" command.

Here is an example of how cardmgr will report an unsupported card in the system log:

cardmgr[460]: unsupported card in socket 1
cardmgr[460]: product info: "MEGAHERTZ", "XJ2288", "V.34 PCMCIA MODEM"
cardmgr[460]: manfid: 0x0101, 0x1234 function: 2 (serial)

The corresponding entry in /etc/pcmcia/config would be:

card "Megahertz XJ2288 V.34 Fax Modem"
version "MEGAHERTZ", "XJ2288", "V.34 PCMCIA MODEM"
bind "serial_cs"

or using the more compact product ID codes:

card "Megahertz XJ2288 V.34 Fax Modem"
manfid 0x0101, 0x1234
bind "serial_cs"

You can use ~*" to match strings that don't need to match exactly, like version numbers. When making new
config entries, be careful to copy the strings exactly, preserving case and blank spaces. Also be sure that th
config entry has the same number of strings as are reported in the log file.

6. Dealing with unsupported cards 44

Linux PCMCIA HOWTO

Beware that you can specify just about any driver for a card, but if you're just shooting in the dark, there is n
much reason to expect this to be productive. You may get lucky and find that your card is supported by an
existing driver. However, the most likely outcome is that the driver won't work, and may have unfortunate
side effects like locking up your system. Unlike most ordinary device drivers, which probe for an appropriate
card, the probe for a PCMCIA device is done by cardmgr, and the driver itself may not do much validation
before attempting to communicate with the device.

After editing /etc/pcmcia/config, you can signal cardmgr to reload the file with:
kill -HUP “cat /var/run/cardmgr.pid”

If you do set up an entry for a new card, please send me a copy so that | can include it in the standard confi
file.

6.2 Adding support for an NE2000—-compatible ethernet card

Before you begin: this procedure will only work for simple 16-bit ethernet cards. Multifunction cards (i.e.,
ethernet/modem combo cards) have an extra layer of complexity regarding how the two functions are
integrated, and generally cannot be supported without obtaining some configuration information from the ca
vendor. Using the following procedure for a multifunction card will not be productive.

First, see if the card is already recognized by cardmgr. Some cards not listed in SUPPORTED.CARDS are
actually OEM versions of cards that are supported. If you find a card like this, let me know so | can add it to
the list.

If your card is not recognized, follow the instructions in the Configuring unrecognized cards section to create
a config entry for your card, and bind the card to the pcnet_cs driver. Restart cardmgr to use the updated
config file.

If the pcnet_cs driver says that it is unable to determine your card's hardware ethernet address, then edit
your new config entry to bind the card to the memory card driver, memory_cs. Restart cardmgr to use the
new updated config file. You will need to know your card's hardware ethernet address. This address is a ser
of six two—digit hex numbers, often printed on the card itself. If it is not printed on the card, you may be able
to use a DOS driver to display the address. In any case, once you know it, run:

dd if=/dev/mem0Oa count=20 | od —Ax -t x1

and search the output for your address. Only the even bytes are defined, so ignore the odd bytes in the durn
Record the hex offset of the first byte of the address. Now, edit clients/pcnet_cs.c and find the

hw_info structure. You'll need to create a new entry for your card. The first field is the memory offset. The
next three fields are the first three bytes of the hardware address. The final field contains some flags for
specific card features; to start, try setting it to O.

After editing pcnet_cs.c, compile and install the new module. Edit /etc/pcmcia/config again, and
change the card binding from memory_cs to pcnet_cs. Follow the instructions for reloading the config
file, and you should be all set. Please send me copies of your new hw_info and config entries.

If you can't find your card's hardware address in the hex dump, as a method of last resort, it is possible to

“hard-wire" the address when the pcnet_cs module is initialized. Edit /etc/pcmcia/config.opts
and add a hw_addr= option, like so:

6.2 Adding support for an NE2000—compatible ethernet card 45

Linux PCMCIA HOWTO

module "pcnet_cs" opts "hw_addr=0x00,0x80,0xc8,0x01,0x02,0x03"

Substitute your own card's hardware address in the appropriate spot, of course. Beware that if you've gotter
this far, it is very unlikely that your card is genuinely NE2000 compatible. In fact, I'm not sure if there are any
cards that are not handled by one of the first two methods.

6.3 PCMCIA floppy interface cards

The PCMCIA floppy interface used in the Compaq Aero and a few other laptops is not yet supported by this
package. The shag in supporting the Aero floppy is that the Aero seems to use a customized PCMCIA
controller to support DMA to the floppy. Without knowing exactly how this is done, there isn't any way to
implement support under Linux.

If the floppy adapter card is present when an Aero is booted, the Aero BIOS will configure the card, and
Linux will identify it as a normal floppy drive. When the Linux PCMCIA drivers are loaded, they will notice
that the card is already configured and attached to a Linux driver, and this socket will be left alone. So, the
drive can be used if it is present at boot time, but the card is not hot swappable.

ing ti nd programming informati

7.1 Submitting useful problem reports

The best way to submit reports is to use the online pcmcia—cs forums or the bug tracker at SourceForge. Tt
way, other people can see current problems (and fixes or workarounds, if available). Here are some things t
should be included in all bug reports:

 Your system brand and model.

« All PCMCIA card(s) you are using.

* Your Linux kernel version (i.e., ““uname —-rv"), and PCMCIA driver version (i.e., ~“cardctl
-V").

 Output of 'Ispci V'

« Any changes you have made to the startup files in /etc/pcmcia, or to the PCMCIA startup script.

« All PCMCIA-related messages in your system log file. That includes startup messages, and messag
generated when your cards are configured.

All the PCMCIA modules and the cardmgr daemon send status messages to the system log. These will
usually end up somewhere like /var/log/messages or /var/log/daemon.log. These files should

be the first place to look when tracking down a problem. When submitting a bug report, always include the
relevant contents of these files. If you are having trouble finding your system messages, check
/etc/syslog.conf to see how different classes of messages are handled.

Before submitting a bug report, please check to make sure that you are using an up—to—date copy of the dri
package. While it is somewhat gratifying to read bug reports for things I've already fixed, it isn't a particularly
constructive use of my time.

If you do not have web access, bug reports can be sent to_ me at dahinds@users.sourceforge.net.
However, | prefer that bug reports be posted to the pcmcia—cs SourceForge site, so that they can be seen b

others.

6.3 PCMCIA floppy interface cards 46

mailto:dahinds@users.sourceforge.net

Linux PCMCIA HOWTO
7.2 Interpreting kernel trap reports

If your problem involves a kernel fault, the register dump from the fault is only useful if you can translate the
fault address, EIP, to something meaningful. Recent versions of klogd attempt to translate fault addresses
based on the current kernel symbol map, but this may not work if the fault is in a module, or if the problem is
severe enough that klogd cannot finish writing the fault information to the system log.

If a fault is in the main kernel, the fault address can be looked up in the System.map file. This may be
installed in /System.map or /boot/System.map. If a fault is in a module, the nm command gives the

same information, however, the fault address has to be adjusted based on the module's load address. Let's
that you have the following kernel fault:

Unable to handle kernel NULL pointer dereference
current—>tss.cr3 = 014c9000, %cr3 = 014c9000
*pde = 00000000

Oops: 0002

CPU: O

EIP: 0010:[<c2026081>]

EFLAGS: 00010282

The fault address is 0xc2026081. Looking at System.map, we see that this is past the end of the kernel, i.e.
is in a kernel module. To determine which module, check the output of “"ksyms —-m | sort":

Address Symbol Defined by
€200d000 (35k) [pcmcia_core]
€200d10c register_ss_entry [pcmcia_core]
€200d230 unregister_ss_entry [pcmcia_core]
€2026000 (9Kk) [3¢c574_cs]
€202a000 (4k) [serial_cs]

So, 0xc2026081 is in the 3c574_cs module, and is at an offset of 0x0081 from the start of the module. We
cannot look up this offset in 3c574_cs.o yet: when the kernel loads a module, it inserts a header at the
module load address, so the real start of the module is offset from the address shown in ksyms. The size of
the header varies with kernel version: to find out the size for your kernel, check a module that exports symb
(like pcmcia_core above), and compare a symbol address with nm output for that symbol. In this example,
register_ss_entry is loaded at an offset of 0xc200d10c — 0xc200d000 = 0x010c, while ""nm

pcmcia_core.o" shows the offset as 0x00c0, so the header size is 0x010c — 0x00c0 = 0x004c bytes.

Back to 3c574_cs, our fault offset is 0x0081, and subtracting the 0x004c header, the real module offset is
0x0035. Now looking at “'nm 3c574_cs.o | sort", we see:

0000002c d if_names

0000002c t tc574_attach

00000040 d mii_preamble_required
00000041 d dev_info

So, the fault is located in tc574_attach().
In this example, the fault did not cause a total system lockup, so ksyms could be executed after the fault
happened. In other cases, you may have to infer the module load addresses indirectly. The same sequence

events will normally load modules in the same order and at the same addresses. If a fault happens when a
certain card is inserted, get the ksyms output before inserting the card, or with a different card inserted. You

7.2 Interpreting kernel trap reports 47

Linux PCMCIA HOWTO

can also manually load the card's driver modules with insmod and run ksyms before inserting the card.

For more background, see “"man insmod", “"man ksyms", and “"man klogd". In the kernel source tree,
Documentation/oops—tracing.txt is also relevant. Here are a few more kernel debugging hints:

» Depending on the fault, it may also be useful to translate addresses in the “"Call Trace", using the
same procedure as for the main fault address.

» To diagnose a silent lock—up, try to provoke the problem with X disabled, since kernel messages ser
to the text console will not be visible under X.

« If you kill klogd, most kernel messages will be echoed directly on the text console, which may be
helpful if the problem prevents klogd from writing to the system log.

» To cause all kernel messages to be sent to the console, for 2.2 and later kernels, if
Iproc/sys/kernel/printk exists, do:

echo 8 > /proc/sys/kernel/printk
» The key combination <RightAlt><ScrLk> prints a register dump on the text console. This may work
even if the system is otherwise completely unresponsive, and the EIP address can be interpreted as
a kernel fault.
« For 2.2 and later kernels configured with CONFIG_MAGIC_SYSRQ enabled, various emergency
functions are available via special <Alt><SysRqg> key combinations, documented in
Documentation/sysrg.txt in the kernel source tree.

7.3 Low level PCMCIA debugging aids

The PCMCIA modules contain a lot of conditionally—compiled debugging code. Most of this code is under
control of the PCMCIA_DEBUG preprocessor define. If this is undefined, debugging code will not be
compiled. If set to 0, the code is compiled but inactive. Larger numbers specify increasing levels of verbosity
Each module built with PCMCIA_DEBUG defined will have an integer parameter, pc_debug, that controls
the verbosity of its output. This can be adjusted when the module is loaded, so output can be controlled on «
per—-module basis without recompiling.

Your default configuration for syslogd may discard kernel debugging messages. To ensure that they are
recorded, edit /etc/syslog.conf to ensure that ““kern.debug" messages are recorded somewhere. See
““man syslog.conf" for details.

There are a few register—level debugging tools in the debug_tools/ subdirectory of the PCMCIA

distribution. The dump_tcic and dump_i365 utilities generate register dumps for ISA-to—-PCMCIA
controllers. In 3.1.15 and later releases, dump_i365 is replaced by dump_exca, which is similar but also
works for PCl-to—CardBus bridges. Also new in 3.1.15 for CardBus bridges is the dump_cardbus tool,
which interprets the CardBus—specific registers. These are all most useful if you have access to a datashee
the corresponding controller chip. The dump_cis utility (dump_tuples in pre—3.0.2 distributions) lists the
contents of a card's CIS (Card Information Structure), and decodes most of the important bits. And the
dump_cisreg utility displays a card's local configuration registers.

The memory_cs memory card driver is also sometimes useful for debugging problems with 16—bit PC
Cards. It can be bound to any card, and does not interfere with other drivers. It can be used to directly acce:
any card's attribute memory or common memory. Similarly for CardBus cards, the memory_cb driver can be
bound to any 32-bit card, to give direct access to that card's address spaces. See the man pages for more
information.

7.3 Low level PCMCIA debugging aids 48

Linux PCMCIA HOWTO
7.4 [proc/bus/pccard

On 2.2 and later kernels, the PCMCIA package will create a tree of status information under
/proc/bus/pccard. Much of the information can only be interpreted using the data sheets for the

PCMCIA host controller. Its contents may depend on how the drivers were configured, but may include all o
some of the following:

/proc/bus/pccard/{irg,ioport, memory}
If present, these files contain resource allocation information to supplement the normal kernel
resource tables. Recent versions of the PCMCIA system may obtain additional resource information
from the Plug and Play BIOS if configured to do so.
/proc/bus/pccard/drivers
In recent releases, this lists all currently loaded PCMCIA client drivers. Unlike /proc/modules, it
also lists drivers that may be statically linked into the kernel.
/proc/bus/pccard/*/info
For each socket, describes that socket's host controller and its capabilities.
/proc/bus/pccard/*/exca
This contains a dump of a controller's "ExXCA" Intel i82365sl-compatible register set.
/proc/bus/pccard/*/{pci,cardbus}
For CardBus bridges, a dump of the bridge's PCI configuration space, and a dump of the bridge's
CardBus configuration registers.

7.5 Writing Card Services drivers for new cards

The Linux PCMCIA Programmer's Guide is the best documentation for the client driver interface. The latest
version is always available from projects.sourceforge.net in /pub/pcmcia—cs/doc, or on the

web at http://pcmcia—cs.sourceforge.net.

For devices that are close relatives of normal ISA devices, you will probably be able to use parts of existing
Linux drivers. In some cases, the biggest stumbling block will be modifying an existing driver so that it can

handle adding and removing devices after boot time. Of the current drivers, the memory card driver is the or
“self-contained" driver that does not depend on other parts of the Linux kernel to do most of the dirty work.

In many cases, the largest barrier to supporting a new card type is obtaining technical information from the
manufacturer. It may be difficult to figure out who to ask, or to explain exactly what information is needed.
However, with a few exceptions, it is very difficult if not impossible to implement a driver for a card without
technical information from the manufacturer.

I have written a dummy driver with lots of comments that explains a lot of how a driver communicates with
Card Services; you will find this in the PCMCIA source distribution in clients/dummy_cs.c.

7.6 Guidelines for PCMCIA client driver authors

| have decided that it is not really feasible for me to distribute all PCMCIA client drivers as part of the
PCMCIA package. Each new driver makes the main package incrementally harder to maintain, and includin
a driver inevitably transfers some of the maintenance work from the driver author to me. Instead, | will decid
on a case by case basis whether or not to include contributed drivers, based on user demand as well as
maintainability. For drivers not included in the core package, | suggest that driver authors adopt the following
scheme for packaging their drivers for distribution.

7.4 [proc/bus/pccard 49

http://pcmcia-cs.sourceforge.net

Linux PCMCIA HOWTO

Driver files should be arranged in the same directory scheme used in the PCMCIA source distribution, so th
the driver can be unpacked on top of a complete PCMCIA source tree. A driver should include source files (
.modules/), a man page (in ./man/), and configuration files (in ./etc/). The top level directory

should also include a README file.

The top-level directory should include a makefile, set up so that "make —f ... all" and “"make —f ...
install" compile the driver and install all appropriate files. If this makefile is given an extension of .mk,
then it will automatically be invoked by the top-level Makefile for the all and install targets. Here is
an example of how such a makefile could be constructed:

Sample Makefile for contributed client driver
FILES = sample_cs.mk README.sample_cs \
modules/sample_cs.c modules/sample_cs.h \
etc/sample.conf etc/sample etc/sample.opts \
man/sample_cs.4
all:
$(MAKE) —C modules MODULES=sample_cs.o
install:
$(MAKE) —C modules install-modules MODULES=sample_cs.o
$(MAKE) —C etc install-clients CLIENTS=sample
$(MAKE) —C man install-man4 MAN4=sample_cs.4
dist:
tar czvf sample_cs.tar.gz $(FILES)

This makefile uses install targets defined in 2.9.10 and later versions of the PCMCIA package. This makefile
also includes a "dist" target for the convenience of the driver author. You would probably want to add a
version number to the final package filename (for example, sample_cs—1.5.tar.gz). A complete

distribution could look like:

sample_cs.mk
README.sample_cs
modules/sample_cs.c
modules/sample_cs.h
etc/sample.conf
etc/sample
etc/sample.opts
man/sample_cs.4

With this arrangement, when the contributed driver is unpacked, it becomes essentially part of the PCMCIA
source tree. It can make use of the PCMCIA header files, as well as the machinery for checking the user's
system configuration, and automatic dependency checking, just like a “"'normal” client driver.

In this example, etc/sample and etc/sample.opts would be the new driver's configuration scripts (if
needed), and etc/sample.conf would contain any additions to the PCMCIA card configuration file.
Starting with the 3.1.6 release, cardmgr will automatically process any *.conf files installed in
/etc/pemcia, so installation of contributed drivers should no longer require hand editing configuration
files.

I will accept client drivers prepared according to this specification and place them in the
/pub/pcmcia—cs/contrib directory on projects.sourceforge.net. The README in this
directory will describe how to unpack a contributed driver.

The client driver interface has not changed much over time, and has almost always preserved backwards
compatibility. A client driver will not normally need to be updated for minor revisions in the main package. |
will try to notify authors of contributed drivers of changes that require updates to their drivers.

7.4 [proc/bus/pccard 50

Linux PCMCIA HOWTO
7.7 Guidelines for Linux distribution maintainers

If your distribution has system configuration tools that you would like to be PCMCIA-aware, please use the
*.opts files in /etc/pcmcia for your ““hooks." These files will not be modified if a user compiles and

installs a new release of the PCMCIA package. If you modify the main configuration scripts, then a fresh
install will silently overwrite your custom scripts and break the connection with your configuration tools.
Contact me if you are not sure how to write an appropriate option script, or if you need additional capabilitie:

It is helpful for users (and for me) if you can document how your distribution deviates from the PCMCIA
package as described in this document. In particular, please document changes to the startup script and
configuration scripts. If you send me the appropriate information, | will include it in the Notes about specific
Linux distributions.

When building PCMCIA for distribution, consider including contributed drivers that are not part of the main
PCMCIA package. For reasons of maintainability, | am trying to limit the core package size, by only adding
new drivers if | think they are of particularly broad interest. Other drivers will be distributed separately, as
described in the previous section. The split between integral and separate drivers is somewhat arbitrary and
partly historical, and should not imply a difference in quality.

7.7 Guidelines for Linux distribution maintainers 51

	Table of Contents
	Linux PCMCIA HOWTO
	David Hinds, dahinds@users.sourceforge.net.
	1. General information and hardware requirements
	2. Compilation and installation
	3. Resolving installation and configuration problems
	4. Usage and features
	5. Advanced topics
	6. Dealing with unsupported cards
	7. Debugging tips and programming information
	1. General information and hardware requirements
	1.1 Introduction
	1.2 Copyright notice and disclaimer
	1.3 What is the latest version, and where can I get it?
	1.4 What systems are supported?
	1.5 What cards are supported?
	1.6 When will my favorite (unsupported) card become supported?
	1.7 Mailing lists and other information sources
	 2. Compilation and installation
	2.1 Prerequisites and kernel setup
	2.2 Kernel PCMCIA support
	2.3 Installation
	 2.4 Startup options
	Card readers for desktop systems

	2.5 System resource settings
	PowerBook specific settings

	 2.6 Notes about specific Linux distributions
	Debian
	Red Hat, Caldera, Mandrake
	Slackware
	SuSE

	3. Resolving installation and configuration problems
	3.1 Base PCMCIA kernel modules do not load
	3.2 Some client driver modules do not load
	 3.3 ISA interrupt scan failures
	 3.4 IO port scan failures
	3.5 Memory probe failures
	3.6 Failure to detect card insertions and removals
	3.7 Interrupt delivery problems
	3.8 System resource starvation
	3.9 Resource conflict only with two cards inserted
	3.10 Device configuration does not complete
	4. Usage and features
	4.1 Tools for configuring and monitoring PCMCIA devices
	The cardmgr configuration daemon
	The socket status file, stab
	The cardctl and cardinfo utilities
	Inserting and ejecting cards
	Card Services and Advanced Power Management
	Shutting down the PCMCIA system

	 4.2 Overview of the PCMCIA configuration scripts
	4.3 PCMCIA network adapters
	Network device parameters
	Comments about specific cards
	Diagnosing problems with network adapters

	4.4 PCMCIA serial and modem devices
	Serial device parameters
	Comments about specific cards
	Diagnosing problems with serial devices

	4.5 PCMCIA parallel port devices
	Parallel device parameters
	Diagnosing problems with parallel port devices

	4.6 PCMCIA SCSI adapters
	SCSI device parameters
	Comments about specific cards
	Diagnosing problems with SCSI adapters

	4.7 PCMCIA memory cards
	Memory device parameters
	Using linear flash memory cards

	4.8 PCMCIA ATA/IDE card drives
	ATA/IDE fixed-disk device parameters
	Diagnosing problems with ATA/IDE adapters

	4.9 Multifunction cards
	5. Advanced topics
	5.1 Resource allocation for PCMCIA devices
	5.2 PCI interrupt configuration problems and solutions
	An overview of PCI interrupt routing issues
	CardBus bridge is not detected by the PCI BIOS
	 PCI interrupt delivery problems
	No PCI interrupt assignment; valid routing table
	No PCI interrupt assignment; unknown interrupt router
	No PCI interrupt assignment; no routing table

	5.3 How can I have separate device setups for home and work?
	5.4 Booting from a PCMCIA device
	The pcinitrd helper script
	Creating an initrd boot floppy
	Installing an initrd image on a non-Linux drive

	6. Dealing with unsupported cards
	 6.1 Configuring unrecognized cards
	6.2 Adding support for an NE2000-compatible ethernet card
	6.3 PCMCIA floppy interface cards
	7. Debugging tips and programming information
	7.1 Submitting useful problem reports
	7.2 Interpreting kernel trap reports
	 7.3 Low level PCMCIA debugging aids
	7.4 /proc/bus/pccard
	7.5 Writing Card Services drivers for new cards
	7.6 Guidelines for PCMCIA client driver authors
	7.7 Guidelines for Linux distribution maintainers

