
Debian Developer's Reference

Developer's Reference Team, Andreas Barth, Adam Di
Carlo, Raphaël Hertzog, Lucas Nussbaum, Christian

Schwarz, and Ian Jackson

June 25, 2012

Debian Developer's Reference
by Developer's Reference Team, Andreas Barth, Adam Di Carlo, Raphaël Hertzog, Lucas Nussbaum, Christian
Schwarz, and Ian Jackson

Published 2012-06-25
Copyright © 2004, 2005, 2006, 2007 Andreas Barth
Copyright © 1998, 1999, 2000, 2001, 2002, 2003 Adam Di Carlo
Copyright © 2002, 2003, 2008, 2009 Raphaël Hertzog
Copyright © 2008, 2009 Lucas Nussbaum
Copyright © 1997, 1998 Christian Schwarz

This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2, or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty
of merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

A copy of the GNU General Public License is available as /usr/share/common-licenses/GPL-2 in the
Debian GNU/Linux distribution or on the World Wide Web at the GNU web site. You can also obtain it by writing
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

If you want to print this reference, you should use the pdf version. This page is also available in French, German
and Japanese.

ii

http://www.gnu.org/copyleft/gpl.html
index.fr.html
index.de.html
index.ja.html

Contents

1 Scope of This Document 1

2 Applying to Become a Maintainer 3
2.1 Getting started . 3
2.2 Debian mentors and sponsors . 3
2.3 Registering as a Debian developer . 4

3 Debian Developer's Duties 7
3.1 Package Maintainer's Duties . 7

3.1.1 Work towards the next stable release . 7
3.1.2 Maintain packages in stable . 7
3.1.3 Manage release-critical bugs . 7
3.1.4 Coordination with upstream developers . 8

3.2 Administrative Duties . 8
3.2.1 Maintaining your Debian information . 8
3.2.2 Maintaining your public key . 8
3.2.3 Voting . 8
3.2.4 Going on vacation gracefully . 9
3.2.5 Retiring . 9
3.2.6 Returning after retirement . 9

4 Resources for Debian Developers 11
4.1 Mailing lists . 11

4.1.1 Basic rules for use . 11
4.1.2 Core development mailing lists . 11
4.1.3 Special lists . 11
4.1.4 Requesting new development-related lists . 12

4.2 IRC channels . 12
4.3 Documentation . 12
4.4 Debian machines . 12

4.4.1 The bugs server . 13
4.4.2 The ftp-master server . 13
4.4.3 The www-master server . 13
4.4.4 The people web server . 13
4.4.5 The VCS servers . 13
4.4.6 chroots to different distributions . 14

4.5 The Developers Database . 14
4.6 The Debian archive . 14

4.6.1 Sections . 15
4.6.2 Architectures . 16
4.6.3 Packages . 16
4.6.4 Distributions . 16

4.6.4.1 Stable, testing, and unstable . 17
4.6.4.2 More information about the testing distribution 17
4.6.4.3 Experimental . 17

4.6.5 Release code names . 18
4.7 Debian mirrors . 18
4.8 The Incoming system . 18
4.9 Package information . 19

4.9.1 On the web . 19
4.9.2 The dak ls utility . 19

4.10 The Package Tracking System . 19
4.10.1 The PTS email interface . 20
4.10.2 Filtering PTS mails . 21

iii

CONTENTS

4.10.3 Forwarding VCS commits in the PTS . 21
4.10.4 The PTS web interface . 21

4.11 Developer's packages overview . 22
4.12 Debian's FusionForge installation: Alioth . 23
4.13 Goodies for Developers . 23

4.13.1 LWN Subscriptions . 23
4.13.2 Gandi.net Hosting Discount . 23

5 Managing Packages 25
5.1 New packages . 25
5.2 Recording changes in the package . 26
5.3 Testing the package . 26
5.4 Layout of the source package . 26
5.5 Picking a distribution . 27

5.5.1 Special case: uploads to the stable and oldstable distributions 27
5.5.2 Special case: uploads to testing/testing-proposed-updates 28

5.6 Uploading a package . 28
5.6.1 Uploading to ftp-master . 28
5.6.2 Delayed uploads . 28
5.6.3 Security uploads . 28
5.6.4 Other upload queues . 28
5.6.5 Notification that a new package has been installed . 28

5.7 Specifying the package section, subsection and priority . 29
5.8 Handling bugs . 29

5.8.1 Monitoring bugs . 29
5.8.2 Responding to bugs . 29
5.8.3 Bug housekeeping . 30
5.8.4 When bugs are closed by new uploads . 31
5.8.5 Handling security-related bugs . 31

5.8.5.1 The Security Tracker . 32
5.8.5.2 Confidentiality . 32
5.8.5.3 Security Advisories . 33
5.8.5.4 Preparing packages to address security issues 33
5.8.5.5 Uploading the fixed package . 34

5.9 Moving, removing, renaming, adopting, and orphaning packages 34
5.9.1 Moving packages . 34
5.9.2 Removing packages . 35

5.9.2.1 Removing packages from Incoming . 35
5.9.3 Replacing or renaming packages . 35
5.9.4 Orphaning a package . 36
5.9.5 Adopting a package . 36

5.10 Porting and being ported . 36
5.10.1 Being kind to porters . 37
5.10.2 Guidelines for porter uploads . 37

5.10.2.1 Recompilation or binary-only NMU . 38
5.10.2.2 When to do a source NMU if you are a porter 38

5.10.3 Porting infrastructure and automation . 38
5.10.3.1 Mailing lists and web pages . 38
5.10.3.2 Porter tools . 39
5.10.3.3 wanna-build . 39

5.10.4 When your package is not portable . 39
5.10.5 Marking non-free packages as auto-buildable . 39

5.11 Non-Maintainer Uploads (NMUs) . 40
5.11.1 When and how to do an NMU . 40
5.11.2 NMUs and debian/changelog . 41
5.11.3 Using the DELAYED/ queue . 41
5.11.4 NMUs from the maintainer's point of view . 42
5.11.5 Source NMUs vs Binary-only NMUs (binNMUs) . 42
5.11.6 NMUs vs QA uploads . 42

iv

CONTENTS

5.11.7 NMUs vs team uploads . 42
5.12 Collaborative maintenance . 42
5.13 The testing distribution . 43

5.13.1 Basics . 43
5.13.2 Updates from unstable . 43

5.13.2.1 Out-of-date . 44
5.13.2.2 Removals from testing . 44
5.13.2.3 Circular dependencies . 44
5.13.2.4 Influence of package in testing . 45
5.13.2.5 Details . 45

5.13.3 Direct updates to testing . 45
5.13.4 Frequently asked questions . 46

5.13.4.1 What are release-critical bugs, and how do they get counted? 46
5.13.4.2 How could installing a package into testing possibly break other packages? . 46

6 Best Packaging Practices 47
6.1 Best practices for debian/rules . 47

6.1.1 Helper scripts . 47
6.1.2 Separating your patches into multiple files . 48
6.1.3 Multiple binary packages . 48

6.2 Best practices for debian/control . 48
6.2.1 General guidelines for package descriptions . 48
6.2.2 The package synopsis, or short description . 49
6.2.3 The long description . 49
6.2.4 Upstream home page . 50
6.2.5 Version Control System location . 50

6.2.5.1 Vcs-Browser . 50
6.2.5.2 Vcs-* . 50

6.3 Best practices for debian/changelog . 50
6.3.1 Writing useful changelog entries . 50
6.3.2 Common misconceptions about changelog entries . 51
6.3.3 Common errors in changelog entries . 51
6.3.4 Supplementing changelogs with NEWS.Debian files 52

6.4 Best practices for maintainer scripts . 52
6.5 Configuration management with debconf . 53

6.5.1 Do not abuse debconf . 53
6.5.2 General recommendations for authors and translators . 53

6.5.2.1 Write correct English . 53
6.5.2.2 Be kind to translators . 53
6.5.2.3 Unfuzzy complete translations when correcting typos and spelling 54
6.5.2.4 Do not make assumptions about interfaces . 55
6.5.2.5 Do not use first person . 55
6.5.2.6 Be gender neutral . 55

6.5.3 Templates fields definition . 55
6.5.3.1 Type . 55

6.5.3.1.1 string . 55
6.5.3.1.2 password . 55
6.5.3.1.3 boolean . 55
6.5.3.1.4 select . 55
6.5.3.1.5 multiselect . 55
6.5.3.1.6 note . 55
6.5.3.1.7 text . 56
6.5.3.1.8 error . 56

6.5.3.2 Description: short and extended description 56
6.5.3.3 Choices . 56
6.5.3.4 Default . 56

6.5.4 Templates fields specific style guide . 56
6.5.4.1 Type field . 56
6.5.4.2 Description field . 56

v

CONTENTS

6.5.4.2.1 String/password templates . 56
6.5.4.2.2 Boolean templates . 57
6.5.4.2.3 Select/Multiselect . 57
6.5.4.2.4 Notes . 57

6.5.4.3 Choices field . 57
6.5.4.4 Default field . 57
6.5.4.5 Default field . 58

6.6 Internationalization . 58
6.6.1 Handling debconf translations . 58
6.6.2 Internationalized documentation . 58

6.7 Common packaging situations . 58
6.7.1 Packages using autoconf/automake . 58
6.7.2 Libraries . 59
6.7.3 Documentation . 59
6.7.4 Specific types of packages . 59
6.7.5 Architecture-independent data . 59
6.7.6 Needing a certain locale during build . 60
6.7.7 Make transition packages deborphan compliant . 60
6.7.8 Best practices for .orig.tar.{gz,bz2,xz} files 60

6.7.8.1 Pristine source . 60
6.7.8.2 Repackaged upstream source . 61
6.7.8.3 Changing binary files . 61

6.7.9 Best practices for debug packages . 61
6.7.10 Best practices for meta-packages . 62

7 Beyond Packaging 63
7.1 Bug reporting . 63

7.1.1 Reporting lots of bugs at once (mass bug filing) . 63
7.1.1.1 Usertags . 64

7.2 Quality Assurance effort . 64
7.2.1 Daily work . 64
7.2.2 Bug squashing parties . 64

7.3 Contacting other maintainers . 64
7.4 Dealing with inactive and/or unreachable maintainers . 65
7.5 Interacting with prospective Debian developers . 65

7.5.1 Sponsoring packages . 66
7.5.1.1 Sponsoring a new package . 66
7.5.1.2 Sponsoring an update of an existing package 67

7.5.2 Advocating new developers . 67
7.5.3 Handling new maintainer applications . 68

8 Internationalization and Translations 69
8.1 How translations are handled within Debian . 69
8.2 I18N & L10N FAQ for maintainers . 70

8.2.1 How to get a given text translated . 70
8.2.2 How to get a given translation reviewed . 70
8.2.3 How to get a given translation updated . 70
8.2.4 How to handle a bug report concerning a translation . 70

8.3 I18N & L10N FAQ for translators . 70
8.3.1 How to help the translation effort . 70
8.3.2 How to provide a translation for inclusion in a package 70

8.4 Best current practice concerning l10n . 71

A Overview of Debian Maintainer Tools 73
A.1 Core tools . 73

A.1.1 dpkg-dev . 73
A.1.2 debconf . 73
A.1.3 fakeroot . 73

A.2 Package lint tools . 73

vi

CONTENTS

A.2.1 lintian . 74
A.2.2 debdiff . 74

A.3 Helpers for debian/rules . 74
A.3.1 debhelper . 74
A.3.2 dh-make . 74
A.3.3 equivs . 74

A.4 Package builders . 75
A.4.1 cvs-buildpackage . 75
A.4.2 debootstrap . 75
A.4.3 pbuilder . 75
A.4.4 sbuild . 75

A.5 Package uploaders . 75
A.5.1 dupload . 75
A.5.2 dput . 75
A.5.3 dcut . 75

A.6 Maintenance automation . 76
A.6.1 devscripts . 76
A.6.2 autotools-dev . 76
A.6.3 dpkg-repack . 76
A.6.4 alien . 76
A.6.5 debsums . 76
A.6.6 dpkg-dev-el . 76
A.6.7 dpkg-depcheck . 76

A.7 Porting tools . 77
A.7.1 quinn-diff . 77
A.7.2 dpkg-cross . 77

A.8 Documentation and information . 77
A.8.1 docbook-xml . 77
A.8.2 debiandoc-sgml . 77
A.8.3 debian-keyring . 77
A.8.4 debian-maintainers . 77
A.8.5 debview . 77

vii

Chapter 1

Scope of This Document

The purpose of this document is to provide an overview of the recommended procedures and the available resources
for Debian developers.

The procedures discussed within include how to become a maintainer (Chapter 2); how to create new packages
(Section 5.1) and how to upload packages (Section 5.6); how to handle bug reports (Section 5.8); how to move,
remove, or orphan packages (Section 5.9); how to port packages (Section 5.10); and how and when to do interim
releases of other maintainers' packages (Section 5.11).

The resources discussed in this reference include the mailing lists (Section 4.1) and servers (Section 4.4); a
discussion of the structure of the Debian archive (Section 4.6); explanation of the different servers which accept
package uploads (Section 5.6.1); and a discussion of resources which can help maintainers with the quality of their
packages (Appendix A).

It should be clear that this reference does not discuss the technical details of Debian packages nor how to generate
them. Nor does this reference detail the standards to which Debian software must comply. All of such information
can be found in the Debian Policy Manual.

Furthermore, this document is not an expression of formal policy. It contains documentation for the Debian
system and generally agreed-upon best practices. Thus, it is not what is called a ��normative'' document.

1

http://www.debian.org/doc/debian-policy/

Chapter 2

Applying to Become a Maintainer

2.1 Getting started

So, you've read all the documentation, you've gone through the Debian New Maintainers' Guide, understand what
everything in the hello example package is for, and you're about to Debianize your favorite piece of software.
How do you actually become a Debian developer so that your work can be incorporated into the Project?

Firstly, subscribe to debian-devel@lists.debian.org if you haven't already. Send the word subscribe in the
Subject of an email to debian-devel-REQUEST@lists.debian.org. In case of problems, contact the list admin-
istrator at listmaster@lists.debian.org. More information on available mailing lists can be found in Section 4.1.
debian-devel-announce@lists.debian.org is another list which is mandatory for anyone who wishes to follow De-
bian's development.

You should subscribe and lurk (that is, read without posting) for a bit before doing any coding, and you should
post about your intentions to work on something to avoid duplicated effort.

Another good list to subscribe to is debian-mentors@lists.debian.org. See Section 2.2 for details. The IRC
channel #debian can also be helpful; see Section 4.2.

When you know how you want to contribute to Debian GNU/Linux, you should get in contact with existing
Debian maintainers who are working on similar tasks. That way, you can learn from experienced developers.
For example, if you are interested in packaging existing software for Debian, you should try to get a sponsor. A
sponsor will work together with you on your package and upload it to the Debian archive once they are happy
with the packaging work you have done. You can find a sponsor by mailing the debian-mentors@lists.debian.
org mailing list, describing your package and yourself and asking for a sponsor (see Section 7.5.1 and http:
//wiki.debian.org/DebianMentorsFaq for more information on sponsoring). On the other hand, if you
are interested in porting Debian to alternative architectures or kernels you can subscribe to port specific mailing
lists and ask there how to get started. Finally, if you are interested in documentation or Quality Assurance (QA)
work you can join maintainers already working on these tasks and submit patches and improvements.

One pitfall could be a too-generic local part in your mailadress: Terms like mail, admin, root, master should be
avoided, please see http://www.debian.org/MailingLists/ for details.

2.2 Debian mentors and sponsors

The mailing list debian-mentors@lists.debian.org has been set up for novice maintainers who seek help with initial
packaging and other developer-related issues. Every new developer is invited to subscribe to that list (see Section 4.1
for details).

Those who prefer one-on-one help (e.g., via private email) should also post to that list and an experienced
developer will volunteer to help.

In addition, if you have some packages ready for inclusion in Debian, but are waiting for your new maintainer
application to go through, you might be able find a sponsor to upload your package for you. Sponsors are people
who are official Debian Developers, and who are willing to criticize and upload your packages for you. Please read
the debian-mentors FAQ at http://wiki.debian.org/DebianMentorsFaq first.

If you wish to be a mentor and/or sponsor, more information is available in Section 7.5.

3

http://www.debian.org/doc/maint-guide/
mailto:debian-devel@lists.debian.org
mailto:debian-devel-REQUEST@lists.debian.org
mailto:listmaster@lists.debian.org
mailto:debian-devel-announce@lists.debian.org
mailto:debian-mentors@lists.debian.org
mailto:debian-mentors@lists.debian.org
mailto:debian-mentors@lists.debian.org
http://wiki.debian.org/DebianMentorsFaq
http://wiki.debian.org/DebianMentorsFaq
http://www.debian.org/MailingLists/
mailto:debian-mentors@lists.debian.org
http://wiki.debian.org/DebianMentorsFaq

CHAPTER 2. APPLYING TO BECOME A… 2.3. REGISTERING AS A DEBIAN DEVELOPER

2.3 Registering as a Debian developer
Before you decide to register with Debian GNU/Linux, you will need to read all the information available at the
New Maintainer's Corner. It describes in detail the preparations you have to do before you can register to become
a Debian developer. For example, before you apply, you have to read the Debian Social Contract. Registering as
a developer means that you agree with and pledge to uphold the Debian Social Contract; it is very important that
maintainers are in accord with the essential ideas behind Debian GNU/Linux. Reading the GNU Manifesto would
also be a good idea.

The process of registering as a developer is a process of verifying your identity and intentions, and checking
your technical skills. As the number of people working on Debian GNU/Linux has grown to over 1000 and our
systems are used in several very important places, we have to be careful about being compromised. Therefore, we
need to verify new maintainers before we can give them accounts on our servers and let them upload packages.

Before you actually register you should have shown that you can do competent work and will be a good con-
tributor. You show this by submitting patches through the Bug Tracking System and having a package sponsored
by an existing Debian Developer for a while. Also, we expect that contributors are interested in the whole project
and not just in maintaining their own packages. If you can help other maintainers by providing further information
on a bug or even a patch, then do so!

Registration requires that you are familiar with Debian's philosophy and technical documentation. Furthermore,
you need a GnuPG key which has been signed by an existing Debian maintainer. If your GnuPG key is not signed
yet, you should try to meet a Debian Developer in person to get your key signed. There's a GnuPG Key Signing
Coordination page which should help you find a Debian Developer close to you. (If there is no Debian Developer
close to you, alternative ways to pass the ID check may be permitted as an absolute exception on a case-by-case-
basis. See the identification page for more information.)

If you do not have an OpenPGP key yet, generate one. Every developer needs an OpenPGP key in order to sign
and verify package uploads. You should read the manual for the software you are using, since it has much important
information which is critical to its security. Many more security failures are due to human error than to software
failure or high-powered spy techniques. See Section 3.2.2 for more information on maintaining your public key.

Debian uses the GNU Privacy Guard (package gnupg version 1 or better) as its baseline standard. You
can use some other implementation of OpenPGP as well. Note that OpenPGP is an open standard based on RFC
2440.

You need a version 4 key for use in Debian Development. Your key length must be greater than 1024 bits; there
is no reason to use a smaller key, and doing so would be much less secure.1

If your public key isn't on a public key server such as subkeys.pgp.net, please read the documentation
available at NM Step 2: Identification. That document contains instructions on how to put your key on the public
key servers. The New Maintainer Group will put your public key on the servers if it isn't already there.

Some countries restrict the use of cryptographic software by their citizens. This need not impede one's activities
as a Debian package maintainer however, as it may be perfectly legal to use cryptographic products for authentica-
tion, rather than encryption purposes. If you live in a country where use of cryptography even for authentication is
forbidden then please contact us so we can make special arrangements.

To apply as a new maintainer, you need an existing Debian Developer to support your application (an advoc
ate). After you have contributed to Debian for a while, and you want to apply to become a registered developer,
an existing developer with whom you have worked over the past months has to express their belief that you can
contribute to Debian successfully.

When you have found an advocate, have your GnuPG key signed and have already contributed to Debian for
a while, you're ready to apply. You can simply register on our application page. After you have signed up, your
advocate has to confirm your application. When your advocate has completed this step you will be assigned an
Application Manager who will go with you through the necessary steps of the New Maintainer process. You can
always check your status on the applications status board.

1 Version 4 keys are keys conforming to the OpenPGP standard as defined in RFC 2440. Version 4 is the key type that has always been
created when using GnuPG. PGP versions since 5.x also could create v4 keys, the other choice having been pgp 2.6.x compatible v3 keys (also
called legacy RSA by PGP).

Version 4 (primary) keys can either use the RSA or the DSA algorithms, so this has nothing to do with GnuPG's question about which kind
of key do you want: (1) DSA and Elgamal, (2) DSA (sign only), (5) RSA (sign only). If you don't have any special requirements just pick the
default.

The easiest way to tell whether an existing key is a v4 key or a v3 (or v2) key is to look at the fingerprint: Fingerprints of version 4 keys are
the SHA-1 hash of some key material, so they are 40 hex digits, usually grouped in blocks of 4. Fingerprints of older key format versions used
MD5 and are generally shown in blocks of 2 hex digits. For example if your fingerprint looks like 5B00 C96D 5D54 AEE1 206B AF8
4 DE7A AF6E 94C0 9C7F then it's a v4 key.

Another possibility is to pipe the key into pgpdump, which will say something like Public Key Packet - Ver 4.
Also note that your key must be self-signed (i.e. it has to sign all its own user IDs; this prevents user ID tampering). All modern OpenPGP

software does that automatically, but if you have an older key you may have to manually add those signatures.

4

http://www.debian.org/devel/join/newmaint
http://www.debian.org/social_contract
http://www.gnu.org/gnu/manifesto.html
http://wiki.debian.org/Keysigning
http://wiki.debian.org/Keysigning
http://www.debian.org/devel/join/nm-step2
http://www.rfc-editor.org/rfc/rfc2440.txt
http://www.rfc-editor.org/rfc/rfc2440.txt
http://lists.debian.org/20090520092534.GG22906@earth.li
http://www.debian.org/devel/join/nm-step2
http://nm.debian.org/newnm.php
http://nm.debian.org/

CHAPTER 2. APPLYING TO BECOME A… 2.3. REGISTERING AS A DEBIAN DEVELOPER

For more details, please consult New Maintainer's Corner at the Debian web site. Make sure that you are familiar
with the necessary steps of the New Maintainer process before actually applying. If you are well prepared, you can
save a lot of time later on.

5

http://www.debian.org/devel/join/newmaint

Chapter 3

Debian Developer's Duties

3.1 Package Maintainer's Duties

As a package maintainer, you're supposed to provide high-quality packages that are well integrated in the system
and that adhere to the Debian Policy.

3.1.1 Work towards the next stable release

Providing high-quality packages in unstable is not enough, most users will only benefit from your packages
when they are released as part of the next stable release. You are thus expected to collaborate with the release
team to ensure your packages get included.

More concretely, you should monitor whether your packages are migrating to testing (see Section 5.13).
When the migration doesn't happen after the test period, you should analyze why and work towards fixing this. It
might mean fixing your package (in the case of release-critical bugs or failures to build on some architecture) but
it can also mean updating (or fixing, or removing from testing) other packages to help complete a transition in
which your package is entangled due to its dependencies. The release team might provide you some input on the
current blockers of a given transition if you are not able to identify them.

3.1.2 Maintain packages in stable

Most of the package maintainer's work goes into providing updated versions of packages in unstable, but his job
also entails taking care of the packages in the current stable release.

While changes in stable are discouraged, they are possible. Whenever a security problem is reported, you
should collaborate with the security team to provide a fixed version (see Section 5.8.5). When bugs of severity
important (or more) are reported against the stable version of your packages, you should consider providing a
targeted fix. You can ask the stable release team whether they would accept such an update and then prepare a
stable upload (see Section 5.5.1).

3.1.3 Manage release-critical bugs

Generally you should deal with bug reports on your packages as described in Section 5.8. However, there's a special
category of bugs that you need to take care of — the so-called release-critical bugs (RC bugs). All bug reports that
have severity critical, grave or serious make the package unsuitable for inclusion in the next stable
release. They can thus delay the Debian release (when they affect a package in testing) or block migrations to
testing (when they only affect the package in unstable). In the worst scenario, they will lead to the package's
removal. That's why these bugs need to be corrected as quickly as possible.

If, for any reason, you aren't able fix an RC bug in a package of yours within 2 weeks (for example due to time
constraints, or because it's difficult to fix), you should mention it clearly in the bug report and you should tag the bug
help to invite other volunteers to chime in. Be aware that RC bugs are frequently the targets of Non-Maintainer
Uploads (see Section 5.11) because they can block the testing migration of many packages.

Lack of attention to RC bugs is often interpreted by the QA team as a sign that the maintainer has disappeared
without properly orphaning his package. The MIA team might also get involved, which could result in your packages
being orphaned (see Section 7.4).

7

CHAPTER 3. DEBIAN DEVELOPER'S DUTIES 3.2. ADMINISTRATIVE DUTIES

3.1.4 Coordination with upstream developers
A big part of your job as Debian maintainer will be to stay in contact with the upstream developers. Debian users
will sometimes report bugs that are not specific to Debian to our bug tracking system. You have to forward these
bug reports to the upstream developers so that they can be fixed in a future upstream release.

While it's not your job to fix non-Debian specific bugs, you may freely do so if you're able. When you make
such fixes, be sure to pass them on to the upstream maintainers as well. Debian users and developers will sometimes
submit patches to fix upstream bugs — you should evaluate and forward these patches upstream.

If you need to modify the upstream sources in order to build a policy compliant package, then you should
propose a nice fix to the upstream developers which can be included there, so that you won't have to modify the
sources of the next upstream version. Whatever changes you need, always try not to fork from the upstream sources.

If you find that the upstream developers are or become hostile towards Debian or the free software community,
you may want to re-consider the need to include the software in Debian. Sometimes the social cost to the Debian
community is not worth the benefits the software may bring.

3.2 Administrative Duties
A project of the size of Debian relies on some administrative infrastructure to keep track of everything. As a project
member, you have some duties to ensure everything keeps running smoothly.

3.2.1 Maintaining your Debian information
There's a LDAP database containing information about Debian developers athttps://db.debian.org/. You
should enter your information there and update it as it changes. Most notably, make sure that the address where your
debian.org email gets forwarded to is always up to date, as well as the address where you get your debian-private
subscription if you choose to subscribe there.

For more information about the database, please see Section 4.5.

3.2.2 Maintaining your public key
Be very careful with your private keys. Do not place them on any public servers or multiuser machines, such as the
Debian servers (see Section 4.4). Back your keys up; keep a copy offline. Read the documentation that comes with
your software; read the PGP FAQ.

You need to ensure not only that your key is secure against being stolen, but also that it is secure against being
lost. Generate and make a copy (best also in paper form) of your revocation certificate; this is needed if your key is
lost.

If you add signatures to your public key, or add user identities, you can update the Debian key ring by sending
your key to the key server at keyring.debian.org.

If you need to add a completely new key or remove an old key, you need to get the new key signed by another
developer. If the old key is compromised or invalid, you also have to add the revocation certificate. If there is
no real reason for a new key, the Keyring Maintainers might reject the new key. Details can be found at http:
//keyring.debian.org/replacing_keys.html.

The same key extraction routines discussed in Section 2.3 apply.
You can find a more in-depth discussion of Debian key maintenance in the documentation of the debian-

keyring package.

3.2.3 Voting
Even though Debian isn't really a democracy, we use a democratic process to elect our leaders and to approve general
resolutions. These procedures are defined by the Debian Constitution.

Other than the yearly leader election, votes are not routinely held, and they are not undertaken lightly. Each
proposal is first discussed on the debian-vote@lists.debian.org mailing list and it requires several endorsements
before the project secretary starts the voting procedure.

You don't have to track the pre-vote discussions, as the secretary will issue several calls for votes on debian-
devel-announce@lists.debian.org (and all developers are expected to be subscribed to that list). Democracy doesn't
work well if people don't take part in the vote, which is why we encourage all developers to vote. Voting is conducted
via GPG-signed/encrypted email messages.

The list of all proposals (past and current) is available on the Debian Voting Information page, along with
information on how to make, second and vote on proposals.

8

https://db.debian.org/
http://www.cam.ac.uk.pgp.net/pgpnet/pgp-faq/
http://keyring.debian.org/replacing_keys.html
http://keyring.debian.org/replacing_keys.html
http://www.debian.org/devel/constitution
mailto:debian-vote@lists.debian.org
mailto:debian-devel-announce@lists.debian.org
mailto:debian-devel-announce@lists.debian.org
http://www.debian.org/vote/

CHAPTER 3. DEBIAN DEVELOPER'S DUTIES 3.2. ADMINISTRATIVE DUTIES

3.2.4 Going on vacation gracefully
It is common for developers to have periods of absence, whether those are planned vacations or simply being buried
in other work. The important thing to notice is that other developers need to know that you're on vacation so that
they can do whatever is needed if a problem occurs with your packages or other duties in the project.

Usually this means that other developers are allowed to NMU (see Section 5.11) your package if a big problem
(release critical bug, security update, etc.) occurs while you're on vacation. Sometimes it's nothing as critical as
that, but it's still appropriate to let others know that you're unavailable.

In order to inform the other developers, there are two things that you should do. First send a mail to debian-
private@lists.debian.org with [VAC] prepended to the subject of your message1 and state the period of time when
you will be on vacation. You can also give some special instructions on what to do if a problem occurs.

The other thing to do is to mark yourself as on vacation in the Debian developers' LDAP database (this in-
formation is only accessible to Debian developers). Don't forget to remove the on vacation flag when you come
back!

Ideally, you should sign up at the GPG coordination pages when booking a holiday and check if anyone there is
looking for signing. This is especially important when people go to exotic places where we don't have any developers
yet but where there are people who are interested in applying.

3.2.5 Retiring
If you choose to leave the Debian project, you should make sure you do the following steps:

1. Orphan all your packages, as described in Section 5.9.4.

2. Send an gpg-signed email about why you are leaving the project to debian-private@lists.debian.org.

3. Notify the Debian key ring maintainers that you are leaving by opening a ticket in Debian RT by sending a
mail to keyring@rt.debian.org with the words 'Debian RT' somewhere in the subject line (case doesn't matter).

It is important that the above process is followed, because finding inactive developers and orphaning their
packages takes significant time and effort.

3.2.6 Returning after retirement
A retired developer's account is marked as "emeritus" when the process in Section 3.2.5 is followed, and "disabled"
otherwise. Retired developers with an "emeritus" account can get their account re-activated as follows:

• Contact da-manager@debian.org.

• Go through a shortened NM process (to ensure that the returning developer still knows important parts of
P&P and T&S).

• Prove that they still control the GPG key associated with the account, or provide proof of identify on a new
GPG key, with at least two signatures from other developers.

Retired developers with a "disabled" account need to go through NM again.

1 This is so that the message can be easily filtered by people who don't want to read vacation notices.

9

mailto:debian-private@lists.debian.org
mailto:debian-private@lists.debian.org
http://wiki.debian.org/Keysigning
mailto:debian-private@lists.debian.org
mailto:keyring@rt.debian.org
mailto:da-manager@debian.org

Chapter 4

Resources for Debian Developers

In this chapter you will find a very brief road map of the Debian mailing lists, the Debian machines which may be
available to you as a developer, and all the other resources that are available to help you in your maintainer work.

4.1 Mailing lists
Much of the conversation between Debian developers (and users) is managed through a wide array of mailing lists
we host at lists.debian.org. To find out more on how to subscribe or unsubscribe, how to post and how not
to post, where to find old posts and how to search them, how to contact the list maintainers and see various other
information about the mailing lists, please read http://www.debian.org/MailingLists/. This section
will only cover aspects of mailing lists that are of particular interest to developers.

4.1.1 Basic rules for use
When replying to messages on the mailing list, please do not send a carbon copy (CC) to the original poster unless
they explicitly request to be copied. Anyone who posts to a mailing list should read it to see the responses.

Cross-posting (sending the same message to multiple lists) is discouraged. As ever on the net, please trim down
the quoting of articles you're replying to. In general, please adhere to the usual conventions for posting messages.

Please read the code of conduct for more information. The Debian Community Guidelines are also worth
reading.

4.1.2 Core development mailing lists
The core Debian mailing lists that developers should use are:

• debian-devel-announce@lists.debian.org, used to announce important things to developers. All developers
are expected to be subscribed to this list.

• debian-devel@lists.debian.org, used to discuss various development related technical issues.

• debian-policy@lists.debian.org, where the Debian Policy is discussed and voted on.

• debian-project@lists.debian.org, used to discuss various non-technical issues related to the project.

There are other mailing lists available for a variety of special topics; see http://lists.debian.org/
for a list.

4.1.3 Special lists
debian-private@lists.debian.org is a special mailing list for private discussions amongst Debian developers. It is
meant to be used for posts which for whatever reason should not be published publicly. As such, it is a low volume
list, and users are urged not to use debian-private@lists.debian.org unless it is really necessary. Moreover, do not
forward email from that list to anyone. Archives of this list are not available on the web for obvious reasons, but
you can see them using your shell account on master.debian.org and looking in the ~debian/archive/
debian-private/ directory.

11

http://lists.debian.org/
http://www.debian.org/MailingLists/
http://www.debian.org/MailingLists/#codeofconduct
http://people.debian.org/~enrico/dcg/
mailto:debian-devel-announce@lists.debian.org
mailto:debian-devel@lists.debian.org
mailto:debian-policy@lists.debian.org
mailto:debian-project@lists.debian.org
http://lists.debian.org/
mailto:debian-private@lists.debian.org
mailto:debian-private@lists.debian.org

CHAPTER 4. RESOURCES FOR DEBIAN… 4.2. IRC CHANNELS

debian-email@lists.debian.org is a special mailing list used as a grab-bag for Debian related correspondence
such as contacting upstream authors about licenses, bugs, etc. or discussing the project with others where it might
be useful to have the discussion archived somewhere.

4.1.4 Requesting new development-related lists
Before requesting a mailing list that relates to the development of a package (or a small group of related packages),
please consider if using an alias (via a .forward-aliasname file on master.debian.org, which translates into a reason-
ably nice you-aliasname@debian.org address) or a self-managed mailing list on Alioth is more appropriate.

If you decide that a regular mailing list on lists.debian.org is really what you want, go ahead and fill in a request,
following the HOWTO.

4.2 IRC channels
Several IRC channels are dedicated to Debian's development. They are mainly hosted on the Open and free tech-
nology community (OFTC) network. The irc.debian.org DNS entry is an alias to irc.oftc.net.

The main channel for Debian in general is #debian. This is a large, general-purpose channel where users can
find recent news in the topic and served by bots. #debian is for English speakers; there are also #debian.de,
#debian-fr, #debian-br and other similarly named channels for speakers of other languages.

The main channel for Debian development is #debian-devel. It is a very active channel; it will typically
have a minimum of 150 people at any time of day. It's a channel for people who work on Debian, it's not a support
channel (there's #debian for that). It is however open to anyone who wants to lurk (and learn). Its topic is
commonly full of interesting information for developers.

Since #debian-devel is an open channel, you should not speak there of issues that are discussed in deb
ian-private@lists.debian.org. There's another channel for this purpose, it's called #debian-private and it's
protected by a key. This key is available at master.debian.org:~debian/misc/irc-password.

There are other additional channels dedicated to specific subjects. #debian-bugs is used for coordinating
bug squashing parties. #debian-boot is used to coordinate the work on the debian-installer. #debian-doc
is occasionally used to talk about documentation, like the document you are reading. Other channels are dedicated
to an architecture or a set of packages: #debian-kde, #debian-dpkg, #debian-jr, #debian-edu, #
debian-oo (OpenOffice.org package)...

Some non-English developers' channels exist as well, for example #debian-devel-fr for French speaking
people interested in Debian's development.

Channels dedicated to Debian also exist on other IRC networks, notably on the freenode IRC network, which
was pointed at by the irc.debian.org alias until 4th June 2006.

To get a cloak on freenode, you send Jörg Jaspert <joerg@debian.org> a signed mail where you tell what your
nick is. Put cloak somewhere in the Subject: header. The nick should be registered: Nick Setup Page. The mail
needs to be signed by a key in the Debian keyring. Please see Freenodes documentation for more information about
cloaks.

4.3 Documentation
This document contains a lot of information which is useful to Debian developers, but it cannot contain everything.
Most of the other interesting documents are linked from The Developers' Corner. Take the time to browse all the
links, you will learn many more things.

4.4 Debian machines
Debian has several computers working as servers, most of which serve critical functions in the Debian project. Most
of the machines are used for porting activities, and they all have a permanent connection to the Internet.

Some of the machines are available for individual developers to use, as long as the developers follow the rules
set forth in the Debian Machine Usage Policies.

Generally speaking, you can use these machines for Debian-related purposes as you see fit. Please be kind to
system administrators, and do not use up tons and tons of disk space, network bandwidth, or CPU without first
getting the approval of the system administrators. Usually these machines are run by volunteers.

Please take care to protect your Debian passwords and SSH keys installed on Debian machines. Avoid login or
upload methods which send passwords over the Internet in the clear, such as Telnet, FTP, POP etc.

12

mailto:debian-email@lists.debian.org
http://www.debian.org/MailingLists/HOWTO_start_list
http://www.oftc.net/oftc/
http://www.oftc.net/oftc/
mailto:debian-private@lists.debian.org
mailto:debian-private@lists.debian.org
http://www.freenode.net/
http://freenode.net/faq.shtml#nicksetup
http://freenode.net/faq.shtml#projectcloak
http://www.debian.org/devel/
http://www.debian.org/devel/dmup

CHAPTER 4. RESOURCES FOR DEBIAN… 4.4. DEBIAN MACHINES

Please do not put any material that doesn't relate to Debian on the Debian servers, unless you have prior per-
mission.

The current list of Debian machines is available at http://db.debian.org/machines.cgi. That web
page contains machine names, contact information, information about who can log in, SSH keys etc.

If you have a problem with the operation of a Debian server, and you think that the system operators need to be
notified of this problem, you can check the list of open issues in the DSA queue of our request tracker at https:
//rt.debian.org/ (you can login with user "debian", its password is available at master.debian.org:
~debian/misc/rt-password). To report a new problem, simply send a mail to admin@rt.debian.org and
make sure to put the string "Debian RT" somewhere in the subject.

If you have a problem with a certain service, not related to the system administration (such as packages to be
removed from the archive, suggestions for the web site, etc.), generally you'll report a bug against a ��pseudo-
package''. See Section 7.1 for information on how to submit bugs.

Some of the core servers are restricted, but the information from there is mirrored to another server.

4.4.1 The bugs server

bugs.debian.org is the canonical location for the Bug Tracking System (BTS).
If you plan on doing some statistical analysis or processing of Debian bugs, this would be the place to do it.

Please describe your plans on debian-devel@lists.debian.org before implementing anything, however, to reduce
unnecessary duplication of effort or wasted processing time.

4.4.2 The ftp-master server

The ftp-master.debian.org server holds the canonical copy of the Debian archive. Generally, package
uploaded to ftp.upload.debian.org end up on this server, see Section 5.6.

It is restricted; a mirror is available on ries.debian.org.
Problems with the Debian FTP archive generally need to be reported as bugs against the ftp.debian.org

pseudo-package or an email to ftpmaster@debian.org, but also see the procedures in Section 5.9.

4.4.3 The www-master server

The main web server is www-master.debian.org. It holds the official web pages, the face of Debian for most
newbies.

If you find a problem with the Debian web server, you should generally submit a bug against the pseudo-package,
www.debian.org. Remember to check whether or not someone else has already reported the problem to the Bug
Tracking System.

4.4.4 The people web server

people.debian.org is the server used for developers' own web pages about anything related to Debian.
If you have some Debian-specific information which you want to serve on the web, you can do this by putting

material in the public_html directory under your home directory on people.debian.org. This will be
accessible at the URL http://people.debian.org/~your-user-id/.

You should only use this particular location because it will be backed up, whereas on other hosts it won't.
Usually the only reason to use a different host is when you need to publish materials subject to the U.S. export

restrictions, in which case you can use one of the other servers located outside the United States.
Send mail to debian-devel@lists.debian.org if you have any questions.

4.4.5 The VCS servers

If you need to use a Version Control System for any of your Debian work, you can use one of the existing repositories
hosted on Alioth or you can request a new project and ask for the VCS repository of your choice. Alioth supports
CVS (cvs.alioth.debian.org/cvs.debian.org), Subversion (svn.debian.org), Arch (tla/baz, both on arch.debian.org),
Bazaar (bzr.debian.org), Darcs (darcs.debian.org), Mercurial (hg.debian.org) and Git (git.debian.org). Checkout
http://wiki.debian.org/Alioth/PackagingProject if you plan to maintain packages in a VCS
repository. See Section 4.12 for information on the services provided by Alioth.

13

http://db.debian.org/machines.cgi
https://rt.debian.org/
https://rt.debian.org/
mailto:admin@rt.debian.org
mailto:debian-devel@lists.debian.org
mailto:ftpmaster@debian.org
http://bugs.debian.org/www.debian.org
http://bugs.debian.org/www.debian.org
mailto:debian-devel@lists.debian.org
http://wiki.debian.org/Alioth/PackagingProject

CHAPTER 4. RESOURCES FOR DEBIAN… 4.5. THE DEVELOPERS DATABASE

4.4.6 chroots to different distributions
On some machines, there are chroots to different distributions available. You can use them like this:

vore$ dchroot unstable
Executing shell in chroot: /org/vore.debian.org/chroots/user/unstable

In all chroots, the normal user home directories are available. You can find out which chroots are available via
http://db.debian.org/machines.cgi.

4.5 The Developers Database
The Developers Database, at https://db.debian.org/, is an LDAP directory for managing Debian devel-
oper attributes. You can use this resource to search the list of Debian developers. Part of this information is also
available through the finger service on Debian servers, try finger yourlogin@db.debian.org to see what it reports.

Developers can log into the database to change various information about themselves, such as:

• forwarding address for your debian.org email

• subscription to debian-private

• whether you are on vacation

• personal information such as your address, country, the latitude and longitude of the place where you live for
use in the world map of Debian developers, phone and fax numbers, IRC nickname and web page

• password and preferred shell on Debian Project machines

Most of the information is not accessible to the public, naturally. For more information please read the online
documentation that you can find at http://db.debian.org/doc-general.html.

Developers can also submit their SSH keys to be used for authorization on the official Debian machines, and even
add new *.debian.net DNS entries. Those features are documented at http://db.debian.org/doc-mail.
html.

4.6 The Debian archive
The Debian GNU/Linux distribution consists of a lot of packages (currently around 15000 source packages) and a
few additional files (such as documentation and installation disk images).

Here is an example directory tree of a complete Debian archive:

dists/stable/main/
dists/stable/main/binary-amd64/
dists/stable/main/binary-armel/
dists/stable/main/binary-i386/

...
dists/stable/main/source/

...
dists/stable/main/disks-amd64/
dists/stable/main/disks-armel/
dists/stable/main/disks-i386/

...

dists/stable/contrib/
dists/stable/contrib/binary-amd64/
dists/stable/contrib/binary-armel/
dists/stable/contrib/binary-i386/

...
dists/stable/contrib/source/

dists/stable/non-free/
dists/stable/non-free/binary-amd64/
dists/stable/non-free/binary-armel/
dists/stable/non-free/binary-i386/

14

http://db.debian.org/machines.cgi
https://db.debian.org/
https://db.debian.org/login.html
http://www.debian.org/devel/developers.loc
http://db.debian.org/doc-general.html
http://db.debian.org/doc-mail.html
http://db.debian.org/doc-mail.html

CHAPTER 4. RESOURCES FOR DEBIAN… 4.6. THE DEBIAN ARCHIVE

...
dists/stable/non-free/source/

dists/testing/
dists/testing/main/

...
dists/testing/contrib/

...
dists/testing/non-free/

...

dists/unstable
dists/unstable/main/

...
dists/unstable/contrib/

...
dists/unstable/non-free/

...

pool/
pool/main/a/
pool/main/a/apt/

...
pool/main/b/
pool/main/b/bash/

...
pool/main/liba/
pool/main/liba/libalias-perl/

...
pool/main/m/
pool/main/m/mailx/

...
pool/non-free/f/
pool/non-free/f/firmware-nonfree/

...

As you can see, the top-level directory contains two directories, dists/ and pool/. The latter is a “pool” in
which the packages actually are, and which is handled by the archive maintenance database and the accompanying
programs. The former contains the distributions, stable, testing and unstable. The Packages and
Sources files in the distribution subdirectories can reference files in the pool/ directory. The directory tree
below each of the distributions is arranged in an identical manner. What we describe below for stable is equally
applicable to the unstable and testing distributions.

dists/stable contains three directories, namely main, contrib, and non-free.
In each of the areas, there is a directory for the source packages (source) and a directory for each supported

architecture (binary-i386, binary-amd64, etc.).
The main area contains additional directories which hold the disk images and some essential pieces of docu-

mentation required for installing the Debian distribution on a specific architecture (disks-i386, disks-amd64,
etc.).

4.6.1 Sections
The main section of the Debian archive is what makes up the official Debian GNU/Linux distribution. The
main section is official because it fully complies with all our guidelines. The other two sections do not, to different
degrees; as such, they are not officially part of Debian GNU/Linux.

Every package in the main section must fully comply with the Debian Free Software Guidelines (DFSG) and
with all other policy requirements as described in the Debian Policy Manual. The DFSG is our definition of “free
software.” Check out the Debian Policy Manual for details.

Packages in the contrib section have to comply with the DFSG, but may fail other requirements. For instance,
they may depend on non-free packages.

Packages which do not conform to the DFSG are placed in the non-free section. These packages are not
considered as part of the Debian distribution, though we enable their use, and we provide infrastructure (such as
our bug-tracking system and mailing lists) for non-free software packages.

15

http://www.debian.org/social_contract#guidelines
http://www.debian.org/doc/debian-policy/

CHAPTER 4. RESOURCES FOR DEBIAN… 4.6. THE DEBIAN ARCHIVE

The Debian Policy Manual contains a more exact definition of the three sections. The above discussion is just
an introduction.

The separation of the three sections at the top-level of the archive is important for all people who want to
distribute Debian, either via FTP servers on the Internet or on CD-ROMs: by distributing only the main and con
trib sections, one can avoid any legal risks. Some packages in the non-free section do not allow commercial
distribution, for example.

On the other hand, a CD-ROM vendor could easily check the individual package licenses of the packages in
non-free and include as many on the CD-ROMs as it's allowed to. (Since this varies greatly from vendor to
vendor, this job can't be done by the Debian developers.)

Note that the term section is also used to refer to categories which simplify the organization and browsing of
available packages, e.g. admin, net, utils etc. Once upon a time, these sections (subsections, rather) existed
in the form of subdirectories within the Debian archive. Nowadays, these exist only in the Section header fields of
packages.

4.6.2 Architectures

In the first days, the Linux kernel was only available for Intel i386 (or greater) platforms, and so was Debian. But
as Linux became more and more popular, the kernel was ported to other architectures and Debian started to support
them. And as if supporting so much hardware was not enough, Debian decided to build some ports based on other
Unix kernels, like hurd and kfreebsd.

Debian GNU/Linux 1.3 was only available as i386. Debian 2.0 shipped for i386 and m68k architectures.
Debian 2.1 shipped for the i386, m68k, alpha, and sparc architectures. Since then Debian has grown hugely.
Debian 6 supports a total of nine Linux architectures (amd64, armel, i386, ia64, mips, mipsel, powerpc,
s390, sparc) and two kFreeBSD architectures (kfreebsd-i386 and kfreebsd-amd64).

Information for developers and users about the specific ports are available at the Debian Ports web pages.

4.6.3 Packages

There are two types of Debian packages, namely source and binary packages.
Depending on the format of the source package, it will consist of one or more files in addition to the mandatory

.dsc file:

• with format “1.0”, it has either a .tar.gz file or both an .orig.tar.gz and a .diff.gz file;

• with format “3.0 (quilt)”, it has a mandatory .orig.tar.{gz,bz2,xz} upstream tarball, multiple op-
tional .orig-component.tar.{gz,bz2,xz} additional upstream tarballs and a mandatory debian.
tar.{gz,bz2,xz} debian tarball;

• with format “3.0 (native)”, it has only a single .tar.{gz,bz2,xz} tarball.

If a package is developed specially for Debian and is not distributed outside of Debian, there is just one .tar.
{gz,bz2,xz} file which contains the sources of the program, it's called a “native” source package. If a package
is distributed elsewhere too, the .orig.tar.{gz,bz2,xz} file stores the so-called upstream source
code, that is the source code that's distributed by the upstream maintainer (often the author of the software).
In this case, the .diff.gz or the debian.tar.{gz,bz2,xz} contains the changes made by the Debian
maintainer.

The .dsc file lists all the files in the source package together with checksums (md5sums) and some additional
info about the package (maintainer, version, etc.).

4.6.4 Distributions

The directory system described in the previous chapter is itself contained within distribution director
ies. Each distribution is actually contained in the pool directory in the top-level of the Debian archive itself.

To summarize, the Debian archive has a root directory within an FTP server. For instance, at the mirror site,
ftp.us.debian.org, the Debian archive itself is contained in /debian, which is a common location (another
is /pub/debian).

A distribution comprises Debian source and binary packages, and the respective Sources and Packages
index files, containing the header information from all those packages. The former are kept in the pool/ directory,
while the latter are kept in the dists/ directory of the archive (for backwards compatibility).

16

http://www.debian.org/doc/debian-policy/
http://www.debian.org/ports/
ftp://ftp.us.debian.org/debian

CHAPTER 4. RESOURCES FOR DEBIAN… 4.6. THE DEBIAN ARCHIVE

4.6.4.1 Stable, testing, and unstable

There are always distributions called stable (residing in dists/stable), testing (residing in dists/
testing), and unstable (residing in dists/unstable). This reflects the development process of the De-
bian project.

Active development is done in the unstable distribution (that's why this distribution is sometimes called the
development distribution). Every Debian developer can update his or her packages in this distribution
at any time. Thus, the contents of this distribution change from day to day. Since no special effort is made to make
sure everything in this distribution is working properly, it is sometimes literally unstable.

The testing distribution is generated automatically by taking packages from unstable if they satisfy certain
criteria. Those criteria should ensure a good quality for packages within testing. The update to testing is
launched twice each day, right after the new packages have been installed. See Section 5.13.

After a period of development, once the release manager deems fit, thetesting distribution is frozen, meaning
that the policies which control how packages move from unstable to testing are tightened. Packages which
are too buggy are removed. No changes are allowed into testing except for bug fixes. After some time has
elapsed, depending on progress, the testing distribution is frozen even further. Details of the handling of the
testing distribution are published by the Release Team on debian-devel-announce. After the open issues are solved
to the satisfaction of the Release Team, the distribution is released. Releasing means that testing is renamed to
stable, and a new copy is created for the new testing, and the previous stable is renamed to oldstable
and stays there until it is finally archived. On archiving, the contents are moved to archive.debian.org.

This development cycle is based on the assumption that the unstable distribution becomes stable after
passing a period of being in testing. Even once a distribution is considered stable, a few bugs inevitably remain
— that's why the stable distribution is updated every now and then. However, these updates are tested very carefully
and have to be introduced into the archive individually to reduce the risk of introducing new bugs. You can find pro-
posed additions to stable in the proposed-updates directory. Those packages in proposed-updates
that pass muster are periodically moved as a batch into the stable distribution and the revision level of the stable dis-
tribution is incremented (e.g., ‘6.0’ becomes ‘6.0.1’, ‘5.0.7’ becomes ‘5.0.8’, and so forth). Please refer to uploads
to the stable distribution for details.

Note that development under unstable continues during the freeze period, since the unstable distribution
remains in place in parallel with testing.

4.6.4.2 More information about the testing distribution

Packages are usually installed into the testing distribution after they have undergone some degree of testing in
unstable.

For more details, please see the information about the testing distribution.

4.6.4.3 Experimental

The experimental distribution is a special distribution. It is not a full distribution in the same sense as stable,
testing and unstable are. Instead, it is meant to be a temporary staging area for highly experimental software
where there's a good chance that the software could break your system, or software that's just too unstable even for the
unstable distribution (but there is a reason to package it nevertheless). Users who download and install packages
from experimental are expected to have been duly warned. In short, all bets are off for the experimental
distribution.

These are the sources.list(5) lines for experimental:

deb http://ftp.xy.debian.org/debian/ experimental main
deb-src http://ftp.xy.debian.org/debian/ experimental main

If there is a chance that the software could do grave damage to a system, it is likely to be better to put it into exp
erimental. For instance, an experimental compressed file system should probably go into experimental.

Whenever there is a new upstream version of a package that introduces new features but breaks a lot of old ones,
it should either not be uploaded, or be uploaded to experimental. A new, beta, version of some software which
uses a completely different configuration can go into experimental, at the maintainer's discretion. If you are
working on an incompatible or complex upgrade situation, you can also use experimental as a staging area, so
that testers can get early access.

Some experimental software can still go into unstable, with a few warnings in the description, but that isn't
recommended because packages from unstable are expected to propagate to testing and thus to stable.
You should not be afraid to use experimental since it does not cause any pain to the ftpmasters, the experimental
packages are periodically removed once you upload the package in unstable with a higher version number.

17

CHAPTER 4. RESOURCES FOR DEBIAN… 4.7. DEBIAN MIRRORS

New software which isn't likely to damage your system can go directly into unstable.
An alternative to experimental is to use your personal web space on people.debian.org.

4.6.5 Release code names
Every released Debian distribution has a code name: Debian 1.1 is called buzz; Debian 1.2, rex; Debian 1.3,
bo; Debian 2.0, hamm; Debian 2.1, slink; Debian 2.2, potato; Debian 3.0, woody; Debian 3.1, sarge; Debian
4.0, etch; Debian 5.0, lenny; Debian 6.0, squeeze and the next release will be called wheezy. There is also a
��pseudo-distribution'', called sid, which is the current unstable distribution; since packages are moved from
unstable to testing as they approach stability, sid itself is never released. As well as the usual contents of a
Debian distribution, sid contains packages for architectures which are not yet officially supported or released by
Debian. These architectures are planned to be integrated into the mainstream distribution at some future date.

Since Debian has an open development model (i.e., everyone can participate and follow the development) even
the unstable and testing distributions are distributed to the Internet through the Debian FTP and HTTP
server network. Thus, if we had called the directory which contains the release candidate versiontesting, then we
would have to rename it to stable when the version is released, which would cause all FTP mirrors to re-retrieve
the whole distribution (which is quite large).

On the other hand, if we called the distribution directories Debian-x.y from the beginning, people would
think that Debian release x.y is available. (This happened in the past, where a CD-ROM vendor built a Debian
1.0 CD-ROM based on a pre-1.0 development version. That's the reason why the first official Debian release was
1.1, and not 1.0.)

Thus, the names of the distribution directories in the archive are determined by their code names and not their
release status (e.g., �squeeze'). These names stay the same during the development period and after the release;
symbolic links, which can be changed easily, indicate the currently released stable distribution. That's why the
real distribution directories use the code names, while symbolic links for stable, testing, and unstable
point to the appropriate release directories.

4.7 Debian mirrors
The various download archives and the web site have several mirrors available in order to relieve our canonical
servers from heavy load. In fact, some of the canonical servers aren't public — a first tier of mirrors balances the
load instead. That way, users always access the mirrors and get used to using them, which allows Debian to better
spread its bandwidth requirements over several servers and networks, and basically makes users avoid hammering
on one primary location. Note that the first tier of mirrors is as up-to-date as it can be since they update when
triggered from the internal sites (we call this push mirroring).

All the information on Debian mirrors, including a list of the available public FTP/HTTP servers, can be found
at http://www.debian.org/mirror/. This useful page also includes information and tools which can be
helpful if you are interested in setting up your own mirror, either for internal or public access.

Note that mirrors are generally run by third-parties who are interested in helping Debian. As such, developers
generally do not have accounts on these machines.

4.8 The Incoming system
The Incoming system is responsible for collecting updated packages and installing them in the Debian archive. It
consists of a set of directories and scripts that are installed on ftp-master.debian.org.

Packages are uploaded by all the maintainers into a directory called UploadQueue. This directory is scanned
every few minutes by a daemon called queued, *.command-files are executed, and remaining and correctly signed
*.changes-files are moved together with their corresponding files to theunchecked directory. This directory is
not visible for most Developers, as ftp-master is restricted; it is scanned every 15 minutes by the dak process-upload
script, which verifies the integrity of the uploaded packages and their cryptographic signatures. If the package is
considered ready to be installed, it is moved into the done directory. If this is the first upload of the package (or
it has new binary packages), it is moved to the new directory, where it waits for approval by the ftpmasters. If
the package contains files to be installed by hand it is moved to the byhand directory, where it waits for manual
installation by the ftpmasters. Otherwise, if any error has been detected, the package is refused and is moved to the
reject directory.

Once the package is accepted, the system sends a confirmation mail to the maintainer and closes all the bugs
marked as fixed by the upload, and the auto-builders may start recompiling it. The package is now publicly acces-
sible at http://incoming.debian.org/ until it is really installed in the Debian archive. This happens four

18

http://www.debian.org/mirror/
http://incoming.debian.org/

CHAPTER 4. RESOURCES FOR DEBIAN… 4.9. PACKAGE INFORMATION

times a day (and is also called the �dinstall run' for historical reasons); the package is then removed from incoming
and installed in the pool along with all the other packages. Once all the other updates (generating new Packages
and Sources index files for example) have been made, a special script is called to ask all the primary mirrors to
update themselves.

The archive maintenance software will also send the OpenPGP/GnuPG signed .changes file that you up-
loaded to the appropriate mailing lists. If a package is released with the Distribution set to stable, the
announcement is sent to debian-changes@lists.debian.org. If a package is released with Distribution set to
unstable or experimental, the announcement will be posted to debian-devel-changes@lists.debian.org in-
stead.

Though ftp-master is restricted, a copy of the installation is available to all developers on ries.debian.
org.

4.9 Package information

4.9.1 On the web
Each package has several dedicated web pages. http://packages.debian.org/package-name displays
each version of the package available in the various distributions. Each version links to a page which provides
information, including the package description, the dependencies, and package download links.

The bug tracking system tracks bugs for each package. You can view the bugs of a given package at the URL
http://bugs.debian.org/package-name.

4.9.2 The dak ls utility
dak ls is part of the dak suite of tools, listing available package versions for all known distributions and architectures.
The dak tool is available on ftp-master.debian.org, and on the mirror on ries.debian.org. It uses a
single argument corresponding to a package name. An example will explain it better:

$ dak ls evince
evince | 0.1.5-2sarge1 | oldstable | source, alpha, arm, hppa, i386, ia64, ←↩

m68k, mips, mipsel, powerpc, s390, sparc
evince | 0.4.0-5 | etch-m68k | source, m68k
evince | 0.4.0-5 | stable | source, alpha, amd64, arm, hppa, i386, ia64 ←↩

, mips, mipsel, powerpc, s390, sparc
evince | 2.20.2-1 | testing | source
evince | 2.20.2-1+b1 | testing | alpha, amd64, arm, armel, hppa, i386, ia64 ←↩

, mips, mipsel, powerpc, s390, sparc
evince | 2.22.2-1 | unstable | source, alpha, amd64, arm, armel, hppa, ←↩

i386, ia64, m68k, mips, mipsel, powerpc, s390, sparc

In this example, you can see that the version in unstable differs from the version in testing and that there
has been a binary-only NMU of the package for all architectures. Each version of the package has been recompiled
on all architectures.

4.10 The Package Tracking System
The Package Tracking System (PTS) is an email-based tool to track the activity of a source package. This really
means that you can get the same emails that the package maintainer gets, simply by subscribing to the package in
the PTS.

Each email sent through the PTS is classified under one of the keywords listed below. This will let you select
the mails that you want to receive.

By default you will get:

bts All the bug reports and following discussions.

bts-control The email notifications from control@bugs.debian.org about bug report status changes.

upload-source The email notification from dak when an uploaded source package is accepted.

katie-other Other warning and error emails from dak (such as an override disparity for the section and/or the
priority field).

19

mailto:debian-changes@lists.debian.org
mailto:debian-devel-changes@lists.debian.org
mailto:control@bugs.debian.org

CHAPTER 4. RESOURCES FOR DEBIAN… 4.10. THE PACKAGE TRACKING SYSTEM

buildd Build failures notifications sent by the network of build daemons, they contain a pointer to the build logs
for analysis.

default Any non-automatic email sent to the PTS by people who wanted to contact the subscribers of the pack-
age. This can be done by sending mail to sourcepackage@packages.qa.debian.org. In order to
prevent spam, all messages sent to these addresses must contain the X-PTS-Approved header with a non-
empty value.

contact Mails sent to the maintainer through the *@packages.debian.org email aliases.

summary Regular summary emails about the package's status, including progression into testing, DEHS no-
tifications of new upstream versions, and a notification if the package is removed or orphaned.

You can also decide to receive additional information:

upload-binary The email notification from katie when an uploaded binary package is accepted. In other
words, whenever a build daemon or a porter uploads your package for another architecture, you can get an
email to track how your package gets recompiled for all architectures.

cvs VCS commit notifications, if the package has a VCS repository and the maintainer has set up forwarding of
commit notifications to the PTS. The "cvs" name is historic, in most cases commit notifications will come
from some other VCS like subversion or git.

ddtp Translations of descriptions or debconf templates submitted to the Debian Description Translation Project.

derivatives Information about changes made to the package in derivative distributions (for example Ubuntu).

derivatives-bugs Bugs reports and comments from derivative distributions (for example Ubuntu).

4.10.1 The PTS email interface
You can control your subscription(s) to the PTS by sending various commands to pts@qa.debian.org.

subscribe <sourcepackage> [<email>] Subscribes email to communications related to the source
package sourcepackage. Sender address is used if the second argument is not present. If sourcepackage
is not a valid source package, you'll get a warning. However if it's a valid binary package, the PTS will
subscribe you to the corresponding source package.

unsubscribe <sourcepackage> [<email>] Removes a previous subscription to the source package
sourcepackage using the specified email address or the sender address if the second argument is left out.

unsubscribeall [<email>] Removes all subscriptions of the specified email address or the sender address
if the second argument is left out.

which [<email>] Lists all subscriptions for the sender or the email address optionally specified.

keyword [<email>] Tells you the keywords that you are accepting. For an explanation of keywords, see
above. Here's a quick summary:

• bts: mails coming from the Debian Bug Tracking System

• bts-control: reply to mails sent to control@bugs.debian.org

• summary: automatic summary mails about the state of a package

• contact: mails sent to the maintainer through the *@packages.debian.org aliases

• cvs: notification of VCS commits

• ddtp: translations of descriptions and debconf templates

• derivatives: changes made on the package by derivative distributions

• derivatives-bugs: bugs reports and comments from derivative distributions

• upload-source: announce of a new source upload that has been accepted

• upload-binary: announce of a new binary-only upload (porting)

• katie-other: other mails from ftpmasters (override disparity, etc.)

• buildd: build failures notifications from build daemons

20

http://dehs.alioth.debian.org/
mailto:pts@qa.debian.org
mailto:control@bugs.debian.org

CHAPTER 4. RESOURCES FOR DEBIAN… 4.10. THE PACKAGE TRACKING SYSTEM

• default: all the other mails (those which aren't automatic)

keyword <sourcepackage> [<email>] Same as the previous item but for the given source package,
since you may select a different set of keywords for each source package.

keyword [<email>] {+|-|=} <list of keywords> Accept (+) or refuse (-) mails classified under
the given keyword(s). Define the list (=) of accepted keywords. This changes the default set of keywords
accepted by a user.

keywordall [<email>] {+|-|=} <list of keywords> Accept (+) or refuse (-) mails classified un-
der the given keyword(s). Define the list (=) of accepted keywords. This changes the set of accepted keywords
of all the currently active subscriptions of a user.

keyword <sourcepackage> [<email>] {+|-|=} <list of keywords> Same as previous item
but overrides the keywords list for the indicated source package.

quit | thanks | -- Stops processing commands. All following lines are ignored by the bot.

The pts-subscribe command-line utility (from the devscripts package) can be handy to temporarily sub-
scribe to some packages, for example after having made an non-maintainer upload.

4.10.2 Filtering PTS mails
Once you are subscribed to a package, you will get the mails sent to sourcepackage@packages.qa.debian.
org. Those mails have special headers appended to let you filter them in a special mailbox (e.g. with procmail).
The added headers are X-Loop, X-PTS-Package, X-PTS-Keyword and X-Unsubscribe.

Here is an example of added headers for a source upload notification on the dpkg package:

X-Loop: dpkg@packages.qa.debian.org
X-PTS-Package: dpkg
X-PTS-Keyword: upload-source
List-Unsubscribe: <mailto:pts@qa.debian.org?body=unsubscribe+dpkg>

4.10.3 Forwarding VCS commits in the PTS
If you use a publicly accessible VCS repository for maintaining your Debian package, you may want to forward
the commit notification to the PTS so that the subscribers (and possible co-maintainers) can closely follow the
package's evolution.

Once you set up the VCS repository to generate commit notifications, you just have to make sure it sends a
copy of those mails to sourcepackage_cvs@packages.qa.debian.org. Only the people who accept the
cvs keyword will receive these notifications. Note that the mail needs to be sent from a debian.org machine,
otherwise you'll have to add the X-PTS-Approved:1 header.

For Subversion repositories, the usage of svnmailer is recommended. See http://wiki.debian.org/
Alioth/PackagingProject for an example on how to do it.

4.10.4 The PTS web interface
The PTS has a web interface at http://packages.qa.debian.org/ that puts together a lot of information
about each source package. It features many useful links (BTS, QA stats, contact information, DDTP translation
status, buildd logs) and gathers much more information from various places (30 latest changelog entries, testing
status, etc.). It's a very useful tool if you want to know what's going on with a specific source package. Furthermore
there's a form that allows easy subscription to the PTS via email.

You can jump directly to the web page concerning a specific source package with a URL like http://pack
ages.qa.debian.org/sourcepackage.

This web interface has been designed like a portal for the development of packages: you can add custom content
on your packages' pages. You can add static information (news items that are meant to stay available indefinitely)
and news items in the latest news section.

Static news items can be used to indicate:

• the availability of a project hosted on Alioth for co-maintaining the package

• a link to the upstream web site

21

http://wiki.debian.org/Alioth/PackagingProject
http://wiki.debian.org/Alioth/PackagingProject
http://packages.qa.debian.org/

CHAPTER 4. RESOURCES FOR DEBIAN… 4.11. DEVELOPER'S PACKAGES OVERVIEW

• a link to the upstream bug tracker

• the existence of an IRC channel dedicated to the software

• any other available resource that could be useful in the maintenance of the package

Usual news items may be used to announce that:

• beta packages are available for testing

• final packages are expected for next week

• the packaging is about to be redone from scratch

• backports are available

• the maintainer is on vacation (if they wish to publish this information)

• a NMU is being worked on

• something important will affect the package

Both kinds of news are generated in a similar manner: you just have to send an email either to pts-static-news@
qa.debian.org or to pts-news@qa.debian.org. The mail should indicate which package is concerned by having the
name of the source package in a X-PTS-Package mail header or in a Package pseudo-header (like the BTS
reports). If a URL is available in the X-PTS-Url mail header or in the Url pseudo-header, then the result is a link
to that URL instead of a complete news item.

Here are a few examples of valid mails used to generate news items in the PTS. The first one adds a link to the
viewsvn interface of debian-cd in the Static information section:

From: Raphael Hertzog <hertzog@debian.org>
To: pts-static-news@qa.debian.org
Subject: Browse debian-cd SVN repository

Package: debian-cd
Url: http://svn.debian.org/viewsvn/debian-cd/trunk/

The second one is an announcement sent to a mailing list which is also sent to the PTS so that it is published
on the PTS web page of the package. Note the use of the BCC field to avoid answers sent to the PTS by mistake.

From: Raphael Hertzog <hertzog@debian.org>
To: debian-gtk-gnome@lists.debian.org
Bcc: pts-news@qa.debian.org
Subject: Galeon 2.0 backported for woody
X-PTS-Package: galeon

Hello gnomers!

I'm glad to announce that galeon has been backported for woody. You'll find
everything here:
...

Think twice before adding a news item to the PTS because you won't be able to remove it later and you won't be
able to edit it either. The only thing that you can do is send a second news item that will deprecate the information
contained in the previous one.

4.11 Developer's packages overview
A QA (quality assurance) web portal is available at http://qa.debian.org/developer.php which dis-
plays a table listing all the packages of a single developer (including those where the party is listed as a co-
maintainer). The table gives a good summary about the developer's packages: number of bugs by severity, list
of available versions in each distribution, testing status and much more including links to any other useful informa-
tion.

It is a good idea to look up your own data regularly so that you don't forget any open bugs, and so that you don't
forget which packages are your responsibility.

22

mailto:pts-static-news@qa.debian.org
mailto:pts-static-news@qa.debian.org
mailto:pts-news@qa.debian.org
http://qa.debian.org/developer.php

CHAPTER 4. RESOURCES FOR DEBIAN… 4.12. DEBIAN'S FUSIONFORGE INSTALLATION:…

4.12 Debian's FusionForge installation: Alioth
Alioth is a Debian service based on a slightly modified version of the FusionForge software (which evolved from
SourceForge and GForge). This software offers developers access to easy-to-use tools such as bug trackers, patch
manager, project/task managers, file hosting services, mailing lists, VCS repositories etc. All these tools are man-
aged via a web interface.

It is intended to provide facilities to free software projects backed or led by Debian, facilitate contributions from
external developers to projects started by Debian, and help projects whose goals are the promotion of Debian or its
derivatives. It's heavily used by many Debian teams and provides hosting for all sorts of VCS repositories.

All Debian developers automatically have an account on Alioth. They can activate it by using the recover
password facility. External developers can request guest accounts on Alioth.

For more information please visit the following links:

• http://wiki.debian.org/Alioth

• http://wiki.debian.org/Alioth/FAQ

• http://wiki.debian.org/Alioth/PackagingProject

• http://alioth.debian.org/

4.13 Goodies for Developers

4.13.1 LWN Subscriptions
Since October of 2002, HP has sponsored a subscription to LWN for all interested Debian developers. Details on
how to get access to this benefit are inhttp://lists.debian.org/debian-devel-announce/2002/
10/msg00018.html.

4.13.2 Gandi.net Hosting Discount
As of November 2008, Gandi.net offers a discount rate on their VPS hosting for Debian Developers. See http:
//lists.debian.org/debian-devel-announce/2008/11/msg00004.html.

23

http://wiki.debian.org/Alioth
http://wiki.debian.org/Alioth/FAQ
http://wiki.debian.org/Alioth/PackagingProject
http://alioth.debian.org/
http://lists.debian.org/debian-devel-announce/2002/10/msg00018.html
http://lists.debian.org/debian-devel-announce/2002/10/msg00018.html
http://lists.debian.org/debian-devel-announce/2008/11/msg00004.html
http://lists.debian.org/debian-devel-announce/2008/11/msg00004.html

Chapter 5

Managing Packages

This chapter contains information related to creating, uploading, maintaining, and porting packages.

5.1 New packages
If you want to create a new package for the Debian distribution, you should first check the Work-Needing and
Prospective Packages (WNPP) list. Checking the WNPP list ensures that no one is already working on packaging
that software, and that effort is not duplicated. Read the WNPP web pages for more information.

Assuming no one else is already working on your prospective package, you must then submit a bug report
(Section 7.1) against the pseudo-package wnpp describing your plan to create a new package, including, but not
limiting yourself to, a description of the package, the license of the prospective package, and the current URL where
it can be downloaded from.

You should set the subject of the bug to ITP:foo --short description, substituting the name of the
new package for foo. The severity of the bug report must be set to wishlist. Please send a copy to debian-
devel@lists.debian.org by using the X-Debbugs-CC header (don't use CC:, because that way the message's subject
won't indicate the bug number). If you are packaging so many new packages (>10) that notifying the mailing list
in separate messages is too disruptive, send a summary after filing the bugs to the debian-devel list instead. This
will inform the other developers about upcoming packages and will allow a review of your description and package
name.

Please include a Closes:#nnnnn entry in the changelog of the new package in order for the bug report to be
automatically closed once the new package is installed in the archive (see Section 5.8.4).

If you think your package needs some explanations for the administrators of the NEW package queue, include
them in your changelog, send to ftpmaster@debian.org a reply to the email you receive as a maintainer after your
upload, or reply to the rejection email in case you are already re-uploading.

When closing security bugs include CVE numbers as well as the Closes:#nnnnn. This is useful for the
security team to track vulnerabilities. If an upload is made to fix the bug before the advisory ID is known, it is
encouraged to modify the historical changelog entry with the next upload. Even in this case, please include all
available pointers to background information in the original changelog entry.

There are a number of reasons why we ask maintainers to announce their intentions:

• It helps the (potentially new) maintainer to tap into the experience of people on the list, and lets them know
if anyone else is working on it already.

• It lets other people thinking about working on the package know that there already is a volunteer, so efforts
may be shared.

• It lets the rest of the maintainers know more about the package than the one line description and the usual
changelog entry ��Initial release'' that gets posted to debian-devel-changes@lists.debian.org.

• It is helpful to the people who live off unstable (and form our first line of testers). We should encourage
these people.

• The announcements give maintainers and other interested parties a better feel of what is going on, and what
is new, in the project.

Please see http://ftp-master.debian.org/REJECT-FAQ.html for common rejection reasons for
a new package.

25

http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
mailto:debian-devel@lists.debian.org
mailto:debian-devel@lists.debian.org
mailto:ftpmaster@debian.org
mailto:debian-devel-changes@lists.debian.org
http://ftp-master.debian.org/REJECT-FAQ.html

CHAPTER 5. MANAGING PACKAGES 5.2. RECORDING CHANGES IN THE PACKAGE

5.2 Recording changes in the package
Changes that you make to the package need to be recorded in the debian/changelog. These changes should
provide a concise description of what was changed, why (if it's in doubt), and note if any bugs were closed. They also
record when the package was completed. This file will be installed in/usr/share/doc/package/changelog.
Debian.gz, or /usr/share/doc/package/changelog.gz for native packages.

The debian/changelog file conforms to a certain structure, with a number of different fields. One field
of note, the distribution, is described in Section 5.5. More information about the structure of this file can be
found in the Debian Policy section titled debian/changelog.

Changelog entries can be used to automatically close Debian bugs when the package is installed into the archive.
See Section 5.8.4.

It is conventional that the changelog entry of a package that contains a new upstream version of the software
looks like this:

* New upstream release.

There are tools to help you create entries and finalize the changelog for release — see Section A.6.1 and
Section A.6.6.

See also Section 6.3.

5.3 Testing the package
Before you upload your package, you should do basic testing on it. At a minimum, you should try the following
activities (you'll need to have an older version of the same Debian package around):

• Install the package and make sure the software works, or upgrade the package from an older version to your
new version if a Debian package for it already exists.

• Run lintian over the package. You can run lintian as follows: lintian -v package-version.chan
ges. This will check the source package as well as the binary package. If you don't understand the output
that lintian generates, try adding the -i switch, which will cause lintian to output a very verbose description
of the problem.

Normally, a package should not be uploaded if it causes lintian to emit errors (they will start with E).

For more information on lintian, see Section A.2.1.

• Optionally run debdiff (see Section A.2.2) to analyze changes from an older version, if one exists.

• Downgrade the package to the previous version (if one exists) — this tests the postrm and prerm scripts.

• Remove the package, then reinstall it.

• Copy the source package in a different directory and try unpacking it and rebuilding it. This tests if the
package relies on existing files outside of it, or if it relies on permissions being preserved on the files shipped
inside the .diff.gz file.

5.4 Layout of the source package
There are two types of Debian source packages:

• the so-called native packages, where there is no distinction between the original sources and the patches
applied for Debian

• the (more common) packages where there's an original source tarball file accompanied by another file that
contains the changes made by Debian

For the native packages, the source package includes a Debian source control file (.dsc) and the source tarball
(.tar.{gz,bz2,xz}). A source package of a non-native package includes a Debian source control file, the
original source tarball (.orig.tar.{gz,bz2,xz}) and the Debian changes (.diff.gz for the source format
“1.0” or .debian.tar.{gz,bz2,xz} for the source format “3.0 (quilt)”).

26

CHAPTER 5. MANAGING PACKAGES 5.5. PICKING A DISTRIBUTION

With source format “1.0”, whether a package is native or not was determined by dpkg-source at build time.
Nowadays it is recommended to be explicit about the desired source format by putting either “3.0 (quilt)” or “3.0
(native)” in debian/source/format. The rest of this section relates only to non-native packages.

The first time a version is uploaded which corresponds to a particular upstream version, the original source tar
file should be uploaded and included in the .changes file. Subsequently, this very same tar file should be used
to build the new diffs and .dsc files, and will not need to be re-uploaded.

By default, dpkg-genchanges and dpkg-buildpackage will include the original source tar file if and only if the
current changelog entry has a different upstream version from the preceding entry. This behavior may be modified
by using -sa to always include it or -sd to always leave it out.

If no original source is included in the upload, the original source tar-file used by dpkg-source when construct-
ing the .dsc file and diff to be uploaded must be byte-for-byte identical with the one already in the archive.

Please notice that, in non-native packages, permissions on files that are not present in the *.orig.tar.{gz,
bz2,xz} will not be preserved, as diff does not store file permissions in the patch. However when using source
format “3.0 (quilt)”, permissions of files inside the debian directory are preserved since they are stored in a tar
archive.

5.5 Picking a distribution
Each upload needs to specify which distribution the package is intended for. The package build process extracts
this information from the first line of the debian/changelog file and places it in the Distribution field
of the .changes file.

There are several possible values for this field: stable, unstable, testing-proposed-updates and
experimental. Normally, packages are uploaded into unstable.

Actually, there are two other possible distributions: stable-security and testing-security, but
read Section 5.8.5 for more information on those.

It is not possible to upload a package into several distributions at the same time.

5.5.1 Special case: uploads to the stable and oldstable distributions
Uploading tostablemeans that the package will transferred to theproposed-updates-new queue for review
by the stable release managers, and if approved will be installed in stable-proposed-updates directory of
the Debian archive. From there, it will be included in stable with the next point release.

To ensure that your upload will be accepted, you should discuss the changes with the stable release team before
you upload. For that, file a bug against the release.debian.org pseudo-package using reportbug, including
the patch you want to apply to the package version currently in stable. Always be verbose and detailed in your
changelog entries for uploads to the stable distribution.

Extra care should be taken when uploading to stable. Basically, a package should only be uploaded to
stable if one of the following happens:

• a truly critical functionality problem

• the package becomes uninstallable

• a released architecture lacks the package

In the past, uploads to stablewere used to address security problems as well. However, this practice is depre-
cated, as uploads used for Debian security advisories are automatically copied to the appropriateproposed-updates
archive when the advisory is released. See Section 5.8.5 for detailed information on handling security problems. If
the security teams deems the problem to be too benign to be fixed through a DSA, the stable release managers are
usually willing to include your fix nonetheless in a regular upload to stable.

Changing anything else in the package that isn't important is discouraged, because even trivial fixes can cause
bugs later on.

Packages uploaded to stable need to be compiled on systems running stable, so that their dependencies are
limited to the libraries (and other packages) available in stable; for example, a package uploaded to stable that
depends on a library package that only exists in unstable will be rejected. Making changes to dependencies of
other packages (by messing withProvides orshlibs files), possibly making those other packages uninstallable,
is strongly discouraged.

Uploads to the oldstable distributions are possible as long as it hasn't been archived. The same rules as for
stable apply.

27

CHAPTER 5. MANAGING PACKAGES 5.6. UPLOADING A PACKAGE

5.5.2 Special case: uploads to testing/testing-proposed-updates

Please see the information in the testing section for details.

5.6 Uploading a package

5.6.1 Uploading to ftp-master

To upload a package, you should upload the files (including the signed changes and dsc-file) with anonymous
ftp to ftp.upload.debian.org in the directory /pub/UploadQueue/. To get the files processed there, they
need to be signed with a key in the Debian Developers keyring or the Debian Maintainers keyring (see http:
//wiki.debian.org/DebianMaintainer).

Please note that you should transfer the changes file last. Otherwise, your upload may be rejected because the
archive maintenance software will parse the changes file and see that not all files have been uploaded.

You may also find the Debian packages dupload or dput useful when uploading packages.These handy programs
help automate the process of uploading packages into Debian.

For removing packages, please see ftp://ftp.upload.debian.org/pub/UploadQueue/README
and the Debian package dcut.

5.6.2 Delayed uploads

It is sometimes useful to upload a package immediately, but to want this package to arrive in the archive only a few
days later. For example, when preparing a Non-Maintainer Upload, you might want to give the maintainer a few
days to react.

An upload to the delayed directory keeps the package in the deferred uploads queue. When the specified waiting
time is over, the package is moved into the regular incoming directory for processing. This is done through automatic
uploading to ftp.upload.debian.org in upload-directory DELAYED/X-day (X between 0 and 15). 0-day
is uploaded multiple times per day to ftp.upload.debian.org.

With dput, you can use the --delayed DELAY parameter to put the package into one of the queues.

5.6.3 Security uploads

Do NOT upload a package to the security upload queue (oldstable-security, stable-security, etc.)
without prior authorization from the security team. If the package does not exactly meet the team's requirements,
it will cause many problems and delays in dealing with the unwanted upload. For details, please see Section 5.8.5.

5.6.4 Other upload queues

There is an alternative upload queue in Europe atftp://ftp.eu.upload.debian.org/pub/UploadQueue/.
It operates in the same way as ftp.upload.debian.org, but should be faster for European developers.

Packages can also be uploaded via ssh to ssh.upload.debian.org; files should be put /srv/upload.
debian.org/UploadQueue. This queue does not support delayed uploads.

5.6.5 Notification that a new package has been installed

The Debian archive maintainers are responsible for handling package uploads. For the most part, uploads are
automatically handled on a daily basis by the archive maintenance tools, dak process-upload. Specifically, updates
to existing packages to the unstable distribution are handled automatically. In other cases, notably new packages,
placing the uploaded package into the distribution is handled manually. When uploads are handled manually, the
change to the archive may take some time to occur. Please be patient.

In any case, you will receive an email notification indicating that the package has been added to the archive,
which also indicates which bugs will be closed by the upload. Please examine this notification carefully, checking
if any bugs you meant to close didn't get triggered.

The installation notification also includes information on what section the package was inserted into. If there
is a disparity, you will receive a separate email notifying you of that. Read on below.

Note that if you upload via queues, the queue daemon software will also send you a notification by email.

28

ftp://ftp.upload.debian.org/pub/UploadQueue/
http://wiki.debian.org/DebianMaintainer
http://wiki.debian.org/DebianMaintainer
ftp://ftp.upload.debian.org/pub/UploadQueue/README
http://ftp-master.debian.org/deferred.html
ftp://ftp.eu.upload.debian.org/pub/UploadQueue/

CHAPTER 5. MANAGING PACKAGES 5.7. SPECIFYING THE PACKAGE SECTION,…

5.7 Specifying the package section, subsection and priority
The debian/control file's Section and Priority fields do not actually specify where the file will be
placed in the archive, nor its priority. In order to retain the overall integrity of the archive, it is the archive maintainers
who have control over these fields. The values in the debian/control file are actually just hints.

The archive maintainers keep track of the canonical sections and priorities for packages in the override
file. If there is a disparity between the override file and the package's fields as indicated in debian/
control, then you will receive an email noting the divergence when the package is installed into the archive. You
can either correct your debian/control file for your next upload, or else you may wish to make a change in
the override file.

To alter the actual section that a package is put in, you need to first make sure that the debian/control file
in your package is accurate. Next, submit a bug against ftp.debian.org requesting that the section or priority
for your package be changed from the old section or priority to the new one. Use a Subject like override:PAC
KAGE1:section/priority, [...], PACKAGEX:section/priority, and include the justification
for the change in the body of the bug report.

For more information about override files, see dpkg-scanpackages(1) and http://www.debian.
org/Bugs/Developer#maintincorrect.

Note that the Section field describes both the section as well as the subsection, which are described in
Section 4.6.1. If the section is main, it should be omitted. The list of allowable subsections can be found in http:
//www.debian.org/doc/debian-policy/ch-archive.html#s-subsections.

5.8 Handling bugs
Every developer has to be able to work with the Debian bug tracking system. This includes knowing how to file
bug reports properly (see Section 7.1), how to update them and reorder them, and how to process and close them.

The bug tracking system's features are described in the BTS documentation for developers. This includes closing
bugs, sending followup messages, assigning severities and tags, marking bugs as forwarded, and other issues.

Operations such as reassigning bugs to other packages, merging separate bug reports about the same issue, or
reopening bugs when they are prematurely closed, are handled using the so-called control mail server. All of the
commands available on this server are described in the BTS control server documentation.

5.8.1 Monitoring bugs
If you want to be a good maintainer, you should periodically check the Debian bug tracking system (BTS) for your
packages. The BTS contains all the open bugs against your packages. You can check them by browsing this page:
http://bugs.debian.org/yourlogin@debian.org.

Maintainers interact with the BTS via email addresses at bugs.debian.org. Documentation on available
commands can be found at http://www.debian.org/Bugs/, or, if you have installed the doc-debian
package, you can look at the local files /usr/share/doc/debian/bug-*.

Some find it useful to get periodic reports on open bugs. You can add a cron job such as the following if you
want to get a weekly email outlining all the open bugs against your packages:

ask for weekly reports of bugs in my packages
0 17 * * fri echo "index maint address" | mail request@bugs.debian.org

Replace address with your official Debian maintainer address.

5.8.2 Responding to bugs
When responding to bugs, make sure that any discussion you have about bugs is sent both to the original submitter
of the bug, and to the bug itself (e.g., 123@bugs.debian.org). If you're writing a new mail and you don't remember
the submitter email address, you can use the 123-submitter@bugs.debian.org email to contact the submitter and to
record your mail within the bug log (that means you don't need to send a copy of the mail to 123@bugs.debian.
org).

If you get a bug which mentions FTBFS, this means Fails to build from source. Porters frequently use this
acronym.

Once you've dealt with a bug report (e.g. fixed it), mark it as done (close it) by sending an explanation message
to 123-done@bugs.debian.org. If you're fixing a bug by changing and uploading the package, you can automate
bug closing as described in Section 5.8.4.

29

http://www.debian.org/Bugs/Developer#maintincorrect
http://www.debian.org/Bugs/Developer#maintincorrect
http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/Developer
http://www.debian.org/Bugs/server-control
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/
mailto:123@bugs.debian.org
mailto:123-submitter@bugs.debian.org
mailto:123@bugs.debian.org
mailto:123@bugs.debian.org
mailto:123-done@bugs.debian.org

CHAPTER 5. MANAGING PACKAGES 5.8. HANDLING BUGS

You should never close bugs via the bug server close command sent to control@bugs.debian.org. If you do
so, the original submitter will not receive any information about why the bug was closed.

5.8.3 Bug housekeeping
As a package maintainer, you will often find bugs in other packages or have bugs reported against your packages
which are actually bugs in other packages. The bug tracking system's features are described in the BTS documen-
tation for Debian developers. Operations such as reassigning, merging, and tagging bug reports are described in
the BTS control server documentation. This section contains some guidelines for managing your own bugs, based
on the collective Debian developer experience.

Filing bugs for problems that you find in other packages is one of the civic obligations of maintainership, see
Section 7.1 for details. However, handling the bugs in your own packages is even more important.

Here's a list of steps that you may follow to handle a bug report:

1. Decide whether the report corresponds to a real bug or not. Sometimes users are just calling a program in the
wrong way because they haven't read the documentation. If you diagnose this, just close the bug with enough
information to let the user correct their problem (give pointers to the good documentation and so on). If the
same report comes up again and again you may ask yourself if the documentation is good enough or if the
program shouldn't detect its misuse in order to give an informative error message. This is an issue that may
need to be brought up with the upstream author.

If the bug submitter disagrees with your decision to close the bug, they may reopen it until you find an
agreement on how to handle it. If you don't find any, you may want to tag the bug wontfix to let people
know that the bug exists but that it won't be corrected. If this situation is unacceptable, you (or the submitter)
may want to require a decision of the technical committee by reassigning the bug to tech-ctte (you may
use the clone command of the BTS if you wish to keep it reported against your package). Before doing so,
please read the recommended procedure.

2. If the bug is real but it's caused by another package, just reassign the bug to the right package. If you don't
know which package it should be reassigned to, you should ask for help on IRC or on debian-devel@lists.
debian.org. Please inform the maintainer(s) of the package you reassign the bug to, for example by Cc:ing
the message that does the reassign to packagename@packages.debian.org and explaining your reasons in
that mail. Please note that a simple reassignment is not e-mailed to the maintainers of the package being
reassigned to, so they won't know about it until they look at a bug overview for their packages.

If the bug affects the operation of your package, please consider cloning the bug and reassigning the clone
to the package that really causes the behavior. Otherwise, the bug will not be shown in your package's bug
list, possibly causing users to report the same bug over and over again. You should block "your" bug with the
reassigned, cloned bug to document the relationship.

3. Sometimes you also have to adjust the severity of the bug so that it matches our definition of the severity.
That's because people tend to inflate the severity of bugs to make sure their bugs are fixed quickly. Some
bugs may even be dropped to wishlist severity when the requested change is just cosmetic.

4. If the bug is real but the same problem has already been reported by someone else, then the two relevant bug
reports should be merged into one using the merge command of the BTS. In this way, when the bug is fixed,
all of the submitters will be informed of this. (Note, however, that emails sent to one bug report's submitter
won't automatically be sent to the other report's submitter.) For more details on the technicalities of the merge
command and its relative, the unmerge command, see the BTS control server documentation.

5. The bug submitter may have forgotten to provide some information, in which case you have to ask them for
the required information. You may use the moreinfo tag to mark the bug as such. Moreover if you can't
reproduce the bug, you tag it unreproducible. Anyone who can reproduce the bug is then invited to
provide more information on how to reproduce it. After a few months, if this information has not been sent
by someone, the bug may be closed.

6. If the bug is related to the packaging, you just fix it. If you are not able to fix it yourself, then tag the bug as
help. You can also ask for help on debian-devel@lists.debian.org or debian-qa@lists.debian.org. If it's an
upstream problem, you have to forward it to the upstream author. Forwarding a bug is not enough, you have
to check at each release if the bug has been fixed or not. If it has, you just close it, otherwise you have to
remind the author about it. If you have the required skills you can prepare a patch that fixes the bug and send
it to the author at the same time. Make sure to send the patch to the BTS and to tag the bug as patch.

30

mailto:control@bugs.debian.org
http://www.debian.org/Bugs/Developer
http://www.debian.org/Bugs/Developer
http://www.debian.org/Bugs/server-control
http://www.debian.org/devel/tech-ctte
mailto:debian-devel@lists.debian.org
mailto:debian-devel@lists.debian.org
mailto:packagename@packages.debian.org
mailto:debian-devel@lists.debian.org
mailto:debian-qa@lists.debian.org

CHAPTER 5. MANAGING PACKAGES 5.8. HANDLING BUGS

7. If you have fixed a bug in your local copy, or if a fix has been committed to the VCS repository, you may
tag the bug as pending to let people know that the bug is corrected and that it will be closed with the next
upload (add the closes: in the changelog). This is particularly useful if you are several developers
working on the same package.

8. Once a corrected package is available in the archive, the bug should be closed indicating the version in which
it was fixed. This can be done automatically, read Section 5.8.4.

5.8.4 When bugs are closed by new uploads

As bugs and problems are fixed in your packages, it is your responsibility as the package maintainer to close these
bugs. However, you should not close a bug until the package which fixes the bug has been accepted into the Debian
archive. Therefore, once you get notification that your updated package has been installed into the archive, you can
and should close the bug in the BTS. Also, the bug should be closed with the correct version.

However, it's possible to avoid having to manually close bugs after the upload — just list the fixed bugs in your
debian/changelog file, following a certain syntax, and the archive maintenance software will close the bugs
for you. For example:

acme-cannon (3.1415) unstable; urgency=low

* Frobbed with options (closes: Bug#98339)
* Added safety to prevent operator dismemberment, closes: bug#98765,

bug#98713, #98714.
* Added man page. Closes: #98725.

Technically speaking, the following Perl regular expression describes how bug closing changelogs are identified:

/closes:\s*(?:bug)?\#\s*\d+(?:,\s*(?:bug)?\#\s*\d+)*/ig

We prefer the closes:#XXX syntax, as it is the most concise entry and the easiest to integrate with the text
of the changelog. Unless specified different by the -v-switch to dpkg-buildpackage, only the bugs closed
in the most recent changelog entry are closed (basically, exactly the bugs mentioned in the changelog-part in the
.changes file are closed).

Historically, uploads identified as non-maintainer upload (NMU) were tagged fixed instead of being closed,
but that practice was ceased with the advent of version-tracking. The same applied to the tag fixed-in-exper
imental.

If you happen to mistype a bug number or forget a bug in the changelog entries, don't hesitate to undo any
damage the error caused. To reopen wrongly closed bugs, send a reopen XXX command to the bug tracking
system's control address, control@bugs.debian.org. To close any remaining bugs that were fixed by your upload,
email the .changes file to XXX-done@bugs.debian.org, where XXX is the bug number, and put Version: YYY and
an empty line as the first two lines of the body of the email, where YYY is the first version where the bug has been
fixed.

Bear in mind that it is not obligatory to close bugs using the changelog as described above. If you simply want
to close bugs that don't have anything to do with an upload you made, do it by emailing an explanation to XXX-
done@bugs.debian.org. Do not close bugs in the changelog entry of a version if the changes in that version of the
package don't have any bearing on the bug.

For general information on how to write your changelog entries, see Section 6.3.

5.8.5 Handling security-related bugs

Due to their sensitive nature, security-related bugs must be handled carefully. The Debian Security Team exists to
coordinate this activity, keeping track of outstanding security problems, helping maintainers with security problems
or fixing them themselves, sending security advisories, and maintaining security.debian.org.

When you become aware of a security-related bug in a Debian package, whether or not you are the maintainer,
collect pertinent information about the problem, and promptly contact the security team, preferably by filing a ticket
in their Request Tracker. See http://wiki.debian.org/rt.debian.org#Security_Team. Alterna-
tively you may email team@security.debian.org. DONOTUPLOAD any packages for stablewithout contacting
the team. Useful information includes, for example:

• Whether or not the bug is already public.

31

mailto:control@bugs.debian.org
mailto:XXX-done@bugs.debian.org
mailto:XXX-done@bugs.debian.org
mailto:XXX-done@bugs.debian.org
http://wiki.debian.org/rt.debian.org#Security_Team
mailto:team@security.debian.org

CHAPTER 5. MANAGING PACKAGES 5.8. HANDLING BUGS

• Which versions of the package are known to be affected by the bug. Check each version that is present in a
supported Debian release, as well as testing and unstable.

• The nature of the fix, if any is available (patches are especially helpful)

• Any fixed packages that you have prepared yourself (send only the .diff.gz and .dsc files and read
Section 5.8.5.4 first)

• Any assistance you can provide to help with testing (exploits, regression testing, etc.)

• Any information needed for the advisory (see Section 5.8.5.3)

As the maintainer of the package, you have the responsibility to maintain it, even in the stable release. You
are in the best position to evaluate patches and test updated packages, so please see the sections below on how to
prepare packages for the Security Team to handle.

5.8.5.1 The Security Tracker

The security team maintains a central database, the Debian Security Tracker. This contains all public information
that is known about security issues: which packages and versions are affected or fixed, and thus whether stable,
testing and/or unstable are vulnerable. Information that is still confidential is not added to the tracker.

You can search it for a specific issue, but also on package name. Look for your package to see which issues are
still open. If you can, please provide more information about those issues, or help to address them in your package.
Instructions are on the tracker web pages.

5.8.5.2 Confidentiality

Unlike most other activities within Debian, information about security issues must sometimes be kept private for
a time. This allows software distributors to coordinate their disclosure in order to minimize their users' exposure.
Whether this is the case depends on the nature of the problem and corresponding fix, and whether it is already a
matter of public knowledge.

There are several ways developers can learn of a security problem:

• they notice it on a public forum (mailing list, web site, etc.)

• someone files a bug report

• someone informs them via private email

In the first two cases, the information is public and it is important to have a fix as soon as possible. In the last
case, however, it might not be public information. In that case there are a few possible options for dealing with the
problem:

• If the security exposure is minor, there is sometimes no need to keep the problem a secret and a fix should
be made and released.

• If the problem is severe, it is preferable to share the information with other vendors and coordinate a release.
The security team keeps in contact with the various organizations and individuals and can take care of that.

In all cases if the person who reports the problem asks that it not be disclosed, such requests should be honored,
with the obvious exception of informing the security team in order that a fix may be produced for a stable release
of Debian. When sending confidential information to the security team, be sure to mention this fact.

Please note that if secrecy is needed you may not upload a fix to unstable (or anywhere else, such as a public
VCS repository). It is not sufficient to obfuscate the details of the change, as the code itself is public, and can (and
will) be examined by the general public.

There are two reasons for releasing information even though secrecy is requested: the problem has been known
for a while, or the problem or exploit has become public.

The Security Team has a PGP-key to enable encrypted communication about sensitive issues. See the Security
Team FAQ for details.

32

http://security-tracker.debian.org/
http://www.debian.org/security/faq#contact
http://www.debian.org/security/faq#contact

CHAPTER 5. MANAGING PACKAGES 5.8. HANDLING BUGS

5.8.5.3 Security Advisories

Security advisories are only issued for the current, released stable distribution, and not fortesting orunstable.
When released, advisories are sent to the debian-security-announce@lists.debian.org mailing list and posted on the
security web page. Security advisories are written and posted by the security team. However they certainly do not
mind if a maintainer can supply some of the information for them, or write part of the text. Information that should
be in an advisory includes:

• A description of the problem and its scope, including:

– The type of problem (privilege escalation, denial of service, etc.)

– What privileges may be gained, and by whom (if any)

– How it can be exploited

– Whether it is remotely or locally exploitable

– How the problem was fixed

This information allows users to assess the threat to their systems.

• Version numbers of affected packages

• Version numbers of fixed packages

• Information on where to obtain the updated packages (usually from the Debian security archive)

• References to upstream advisories, CVE identifiers, and any other information useful in cross-referencing
the vulnerability

5.8.5.4 Preparing packages to address security issues

One way that you can assist the security team in their duties is to provide them with fixed packages suitable for a
security advisory for the stable Debian release.

When an update is made to the stable release, care must be taken to avoid changing system behavior or intro-
ducing new bugs. In order to do this, make as few changes as possible to fix the bug. Users and administrators rely
on the exact behavior of a release once it is made, so any change that is made might break someone's system. This
is especially true of libraries: make sure you never change the API or ABI, no matter how small the change.

This means that moving to a new upstream version is not a good solution. Instead, the relevant changes should
be back-ported to the version present in the current stable Debian release. Generally, upstream maintainers are
willing to help if needed. If not, the Debian security team may be able to help.

In some cases, it is not possible to back-port a security fix, for example when large amounts of source code need
to be modified or rewritten. If this happens, it may be necessary to move to a new upstream version. However, this
is only done in extreme situations, and you must always coordinate that with the security team beforehand.

Related to this is another important guideline: always test your changes. If you have an exploit available, try it
and see if it indeed succeeds on the unpatched package and fails on the fixed package. Test other, normal actions
as well, as sometimes a security fix can break seemingly unrelated features in subtle ways.

Do NOT include any changes in your package which are not directly related to fixing the vulnerability. These
will only need to be reverted, and this wastes time. If there are other bugs in your package that you would like to
fix, make an upload to proposed-updates in the usual way, after the security advisory is issued. The security update
mechanism is not a means for introducing changes to your package which would otherwise be rejected from the
stable release, so please do not attempt to do this.

Review and test your changes as much as possible. Check the differences from the previous version repeat-
edly (interdiff from the patchutils package and debdiff from devscripts are useful tools for this, see
Section A.2.2).

Be sure to verify the following items:

• Target the right distribution in your debian/changelog. For stable this is stable-security
and for testing this is testing-security, and for the previous stable release, this is oldstable-
security. Do not target distribution-proposed-updates or stable!

• The upload should have urgency=high.

33

mailto:debian-security-announce@lists.debian.org
http://www.debian.org/security/
http://www.debian.org/security/
http://cve.mitre.org

CHAPTER 5. MANAGING PACKAGES 5.9. MOVING, REMOVING, RENAMING,…

• Make descriptive, meaningful changelog entries. Others will rely on them to determine whether a particular
bug was fixed. Add closes: statements for any Debian bugs filed. Always include an external reference,
preferably a CVE identifier, so that it can be cross-referenced. However, if a CVE identifier has not yet been
assigned, do not wait for it but continue the process. The identifier can be cross-referenced later.

• Make sure the version number is proper. It must be greater than the current package, but less than package
versions in later distributions. If in doubt, test it with dpkg --compare-versions. Be careful not
to re-use a version number that you have already used for a previous upload, or one that conflicts with a
binNMU. The convention is to append +codename1, e.g. 1:2.4.3-4+lenny1, of course increasing 1
for any subsequent uploads.

• Unless the upstream source has been uploaded to security.debian.org before (by a previous security
update), build the upload with full upstream source (dpkg-buildpackage -sa). If there has been
a previous upload to security.debian.org with the same upstream version, you may upload without
upstream source (dpkg-buildpackage -sd).

• Be sure to use the exact same *.orig.tar.{gz,bz2,xz} as used in the normal archive, otherwise it
is not possible to move the security fix into the main archives later.

• Build the package on a clean system which only has packages installed from the distribution you are building
for. If you do not have such a system yourself, you can use a debian.org machine (see Section 4.4) or setup a
chroot (see Section A.4.3 and Section A.4.2).

5.8.5.5 Uploading the fixed package

Do NOT upload a package to the security upload queue (oldstable-security, stable-security, etc.)
without prior authorization from the security team. If the package does not exactly meet the team's requirements,
it will cause many problems and delays in dealing with the unwanted upload.

DoNOT upload your fix toproposed-updateswithout coordinating with the security team. Packages from
security.debian.org will be copied into the proposed-updates directory automatically. If a package
with the same or a higher version number is already installed into the archive, the security update will be rejected by
the archive system. That way, the stable distribution will end up without a security update for this package instead.

Once you have created and tested the new package and it has been approved by the security team, it needs to
be uploaded so that it can be installed in the archives. For security uploads, the place to upload to is ftp://
security-master.debian.org/pub/SecurityUploadQueue/.

Once an upload to the security queue has been accepted, the package will automatically be built for all archi-
tectures and stored for verification by the security team.

Uploads which are waiting for acceptance or verification are only accessible by the security team. This is
necessary since there might be fixes for security problems that cannot be disclosed yet.

If a member of the security team accepts a package, it will be installed on security.debian.org as well
as proposed for the proper distribution-proposed-updates on ftp-master.debian.org.

5.9 Moving, removing, renaming, adopting, and orphaning packages
Some archive manipulation operations are not automated in the Debian upload process. These procedures should
be manually followed by maintainers. This chapter gives guidelines on what to do in these cases.

5.9.1 Moving packages
Sometimes a package will change its section. For instance, a package from the non-free section might be GPL'd
in a later version, in which case the package should be moved to �main' or �contrib'.1

If you need to change the section for one of your packages, change the package control information to place the
package in the desired section, and re-upload the package (see the Debian Policy Manual for details). You must
ensure that you include the .orig.tar.{gz,bz2,xz} in your upload (even if you are not uploading a new
upstream version), or it will not appear in the new section together with the rest of the package. If your new section
is valid, it will be moved automatically. If it does not, then contact the ftpmasters in order to understand what
happened.

1 See the Debian Policy Manual for guidelines on what section a package belongs in.

34

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

CHAPTER 5. MANAGING PACKAGES 5.9. MOVING, REMOVING, RENAMING,…

If, on the other hand, you need to change the subsection of one of your packages (e.g., ��devel'', ��admin''),
the procedure is slightly different. Correct the subsection as found in the control file of the package, and re-upload
that. Also, you'll need to get the override file updated, as described in Section 5.7.

5.9.2 Removing packages
If for some reason you want to completely remove a package (say, if it is an old compatibility library which is no
longer required), you need to file a bug against ftp.debian.org asking that the package be removed; as all bugs,
this bug should normally have normal severity. The bug title should be in the form RM:package [architecture

list] --reason, where package is the package to be removed and reason is a short summary of the reason
for the removal request. [architecture list] is optional and only needed if the removal request only applies
to some architectures, not all. Note that the reportbug will create a title conforming to these rules when you use it
to report a bug against the ftp.debian.org pseudo-package.

If you want to remove a package you maintain, you should note this in the bug title by prepending ROM (Request
Of Maintainer). There are several other standard acronyms used in the reasoning for a package removal, see http:
//ftp-master.debian.org/removals.html for a complete list. That page also provides a convenient
overview of pending removal requests.

Note that removals can only be done for the unstable, experimental and stable distribution. Packages
are not removed from testing directly. Rather, they will be removed automatically after the package has been
removed from unstable and no package in testing depends on it.

There is one exception when an explicit removal request is not necessary: If a (source or binary) package is no
longer built from source, it will be removed semi-automatically. For a binary-package, this means if there is no
longer any source package producing this binary package; if the binary package is just no longer produced on some
architectures, a removal request is still necessary. For a source-package, this means that all binary packages it refers
to have been taken over by another source package.

In your removal request, you have to detail the reasons justifying the request. This is to avoid unwanted removals
and to keep a trace of why a package has been removed. For example, you can provide the name of the package that
supersedes the one to be removed.

Usually you only ask for the removal of a package maintained by yourself. If you want to remove another
package, you have to get the approval of its maintainer. Should the package be orphaned and thus have no maintainer,
you should first discuss the removal request on debian-qa@lists.debian.org. If there is a consensus that the package
should be removed, you should reassign and retitle the O: bug filed against the wnpp package instead of filing a
new bug as removal request.

Further information relating to these and other package removal related topics may be found athttp://wiki.
debian.org/ftpmaster_Removals and http://qa.debian.org/howto-remove.html.

If in doubt concerning whether a package is disposable, email debian-devel@lists.debian.org asking for opin-
ions. Also of interest is the apt-cache program from the apt package. When invoked as apt-cache showpkg
package, the program will show details for package, including reverse depends. Other useful programs include
apt-cache rdepends, apt-rdepends, build-rdeps (in the devscripts package) and grep-dctrl. Removal of
orphaned packages is discussed on debian-qa@lists.debian.org.

Once the package has been removed, the package's bugs should be handled. They should either be reassigned to
another package in the case where the actual code has evolved into another package (e.g. libfoo12 was removed
because libfoo13 supersedes it) or closed if the software is simply no longer part of Debian. When closing the
bugs, to avoid marking the bugs as fixed in versions of the packages in previous Debian releases, they should be
marked as fixed in the version <most-recent-version-ever-in-Debian>+rm.

5.9.2.1 Removing packages from Incoming

In the past, it was possible to remove packages from incoming. However, with the introduction of the new
incoming system, this is no longer possible. Instead, you have to upload a new revision of your package with a
higher version than the package you want to replace. Both versions will be installed in the archive but only the
higher version will actually be available in unstable since the previous version will immediately be replaced by
the higher. However, if you do proper testing of your packages, the need to replace a package should not occur too
often anyway.

5.9.3 Replacing or renaming packages
When the upstream maintainers for one of your packages chose to rename their software (or you made a mistake
naming your package), you should follow a two-step process to rename it. In the first step, change the debian/

35

http://ftp-master.debian.org/removals.html
http://ftp-master.debian.org/removals.html
mailto:debian-qa@lists.debian.org
http://wiki.debian.org/ftpmaster_Removals
http://wiki.debian.org/ftpmaster_Removals
http://qa.debian.org/howto-remove.html
mailto:debian-devel@lists.debian.org
mailto:debian-qa@lists.debian.org

CHAPTER 5. MANAGING PACKAGES 5.10. PORTING AND BEING PORTED

control file to reflect the new name and to replace, provide and conflict with the obsolete package name (see
the Debian Policy Manual for details). Please note that you should only add a Provides relation if all packages
depending on the obsolete package name continue to work after the renaming. Once you've uploaded the package
and the package has moved into the archive, file a bug against ftp.debian.org asking to remove the package
with the obsolete name (see Section 5.9.2). Do not forget to properly reassign the package's bugs at the same time.

At other times, you may make a mistake in constructing your package and wish to replace it. The only way to
do this is to increase the version number and upload a new version. The old version will be expired in the usual
manner. Note that this applies to each part of your package, including the sources: if you wish to replace the
upstream source tarball of your package, you will need to upload it with a different version. An easy possibility is
to replace foo_1.00.orig.tar.gzwith foo_1.00+0.orig.tar.gz or foo_1.00.orig.tar.bz2.
This restriction gives each file on the ftp site a unique name, which helps to ensure consistency across the mirror
network.

5.9.4 Orphaning a package

If you can no longer maintain a package, you need to inform others, and see that the package is marked as orphaned.
You should set the package maintainer to Debian QA Group <packages@qa.debian.org> and submit
a bug report against the pseudo package wnpp. The bug report should be titled O:package --short desc

ription indicating that the package is now orphaned. The severity of the bug should be set to normal; if the
package has a priority of standard or higher, it should be set to important. If you feel it's necessary, send a copy to
debian-devel@lists.debian.org by putting the address in the X-Debbugs-CC: header of the message (no, don't use
CC:, because that way the message's subject won't indicate the bug number).

If you just intend to give the package away, but you can keep maintainership for the moment, then you should
instead submit a bug against wnpp and title it RFA:package --short description. RFA stands for Request
For Adoption.

More information is on the WNPP web pages.

5.9.5 Adopting a package

A list of packages in need of a new maintainer is available in the Work-Needing and Prospective Packages list
(WNPP). If you wish to take over maintenance of any of the packages listed in the WNPP, please take a look at the
aforementioned page for information and procedures.

It is not OK to simply take over a package that you feel is neglected — that would be package hijacking. You
can, of course, contact the current maintainer and ask them if you may take over the package. If you have reason to
believe a maintainer has gone AWOL (absent without leave), see Section 7.4.

Generally, you may not take over the package without the assent of the current maintainer. Even if they ignore
you, that is still not grounds to take over a package. Complaints about maintainers should be brought up on the
developers' mailing list. If the discussion doesn't end with a positive conclusion, and the issue is of a technical
nature, consider bringing it to the attention of the technical committee (see the technical committee web page for
more information).

If you take over an old package, you probably want to be listed as the package's official maintainer in the
bug system. This will happen automatically once you upload a new version with an updated Maintainer field,
although it can take a few hours after the upload is done. If you do not expect to upload a new version for a while,
you can use Section 4.10 to get the bug reports. However, make sure that the old maintainer has no problem with
the fact that they will continue to receive the bugs during that time.

5.10 Porting and being ported

Debian supports an ever-increasing number of architectures. Even if you are not a porter, and you don't use any
architecture but one, it is part of your duty as a maintainer to be aware of issues of portability. Therefore, even if
you are not a porter, you should read most of this chapter.

Porting is the act of building Debian packages for architectures that are different from the original architecture
of the package maintainer's binary package. It is a unique and essential activity. In fact, porters do most of the
actual compiling of Debian packages. For instance, when a maintainer uploads a (portable) source packages with
binaries for the i386 architecture, it will be built for each of the other architectures, amounting to 11 more builds.

36

http://www.debian.org/doc/debian-policy/
mailto:debian-devel@lists.debian.org
http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/tech-ctte

CHAPTER 5. MANAGING PACKAGES 5.10. PORTING AND BEING PORTED

5.10.1 Being kind to porters
Porters have a difficult and unique task, since they are required to deal with a large volume of packages. Ideally,
every source package should build right out of the box. Unfortunately, this is often not the case. This section contains
a checklist of ��gotchas'' often committed by Debian maintainers — common problems which often stymie porters,
and make their jobs unnecessarily difficult.

The first and most important thing is to respond quickly to bug or issues raised by porters. Please treat porters
with courtesy, as if they were in fact co-maintainers of your package (which, in a way, they are). Please be tolerant
of succinct or even unclear bug reports; do your best to hunt down whatever the problem is.

By far, most of the problems encountered by porters are caused by packaging bugs in the source packages. Here
is a checklist of things you should check or be aware of.

1. Make sure that your Build-Depends and Build-Depends-Indep settings in debian/control
are set properly. The best way to validate this is to use the debootstrap package to create an unstable
chroot environment (see Section A.4.2). Within that chrooted environment, install the build-essent
ial package and any package dependencies mentioned in Build-Depends and/or Build-Depends-
Indep. Finally, try building your package within that chrooted environment. These steps can be automated
by the use of the pbuilder program which is provided by the package of the same name (see Section A.4.3).

If you can't set up a proper chroot, dpkg-depcheck may be of assistance (see Section A.6.7).

See the Debian Policy Manual for instructions on setting build dependencies.

2. Don't set architecture to a value other than all or any unless you really mean it. In too many cases, main-
tainers don't follow the instructions in the Debian Policy Manual. Setting your architecture to only one
architecture (such as i386 or amd64) is usually incorrect.

3. Make sure your source package is correct. Do dpkg-source -x package.dsc to make sure your source
package unpacks properly. Then, in there, try building your package from scratch with dpkg-buildpackage.

4. Make sure you don't ship your source package with the debian/files or debian/substvars files.
They should be removed by the clean target of debian/rules.

5. Make sure you don't rely on locally installed or hacked configurations or programs. For instance, you should
never be calling programs in /usr/local/bin or the like. Try not to rely on programs being setup in a
special way. Try building your package on another machine, even if it's the same architecture.

6. Don't depend on the package you're building being installed already (a sub-case of the above issue). There
are, of course, exceptions to this rule, but be aware that any case like this needs manual bootstrapping and
cannot be done by automated package builders.

7. Don't rely on the compiler being a certain version, if possible. If not, then make sure your build dependencies
reflect the restrictions, although you are probably asking for trouble, since different architectures sometimes
standardize on different compilers.

8. Make sure your debian/rules contains separate binary-arch and binary-indep targets, as the
Debian Policy Manual requires. Make sure that both targets work independently, that is, that you can call the
target without having called the other before. To test this, try to run dpkg-buildpackage -B.

5.10.2 Guidelines for porter uploads
If the package builds out of the box for the architecture to be ported to, you are in luck and your job is easy. This
section applies to that case; it describes how to build and upload your binary package so that it is properly installed
into the archive. If you do have to patch the package in order to get it to compile for the other architecture, you are
actually doing a source NMU, so consult Section 5.11.1 instead.

For a porter upload, no changes are being made to the source. You do not need to touch any of the files in the
source package. This includes debian/changelog.

The way to invoke dpkg-buildpackage is as dpkg-buildpackage -B -mporter-email. Of course, set
porter-email to your email address. This will do a binary-only build of only the architecture-dependent portions
of the package, using the binary-arch target in debian/rules.

If you are working on a Debian machine for your porting efforts and you need to sign your upload locally for its
acceptance in the archive, you can run debsign on your .changes file to have it signed conveniently, or use the
remote signing mode of dpkg-sig.

37

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

CHAPTER 5. MANAGING PACKAGES 5.10. PORTING AND BEING PORTED

5.10.2.1 Recompilation or binary-only NMU

Sometimes the initial porter upload is problematic because the environment in which the package was built was
not good enough (outdated or obsolete library, bad compiler, etc.). Then you may just need to recompile it in an
updated environment. However, you have to bump the version number in this case, so that the old bad package can
be replaced in the Debian archive (dak refuses to install new packages if they don't have a version number greater
than the currently available one).

You have to make sure that your binary-only NMU doesn't render the package uninstallable. This could hap-
pen when a source package generates arch-dependent and arch-independent packages that have inter-dependencies
generated using dpkg's substitution variable $(Source-Version).

Despite the required modification of the changelog, these are called binary-only NMUs — there is no need in
this case to trigger all other architectures to consider themselves out of date or requiring recompilation.

Such recompilations require special ��magic'' version numbering, so that the archive maintenance tools recog-
nize that, even though there is a new Debian version, there is no corresponding source update. If you get this wrong,
the archive maintainers will reject your upload (due to lack of corresponding source code).

The ��magic'' for a recompilation-only NMU is triggered by using a suffix appended to the package version
number, following the form bnumber. For instance, if the latest version you are recompiling against was version
2.9-3, your binary-only NMU should carry a version of 2.9-3+b1. If the latest version was 3.4+b1 (i.e, a
native package with a previous recompilation NMU), your binary-only NMU should have a version number of 3.
4+b2.2

Similar to initial porter uploads, the correct way of invoking dpkg-buildpackage is dpkg-buildpackage
-B to only build the architecture-dependent parts of the package.

5.10.2.2 When to do a source NMU if you are a porter

Porters doing a source NMU generally follow the guidelines found in Section 5.11, just like non-porters. However, it
is expected that the wait cycle for a porter's source NMU is smaller than for a non-porter, since porters have to cope
with a large quantity of packages. Again, the situation varies depending on the distribution they are uploading to.
It also varies whether the architecture is a candidate for inclusion into the next stable release; the release managers
decide and announce which architectures are candidates.

If you are a porter doing an NMU for unstable, the above guidelines for porting should be followed, with
two variations. Firstly, the acceptable waiting period — the time between when the bug is submitted to the BTS and
when it is OK to do an NMU — is seven days for porters working on the unstable distribution. This period can be
shortened if the problem is critical and imposes hardship on the porting effort, at the discretion of the porter group.
(Remember, none of this is Policy, just mutually agreed upon guidelines.) For uploads to stable or testing,
please coordinate with the appropriate release team first.

Secondly, porters doing source NMUs should make sure that the bug they submit to the BTS should be of
severity serious or greater. This ensures that a single source package can be used to compile every supported
Debian architecture by release time. It is very important that we have one version of the binary and source package
for all architectures in order to comply with many licenses.

Porters should try to avoid patches which simply kludge around bugs in the current version of the compile
environment, kernel, or libc. Sometimes such kludges can't be helped. If you have to kludge around compiler bugs
and the like, make sure you #ifdef your work properly; also, document your kludge so that people know to remove
it once the external problems have been fixed.

Porters may also have an unofficial location where they can put the results of their work during the waiting
period. This helps others running the port have the benefit of the porter's work, even during the waiting period. Of
course, such locations have no official blessing or status, so buyer beware.

5.10.3 Porting infrastructure and automation
There is infrastructure and several tools to help automate package porting. This section contains a brief overview
of this automation and porting to these tools; see the package documentation or references for full information.

5.10.3.1 Mailing lists and web pages

Web pages containing the status of each port can be found at http://www.debian.org/ports/.

2 In the past, such NMUs used the third-level number on the Debian part of the revision to denote their recompilation-only status; however,
this syntax was ambiguous with native packages and did not allow proper ordering of recompile-only NMUs, source NMUs, and security NMUs
on the same package, and has therefore been abandoned in favor of this new syntax.

38

http://www.debian.org/ports/

CHAPTER 5. MANAGING PACKAGES 5.10. PORTING AND BEING PORTED

Each port of Debian has a mailing list. The list of porting mailing lists can be found at http://lists.
debian.org/ports.html. These lists are used to coordinate porters, and to connect the users of a given port
with the porters.

5.10.3.2 Porter tools

Descriptions of several porting tools can be found in Section A.7.

5.10.3.3 wanna-build

The wanna-build system is used as a distributed, client-server build distribution system. It is usually used
in conjunction with build daemons running the buildd program. Build daemons are ��slave'' hosts which
contact the central wanna-build system to receive a list of packages that need to be built.

wanna-build is not yet available as a package; however, all Debian porting efforts are using it for automated
package building. The tool used to do the actual package builds, sbuild is available as a package, see its descrip-
tion in Section A.4.4. Please note that the packaged version is not the same as the one used on build daemons, but
it is close enough to reproduce problems.

Most of the data produced by wanna-build which is generally useful to porters is available on the web at
http://buildd.debian.org/. This data includes nightly updated statistics, queueing information and logs
for build attempts.

We are quite proud of this system, since it has so many possible uses. Independent development groups can
use the system for different sub-flavors of Debian, which may or may not really be of general interest (for instance,
a flavor of Debian built with gcc bounds checking). It will also enable Debian to recompile entire distributions
quickly.

The wanna-build team, in charge of the buildds, can be reached at debian-wb-team@lists.debian.
org. To determine who (wanna-build team, release team) and how (mail, BTS) to contact, refer to http://
lists.debian.org/debian-project/2009/03/msg00096.html.

When requesting binNMUs or give-backs (retries after a failed build), please use the format described at http:
//release.debian.org/wanna-build.txt.

5.10.4 When your package is not portable
Some packages still have issues with building and/or working on some of the architectures supported by Debian, and
cannot be ported at all, or not within a reasonable amount of time. An example is a package that is SVGA-specific
(only available for i386 and amd64), or uses other hardware-specific features not supported on all architectures.

In order to prevent broken packages from being uploaded to the archive, and wasting buildd time, you need to
do a few things:

• First, make sure your package does fail to build on architectures that it cannot support. There are a few ways
to achieve this. The preferred way is to have a small testsuite during build time that will test the functionality,
and fail if it doesn't work. This is a good idea anyway, as this will prevent (some) broken uploads on all
architectures, and also will allow the package to build as soon as the required functionality is available.

Additionally, if you believe the list of supported architectures is pretty constant, you should change any to a
list of supported architectures in debian/control. This way, the build will fail also, and indicate this to
a human reader without actually trying.

• In order to prevent autobuilders from needlessly trying to build your package, it must be included inPackages-arch-specific,
a list used by the wanna-build script. The current version is available as http://buildd.debian.
org/quinn-diff/Packages-arch-specific; please see the top of the file for whom to contact
for changes.

Please note that it is insufficient to only add your package to Packages-arch-specificwithout making it
fail to build on unsupported architectures: A porter or any other person trying to build your package might accidently
upload it without noticing it doesn't work. If in the past some binary packages were uploaded on unsupported
architectures, request their removal by filing a bug against ftp.debian.org.

5.10.5 Marking non-free packages as auto-buildable
By default packages from the non-free section are not built by the autobuilder network (mostly because the
license of the packages could disapprove). To enable a package to be build you need to perform the following steps:

39

http://lists.debian.org/ports.html
http://lists.debian.org/ports.html
http://buildd.debian.org/
http://lists.debian.org/debian-project/2009/03/msg00096.html
http://lists.debian.org/debian-project/2009/03/msg00096.html
http://release.debian.org/wanna-build.txt
http://release.debian.org/wanna-build.txt
http://buildd.debian.org/quinn-diff/Packages-arch-specific
http://buildd.debian.org/quinn-diff/Packages-arch-specific

CHAPTER 5. MANAGING PACKAGES 5.11. NON-MAINTAINER UPLOADS (NMUS)

1. Check whether it is legally allowed and technically possible to auto-build the package;

2. Add XS-Autobuild:yes into the header part of debian/control;

3. Send an email to nonfree@release.debian.org and explain why the package can legitimately and technically
be auto-built.

5.11 Non-Maintainer Uploads (NMUs)
Every package has one or more maintainers. Normally, these are the people who work on and upload new versions
of the package. In some situations, it is useful that other developers can upload a new version as well, for example if
they want to fix a bug in a package they don't maintain, when the maintainer needs help to respond to issues. Such
uploads are called Non-Maintainer Uploads (NMU).

5.11.1 When and how to do an NMU
Before doing an NMU, consider the following questions:

• Does your NMU really fix bugs? Fixing cosmetic issues or changing the packaging style in NMUs is dis-
couraged.

• Did you give enough time to the maintainer? When was the bug reported to the BTS? Being busy for a week
or two isn't unusual. Is the bug so severe that it needs to be fixed right now, or can it wait a few more days?

• How confident are you about your changes? Please remember the Hippocratic Oath: "Above all, do no harm."
It is better to leave a package with an open grave bug than applying a non-functional patch, or one that hides
the bug instead of resolving it. If you are not 100% sure of what you did, it might be a good idea to seek
advice from others. Remember that if you break something in your NMU, many people will be very unhappy
about it.

• Have you clearly expressed your intention to NMU, at least in the BTS? It is also a good idea to try to contact
the maintainer by other means (private email, IRC).

• If the maintainer is usually active and responsive, have you tried to contact him? In general it should be
considered preferable that a maintainer takes care of an issue himself and that he is given the chance to
review and correct your patch, because he can be expected to be more aware of potential issues which an
NMUer might miss. It is often a better use of everyone's time if the maintainer is given an opportunity to
upload a fix on their own.

When doing an NMU, you must first make sure that your intention to NMU is clear. Then, you must send a
patch with the differences between the current package and your proposed NMU to the BTS. The nmudiff script
in the devscripts package might be helpful.

While preparing the patch, you should better be aware of any package-specific practices that the maintainer
might be using. Taking them into account reduces the burden of integrating your changes into the normal package
workflow and thus increases the chances that integration will happen. A good place where to look for for possible
package-specific practices is debian/README.source.

Unless you have an excellent reason not to do so, you must then give some time to the maintainer to react (for
example, by uploading to the DELAYED queue). Here are some recommended values to use for delays:

• Upload fixing only release-critical bugs older than 7 days, with no maintainer activity on the bug for 7 days
and no indication that a fix is in progress: 0 days

• Upload fixing only release-critical bugs older than 7 days: 2 days

• Upload fixing only release-critical and important bugs: 5 days

• Other NMUs: 10 days

Those delays are only examples. In some cases, such as uploads fixing security issues, or fixes for trivial bugs
that blocking a transition, it is desirable that the fixed package reaches unstable sooner.

Sometimes, release managers decide to allow NMUs with shorter delays for a subset of bugs (e.g release-critical
bugs older than 7 days). Also, some maintainers list themselves in the Low Threshold NMU list, and accept that

40

mailto:nonfree@release.debian.org
http://www.debian.org/doc/debian-policy/ch-source.html#s-readmesource
http://wiki.debian.org/LowThresholdNmu

CHAPTER 5. MANAGING PACKAGES 5.11. NON-MAINTAINER UPLOADS (NMUS)

NMUs are uploaded without delay. But even in those cases, it's still a good idea to give the maintainer a few days to
react before you upload, especially if the patch wasn't available in the BTS before, or if you know that the maintainer
is generally active.

After you upload an NMU, you are responsible for the possible problems that you might have introduced. You
must keep an eye on the package (subscribing to the package on the PTS is a good way to achieve this).

This is not a license to perform NMUs thoughtlessly. If you NMU when it is clear that the maintainers are active
and would have acknowledged a patch in a timely manner, or if you ignore the recommendations of this document,
your upload might be a cause of conflict with the maintainer. You should always be prepared to defend the wisdom
of any NMU you perform on its own merits.

5.11.2 NMUs and debian/changelog

Just like any other (source) upload, NMUs must add an entry to debian/changelog, telling what has changed
with this upload. The first line of this entry must explicitely mention that this upload is an NMU, e.g.:

* Non-maintainer upload.

The way to version NMUs differs for native and non-native packages.
If the package is a native package (without a Debian revision in the version number), the version must be the

version of the last maintainer upload, plus +nmuX, where X is a counter starting at 1. If the last upload was also an
NMU, the counter should be increased. For example, if the current version is 1.5, then an NMU would get version
1.5+nmu1.

If the package is not a native package, you should add a minor version number to the Debian revision part of the
version number (the portion after the last hyphen). This extra number must start at 1. For example, if the current
version is 1.5-2, then an NMU would get version 1.5-2.1. If a new upstream version is packaged in the NMU,
the Debian revision is set to 0, for example 1.6-0.1.

In both cases, if the last upload was also an NMU, the counter should be increased. For example, if the current
version is 1.5+nmu3 (a native package which has already been NMUed), the NMU would get version 1.5+nmu4.

A special versioning scheme is needed to avoid disrupting the maintainer's work, since using an integer for the
Debian revision will potentially conflict with a maintainer upload already in preparation at the time of an NMU,
or even one sitting in the ftp NEW queue. It also has the benefit of making it visually clear that a package in the
archive was not made by the official maintainer.

If you upload a package to testing or stable, you sometimes need to "fork" the version number tree. This is the
case for security uploads, for example. For this, a version of the form +debXYuZ should be used, where X and
Y are the major and minor release numbers, and Z is a counter starting at 1. When the release number is not yet
known (often the case for testing, at the beginning of release cycles), the lowest release number higher than the
last stable release number must be used. For example, while Lenny (Debian 5.0) is stable, a security NMU to stable
for a package at version 1.5-3would have version 1.5-3+deb50u1, whereas a security NMU to Squeeze would
get version 1.5-3+deb60u1. After the release of Squeeze, security uploads to the testing distribution will be
versioned +deb61uZ, until it is known whether that release will be Debian 6.1 or Debian 7.0 (if that becomes the
case, uploads will be versioned as +deb70uZ).

5.11.3 Using the DELAYED/ queue

Having to wait for a response after you request permission to NMU is inefficient, because it costs the NMUer a
context switch to come back to the issue. The DELAYED queue (see Section 5.6.2) allows the developer doing the
NMU to perform all the necessary tasks at the same time. For instance, instead of telling the maintainer that you
will upload the updated package in 7 days, you should upload the package to DELAYED/7 and tell the maintainer
that he has 7 days to react. During this time, the maintainer can ask you to delay the upload some more, or cancel
your upload.

TheDELAYED queue should not be used to put additional pressure on the maintainer. In particular, it's important
that you are available to cancel or delay the upload before the delay expires since the maintainer cannot cancel the
upload himself.

If you make an NMU to DELAYED and the maintainer updates his package before the delay expires, your upload
will be rejected because a newer version is already available in the archive. Ideally, the maintainer will take care to
include your proposed changes (or at least a solution for the problems they address) in that upload.

41

CHAPTER 5. MANAGING PACKAGES 5.12. COLLABORATIVE MAINTENANCE

5.11.4 NMUs from the maintainer's point of view
When someone NMUs your package, this means they want to help you to keep it in good shape. This gives users
fixed packages faster. You can consider asking the NMUer to become a co-maintainer of the package. Receiving
an NMU on a package is not a bad thing; it just means that the package is interesting enough for other people to
work on it.

To acknowledge an NMU, include its changes and changelog entry in your next maintainer upload. If you do
not acknowledge the NMU by including the NMU changelog entry in your changelog, the bugs will remain closed
in the BTS but will be listed as affecting your maintainer version of the package.

5.11.5 Source NMUs vs Binary-only NMUs (binNMUs)
The full name of an NMU is source NMU. There is also another type, namely the binary-only NMU, or binNMU.
A binNMU is also a package upload by someone other than the package's maintainer. However, it is a binary-only
upload.

When a library (or other dependency) is updated, the packages using it may need to be rebuilt. Since no changes
to the source are needed, the same source package is used.

BinNMUs are usually triggered on the buildds by wanna-build. An entry is added to debian/changelog,
explaining why the upload was needed and increasing the version number as described in Section 5.10.2.1. This
entry should not be included in the next upload.

Buildds upload packages for their architecture to the archive as binary-only uploads. Strictly speaking, these are
binNMUs. However, they are not normally called NMU, and they don't add an entry to debian/changelog.

5.11.6 NMUs vs QA uploads
NMUs are uploads of packages by somebody else than their assigned maintainer. There is another type of upload
where the uploaded package is not yours: QA uploads. QA uploads are uploads of orphaned packages.

QA uploads are very much like normal maintainer uploads: they may fix anything, even minor issues; the
version numbering is normal, and there is no need to use a delayed upload. The difference is that you are not listed
as the Maintainer or Uploader for the package. Also, the changelog entry of a QA upload has a special first
line:

* QA upload.

If you want to do an NMU, and it seems that the maintainer is not active, it is wise to check if the package
is orphaned (this information is displayed on the package's Package Tracking System page). When doing the first
QA upload to an orphaned package, the maintainer should be set to Debian QA Group <packages@qa.
debian.org>. Orphaned packages which did not yet have a QA upload still have their old maintainer set. There
is a list of them at http://qa.debian.org/orphaned.html.

Instead of doing a QA upload, you can also consider adopting the package by making yourself the maintainer.
You don't need permission from anybody to adopt an orphaned package, you can just set yourself as maintainer and
upload the new version (see Section 5.9.5).

5.11.7 NMUs vs team uploads
Sometimes you are fixing and/or updating a package because you are member of a packaging team (which uses a
mailing list as Maintainer or Uploader, see Section 5.12) but you don't want to add yourself to Uploaders
because you do not plan to contribute regularly to this specific package. If it conforms with your team's policy,
you can perform a normal upload without being listed directly as Maintainer or Uploader. In that case, you
should start your changelog entry with the following line:

* Team upload.

5.12 Collaborative maintenance
Collaborative maintenance is a term describing the sharing of Debian package maintenance duties by several peo-
ple. This collaboration is almost always a good idea, since it generally results in higher quality and faster bug fix
turnaround times. It is strongly recommended that packages with a priority of standard or which are part of the
base set have co-maintainers.

42

http://qa.debian.org/orphaned.html

CHAPTER 5. MANAGING PACKAGES 5.13. THE TESTING DISTRIBUTION

Generally there is a primary maintainer and one or more co-maintainers. The primary maintainer is the person
whose name is listed in the Maintainer field of the debian/control file. Co-maintainers are all the other
maintainers, usually listed in the Uploaders field of the debian/control file.

In its most basic form, the process of adding a new co-maintainer is quite easy:

• Setup the co-maintainer with access to the sources you build the package from. Generally this implies you
are using a network-capable version control system, such as CVS or Subversion. Alioth (see Section 4.12)
provides such tools, amongst others.

• Add the co-maintainer's correct maintainer name and address to the Uploaders field in the first paragraph
of the debian/control file.

Uploaders: John Buzz <jbuzz@debian.org>, Adam Rex <arex@debian.org>

• Using the PTS (Section 4.10), the co-maintainers should subscribe themselves to the appropriate source pack-
age.

Another form of collaborative maintenance is team maintenance, which is recommended if you maintain several
packages with the same group of developers. In that case, theMaintainer andUploaders field of each package
must be managed with care. It is recommended to choose between one of the two following schemes:

1. Put the team member mainly responsible for the package in the Maintainer field. In the Uploaders,
put the mailing list address, and the team members who care for the package.

2. Put the mailing list address in the Maintainer field. In the Uploaders field, put the team members who
care for the package. In this case, you must make sure the mailing list accept bug reports without any human
interaction (like moderation for non-subscribers).

In any case, it is a bad idea to automatically put all team members in the Uploaders field. It clutters the
Developer's Package Overview listing (see Section 4.11) with packages one doesn't really care for, and creates a
false sense of good maintenance. For the same reason, team members do not need to add themselves to the Uplo
aders field just because they are uploading the package once, they can do a “Team upload” (see Section 5.11.7).
Conversely, it is a bad idea to keep a package with only the mailing list address as a Maintainer and no Uploa
ders.

5.13 The testing distribution

5.13.1 Basics
Packages are usually installed into the testing distribution after they have undergone some degree of testing
in unstable.

They must be in sync on all architectures and mustn't have dependencies that make them uninstallable; they
also have to have generally no known release-critical bugs at the time they're installed into testing. This way,
testing should always be close to being a release candidate. Please see below for details.

5.13.2 Updates from unstable
The scripts that update the testing distribution are run twice each day, right after the installation of the updated
packages; these scripts are called britney. They generate the Packages files for the testing distribution,
but they do so in an intelligent manner; they try to avoid any inconsistency and to use only non-buggy packages.

The inclusion of a package from unstable is conditional on the following:

• The package must have been available in unstable for 2, 5 or 10 days, depending on the urgency (high,
medium or low). Please note that the urgency is sticky, meaning that the highest urgency uploaded since
the previous testing transition is taken into account. Those delays may be doubled during a freeze, or
testing transitions may be switched off altogether;

• It must not have new release-critical bugs (RC bugs affecting the version available in unstable, but not
affecting the version in testing);

• It must be available on all architectures on which it has previously been built in unstable. dak ls may be
of interest to check that information;

43

CHAPTER 5. MANAGING PACKAGES 5.13. THE TESTING DISTRIBUTION

• It must not break any dependency of a package which is already available in testing;

• The packages on which it depends must either be available in testing or they must be accepted into tes
ting at the same time (and they will be if they fulfill all the necessary criteria).

To find out whether a package is progressing into testing or not, see the testing script output on the web
page of the testing distribution, or use the program grep-excuseswhich is in thedevscripts package. This utility
can easily be used in a crontab(5) to keep yourself informed of the progression of your packages into testing.

The update_excuses file does not always give the precise reason why the package is refused; you may have
to find it on your own by looking for what would break with the inclusion of the package. The testing web page
gives some more information about the usual problems which may be causing such troubles.

Sometimes, some packages never enter testing because the set of interrelationship is too complicated and
cannot be sorted out by the scripts. See below for details.

Some further dependency analysis is shown on http://release.debian.org/migration/ — but
be warned, this page also shows build dependencies which are not considered by britney.

5.13.2.1 Out-of-date

For the testing migration script, outdated means: There are different versions in unstable for the release
architectures (except for the architectures in fuckedarches; fuckedarches is a list of architectures that don't keep up
(in update_out.py), but currently, it's empty). outdated has nothing whatsoever to do with the architectures
this package has in testing.

Consider this example:

alpha arm
testing 1 -
unstable 1 2

The package is out of date on alpha in unstable, and will not go to testing. Removing the package
would not help at all, the package is still out of date on alpha, and will not propagate to testing.

However, if ftp-master removes a package in unstable (here on arm):

alpha arm hurd-i386
testing 1 1 -
unstable 2 - 1

In this case, the package is up to date on all release architectures in unstable (and the extra hurd-i386
doesn't matter, as it's not a release architecture).

Sometimes, the question is raised if it is possible to allow packages in that are not yet built on all architectures:
No. Just plainly no. (Except if you maintain glibc or so.)

5.13.2.2 Removals from testing

Sometimes, a package is removed to allow another package in: This happens only to allow another package to go
in if it's ready in every other sense. Suppose e.g. that a cannot be installed with the new version of b; then a may
be removed to allow b in.

Of course, there is another reason to remove a package from testing: It's just too buggy (and having a single
RC-bug is enough to be in this state).

Furthermore, if a package has been removed from unstable, and no package in testing depends on it any
more, then it will automatically be removed.

5.13.2.3 Circular dependencies

A situation which is not handled very well by britney is if package a depends on the new version of package b, and
vice versa.

An example of this is:

testing unstable
a 1; depends: b=1 2; depends: b=2
b 1; depends: a=1 2; depends: a=2

44

http://www.debian.org/devel/testing
http://www.debian.org/devel/testing
http://www.debian.org/devel/testing
http://release.debian.org/migration/

CHAPTER 5. MANAGING PACKAGES 5.13. THE TESTING DISTRIBUTION

Neither package a nor package b is considered for update.
Currently, this requires some manual hinting from the release team. Please contact them by sending mail to

debian-release@lists.debian.org if this happens to one of your packages.

5.13.2.4 Influence of package in testing

Generally, there is nothing that the status of a package in testing means for transition of the next version from
unstable to testing, with two exceptions: If the RC-bugginess of the package goes down, it may go in even
if it is still RC-buggy. The second exception is if the version of the package in testing is out of sync on the
different arches: Then any arch might just upgrade to the version of the source package; however, this can happen
only if the package was previously forced through, the arch is in fuckedarches, or there was no binary package of
that arch present in unstable at all during the testing migration.

In summary this means: The only influence that a package being in testing has on a new version of the same
package is that the new version might go in easier.

5.13.2.5 Details

If you are interested in details, this is how britney works:
The packages are looked at to determine whether they are valid candidates. This gives the update excuses. The

most common reasons why a package is not considered are too young, RC-bugginess, and out of date on some
arches. For this part of britney, the release managers have hammers of various sizes to force britney to consider a
package. (Also, the base freeze is coded in that part of britney.) (There is a similar thing for binary-only updates,
but this is not described here. If you're interested in that, please peruse the code.)

Now, the more complex part happens: Britney tries to update testing with the valid candidates. For that,
britney tries to add each valid candidate to the testing distribution. If the number of uninstallable packages in
testing doesn't increase, the package is accepted. From that point on, the accepted package is considered to be
part of testing, such that all subsequent installability tests include this package. Hints from the release team are
processed before or after this main run, depending on the exact type.

If you want to see more details, you can look it up on http://ftp-master.debian.org/testing/
update_output/.

The hints are available via http://ftp-master.debian.org/testing/hints/.

5.13.3 Direct updates to testing
The testing distribution is fed with packages from unstable according to the rules explained above. However,
in some cases, it is necessary to upload packages built only for testing. For that, you may want to upload to
testing-proposed-updates.

Keep in mind that packages uploaded there are not automatically processed, they have to go through the hands
of the release manager. So you'd better have a good reason to upload there. In order to know what a good reason is
in the release managers' eyes, you should read the instructions that they regularly give on debian-devel-announce@
lists.debian.org.

You should not upload to testing-proposed-updates when you can update your packages through
unstable. If you can't (for example because you have a newer development version in unstable), you may
use this facility, but it is recommended that you ask for authorization from the release manager first. Even if a
package is frozen, updates through unstable are possible, if the upload via unstable does not pull in any new
dependencies.

Version numbers are usually selected by adding the codename of the testing distribution and a running
number, like 1.2squeeze1 for the first upload through testing-proposed-updates of package version
1.2.

Please make sure you didn't miss any of these items in your upload:

• Make sure that your package really needs to go through testing-proposed-updates, and can't go
through unstable;

• Make sure that you included only the minimal amount of changes;

• Make sure that you included an appropriate explanation in the changelog;

• Make sure that you've written testing or testing-proposed-updates into your target distribution;

• Make sure that you've built and tested your package in testing, not in unstable;

45

mailto:debian-release@lists.debian.org
http://ftp-master.debian.org/testing/update_output/
http://ftp-master.debian.org/testing/update_output/
http://ftp-master.debian.org/testing/hints/
mailto:debian-devel-announce@lists.debian.org
mailto:debian-devel-announce@lists.debian.org

CHAPTER 5. MANAGING PACKAGES 5.13. THE TESTING DISTRIBUTION

• Make sure that your version number is higher than the version in testing and testing-proposed-
updates, and lower than in unstable;

• After uploading and successful build on all platforms, contact the release team at debian-release@lists.debian.
org and ask them to approve your upload.

5.13.4 Frequently asked questions
5.13.4.1 What are release-critical bugs, and how do they get counted?

All bugs of some higher severities are by default considered release-critical; currently, these arecritical, grave
and serious bugs.

Such bugs are presumed to have an impact on the chances that the package will be released with the stable
release of Debian: in general, if a package has open release-critical bugs filed on it, it won't get into testing, and
consequently won't be released in stable.

The unstable bug count are all release-critical bugs which are marked to apply to package/version com-
binations that are available in unstable for a release architecture. The testing bug count is defined analogously.

5.13.4.2 How could installing a package into testing possibly break other packages?

The structure of the distribution archives is such that they can only contain one version of a package; a package
is defined by its name. So when the source package acmefoo is installed into testing, along with its binary
packages acme-foo-bin, acme-bar-bin, libacme-foo1 and libacme-foo-dev, the old version is
removed.

However, the old version may have provided a binary package with an old soname of a library, such as lib
acme-foo0. Removing the old acmefoo will remove libacme-foo0, which will break any packages which
depend on it.

Evidently, this mainly affects packages which provide changing sets of binary packages in different versions
(in turn, mainly libraries). However, it will also affect packages upon which versioned dependencies have been
declared of the ==, <=, or << varieties.

When the set of binary packages provided by a source package change in this way, all the packages that depended
on the old binaries will have to be updated to depend on the new binaries instead. Because installing such a source
package into testing breaks all the packages that depended on it in testing, some care has to be taken now:
all the depending packages must be updated and ready to be installed themselves so that they won't be broken, and,
once everything is ready, manual intervention by the release manager or an assistant is normally required.

If you are having problems with complicated groups of packages like this, contact debian-devel@lists.debian.
org or debian-release@lists.debian.org for help.

46

mailto:debian-release@lists.debian.org
mailto:debian-release@lists.debian.org
mailto:debian-devel@lists.debian.org
mailto:debian-devel@lists.debian.org
mailto:debian-release@lists.debian.org

Chapter 6

Best Packaging Practices

Debian's quality is largely due to the Debian Policy, which defines explicit baseline requirements which all Debian
packages must fulfill. Yet there is also a shared history of experience which goes beyond the Debian Policy, an
accumulation of years of experience in packaging. Many very talented people have created great tools, tools which
help you, the Debian maintainer, create and maintain excellent packages.

This chapter provides some best practices for Debian developers. All recommendations are merely that, and
are not requirements or policy. These are just some subjective hints, advice and pointers collected from Debian
developers. Feel free to pick and choose whatever works best for you.

6.1 Best practices for debian/rules

The following recommendations apply to the debian/rules file. Since debian/rules controls the build
process and selects the files which go into the package (directly or indirectly), it's usually the file maintainers spend
the most time on.

6.1.1 Helper scripts

The rationale for using helper scripts in debian/rules is that they let maintainers use and share common logic
among many packages. Take for instance the question of installing menu entries: you need to put the file into/usr/
share/menu (or /usr/lib/menu for executable binary menufiles, if this is needed), and add commands to
the maintainer scripts to register and unregister the menu entries. Since this is a very common thing for packages
to do, why should each maintainer rewrite all this on their own, sometimes with bugs? Also, supposing the menu
directory changed, every package would have to be changed.

Helper scripts take care of these issues. Assuming you comply with the conventions expected by the helper
script, the helper takes care of all the details. Changes in policy can be made in the helper script; then packages
just need to be rebuilt with the new version of the helper and no other changes.

Appendix A contains a couple of different helpers. The most common and best (in our opinion) helper system
is debhelper. Previous helper systems, such as debmake, were monolithic: you couldn't pick and choose which
part of the helper you found useful, but had to use the helper to do everything. debhelper, however, is a number of
separate little dh_* programs. For instance, dh_installman installs and compresses man pages, dh_installmenu
installs menu files, and so on. Thus, it offers enough flexibility to be able to use the little helper scripts, where
useful, in conjunction with hand-crafted commands in debian/rules.

You can get started with debhelper by reading debhelper(1), and looking at the examples that come with
the package. dh_make, from the dh-make package (see Section A.3.2), can be used to convert a vanilla source
package to a debhelperized package. This shortcut, though, should not convince you that you do not need to
bother understanding the individual dh_* helpers. If you are going to use a helper, you do need to take the time to
learn to use that helper, to learn its expectations and behavior.

Some people feel that vanilla debian/rules files are better, since you don't have to learn the intricacies of
any helper system. This decision is completely up to you. Use what works for you. Many examples of vanilla
debian/rules files are available at http://arch.debian.org/arch/private/srivasta/.

47

http://www.debian.org/doc/debian-policy/
http://arch.debian.org/arch/private/srivasta/

CHAPTER 6. BEST PACKAGING PRACTICES 6.2. BEST PRACTICES FOR DEBIAN/CONTROL

6.1.2 Separating your patches into multiple files
Big, complex packages may have many bugs that you need to deal with. If you correct a number of bugs directly
in the source, and you're not careful, it can get hard to differentiate the various patches that you applied. It can get
quite messy when you have to update the package to a new upstream version which integrates some of the fixes (but
not all). You can't take the total set of diffs (e.g., from .diff.gz) and work out which patch sets to back out as a
unit as bugs are fixed upstream.

Fortunately, with the source format “3.0 (quilt)” it is now possible to keep patches separate without having
to modify debian/rules to setup a patch system. Patches are stored in debian/patches/ and when the
source package is unpacked patches listed in debian/patches/series are automatically applied. As the
name implies, patches can be managed with quilt.

When using the older source “1.0”, it's also possible to separate patches but a dedicated patch system must be
used: the patch files are shipped within the Debian patch file (.diff.gz), usually within the debian/ directory.
The only difference is that they aren't applied immediately by dpkg-source, but by the build rule of debian/
rules, through a dependency on the patch rule. Conversely, they are reverted in the clean rule, through a
dependency on the unpatch rule.

quilt is the recommended tool for this. It does all of the above, and also allows to manage patch series. See the
quilt package for more information.

There are other tools to manage patches, like dpatch, and the patch system integrated with cdbs.

6.1.3 Multiple binary packages
A single source package will often build several binary packages, either to provide several flavors of the same
software (e.g., the vim source package) or to make several small packages instead of a big one (e.g., so the user
can install only the subset needed, and thus save some disk space).

The second case can be easily managed in debian/rules. You just need to move the appropriate files
from the build directory into the package's temporary trees. You can do this using install or dh_install from
debhelper. Be sure to check the different permutations of the various packages, ensuring that you have the
inter-package dependencies set right in debian/control.

The first case is a bit more difficult since it involves multiple recompiles of the same software but with differ-
ent configuration options. The vim source package is an example of how to manage this using an hand-crafted
debian/rules file.

6.2 Best practices for debian/control
The following practices are relevant to the debian/control file. They supplement the Policy on package de-
scriptions.

The description of the package, as defined by the corresponding field in the control file, contains both the
package synopsis and the long description for the package. Section 6.2.1 describes common guidelines for both
parts of the package description. Following that, Section 6.2.2 provides guidelines specific to the synopsis, and
Section 6.2.3 contains guidelines specific to the description.

6.2.1 General guidelines for package descriptions
The package description should be written for the average likely user, the average person who will use and benefit
from the package. For instance, development packages are for developers, and can be technical in their language.
More general-purpose applications, such as editors, should be written for a less technical user.

Our review of package descriptions lead us to conclude that most package descriptions are technical, that is, are
not written to make sense for non-technical users. Unless your package really is only for technical users, this is a
problem.

How do you write for non-technical users? Avoid jargon. Avoid referring to other applications or frameworks
that the user might not be familiar with — GNOME or KDE is fine, since users are probably familiar with these
terms, but GTK+ is probably not. Try not to assume any knowledge at all. If you must use technical terms, introduce
them.

Be objective. Package descriptions are not the place for advocating your package, no matter how much you love
it. Remember that the reader may not care about the same things you care about.

References to the names of any other software packages, protocol names, standards, or specifications should use
their canonical forms, if one exists. For example, use X Window System, X11, or X; not X Windows, X-Windows,
or X Window. Use GTK+, not GTK or gtk. Use GNOME, not Gnome. Use PostScript, not Postscript or postscript.

48

http://www.debian.org/doc/debian-policy/ch-binary.html#s-descriptions
http://www.debian.org/doc/debian-policy/ch-binary.html#s-descriptions

CHAPTER 6. BEST PACKAGING PRACTICES 6.2. BEST PRACTICES FOR DEBIAN/CONTROL

If you are having problems writing your description, you may wish to send it along to debian-l10n-english@
lists.debian.org and request feedback.

6.2.2 The package synopsis, or short description
Policy says the synopsis line (the short description) must be concise, not repeating the package name, but also
informative.

The synopsis functions as a phrase describing the package, not a complete sentence, so sentential punctuation
is inappropriate: it does not need extra capital letters or a final period (full stop). It should also omit any initial
indefinite or definite article — "a", "an", or "the". Thus for instance:

Package: libeg0
Description: exemplification support library

Technically this is a noun phrase minus articles, as opposed to a verb phrase. A good heuristic is that it should
be possible to substitute the package name and synopsis into this formula:

The package name provides {a,an,the,some} synopsis.
Sets of related packages may use an alternative scheme that divides the synopsis into two parts, the first a

description of the whole suite and the second a summary of the package's role within it:

Package: eg-tools
Description: simple exemplification system (utilities)

Package: eg-doc
Description: simple exemplification system - documentation

These synopses follow a modified formula. Where a package "name" has a synopsis "suite (role)" or "suite
- role", the elements should be phrased so that they fit into the formula:

The package name provides {a,an,the} role for the suite.

6.2.3 The long description
The long description is the primary information available to the user about a package before they install it. It should
provide all the information needed to let the user decide whether to install the package. Assume that the user has
already read the package synopsis.

The long description should consist of full and complete sentences.
The first paragraph of the long description should answer the following questions: what does the package do?

what task does it help the user accomplish? It is important to describe this in a non-technical way, unless of course
the audience for the package is necessarily technical.

The following paragraphs should answer the following questions: Why do I as a user need this package? What
other features does the package have? What outstanding features and deficiencies are there compared to other
packages (e.g., if you need X, use Y instead)? Is this package related to other packages in some way that is not
handled by the package manager (e.g., this is the client for the foo server)?

Be careful to avoid spelling and grammar mistakes. Ensure that you spell-check it. Both ispell and aspell have
special modes for checking debian/control files:

ispell -d american -g debian/control

aspell -d en -D -c debian/control

Users usually expect these questions to be answered in the package description:

• What does the package do? If it is an add-on to another package, then the short description of the package
we are an add-on to should be put in here.

• Why should I want this package? This is related to the above, but not the same (this is a mail user agent; this
is cool, fast, interfaces with PGP and LDAP and IMAP, has features X, Y, and Z).

• If this package should not be installed directly, but is pulled in by another package, this should be mentioned.

• If the package is experimental, or there are other reasons it should not be used, if there are other packages
that should be used instead, it should be here as well.

• How is this package different from the competition? Is it a better implementation? more features? different
features? Why should I choose this package.

49

mailto:debian-l10n-english@lists.debian.org
mailto:debian-l10n-english@lists.debian.org

CHAPTER 6. BEST PACKAGING PRACTICES 6.3. BEST PRACTICES FOR DEBIAN/CHANGELOG

6.2.4 Upstream home page
We recommend that you add the URL for the package's home page in the Homepage field of the Source section
in debian/control. Adding this information in the package description itself is considered deprecated.

6.2.5 Version Control System location
There are additional fields for the location of the Version Control System in debian/control.

6.2.5.1 Vcs-Browser

Value of this field should be a http:// URL pointing to a web-browsable copy of the Version Control System
repository used to maintain the given package, if available.

The information is meant to be useful for the final user, willing to browse the latest work done on the package
(e.g. when looking for the patch fixing a bug tagged as pending in the bug tracking system).

6.2.5.2 Vcs-*

Value of this field should be a string identifying unequivocally the location of the Version Control System repository
used to maintain the given package, if available. * identify the Version Control System; currently the following
systems are supported by the package tracking system: arch, bzr (Bazaar), cvs, darcs, git, hg (Mercurial),
mtn (Monotone), svn (Subversion). It is allowed to specify different VCS fields for the same package: they will
all be shown in the PTS web interface.

The information is meant to be useful for a user knowledgeable in the given Version Control System and willing
to build the current version of a package from the VCS sources. Other uses of this information might include
automatic building of the latest VCS version of the given package. To this end the location pointed to by the field
should better be version agnostic and point to the main branch (for VCSs supporting such a concept). Also, the
location pointed to should be accessible to the final user; fulfilling this requirement might imply pointing to an
anonymous access of the repository instead of pointing to an SSH-accessible version of the same.

In the following example, an instance of the field for a Subversion repository of the vim package is shown.
Note how the URL is in the svn:// scheme (instead of svn+ssh://) and how it points to the trunk/ branch.
The use of the Vcs-Browser and Homepage fields described above is also shown.

Source: vim
Section: editors
Priority: optional
<snip>
Vcs-Svn: svn://svn.debian.org/svn/pkg-vim/trunk/packages/vim
Vcs-Browser: http://svn.debian.org/wsvn/pkg-vim/trunk/packages/vim
Homepage: http://www.vim.org

6.3 Best practices for debian/changelog
The following practices supplement the Policy on changelog files.

6.3.1 Writing useful changelog entries
The changelog entry for a package revision documents changes in that revision, and only them. Concentrate on
describing significant and user-visible changes that were made since the last version.

Focus on what was changed — who, how and when are usually less important. Having said that, remember
to politely attribute people who have provided notable help in making the package (e.g., those who have sent in
patches).

There's no need to elaborate the trivial and obvious changes. You can also aggregate several changes in one
entry. On the other hand, don't be overly terse if you have undertaken a major change. Be especially clear if there
are changes that affect the behaviour of the program. For further explanations, use the README.Debian file.

Use common English so that the majority of readers can comprehend it. Avoid abbreviations, tech-speak and
jargon when explaining changes that close bugs, especially for bugs filed by users that did not strike you as partic-
ularly technically savvy. Be polite, don't swear.

50

http://www.debian.org/doc/debian-policy/ch-docs.html#s-changelogs

CHAPTER 6. BEST PACKAGING PRACTICES 6.3. BEST PRACTICES FOR DEBIAN/CHANGELOG

It is sometimes desirable to prefix changelog entries with the names of the files that were changed. However,
there's no need to explicitly list each and every last one of the changed files, especially if the change was small or
repetitive. You may use wildcards.

When referring to bugs, don't assume anything. Say what the problem was, how it was fixed, and append the
closes: #nnnnn string. See Section 5.8.4 for more information.

6.3.2 Common misconceptions about changelog entries

The changelog entries should not document generic packaging issues (Hey, if you're looking for foo.conf, it's in
/etc/blah/.), since administrators and users are supposed to be at least remotely acquainted with how such things are
generally arranged on Debian systems. Do, however, mention if you change the location of a configuration file.

The only bugs closed with a changelog entry should be those that are actually fixed in the same package revision.
Closing unrelated bugs in the changelog is bad practice. See Section 5.8.4.

The changelog entries should not be used for random discussion with bug reporters (I don't see segfaults when
starting foo with option bar; send in more info), general statements on life, the universe and everything (sorry this
upload took me so long, but I caught the flu), or pleas for help (the bug list on this package is huge, please lend
me a hand). Such things usually won't be noticed by their target audience, but may annoy people who wish to read
information about actual changes in the package. See Section 5.8.2 for more information on how to use the bug
tracking system.

It is an old tradition to acknowledge bugs fixed in non-maintainer uploads in the first changelog entry of the
proper maintainer upload. As we have version tracking now, it is enough to keep the NMUed changelog entries and
just mention this fact in your own changelog entry.

6.3.3 Common errors in changelog entries

The following examples demonstrate some common errors or examples of bad style in changelog entries.

* Fixed all outstanding bugs.

This doesn't tell readers anything too useful, obviously.

* Applied patch from Jane Random.

What was the patch about?

* Late night install target overhaul.

Overhaul which accomplished what? Is the mention of late night supposed to remind us that we shouldn't trust
that code?

* Fix vsync FU w/ ancient CRTs.

Too many acronyms, and it's not overly clear what the, uh, fsckup (oops, a curse word!) was actually about, or
how it was fixed.

* This is not a bug, closes: #nnnnnn.

First of all, there's absolutely no need to upload the package to convey this information; instead, use the bug
tracking system. Secondly, there's no explanation as to why the report is not a bug.

* Has been fixed for ages, but I forgot to close; closes: #54321.

If for some reason you didn't mention the bug number in a previous changelog entry, there's no problem, just
close the bug normally in the BTS. There's no need to touch the changelog file, presuming the description of the
fix is already in (this applies to the fixes by the upstream authors/maintainers as well, you don't have to track bugs
that they fixed ages ago in your changelog).

* Closes: #12345, #12346, #15432

Where's the description? If you can't think of a descriptive message, start by inserting the title of each different
bug.

51

CHAPTER 6. BEST PACKAGING PRACTICES 6.4. BEST PRACTICES FOR MAINTAINER SCRIPTS

6.3.4 Supplementing changelogs with NEWS.Debian files
Important news about changes in a package can also be put in NEWS.Debian files. The news will be displayed
by tools like apt-listchanges, before all the rest of the changelogs. This is the preferred means to let the user
know about significant changes in a package. It is better than using debconf notes since it is less annoying and
the user can go back and refer to the NEWS.Debian file after the install. And it's better than listing major changes
in README.Debian, since the user can easily miss such notes.

The file format is the same as a debian changelog file, but leave off the asterisks and describe each news item
with a full paragraph when necessary rather than the more concise summaries that would go in a changelog. It's a
good idea to run your file through dpkg-parsechangelog to check its formatting as it will not be automatically
checked during build as the changelog is. Here is an example of a real NEWS.Debian file:

cron (3.0pl1-74) unstable; urgency=low

The checksecurity script is no longer included with the cron package:
it now has its own package, checksecurity. If you liked the
functionality provided with that script, please install the new
package.

-- Steve Greenland <stevegr@debian.org> Sat, 6 Sep 2003 17:15:03 -0500

TheNEWS.Debian file is installed as/usr/share/doc/package/NEWS.Debian.gz. It is compressed,
and always has that name even in Debian native packages. If you use debhelper, dh_installchangelogs
will install debian/NEWS files for you.

Unlike changelog files, you need not update NEWS.Debian files with every release. Only update them if you
have something particularly newsworthy that user should know about. If you have no news at all, there's no need to
ship a NEWS.Debian file in your package. No news is good news!

6.4 Best practices for maintainer scripts
Maintainer scripts include the files debian/postinst, debian/preinst, debian/prerm and debian/
postrm. These scripts take care of any package installation or deinstallation setup which isn't handled merely by
the creation or removal of files and directories. The following instructions supplement the Debian Policy.

Maintainer scripts must be idempotent. That means that you need to make sure nothing bad will happen if the
script is called twice where it would usually be called once.

Standard input and output may be redirected (e.g. into pipes) for logging purposes, so don't rely on them being
a tty.

All prompting or interactive configuration should be kept to a minimum. When it is necessary, you should use
the debconf package for the interface. Remember that prompting in any case can only be in the configure
stage of the postinst script.

Keep the maintainer scripts as simple as possible. We suggest you use pure POSIX shell scripts. Remember,
if you do need any bash features, the maintainer script must have a bash shebang line. POSIX shell or Bash are
preferred to Perl, since they enable debhelper to easily add bits to the scripts.

If you change your maintainer scripts, be sure to test package removal, double installation, and purging. Be
sure that a purged package is completely gone, that is, it must remove any files created, directly or indirectly, in any
maintainer script.

If you need to check for the existence of a command, you should use something like

if [-x /usr/sbin/install-docs]; then ...

If you don't wish to hard-code the path of a command in your maintainer script, the following POSIX-compliant
shell function may help:

pathfind() {
OLDIFS="$IFS"
IFS=:
for p in $PATH; do

if [-x "$p/$*"]; then
IFS="$OLDIFS"
return 0

fi
done

52

http://www.debian.org/doc/debian-policy/

CHAPTER 6. BEST PACKAGING PRACTICES 6.5. CONFIGURATION MANAGEMENT WITH…

IFS="$OLDIFS"
return 1

}

You can use this function to search $PATH for a command name, passed as an argument. It returns true (zero)
if the command was found, and false if not. This is really the most portable way, since command -v, type, and
which are not POSIX.

While which is an acceptable alternative, since it is from the required debianutils package, it's not on the
root partition. That is, it's in /usr/bin rather than /bin, so one can't use it in scripts which are run before the
/usr partition is mounted. Most scripts won't have this problem, though.

6.5 Configuration management with debconf
Debconf is a configuration management system which can be used by all the various packaging scripts (postinst
mainly) to request feedback from the user concerning how to configure the package. Direct user interactions must
now be avoided in favor of debconf interaction. This will enable non-interactive installations in the future.

Debconf is a great tool but it is often poorly used. Many common mistakes are listed in the debconf-devel(7)
man page. It is something that you must read if you decide to use debconf. Also, we document some best practices
here.

These guidelines include some writing style and typography recommendations, general considerations about
debconf usage as well as more specific recommendations for some parts of the distribution (the installation system
for instance).

6.5.1 Do not abuse debconf
Since debconf appeared in Debian, it has been widely abused and several criticisms received by the Debian dis-
tribution come from debconf abuse with the need of answering a wide bunch of questions before getting any little
thing installed.

Keep usage notes to what they belong: the NEWS.Debian, or README.Debian file. Only use notes for
important notes which may directly affect the package usability. Remember that notes will always block the install
until confirmed or bother the user by email.

Carefully choose the questions priorities in maintainer scripts. See debconf-devel(7) for details about priorities.
Most questions should use medium and low priorities.

6.5.2 General recommendations for authors and translators
6.5.2.1 Write correct English

Most Debian package maintainers are not native English speakers. So, writing properly phrased templates may not
be easy for them.

Please use (and abuse) debian-l10n-english@lists.debian.org mailing list. Have your templates proofread.
Badly written templates give a poor image of your package, of your work... or even of Debian itself.
Avoid technical jargon as much as possible. If some terms sound common to you, they may be impossible to

understand for others. If you cannot avoid them, try to explain them (use the extended description). When doing
so, try to balance between verbosity and simplicity.

6.5.2.2 Be kind to translators

Debconf templates may be translated. Debconf, along with its sister package po-debconf offers a simple framework
for getting templates translated by translation teams or even individuals.

Please use gettext-based templates. Install po-debconf on your development system and read its documen-
tation (man po-debconf is a good start).

Avoid changing templates too often. Changing templates text induces more work to translators which will
get their translation fuzzied. A fuzzy translation is a string for which the original changed since it was translated,
therefore requiring some update by a translator to be usable. When changes are small enough, the original translation
is kept in PO files but marked as fuzzy.

If you plan to do changes to your original templates, please use the notification system provided with the po-
debconf package, namely the podebconf-report-po, to contact translators. Most active translators are very re-
sponsive and getting their work included along with your modified templates will save you additional uploads. If

53

mailto:debian-l10n-english@lists.debian.org

CHAPTER 6. BEST PACKAGING PRACTICES 6.5. CONFIGURATION MANAGEMENT WITH…

you use gettext-based templates, the translator's name and e-mail addresses are mentioned in the PO files headers
and will be used by podebconf-report-po.

A recommended use of that utility is:

cd debian/po && podebconf-report-po --call --languageteam --withtranslators -- ←↩
deadline="+10 days"

This command will first synchronize the PO and POT files in debian/po with the templates files listed in
debian/po/POTFILES.in. Then, it will send a call for new translations, in the debian-i18n@lists.debian.
org mailing list. Finally, it will also send a call for translation updates to the language team (mentioned in the
Language-Team field of each PO file) as well as the last translator (mentioned in Last-translator).

Giving a deadline to translators is always appreciated, so that they can organize their work. Please remember
that some translation teams have a formalized translate/review process and a delay lower than 10 days is considered
as unreasonable. A shorter delay puts too much pressure on translation teams and should be kept for very minor
changes.

If in doubt, you may also contact the translation team for a given language (debian-l10n-xxxxx@lists.debian.org),
or the debian-i18n@lists.debian.org mailing list.

6.5.2.3 Unfuzzy complete translations when correcting typos and spelling

When the text of a debconf template is corrected and you are sure that the change does not affect translations,
please be kind to translators and unfuzzy their translations.

If you don't do so, the whole template will not be translated as long as a translator will send you an update.
To unfuzzy translations, you can use msguntypot (part of the po4a package).

1. Regenerate the POT and PO files.

debconf-updatepo

2. Make a copy of the POT file.

cp templates.pot templates.pot.orig

3. Make a copy of all the PO files.

mkdir po_fridge; cp *.po po_fridge

4. Change the debconf template files to fix the typos.

5. Regenerate the POT and PO files (again).

debconf-updatepo

At this point, the typo fix fuzzied all the translations, and this unfortunate change is the only one between the
PO files of your main directory and the one from the fridge. Here is how to solve this.

6. Discard fuzzy translation, restore the ones from the fridge.

cp po_fridge/*.po .

7. Manually merge the PO files with the new POT file, but taking the useless fuzzy into account.

msguntypot -o templates.pot.orig -n templates.pot *.po

8. Clean up.

rm -rf templates.pot.orig po_fridge

54

mailto:debian-i18n@lists.debian.org
mailto:debian-i18n@lists.debian.org
mailto:debian-i18n@lists.debian.org

CHAPTER 6. BEST PACKAGING PRACTICES 6.5. CONFIGURATION MANAGEMENT WITH…

6.5.2.4 Do not make assumptions about interfaces

Templates text should not make reference to widgets belonging to some debconf interfaces. Sentences like If you
answer Yes... have no meaning for users of graphical interfaces which use checkboxes for boolean questions.

String templates should also avoid mentioning the default values in their description. First, because this is
redundant with the values seen by the users. Also, because these default values may be different from the maintainer
choices (for instance, when the debconf database was preseeded).

More generally speaking, try to avoid referring to user actions. Just give facts.

6.5.2.5 Do not use first person

You should avoid the use of first person (I will do this... or We recommend...). The computer is not a person and the
Debconf templates do not speak for the Debian developers. You should use neutral construction. Those of you who
already wrote scientific publications, just write your templates like you would write a scientific paper. However,
try using active voice if still possible, like Enable this if ... instead of This can be enabled if....

6.5.2.6 Be gender neutral

The world is made of men and women. Please use gender-neutral constructions in your writing.

6.5.3 Templates fields definition
This part gives some information which is mostly taken from the debconf-devel(7) manual page.

6.5.3.1 Type

6.5.3.1.1 string Results in a free-form input field that the user can type any string into.

6.5.3.1.2 password Prompts the user for a password. Use this with caution; be aware that the password the user
enters will be written to debconf's database. You should probably clean that value out of the database as soon as is
possible.

6.5.3.1.3 boolean A true/false choice. Remember: true/false, not yes/no...

6.5.3.1.4 select A choice between one of a number of values. The choices must be specified in a field named
'Choices'. Separate the possible values with commas and spaces, like this: Choices:yes, no, maybe.

If choices are translatable strings, the 'Choices' field may be marked as translatable by using __Choices. The
double underscore will split out each choice in a separate string.

The po-debconf system also offers interesting possibilities to only mark some choices as translatable. Example:

Template: foo/bar
Type: Select
#flag:translate:3
__Choices: PAL, SECAM, Other
_Description: TV standard:
Please choose the TV standard used in your country.

In that example, only the 'Other' string is translatable while others are acronyms that should not be translated.
The above allows only 'Other' to be included in PO and POT files.

The debconf templates flag system offers many such possibilities. The po-debconf(7) manual page lists all these
possibilities.

6.5.3.1.5 multiselect Like the select data type, except the user can choose any number of items from the choices
list (or chose none of them).

6.5.3.1.6 note Rather than being a question per se, this datatype indicates a note that can be displayed to the
user. It should be used only for important notes that the user really should see, since debconf will go to great pains
to make sure the user sees it; halting the install for them to press a key, and even mailing the note to them in some
cases.

55

CHAPTER 6. BEST PACKAGING PRACTICES 6.5. CONFIGURATION MANAGEMENT WITH…

6.5.3.1.7 text This type is now considered obsolete: don't use it.

6.5.3.1.8 error This type is designed to handle error messages. It is mostly similar to the note type. Frontends
may present it differently (for instance, the dialog frontend of cdebconf draws a red screen instead of the usual blue
one).

It is recommended to use this type for any message that needs user attention for a correction of any kind.

6.5.3.2 Description: short and extended description

Template descriptions have two parts: short and extended. The short description is in the Description: line of the
template.

The short description should be kept short (50 characters or so) so that it may be accommodated by most
debconf interfaces. Keeping it short also helps translators, as usually translations tend to end up being longer than
the original.

The short description should be able to stand on its own. Some interfaces do not show the long description by
default, or only if the user explicitely asks for it or even do not show it at all. Avoid things like What do you want
to do?

The short description does not necessarily have to be a full sentence. This is part of the keep it short and efficient
recommendation.

The extended description should not repeat the short description word for word. If you can't think up a long
description, then first, think some more. Post to debian-devel. Ask for help. Take a writing class! That extended
description is important. If after all that you still can't come up with anything, leave it blank.

The extended description should use complete sentences. Paragraphs should be kept short for improved read-
ability. Do not mix two ideas in the same paragraph but rather use another paragraph.

Don't be too verbose. User tend to ignore too long screens. 20 lines are by experience a border you shouldn't
cross, because that means that in the classical dialog interface, people will need to scroll, and lot of people just don't
do that.

The extended description should never include a question.
For specific rules depending on templates type (string, boolean, etc.), please read below.

6.5.3.3 Choices

This field should be used for select and multiselect types. It contains the possible choices which will be presented
to users. These choices should be separated by commas.

6.5.3.4 Default

This field is optional. It contains the default answer for string, select and multiselect templates. For multiselect
templates, it may contain a comma-separated list of choices.

6.5.4 Templates fields specific style guide
6.5.4.1 Type field

No specific indication except: use the appropriate type by referring to the previous section.

6.5.4.2 Description field

Below are specific instructions for properly writing the Description (short and extended) depending on the template
type.

6.5.4.2.1 String/password templates

• The short description is a prompt and not a title. Avoid question style prompts (IP Address?) in favour of
opened prompts (IP address:). The use of colons is recommended.

• The extended description is a complement to the short description. In the extended part, explain what is being
asked, rather than ask the same question again using longer words. Use complete sentences. Terse writing
style is strongly discouraged.

56

CHAPTER 6. BEST PACKAGING PRACTICES 6.5. CONFIGURATION MANAGEMENT WITH…

6.5.4.2.2 Boolean templates

• The short description should be phrased in the form of a question which should be kept short and should
generally end with a question mark. Terse writing style is permitted and even encouraged if the question is
rather long (remember that translations are often longer than original versions).

• Again, please avoid referring to specific interface widgets. A common mistake for such templates is if you
answer Yes-type constructions.

6.5.4.2.3 Select/Multiselect

• The short description is a prompt and not a title. Do not use useless Please choose... constructions. Users
are clever enough to figure out they have to choose something...:)

• The extended description will complete the short description. It may refer to the available choices. It may
also mention that the user may choose more than one of the available choices, if the template is a multiselect
one (although the interface often makes this clear).

6.5.4.2.4 Notes

• The short description should be considered to be a title.

• The extended description is what will be displayed as a more detailed explanation of the note. Phrases, no
terse writing style.

• Do not abuse debconf. Notes are the most common way to abuse debconf. As written in debconf-devel
manual page: it's best to use them only for warning about very serious problems. The NEWS.Debian or
README.Debian files are the appropriate location for a lot of notes. If, by reading this, you consider con-
verting your Note type templates to entries in NEWS.Debian or README.Debian, plus consider keeping
existing translations for the future.

6.5.4.3 Choices field

If the Choices are likely to change often, please consider using the __Choices trick. This will split each individual
choice into a single string, which will considerably help translators for doing their work.

6.5.4.4 Default field

If the default value, for a select template, is likely to vary depending on the user language (for instance, if the choice
is a language choice), please use the _Default trick.

This special field allow translators to put the most appropriate choice according to their own language. It will
become the default choice when their language is used while your own mentioned Default Choice will be used when
using English.

Example, taken from the geneweb package templates:

Template: geneweb/lang
Type: select
__Choices: Afrikaans (af), Bulgarian (bg), Catalan (ca), Chinese (zh), Czech (cs) ←↩

, Danish (da), Dutch (nl), English (en), Esperanto (eo), Estonian (et), ←↩
Finnish (fi), French (fr), German (de), Hebrew (he), Icelandic (is), Italian ←↩
(it), Latvian (lv), Norwegian (no), Polish (pl), Portuguese (pt), Romanian (←↩
ro), Russian (ru), Spanish (es), Swedish (sv)

This is the default choice. Translators may put their own language here
instead of the default.
WARNING : you MUST use the ENGLISH NAME of your language
For instance, the french translator will need to put French (fr) here.
_Default: English[translators, please see comment in PO files]
_Description: Geneweb default language:

Note the use of brackets which allow internal comments in debconf fields. Also note the use of comments which
will show up in files the translators will work with.

The comments are needed as the _Default trick is a bit confusing: the translators may put their own choice

57

CHAPTER 6. BEST PACKAGING PRACTICES 6.6. INTERNATIONALIZATION

6.5.4.5 Default field

Do NOT use empty default field. If you don't want to use default values, do not use Default at all.
If you use po-debconf (and you should, see Section 6.5.2.2), consider making this field translatable, if you think

it may be translated.
If the default value may vary depending on language/country (for instance the default value for a language

choice), consider using the special _Default type documented in po-debconf(7).

6.6 Internationalization

This section contains global information for developers to make translators' life easier. More information for trans-
lators and developers interested in internationalization are available in the Internationalisation and localisation in
Debian documentation.

6.6.1 Handling debconf translations

Like porters, translators have a difficult task. They work on many packages and must collaborate with many different
maintainers. Moreover, most of the time, they are not native English speakers, so you may need to be particularly
patient with them.

The goal of debconf was to make packages configuration easier for maintainers and for users. Originally,
translation of debconf templates was handled with debconf-mergetemplate. However, that technique is now dep-
recated; the best way to accomplish debconf internationalization is by using the po-debconf package. This
method is easier both for maintainer and translators; transition scripts are provided.

Using po-debconf, the translation is stored in .po files (drawing from gettext translation techniques). Spe-
cial template files contain the original messages and mark which fields are translatable. When you change the value
of a translatable field, by calling debconf-updatepo, the translation is marked as needing attention from the trans-
lators. Then, at build time, the dh_installdebconf program takes care of all the needed magic to add the template
along with the up-to-date translations into the binary packages. Refer to the po-debconf(7) manual page for details.

6.6.2 Internationalized documentation

Internationalizing documentation is crucial for users, but a lot of labor. There's no way to eliminate all that work,
but you can make things easier for translators.

If you maintain documentation of any size, it is easier for translators if they have access to a source control
system. That lets translators see the differences between two versions of the documentation, so, for instance, they
can see what needs to be retranslated. It is recommended that the translated documentation maintain a note about
what source control revision the translation is based on. An interesting system is provided by doc-check in the
debian-installer package, which shows an overview of the translation status for any given language, using
structured comments for the current revision of the file to be translated and, for a translated file, the revision of the
original file the translation is based on. You might wish to adapt and provide that in your VCS area.

If you maintain XML or SGML documentation, we suggest that you isolate any language-independent infor-
mation and define those as entities in a separate file which is included by all the different translations. This makes
it much easier, for instance, to keep URLs up to date across multiple files.

Some tools (e.g. po4a, poxml, or the translate-toolkit) are specialized in extracting the translatable
material from different formats. They produce PO files, a format quite common to translators, which permits to see
what needs to be retranslated when the translated document is updated.

6.7 Common packaging situations

6.7.1 Packages using autoconf/automake

Keeping autoconf 's config.sub and config.guess files up to date is critical for porters, especially on more
volatile architectures. Some very good packaging practices for any package using autoconf and/or automake have
been synthesized in /usr/share/doc/autotools-dev/README.Debian.gz from the autotools-
dev package. You're strongly encouraged to read this file and to follow the given recommendations.

58

http://people.debian.org/~jfs/debconf6/html/
http://people.debian.org/~jfs/debconf6/html/
http://svn.debian.org/wsvn/d-i/trunk/manual/scripts/doc-check?op=file

CHAPTER 6. BEST PACKAGING PRACTICES 6.7. COMMON PACKAGING SITUATIONS

6.7.2 Libraries

Libraries are always difficult to package for various reasons. The policy imposes many constraints to ease their
maintenance and to make sure upgrades are as simple as possible when a new upstream version comes out. Breakage
in a library can result in dozens of dependent packages breaking.

Good practices for library packaging have been grouped in the library packaging guide.

6.7.3 Documentation

Be sure to follow the Policy on documentation.
If your package contains documentation built from XML or SGML, we recommend you not ship the XML or

SGML source in the binary package(s). If users want the source of the documentation, they should retrieve the
source package.

Policy specifies that documentation should be shipped in HTML format. We also recommend shipping docu-
mentation in PDF and plain text format if convenient and if output of reasonable quality is possible. However, it is
generally not appropriate to ship plain text versions of documentation whose source format is HTML.

Major shipped manuals should register themselves with doc-base on installation. See the doc-base pack-
age documentation for more information.

Debian policy (section 12.1) directs that manual pages should accompany every program, utility, and function,
and suggests them for other objects like configuration files. If the work you are packaging does not have such
manual pages, consider writing them for inclusion in your package, and submitting them upstream.

The manpages do not need to be written directly in the troff format. Popular source formats are Docbook, POD
and reST, which can be converted using xsltproc, pod2man and rst2man respectively. To a lesser extent, the
help2man program can also be used to write a stub.

6.7.4 Specific types of packages

Several specific types of packages have special sub-policies and corresponding packaging rules and practices:

• Perl related packages have a Perl policy, some examples of packages following that policy are libdbd-pg-
perl (binary perl module) or libmldbm-perl (arch independent perl module).

• Python related packages have their python policy; see /usr/share/doc/python/python-policy.
txt.gz in the python package.

• Emacs related packages have the emacs policy.

• Java related packages have their java policy.

• Ocaml related packages have their own policy, found in/usr/share/doc/ocaml/ocaml_packaging_
policy.gz from the ocaml package. A good example is the camlzip source package.

• Packages providing XML or SGML DTDs should conform to the recommendations found in the sgml-
base-doc package.

• Lisp packages should register themselves with common-lisp-controller, about which see /usr/
share/doc/common-lisp-controller/README.packaging.

6.7.5 Architecture-independent data

It is not uncommon to have a large amount of architecture-independent data packaged with a program. For example,
audio files, a collection of icons, wallpaper patterns, or other graphic files. If the size of this data is negligible
compared to the size of the rest of the package, it's probably best to keep it all in a single package.

However, if the size of the data is considerable, consider splitting it out into a separate, architecture-independent
package (_all.deb). By doing this, you avoid needless duplication of the same data into eleven or more .debs,
one per each architecture. While this adds some extra overhead into the Packages files, it saves a lot of disk
space on Debian mirrors. Separating out architecture-independent data also reduces processing time of lintian (see
Section A.2) when run over the entire Debian archive.

59

http://www.netfort.gr.jp/~dancer/column/libpkg-guide/
http://www.debian.org/doc/debian-policy/ch-docs.html
http://www.debian.org/doc/packaging-manuals/perl-policy/
http://www.debian.org/doc/packaging-manuals/debian-emacs-policy
http://www.debian.org/doc/packaging-manuals/java-policy/

CHAPTER 6. BEST PACKAGING PRACTICES 6.7. COMMON PACKAGING SITUATIONS

6.7.6 Needing a certain locale during build
If you need a certain locale during build, you can create a temporary file via this trick:

If you set LOCPATH to the equivalent of /usr/lib/locale, and LC_ALL to the name of the locale you
generate, you should get what you want without being root. Something like this:

LOCALE_PATH=debian/tmpdir/usr/lib/locale
LOCALE_NAME=en_IN
LOCALE_CHARSET=UTF-8

mkdir -p $LOCALE_PATH
localedef -i $LOCALE_NAME.$LOCALE_CHARSET -f $LOCALE_CHARSET $LOCALE_PATH/ ←↩

$LOCALE_NAME.$LOCALE_CHARSET

Using the locale
LOCPATH=$LOCALE_PATH LC_ALL=$LOCALE_NAME.$LOCALE_CHARSET date

6.7.7 Make transition packages deborphan compliant
Deborphan is a program for helping users to detect which packages can safely be removed from the system, i.e. the
ones that have no packages depending on them. The default operation is to search only within the libs and oldlibs
sections, to hunt down unused libraries. But when passed the right argument, it tries to catch other useless packages.

For example, with --guess-dummy, deborphan tries to search all transitional packages which were needed
for upgrade but which can now safely be removed. For that, it looks for the string dummy or transitional in their
short description.

So, when you are creating such a package, please make sure to add this text to your short description. If you are
looking for examples, just run: apt-cache search .|grep dummy or apt-cache search .|grep transitional.

Also, it is recommended to adjust its section tooldlibs and its priority toextra in order to ease deborphan's
job.

6.7.8 Best practices for .orig.tar.{gz,bz2,xz} files
There are two kinds of original source tarballs: Pristine source and repackaged upstream source.

6.7.8.1 Pristine source

The defining characteristic of a pristine source tarball is that the .orig.tar.{gz,bz2,xz} file is byte-for-
byte identical to a tarball officially distributed by the upstream author.1 This makes it possible to use checksums
to easily verify that all changes between Debian's version and upstream's are contained in the Debian diff. Also, if
the original source is huge, upstream authors and others who already have the upstream tarball can save download
time if they want to inspect your packaging in detail.

There is no universally accepted guidelines that upstream authors follow regarding to the directory structure
inside their tarball, but dpkg-source is nevertheless able to deal with most upstream tarballs as pristine source. Its
strategy is equivalent to the following:

1. It unpacks the tarball in an empty temporary directory by doing

zcat path/to/packagename_upstream-version.orig.tar.gz | tar xf -

2. If, after this, the temporary directory contains nothing but one directory and no other files, dpkg-source re-
names that directory to packagename-upstream-version(.orig). The name of the top-level directory
in the tarball does not matter, and is forgotten.

3. Otherwise, the upstream tarball must have been packaged without a common top-level directory (shame on the
upstream author!). In this case, dpkg-source renames the temporary directory itself to packagename-upstream-version(.orig).

1 We cannot prevent upstream authors from changing the tarball they distribute without also incrementing the version number, so there can
be no guarantee that a pristine tarball is identical to what upstream currently distributing at any point in time. All that can be expected is that
it is identical to something that upstream once did distribute. If a difference arises later (say, if upstream notices that he wasn't using maximal
compression in his original distribution and then re-gzips it), that's just too bad. Since there is no good way to upload a new .orig.tar.
{gz,bz2,xz} for the same version, there is not even any point in treating this situation as a bug.

60

CHAPTER 6. BEST PACKAGING PRACTICES 6.7. COMMON PACKAGING SITUATIONS

6.7.8.2 Repackaged upstream source

You should upload packages with a pristine source tarball if possible, but there are various reasons why it might
not be possible. This is the case if upstream does not distribute the source as gzipped tar at all, or if upstream's
tarball contains non-DFSG-free material that you must remove before uploading.

In these cases the developer must construct a suitable .orig.tar.{gz,bz2,xz} file himself. We refer
to such a tarball as a repackaged upstream source. Note that a repackaged upstream source is different from a
Debian-native package. A repackaged source still comes with Debian-specific changes in a separate .diff.gz or
.debian.tar.{gz,bz2,xz} and still has a version number composed of upstream-version and debian-
version.

There may be cases where it is desirable to repackage the source even though upstream distributes a .tar.
{gz,bz2,xz} that could in principle be used in its pristine form. The most obvious is if significant space savings
can be achieved by recompressing the tar archive or by removing genuinely useless cruft from the upstream archive.
Use your own discretion here, but be prepared to defend your decision if you repackage source that could have been
pristine.

A repackaged .orig.tar.{gz,bz2,xz}

1. should be documented in the resulting source package. Detailed information on how the repackaged source
was obtained, and on how this can be reproduced should be provided in debian/copyright. It is also a
good idea to provide a get-orig-source target in your debian/rules file that repeats the process,
as described in the Policy Manual, Main building script: debian/rules.

2. should not contain any file that does not come from the upstream author(s), or whose contents has been
changed by you.2

3. should, except where impossible for legal reasons, preserve the entire building and portablility infrastructure
provided by the upstream author. For example, it is not a sufficient reason for omitting a file that it is used
only when building on MS-DOS. Similarly, a Makefile provided by upstream should not be omitted even
if the first thing your debian/rules does is to overwrite it by running a configure script.

(Rationale: It is common for Debian users who need to build software for non-Debian platforms to fetch the
source from a Debian mirror rather than trying to locate a canonical upstream distribution point).

4. should use packagename-upstream-version.orig as the name of the top-level directory in its tarball.
This makes it possible to distinguish pristine tarballs from repackaged ones.

5. should be gzipped or bzipped with maximal compression.

6.7.8.3 Changing binary files

Sometimes it is necessary to change binary files contained in the original tarball, or to add binary files that are not
in it. This is fully supported when using source packages in “3.0 (quilt)” format, see the dpkg-source(1) manual
page for details. When using the older format “1.0”, binary files can't be stored in the .diff.gz so you must store
an uuencoded (or similar) version of the file(s) and decode it at build time in debian/rules (and move it in its
official location).

6.7.9 Best practices for debug packages
A debug package is a package with a name ending in -dbg, that contains additional information that gdb can use.
Since Debian binaries are stripped by default, debugging information, including function names and line numbers,
is otherwise not available when running gdb on Debian binaries. Debug packages allow users who need this
additional debugging information to install it, without bloating a regular system with the information.

It is up to a package's maintainer whether to create a debug package or not. Maintainers are encouraged to create
debug packages for library packages, since this can aid in debugging many programs linked to a library. In general,
debug packages do not need to be added for all programs; doing so would bloat the archive. But if a maintainer
finds that users often need a debugging version of a program, it can be worthwhile to make a debug package for it.
Programs that are core infrastructure, such as apache and the X server are also good candidates for debug packages.

2 As a special exception, if the omission of non-free files would lead to the source failing to build without assistance from the Debian diff,
it might be appropriate to instead edit the files, omitting only the non-free parts of them, and/or explain the situation in a README.source
file in the root of the source tree. But in that case please also urge the upstream author to make the non-free components easier separable from
the rest of the source.

61

http://www.debian.org/doc/debian-policy/ch-source.html#s-debianrules

CHAPTER 6. BEST PACKAGING PRACTICES 6.7. COMMON PACKAGING SITUATIONS

Some debug packages may contain an entire special debugging build of a library or other binary, but most of
them can save space and build time by instead containing separated debugging symbols that gdb can find and load
on the fly when debugging a program or library. The convention in Debian is to keep these symbols in /usr/lib/
debug/path, where path is the path to the executable or library. For example, debugging symbols for /usr/
bin/foo go in /usr/lib/debug/usr/bin/foo, and debugging symbols for /usr/lib/libfoo.so.1
go in /usr/lib/debug/usr/lib/libfoo.so.1.

The debugging symbols can be extracted from an object file using objcopy --only-keep-debug. Then the
object file can be stripped, and objcopy --add-gnu-debuglink used to specify the path to the debugging symbol
file. objcopy(1) explains in detail how this works.

The dh_strip command in debhelper supports creating debug packages, and can take care of using objcopy
to separate out the debugging symbols for you. If your package usesdebhelper, all you need to do is call dh_strip
--dbg-package=libfoo-dbg, and add an entry to debian/control for the debug package.

Note that the debug package should depend on the package that it provides debugging symbols for, and this
dependency should be versioned. For example:

Depends: libfoo (= ${binary:Version})

6.7.10 Best practices for meta-packages
A meta-package is a mostly empty package that makes it easy to install a coherent set of packages that can evolve
over time. It achieves this by depending on all the packages of the set. Thanks to the power of APT, the meta-package
maintainer can adjust the dependencies and the user's system will automatically get the supplementary packages.
The dropped packages that were automatically installed will be also be marked as removal candidates (and are even
automatically removed by aptitude). gnome and linux-image-amd64 are two examples of meta-packages
(built by the source packages meta-gnome2 and linux-latest).

The long description of the meta-package must clearly document its purpose so that the user knows what he
will lose if he removes the package. Being explicit about the consequences is recommended. This is particularly
important for meta-packages which are installed during initial installation and that have not been explicitly installed
by the user. Those tend to be important to ensure smooth system upgrades and the user should be discouraged from
uninstalling them to avoid potential breakages.

62

Chapter 7

Beyond Packaging

Debian is about a lot more than just packaging software and maintaining those packages. This chapter contains
information about ways, often really critical ways, to contribute to Debian beyond simply creating and maintaining
packages.

As a volunteer organization, Debian relies on the discretion of its members in choosing what they want to work
on and in choosing the most critical thing to spend their time on.

7.1 Bug reporting

We encourage you to file bugs as you find them in Debian packages. In fact, Debian developers are often the first
line testers. Finding and reporting bugs in other developers' packages improves the quality of Debian.

Read the instructions for reporting bugs in the Debian bug tracking system.
Try to submit the bug from a normal user account at which you are likely to receive mail, so that people can

reach you if they need further information about the bug. Do not submit bugs as root.
You can use a tool like reportbug(1) to submit bugs. It can automate and generally ease the process.
Make sure the bug is not already filed against a package. Each package has a bug list easily reachable at http:/

/bugs.debian.org/packagename. Utilities like querybts(1) can also provide you with this information (and
reportbug will usually invoke querybts before sending, too).

Try to direct your bugs to the proper location. When for example your bug is about a package which overwrites
files from another package, check the bug lists for both of those packages in order to avoid filing duplicate bug
reports.

For extra credit, you can go through other packages, merging bugs which are reported more than once, or tagging
bugs �fixed' when they have already been fixed. Note that when you are neither the bug submitter nor the package
maintainer, you should not actually close the bug (unless you secure permission from the maintainer).

From time to time you may want to check what has been going on with the bug reports that you submitted. Take
this opportunity to close those that you can't reproduce anymore. To find out all the bugs you submitted, you just
have to visit http://bugs.debian.org/from:your-email-addr.

7.1.1 Reporting lots of bugs at once (mass bug filing)

Reporting a great number of bugs for the same problem on a great number of different packages — i.e., more than
10 — is a deprecated practice. Take all possible steps to avoid submitting bulk bugs at all. For instance, if checking
for the problem can be automated, add a new check to lintian so that an error or warning is emitted.

If you report more than 10 bugs on the same topic at once, it is recommended that you send a message to
debian-devel@lists.debian.org describing your intention before submitting the report, and mentioning the fact in
the subject of your mail. This will allow other developers to verify that the bug is a real problem. In addition, it
will help prevent a situation in which several maintainers start filing the same bug report simultaneously.

Please use the programs dd-list and if appropriate whodepends (from the package devscripts) to generate
a list of all affected packages, and include the output in your mail to debian-devel@lists.debian.org.

Note that when sending lots of bugs on the same subject, you should send the bug report to maintonly@bugs.
debian.org so that the bug report is not forwarded to the bug distribution mailing list.

63

http://www.debian.org/Bugs/Reporting
http://www.debian.org/Bugs/
mailto:debian-devel@lists.debian.org
mailto:debian-devel@lists.debian.org
mailto:maintonly@bugs.debian.org
mailto:maintonly@bugs.debian.org

CHAPTER 7. BEYOND PACKAGING 7.2. QUALITY ASSURANCE EFFORT

7.1.1.1 Usertags

You may wish to use BTS usertags when submitting bugs across a number of packages. Usertags are similar to
normal tags such as 'patch' and 'wishlist' but differ in that they are user-defined and occupy a namespace that is
unique to a particular user. This allows multiple sets of developers to 'usertag' the same bug in different ways
without conflicting.

To add usertags when filing bugs, specify the User and Usertags pseudo-headers:

To: submit@bugs.debian.org
Subject: title-of-bug

Package: pkgname
[...]
User: email-addr
Usertags: tag-name [tag-name ...]

description-of-bug ...

Note that tags are seperated by spaces and cannot contain underscores. If you are filing bugs for a particular
group or team it is recommended that you set the User to an appropriate mailing list after describing your intention
there.

To view bugs tagged with a specific usertag, visit http://bugs.debian.org/cgi-bin/pkgreport.
cgi?users=email-addr&tag=tag-name.

7.2 Quality Assurance effort

7.2.1 Daily work
Even though there is a dedicated group of people for Quality Assurance, QA duties are not reserved solely for
them. You can participate in this effort by keeping your packages as bug-free as possible, and as lintian-clean
(see Section A.2.1) as possible. If you do not find that possible, then you should consider orphaning some of your
packages (see Section 5.9.4). Alternatively, you may ask the help of other people in order to catch up with the
backlog of bugs that you have (you can ask for help on debian-qa@lists.debian.org or debian-devel@lists.debian.
org). At the same time, you can look for co-maintainers (see Section 5.12).

7.2.2 Bug squashing parties
From time to time the QA group organizes bug squashing parties to get rid of as many problems as possible. They
are announced on debian-devel-announce@lists.debian.org and the announcement explains which area will be the
focus of the party: usually they focus on release critical bugs but it may happen that they decide to help finish a
major upgrade (like a new perl version which requires recompilation of all the binary modules).

The rules for non-maintainer uploads differ during the parties because the announcement of the party is con-
sidered prior notice for NMU. If you have packages that may be affected by the party (because they have release
critical bugs for example), you should send an update to each of the corresponding bug to explain their current
status and what you expect from the party. If you don't want an NMU, or if you're only interested in a patch, or if
you will deal yourself with the bug, please explain that in the BTS.

People participating in the party have special rules for NMU, they can NMU without prior notice if they upload
their NMU to DELAYED/3-day at least. All other NMU rules apply as usually; they should send the patch of the
NMU to the BTS (to one of the open bugs fixed by the NMU, or to a new bug, tagged fixed). They should also
respect any particular wishes of the maintainer.

If you don't feel confident about doing an NMU, just send a patch to the BTS. It's far better than a broken NMU.

7.3 Contacting other maintainers
During your lifetime within Debian, you will have to contact other maintainers for various reasons. You may want
to discuss a new way of cooperating between a set of related packages, or you may simply remind someone that a
new upstream version is available and that you need it.

Looking up the email address of the maintainer for the package can be distracting. Fortunately, there is a simple
email alias, package@packages.debian.org, which provides a way to email the maintainer, whatever their
individual email address (or addresses) may be. Replace package with the name of a source or a binary package.

64

mailto:debian-qa@lists.debian.org
mailto:debian-devel@lists.debian.org
mailto:debian-devel@lists.debian.org
mailto:debian-devel-announce@lists.debian.org

CHAPTER 7. BEYOND PACKAGING 7.4. DEALING WITH INACTIVE AND/OR…

You may also be interested in contacting the persons who are subscribed to a given source package via Sec-
tion 4.10. You can do so by using the package@packages.qa.debian.org email address.

7.4 Dealing with inactive and/or unreachable maintainers
If you notice that a package is lacking maintenance, you should make sure that the maintainer is active and will
continue to work on their packages. It is possible that they are not active any more, but haven't registered out of the
system, so to speak. On the other hand, it is also possible that they just need a reminder.

There is a simple system (the MIA database) in which information about maintainers who are deemed Missing
In Action is recorded. When a member of the QA group contacts an inactive maintainer or finds more information
about one, this is recorded in the MIA database. This system is available in /org/qa.debian.org/mia on
the host qa.debian.org, and can be queried with the mia-query tool. Use mia-query --help to see how to
query the database. If you find that no information has been recorded about an inactive maintainer yet, or that you
can add more information, you should generally proceed as follows.

The first step is to politely contact the maintainer, and wait a reasonable time for a response. It is quite hard to
define reasonable time, but it is important to take into account that real life is sometimes very hectic. One way to
handle this would be to send a reminder after two weeks.

If the maintainer doesn't reply within four weeks (a month), one can assume that a response will probably not
happen. If that happens, you should investigate further, and try to gather as much useful information about the
maintainer in question as possible. This includes:

• The echelon information available through the developers' LDAP database, which indicates when the de-
veloper last posted to a Debian mailing list. (This includes mails about uploads distributed via the debian-
devel-changes@lists.debian.org list.) Also, remember to check whether the maintainer is marked as on vaca-
tion in the database.

• The number of packages this maintainer is responsible for, and the condition of those packages. In particular,
are there any RC bugs that have been open for ages? Furthermore, how many bugs are there in general?
Another important piece of information is whether the packages have been NMUed, and if so, by whom.

• Is there any activity of the maintainer outside of Debian? For example, they might have posted something
recently to non-Debian mailing lists or news groups.

A bit of a problem are packages which were sponsored — the maintainer is not an official Debian developer.
The echelon information is not available for sponsored people, for example, so you need to find and contact the
Debian developer who has actually uploaded the package. Given that they signed the package, they're responsible
for the upload anyhow, and are likely to know what happened to the person they sponsored.

It is also allowed to post a query to debian-devel@lists.debian.org, asking if anyone is aware of the whereabouts
of the missing maintainer. Please Cc: the person in question.

Once you have gathered all of this, you can contact mia@qa.debian.org. People on this alias will use the
information you provide in order to decide how to proceed. For example, they might orphan one or all of the
packages of the maintainer. If a package has been NMUed, they might prefer to contact the NMUer before orphaning
the package — perhaps the person who has done the NMU is interested in the package.

One last word: please remember to be polite. We are all volunteers and cannot dedicate all of our time to Debian.
Also, you are not aware of the circumstances of the person who is involved. Perhaps they might be seriously ill or
might even have died — you do not know who may be on the receiving side. Imagine how a relative will feel if
they read the e-mail of the deceased and find a very impolite, angry and accusing message!

On the other hand, although we are volunteers, we do have a responsibility. So you can stress the importance
of the greater good — if a maintainer does not have the time or interest anymore, they should let go and give the
package to someone with more time.

If you are interested in working in the MIA team, please have a look at theREADME file in/org/qa.debian.
org/mia on qa.debian.org where the technical details and the MIA procedures are documented and contact
mia@qa.debian.org.

7.5 Interacting with prospective Debian developers
Debian's success depends on its ability to attract and retain new and talented volunteers. If you are an experienced
developer, we recommend that you get involved with the process of bringing in new developers. This section
describes how to help new prospective developers.

65

https://db.debian.org/
mailto:debian-devel-changes@lists.debian.org
mailto:debian-devel-changes@lists.debian.org
mailto:debian-devel@lists.debian.org
mailto:mia@qa.debian.org
mailto:mia@qa.debian.org

CHAPTER 7. BEYOND PACKAGING 7.5. INTERACTING WITH PROSPECTIVE…

7.5.1 Sponsoring packages
Sponsoring a package means uploading a package for a maintainer who is not able to do it on their own. It's not a
trivial matter, the sponsor must verify the packaging and ensure that it is of the high level of quality that Debian
strives to have.

Debian Developers can sponsor packages. Debian Maintainers can't.
The process of sponsoring a package is:

1. The maintainer prepares a source package (.dsc) and puts it online somewhere (like on mentors.debian.net)
or even better, provides a link to a public VCS repository (see Section 4.4.5) where the package is maintained.

2. The sponsor downloads (or checkouts) the source package.

3. The sponsor reviews the source package. If she finds issues, she informs the maintainer and asks her to
provide a fixed version (the process starts over at step 1).

4. The sponsor could not find any remaining problem. She builds the package, signs it, and uploads it to Debian.

Before delving in the details of how to sponsor a package, you should ask yourself whether adding the proposed
package is beneficial to Debian.

There's no simple rule to answer this question, it can depend on many factors: is the upstream codebase mature
and not full of security holes? Are there pre-existing packages that can do the same task and how do they compare
to this new package? Has the new package been requested by users and how large is the user base? How active are
the upstream developers?

You should also ensure that the prospective maintainer is going to be a good maintainer. Does she already have
some experience with other packages? If yes, is she doing a good job with them (check out some bugs)? Is she
familiar with the package and its programming language? Does she have the skills needed for this package? If not,
is she able to learn them?

It's also a good idea to know where she stands towards Debian: does she agree with Debian's philosophy and
does she intend to join Debian? Given how easy it is to become a Debian Maintainer, you might want to only sponsor
people who plan to join. That way you know from the start that you won't have to act as a sponsor indefinitely.

7.5.1.1 Sponsoring a new package

New maintainers usually have certain difficulties creating Debian packages — this is quite understandable. They
will do mistakes. That's why sponsoring a brand new package into Debian requires a thorough review of the Debian
packaging. Sometimes several iterations will be needed until the package is good enough to be uploaded to Debian.
Thus being a sponsor implies being a mentor.

Don't ever sponsor a new package without reviewing it. The review of new packages done by ftpmasters mainly
ensures that the software is really free. Of course, it happens that they stumble on packaging problems but they really
should not. It's your task to ensure that the uploaded package complies with the Debian Free Software Guidelines
and is of good quality.

Building the package and testing the software is part of the review, but it's also not enough. The rest of this
section contains a non-exhaustive list of points to check in your review. 1

• Verify that the upstream tarball provided is the same that has been distributed by the upstream author (when
the sources are repackaged for Debian, generate the modified tarball yourself).

• Run lintian (see Section A.2.1). It will catch many common problems. Be sure to verify that any lintian
overrides setup by the maintainer is fully justified.

• Run licensecheck (part of Section A.6.1) and verify that debian/copyright seems correct and complete.
Look for license problems (like files with “All rights reserved” headers, or with a non-DFSG compliant
license). grep -ri is your friend for this task.

• Build the package with pbuilder (or any similar tool, see Section A.4.3) to ensure that the build-dependencies
are complete.

• Proofread debian/control: does it follow the best practices (see Section 6.2)? Are the dependencies
complete?

1 You can find more checks in the wiki where several developers share their own sponsorship checklists.

66

http://mentors.debian.net/cgi-bin/welcome
http://wiki.debian.org/SponsorChecklist

CHAPTER 7. BEYOND PACKAGING 7.5. INTERACTING WITH PROSPECTIVE…

• Proofread debian/rules: does it follow the best practices (see Section 6.1)? Do you see some possible
improvements?

• Proofread the maintainer scripts (preinst, postinst, prerm, postrm, config): will thepreinst/postrm
work when the dependencies are not installed? Are all the scripts idempotent (i.e. can you run them multiple
times without consequences)?

• Review any change to upstream files (either in .diff.gz, or in debian/patches/ or directly embedded
in the debian tarball for binary files). Are they justified? Are they properly documented (with DEP-3 for
patches)?

• For every file, ask yourself why the file is there and whether it's the right way to achieve the desired result.
Is the maintainer following the best packaging practices (see Chapter 6)?

• Build the packages, install them and try the software. Ensure you can remove and purge the packages. Maybe
test them with piuparts.

If the audit did not reveal any problem, you can build the package and upload it to Debian. Remember that
even if you're not the maintainer, the sponsor is still responsible of what he uploaded to Debian. That's why you're
encouraged to keep up with the package through the Section 4.10.

Note that you should not need to modify the source package to put your name in the changelog or in the
control file. The Maintainer field of the control file and the changelog should list the person who did
the packaging, i.e. the sponsoree. That way she will get all the BTS mail.

Instead you should instruct dpkg-buildpackage to use your key for the signature. You do that with the -k
option:

dpkg-buildpackage -kKEY-ID

If you use debuild and debsign, you can even configure it permanently in ~/.devscripts:

DEBSIGN_KEYID=KEY-ID

7.5.1.2 Sponsoring an update of an existing package

You will usually assume that the package has already gone through a full review. So instead of doing it again, you
will carefully analyze the difference between the current version and the new version prepared by the maintainer. If
you have not done the initial review yourself, you might still want to have a more deeper look just in case the initial
reviewer was sloppy.

To be able to analyze the difference you need both versions. Download the current version of the source package
(with apt-get source) and rebuild it (or download the current binary packages with aptitude download). Download
the source package to sponsor (usually with dget).

Read the new changelog entry, it should tell you what to expect during the review. The main tool you will use
is debdiff (provide by the devscripts package), you can run it with two source packages (.dsc files), or two
binary packages, or two .changes files (it will then compare all the binary packages listed in the .changes).

If you compare the source packages (excluding upstream files in the case of a new upstream version, for example
by filtering the output of debdiff with filterdiff -i '*/debian/*'), you must understand all the changes you see and
they should be properly documented in the Debian changelog.

If everything is fine, build the package and compare the binary packages to verify that the changes on the source
package have no unexpected consequences (like some files dropped by mistake, missing dependencies, etc.).

You might want to check out the Package Tracking System (see Section 4.10) to verify if the maintainer has
not missed something important. Maybe there are translations updates sitting in the BTS that could have been
integrated. Maybe the package has been NMUed and the maintainer forgot to integrate the changes from the NMU
in his package. Maybe there's a release critical bug that he has left unhandled and that's blocking migration to
testing. Whatever. If you find something that she could have done (better), it's time to tell her so that she can
improve for next time, and so that she has a better understanding of her responsibilities.

If you have found no major problem, upload the new version. Otherwise ask the maintainer to provide you a
fixed version.

7.5.2 Advocating new developers
See the page about advocating a prospective developer at the Debian web site.

67

http://dep.debian.net/deps/dep3/
http://www.debian.org/devel/join/nm-advocate

CHAPTER 7. BEYOND PACKAGING 7.5. INTERACTING WITH PROSPECTIVE…

7.5.3 Handling new maintainer applications
Please see Checklist for Application Managers at the Debian web site.

68

http://www.debian.org/devel/join/nm-amchecklist

Chapter 8

Internationalization and Translations

Debian supports an ever-increasing number of natural languages. Even if you are a native English speaker and do
not speak any other language, it is part of your duty as a maintainer to be aware of issues of internationalization
(abbreviated i18n because there are 18 letters between the 'i' and the 'n' in internationalization). Therefore, even if
you are ok with English-only programs, you should read most of this chapter.

According to Introduction to i18n from Tomohiro KUBOTA, I18N (internationalization) means modification of
a software or related technologies so that a software can potentially handle multiple languages, customs, and so on in
the world, while L10N (localization) means implementation of a specific language for an already internationalized
software.

l10n and i18n are interconnected, but the difficulties related to each of them are very different. It's not really
difficult to allow a program to change the language in which texts are displayed based on user settings, but it is very
time consuming to actually translate these messages. On the other hand, setting the character encoding is trivial,
but adapting the code to use several character encodings is a really hard problem.

Setting aside the i18n problems, where no general guideline can be given, there is actually no central infrastruc-
ture for l10n within Debian which could be compared to the buildd mechanism for porting. So most of the work
has to be done manually.

8.1 How translations are handled within Debian

Handling translation of the texts contained in a package is still a manual task, and the process depends on the kind
of text you want to see translated.

For program messages, the gettext infrastructure is used most of the time. Most of the time, the translation is
handled upstream within projects like the Free Translation Project, the Gnome translation Project or the KDE one.
The only centralized resource within Debian is the Central Debian translation statistics, where you can find some
statistics about the translation files found in the actual packages, but no real infrastructure to ease the translation
process.

An effort to translate the package descriptions started long ago, even if very little support is offered by the tools
to actually use them (i.e., only APT can use them, when configured correctly). Maintainers don't need to do anything
special to support translated package descriptions; translators should use the Debian Description Translation Project
(DDTP).

For debconf templates, maintainers should use the po-debconf package to ease the work of translators,
who could use the DDTP to do their work (but the French and Brazilian teams don't). Some statistics can be found
both on the DDTP site (about what is actually translated), and on the Central Debian translation statistics site (about
what is integrated in the packages).

For web pages, each l10n team has access to the relevant VCS, and the statistics are available from the Central
Debian translation statistics site.

For general documentation about Debian, the process is more or less the same as for the web pages (the trans-
lators have access to the VCS), but there are no statistics pages.

For package-specific documentation (man pages, info documents, other formats), almost everything remains to
be done.

Most notably, the KDE project handles translation of its documentation in the same way as its program messages.
There is an effort to handle Debian-specific man pages within a specific VCS repository.

69

http://www.debian.org/doc/manuals/intro-i18n/
http://translationproject.org/
http://live.gnome.org/TranslationProject
http://i18n.kde.org/
http://www.debian.org/intl/l10n/
http://ddtp.debian.net/
http://ddtp.debian.net/
http://ddtp.debian.net/
http://www.debian.org/intl/l10n/
http://cvs.debian.org/manpages/?cvsroot=debian-doc

CHAPTER 8. INTERNATIONALIZATION AND… 8.2. I18N & L10N FAQ FOR MAINTAINERS

8.2 I18N & L10N FAQ for maintainers
This is a list of problems that maintainers may face concerning i18n and l10n. While reading this, keep in mind that
there is no real consensus on these points within Debian, and that this is only advice. If you have a better idea for a
given problem, or if you disagree on some points, feel free to provide your feedback, so that this document can be
enhanced.

8.2.1 How to get a given text translated
To translate package descriptions or debconf templates, you have nothing to do; the DDTP infrastructure will
dispatch the material to translate to volunteers with no need for interaction from your part.

For all other material (gettext files, man pages, or other documentation), the best solution is to put your text
somewhere on the Internet, and ask on debian-i18n for a translation in different languages. Some translation team
members are subscribed to this list, and they will take care of the translation and of the reviewing process. Once
they are done, you will get your translated document from them in your mailbox.

8.2.2 How to get a given translation reviewed
From time to time, individuals translate some texts in your package and will ask you for inclusion of the translation
in the package. This can become problematic if you are not fluent in the given language. It is a good idea to send
the document to the corresponding l10n mailing list, asking for a review. Once it has been done, you should feel
more confident in the quality of the translation, and feel safe to include it in your package.

8.2.3 How to get a given translation updated
If you have some translations of a given text lying around, each time you update the original, you should ask the
previous translator to update the translation with your new changes. Keep in mind that this task takes time; at least
one week to get the update reviewed and all.

If the translator is unresponsive, you may ask for help on the corresponding l10n mailing list. If everything fails,
don't forget to put a warning in the translated document, stating that the translation is somehow outdated, and that
the reader should refer to the original document if possible.

Avoid removing a translation completely because it is outdated. Old documentation is often better than no
documentation at all for non-English speakers.

8.2.4 How to handle a bug report concerning a translation
The best solution may be to mark the bug as forwarded to upstream, and forward it to both the previous translator
and his/her team (using the corresponding debian-l10n-XXX mailing list).

8.3 I18N & L10N FAQ for translators
While reading this, please keep in mind that there is no general procedure within Debian concerning these points,
and that in any case, you should collaborate with your team and the package maintainer.

8.3.1 How to help the translation effort
Choose what you want to translate, make sure that nobody is already working on it (using your debian-l10n-XXX
mailing list), translate it, get it reviewed by other native speakers on your l10n mailing list, and provide it to the
maintainer of the package (see next point).

8.3.2 How to provide a translation for inclusion in a package
Make sure your translation is correct (asking for review on your l10n mailing list) before providing it for inclusion.
It will save time for everyone, and avoid the chaos resulting in having several versions of the same document in bug
reports.

The best solution is to file a regular bug containing the translation against the package. Make sure to use the
'PATCH' tag, and to not use a severity higher than 'wishlist', since the lack of translation never prevented a program
from running.

70

CHAPTER 8. INTERNATIONALIZATION AND… 8.4. BEST CURRENT PRACTICE CONCERNING…

8.4 Best current practice concerning l10n
• As a maintainer, never edit the translations in any way (even to reformat the layout) without asking on the

corresponding l10n mailing list. You risk for example breaking the encoding of the file by doing so. Moreover,
what you consider an error can be right (or even needed) in the given language.

• As a translator, if you find an error in the original text, make sure to report it. Translators are often the most
attentive readers of a given text, and if they don't report the errors they find, nobody will.

• In any case, remember that the major issue with l10n is that it requires several people to cooperate, and
that it is very easy to start a flamewar about small problems because of misunderstandings. So if you have
problems with your interlocutor, ask for help on the corresponding l10n mailing list, on debian-i18n, or even
on debian-devel (but beware, l10n discussions very often become flamewars on that list :)

• In any case, cooperation can only be achieved with mutual respect.

71

Appendix A

Overview of Debian Maintainer Tools

This section contains a rough overview of the tools available to maintainers. The following is by no means complete
or definitive, but just a guide to some of the more popular tools.

Debian maintainer tools are meant to aid developers and free their time for critical tasks. As Larry Wall says,
there's more than one way to do it.

Some people prefer to use high-level package maintenance tools and some do not. Debian is officially agnostic
on this issue; any tool which gets the job done is fine. Therefore, this section is not meant to stipulate to anyone
which tools they should use or how they should go about their duties of maintainership. Nor is it meant to endorse
any particular tool to the exclusion of a competing tool.

Most of the descriptions of these packages come from the actual package descriptions themselves. Further
information can be found in the package documentation itself. You can also see more info with the command
apt-cache show package-name.

A.1 Core tools
The following tools are pretty much required for any maintainer.

A.1.1 dpkg-dev

dpkg-dev contains the tools (including dpkg-source) required to unpack, build, and upload Debian source pack-
ages. These utilities contain the fundamental, low-level functionality required to create and manipulate packages;
as such, they are essential for any Debian maintainer.

A.1.2 debconf

debconf provides a consistent interface to configuring packages interactively. It is user interface independent,
allowing end-users to configure packages with a text-only interface, an HTML interface, or a dialog interface. New
interfaces can be added as modules.

You can find documentation for this package in the debconf-doc package.
Many feel that this system should be used for all packages which require interactive configuration; see Sec-

tion 6.5. debconf is not currently required by Debian Policy, but that may change in the future.

A.1.3 fakeroot

fakeroot simulates root privileges. This enables you to build packages without being root (packages usually
want to install files with root ownership). If you have fakeroot installed, you can build packages as a regular
user: dpkg-buildpackage -rfakeroot.

A.2 Package lint tools
According to the Free On-line Dictionary of Computing (FOLDOC), �lint' is a Unix C language processor which
carries out more thorough checks on the code than is usual with C compilers. Package lint tools help package
maintainers by automatically finding common problems and policy violations in their packages.

73

APPENDIX A. OVERVIEW OF DEBIAN… A.3. HELPERS FOR DEBIAN/RULES

A.2.1 lintian

lintian dissects Debian packages and emits information about bugs and policy violations. It contains automated
checks for many aspects of Debian policy as well as some checks for common errors.

You should periodically get the newest lintian from unstable and check over all your packages. Notice
that the -i option provides detailed explanations of what each error or warning means, what its basis in Policy is,
and commonly how you can fix the problem.

Refer to Section 5.3 for more information on how and when to use Lintian.
You can also see a summary of all problems reported by Lintian on your packages at http://lintian.

debian.org/. These reports contain the latest lintian output for the whole development distribution (unsta
ble).

A.2.2 debdiff

debdiff (from the devscripts package, Section A.6.1) compares file lists and control files of two packages. It
is a simple regression test, as it will help you notice if the number of binary packages has changed since the last
upload, or if something has changed in the control file. Of course, some of the changes it reports will be all right,
but it can help you prevent various accidents.

You can run it over a pair of binary packages:

debdiff package_1-1_arch.deb package_2-1_arch.deb

Or even a pair of changes files:

debdiff package_1-1_arch.changes package_2-1_arch.changes

For more information please see debdiff(1).

A.3 Helpers for debian/rules

Package building tools make the process of writing debian/rules files easier. See Section 6.1.1 for more infor-
mation about why these might or might not be desired.

A.3.1 debhelper

debhelper is a collection of programs which can be used in debian/rules to automate common tasks related
to building binary Debian packages. debhelper includes programs to install various files into your package,
compress files, fix file permissions, and integrate your package with the Debian menu system.

Unlike some approaches, debhelper is broken into several small, simple commands which act in a consistent
manner. As such, it allows more fine-grained control than some of the other debian/rules tools.

There are a number of little debhelper add-on packages, too transient to document. You can see the list of
most of them by doing apt-cache search ˆdh-.

A.3.2 dh-make

The dh-make package contains dh_make, a program that creates a skeleton of files necessary to build a Debian
package out of a source tree. As the name suggests, dh_make is a rewrite of debmake and its template files use
dh_* programs from debhelper.

While the rules files generated by dh_make are in general a sufficient basis for a working package, they are still
just the groundwork: the burden still lies on the maintainer to finely tune the generated files and make the package
entirely functional and Policy-compliant.

A.3.3 equivs

equivs is another package for making packages. It is often suggested for local use if you need to make a package
simply to fulfill dependencies. It is also sometimes used when making ��meta-packages'', which are packages
whose only purpose is to depend on other packages.

74

http://lintian.debian.org/
http://lintian.debian.org/

APPENDIX A. OVERVIEW OF DEBIAN… A.4. PACKAGE BUILDERS

A.4 Package builders

The following packages help with the package building process, general driving dpkg-buildpackage as well as
handling supporting tasks.

A.4.1 cvs-buildpackage

cvs-buildpackage provides the capability to inject or import Debian source packages into a CVS repository,
build a Debian package from the CVS repository, and helps in integrating upstream changes into the repository.

These utilities provide an infrastructure to facilitate the use of CVS by Debian maintainers. This allows one to
keep separate CVS branches of a package for stable, unstable and possibly experimental distributions,
along with the other benefits of a version control system.

A.4.2 debootstrap

The debootstrap package and script allows you to bootstrap a Debian base system into any part of your filesys-
tem. By base system, we mean the bare minimum of packages required to operate and install the rest of the system.

Having a system like this can be useful in many ways. For instance, you can chroot into it if you want to test
your build dependencies. Or you can test how your package behaves when installed into a bare base system. Chroot
builders use this package; see below.

A.4.3 pbuilder

pbuilder constructs a chrooted system, and builds a package inside the chroot. It is very useful to check that a
package's build-dependencies are correct, and to be sure that unnecessary and wrong build dependencies will not
exist in the resulting package.

A related package is pbuilder-uml, which goes even further by doing the build within a User Mode Linux
environment.

A.4.4 sbuild

sbuild is another automated builder. It can use chrooted environments as well. It can be used stand-alone, or
as part of a networked, distributed build environment. As the latter, it is part of the system used by porters to
build binary packages for all the available architectures. See Section 5.10.3.3 for more information, and http:
//buildd.debian.org/ to see the system in action.

A.5 Package uploaders

The following packages help automate or simplify the process of uploading packages into the official archive.

A.5.1 dupload

dupload is a package and a script to automatically upload Debian packages to the Debian archive, to log the
upload, and to send mail about the upload of a package. You can configure it for new upload locations or methods.

A.5.2 dput

The dput package and script does much the same thing as dupload, but in a different way. It has some fea-
tures over dupload, such as the ability to check the GnuPG signature and checksums before uploading, and the
possibility of running dinstall in dry-run mode after the upload.

A.5.3 dcut

The dcut script (part of the package dput, Section A.5.2) helps in removing files from the ftp upload directory.

75

http://buildd.debian.org/
http://buildd.debian.org/

APPENDIX A. OVERVIEW OF DEBIAN… A.6. MAINTENANCE AUTOMATION

A.6 Maintenance automation
The following tools help automate different maintenance tasks, from adding changelog entries or signature lines
and looking up bugs in Emacs to making use of the newest and official config.sub.

A.6.1 devscripts

devscripts is a package containing wrappers and tools which are very helpful for maintaining your Debian
packages. Example scripts include debchange and dch, which manipulate your debian/changelog file from
the command-line, and debuild, which is a wrapper around dpkg-buildpackage. The bts utility is also very helpful
to update the state of bug reports on the command line. uscan can be used to watch for new upstream versions of
your packages. debrsign can be used to remotely sign a package prior to upload, which is nice when the machine
you build the package on is different from where your GPG keys are.

See the devscripts(1) manual page for a complete list of available scripts.

A.6.2 autotools-dev

autotools-dev contains best practices for people who maintain packages which use autoconf and/or au-
tomake. Also contains canonicalconfig.sub andconfig.guess files which are known to work on all Debian
ports.

A.6.3 dpkg-repack

dpkg-repack creates Debian package file out of a package that has already been installed. If any changes have been
made to the package while it was unpacked (e.g., files in /etc were modified), the new package will inherit the
changes.

This utility can make it easy to copy packages from one computer to another, or to recreate packages which
are installed on your system but no longer available elsewhere, or to save the current state of a package before you
upgrade it.

A.6.4 alien

alien converts binary packages between various packaging formats, including Debian, RPM (RedHat), LSB (Linux
Standard Base), Solaris, and Slackware packages.

A.6.5 debsums

debsums checks installed packages against their MD5 sums. Note that not all packages have MD5 sums, since they
aren't required by Policy.

A.6.6 dpkg-dev-el

dpkg-dev-el is an Emacs lisp package which provides assistance when editing some of the files in the debian
directory of your package. For instance, there are handy functions for listing a package's current bugs, and for
finalizing the latest entry in a debian/changelog file.

A.6.7 dpkg-depcheck
dpkg-depcheck (from the devscripts package, Section A.6.1) runs a command under strace to determine all
the packages that were used by the said command.

For Debian packages, this is useful when you have to compose a Build-Depends line for your new package:
running the build process through dpkg-depcheck will provide you with a good first approximation of the build-
dependencies. For example:

dpkg-depcheck -b debian/rules build

dpkg-depcheck can also be used to check for run-time dependencies, especially if your package uses exec(2)
to run other programs.

For more information please see dpkg-depcheck(1).

76

APPENDIX A. OVERVIEW OF DEBIAN… A.7. PORTING TOOLS

A.7 Porting tools
The following tools are helpful for porters and for cross-compilation.

A.7.1 quinn-diff

quinn-diff is used to locate the differences from one architecture to another. For instance, it could tell you
which packages need to be ported for architecture Y, based on architecture X.

A.7.2 dpkg-cross

dpkg-cross is a tool for installing libraries and headers for cross-compiling in a way similar to dpkg. Further-
more, the functionality of dpkg-buildpackage and dpkg-shlibdeps is enhanced to support cross-compiling.

A.8 Documentation and information
The following packages provide information for maintainers or help with building documentation.

A.8.1 docbook-xml

docbook-xml provides the DocBook XML DTDs, which are commonly used for Debian documentation (as is
the older debiandoc SGML DTD). This manual, for instance, is written in DocBook XML.

The docbook-xsl package provides the XSL files for building and styling the source to various output for-
mats. You will need an XSLT processor, such as xsltproc, to use the XSL stylesheets. Documentation for the
stylesheets can be found in the various docbook-xsl-doc-* packages.

To produce PDF from FO, you need an FO processor, such as xmlroff or fop. Another tool to generate PDF
from DocBook XML is dblatex.

A.8.2 debiandoc-sgml

debiandoc-sgml provides the DebianDoc SGML DTD, which is commonly used for Debian documentation,
but is now deprecated (docbook-xml should be used instead). It also provides scripts for building and styling the
source to various output formats.

Documentation for the DTD can be found in the debiandoc-sgml-doc package.

A.8.3 debian-keyring

Contains the public GPG and PGP keys of Debian developers. See Section 3.2.2 and the package documentation
for more information.

A.8.4 debian-maintainers

Contains the public GPG keys of Debian Maintainers. Seehttp://wiki.debian.org/DebianMaintainer
for more information.

A.8.5 debview

debview provides an Emacs mode for viewing Debian binary packages. This lets you examine a package without
unpacking it.

77

http://wiki.debian.org/DebianMaintainer

	Scope of This Document
	Applying to Become a Maintainer
	Getting started
	Debian mentors and sponsors
	Registering as a Debian developer

	Debian Developer's Duties
	Package Maintainer's Duties
	Work towards the next stable release
	Maintain packages in stable
	Manage release-critical bugs
	Coordination with upstream developers

	Administrative Duties
	Maintaining your Debian information
	Maintaining your public key
	Voting
	Going on vacation gracefully
	Retiring
	Returning after retirement

	Resources for Debian Developers
	Mailing lists
	Basic rules for use
	Core development mailing lists
	Special lists
	Requesting new development-related lists

	IRC channels
	Documentation
	Debian machines
	The bugs server
	The ftp-master server
	The www-master server
	The people web server
	The VCS servers
	chroots to different distributions

	The Developers Database
	The Debian archive
	Sections
	Architectures
	Packages
	Distributions
	Stable, testing, and unstable
	More information about the testing distribution
	Experimental

	Release code names

	Debian mirrors
	The Incoming system
	Package information
	On the web
	The dak ls utility

	The Package Tracking System
	The PTS email interface
	Filtering PTS mails
	Forwarding VCS commits in the PTS
	The PTS web interface

	Developer's packages overview
	Debian's FusionForge installation: Alioth
	Goodies for Developers
	LWN Subscriptions
	Gandi.net Hosting Discount

	Managing Packages
	New packages
	Recording changes in the package
	Testing the package
	Layout of the source package
	Picking a distribution
	Special case: uploads to the stable and oldstable distributions
	Special case: uploads to testing/testing-proposed-updates

	Uploading a package
	Uploading to ftp-master
	Delayed uploads
	Security uploads
	Other upload queues
	Notification that a new package has been installed

	Specifying the package section, subsection and priority
	Handling bugs
	Monitoring bugs
	Responding to bugs
	Bug housekeeping
	When bugs are closed by new uploads
	Handling security-related bugs
	The Security Tracker
	Confidentiality
	Security Advisories
	Preparing packages to address security issues
	Uploading the fixed package

	Moving, removing, renaming, adopting, and orphaning packages
	Moving packages
	Removing packages
	Removing packages from Incoming

	Replacing or renaming packages
	Orphaning a package
	Adopting a package

	Porting and being ported
	Being kind to porters
	Guidelines for porter uploads
	Recompilation or binary-only NMU
	When to do a source NMU if you are a porter

	Porting infrastructure and automation
	Mailing lists and web pages
	Porter tools
	wanna-build

	When your package is not portable
	Marking non-free packages as auto-buildable

	Non-Maintainer Uploads (NMUs)
	When and how to do an NMU
	NMUs and debian/changelog
	Using the DELAYED/ queue
	NMUs from the maintainer's point of view
	Source NMUs vs Binary-only NMUs (binNMUs)
	NMUs vs QA uploads
	NMUs vs team uploads

	Collaborative maintenance
	The testing distribution
	Basics
	Updates from unstable
	Out-of-date
	Removals from testing
	Circular dependencies
	Influence of package in testing
	Details

	Direct updates to testing
	Frequently asked questions
	What are release-critical bugs, and how do they get counted?
	How could installing a package into testing possibly break other packages?

	Best Packaging Practices
	Best practices for debian/rules
	Helper scripts
	Separating your patches into multiple files
	Multiple binary packages

	Best practices for debian/control
	General guidelines for package descriptions
	The package synopsis, or short description
	The long description
	Upstream home page
	Version Control System location
	Vcs-Browser
	Vcs-*

	Best practices for debian/changelog
	Writing useful changelog entries
	Common misconceptions about changelog entries
	Common errors in changelog entries
	Supplementing changelogs with NEWS.Debian files

	Best practices for maintainer scripts
	Configuration management with debconf
	Do not abuse debconf
	General recommendations for authors and translators
	Write correct English
	Be kind to translators
	Unfuzzy complete translations when correcting typos and spelling
	Do not make assumptions about interfaces
	Do not use first person
	Be gender neutral

	Templates fields definition
	Type
	string
	password
	boolean
	select
	multiselect
	note
	text
	error

	Description: short and extended description
	Choices
	Default

	Templates fields specific style guide
	Type field
	Description field
	String/password templates
	Boolean templates
	Select/Multiselect
	Notes

	Choices field
	Default field
	Default field

	Internationalization
	Handling debconf translations
	Internationalized documentation

	Common packaging situations
	Packages using autoconf/automake
	Libraries
	Documentation
	Specific types of packages
	Architecture-independent data
	Needing a certain locale during build
	Make transition packages deborphan compliant
	Best practices for .orig.tar.{gz,bz2,xz} files
	Pristine source
	Repackaged upstream source
	Changing binary files

	Best practices for debug packages
	Best practices for meta-packages

	Beyond Packaging
	Bug reporting
	Reporting lots of bugs at once (mass bug filing)
	Usertags

	Quality Assurance effort
	Daily work
	Bug squashing parties

	Contacting other maintainers
	Dealing with inactive and/or unreachable maintainers
	Interacting with prospective Debian developers
	Sponsoring packages
	Sponsoring a new package
	Sponsoring an update of an existing package

	Advocating new developers
	Handling new maintainer applications

	Internationalization and Translations
	How translations are handled within Debian
	I18N & L10N FAQ for maintainers
	How to get a given text translated
	How to get a given translation reviewed
	How to get a given translation updated
	How to handle a bug report concerning a translation

	I18N & L10N FAQ for translators
	How to help the translation effort
	How to provide a translation for inclusion in a package

	Best current practice concerning l10n

	Overview of Debian Maintainer Tools
	Core tools
	dpkg-dev
	debconf
	fakeroot

	Package lint tools
	lintian
	debdiff

	Helpers for debian/rules
	debhelper
	dh-make
	equivs

	Package builders
	cvs-buildpackage
	debootstrap
	pbuilder
	sbuild

	Package uploaders
	dupload
	dput
	dcut

	Maintenance automation
	devscripts
	autotools-dev
	dpkg-repack
	alien
	debsums
	dpkg-dev-el
	dpkg-depcheck

	Porting tools
	quinn-diff
	dpkg-cross

	Documentation and information
	docbook-xml
	debiandoc-sgml
	debian-keyring
	debian-maintainers
	debview

