GUZ-79 HOV-79 - | VOL 1T MO I
AUSTRALIAN UNIX USERS GROUP NEWSLETTER

»kﬁ‘;y%%*%w*hﬁwnwna R R A R o R L L R T L o A T A O TR R O

% This document may contain information covered by one or *
* more licenses, copyrights and non~disclosure agreenents. *
* Circulation of this document is restricted to holders of %
* a license for the UNIX software system from Western ¥
* Electric. Such license holders may reproduce this *
* document for wuses in conformity with the UNIX license. *
All other circulation or reproduction is prohibited. *
fﬁ:iikiakﬁkkkk%*kkwk"aux ki

ARARARTRA NS AR AN ARk hhRhdy

As you all know, because you wont be reading this if you dont, all future
issues of AUUGN must be payed for by the recipients. How many of the old
readership have been conned into buying the second volume?

To date T have received about 27 subscriptions, and I think the flow has just
peaked at a rate of about one every two or three days. The readership should
level out at about 40. I have sent veminder notices, without AUUGNes, to the
non-financial part of our old readership which may get a few more in.

One or two of you will find 2 uote aiizached to this issue asking vyou to
up some problems about paymeut o money. Please do this promptly as we
carry much dead wood.

GOODIES THIS ISSUE

Chris Rowles from Chem Eng at Sydney Uni tells us of his latest ezperiences
with MINI-UNIX and PDP11/60s.

As a contrast to Chris’s amusing style, John Lions has given me a seriss of
technical vpapers, writtean while he was at Bell Labs. This issue I F've
included bis gems called "Checling File Access Permissions in UNIX Systeus'
and "Shell Subprogram Facility™, as well as scme notes on security from Vrije.
Next issue you may look forward to "Macr03 for Analyzing C Program Arguments'.
Makes your mouth water, dJoes it not?

‘For those of you flogging dead PDP11/70s, a letter to John Lions from Purdue
should be of interest. We certainly found it worth = reading. Even though we
had worked out most of what George Goble said, it was reassuring to know that
-other people had come to the same comclusions.

OVERSEAS CORRESPONDENTS

Ian Johnstone has arrived safely at Fell, and says he will start writing as
soon as the dust of his trip settles. Some of his rather hurried aerogrammes

AUUGN | N | 0

F
to date give promise of some very interesting letters to come.

And "YES!" Ian, I will send you your copies of the Newsletter.
Our second correspondent will depart shortly for Antarctica. Eh? Where?

Dave Robinson (login name “drob”) has been posted, as part of his job, to the
south pole. Dave is an avid UNIX user (I had to use RSTS again todayee...
Yuk!”) and fears loosing this mental prop so much that he is going to very
great lengths to be able to “dial up’ from down south. We will assist him by
tuning the radio to his frequency at set times, and if the ionosphere holds
up, we should establish some sort of remote terminal record.

I dont know just what we will get out of the deal. The way DMR gets around
the world Dave may come through with an interview. Still, there are always
the penguinseecocees

VAX STUFF

There has been considerable comment about the "VAX-VMS wish list" included in
the last AUUGN. ©Not all of it favourable.

Most people read it. A few understood it. A few wondered what it had to do
with UNIX. The people who wrote it were not amused. DEC was saddened. I was
quizzed.

Janj is unrepentant.

Jan published it as a comparisonvbetween what some people wanted in VMS and
what already existed in UNIX. I have offered DEC equal time (how many pages
was 1t?) but as this issue spews- from the copier I have not received a reply.

The VAX for Sydmey Uni is in Australia. Where exactly in Australia is not
known. ‘For a while it seemed that H.M. Customs must be looking inside every
chip in the machine, the length of time it took to ‘clear customs’. Piers,
Chrism, and the rest of the gang have a few bottles of champagne waiting. 0dd.
that the bottles are mnot in the fridge.

NEWSLETTER CONTRIBUTIONS

Come on all you people out there in Newsletter-land.

Towa

Peter Ivanov ,

Dept. of Computer Science
Electrical Engineering

PO Box 1

Kensington 2033

AUSTRALIA

(02) 662-3781

1 V | ‘ ; AUUGN

Mini-Unix II Dec lst 1979

PROGRESS REPORT

MINI-UNIX/SU has undergone several improvements since it was released
several months ago. These were documented as fix025 and £fix026 in level 6
UNIX. The patches introduced the concept of INODE locking and fixed the
sleep priority of unserviced buffer updates.

Further modifications were also made the UPDATE strategy. This
involved removing the externally initiated wupdate (/etc/update) and
replacing this with a request internally scheduled. At present the update
of the file system takes place once per minute (at 40 seconds past the
minute), and updates only those buffers which have been modified since the
last update and marked for write. Once the system has updated the buffer,
the buffer has it’s update request cleared. In MINI-UNIX this means that
the system has one less process running (ie. /etc/update) and the system
spends less time in updating buffers that have already been written to the
system device. An undesirable by product of this strategy is that the super
block is not updated as often and in the event of a system crash some timing
information is loste

One final improvement has been made to the update strategy to stop the
updating of special files (cr rather inodes associated with the special file
eg /dev/tty8) as often as UNIX seems to desire. This prevents unnecessary
i/o transfers to the system device updating the inode that was used to
define the physical device of a special file. This was done because a
problem appeared with floppy based MINI-UNIX. The inode associated with
tty8 was updated every minute. This caused gross and unrecoverable physical
damage to one block on the floppy (the oxide coating wears off the
diskette) .

These changes have allowed MINI-UNIX to be floppy based ("floppy
UNIX"(?)). At present only two floppy drives are supported (AED 6200 and
the AED 3100). This could easily be extended with a new driver for other
types of floppy disks (eg. RX02 or if you really must the some-what slower
and less desirable RX01).

Practice has shown that at least three floppy drives are the minimum
desirable configuration for a self supporting MINI-UNIX system. One drive
is filled up with system commands, compilers and Fortran plus swap area,
another is useful as a system text file and the third is used as a user file
systeme. The main limitation on the floppy based system is the small
capacity of the floppy disks. To be a little critical, UNIX cffers a wealth
of wuseful processes, but they do occupy a lot of mass storage space. Two
RKO5 type disks help the system in terms of both speed (disk access) and
storage capability (having most things on line), but floppy based systems
are usable. One floppy based system has been running successfully for eight
(8) weeks without any major problems.

The 11/03 systems have benefited from the the C-compiler written for
the FIS option on the 11/40. This improves the execution speed of floating
point -software considerably (as the KEV-1l option is logically identical to
the KE-11F on the 11/40).

DISTRIBUTION OF MINI-UNIX

Distribution of MINI-UNIX has been held wup until it operated
successfully for several weeks locally. This performance test has been
achieved and the system 1is now in a reasonable state for distribution.
Apologies are offered to the kind souls that have been waiting for a tape to

Mini-Unix II L Dec lst 1%79

arrive, but the situation seems to be well in hand.

Next newsletter, I propose the include a list of parties interested in
using MINI-UNIX, so those who would like to be included should drop me a
line.

SOFTWARE ENHANCEMENTS (proposed)

RT-11 Fortran, Basic and MACRO are undergoing a facelift for MINI-UNIX.
This is dependent upon re-writing the RT-11 LINKER to understanding the
nature of the unmapped MINI-UNIX system. The work is mearing completion and
the software will be available to those lucky users that can produce both a
MINI-UNIX and an RT-11 licence.

A filter to extract floating point instructions and substitute them for
a set of subroutine calls is also in hand. This is not quite ready yet.
The idea behind this is to remove the need to emulate floating point
instructions (and extended instructions) on 11/20 and such processors. This
"work is being done by John Holden at Sydney Uni.

I have heard some muttering of a network front-end based upon MINI-
UNIX. At this stage they are only mutterings, but there is a good chance
that something will come of this. '

DISTRIBUTION PRE-REQUESTITES

1. A MINI-UNIX licence.

2. Provide one 2400 ft mag tape (or better still 3 x 600 ft mag tapes).
The system comes as 3 x RKO5 images on mag-tape.

‘3. As ‘an alternative to 2. some bilateral communication may be necessary
to provide a more comvient distribution medium.

Chris Rowles

Department of Chemical Engineering
University of Sydney 2006.

(02) 692-2455

T4 Wa

UNIX-60 'TRANSPORTING UNIX TO THE KD11-K PROCESSOR Dec 2nd 1979

In September the Department of Chemical Engineering at the University
of Sydney took delivery of a PDP-11/60. The system arrived with RSX-11M.
After some experience with MINI-UNIX on our 11/20, it was decided to use
UNIX as the operating system on the new 11/60. As UNIX was running at BASSER
and at the other place (UNSW), we felt that 11/60G UNIX would be a relatively
minor extension of an 11/40 UNIX system.

Our belief that conversion of UNIX to the 11/60 was a relatively simple
matter was confirmed by the following quote : "We have a working UNIX system
on an 11/60 in Western Australia " ——= T.J. :

How right he was. It even worked on RKO06 disk packs. It worked on the
eastern seaboard after a fashion, but that was RKO7 based and somewhat of a
new story. To be honest UNIX booted up from the RKO7 packs and worked (as
well as the original level 6 distribution could) within three working days
of the 11/60 commissioning. It was then that the limitations of full UNIX
became obvious. The solution appeared to move "to UNSW URIX and even
BIGUNIX.

The solution was correct; but the path was somewhat long and poorly
documented. This is an attempt to remember the exact trials and tribula-

tions of a new UNIX coming out.

Techmically all data contained in report is subject to change without
notice. : ‘

11/60 —-= WHAT IS AN 11/60 ?

The KD11IK is a relatively new processor in the PDP-11 family. Tt lies
somewhere between the 11/34 and the 11/70 in processing power. Technically
it has an 11/40 type memory management unit, a maximum address space of 256K
bytes, an integral floating point processor (implemented in the base
machine”s micro code) and a set of useful registers (accessable via the MED
instruction). In performance, the 11/60 is between 0.4 to 0.8 11/70
performance. It”s floating point unit is about 0.8 to 0.9 the speed of the
11/70. Integer instructions perform at about half 11/70 rate. The
processor comes with a 2k byte cache, which gives the rather impressive
performance.

The 11/60 comes with an expanded instruction set. Four new instructions
were included toc help with the debugging of the 11/60 micro~ccded floating
point instruction set. Two additional instructions are of general use to the
UNIX programmer. XFC is an instruction that allows the user to access the
writable control store option. MED is a new instruction that allows the
programmer to access up to 92 internal registers. These are accessed via .an
escape sequence and the general register RO. The accessible registers are
the general purpose register set, a spare 8 general purpose register set,
the floating point registers and a set of error logging registers. The
error log is generated as a CPU error occurs and allows error recovery via
access to the internal processor state (jammed or held constant until
released) via a set of six registers. This is a significant step forward in
PDP-11 architecture.

The 11/60 also has a writable control store optiom, a hardware floating
point unit and an 11/70 error register. The writable control store is
accessible via a single instruction (again starting a multi-word escape
sequence), XFC. Lastly, the 11/60 is complete as it has a STACK LIMIT
register. '

. /7
UNIX-60 TRANSPORTING UNIX TO THE KD11-K PROCESSOR Dec 2nd 1979

FLOATING POINT --— MICRO-CODE STYLE.

The 11/60 has floating point instructions embedded into its micro-
code. This is standard on all 11/60 processors. It also has an optional
floating point processor (FP-11E). The conceptual problem created by the
floating micro-code is "HOW does one support hardware that appears to be
present, yet is not really there (or here or anywhere else !!) ?".

Expanding the conceptual problem a little, one sees that floating point
instructions are emulated at the hardware level by the base 11/60. The
micro-code behaves in a strange and poorly documented manner upon exception
traps. Added to this feature, the floating point registers form the error
log registers within the 11/60 CPU (unless the FP-11E is present). The
support strategy seems to be to define the non-existant hardware and then
blissfully pretend that it is really non-existant (or something like that).

The physical problem that arises from the floating point emulation is
that floating point exceptions are treated as illegal instructions unless
" the FP-11E processor is present. This state of affairs was not immediately
obvious and, needless to say not extremely well documented. The problem was
overcome by writing a better back-off routine (based on the level 7 UNIX
routines) and allowing the exceptions to bomb out in any manner they thought
a reasonable idea. The 11/40 back-off tends to ignore floating point errors
by saying that all floating point instructions are fllegal. This does not
allow the system to recover from an aborted instruction and prevents illegal
instructions executing.

I feel that the full floating point unit will cause the processor to
behave in a new and excitingly different manner, - and it should be
interesting to find out exactly what happens when it arrives next year.

It appears that it is possible to catch errors im an 11/70 manner using
internally generated diagnostics however driving instructions (in terms of
what the exact meaning of the error log registers) is held up by lack of DEC
supplied printed words. Hopefully this condition will change with time as
the 11/60 Technical Description Manual becomes available.

THE ROAD TO BIG UNIX =-— A GRAVEYARD OF 11/60 UNICES.

The road to BIG UNIX is rough (in the documentation semse). Once you
have been there, all problems vanish ; getting there im the first place ——--—
well that is really this story.

There came to pass a state of UNIX that went BIG, and the people looked
upon this and said it was good. Well some people looked upon it and said it
was great, others said it was questionable and mapped buffers was a better
path to follow. The difference of opinion appears to arise from the
presence of an 11/70 memory management unit or the lack there of. Being of
the second type I decided that BIGUNIX was not such a bad idea. The problem
with BIG UNIX was that it was designed for the 11/40, and the 40 was the
beginning and end of the processor types truely supporting BIG UNIX. With
the advent of 11/34°s some effort was made to support BIG UNIX.

If you ask a 34 owner what changes were made Eo support BIG UNIX you
" usually get the answer e...."well we had to make allowance for the lack of a
STACK LIMIT REGISTER, and there was another mod, but I forget what it waSes.
any way BIG UNIX works ". This state of affairs was somewhat confusing, so
a fresh start was made upon the problem what is the essence of an 11/34
and what makes it different from am 11/40? This problem was expressed as

UNIX~60 TRANSPORTING UNIX TO THE KD11-K PROCESSOR Dec 2nd 1979

«oeoo "what is the essence of an 11/607" which seemed to be a better way of
saying the same thing. The question was deemed to be answered when it was
possible to define the CPUTYPE as 60 rather than 40 or 70. Clearly if this
definition worked, then CPUTYPE definitions of 34, 23, 44, etc should follow
in a relatively simple and logical mannere.

I'M A 60 =-—- WHAT MAKES ME UNIQUE ?

The answer is simple enough —---- you are a sixty (60) .. QED

UNSW modifications to the UNIX source had been defines in the DEFINES.H
file. These patches to the original operating system were designed to
differentiate between the PDP-11/40 and the PDP-11/70, and tend to lump all
hardware features together.

Thus a host of mods that were deemed 11/40 or as 11/70 applied equally
well to the 11/60. The initial approach to the problem was to say that
11/40 was almost 11/60, hence define 11/40 and patch anything else that was
wrong. This approach fell apart when some of the 11/40 mods referred to the
KT~11D memory management unit (and applied to the 11/60), while others
referred to the absence of floating point instructions (a problem that arose
above) .

The solution taken was to redefine the patch levels to separate out the
difference between members of the PDP-11 family into a more structured set
of fundamental hardware differences. The first redefinition concerned the
memory management unit type. The DEFINES.H file was altered to read MM-KT-
40 and MM~KT-70 to differentiate between the memory management units (the
twe state KT-110 and the HEX state 11/70 type units). This meant that
several 11/40 and 11/70 definitions were replaced and several of each type
(non-memory management references still remained). The next step was to
sort out the meaning of the remaining 11/40 references. These were

"references to the floating point unit and were redefined as such.

Hardware register differences were then defined in a semi-reasonable
manner. For example a definition was made for a DISPLAY REGISTER, a SWITCH
REGISTER, a STACK LIMIT REGISTER and a MEMORY PARITY REGISTER. The net
result is to define the hardware in terms of a processor type number. This
means that you define a processor type 11/60, 11/40, 11/70 11/34, 11/44 or
11/23 and that then defines the hardware registers and memory management
unit type in use on the host processor. It also enables automatic selection
of several UWIX operating system options designed to cope with hardware
directly. '

While this was not an earth shattering discovery, it should help UNIX
to migrate to new processor types. It also removes Lhe need to check
CPUTYPE as an internal variable. This now means that this can be set to 60
or anything else you like, but 60 has special appeal.

But, still BIG UNIX failed to live on the 60 !

Defining PROCESS QUEUES, (a Chris Maltby patch and suggestion) solved
the tendency for UNIX to die on the 11/60. To this day the insight that
produced the results is a mystery. FEven the great Maltby cannot explain
why.

s/

UNIX-60 TRANSPORTING UNIX TO THE KD11-K PROCESSOR Dec 2nd 1979

I’M A 60 === I THINK -—— "I RUN === I STILL CAUSE HEARTACHE !

With BIG UNIX yielding to the 60, all problems appeared to be solved.
It was then not unreasonable to try and bring all of the devices loaded on
to the UNIBUS under UNIX. It was desirable to leave a MAG TAPE driver in
the system, as this would allow BIG UNIX to run on the 11/34 at CSIRO. This
would allow movement of source material to the 11/60 via the CSIRO’s RKO7
and a 9 track MAGTAPE.

It was also deemed essential to support our faithful PC-11 paper tape
unit. The SFILE was created and the system was regenerated and then
cesse it crashed upon booting. Well crash is an ugly word, died is a better
description. The system would boot, access the disk in a feverish manner
and die long before it tried to speak.

The PC-11 was removed and the problem disappeared.

Then the MAGTAPE was replaced by the PC-~11 and the system remained

"alive and well.

k Finally the MAGTAPE was returned ... instant death !

LESSON 1 : Standard UNIX loaders load up to 24k UNICES.... larger than
this UNIX can only be loaded via a relocated loader and hence a self
relocating BOOT.

The problem was that UNIX had grown beyond its ability to load itself.
Fixing the loader allowed any logical device combination I desired and then
some. In keeping with the true spirit of UNIX, a line between BASSER and
CHEMENG is in the process of being laid. This will take the university some
time to complete, but should be operational early 1980. 1In anticipation of
the line being available, the multiplexed line driver has also been included
into our system.

RKO7'B00TSTRAPS'%-4'AN‘ILLOGICAL'SOFTWARE CONSTRUCTION

The RKO7 provided untold experiences for both long established and
novice UNIX gurus. To get an RKO7 to run, a pack acknowledge command has to
be issued to each drive before any data transfers can be made to the disk
drives. Thus, the drives are provided with open and close functions. The
close is necessary if the packs are to be swapped during the running life of
a UNIX system. If this was not implemented then every time a new disk pack
is loaded onto the system you need to reboot the system as well.

The bootstrap, however crashes if a pack acknowledge 1is attempted

before the loader is relocated. 0dd you may think, and with just reason.

The accepted practice is not attempt to read from the disk without a pack
acknowledge, which causes the read to fail. This invokes an error retry and
a pack acknowledge. The problem then disappears and the system boots itself
in a very acceptable manner. Intrinsically this is a very poor solution,
but it works and I can not find the reason for a user initiated pack
acknowledge to fail. Hence I have a very.unacceptable (in a purist sense)
bootstrap.

I AMA 60 === T THINK = I AM - "I RUN =="1 RUN RELIABLY AS BIGUNIX

The story ends.

UNIX-60 TRANSPORTING UNIX TO THE KD11-K PROCESSOR Dec 2nd 1979

The sequel begins. I have still to support the 11/60 in the nicest
manner. One feature of the 60 that is desirable to support is its point of
error logging capability. This means that at the onset of a cpu error, for
any reason, the 11/60 stores the current internal state into 6 registers and
then executes a CPU jam function. These registers can then be examined and
the error condition can be corrected, without the need for the 11/40 type
back off routines. Futhermore the error can be corrected at the site of
occurrence and recovery is assured. This support is dependent upon the
existance of the 11/60 CPU Technical Description.

The second feature to exploited within the 11/60 is its writable
control store. This allows the 11/60 to extend its basic instruction set to
include such little loverlies as :

BLOCK MOVE —=-- 512 byte transfers form one instruction
CSAV a useful thing to do from C.
CRET the complement of CSAV

The writable control store and the floating point hardware unit are items to
be ordered in early 1980.

SYSTEM CONFIGURATION -=-- CHEMICAL ENGINEERING : SYDNEY UNT.

CPU 11/60 with 256k bytes ECC MOS memory

Battery back up v

2 off RKO7 Disk Drives (28 Mbyte each)

Pertec DM3400 (5 Mbyte drive ~- 2 x RKO5 logically)
DU-11DA Synchromnous Serial Interface (4800 bd to CYBER)
DZ-11A 8 line MUX.

2 off DL-11E Single line interfaces

DL-11W Single line interface

RT-11KRR Special line to 11/45 in Faculty of Engineering
Tally 2200 line printer

PC-11 Paper Tape Reader/Punch

10 off Terminals of various types

PDP-11/20 Satellite CPU.

PDP-11/03 Satellite CPU

Chris Rowles
Department of Chemical Engineering
University of Sydney.

P .

-

O S

© et st e e

Checking File Access Permissions in UNIX Systems
~J. Lions .
Bell Laboratorics
Murray Hill, New Jerscy 07974

ABSTRACT

This memo discusses some proposed changes to the way file access permissions are
checked in the UNIXT Time-sharing System.

1. Introduction

Many UNIX system installations are operated in a fairly free environment where the protec-
tion of files and the system from unwonled intrusion is not an issue. Ilowever there are more
and morc installations where protection is important and for which improvements to the
prasent system are desirable,

This paper discusses some proposed changes to the way file access permissions are checked
in UNIX systems. Its purpose is to provoke discussion of the issues before any changes are
actually implemented.

2. The Present Situation

Each registered user of a UNIX system has a user identification number (uid). There is one

‘distinguished user, with a uid of zero, known as the super-user, who is able to bypass all the

normal security barriers in the system. Each user is able to create and own files, and to set the
access permissions for those files he owns. Usually there are a number of pscudo-users whose
principal role is to “‘own’’ certain system-related files. :

The UNIX system supports the concept of wuser groups, whose compositions are formally
defined within the file /erc/group. Each group has a unique group identification number (gid) and
each user is a member of at least one such group. The file /etc/passwd contains, for each user,
the name of a group to which he or she belongs and this group is associated with the user when
he or she logs in. A user may change his or her current group association by using the newgrp
command, which creates a ncw shell with a revised group association.

‘Each process has associated with it two user identification numbers, which are commonly
referred to as the real wid and the effective uid. For the majority of processes, these two values
are identical and take the value of the user identification of the person who initiated the pro-
cess. Also associated with each process are an ¢ffective gid and a real gid. When a process
creates a child via the fork system call, the effective and real uids and gids are copied dlrectl)

~ from the parent to the child.

~For each file there are three sets of permissions which may be set by the owner of the file.
The first sct represents the privileges the owner allows himself, the second, the privileges he
allows members of a group that he designates (not necessarily one of which he is a memniber),
and the third, the privileges he allows to any user, who, being neither the owner nor a member
of the designated group, can find the file by searching the directory hierarchy. (Within each set
there are separate bits for read, write and execute permigsions.)

For accessing a particular file, a process has the owner’s permissions if the effective user is
the owner of the file, or it has the group permissions, if the effective group is the same as the
group associated with the file. Otherwise the process has only the permissions of the general
user community. (It is somewhat paradoxical, but in many systems where groups are
effectively ignored, so that all users belong to the same g,roup, the group permissions are the

¥ UNIX is a trademark of Bell Laboratories.

ey

o e A

e o
. b

Ve Hment o

-2-

ones which generally apply. Uscers tend to pretect themselves against this knowledge by making
the group and public permissions identical for their files.)

If the process exccutes (via the exec system call) a program file whnh has the set user

identification (sctuid) bit sct, then at the time the program execution is initiated, the effective’

uid is sct to the user identification of the person who owns the program (unless the elfective
user is already the super-user). (If the process exees a program which does not have the setuid
bit set, then the cffective and real vids and gids retain their prior values.) There is also a ser
group identification (setgid) bit whose eflect is similar to that of the setuid bit. In general any
process which is an execution of a sctuid or setgid program will have a different file accessing
capability from that which would hold otherwise. :

The majority of seruid program files are owned by the super-user, who is granted permission
to access any file. Normal users may invoke setuid programs to obtain services which the secu-
rity barriers would otherwise prevent. For example, a normal user may nol change the
password file using the editor, but he may invoke the program /bin/passwd, which is a setuid
program owned by the super-user, to change that part of the f{ile which contains his or her
encrypted password.

Some manipulation of the effective uid is possible via the seruid system call. If the effective
user is not the super-user, this call can only be used to change the identity of the effective uid
to be the same as the real uid (i.e. to undo the eflcct of the sctuid bit). If the effective user is
the super-user, the call can be used to change both the effective and the real uids Lo any value.
In both cases, a successful call on servid lcaves the effective and real uids with identical values.

The access system call has been added to the system to allow setuid programs (especially
those owned by the super-user) to check access permissions based on the real uid. However it
is not wise to expect that every setuid program will usc this system call properly in every situa-
tion.

- Since permission to access a file is determined only with respect to the effective uid and not
the real id of the process, an attempt to reference a particular file may fail at present if the
effective user is not the super-user even though the real user has permission to access the file
For example, wucp, which is a setuid program, owned by the administrative pseudo-user
“uucp”, is not able to copy a file, which does not have gencral read permission, even if the
owner requests it. This is because the program has been made setuid in order that it may gain
access to certain privileged files whose owner is “uucp” and which contain scnsmw informa-
tion about other systems.

One way to solve this problem is to make the super-user the owner of the program uuep.
However this represents an overkill, since uuep would then have unfettered access to every file
in the systern, which it clearly does not need. Moreover it turns out every setuid file owned by
the super-user is a potential “‘weak link™ in the system sccurity, and the number of such files
should be kept as small as possible. (If a setuid file owned by the super-user is ever left in a
writable state, an oppor tunity is generated for an unscrupulous user lo overwrite 1t with another
program, e.g. the shell, and hence gain super-user privileges.)

Another solution to the problem for uucp would be to use the existing facility for groups. It
is a curious fact that in general there has been a reluctance on the part of the administrators of
UNIX system installations to use groups in effective ways. The way it could be used in the
above example is to invent a new group (call it “‘uucp” also) with a single member, the user
“uucp”. The privileged files owned by the user “‘uucp”™ would then be associated with the
group “‘uucp”, and allow access for members of that group. Programs owned by the user
“uucp” that must have access his privileged files would then be made serg/d and would gain
access via the group permission mechanism.

3. First Proposal

It is proposed that access permission to a file be granted to a process on the following basis:

e

s e vttt o e St

-3-

1. If the effective user is the super-user, then the super-user’s permission (universal access)
will be granted; clse

2. If either the cffective user or the real user is the owner of the file, then the owner’s per-
mission will be granted; else

3. If either the effective group or the real group is the group of the owner of the file, then the
owner’s group’s permission will be granted; else

4, The general user permission will be granted.

In brief, it is proposed to allow the process to combine the access capabilitics of both the
real and the effective user.* It may be pointed out that this does not create any new seeurity
hole in the system, since a setuid program already has the capability to make its effective user
the same as its real user, and hence by a suitably devious arrangement of fork and exec can
already combine the access permissions of real and effective user in any desired way. '

4. Change to thie Sctuid System Call

This proposal is made with regard to the situation where a process executing a setuid pro-
gram, creates a sccond process which in turn executes a setuid program which belongs to some
third user. At present the real uid will be the same for both processes. Given the above
change, the access pcrmissions of the second process will be those of the real user and the
second effective user (owner of the second program). (At present the access permissions are
those of the second cffective user only.)

- An example where this situation is not entirely satisfactory occurs with the UNIX trouble

. TImesdtgotYTRin. ANy USer can exccute a reporting program, which is setuid because it

accesses certain files that are protected. This program needs to shuffle some of these files
around occasionally, but it cannot do so by forking and executing the my command, because
the latter is setuid and owned by the super-user. The mv command needs super-user privileges
for the case where it is asked to move directories. If this is not the relevant case, it uses the.
setuid system call to change the effective uid to the real uid. There would be no problem if
there were a way for the second process to have the combined file access permlssmns of the
first and second effective users.

At present, if the effective user of the first process is not the super-user there is no way of
achieving this effect. This will be possible-if a (one-line) change is made to the setuid system
call so that, in the case that the eflective user is not the super-user, the effective uid and the
real uid can be changed to the effective uid. In the example above, the seruid system call could
then be used by the child process after the fork system call and before it performs an exec sys-
tem call, to change the value of its real uid. A similar change should also be made to the setgid
system call.

5. Alternative Proposals

There are two other proposals which have been suggested as alternatives to the above
change to the setuid system call. :

The first involves a change to the kernel exec procedure, which would require that, when a
setuid program is being initiated, before the effective uid is reset, its value is to be copied into
the real uid. This would solve the problem of the trouble reporting system, but may, as a side
effect, affect some other as yet unrecognized system. E

The second proposal, which has been implemented at the University of Waterloo is to pro-
vide a system call (which they call *‘schizio’’), which simply interchanges the effective and real
uids of the calhng process.

® The desired cffect can be achieved via two simple changes 10 the kernel procedure access.

e i‘.

e

6. An Accounting Uid

If the above proposals arc implemented, then use of the new setuid system call may erasc
the identity of the original user who initiated the process. It is important in some cases that
this information not be lost. Accordingly it is proposed that a third uid -- the accounting uid --
be associated with each process. This would be set by an appropriate system call, which may be
used successfully only when the effective user is the super-user, and which would be exercised
in practice only by /ogin. The accounting uid will be copied by fork and will ultimately be written
into the accounting file by exit. Its existence will be transparent to the users in all other
respects.

7. The Role of Groups

Since it has frequently been observed that many installations make no effective use of the
group facilities, it may be timely to reconsider the role of these:

1. Are system administrators unable, or merely unwilling, to segregate their users into
groups?

2. Is the proper of administration of groups simply too involved? .

3. Would simple changes, such as to the /s program to print both uids and gids simul-
tancously, encourage the increased use of groups?

4. Should the concept of group be changed, for example so that groups become pseudo-users
(with a unique user id), have entrics in the password file, and arc able to behave generally
like a user? (Conversely, should a user be able to behave like a group, i.e. should each uid
also define a gid?)

Perhaps the real question is whether there is a need for groups at all?

8. Concluding Remarks

It might be assumed that the proposals outlined above, by widening the powers of particular
programs to access files, will in some way reduce the overall effectiveness of the file security
mechanism. However there is a countervailing consideration, namely that the proposals will
allow the access capabilities of programs to be tailored more closely to their needs. In particu-
lar, by reducing the number of setuid programs owned by the super-user, a major off-setting
gain can be obtained,

2 ialk 2

O e e s o e

Shell Subprogram Facility
J. Lions

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The standard UNIXT shell program provides a subprogram facility, but expects sub-
programs to exist in the form of distinct files. This arrangement provides adequate
functionality, but it is not always convenient from the programmer’s point of view.
A general shell command is described that allows a group of shell subprogram files
to be packaged as a single file and invoked conveniently.

1. Introduction

The reasons for including subprogram facilities in programming languages are several and well-
known. Thus it may come as a surprise initially that the language accepted by the UNIX shell
includes no obvious subprogram syntax. Of course, the subprogram facility is not really miss-
ing, because one shell program may invoke another in a simple amd straightforward manner.
Moreover, parameters may be passed, there is no fundamental limit to the nesting depth of
calls, and recursion is entirely possible. There is no disputing the gemerality of the subprogram
facility provided. However because the shell expects separate subprograms to exist as separate

- files, nnc.iccause a set of several small files is not always as convenient an object as a single
- iarger file, it is possible to question the convenience of the existing arrangements.

Developing a moderately complex shell program (say of the order of 100 lines), or a group of
shell programs, is often a qualitatively different experience from deweloping a program in C or
in another high-level language: ' '

1. One’s initial knowledge of the tools being used may be incomplete, and the available docu-
'mentatiovn may need to be supplemented by experimentation.

2. Debugging shell programs has its own particular hazards, and it is desirable to develop and
test large programs in scveral stages.

3. Detours may be needed to by-pass program bugs or features, or to supplement tools that
are not quite sophisticated enough for the problem in hand.

For all the usual reasons, it is desirable to construct large shell programs as a series of smaller
modules or subprograms, some of which may be extremely small (one or two lines). However
since the present shell program expects these modules to exist as separate files, certain
difficulties can arise: '

1. Editing several programé simultaneously can be error-prone amd is less convenient than
editing one larger file. Moreover listing programs such as pr are mot-always convenient for
processing lots of very small files.

2. The best way of dividing functions between subprograms may net be clear initially and may
change during the development process. For example, a set of commands to print out the
contents of a file may be located initially after the commands that created the file. Eventu-
ally it may be preferable to preserve those same commands elsewhere, in association with

~ similar commands for displaying other files.

3. A group of commands may be factored out into a separate subprogram merely for the con-
venience of redirecting their output or input files. - ‘ :

T UNIX is a trademark of Bell Laboratorics.

bt}

e

.

For these reasons the facility of packaging several subprograms into a single file is just as desir-
able for shell programs as for programs in other languages. The spp command described below
provides this facility, using the facilities of the new Bournc shell, Its usefulness has been esta-

~ blished, at least to the writer’s satisfaction.

2. An Example

Let us use the term package file to denote a file that contains several shell programs or subpro-
grams. An example of such a file is the following:

cd ${1—)
foriin’ls’
do
tell $i
done
tell:
we $1
file $1
all:
foriin'ls
do
il test —d $i
then
cd $i
echo $1/8i
all "$1/81"
. ocd..
else
tell $i
fi
done

The structure of a package file is not unlike that of a makefile. It consists of a sct of shell com-
mand lines, interspersed with label lines. Each label line consists of a label (currently restricted
to be 1-14 lower case alphabetic characiers) immediately followed by a colon. (Additional char-
acters may appear on a label linc after the colon, but are ignored.) Each label line marks the
end of one subprogram and the beginning of the next, which it names. The label line

main:
is assumed to precede the first line of the file.

Assuming that the file above is named s#how, the command
spp show
has the {ollowing effect:

1. a temporary directory is created by spp, and threc executable files, main, tell and all are
written in it; the contents of the three files are lines one to five, lincs seven and eight, and
lines ten to twenty-one of show respectively;

2. the value of the environment variable $PATH is changed to include the temporary direc-
tory as the first entry in the command search path;

3. the command main is executed to begin the real work (that includes calls on tell);
4. the shell will find both main and rell (and alf when needed) in the temporary directory;

5. finally, at the end of the computation, the contents of the temporary directory and the
directory itself are removed.

Subprograms may be invoked individually. For example, if the command
spp show tell somefile
is executed, the same sequence of events as described above is executed except that the

Gt

-3

command tell somefile is exccuted in place of the default command main. If it is desired to

invoke the main program with paramecters, the command must mention main explicitly, e.g.:
spp show main dir

would cause a different starting directory to be used.

3. The SSH Command
The shell program that implements spp can now be presented:

if /bin/test ! —r "$1"

then echo Usage: $0 filename [args ...]
exit

fi

TMP =/usr/tmp/spp$$

trap "rm —f §TMP/*; rmdir $TMP" 0

trap "echo ; exit 1" 12315

/bin/mkdir $STMP

/usr/lib/breakup $1 $STMP

PATH=8$TMP:$PATH

export PATH TMP

shift

${*—main)

The procedure checks that the first parameter is the name of a file that exists and can be read
(lines 1-4); generates a temporary directory name (line 5); sets traps to ensure that the tem-
porary files and directory will be removed (only once) when the procedure terminates or is
interrupted (lines 6, 7); makes the temporary directory (line 8); executes the program breakup
that copies the file that is its first parameter as a set of executable files (observing label lines)
into the directory that is its second argument (line 9); changes the value of PATH (lines 10,
11); shifts the argument list to remove references to the first parameter (line 12); and executes
the remaining parameter list as a command, or, if it is null, executes the command main (line
13). :

The breakup program is given in Appendix A. Because both the shell and the editor lack good
comment conventions, breakup introduces the following convention (which can be altered if
necessary): each line is searched for the two character sequence "%%"; if it is found, it, all
preceding white space and all succeeding characters are discarded before copying. Blank lines
are discarded entirely.

Note that SS;J exports the value of TMP, which is a shell variable naming the temporary direc-
tory. This allows small data files, for example, sets of commands for awk or sed, to be included
usefully in the command file. (The path names for references to such files must begin with

 “$TMP™.)

It is undesirable in general that subprograms be invoked asynchronously from within a package
file because, before all references to them are complete, the temporary subprogram files may
have been removed by spp as it terminates. There is no reason why the spp command itself
may not be run asynchronously. o '

4. Another Example

Appendix B contains a non-trivial example of a package file that was developed during an inves-
tigation of the procedure calling relationships within the Portable C Compiler. The following
comments may be of interest: : : '

1. Most of the subprograms return their result via the standard output file. This is not essen-

tial but seems to be a good practice.

2. The file fempin the initial working directory is used as a temporary file, and is not explicitly
removed. ' :

o

-xe

-4

Awlk can be persuaded to use tabs as field separators, so some of the uses of # are now
seen not to be nccessary. Ilowever cref deposits delete characters in its intermediate file
after names that were eight or more chamclcrs, and #r scems to be the only way to remove
these. :

The code to remember the initial directory (as the variable HERE) scems sufficiently use-
ful that it most probably should be included in spp itself.

Crefcan become confused so that some ad hoc editorial changes arc needed as part of the
subprogram crossref.

. There is no simple way of recognising the beginning and end of procedures in C program
files. If programmers use a consistent style in laying out their programs, ceriain ad hoc
editor scripts may just be sufficient.

Rl

APPENDIX A. breakup.c
#tinclude <ctype.h>

#include
#include
#include

/%

+f
char
FILE

<sys/types.h >
<sys/stat.h>
<stdio.h>

A program that reads the first named file, looking for "labels" and creates a
file for each label from the statements that follow. The first file is called "main".
A label is a line consisting of a name followed by a colon.

Any characters after the colon are ignored. The name must consist
of fourteen or less lower case alphabetic characters.

line[260] = { ": main" };
p,]

struct stat buf;

#define
#define

CDI1 "%’
CD2 "%’

main (argc, argv)

int argc;

char =argv|];

nohope:

nocreat:

register char *q, *l, *k;
if (argec < 3)

printf ("%s: args: filename directory_name\n", argv([0]);
exit (2);

/* check for directory */

if (stat (argv[2], &buf) || bufst_mode & S_IFMT != S_IFDIR)
goto nohope;

if (¢ = fopen (argv[l], "r)) == NULL)

{ printf ("%s: can’t open %s\n", argv([0], argv[l]);
exit (2);

if (chdir (argv[2]))
printf ("%s: can’t change directories\n",argv[0]);
exit (2);

}

I~ &linel2];

p = fopen (I, "w"); /+ main +/
chmod (1, 0700);

i{f (p == NULL)

printf ("%s: can’t create %s\n", argv[0], 1):
exit (2);

while (fgets(l, 256, f) != NULL)
/+ check for ‘label” line #/
for (@ = I; q < &line[16); q++)
if (*q < 2" |l*q > 2) -
break;
if ¢q!=""1lq==1
/* not a ‘label’ — look for comment */
- for (5 »q; q++)
if (*q == CD1 && *(q+1) == CD2)
{ while (isspace(*(q—1))) q——;
< sq++ = "\n"

- 6-

b= \05

break;
)
if (+1 == "\n") continue;
fputs (1, p);
continue;

}

/* “label” defines a new file +/
fclose (p);
g = "\0,
if ((p = fopen (1, "w")) == NULL)
goto nocreat;
chmod (1, 0700);
)

fclose (p);

~exit (0);

-%

oy

o e e = i # e,

APPENDIX B. Sample Shell Package

seltir—X

FILES ="/usr/sr¢/cmd/pcec common trees.c local.c code.c pftn.c scan.c optim.c"
RECPROCS="where buildtre tsize fortarg clocal nncon talign ctype \

optim offeon exname getlab”

group list SFILES > plist; patchplist

procs plist > procnames

crossrel procnames SFILES > ref

order procnames ref SRECPROCS > porder

- printit

printit:

group:

list:

lista:

pr actsl

pr —e9 —w76 —2 —h "PROCEDURE LOCATIONS" plist
printprocs procnames

printcalls ref

printorder :

: group "pr —x" SFILES

GENERAL PROCEDURE TO OPERATE ON ALL FILES IN A GROUP
sel —x
HERE="pwd" ; export HERE
job=81 ; shift
¢d $1; shift
for i in $+
do
$job Si
done

CREATE LIST OF: FILENAME, START, FINISH, PROCEDURENAME
set —x
lista $1 > SHERE/temp
ed — SHERE/temp <<!
1\8$s/77 /
g/(/.m.2
g/ (/. =2,
1\Ss/(//
1,\$s/°/81/
w
q

cat SHERE/temp
set —x

ed — $1 <<\!
g/ la—z].+()}/s/ (+/ (/p\
=\
I V=
%% not everybody’s convention 5

Q

5y
1

patchplist: AD HOC CHANGES

ed plist <<\!
/\+relook/d
w

q

procs:

.8-

MAKE FILE OIF PROCEDURE NAMES
awk “{print $4}" $1

crossref: LOOK FOR REFERENCES TO PROCEDURES

set —x
HERE="pwd"
procs=81 ; shift
cd $I ; shift
cref —cot $IIERE/$procs SHERE/temp $+
%% ‘translate deletes left by cref to tabs *
cd SHERE
tr "\171\377" "\OII\OI1" < temp > tempb
%% ‘make file to list references to procedures
awk “{print $3, $1, $2, $4)" tempb “tr " " " " > temp
m tempb
%% ‘kludge to overcome some idiosyncrasies *
ed — temp <<\!
g/RCON/s/ /fortarg/
g/ TNEXT/s//talloc/
g/ _/d
w
q

sort —u temp

order: TRY AND DETERMINE THE ORDER IN WHICH PROCEDURES SHOULD APPEAR
awk “[print $1, $1}° $1 > temp
awk 81 != $2 [print $2, $1})° $2 " sort —u >> temp
 shift ; shift
for i in $+
- do
‘ ed — temp < <!
g/ 8$i/d
w
Q
!
done
tsort temp
printprocs: DISPLAY PROCEDURES
awk “[print $4, $1, $2}° $1 " tr """ "> temp
pr —e9 —w78 —3 —h "PROCEDURE NAMES (in order of occurrence)" temp
sort temp "\ ~
pr —e9 —w78 —3 —h "PROCEDURE DECLARATIONS (alphabetical)"
printcalls: DISPLAY CALLER, CALLEE, LOCATION INFORMATION
pr —e9 —w78 —2 —h "Procedure Calls, Ordered by Caller” $1
sort +1 —2 +0 —1 +2 =3 +3n $1 °\
pr —e9 —w78 —2 —h "Procedure Calls, Ordered by Callee"
: sort +2 —3 +3n +0 —2 $1 "\
pr —e9 —w78 —2 —h "Procedure Calls, Ordered by File, Line Number"
I’ printorder: PRINT ORDER COMPARISON

sdiff —w30 procnames porder ~
pr —2 —w78 —h "Actual v. Desirable Order"

DA

r

£

Vrije Security -

Our system has been attacked by a number of very clever students in an

attempt to crack our security. As a consequence of this we have discovered a
number of security leaks in Unix, mostly due to the sloppy way of writing SUID
programs. We have built a system to resist login simulators. The following bugs
and changes have been made: :

B

Make login safer. Login simulators can be resisted by making a ".secure"
file. affected files: login.c, su.c

Core dumps from SUID programs were made with SUID permissions. Prior to
making a core dump the permissions should be reset. Our students made links
from /etc/passwd to core and wrote core dumps on top of the passwd file.
This bug had already been fixed in version six and a half, but is present
in some older versions. affected files: sig.c ‘

Make su safer. This is a well known bug. A user could open 15 files and
then execute su. Su would fail to open the passwd file, assume there was no
passwd file and make you super user by default. Su now checks for this con-
tingency. affected files: su.c

riake mv safer. There are two bugs in mv.

1. When moving directories no checks were made on permissions at all.
Think what would happen when you do this: '
echo "root::0:0::/:">/tmp/passwd
chdir / ;
mv etc etc2; mv tmp etc; su
Mv now does lots of checking.

2. Mv attempts to move things by linking and unlinking. Some students
would start a number of moves in parallel, particularly moves of
directories. Some of them would succeed in linking, but only one will
Succeed in unlinking, thus creating many links to a directory. UNow mv

unlinks the destination if the unlink of the source fails. affected
files: mv.c

Make the line printer daemon safer. The line printer daemon (lpd) would
unlink any file if a -r flag was specified. A child can this is dangerous
(opr ~r /etc/passwd works like magic). Lpd now checks permissions. Lpd has
to do this by finding out who executed the "opr". The only way is to check
ownership of the dfa file and put put an unlink in command in it. The
super-user’s super-user). To check on this 1lpd demands the mode of a dfa to
be 644 and the number of links to it to be exactly 1. affected files:
opr.c, ppd«h, lpr.c -

Dissallow stty on someone else’s terminal. Students used to stty to a dif-
ferent baud rate on super-used terminals to lure them away thinking their
terminal broke down. Students also teased people they didn’t Like (assis-
tants giving low grades) by setting their erase character to “\n’. This
logged them off. affected files: tty.c, Tocal.c _
Make mount safe. Mount checks the to-be-mounted file system for:

1. SUID to another user

2. SGID to another group

3. Special files

Vrije Security

4o link count mismatches of the dangerbus kind (link>count)

5. dups

6. The usage count must be exactly one
Staff members can mount in spite of reasons 1, 2, and 3. affected files:
pwd.c, sys3.c

Make su safer still (Well known bug) If a passwd of exactly 100 characters

is followed by its known encryption you will become the super-user. This
was easily fixed. affected files: su.c

The newgrp command is very dangerous. It needs a SUID but not SGID. If it
has SGID it will always leave you staff. The fix is of course easy, but we
dont need the command and have removed it. affected files: newgrp.c

The passwd file had its temporary file in /tmp, a directory writable for
anyone! Every user can remove the temporary file and replace it with one
of his own choosing. Passwd will then overwrite the passwd file with the
nev temporary. We fixed this bug and introduced a new one! Within two days
students discovered that no check was made on input length, so file
descriptors were overwritten. Needless to say disaster loomed. This has
also been fixed. affected files: passwd.c

All default modes have been changed to 644 or 755. It is VU policy to have
your files readable by anyone who cares to, but not writable. Many
~defaults used to be 666 or 777. affected files: MANY

Change init to execute login in stead of a shell when the system is brought
up single user. Now all students are allowed to bring up the system. The
"rc" file contains a check on all file systems and will not mount bad file

systems. This prevents the ruination of the system after a bad crash.
affected files: init.c

Chmod will not set the SGID bit if the file is owned by another group
unless executed by the super-user. affected files: sysi.c

Rmdir had to be rewritten. The o0ld one would only unlink ".." when rmdir
dir/../dir or similar was done. The new rmdir has been written in C, checks
permissions and dose not contain this bug. Many students had secret sub-

directories called "..", and so "find" would not find them. affected files:
rmdir.c, rmdir.s

Students can make programs that do chown on one of their files, call them
"1s" or something like that and put them in likely places in the file sys=-
tem. When a super-user blunders past, and calls "1s" dreadfull things hap-
pen. To prevent this the search order of the shell has been changed: first
/bin, then /usr/bin and finally the current directory. affected files:
sh.c '

g i
......

UNIVERSITY '
i NE YV E AT E SCHOGL OF EL!IE%TRI(‘AL ENGINEERING

September, 1979

Dr. John Lions

Computer Science Dept

The University of New South Wales
P.0. Box 1, Kensington,

New South Wales,

nusivcalia, 2033

Dear Dr. iLions,

Our PDP-11/70 is also starting to bog down quite a bit
now and there is not much more that can be done for it. We just
got money approved to buy a VAX. Our job mix is fairly close to
your job mix and we start bogging down at 55-65 logged in users
although we have 112 "things" which <can be logged into. It
depends more on what users are doing than how many are on.

Summary of configuration for "A" machine 11/70:

PDP-11/70,1 Megabyte of core, FP-11C floating point

DEC RS04 disk on massbus

DEC RP0O4 disk on massbus

DE{ TU16 magtape on massbus

SI (System Industries)/CDC 9766 300 MB disk on massbus
SI (System Industries)/CDC 9766 300 MB disk on Unibus
DH=11 (16 Lline serial multiplexors DMA output)

O =3 = oy oy

I would guess your system is bogging down from three
things mainly. First your system has only 640X bytes of core.
This will probably cause quite a bit of swapping with 40 users
logged in.

Secondly, I assummed you have two disks on one
controller, this generates a real bottle neck on 1/0, especially
if you have swaps going on also. I am not familar with the

DM9100 drives, but other large drives Like the DEC RPO4, CDCO766,
and CDC9762 (Dec RM03) run too fast for a Unibus 1nterface. An
11/70 Unibus 1is a Little slower than an 11/45 bus and many
revolutions will be missed. 11/70 Unibus transfers also "cache
wipe", they dinvalidate data 1in the CPU cache, slowing the CPU
down. This is difficult to measure, but seems to be about 40-50%
CPU slowdown when a continuous DMA transfer is in progress on the
Unibus (Swapping) Massbus (cache bus) RH70 devices do not wipe
the <cache, plus they transfer 2 16 bit words at once so they can
keep up with the super disks. On both of our 11/70's, each disk
is on its ouwn massbus controller. (one is on Unibus, but mostly
for backup, etc) On the "a" machine, /tmp goes to first 1500
blocks of an RS04 (on dedicated massbus), primary swap goes to

e Qb’ ‘
J 5%4 :% Electrical Engineering Building
o :‘5,? West Lafayette, Indiana 47907

N

- » Q’}

3

last 547 blocks of RS04, secondary swap + the 2 most active wuser
filesystems are on an RP0O4 (on dits own massbus controller).
Finally the root and 2 slightly less active filesystems are on a
CbC9766 disk with an SI cachebus (massbus) controller. ALl user
filesystems are 65500 blocks long, roots are 5000 blocks Llong,
and total swap is about 7000 blocks. Root/swap areas (except
RS04) are placed dead-center of the disks and an active
filesystem goes on either side of it, to minimize seek time.
Also our icheck tries to sort the freelist to interleave uhen
possible on a track. Our disk drivers sort requests by cylinder.
We have noticed that 3 massbus disks (each on own <controller)
seems to break the disk bottleneck on a large 11/70 system, and 1
megabyte of core seems to stop the memory bottleneck (swapping).

v Thirdly, I believe DZ-11's interrupt on each character
output. Running just 1 or 2 lines at 9600 baud doing continuous
output will more or less consume an entire 11/70 doing 1interrupt
processing/clist operations, causing output to come out in little
spurts. We use DH-11's (and ACT DMAX~16's) which have DMA
output. Our tty driver uses 512 byte disk buffers to queue up
output for terminals over 2400 baud and this buffer is DMA'd out
in one transfer. This also means you cannot have fill
characters, etc on high speed lines. We have Lear Siegler ADM-3a
CRT terminals which will run at 19,200 baud with no mods and at
38,400 baud with a minor clock/uart MOD and no fill chars
required. About 3/4 of our terminals run faster than 4800 baud
(9600, 19200 or 38400). We also have a 19200 baud serial Lline
for RJE to a CDC 6500/6600 which runs more or less continuously
during the days. An "ACT DMAX-16" is a DEC DH-11 equivalent,

‘available from Able Computer Technology, 1751 Langley Ave, Irvine

California 92714, USA. PH (714) 979-7030. A DMAX-1% Llooks Llike
a DH-11 except it only takes 1/2 mounting space (2 hex cards),
the parity control bit may be backwards (missprint in DEC
manual), and speed EXTA dis wired for 19,200 baud instead of
crystal. We have had good luck with the DMAX-16, I belijeve a
unit without modem <control is $5,000 and with modem control is
$5,900. Delivery is 2 or 3 weeks (1n USA) verses over 1 year for
a DEC DH-11.

He feel an "system" is more than just a CPU with the
cheapest peripherals one can put on it. Much of our expansion
money has gone into DH-11's (instead of DZ-11's), massbus disks
instead of Unibus disks, etc. Since we do our ouwn maintenance
(DEC maint is horrible here!) we can choose "brand X" devices,
etc. Many of these are bad bets though, have heard of many
problems with DATARAM memory, DIVA and AMPEX (and DEC) and Pertec
(Computer LABS) disks have been known to have been to cause many
problems. We have had good luck with SI (System Industries)/CDC
disks and memory from "Standard". We had a few problems with the
early SI 9400 Unibus controllers, but they bent over backwards
and got wus going. We spent quite a bit of time tracking down
Unibus protocol problems in their early 9400 controllers Llast
fall, and they gave us 2 free massbus adaptors ($5,000 Ea) for
our effort. Their current version of both the Unibus and massbus
controllers seems solid and handles power fails correctly. For
more info, you can call SI (Sunnyvale, Calif) at 408-732-1650.

There have been quite a few software changes made to our
SLSEEM, (BEYS ahoBE, o?e‘ﬁhe“E‘é”‘é’?'s‘t'g?ﬂ BItivSsolsleo¥ateths Saghnd

S e T ST IG RS SR SR e e S TR

RS Lt Y R e WS

/

with a Version 6, PWUB or Version 7 UNIX Llicense, just send us a
2400' tape and a copy of your license, with return postage. The
Toronto Users' group meeting software is also on the tape. Did
you get the Purdue tape from the June 1979 Toronto conference?
We have ‘kind of frozen our Vé system now and are beginning the
painful conversion to Version 7. Version 7 seems to have a Lot
of neat "ivory-tower" features to keep the UNIX hackers happy,
but it is far from running like greased lLightning to support the
70 to 80 Llogged in users we will have to run by next semester.-
Below is a piece of the talk I gave to the Toronto users group
meeting and Bell Labs which is sort of a summary of major changes

at Purdue/EE: . !
Purdue/EE Kernel
* Power fail recovery = save and restore regs
* 1400 user pop, 63-64 Max users login, NPROC 250, 16 bit uid, no gid
* 96 DH-11 Ports + 16 Network "pseudo ttys"

* Extended Addressing for Disk buffer pool and other tables
Allows upto 130 buffers.

* Inode cache = inactive incore inodes booted out on LRU basis.

* TTY driver {on DH-11) does DMA outhut from DISK buffers
which eliminates clist stowdown on 4800 baud to 38,400 baud.

* High speed (upto 19,200 baud) serial input (on DH=11) in
8-bit binary (upload) with no protocol.

* Split swap - Primary (90% swaps) go to 548 blocks of RS04 Fixed
head disk. Overflow goes to RPO4 secondary swap (10000 blocks).

Procs inactive for 30 sec are migrated from primary to secondary sWwap.

* Several misc sched changes: After 30 sec CPU time, proc is considered

to be "background”" and will only get swapped in when "easy" core

is available. Interactive running proc won't be booted out to make
room. . '

* nicer sys call - does a nice to another running proc.
nicer =127 pid . causes pid to not get scheduled (stepped)
nicer --5 pid (or better) gives extra favors to proc

* Most kernel printf's go to clist (except system disk errors)
where they are read from /dev/errlog by user proc.

* stty spy (write only bit) causes ttwrite() and ttyinput() to
put copy of chars on /dev/statlog clist glike /dev/errlog)
for monitoring other terminals. g ‘

* force tty input. If su and seék(fd,'—1, 0), then output sent
to fd (a /dev/tty?) is written to input clist instead. When
done to a raw disk file, this invokes boot from disk.

* Timelimit sys call = sends signal when USER+SYS exceeds Llimit
(works Llike alarm call)

e

Most of our Lload breaks down as follows: About 25% are

~students running DEC's F4P (fortran-=IV-Plus), CULC has converted
~to run under UNIX. About 25% C programs, 25% <cross assemblies

for 8080 and 6800 microprocessors and about 25% nroff. Almost
all of the users logged in are doing something. About 40-50 of
the terminals are more or less "public" and are available to most
EE students round the clock or 18 hours/day. There are about 50
more terminals in Prof's offices, labs, secretary typing pool,
etc and most of these are on use 8-5. We are going wWith ‘the
administrative UNIX License (being worked out with Western now).
Many of the professor ports are shared between several offices.
We have a terminal switcher (128 ports cpu+tty) about 90% built,
but the person building it, left for a better job.

As for performance, it takes 1-2 minutes to Fortran
compile or CC compile a typical 100-200 Lline program during the
afternoons when load is the wost. We typically max out between
(55 and 65) users logged in, 350 incore inodes, 350 NPROC, NBUF
120. We run 2 ‘electrostatic (Houston Inst) 2400 LPM
Lineprinters, and a Centronics on DH-11 serial lines. Almost all
terminals are Lear ADM-3a's and run at high baud rates (mostly
9600 or 19200) baud, many users use the "ned" (Rand Editor) two
dimensional editor. We have also rewritten Bell's ed and added
many features. ‘

As for increasing performance, there is nothing left, all
the blood has been squeezed out of the rock. Next step is a new
machine (VAX) running UNIX which may be here in April. We will
have to run 80-85 lLogged on users in the next few months, but are
going to use the network to fork off CC compiles, F4P compiles,

and nroff's to. other network machines and move the necessary

files around.

For your machine, I would guess you have been getting
very good performance considering the peripherals you have
(pZ-11's and Unibus disks). Even with souped up peripherals, you
could only go to about 60 users before going totally CPU bound.
It is probably time for another machine. Bell Labs gets another
CPU for every 20 logged in users or so. We are not quite that
rich and have to stretch a litter farther. ‘

Feel free to call or write me if vyou have any more

questions which I may be able to help you with. Although our

distributions are not as nice and elegant as Berkeley's, you are
welcome to them.

S1ncere[y,

9 ezl %/@%
George H. Goble

School of Electrical Eng.
Purdue University

West Lafayette, Indiana 47907

Phone: (317)-493-3890

VG«@ﬁOO&O CBFMUBLZO GeoTUN

XINO @ouo suwojele Burjzbusdo 1Y ,

BE19 ®oueiog Yaoy . 65 33 sye 23 641 33 gs 33
SAS dO ®oBW ®npung I RASIT T T-XSY - nd
LTI | | e
PpOS-Z@ESg 2ad av/11 ,
I-HO Pl°E PBSE o . -
11-HO PAPEDBSE © 11-H CREER | ant
I1-3wWa
/
‘g1 ~e33od 8EE 33 ‘gee 33
d ant v <rerre-ed =
< > <= —— >
. , 11-2Wa -V
BL/TT Bis1t _ sv/tl

- Maomaep “eqnduwong BurussurBug HUO«LP_O@.HM eNpdng

machine configuration

-> 11t
AHMIMHV o POP—-11/703 , -
TU=16 N 512 KW ocore , Uznpunwv
FP-11C Floating pt :
9 Tr tape| RH78 ¢ UNIBUS
, L 1MB To POTTER
A,
RH7@> mﬂdV.An>nIm BUS A1 P>
RSZ4 : s1 TO B MACHINE
DISK ma&& 9420
CTRL CTRL
- DECTAPE
; LA3E
TO B MACHINE PDP—11/45 UNIBUS CONSOLE
ACT
UNIBUS B Rbad
DH-11 DH-11 DH-11 DH-11 REPEAT DH-11
RARE \/ - 78 CRT LEAR ADM—3A TERMINALS. 3 LINE PRINTERS, MICROS
;s , v : _

This D)

v v AP i
\Smﬁ\.\ E@ . .Iwrc mu .\H\N&NAM\\G\A\ ;)) ,

s

*Toug

L

90USTOS I93NAWOD UT I9INJDS] IOTUDS
sutg *H uyop

‘AT9a90UTS SINOZ
*I19330 ued noA dl9y Aue I0J 9oUBAPER UT NOA jueyj

CXTUN-TUTW O3 XSATIP IT9Yl DBuippe STqnoIl

yonu 309dx® oM PINOD 9ouUsTAadX® Inok woxd °S,T0TI YiIm

YE/TT ue uo XINA Hbutuuni sT AIngaejued Jo LJTSILATUN 24T
*SIATIP TOTE UITM XTuN-TUTK buTuuni suocAue mouy nok og (TT

*Azessoosu aq Aru 3eyl 997

2014a795 Aue Aed o3 Addey aq TTTM ©M “PaydeIIR 3DUSDTT INO

jo Adoo e pue pasoOTous ST 9del Y (¢XTUN-TUTKH JO UOTISI9A
a1qer(ex anok 3o Adoo e yatm sn Arddns ssesld nodk pInod (t
: :sn 03 dyey IT 9q
pPINoOo NoA 3ey3 SABM TEIDASS 9I° BIASDYL °ISIN0D SO PIJUBAPE INO I0J
JuUSUWUOITAUS AXO3RIOQET B Ul SIISN OM3 IO auo Aq pesn aq ATTeotrdil
TITM 31 °SOATIP MSTP TOTY OM} pue spIom 38z Yits OT/TT-ddd ® uo
3T TTe3sut o3 ueTd pue 9OUSDTT XTUN-TUTW B paxtnboe i1snl saey apM

‘saTmoy "aIW aead

*eTTRIAISNY

_ ‘900¢ "M*S°N

‘RoupdAs yo AjTsasatun
‘putasoutbhuyg TeoTWEYD Jo °3deg
‘saTMoy *d*D "IN

6L6T 4940320 9¢

20USTOS UOT3RULIOIUI JO jJuswixedsdq

TGN

J—

uopui))am 00012 #0ydap3L

Tng a1varg

UO0JBUI[OAA JO AITSIDATUL BIIOIOIA

Hebrew University
Computer Science L.ab
Manchester House
Jerusalem
: , 20711779

Peter lanov

Dept. of Computer Science

Univ. of New South Wales

P.0O. Box 1

Kensington 2033

Australia

Dear Peter,

I wish to thank you for sending us your newsletter. We
recieved a VAX recently, and are in the process of installing it.
Our configuration is almost non-existent: 254K bytes of memory, a
single RMO3 disc drive, a DZ1il mux and a TE1é magtape. On the way
are 512K bytes and a DMC11.

Naturally, the VMS-or—~UNIX discussion is going on here, too
(quite ferociously). The +fact that the VAX/UNIX isn‘t here yet
weakens our (the UNIXers) position, yet some SCOPE-like features
of VAX/VMS scare the local CDC refugees off. I keep feeling dizzy

- whenever I see a full VMS file name.

ER

We have lately written for our 11/45 an IBM-format diskette
handling program. and - jyust +finished implementing a 1loadable
system—calls and drivers facility (it also enables writing, util-
izing and dropping them while the system is running). The latter
will soon be ready for distribution. ‘ ‘

About the "wish-list" you mentioned — has anyone written a
decent CRT scroller for UMIX, that includes ed’s pattern search
capability?

We would appreciate any advice about using the VAX, espe-
cially about reliability. and security of the two available sys—
tems.

Yours sincerely
/CLC"(f”d.c?v LAy
Gab1 St91nberg‘J

P.S. We have started with the bureocratic procedure to obtaln the
$22 for the subscription + back issues.

s o g

QUEENSLAND INSTITUTE OF TECHRNOLOGY
GEORGE STREET, BRISBANE. TELERHONE 221 2411.
-P.O. BOX 246, NORTH QUAY, QUEENSLAND, AUSTRALIA, 4000.

29th October, 1979.

Mr. C.D. Rowles,

Dept. Chemical Engineering,
University of Sydney,
N.S.W. 2006.

Dear Mr. Rowles,

This department has recently purchased an LS! 11/03 with 56 Kb of
memory, dual RXV21-BD floppy disc drives and 4 line serial interface.
| am interested in the prospect of implementing mini-UNIX which would
presumably need to be done from magnetic Tape on the DEC-10 system, which
is shortly to be delivered to the Institute, down the communications
interface. The department does not at this stage own a mini-UNIX licence.

I would be grateful! for your comments on the above and for detfails of

the cost of purchase of UNIXand a current mini~UNIX |icence,

Yours sincerely,

femipr

(DR) GEORGE MOHAY.
Senior Lecturer,
Dept. Mathematics and Computer Science.

ALL CORRESPONDENCE TO BE ADDRESSED TO THE REGISTRAR

*

¥

REF.

* INREPLY PLEASE QUOTE
F:MJC

TELEPHONE: ARMIDALE 722911
AREA CODE 067

TELEX NUMBER 66050

POST CODE 2351

THE UNIVERSITY OF NEW ENGLAND
ARMIDALE, N.SW.

DEPARTMENT OF COMPUTING SCIENCE
30th November, 1979

Mr. P. Ivanov,

Editor,

AUUGN,

The University of New South Wales,
P.O. Box 1,

KENSINGTON. N.S.W. 2033.

Dear Mr. Ivanov,

Mitchell Duncan has passed on to me your letter from 10th October
in which you give the information about Unix.

‘T am in charge of UNIX at U.N.E., and I was not aware of the
Australian Unix Users Group. This is perhaps the reason why you do
not have any record about us.

We do have a license (I am enclosing a photocopy of the relevant

pages of it), and we would appreciate it if you would inform us about
any Users Group Meetings.

I am also sending a subscription for the Newsletter, but this has
to go through our library.

At the present there is just one thing which is important to us
and we would welcome your help with it. Our terminals on the PDP 11/34
are on DZ-11 multiplexors (or most of them are), and there is no DZ-
driver on Unix. I wonder whether you happened to have such a driver,
and if so, whether we could get it from you. This would save us
writing it which is a bit difficult with our current knowledge of
UNIX.

I hope you will be satisfied that we are legal users of UNIX -
so that you can now discuss matters with us.

Looking forward to hearing from you,
Yours sincerely, —

.4/235%;).

Ivan Fris.

We have a number of DZ drivers in use locally. Some flash-fast (Ianjs), some

a little slower. We cant send you any software unless we know how to send it.
Do you have a mag tape? Kevin Hill from the AGSM will contact you soon to clear
up this point, and arrange a distribution of locally modified software.

I have credited you with a newsletter subscription. Please ask the library to
send MONEY, not order forms and other paper warfare......

Peteri

1/. é/él%?'
Laboratoires d’ftudes et de Recherches gymchcmhﬁ
58, rue de Ia Glaciére - 75621 PARIS Cedex 13

Seciété Anonyme au Capital de 2.700.000 F. R.C Paris B 69 1704 . Téléphone : 589.89.29

October 30, 1979

Peter Ivanov
U.N.S.HW.
Australia

Dear Dr Ivanov,

§ I was very interested to receive your latest Australian Unix

; : Newsletter. It is very good that you and the UK Unix User Group manage
to produce such good newsletters even if the US one has died. We would
like to subscribe airmail to your newsletter and receive backnumbers
airmail; please let us know if you require extra money for airmail,
meanwhile we will send the ordinary subscription.

Last Friday myself and a colleague went to the UK Unix User
Group meeting at Newcastle, which although we missed half of the meeting
was very interesting. We are trying to get a European Unix User Group
set up perhaps as a SIG of DECUS Europe. There is already a Dutch Unix
~-User Group. ~ .

Currently myself and the head of our statistics and
pharmacokinetics group are looking for personnel. I enclose a copy
of the advertisement which I circulated at Newcastle. The Statistics
group job is Tess UNIX orientated but needs someone with statistics,
5 pharmacokinetics and database experience or interest. I must add that
g : in general there are problems employing Australians in France (work
i permits) but if we are presented with really good candidates we are
willing to try. :

| ' _
| I hope to be in Australia in October 1980 for IFIP 80, would
f it be possible to arrange visits to UNSW or an Australian Unix Group
l - meeting around that time ?
: i <
‘ Yours sincerely, : :
__[_..CLM\ ' 'e*/bzzix
Ian R. Perry : o A

Groupe Informatique,
LoE RS, Bynthelabo,
58, rue de la Qlacieve,
75013 Paris,

France,

i

#22th Movember 1977

bm::nj l 14 KJ’O'QMQM

At proesent my company is trying te replace twa computer

scientists. One of the two computer scientists that we ftabke on
will be wvery much invelved with using ouy version of unix, the

e
L

ather may sometimes be using unix. I hope thaet as a fellow un
user uou will he able to help me by placing the second page of
this communication on & suitable notice board in your depart-
me il

Yours sincerely g}
(Tan R. Pevrvry Chef du Groupe Informabtigque’

A e b L ekl UL

& magor French pharmaceutical company requires for its Tresezrch
centre in the Paris area:

THO COMPUTER SCIENTISTS

with the following minimum qualifications:

@) experience of programming in FORTRAM and at least une of the
following languages: ALGOL. APL, BASIC, C, PLI or PASCAL

@) experience of signal processing or EEG analysis or biomedical
research or statistics or IMAGE or other detahase management

systenm

3

Leverience in some of the following would also be desirable:

a) Tebitvonix 4051 b)Y numeri analysis
t) Hewlett Packard 1000 computers d) electronics
e) DEC PDPL11 or LSI1Ll computers 3 the UNIX cperating system

Ability to speak or read French is not gseential. however, &
working knowledge of English would be useful.

IF'inte“eeted’send curviculum vitae to:

i TR, Pervy,

L.E.R.S. - Synthelaba,

98, rue de la Glacieve,
75013 Paris, '

France

or telephone Paris 589 89 29 extension 230

wa

RV

Department of Computer Science

THE UNIVERSITY OF AUCKLAND

PRIVATE BAG AUCKLAND NEW ZEALAND TELEPHONE .792-300

4 December 1979

Dr Peter Ivanov,

Department of Computer Science,
University of New South Wales,
P.0. Box 1,

Kensington 2033,

AUSTRALIA.

Dear Dr Ivanov,

A contact at the University of Canterbury, New Zealand, tells

me that your Department is the headquarters for the Australian UNIX
Users' Group and that you have recently set up a UNIX newsletter,
AUGGN. I have been highly interested in UNIX for several years now,
but until recently have had neither the equipment nor the justifi-
cation for it. Now at last we are setting up a Computer Science
Department at the University of Auckland and we are hoping to get a
PDP-11 on which we can run UNIX. We are still at the stage of
applying for grants, however, and even if everything progresses

- smoothly we would not have it before September 1980 at the earliest.
Which brings me to my first query: is it possible for us to subscribe
to AUGGN, and order all back issues, without yet having a UNIX
licence? If so, we would be most grateful if you could set the
necessary wheels moving; I understand that the subscription is §$12
per annum, and the back issues $10 the lot. If this proves
possible, the rest of my questions may well be answered. by the
newsletters; please don't waste your time answering them individually
if this is the case. '

I understand that version 6 UNIX has been superseded by version
7, and that the new version requires a PDP 11/44 or upwards. We were
intending, however, to order only a small LSI 11/23 System, reputed
to be software-compatible with the PDP 11/34, so presumably we would
be forced to stick with version 6. I would therefore be interested
to know if Algol-68 (available for $250 from an English University,
I'm told) and Fortran-77 could be made to run under version 6.

Finally, I understand that MINIUNIX is operational in the Chemical

Engineering Department at your university; perhaps someone there would
be able to answer my remaining questions. We have several PDP 11/20s
and a PDP 11/10 around the university and some of the owning departments
might be interested in MINIUNIX. I understand that it will support
three or four users (presumably on a 28k word system) but I am interested
to know how much memory the resident operating system requires, i.e. how

- much is available for each user. Also, I would like to know what problem-
oriented languages are available; perhaps you have an overview note that

Continued...

Dr Peter Ivanov -2- L 4 December 1979

you could pass on? On the assumption that MINIUNIX is in fact available
for distribution, what medium/media do you distribute it on? Obviously
we would need to obtain a licence from Bell Labs first; would a Version
6 licence suffice or is a special licence needed?

Well, that's the end of my questions; I hope they do not waste too
much of your time. Many thanks for any help you can give.

Yours sincerely,

_? % {M/f

Rlchard Lobb

