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Abstract

This paper describes the design and performance of a new
asynchronous method handling (AMH) mechanism that allows
CORBA servers to process client requests asynchronously.
AMH decouples the association of an incoming request from
the run-time stack that received the request, without incur-
ring the context-switching, synchronization, and data move-
ment overhead of conventional CORBA multi-threading mod-
els. A servant upcall can therefore return quickly, while the
actual work performed by the servant can run asynchronously
with respect to other client requests.

This paper provides two contributions to the study of asyn-
chrony for CORBA servers. First, it describes the design and
implementation of AMH in The ACE ORB (TAO), which is a
widely-used, high-performance, open-source implementation
of CORBA. The syntax and semantics of AMH are defined
using the CORBA Interface Definition Language (IDL), the
forces that guided the design of AMH are described, and the
patterns and C++ idioms used to resolve these forces to im-
plement AMH in TAO are presented. Second, we empirically
compare a middle-tier server implemented using AMH against
other CORBA server concurrency models, such as thread pool,
thread-per-connection, and thread-per-request. The bench-
marks show that AMH delivers better throughput and scala-
bility for heavily loaded servers, though it lags a bit in perfor-
mance for lightly loaded servers. Analysis and optimization
techniques to improve the performance of AMH are then de-
scribed.

1 Introduction

�This work was supported in part by ATD, SAIC, and Siemens MED.

Problem! scalable servers. For many types of distributed
applications, the CORBA asynchronous method invocation
(AMI) mechanism can improve concurrency, scalability, and
responsiveness significantly [1]. AMI allows clients to invoke
multiple two-way requests without waiting synchronously for
responses. The time normally spent waiting for replies can
therefore be used to perform other useful work.

CORBA AMI is completely transparent to servers,i.e.,
a server does not know whether a request it received, em-
anated from a synchronous or asynchronous method invoca-
tion. Therefore, while AMI improves throughput in client ap-
plications, it does not improve server applications, particularly
middle-tier servers[2]. In these architectures, one or more in-
termediate servers are interposed between a source client and
a sink server, as shown in Figure 1.

Source Client Sink Server

Middle-Tier Server

Source Client Sink Server

Figure 1:A Three-tier Client/Server Architecture

Middle-tier servers can be used for many types of systems,
such as (1) a firewall gateway that validates requests from ex-
ternal clients before forwarding them to sink server or (2) a
load-balancer [3] that distributes access to a group of database
servers. In both cases, the middle-tier servers act asinterme-
diaries that accept requests from a client and then pass the
requests on to another server or external data source. When
an intermediary receives a response, it sends its own response
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back to the source client.
The general behavior of a middle-tier server is summarized

in Figure 2, where a middle-tier server blocks awaiting a re-

Source Client Midddle Tier Server Sink Server
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real_method()

real_method()

method()
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Figure 2:Conventional CORBA Middle-tier Server Inter-
actions

ply to return from a sink server. The following steps typically
occur in this type of server:

1. The source client invokes an operation on the middle-tier
server

2. The middle-tier server processes the request and invokes
an operation on a sink server

3. The sink server processes the operation
4. The sink server returns the data to the middle-tier server

and
5. The middle-tier server returns the data to the client.

Unlike ordinary source clients, middle-tier servers must
communicate with multiple source clients and sink servers.
They must therefore be highly scalable to avoid becoming a
bottleneck. A common way to improve the throughput of a
middle-tier server is to multi-thread it using various concur-
rency models [4], such as thread pool, thread-per-connection,
or thread-per-request. In these models, threads can process
new incoming client requests even while other threads are
blocked waiting to receive a response from a sink server. Due
to the cost of thread creation, context switching, synchroniza-
tion, and data movement, however, it may not be scalable to
have many threads in the server. In particular, each of the
above concurrency models have the following limitations:

� Thread pool—The number of threads in the pool limits
the throughput of the thread pool model. For example,
if all threads are blocked waiting for replies from sink
servers no new requests can be handled, which can de-
grade the throughput of busy middle-tier servers.

� Thread-per-request—If each request creates a new
thread, this concurrency model may not scale when a
high volume of requests spawns an excessive number of
threads.

� Thread-per-connection—The server can also run out of
threads in this model if a large number of clients con-
nect to the server at once. Moreover, if a server is busy
processing a client’s request, that client can open a new
connection to send a new request. If the server is slow
in processing a client request, a single client may create
a large number of connections and threads on the server,
further slowing it down.

The overhead for threads motivates the need for another way
to increase middle-tier server scalability. Unfortunately, these
servers cannot leverage the benefits of AMI fully since AMI
only provides asynchrony to clients. In a middle-tier server,
therefore, outgoing requests can use AMI to return control
from the ORB (Object Request Broker) quickly, but the re-
quest handler for incoming requests must remain active until
a response can be returned to the source client. In particular,
each request needs its own activation record, which effectively
restricts a request/response pair to a single thread in standard
CORBA.

Solution ! Asynchronous method handling. Asyn-
chronous method handling (AMH) is a technique that ex-
tends the capabilities of AMI from CORBA clients to CORBA
servers. AMH is a CORBA-based variant of thecontinua-
tion model[5], which allows a program’s run-time system to
transfer the control of a method closure from one part of the
program to another. AMH is useful for many types of ap-
plications, particularly middle-tier servers in multi-tiered dis-
tributed systems.

Figure 3 illustrates the sequence of steps involved in han-
dling a request by an AMH-enabled middle-tier server. Each
of these steps is described below:

1. The source client invokes an operation on the middle-tier
server

2. The middle-tier server uses AMH to store information
about the client request in a heap-allocated object called
ResponseHandler and returns control to the ORB
immediately

3. The sink server processes the request
4. The sink server returns the data to the middle-tier server

and
5. The middle-tier server fetches the corresponding

ResponseHandler and uses it to send the reply data
back to the client.

Since the middle-tier server need not block waiting to receive
a response, it can handle many requests concurrently using a
single thread of control.
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Figure 3:AMH CORBA Middle-tier Server Interactions

Adding AMH to a middle-tier server that also uses the AMI
callback model yields a server that can take full advantage of
asynchrony. Such an AMI/AMH server has many of the same
properties of a message-oriented middleware (MOM) [6] sys-
tem, which is well suited for middle-tier servers. Much as
AMI allows a client application to provide a reply handler ob-
ject to an ORB, AMH allows an ORB to provide a response
handler object to a server application’s servant. The server
application can either return a response via this response han-
dler during the servant upcall or at some point later during the
server’s execution, obviating the need to use threads to achieve
concurrency.
Paper outline. The remainder of this paper is organized as
follows: Section 2 specifies the AMH capabilities using the
CORBA interface definition language (IDL); Section 3 de-
scribes the challenges faceed while designing and implement-
ing AMH and how we resolved them using patterns and C++
idioms; Section 4 illustrates with an example how AMH can
be applied and the inner workings of AMH; Section 5 exam-
ines the results of empirically comparing TAO’s AMH im-
plementation with other common server concurrency models,
such as thread-per-connection and thread pool; Section 6 out-
lines future enhancements and research directions related to
AMH; Section 7 compares our work on AMH with related re-
search; and Section 8 presents concluding remarks.

2 The Asynchronous Method Handling
Specification

This section describes the interface and semantics of AMH.
We specify AMH using OMG IDL so that it can be imple-
mented in CORBA-compliant ORBs and mapped to many pro-

gramming languages. Since AMH is not yet part of the Ob-
ject Management Group (OMG) CORBA standard [7], an IDL
specification provides a common schema for describing AMH.

As with the CORBA AMI specification, we define the se-
mantics of AMH using “implied-IDL.” Implied-IDL refers to
additional IDL that the IDL compiler “logically” generates
based on the standard IDL declarations it parses.1 The orig-
inal IDL and the implied IDL are then compiled into stubs and
skeletons.

To focus our discussion, we use the following IDL interface
for all our examples:

module Stock {
exception Invalid_Stock_Symbol {};

interface Quoter {
long get_quote (in string stock_name)

raises (Invalid_Stock_Symbol);
};

};

The AMH implied-IDL for the aboveStock::Quoter in-
terface is:

module Stock
{

// Forward declarations.
local interface AMH_QuoterResponseHandler;
valuetype AMH_QuoterExceptionHolder;

// The AMH skeleton.
local interface AMH_Quoter {

// The AMH operation.
void get_quote

(in AMH_QuoterResponseHandler handler,
in string stock_name);

};

// The AMH ResponseHolder.
local interface AMH_QuoterResponseHandler {

// Operation to send asynchronous reply
void get_quote (in long return_value);

// Operation to asynchronous exception.
void get_quote_excep

(in AMH_QuoterExceptionHolder holder);
};

// Exception Holder for raising AMH exceptions.
valuetype AMH_QuoterExceptionHolder {

void raise_get_quote ()
raises (Invalid_Stock_Symbol);

};
};

We next describe the rules by which the additional interfaces
are generated.2 The implied-IDL for AMH has three new gen-
erated interfaces that we describe below.
The AMH Skeleton. The AMH skeleton (AMH_Quoter )
is the AMH version of a normal skeleton. A skeleton demar-
shals method arguments, invokes an upcall to the designated

1In the case of TAO, this is triggered by specifying the-GH option to
TAO’s IDL compiler.

2Though we use theQuoter interface to illustrate the generation of
implied-IDL, the rules themselves can be applied to any IDL interface.
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servant method with these arguments, and marshals any re-
turn/out parameters. All operations in an AMH skeleton can
return control back to the ORB immediately,i.e., they need not
block while the server processes the invocation.

The AMH skeleton interface contains all the operations
specified in the original interface. However, the signatures
of the AMH skeleton operations (which we refer to asasyn-
chronous operations) are different from the original operations
in the following ways:

� The in and inout parameters in each operation of the
original IDL interface are mapped toin parameters for
each asynchronous operation.

� An extra in parameter of typeResponseHandler
(described below) is passed as the first argument.

� The asynchronous operation has avoid “return” type.
� Theout and return arguments are omitted from the asyn-

chronous operation.

When used in conjunction with some straightforward pro-
gramming idioms shown in Section 4.1, these changes enable
an asynchronous operation to return immediately. In contrast,
a non-AMH operation must wait for the processing of an up-
call to complete before it can return control back to the ORB.
The AMH ResponseHandler. The ResponseHandler
(AMH_QuoterResponseHandler ) object stores the rele-
vant client request information. All operations in the origi-
nal interface are present in theResponseHandler inter-
face. Invoking aResponseHandler operation sends a re-
ply (out/inout/return values) to the client .

The implied-IDLAMH_QuoterResponseHandler in-
terface is related to theQuoter interface as follows:

� The out , inout , or return values for an operation in
the original interface are mapped toin parameters in the
corresponding method of theResponseHandler in-
terface.

� The in parameters for an operation in the original in-
terface are omitted in the corresponding operation of the
ResponseHandler .

� All ResponseHandler operations have a void “re-
turn” type.

All implied-IDL ResponseHandler s are local inter-
faces, i.e., they are always collocated in the address space of
the server. Although they appear as regular CORBA objects to
server programmers, they cannot be passed or accessed outside
of the server’s address space. Another special characteristic of
a ResponseHandler is that it can be invoked only once.
Invoking it more than once raises theBAD_INV_ORDERsys-
tem exception in the servant.

Any ORB-specific state that is needed to send a re-
ply to the client is stored in a baseResponseHandler
class. This state includes the connection on which

the request arrived and the service context of the re-
quest. All derivedResponseHandler s (e.g., the AMH_
QuoterResponseHandler ) can be viewed as deriv-
ing from the baseResponseHandler . The base
ResponseHandler is not specified by any implied-IDL;
in TAO we implement this interface in the concrete class
TAO_AMH_ResponseHandler .

The AMH ResponseHandler also contains anexcep-
tion operation(get_quote_excep() ) for every operation
(get_quote() ) in the original IDL interface. The excep-
tion operation coordinates with theExceptionHolder (see
next paragraph) and the stored state to return the exception to
the client.
The AMH exception holder. The ExceptionHolder
(AMH_QuoterExceptionHolder ) object is used to store
a user- or system-defined exception. It is also used by the ex-
ception operation (Section 2) to send an exception to the client.
The AMH Exception Holder is generated according to the fol-
lowing rules:

� For every operation (get_quote() ) in the original in-
terface, a correspondingraise operation(raise_get_
quote() ) is present in the exception holder.

� The signature of theraises clause of the raise oper-
ation matches theraises clause of the corresponding
original operation exactly.

3 Resolving AMH Design Challenges

TAO’s AMH implementation was designed to resolve the fol-
lowing challenges:

� Providing complete client transparency
� Ensuring AMH servants have the same semantics as non-

AMH servants
� Minimizing memory footprint and
� Simplifying maintainability and evolution of AMH func-

tionality.

This section describes how we designed AMH to resolve these
challenges.

3.1 Challenge 1: Providing Complete Client
Transparency

Problem. AMH is purely a server mechanism. It should
therefore be completely transparent to clients, which must not
require changes to interact with an AMH server.
Solution. The AMH skeleton (AMH_Quoter ) interface is a
server-specific interface that is not visible to clients. The AMH
skeleton is transparent to the client because it masquerades as
the original server (Quoter ) interface and receives and han-
dles all the client operation invocations. We use theQuoter
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interface as a concrete example below to demonstrate how the
masquerade works.

In the _this() method ofAMH_Quoter , we return a
Quoter object reference instead of anAMH_Quoter ob-
ject reference, which implies that theAMH_Quoter servant
has registered itself to implement theQuoter interface. The
_this() code is shown below:

class AMH_Quoter
: public virtual PortableServer::ServantBase

{
public:

Stock::Quoter *_this ();
};

When the object reference exported by thisAMH_Quoter
servant is narrowed by the client, the resulting reference is a
Quoter and not anAMH_Quoter . Whenever the client in-
vokes an operation on theQuoter , the operation parameters
are marshaled using theQuoter stub.

On the server, theAMH_Quoter skeleton demarshals the
arguments it is passed by the ORB. The logic to demar-
shal the arguments for anAMH_Quoter that have been mar-
shaled using theQuoter interface are generated automat-
ically by TAO’s IDL compiler since the rules to generate
theAMH_Quoter implied-IDL from the original Quoter IDL
are specified rigorously (Section 2). The client is therefore
oblivious to whether its request is handled synchronously
or asynchronously. Moreover, theis_a() method of the
AMH_Quoter is also changed to returntrue when the ob-
ject reference being tested is aQuoter , thereby making the
AMH_Quoter completely transparent to the client.

3.2 Challenge 2: Ensuring AMH Servants have
the Same Semantics as non-AMH Servants

Problem. Server application developers should be able to
program AMH servants largely like they do non-AMH ser-
vants. For example, the semantics of registering AMH ser-
vants with the POA (Portable Object Adapter) and the inter-
action with the ORB should be the same as with non-AMH
servants. Having the same semantics simplifies ease of use
and yields faster adoption of the AMH mechanism.

Solution. If the application programming interface between
the AMH servant to the ORB and POA is kept the same as a
non-AMH servant, the semantics of use of AMH servants is
the same as non-AMH servants. AMH servants differ from
non-AMH servants in the skeleton classes they derive from.
Thus, if all changes required for asynchrony are restricted to
AMH skeletons, then we can provide the required guarantee
of semantics.

In TAO, theResponseHandler is created by the AMH
skeleton (Section 4.2.1). In turn, theResponseHandler

duplicates certain ORB data structures that it needs (Sec-
tion 4.2.2). Thus, by taking on the responsibility for creat-
ing the ResponseHandler , the AMH skeleton has made
asynchrony transparent to the ORB and the POA, from an ap-
plication developer perspective.

This design provides maximum flexibility, while requiring
minimal changes to existing servant code. For example, AMH
servants can be registered in any POA, even along with normal
servants. No new POA-Policies need to be defined to make a
servant asynchronous. AMH servants can be created and used
just as any other servant. Also, the ORB transparency makes
AMH orthogonal to the threading model in the server; AMH
servants can be used in any multi-threaded server,e.g., thread-
per-connection or thread pool, supported by TAO.

3.3 Challenge 3: Minimizing Memory Foot-
print

Problem. Memory footprint is crucial to many types of em-
bedded systems and increases in memory footprint can reduce
the benefits of using an ORB for memory-constrained embed-
ded systems. Thus, clients residing in embedded systems that
need to contact an AMH server must not pay any significant
memory penalty.
Solution. We followed the following three guidelines to
minimize memory footprint:

� Confine all changes required in the ORB for the AMH
mechanism to a server-specific library that pure clients
do not link.

� Restrict all IDL generated code for implementing AMH
to skeleton files.

� If IDL generated code is needed in the stub files, make
the classes abstract in the stub files and define their im-
plementation by deriving form these abstract classes in
the skeleton files.

All ORB-related AMH code is subsetted into the
PortableServer library. Since this is a server library,
pure clients never link with it. In addition, since we ensured
that AMH servers are completely transparent to clients, pure
clients need no additional functionality(and hence no addi-
tional code or memory) to contact AMH servers.

Clients compiled with stub files that have been gen-
erated without the AMH option (’-GH’ flag) have no
AMH-related code in their stub files. If for some rea-
son clients must be linked with stub files that have been
generated with the AMH option, they still pay mini-
mal memory overhead. TheResponseHandler (AMH_
QuoterResponseHandler ) is the only class that needs to
be present in the stub files (Section 3.4, Figure 4). Since this
class is declaredabstractin the stub header file, it requires no
definition.
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3.4 Challenge 4. Simplifying Maintainability
and Evolution of AMH Functionality

Problem. AMH is not (yet) a CORBA standard so any
changes that occur in the standard must be easy to incorpo-
rate. Moreover, the AMH functionality in TAO must be easy
to extend and maintain.

Solution. The various AMH components (both the
IDL generated classes and the ORB files) have been
designed so as to to cleanly separate and encapsulate
functionality. The base ResponseHandler class
(AMH_QuoterResponseHandler ) is declared ab-
stract in the stub header file.3 We implement the
ResponseHandler functionality in the skeleton files
(TAO_AMH_QuoterResponseHandler ) by deriving
from the baseResponseHandler class. This cleanly
separates theResponseHandler interface from it’s imple-
mentation. An added benefit is that clients do not have to link
in any server code even though aResponseHandler is
purely a server functionality.

We have taken this separation of concerns a step further
and encapsulated all ORB-Core related functionality of a
ResponseHandler in a TAO specific class calledTAO_
ResponseHandler . All ORB-specific data structures ma-
nipulation and interaction is localized to this class. Thus, the
final implementation of aResponseHandler (TAO_AMH_
QuoterResponseHandler ) only implements the mar-
shaling of the return,out , and inout values. Localizing
all ORB-interaction in a ORB-specific file also ensures that
the IDL compiler generated code for aResponseHandler
is minimal, thereby reducing the code in the IDL compiler it-
self. The inheritance hierarchy of theResponseHandler
is shown in Figure 4.

AMH_QuoterResponseHandler TAO_ResponseHandler

TAO_AMH_QuoterResponseHandler

IDL-Compiler
Generated

Stub Files

Skeleton Files

ORB-Core File

Figure 4:The ResponseHandler Class Hierarchy

3TheResponseHandler implied-IDL is a local interface, so it must
be declared in the stub files.

All the differences between an asynchronous servant
and a synchronous servant are present only in the AMH
skeleton. Likewise, all ORB-Core related functional-
ity of a ResponseHandler is encapsulated inTAO_
ResponseHandler . This design ensures changes to AMH
functionality are restricted to a known and minimal set of
classes, without effecting the rest of the ORB-core code.
Moreover, the IDL compiler-generated code is separated from
the ORB-implementation of AMH functionality, which makes
it easy to change ORB functionality without affecting the IDL
compiler code that generates AMH stubs and skeletons. Thus,
IDL compiler code, ORB code for asynchronous servants, and
all other ORB code is cleanly separated so that each can evolve
separately without adversely affecting the other.

4 Applying AMH In Practice

This section first illustrates how to program TAO’s AMH im-
plementation and then shows how it works internally. We also
illustrate how to send exceptions via AMH.

4.1 An Example AMH Server Application

We illustrate how AMH may be used in a middle-server that is
based upon theStock::Quoter interface from Section 2.4

This server accepts client requests for stock quotes and for-
wards them to sink server(s). The sink server processes the
stock-quote request and then sends the reply to the middle-
server, which forwards it to the client. The middle-server op-
erates as follows. It obtains the reference to the sink server(s)
when it starts up and instantiates the servant with it. For sim-
plicity, we only use one instance of a sink server in this exam-
ple.

int main (int argc, char *argv[])
{

// Initialize the ORB and POA as usual...

// Get a reference to the sink server.
CORBA::Object_var obj =

orb->string_to_object (argv[1]);
Stock::Quoter_var sink_server =

Stock::Quoter::_narrow (obj.in ());

// Create an AMH enabled servant
Stock_AMHQuoter_i *amh_servant =

new Stock_AMHQuoter_i (sink_server);

// Register servant as usual with POA
Stock::Quoter_var quoter = amh_servant->this ();

// Export quoter reference for clients to use...
}

The AMH servant stores the reference to the sink server
(target_quoter_ ) and uses it in theget_quote()

4A complete example of an AMH middle-tier server is available in the
TAO open-source release in$TAO_ROOT/examples/AMH .
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method to send the request to the sink server. The servant im-
plementation for the asynchronous-operation looks like this:

void Stock_AMHQuoter_i::get_quote
(Stock::AMH_QuoterResponseHandler_ptr rh,

const char *stock_name)
{

// Create AMI Callback object.
Quoter_Callback *callback =

new Quoter_Callback (rh);

// Activate callback.
AMI_Quoter_var callback = callback->_this ();

// Invoke the AMI request.
target_quoter_->sendc_get_quote (callback,

stock_name);
}

The get_quote() method returns almost immediately
since sendc_get_quote is asynchronous. The middle-
server is now ready to accept another client request.

The AMI Quoter_Callback class stores the
ResponseHandler (rh_ ) internally and uses it to
send the reply to the client as follows:

void Quoter_Callback::get_quote (CORBA::Long retval)
{

rh_->get_quote (retval);
}

The AMH servant stores theResponseHandler into the
AMI callback object so that when the reply from the sink
server arrives, the AMI callback object can send the reply to
the client.

4.2 AMH in Action

Now that we’ve shown how to program an AMH server, we
can describe its internal behavior. The remainder of this sec-
tion describes how AMH handles a request asynchronously,
stores enough state from a request so that the reply can be sent
later, and sends exceptions asynchronously.

4.2.1 Asynchronous Request Handling

The stub and skeleton classes generated for each IDL interface
by an OMG IDL compiler are used as follows:
� Client applications use stub classes to narrow server

references and to marshal/demarshal method arguments
(when operations are invoked on the narrowed reference).

� Server applications implement servant classes that derive
from skeleton classes and implement the functionality for
the interface.

Figure 5 shows how the various components (ser-
vant/skeleton/poa/orb) interact to handle an asynchronous re-
quest:

1. The client request is received by the server ORB and is
dispatched to the POA as usual.

ORB_Core

Servant_
BASE

RH

AMH_
Servant

AMH_
Skeleton

POA

dispatch ( )

asynchronous
_upcall
_dispatch ( )

method_skel ( )

create ( )

method (rh, in)

1

5

4

3

2

Figure 5:TAO’s AMH Implementation

2. The POA locates the servant that handles the request and
dispatches the request to it. Until this point, the path
taken by the client request is identical to the path of a
synchronous request.

3. The servant that is dispatched by the POA is an asyn-
chronous servant (henceforth referred to asAMH ser-
vant), since it derives from an asynchronous skeleton
(henceforth referred to as anAMH skeleton). Section 3.1
describes how the AMH servant registers with the POA
to handle asynchronous requests.

4. TheServant_Base calls the appropriate method of the
derived AMH skeleton.

5. The AMH skeleton method first demarshals the
in and inout parameters and then creates the
ResponseHandler for the request.

6. TheResponseHandler along with thein parameters
are then passed to the AMH servant that processes the
request.

Interfacing the AMH Skeleton to the ORB-Core: All
skeletons (whether synchronous or asynchronous) derive from
a base skeleton class called theServant_Base class. In
the case of a synchronous request, this base class dispatches
the method in the derived skeleton class and sends the mar-
shaled out , inout , and return parameters back to the
client. To implement AMH, we added a new method in the
Servant_Base class calledasynchronous_upcall_
dispatch() , which upcalls the method in the derived AMH
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skeleton class but does not implement the functionality of
sending the return values to the client. This design enables
the asynchronous-upcall to return immediately without wait-
ing for the upcall to process the request and marshal theout ,
inout , and return parameters. By restricting all changes to
within the skeleton classes we ensure that asynchronous ser-
vants are transparent to both the ORB and the POA. Sec-
tion 3.2 describes the advantages of this degree of transparency
in TAO’s AMH design.

4.2.2 Asynchronous Reply

All ResponseHandler classes derive from a
base class ResponseHandler called TAO_AMH_
ResponseHandler , as described in Section 2. When
a server finishes processing an upcall and is ready to send
a reply to the client, it invokes theResponseHandler
with the appropriateout , inout , and return parameters.
Figure- 6 shows how theResponseHandler sends the
reply back to the client.

TAO_AMH
_Response
_Handler

Client

RH

Middle
Server

method (out)
initialize_
reply ( )

send_
reply ( )

1

4

5

3

2

marshall
(out)

Figure 6:TAO’s Asynchronous Return Implementation

Each of these steps is described below:

1. The middle-tier server invokes theResponseHandler
(RH) with the appropriate parameters

2. The derived RH invokes a method on its base RH to ini-
tialize the ORB parameters needed to send a reply

3. The derived RH marshals theout , inout , and return
parameters

4. The derived RH then invokes the base class’ssend_
reply method and

5. This method sends the marshaled parameters to the client.

Interfacing the ResponseHandler to the ORB-Core:
When the derived RH is first constructed, various ORB pa-
rameters are stored in the heap memory by the RH con-
structor These parameters are subsequently used when the

marshaled parameters are sent to the client. The derived
RH functionality is limited to only marshaling the parame-
ters,i.e., all ORB-specific functionality is present in the base
TAO_AMH_ResponseHandler class. The advantages of
this design are described in Section 3.3.

4.3 Asynchronous Exceptions

To send exceptions asynchronously, the exception operation
(Section 2) of theResponseHandler is used. As usual, the
exception to be sent is constructed by the server application
developer:

Stock::Invalid_Stock_Symbol stock_exception;

This exception is now “wrapped” by anExceptionHolder
(Section 2):

Stock::AMH_QuoterExceptionHolder holder
(&stock_exception);

Invoking the exception operation of theResponseHandler
with theExceptionHolder results in the exception being
sent to the client, as follows:

// POA_Stock::TAO_AMH_QuoterResponseHandler rh;
rh.get_quote_excep (&holder);

Internally, theResponseHandler invokes the raise op-
eration of theExceptionHolder . This operation raises the
exception that has been stored when theExceptionHolder
was constructed. TheResponseHandler catches the raised
exception and after narrowing it to the correct type, uses the
state saved in theResponseHandler to marshals the ex-
ception to the client. The restriction of the raise operation
having the same raises clause as the original operation ensures
that only the exceptions declared for that operation can be sent
to the client.

5 An Empirical Comparison of ORB
Concurrency Models

A key goal motivating our work on AMH was to improve the
scalability of CORBA servers. To determine whether our de-
sign and implementation of AMH in TAO achieved this goal,
we benchmarked the throughput of AMH against other com-
mon CORBA server models: thread-per-connection, thread
pool and single-threaded reactive model. We defined through-
put as the total number of replies that the middle-tier server
sends to the client divided by the total time the middle-tier
server takes to send those replies. The benchmark involved
a middle-tier server run using various types of concurrency
models. This section describes the benchmark testbed and the
results of our experiments.
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5.1 Overview of Benchmarking Testbed

Hardware and systems software. The benchmark was per-
formed using three separate machines all interconnected by
a 10 Mbps LAN. Figure 7 shows the configuration of the

Client Machine Middle-Tier Server SInk-Server

Figure 7:Benchmarks Testbed

testbed, which is outlined below:

� Thesource client machinewas a dual Intel XEON CPU
machine with 1GB of RAM and each CPU running at
1,700MHz.

� Themiddle-tier server machinewas an Intel single CPU
733 MHz machine with 512KB of RAM.

� Thesink-sever machinewas a dual Intel Pentium III CPU
machine with 512 KB of RAM and each CPU running at
733 MHz.

This configuration of the middle-tier server being the most re-
source constrained machine was chosen so that the middle-tier
server machine could be pushed to its maximum capacity and
any bottleneck would only exist on the middle-server machine.
The client machine ran Red-Hat Linux 7.2 (Kernel 2.4.7), the
middle-tier ran Debian Linux (Kernel 2.2.18) and the sink
server ran Debian Linux (Kernel 2.4.16). The client, middle-
tier server and sink server were all compiled and linked stat-
ically with TAO release 1.2.2. Complete source-code for the
benchmark tests are available in the TAO open-source release
in $TAO_ROOT/performance-tests/AMH_Middle_
Server .
Throughput benchmark test description. The client ma-
chine spawns a specified number of clients that then flood the
middle-tier server with requests. Each client sends the next
request when it receives a reply to the current request. The
middle-tier server forwards these requests to a sink server.
The sink server can be configured to delay sending response
to the middle-tier server by a designated number of millisec-
onds. The sink server sends the response to the middle-tier
server after the predefined delay and the middle-server then
returns that response to the client.

The source client requests consisted of invoking an opera-
tion on the middle-tier server with a timestamp and waiting
for a return value. The value returned to the client was the
same timestamp that it had originally send to the middle-tier
server. The middle-tier server knew how many clients would
be connected to it before a test-run began. Thus, when a test

started the middle-tier server started recording the throughput
only after all clients had connected to it. Throughput measure-
ment starts when all clients connect to the middle-tier server
and stops when the first client disconnects. Thethroughput
is thereby computed as the total number of replies sent to the
client during this time-window, divided by the number of sec-
onds that make up the time-window.
Middle-tier server models. We used the following five con-
currency models of middle-tier servers in our experiments:

� Thread-per-connection (TPC)
� Single-Threaded Reactive (TPR-ST)
� Thread Pool with two threads (TPR-2)
� Single-threaded AMH (AMH-ST) and
� Multithreaded AMH with two threads (AMH-2).

We briefly describe the characteristics of each of these config-
urations below.
� Thread-Per-Connection (TPC). In this server, a new

server thread is spawned for each new client. Each middle-
server thread is exclusive for a client and only handles re-
quests/responses specific to that client connection. After a
thread is assigned to a client it cannot be used to process re-
quests for another client. The maximum number of threads
that can be spawned is limited only by the number of threads
that the OS can spawn.
� Single-Threaded Reactive (TPR-ST). In this server,

a single thread handles all requests and replies. Since the
server is single-threaded, TAO can be configured so that all
synchronizers are removed, which increases the throughput of
the server. This single thread is dispatched reactively by the
ORB so it can handle many different client connections, client
requests, and sink server responses.
� Thread Pool Reactive (TPR-2). In this server, a pre-

defined number of threads are spawned when the server starts
up. In our benchmarks the TPR-2 server spawned two threads.
Since the threads are managed by a reactive ORB, they are not
exclusive to any client and thus can be reused to handle re-
quests for multiple clients. For example, if a thread is blocked
waiting for a response to arrive from a sink server, the same
thread can be used again to process a new client request. In
the TPC model, this was not possible since a thread waiting
for response from the sink server could not be used to service
a new client request from a different client.
� Single-Threaded AMH (AMH-ST). In this server, the

ResponseHandler and timestamp for each client request
is passed to an AMI servant. The AMI servant stores this
value-pair in a hash map and invokes an asynchronous call
on the sink server. The AMH servant returns immediately
to handle more client requests. When a response from the
sink server shows up, the AMI-servant extracts the appropri-
ateResponseHandler from the hash map using the times-
tamp (since the sink server returns back the same timestamp)
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and invokes the method on theResponseHandler with the
timestamp. TheResponseHandler sends the timestamp
value to the client. In brief, the ST-AMH middle-tier server
storesResponseHandler s and timestamps in a hash map,
extracts the appropriateResponseHandler when a sink
server response arrives, and invokes theResponseHandler
method. Since this server is also single-threaded, all thread-
locks in the ORB are removed at compile time.
� Multi-Threaded AMH (AMH-2). In this server, we

have two threads controlled by a reactive-ORB that do the
same work as the ST-AMH server. Except for the spawning
of two threads (and hence synchronizers being present in the
ORB), this test is the same as the AMH-ST middle-tier server.

5.2 Client Scalability Test

Overview. In this test, the number of clients are steadily
increased. Each client makes 1,000 twoway requests to the
middle-tier server. The sink server is configured to delay the
response by 40 milliseconds. In an ideal middle-tier server
we could expect the throughput to increase with the number of
clients until the middle-tier server reaches its maximum capac-
ity. Thereafter, the throughput should remain constant, even
with further increase in the number of clients.
Empirical results. Figure 8 shows the result of running the
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Figure 8:Throughput of Middle-tier Servers with Increas-
ing Clients

benchmark with different middle-tier servers. The test results
for each concurrency model are described below.
� Thread-Per-Connection (TPC). In our middle-tier

configuration, the middle-tier server could only spawn 250
threads before the context switching overhead surpassed any
useful work done. The highest throughput is at 150 clients,
after which there is a steady decrease in throughput. This

degradation seems to stem from the excessive time the server
is spending context-switching between the various threads.
� Thread Pool Reactive (TPR-2. This server has the

worst throughput among all the servers, though it is a bit more
scalable than TPC, up to 50 clients more. In TPR-2, two
threads can handle many simultaneous client requests. Since
a new activation record is created for each new client request,
however, the threads cannot handle the responses sent by the
sink server in any order. Instead, they can unwind the stack
only if the current response corresponds to the top of the ac-
tivation record; otherwise, the thread cannot process the re-
sponse. This constraint not only decreases the throughput of
the server, but when the stack of the thread grows beyond the
2 MB limit on our machine, the server crashes due to unpro-
cessed replies when more client requests arrive. This behavior
occurs when more than 300 simultaneous clients are connected
to the middle-tier server.
� Single-Threaded Reactive (TPR-ST). The perfor-

mance of this server closely follows the TRP-2 server. Al-
though there are no synchronizers in this server, the gain in
performance by the removal of the locks is offset by having
to make a single thread handle all the work,i.e., client request
processing, invoking requests on the sink server, sink server-
reply processing, and sending replies to clients.
� Single-Threaded AMH (AMH-ST). The AMH-ST

server scales well, handling up to 400 simultaneous clients.
We did not test the server with more than 400 clients since at
that point the client-machine and the sink server machine were
starting to bias the results because the load on them was quite
high. With faster and much more powerful client and sink
server machines, AMH-ST server would likely have been able
to handle even more clients. The throughput of the AMH-ST
server, however, tends to dip sharply at certain points (100 and
250 clients). We are investigating what is triggering this errant
behavior.
� Multi-Threaded AMH (AMH-2). The AMH-2 server

performs better than the AMH-ST server under conditions of
heavy load (upwards of 250 clients) but with light or moderate
load, the AMH-ST server sometimes performs better (150 and
200 clients).
Results synopsis. AMH middle-servers deliver higher
throughput than conventional ORB threading models, such
as thread-per-connection and thread pool, under conditions of
heavy load. Under conditions of light or medium load, the
AMH servers are at par or only slightly below par the conven-
tional CORBA servers. Only at one data-point (100 clients)
is one of the conventional servers (thread-per-connection) bet-
ter than either of the AMH servers. For some cases (more than
300 clients), AMH based servers are the only option since only
they can cope with that kind of load.

Figure 9 compares one server each from each camp (AMH-
2 from the AMH camp and TPC from the traditional servers
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Figure 9: Comparison Between TPC and AMH wrt
Throughput Scalability

camp). As shown in the figure, AMH-2 lags in performance
as compared to TPC in the medium-range of load (from 100
to 200 clients). When the load is heavy, however, the AMH-2
server performs far better. It is also illustrative to see that if
it were possible to switch dynamically between middle-server
implementations the throughput can be almost constant, across
all types of loads,i.e., light, medium or heavy.

5.3 Latency Scalability Test

Overview. In this test, the number of clients is held constant
at 150 clients. Each client makes 1,000 requests to the middle-
tier server. The sink server delay is then varied by an increas-
ing amount of time.

Empirical results. Figure 10 shows the result of this bench-
mark. Even though Figure 10 shows a sink server latency to
be 0 milliseconds, the delay experienced by the middle-tier
server is not 0 due to network latency. In our benchmark, this
network latency was�0.3 milliseconds. We can safely ignore
this latency since for the rest of the data points the sink server
latency is large (>10 milliseconds) compared to the network
latency. The test results for each concurrency model are de-
scribed below.

� Single-Threaded Reactive (TPR-ST). This server
shows the highest throughput when the latency is minimum,
delivering up to 500 requests/sec more than any of the other
servers at 0 sink server delay. Since this server is single-
threaded, there are no locks in the ORB, which helps it to
achieve a high throughput. As the sink server latency in-
creases, however, the throughput degrades rapidly in a linear
fashion.
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Figure 10: Throughput of Middle-tier Servers with In-
creasing Sink Server Latency

� Thread Pool Reactive (TPR-2). The throughput of the
thread pool reactive middle-server (TPR-2) is almost constant
until �20 milli-second sink server delay. It also reaches it
maximum throughput at this point with 1,281 requests/sec.
After this point, there is a rapid and linear decline in through-
put.

� Thread-Per-Connection (TPC). This middle-server
model does much better, showing an almost consistent
throughput around 1,000 requests/sec until the delay from the
sink server hits 80 milliseconds. At this point, the through-
put suddenly drops. When the delay is high enough (in this
case 80 milliseconds), all threads in the middle-tier server are
blocked waiting for the sink server replies to arrive. When the
replies arrive the middle-tier server suddenly becomes busy
in a burst, spending considerable time context switching be-
tween the many threads that have suddenly become active to
handle the pending client requests and the pending sink server
responses.

� AMH servers (AMH-ST and AMH-2). The AMH
servers behave quite similarly with respect to each other.
Initially, when the latency is low they lag behind in
throughput compared to the other servers (TPC and TPR-
2). This behavior may occur since the AMH servers allocate
ResponseHandler s on the heap, which is costlier than the
stack allocation used by the other servers. As the time to allo-
cate on the heap becomes insignificant compared to the block-
ing time, however, the AMH servers clearly show their ability
to scale with respect to sink server delay. At 160 milliseconds
delay from the sink server, the AMH servers are very close
at achieving the maximum throughput (1,000 requests/sec) at
that delay, achieving a throughput of 941 requests/sec and 938
requests/sec for AMH-ST and AMH-2, respectively. The other
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Figure 11:Sink Server Latency Comparison Between TPC,
TPR, and AMH

servers are half that throughput, achieving 381 requests/sec
and 396 requests/sec for TPR-2 and TPC, respectively.

Result synopsis. AMH is a clear winner when the blocking
time is quite large. Conversely, if it is known that the blocking
time will be low and the load on the server will be constantly
high, thread pool or thread-per-connection may be a better
choice. Figure 11 compares the TPR-ST, TPC and AMH-
2 concurrency models. As seen in Figure 11, when the sink
server latency is small (0-10 milli secs), the single-threaded re-
active server (TPR-ST) delivers maximum throughput; when
the latency is between 20-40 milliseconds, the thread-per-
connection server works best; and for latencies higher than
40 milliseconds, the AMH servers are the most scalable.

6 Future Enhancements and Research
Directions

This section outlines future enhancements and research direc-
tions related to our work on AMH.

Future enhancements. While we have tried to provide max-
imum flexibility to application developers who want to use
AMH, the following situations could arise where developers
would like even more fine grained control:

� The current way to generate an AMH servant is to com-
pile the whole IDL interface with the-GH flag. There
could be interfaces in which some operations would
not block and the AMH mechanism may be a over-
head in those operations while AMH is needed in other
mechanisms. Currently AMH is applicable only at the
interface-level and not at the operation-level. Support for

operation-level control and specification for AMH is one
enhancement we are considering.

� Currently, oneResponseHandler is created for each
client request. Application developers have no con-
trol over this creation policy ofResponseHandler s.
Future enhancement may include policies to con-
trol the creation ofResponseHandler s, e.g., from
a memory pool, or reassignment to an existing
ResponseHandler .

Research directions. Many of TAO’s existing ORB opti-
mizations [8] are based on the assumption that a single acti-
vation record handles a request. Associating a request with an
activation record has certain advantages,e.g., it is faster than
allocating on the heap and it is easy to analyze the request’s
lifetime. When the thread exits the activation record, the re-
quest is destroyed implicitly. With AMH, however, this basic
assumption is violated. For example, the Portable Interceptors
specification relies solely on this assumption. We are in the
process of determining the scenarios in which AMH can cause
problems and how these problems can be avoided.

Allocating requests on the heap raises many dynamic mem-
ory management issues, such as heap fragmentation, jitter in-
duced by heap-allocation algorithms, and obtaining and re-
leasing locks during memory management operations. Since
AMH is on the critical-path, this overhead could lead to higher
jitter, which is undesirable in real-time systems. We are in the
process of analyzing and empirically benchmarking if AMH
introduces jitter and ways to reduce it.

Many services offered by TAO, such as Load-Balancing and
Event-Service, are used in middle-tier servers. Incorporating
AMH into these services would improve their efficiency. Fu-
ture work would include designing and incorporating AMH
into these services.

7 Related Work

Distributed systems modeled as entities, such as Actors [9],
sending asynchronous messages to each other have been stud-
ied theoretically, as well as implemented commercially as
Message Oriented Middleware (MOM) (with less stringent se-
mantics [6, 10]). Having an explicit asynchronous model of-
fers more flexibility and dynamicity in the system since indi-
vidual messages can be ’acted-upon’/transformed or rerouted
easily [11]. However, this flexibility often yields lower perfor-
mance,e.g., These types of systems have been known to per-
form around two orders of magnitude worse than synchronous
systems in which initial connection setup takes time, but af-
ter the connection is established communication between the
client and the server is fast [12].
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CORBA has an explicitly synchronous model based upon
the RPC mechanism, with even oneway calls having an ex-
plicit void return type [13]. Throughput in a synchronous
system, though, may degrade dramatically when system re-
sources, such as threads, are wasted while waiting for a long
I/O or external events. This degradation becomes easily ap-
parent when a client is blocked waiting for a response from
a server that is taking a long time to send a reply. The
AMI specification in CORBA was designed specifically to
overcome this problem for clients. The same problem ex-
ists for servers, however, as described in Section 1. Differ-
ent server concurrency models have been proposed and imple-
mented [14, 15, 16] to better utilize system resources for var-
ious types of client requests [17]. AMH is specifically aimed
at addressing the root of this problem:explicitly dissociating
the request reception from request processing. An initial in-
spiration for this approach was the implementation ofcontinu-
ationsin the MACH kernel, which resulted in significant per-
formance improvements in that OS kernel [5]. Other exam-
ples of similar work include Futures [18] and Promises [19],
which are language mechanisms that decouple method invoca-
tion from method return values passed back to the caller when
a method finishes executing.

Other distributed object computing middleware, such as
DCOM [20, 21], also support asynchronous invocations on the
client and the server side. Java RMI [22, 23] does not provide
asynchronous functionality on either the client or the server,
resulting in performance degradation when servers take a long
time to respond to calls. The Java Messaging Service (JMS)
[10] tries to alleviate this problem by providing a mechanism
for receiving sending and messages asynchronously.

8 Concluding Remarks

The CORBA asynchronous method invocation (AMI) mecha-
nism can significantly improve the scalability and responsive-
ness of many types of client applications. A similar mecha-
nism for servers to handle method calls asynchronously has
not been available until now. Asynchronous server support is
useful in many situations, such as building scalable middle-
tier servers, improving the scalability of servers that are con-
strained to be single-threaded, or allowing servers to perform
multiple requests in parallel to backend-servers for a single
client request.

This paper defines a specification for an asynchronous
method handling mechanism (AMH) and describes how it has
been designed and implemented in The ACE ORB (TAO).
AMH can be used to mitigate the scalability limitations
of conventional multi-threaded middle-tier servers. Empir-
ical benchmarks show how asynchronous servers scale bet-
ter than other server concurrency models, such as thread-per-

connection and thread pool, in terms of the number of con-
current clients and long running server upcalls. The TAO
AMH feature is particularly useful for highly loaded middle-
tier servers that must contact multiple back-end servers to ser-
vice a client request,e.g., that of a firewall server.

In general, the benefits of AMH are:

� Middle-tier servers can process new incoming requests
without having to wait for responses from sink servers,
which improves the scalability of middle-tier servers
without needing to spawn a large number of threads.

� AMH allows servers to handle requests in an order other
than the order in which they were received, even when
using a single-threaded reactive concurrency model.

� Multi-threaded servers are generally harder to write and
maintain than single-threaded servers. AMH can be used
to develop single-threaded servers that are more scalable
than conventional multi-threaded servers.

An open-source version of AMH can be downloaded in
the latest TAO release fromdeuce.doc.wustl.edu/
Download.html .
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