
- 1 -

An Approach to Testing X Window System Servers at a

Protocol Level

Michael Lee Squires

Len Wyatt

Sequent Computer Systems, Inc.

15450 SW Koll Parkway

Beaverton, OR 97006

(503) 626-5700

ABSTRACT

An approach to testing display servers for the X Window System is

presented which depends only on an underlying communications mechanism.

The server tester is intended to provide coverage for those server

specifications which cannot be tested from the Xlib level. It also ensures that

the basic facilities needed to run the Xlib tests are operational. All testing is

performed by sending messages to the server and evaluating the responses

from the server.

1. INTRODUCTION

The purpose of this document is to present a set of requirements for a server tester and to outline a

software structure which will satisfy those requirements. This document is intended to guide not only the

server tester developers, but other X Window System developers and testers also.

1.1 Background

There are a variety of interfaces, services, and protocols specified as part of the X Window System.

These are implemented by a set of components which may be produced by different organizations, running

on different hardware and using different operating systems.

In order to promote a standard, it is not sufficient to merely publish an interface specification.

Examples of software which implement the standards and which illustrate the use of the services must be

made available. Test procedures and test suites which verify that specific component implementations

adhere to the specifications must be defined and made generally available.

The MIT X effort has addressed the interface specification, software implementation, and example

use. It has not, thus far, addressed the issue of testing and specification compliance.

In the interests of promoting the X Window System as an industry standard, a number of

organizations have formed a consortium for the purpose of defining and generating an appropriate set of

test tools and procedures for X. This document addresses a specific facet of X testing which has been

identified by the consortium.

2. PROBLEM STATEMENT

2.1 Testing Goals

2.1.1 General

The goals for testing X implementations are to:

— promote portability of applications and application libraries by ensuring a consistent set of interfaces

across disparate computer systems and operating systems. That is, if we have an application program

which compiles and runs on system A, we should be able to transfer the source to system B and,

within the constraints of language and operating system portability, compile and run that program

satisfactorily. Since most applications are currently written to the procedural interface provided in C

- 2 -

by the Xlib library, this interface is the first target of the testing effort for portability.

— promote interoperability of clients and servers which may be running on disparate computer systems.

That is, if we have a client which runs on system A and uses the display server available on system B,

then that client should be able to operate successfully with a server running on system C (ignoring

protocol extensions and client device dependencies).

2.1.2 Server Tester Goals

The primary goal of the server tester is to address those areas of interoperability which cannot be

adequately covered by tests at the Xlib level. A secondary goal is to facilitate the Xlib testing by ensuring

that the basic server functions are operational. Another secondary goal is to provide a low-level diagnostic

tool which would be useful to server developers.

2.2 Definitions

The following definitions form a basis for understanding the requirements of the server tester.

We define an interface as an implementation dependent functional boundary between two adjacent

components. Taking Xlib as an example, the function names, calling sequences, and data types necessary

to interact with Xlib are its interface.

We define a service as an implementation independent set of capabilities that a particular layer of

software provides. Again using Xlib as an example, we could define an equivalent level library for another

language which provided the same services via a different interface.

We define a protocol as the specification of interaction between two peer processes. This

specification consists of:

— a message catalog

— sequencing rules for message exchange

— the specifications of the actions of the individual processes in response to the message sequencing

When we examine the X Window System, we see that the X protocol specification encompasses three

components: the client, the server, and the display hardware. Thus a complete test of a server’s adherence

to the protocol specification would include observing its effect on the display hardware as well as its ability

to adhere to the rules for message sequencing.

We also notice that the "XLib Interface Specification" actually consists of both an interface and a

service specification. Furthermore, the service specification depends on the adherence of a particular server

to the protocol specification.

Because Xlib was designed to provide fairly direct access to the underlying X protocol, many of the

messages defined in the protocol specification and their corresponding actions have a direct mapping at the

Xlib level. This concept of a mapping between the Xlib specification and the protocol specification is a

key element in determining the requirements for a server tester.

3. APPROACH

3.1 General

Because many of the actions specified in the protocol specification can be tested at the Xlib level,

because the Xlib level will be more heavily used by the majority of X-based programmers, and because

DEC is mounting a substantial effort to rigorously test the Xlib interfaces and services, we will defer the

bulk of the testing of server actions to the Xlib testing effort.

We will design and implement a server tester which will concentrate on testing those features of the

protocol which are not testable at the Xlib level or which are prerequisites to the Xlib level testing. Thus,

we will test the ability of the server to accept all legal message types and respond appropriately. We will

ensure that server capabilities which the Xlib testing will depend on work within some bounds (e.g ensure

that the server can send a pixmap to the client upon request). We will test to ensure adherence to the

- 3 -

canonical byte stream of the protocol, independent of the host byte sex or compiler structure packing.

3.2 Determining Specific Requirements

We hav e developed a decision tree which allows us to determine which server actions should be

addressed by the server tester.

The first decision in the tree is "is the mapping of this action (and the stimulus to cause it) to the Xlib

level direct enough to allow it to be tested at the Xlib level?" An example of an action which can be tested

at the Xlib level is drawing a line within a window. Initializing the server connection with an incorrect

protocol version number is an example of a test which cannot be performed at the Xlib level.

If the mapping is direct enough to allow testing at the Xlib level, then we need to ask "is this

capability fundamental enough that the Xlib tests cannot be reasonably performed if the capability is

deficient?" An example of a fundamental capability is the server’s ability to send error responses.

If the mapping is not direct enough to allow the testing at the Xlib level, then we ask "can the action

be inferred from other data available at the Xlib level?" An example of something which could be inferred

is the initialization of the default color map. By reading the color map immediately following opening the

display, an Xlib level test can determine if the color map was properly initialized.

Decision #1 Decision #2 Result

NO TEST

YES DON’T TEST
NO

Can the action be

inferred?

NO DON’T TEST

YES TEST
YES

Is the mapping

direct enough to

test at the Xlib

level?
Is the action

fundamental?

We will apply this set of decisions to the protocol specification to generate specific tests to perform in

the server tester. Generating this list is a specific deliverable on the development schedule (see section 6).

4. SPECIFICATIONS

4.1 General Requirements

The server tester must satisfy the following requirements:

— It will not use X as a basis for its user interaction. (This provides a new server developer the ability

to run the tester using standard character terminals.)

— It will verify that the server can accept all legal message types.

— It will verify that the server will reject invalid message types.

— It will perform all tests which are derived from applying the decision criteria in section 3.2 to the

protocol specification. The complete list of tests is presented in section 4.2.

— It will be portable to different computer systems and operating systems. (That is, any

machine/operating system dependencies will be isolated. We are not committing to port it to any/all

systems.)

— It will adapt the tests to different display hardware. (That is, a mechanism for modifying test

parameters based on display characteristics will be provided.)

— It will provide the capability to continue a test suite after errors are encountered in a particular test.

— It will provide the capability to test a server’s ability to deal with clients running on different byte sex

hosts. (That is, the tester will be capable of ’masquerading’ as a host with a different byte sex than it

really has. This allows an organization to more completely test a server with a single host system.)

Additionally, we will provide user documentation and internal documentation for the server tester.

- 4 -

4.2 Specific Tests

This subsection is currently TBD. The detailed list of tests is the first deliverable discussed in section

6.

5. SOFTWARE STRUCTURE

The basic approach to developing the server tester and the test cases which use it is to provide a

layered set of C routines which constitute the bulk of the test mechanism. Individual test cases will be

implemented as C programs which make use of this layered set. We will explore development of some sort

of front-end tool (e.g. preprocessor, interpreter) which will facilitate test case generation, but given the

resource and schedule constraints we are unwilling to commit to that at this time.

We will structure the test cases as a series of C programs, each one designed to test a specific

capability or set of capabilities. This allows incremental development of the test cases, selective use of

individual tests during development or diagnoses, and ease of test suite configuration via use of command

scripts.

The software will consist of 5 software layers:

— Communication Manipulation - lowest level - contains the machine and operating dependent software

- responsible for byte swapping, buffering, and ensuring the canonical byte stream.

— Message Handling low lev el utilities (which look very similar to the various internal utilities within

the current Xlib implementation) - expose more of their internal data structures than Xlib does to

provide test case writers the capability to "damage" messages

— Message Generation - essentially a subset of the current Xlib with many parameters omitted in favor

of their defaults - (i.e. Generate_Standard_Create_Window_Request would be a candidate routine)

— Adaptation - all routines necessary to adapt the tests to specific display parameters - (e.g.

Generate_Safe_Rectangle_Set)

— specific test cases

Note that this software really consists of two major components - the "tools" (levels 1-4) and the test

cases themselves. This division is used to generate the milestones in section 6.

- 5 -

+--------------------------------------+

| TEST CASE |

+--------------------------------------+

| | | |

| | | |

v | | |

+------------+ | | |

| ADAPTATION | | | |

+------------+ | | |

| | |

| | |

v | |

+----------------------+ | |

| MESSAGE GENERATION | | |

+----------------------+ | |

| |

| |

v |

+-------------------------+ |

| MESSAGE HANDLING | |

+-------------------------+ |

|

|

v

+--------------------------------------+

| COMMUNICATION MANIPULATION |

+--------------------------------------+

6. DEVELOPMENT SCHEDULE

Deliverable Date

7/17/87Complete list of server tests

10/9/87Tools + initial set of test cases

12/18/87Remainder of test cases

