
X11 Input Extension Porting Document

X Version 11, Release 6.4

George Sachs Hewlett-Packard



Copyright © 1989, 1990, 1991 by Hewlett-Packard Company

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is

hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

Hewlett-Packard makes no representations about the suitability for any purpose of the information in this

document. It is provided "as is" without express or implied warranty. This document is only a draft stan-

dard of the X Consortium and is therefore subject to change.

Copyright © 1989, 1990, 1991 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the ‘‘Software’’), to deal in the Software without restriction, including without limita-

tion the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Soft-

ware, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions

of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X

CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-

TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or other-

wise to promote the sale, use or other dealings in this Software without prior written authorization from the

X Consortium.

X Window System is a trademark of X Consortium, Inc.



This document is intended to aid the process of integrating the X11 Input Extension into an X server.

Most of the functionality provided by the input extension is device- and implementation-independent, and

should require no changes. The functionality is implemented by routines that typically reside in the server

source tree directory extensions/server/xinput. This extension includes functions to enable and disable

input extension devices, select input, grab and focus those device, query and change key and button map-

pings, and others. The only input extension requirements for the device-dependent part of X are that the

input devices be correctly initialized and input events from those devices be correctly generated. Device-

dependent X is responsible for reading input data from the input device hardware and if necessary, refor-

matting it into X events.

The process of initializing input extension devices is similar to that used for the core devices, and is

described in the following sections. When multiple input devices are attached to X server, the choice of

which devices to initially use as the core X pointer and keyboard is left implementation-dependent. It is

also up to each implementation to decide whether all input devices will be opened by the server during its

initialization and kept open for the life of the server. The alternative is to open only the X keyboard and X

pointer during server initialization, and open other input devices only when requested by a client to do so.

Either type of implementation is supported by the input extension.

Input extension events generated by the X server use the same 32-byte xEvent wire event as do core input

ev ents. However, additional information must be sent for input extension devices, requiring that multiple

xEvents be generated each time data is received from an input extension device. These xEvents are com-

bined into a single client XEvent by the input extension library. A later section of this document describes

the format and generation of input extension events.

1. Initializing Extension Devices

Extension input devices are initialized in the same manner as the core X input devices. Device-Independent

X provides functions that can be called from DDX to initialize these devices. Which functions are called

and when will vary by implementation, and will depend on whether the implementation opens all the input

devices available to X when X is initialized, or waits until a client requests that a device be opened. In the

simplest case, DDX will open all input devices as part of its initialization, when the InitInput routine is

called.

1.1. Summary of Calling Sequence
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Device-Independent X | Device-Dependent X

-------------------- | -------------------

|

InitInput --------------> | - do device-specific initialization

|

| - call AddInputDevice (deviceProc,AutoStart)

AddInputDevice |

- creates DeviceIntRec |

- records deviceProc |

- adds new device to |

list of off_devices. |

sets dev->startup=AutoStart|

| - call one of:

| - RegisterPointerDevice (X pointer)

| - processInputProc = ProcessPointerEvents

| - RegisterKeyboardDevice (X keyboard)

| - processInputProc = ProcessKeyboardEvents

| - RegisterOtherDevice (extension device)

| - processInputProc = ProcessOtherEvents

|

|

InitAndStartDevices -----> | - calls deviceProc with parameters

| (DEVICE_INIT, AutoStart)

sets dev->inited = return |

value from deviceProc |

|

| - in deviceProc, do one of:

| - call InitPointerDeviceStruct (X pointer)

| - call InitKeyboardDeviceStruct (X keybd)

| - init extension device by calling some of:

| - InitKeyClassDeviceStruct

| - InitButtonClassDeviceStruct

| - InitValuatorClassDeviceStruct

| - InitValuatorAxisStruct

| - InitFocusClassDeviceStruct

| - InitProximityClassDeviceStruct

| - InitKbdFeedbackClassDeviceStruct

| - InitPtrFeedbackClassDeviceStruct

| - InitLedFeedbackClassDeviceStruct

| - InitStringFeedbackClassDeviceStruct

| - InitIntegerFeedbackClassDeviceStruct

| - InitBellFeedbackClassDeviceStruct

| - init device name and type by:

| - calling MakeAtom with one of the

| predefined names

| - calling AssignTypeAndName

|

|

for each device added |

by AddInputDevice, |

InitAndStartDevices |

calls EnableDevice if | - EnableDevice calls deviceProc with

dev->startup & | (DEVICE_ON, AutoStart)

dev->inited |
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|

If deviceProc returns | - core devices are now enabled, extension

Success, EnableDevice | devices are now available to be accessed

move the device from | through the input extension protocol

inputInfo.off_devices | requests.

to inputInfo.devices |

1.2. Initialization Called From InitInput

InitInput is the first DDX input entry point called during X server startup. This routine is responsible for

device- and implementation- specific initialization, and for calling AddInputDevice to create and initialize

the DeviceIntRec structure for each input device. AddInputDevice is passed the address of a procedure to

be called by the DIX routine InitAndStartDevices when input devices are enabled. This procedure is

expected to perform X initialization for the input device.

If the device is to be used as the X pointer, DDX should then call RegisterPointerDevice, passing the Devi-

ceIntRec pointer, to initialize the device as the X pointer.

If the device is to be used as the X keyboard, DDX should instead call RegisterKeyboardDevice to initialize

the device as the X keyboard.

If the device is to be used as an extension device, DDX should instead call RegisterOtherDevice, passing

the DeviceIntPtr returned by AddInputDevice.

A sample InitInput implementation is shown below.
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InitInput(argc,argv)

{

int i, numdevs, ReadInput();

DeviceIntPtr dev;

LocalDevice localdevs[LOCAL_MAX_DEVS];

DeviceProc kbdproc, ptrproc, extproc;

/**************************************************************

* Open the appropriate input devices, determine which are

* available, and choose an X pointer and X keyboard device

* in some implementation-dependent manner.

***************************************************************/

open_input_devices (&numdevs, localdevs);

/**************************************************************

* Register a WakeupHandler to handle input when it is generated.

***************************************************************/

RegisterBlockAndWakeupHandlers (NoopDDA, ReadInput, NULL);

/**************************************************************

* Register the input devices with DIX.

***************************************************************/

for (i=0; i<numdevs; i++)

{

if (localdevs[i].use == IsXKeyboard)

{

dev = AddInputDevice (kbdproc, TRUE);

RegisterKeyboardDevice (dev);

}

else if (localdevs[i].use == IsXPointer)

{

dev = AddInputDevice (ptrproc, TRUE);

RegisterPointerDevice (dev);

}

else

{

dev = AddInputDevice (extproc, FALSE);

RegisterOtherDevice (dev);

}

if (dev == NULL)

FatalError ("Too many input devices.");

dev->devicePrivate = (pointer) &localdevs[i];

}

1.3. Initialization Called From InitAndStartDevices

After InitInput has returned, InitAndStartDevices is the DIX routine that is called to enable input devices.

It calls the device control routine that was passed to AddInputDevice, with a mode value of DEVICE_INIT.

The action taken by the device control routine depends on how the device is to be used. If the device is to

be the X pointer, the device control routine should call InitPointerDeviceStruct to initialize it. If the device

is to be the X keyboard, the device control routine should call InitKeyboardDeviceStruct. Since input

extension devices may support various combinations of keys, buttons, valuators, and feedbacks, each class
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of input that it supports must be initialized. Entry points are defined by DIX to initialize each of the sup-

ported classes of input, and are described in the following sections.

A sample device control routine called from InitAndStartDevices is shown below.

5



X Input Extension Porting Document X11, Release 6.4

Bool extproc (dev, mode)

DeviceIntPtr dev;

int mode;

{

LocalDevice *localdev = (LocalDevice *) dev->devicePrivate;

switch (mode)

{

case DEVICE_INIT:

if (strcmp(localdev->name, XI_TABLET) == 0)

{

/****************************************************

* This device reports proximity, has buttons,

* reports two axes of motion, and can be focused.

* It also supports the same feedbacks as the X pointer

* (acceleration and threshold can be set).

****************************************************/

InitButtonClassDeviceStruct (dev, button_count, button_map);

InitValuatorClassDeviceStruct (dev, localdev->n_axes,);

motionproc, MOTION_BUF_SIZE, Absolute);

for (i=0; i<localdev->n_axes; i++)

InitValuatorAxisStruct (dev, i, min_val, max_val,

resolution);

InitFocusClassDeviceStruct (dev);

InitProximityClassDeviceStruct (dev);

InitPtrFeedbackClassDeviceStruct (dev, p_controlproc);

}

else if (strcmp(localdev->name, XI_BUTTONBOX) == 0)

{

/****************************************************

* This device has keys and LEDs, and can be focused.

****************************************************/

InitKeyClassDeviceStruct (dev, syms, modmap);

InitFocusClassDeviceStruct (dev);

InitLedFeedbackClassDeviceStruct (dev, ledcontrol);

}

else if (strcmp(localdev->name, XI_KNOBBOX) == 0)

{

/****************************************************

* This device reports motion.

* It can be focused.

****************************************************/

InitValuatorClassDeviceStruct (dev, localdev->n_axes,);

motionproc, MOTION_BUF_SIZE, Absolute);

for (i=0; i<localdev->n_axes; i++)

InitValuatorAxisStruct (dev, i, min_val, max_val,

resolution);

InitFocusClassDeviceStruct (dev);

}

localdev->atom =

MakeAtom(localdev->name, strlen(localdev->name), FALSE);
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AssignTypeAndName (dev, localdev->atom, localdev->name);

break;

case DEVICE_ON:

AddEnabledDevice (localdev->file_ds);

dev->on = TRUE;

break;

case DEVICE_OFF:

dev->on = FALSE;

RemoveEnabledDevice (localdev->file_ds);

break;

case DEVICE_CLOSE:

break;

}

}

The device control routine is called with a mode value of DEVICE_ON by the DIX routine EnableDevice,

which is called from InitAndStartDevices. When called with this mode, it should call AddEnabledDevice

to cause the server to begin checking for available input from this device.

>From InitAndStartDevices, EnableDevice is called for all devices that have the "inited" and "startup"

fields in the DeviceIntRec set to TRUE. The "inited" field is set by InitAndStartDevices to the value

returned by the deviceproc when called with a mode value of DEVICE_INIT. The "startup" field is set by

AddInputDevice to value of the second parameter (autoStart).

When the server is first initialized, it should only be checking for input from the core X keyboard and

pointer. One way to accomplish this is to call AddInputDevice for the core X keyboard and pointer with an

autoStart value equal to TRUE, while calling AddInputDevice for input extension devices with an autoStart

value equal to FALSE. If this is done, EnableDevice will skip all input extension devices during server ini-

tialization. In this case, the OpenInputDevice routine should set the "startup" field to TRUE when called

for input extension devices. This will cause ProcXOpenInputDevice to call EnableDevice for those devices

when a client first does an XOpenDevice request.

1.4. DIX Input Class Initialization Routines

DIX routines are defined to initialize each of the defined input classes. The defined classes are:

- KeyClass - the device has keys.

- ButtonClass - the device has buttons.

- ValuatorClass - the device reports motion data or positional data.

- Proximitylass - the device reports proximity information.

- FocusClass - the device can be focused.

- FeedbackClass - the device supports some kind of feedback

DIX routines are provided to initialize the X pointer and keyboard, as in previous releases of X. During X

initialization, InitPointerDeviceStruct is called to initialize the X pointer, and InitKeyboardDeviceStruct is

called to initialize the X keyboard. There is no corresponding routine for extension input devices, since

they do not all support the same classes of input. Instead, DDX is responsible for the initialization of the

input classes supported by extension devices. A description of the routines provided by DIX to perform

that initialization follows.

1.4.1. InitKeyClassDeviceStruct

This function is provided to allocate and initialize a KeyClassRec, and should be called for extension

devices that have keys. It is passed a pointer to the device, and pointers to arrays of keysyms and modifiers

reported by the device. It returns FALSE if the KeyClassRec could not be allocated, or if the maps for the

keysyms and and modifiers could not be allocated. Its parameters are:
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Bool

InitKeyClassDeviceStruct(dev, pKe ySyms, pModifiers)

DeviceIntPtr dev;

Ke ySymsPtr pKeySyms;

CARD8 pModifiers[];

The DIX entry point InitKeyboardDeviceStruct calls this routine for the core X keyboard. It must be called

explicitly for extension devices that have keys.

1.4.2. InitButtonClassDeviceStruct

This function is provided to allocate and initialize a ButtonClassRec, and should be called for extension

devices that have buttons. It is passed a pointer to the device, the number of buttons supported, and a map

of the reported button codes. It returns FALSE if the ButtonClassRec could not be allocated. Its parame-

ters are:

Bool

InitButtonClassDeviceStruct(dev, numButtons, map)

register DeviceIntPtr dev;

int numButtons;

CARD8 *map;

The DIX entry point InitPointerDeviceStruct calls this routine for the core X pointer. It must be called

explicitly for extension devices that have buttons.

1.4.3. InitValuatorClassDeviceStruct

This function is provided to allocate and initialize a ValuatorClassRec, and should be called for extension

devices that have valuators. It is passed the number of axes of motion reported by the device, the address of

the motion history procedure for the device, the size of the motion history buffer, and the mode (Absolute

or Relative) of the device. It returns FALSE if the ValuatorClassRec could not be allocated. Its parameters

are:

Bool

InitValuatorClassDeviceStruct(dev, numAxes, motionProc, numMotionEvents, mode)

DeviceIntPtr dev;

int (*motionProc)();

int numAxes;

int numMotionEvents;

int mode;

The DIX entry point InitPointerDeviceStruct calls this routine for the core X pointer. It must be called

explicitly for extension devices that report motion.

1.4.4. InitValuatorAxisStruct

This function is provided to initialize an XAxisInfoRec, and should be called for core and extension devices

that have valuators. The space for the XAxisInfoRec is allocated by the InitValuatorClassDeviceStruct

function, but is not initialized.

InitValuatorAxisStruct should be called once for each axis of motion reported by the device. Each invoca-

tion should be passed the axis number (starting with 0), the minimum value for that axis, the maximum

value for that axis, and the resolution of the device in counts per meter. If the device reports relative

motion, 0 should be reported as the minimum and maximum values. InitValuatorAxisStruct has the follow-

ing parameters:
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InitValuatorAxisStruct(dev, axnum, minval, maxval, resolution)

DeviceIntPtr dev;

int axnum;

int minval;

int maxval;

int resolution;

This routine is not called by InitPointerDeviceStruct for the core X pointer. It must be called explicitly for

core and extension devices that report motion.

1.4.5. InitFocusClassDeviceStruct

This function is provided to allocate and initialize a FocusClassRec, and should be called for extension

devices that can be focused. It is passed a pointer to the device, and returns FALSE if the allocation fails.

It has the following parameter:

Bool

InitFocusClassDeviceStruct(dev)

DeviceIntPtr dev;

The DIX entry point InitKeyboardDeviceStruct calls this routine for the core X keyboard. It must be called

explicitly for extension devices that can be focused. Whether or not a particular device can be focused is

left implementation-dependent.

1.4.6. InitProximityClassDeviceStruct

This function is provided to allocate and initialize a ProximityClassRec, and should be called for extension

absolute pointing devices that report proximity. It is passed a pointer to the device, and returns FALSE if

the allocation fails. It has the following parameter:

Bool

InitProximityClassDeviceStruct(dev)

DeviceIntPtr dev;

1.4.7. Initializing Feedbacks

1.4.7.1. InitKbdFeedbackClassDeviceStruct

This function is provided to allocate and initialize a KbdFeedbackClassRec, and may be called for exten-

sion devices that support some or all of the feedbacks that the core keyboard supports. It is passed a pointer

to the device, a pointer to the procedure that sounds the bell, and a pointer to the device control procedure.

It returns FALSE if the allocation fails, and has the following parameters:

Bool

InitKbdFeedbackClassDeviceStruct(dev, bellProc, controlProc)

DeviceIntPtr dev;

void (*bellProc)();

void (*controlProc)();

The DIX entry point InitKeyboardDeviceStruct calls this routine for the core X keyboard. It must be called

explicitly for extension devices that have the same feedbacks as a keyboard. Some feedbacks, such as

LEDs and bell, can be supported either with a KbdFeedbackClass or with BellFeedbackClass and LedFeed-

backClass feedbacks.

1.4.7.2. InitPtrFeedbackClassDeviceStruct

This function is provided to allocate and initialize a PtrFeedbackClassRec, and should be called for exten-

sion devices that allow the setting of acceleration and threshold. It is passed a pointer to the device, and a

pointer to the device control procedure. It returns FALSE if the allocation fails, and has the following
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parameters:

Bool

InitPtrFeedbackClassDeviceStruct(dev, controlProc)

DeviceIntPtr dev;

void (*controlProc)();

The DIX entry point InitPointerDeviceStruct calls this routine for the core X pointer. It must be called

explicitly for extension devices that support the setting of acceleration and threshold.

1.4.7.3. InitLedFeedbackClassDeviceStruct

This function is provided to allocate and initialize a LedFeedbackClassRec, and should be called for exten-

sion devices that have LEDs. It is passed a pointer to the device, and a pointer to the device control proce-

dure. It returns FALSE if the allocation fails, and has the following parameters:

Bool

InitLedFeedbackClassDeviceStruct(dev, controlProc)

DeviceIntPtr dev;

void (*controlProc)();

Up to 32 LEDs per feedback can be supported, and a device may have multiple feedbacks of the same type.

1.4.7.4. InitBellFeedbackClassDeviceStruct

This function is provided to allocate and initialize a BellFeedbackClassRec, and should be called for exten-

sion devices that have a bell. It is passed a pointer to the device, and a pointer to the device control proce-

dure. It returns FALSE if the allocation fails, and has the following parameters:

Bool

InitBellFeedbackClassDeviceStruct(dev, bellProc, controlProc)

DeviceIntPtr dev;

void (*bellProc)();

void (*controlProc)();

1.4.7.5. InitStringFeedbackClassDeviceStruct

This function is provided to allocate and initialize a StringFeedbackClassRec, and should be called for

extension devices that have a display upon which a string can be displayed. It is passed a pointer to the

device, and a pointer to the device control procedure. It returns FALSE if the allocation fails, and has the

following parameters:

Bool

InitStringFeedbackClassDeviceStruct(dev, controlProc, max_symbols,

num_symbols_supported, symbols)

DeviceIntPtr dev;

void (*controlProc)();

int max_symbols:

int num_symbols_supported;

Ke ySym *symbols;

1.4.7.6. InitIntegerFeedbackClassDeviceStruct

This function is provided to allocate and initialize an IntegerFeedbackClassRec, and should be called for

extension devices that have a display upon which an integer can be displayed. It is passed a pointer to the

device, and a pointer to the device control procedure. It returns FALSE if the allocation fails, and has the

following parameters:
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Bool

InitIntegerFeedbackClassDeviceStruct(dev, controlProc)

DeviceIntPtr dev;

void (*controlProc)();

1.5. Initializing The Device Name And Type

The device name and type can be initialized by calling AssignTypeAndName with the following parame-

ters:

void

AssignTypeAndName(dev, type, name)

DeviceIntPtr dev;

Atom type;

char *name;

This will allocate space for the device name and copy the name that was passed. The device type can be

obtained by calling MakeAtom with one of the names defined for input devices. MakeAtom has the fol-

lowing parameters:

Atom

MakeAtom(name, len, makeit)

char *name;

int len;

Bool makeit;

Since the atom was already made when the input extension was initialized, the value of makeit should be

FALSE;

2. Closing Extension Devices

The DisableDevice entry point is provided by DIX to disable input devices. It calls the device control rou-

tine for the specified device with a mode value of DEVICE_OFF. The device control routine should call

RemoveEnabledDevice to stop the server from checking for input from that device.

DisableDevice is not called by any input extension routines. It can be called from the CloseInputDevice

routine, which is called by ProcXCloseDevice when a client makes an XCloseDevice request. If Dis-

ableDevice is called, it should only be called when the last client using the extension device has terminated

or called XCloseDevice.

3. Implementation-Dependent Routines

Several input extension protocol requests have implementation-dependent entry points. Default routines

are defined for these entry points and contained in the source file extensions/server/xinput/xstubs.c. Some

implementations may be able to use the default routines without change. The following sections describe

each of these routines.

3.1. AddOtherInputDevices

AddOtherInputDevice is called from ProcXListInputDevices as a result of an XListInputDevices protocol

request. It may be needed by implementations that do not open extension input devices until requested to

do so by some client. These implementations may not initialize all devices when the X server starts up,

because some of those devices may be in use. Since the XListInputDevices function only lists those

devices that have been initialized, AddOtherInputDevices is called to give DDX a chance to initialize any

previously unavailable input devices.

A sample AddOtherInputDevices routine might look like the following:
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void

AddOtherInputDevices ()

{

DeviceIntPtr dev;

int i;

for (i=0; i<MAX_DEVICES; i++)

{

if (!local_dev[i].initialized && available(local_dev[i]))

{

dev = (DeviceIntPtr) AddInputDevice (local_dev[i].deviceProc, TRUE);

dev->public.devicePrivate = local_dev[i];

RegisterOtherDevice (dev);

dev->inited = ((*dev->deviceProc)(dev, DEVICE_INIT) == Success);

}

}

}

The default AddOtherInputDevices routine in xstubs.c does nothing. If all input extension devices are ini-

tialized when the server starts up, it can be left as a null routine.

3.2. OpenInputDevice

Some X server implementations open all input devices when the server is initialized and never close them.

Other implementations may open only the X pointer and keyboard devices during server initialization, and

open other input devices only when some client makes an XOpenDevice request. This entry point is for the

latter type of implementation.

If the physical device is not already open, it can be done in this routine. In this case, the server must keep

track of the fact that one or more clients have the device open, and physically close it when the last client

that has it open makes an XCloseDevice request.

The default implementation is to do nothing (assume all input devices are opened during X server initializa-

tion and kept open).

3.3. CloseInputDevice

Some implementations may close an input device when the last client using that device requests that it be

closed, or terminates. CloseInputDevice is called from ProcXCloseDevice when a client makes an

XCloseDevice protocol request.

The default implementation is to do nothing (assume all input devices are opened during X server initializa-

tion and kept open).

3.4. SetDeviceMode

Some implementations support input devices that can report either absolute positional data or relative

motion. The XSetDeviceMode protocol request is provided to allow DDX to change the current mode of

such a device.

The default implementation is to always return a BadMatch error. If the implementation does not support

any input devices that are capable of reporting both relative motion and absolute position information, the

default implementation may be left unchanged.

3.5. SetDeviceValuators

Some implementations support input devices that allow their valuators to be set to an initial value. The

XSetDeviceValuators protocol request is provided to allow DDX to set the valuators of such a device.

The default implementation is to always return a BadMatch error. If the implementation does not support

any input devices that are allow their valuators to be set, the default implementation may be left unchanged.
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3.6. ChangePointerDevice

The XChangePointerDevice protocol request is provided to change which device is used as the X pointer.

Some implementations may maintain information specific to the X pointer in the private data structure

pointed to by the DeviceIntRec. ChangePointerDevice is called to allow such implementations to move

that information to the new pointer device. The current location of the X cursor is an example of the type

of information that might be affected.

The DeviceIntRec structure that describes the X pointer device does not contain a FocusRec. If the device

that has been made into the new X pointer was previously a device that could be focused, ProcXChange-

PointerDevice will free the FocusRec associated with that device.

If the server implementation desires to allow clients to focus the old pointer device (which is now accessi-

ble through the input extension), it should call InitFocusClassDeviceStruct for the old pointer device.

The XChangePointerDevice protocol request also allows the client to choose which axes of the new pointer

device are used to move the X cursor in the X- and Y- directions. If the axes are different than the default

ones, the server implementation should record that fact.

If the server implementation supports input devices with valuators that are not allowed to be used as the X

pointer, they should be screened out by this routine and a BadDevice error returned.

The default implementation is to do nothing.

3.7. ChangeKeyboardDevice

The XChangeKeyboardDevice protocol request is provided to change which device is used as the X

keyboard. Some implementations may maintain information specific to the X keyboard in the private data

structure pointed to by the DeviceIntRec. ChangeKeyboardDevice is called to allow such implementations

to move that information to the new keyboard device.

The X keyboard device can be focused, and the DeviceIntRec that describes that device has a FocusRec. If

the device that has been made into the new X keyboard did not previously have a FocusRec, ProcX-

ChangeKeyboardDevice will allocate one for it.

If the implementation does not want clients to be able to focus the old X keyboard (which has now become

available as an input extension device) it should call DeleteFocusClassDeviceStruct to free the FocusRec.

If the implementation supports input devices with keys that are not allowed to be used as the X keyboard,

they should be checked for here, and a BadDevice error returned.

The default implementation is to do nothing.

4. Input Extension Events

Events accessed through the input extension are analogous to the core input events, but have different event

types. They are of types DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRe-

lease, DeviceDeviceMotionNotify, DeviceProximityIn, DeviceProximityOut, and DeviceValuator.

These event types are not constants. Instead, they are external integers defined by the input extension.

Their actual values will depend on which extensions are supported by a server, and the order in which they

are initialized.

The data structures that define these events are defined in the file extensions/include/XIproto.h. Other

input extension constants needed by DDX are defined in the file extensions/include/XI.h.

Some events defined by the input extension contain more information than can be contained in the 32-byte

xEvent data structure. To send this information to clients, DDX must generate two or more 32-byte wire

ev ents. The following sections describe the contents of these events.

4.1. Device Key Events

DeviceKeyPresss ev ents contain all the information that is contained in a core KeyPress ev ent, and also the

following additional information:
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- deviceid - the identifier of the device that generated the event.

- device_state - the state of any modifiers on the device that generated the event

- num_valuators - the number of valuators reported in this event.

- first_valuator - the first valuator reported in this event.

- valuator0 through valuator5 - the values of the valuators.

In order to pass this information to the input extension library, two 32-byte wire events must be generated

by DDX. The first has an event type of DeviceKeyPress, and the second has an event type of DeviceValu-

ator.

The following code fragment shows how the two wire events could be initialized:

extern int DeviceKeyPress;

DeviceIntPtr dev;

xEvent xE[2];

CARD8 id, num_valuators;

INT16 x, y, pointerx, pointery;

Time timestamp;

deviceKeyButtonPointer *xev = (deviceKeyButtonPointer *) xE;

deviceValuator *xv;

xev->type = DeviceKeyPress; /* defined by input extension */

xev->detail = keycode; /* key pressed on this device */

xev->time = timestamp; /* same as for core events */

xev->rootX = pointerx; /* x location of core pointer */

xev->rootY = pointery; /* y location of core pointer */

/******************************************************************/

/* */

/* The following field does not exist for core input events. */

/* It contains the device id for the device that generated the */

/* event, and also indicates whether more than one 32-byte wire */

/* event is being sent. */

/* */

/******************************************************************/

xev->deviceid = dev->id | MORE_EVENTS; /* sending more than 1*/

/******************************************************************/

/* Fields in the second 32-byte wire event: */

/******************************************************************/

xv = (deviceValuator *) ++xev;

xv->type = DeviceValuator; /* ev ent type of second event */

xv->deviceid = dev->id; /* id of this device */

xv->num_valuators = 0; /* no valuators being sent */

xv->device_state = 0; /* will be filled in by DIX */

4.2. Device Button Events

DeviceButton ev ents contain all the information that is contained in a core button event, and also the same

additional information that a DeviceKey ev ent contains.
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4.3. Device Motion Events

DeviceMotion ev ents contain all the information that is contained in a core motion event, and also addi-

tional valuator information. At least two wire events are required to contain this information. The follow-

ing code fragment shows how the two wire events could be initialized:

extern int DeviceMotionNotify;

DeviceIntPtr dev;

xEvent xE[2];

CARD8 id, num_valuators;

INT16 x, y, pointerx, pointery;

Time timestamp;

deviceKeyButtonPointer *xev = (deviceKeyButtonPointer *) xE;

deviceValuator *xv;

xev->type = DeviceMotionNotify; /* defined by input extension */

xev->detail = keycode; /* key pressed on this device */

xev->time = timestamp; /* same as for core events */

xev->rootX = pointerx; /* x location of core pointer */

xev->rootY = pointery; /* y location of core pointer */

/******************************************************************/

/* */

/* The following field does not exist for core input events. */

/* It contains the device id for the device that generated the */

/* event, and also indicates whether more than one 32-byte wire */

/* event is being sent. */

/* */

/******************************************************************/

xev->deviceid = dev->id | MORE_EVENTS; /* sending more than 1*/

/******************************************************************/

/* Fields in the second 32-byte wire event: */

/******************************************************************/

xv = (deviceValuator *) ++xev;

xv->type = DeviceValuator; /* ev ent type of second event */

xv->deviceid = dev->id; /* id of this device */

xv->num_valuators = 2; /* 2 valuators being sent */

xv->first_valuator = 0; /* first valuator being sent */

xv->device_state = 0; /* will be filled in by DIX */

xv->valuator0 = x; /* first axis of this device */

xv->valuator1 = y; /* second axis of this device */

Up to six axes can be reported in the deviceValuator event. If the device is reporting more than 6 axes,

additional pairs of DeviceMotionNotify and DeviceValuator events should be sent, with the first_valuator

field set correctly.

4.4. Device Proximity Events

Some input devices that report absolute positional information, such as graphics tablets and touchscreens,

may report proximity events. ProximityIn ev ents are generated when a pointing device like a stylus, or in

the case of a touchscreen, the user’s finger, comes into close proximity with the surface of the input device.

ProximityOut ev ents are generated when the stylus or finger leaves the proximity of the input devices sur-

face.
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Proximity ev ents contain almost the same information as button events. The ev ent type is ProximityIn or

ProximityOut, and there is no detail information.
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