An Overview of the CORBA Portable Object Adapter

Irfan Pyarali and Douglas C. Schmidt
{irfan,schmid} @cs.wustl.edu
Department of Computer Science, Washington University
St. Louis, MO 63130, USA

This paper will appear in a special issue of the ACM Sta@RBs eliminate many tedious, error-prone, and non-portable

dardView magazine on CORBA. aspects of developing and maintaining distributed applications
by automating common network programming tasks such as
Abstract object location, object activation, parameter marshaling, fault

recovery, and security. Thus, ORBs facilitate the develop-

An Object Adapter is an integral part of the Common Objegtent of flexible distributed applications and reusable services
Request Broker Architecture (CORBA). An Object Adapter asheterogeneous distributed environments.
sists an Object Request Broker (ORB) in delivering client re-The Portable Object Adapter (POA) specification [4] is an
quests to server object implementations (servants). Serviggsortant new component that the OMG has defined for the
provided by an Object Adapter include: (1) generating andORBA standard. The POA is an integral part of the server-
interpreting object references, (2) activating and deactivatiRge of the CORBA reference model. It allows developers
servants, (3) demultiplexing requests to map object referengggonstruct CORBA server applications that are portable be-
onto their corresponding servants, and (4) collaborating witfjeen heterogeneous ORB implementations [5].
automatically-generated IDL skeletons to invoke operationsypis paper is organized as follows: Section 2 gives an
on servants. _ e overview of the CORBA architecture and shows how the Ob-

This paper provides two contributions to the study of Ofasct Adapter fits into this architecture; Section 3 describes the
ject Adapters. First, it outlines the CORBA Portable Objegiinctionality provided by a CORBA Object Adapter and in-
Adapter (POA) specification, which is a recent addition §goquces the POA [4]; Section 4 outlines the designed goals
the CORBA standard that greatly simplifies the devglopmgﬂtthe POA as specified by the OMG; Section 5 presents an
of portable and extensible servants and server applicatioggerview of the POA architecture; Section 6 illustrates the key
The design goals, architectural components, and semanticg@ractions and collaborations of POA components; Section 7

the POA are explained. Second, the paper describes the fl§cusses the POA features necessary for a Real-time ORB;
sign choices made to adapt the POA for the TAO Real-tigq section 8 presents concluding remarks.

ORB. Key design issues regarding efficient demultiplexing, up-
call and collocation optimizations, ORB and POA concur-

rency configurations, POA synchronization, and predictabili :
are covered. 2 CORBA Architecture

CORBA Object Request Brokers (ORBs) [6] allow clients to
1 Introduction invoke operations on distributed objects without concern for:

The Common Object Request Broker Architecture (CORBA)bjectlocation: CORBA objects can be collocated with the

[1] is an emerging standard for distributed object computigfient or distributed on a remote server, without affecting their

(DOC) middleware. DOC middleware resides between cliefiigplementation or use.

and servers, simplifying application developmentby providing .

a uniform view of heterogeneous network and OS layers. Programming language: The languages supported by
Atthe heart of DOC middleware a@bject Request BrokersCORBA include C, C++, Java, Ada95, COBOL, and

(ORBs), such as CORBA [1], DCOM [2], and Java RMI [3]SMalltalk, among others.

“This work was supported in part by Boeing, CDI, DARPA contraghs platform: CORBA runs on many OS platforms, includ-
g:)(r)i]r.]?m, Lucent, Motorola, NSF grant NCR-9628218, Siemens, and I%% Win32, UNIX, MVS, and real-time embedded systems like
VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The com- never interacts with a servant directly, but always through an
munication protocols and interconnects that CORBA can rahject.
on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eﬂ‘bRB Core:

¢ bedded svstem backol d shared When a client invokes an operation on an ob-
ernet, embedded system backpianes, and share memory'ject, the ORB Core is responsible for delivering the request

Hardware: CORBA shields applications from side-effectto the object and returning a response, if any, to the client.
stemming from differences in hardware such as storage layBaot objects executing remotely, a CORBA-compliant [1] ORB
and data type sizes/ranges. Core communicates via some version of the General Inter-
ORB Protocol (GIOP), most commonly the Internet Inter-
Figure 1 illustrates the components in the CORBA refeDRB Protocol (IIOP), which runs atop the TCP transport pro-
ence model, all of which collaborate to provide the portabilityocol. An ORB Core is typically implemented as a run-time
interoperability, and transparency outlined above. Each cdibrary linked into both client and server applications.

ORB Interface: An ORB is an abstraction that can be im-
plemented various ways,g, one or more processes or a set
of libraries. To decouple applications from implementation
details, the CORBA specification defines an interface to an
ORB. This ORB interface provides standard operations that
(1) initialize and shutdown the ORB, (2) convert object ref-
erences to strings and back, and (3) create argument lists for
requests made through tdgnamic invocation interfag®ll).

O
DII SI'I‘II)J{;S ORB) OBJECT
IRIAILED AIDAPINIR OMG IDL Stubs and Skeletons: DL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
[%] and the ORB. Stubs provide a strongly-typstitic invoca-
() STANDARD INTERFACE (C) STANDARD LANGUAGE MAPPING tion interface(Sll) that marshals application parameters into a
common data-level representation. Conversely, skeletons de-

marshal the data-level representation back into typed parame-
ters that are meaningful to an application.

INTERFACE IDL IMPLEMENTATION
REPOSITORY COMPILER REPOSITORY

in args

CLIENT operation()

out args + return value
+—O0

OBJECT
(SERVANT)

O ORB-SPECIFIC INTERFACE OSTANDARD PROTOCOL

Figure 1: Components in the CORBA Reference Model
IDL Compiler: An IDL compiler automatically transforms
ponent in the CORBA reference model is outlined below: OMG IDL definitions into an application programming lan-
Client: This program entity performs application tasks vage like C++ or Java. In addition to .prowd|.ng. program-
ing language transparency, IDL compilers eliminate com-

obtaining object references to objects and invoking ope . :
tions on them. Objects can be remote or collocated regon Sources of network programming errors and provide op-

tive to the client. Ideally, accessing a remote object shOLﬂarth't'eS for automated compiler optimizations [7].

be as simple as calling an operation on a local objeet, Dynamic Invocation Interface (DII): The DIl allows
object —operation(args) . Figure 1 shows the under<lients to generate requests at run-time. This flexibility is
lying components that ORBs use to transmit remote operatiseful when an application has no compile-time knowledge
requests transparently from client to object. of the interface it is accessing. The DIl also allows clients

Object: In CORBA, an object is an instance of an Interfad® makeddeferred synchropousalllcs, which decouple the re- id
Definition Language (IDL) interface. The object is identifie uest and response portions of twoway operations to avoi

by an object referencewhich uniquely names that instanc locking the client until the servant responds. In contrast,

across servers. A@bjectldassociates an object with its ser-S” stubs currently only suppasvoway i.e., requestiresponse,

vant implementation, and is unique within the scope of an Cﬁﬁdonewayl.e., requestonly operations, though the OMG has

ject Adapter. An object has one or more servants associ gacpdardized an asynchronous method invocation interface in
with it that implement the interface. the recent Messaging Service specification [8].

Servant: This component implements the operations dBynamic Skeleton Interface (DSI): The DSl s the server's

fined by an OMG Interface Definition Language (IDL) inanalogue to the client's DII. The DSI allows an ORB to deliver

terface. In languages like C++ and Java that support objéAUests to a servant that has no compile-time knowledge of
oriented (OO) programming, servants are implemented usmﬁ IDL interface it is implementing. Clients making requests

one or more objects. In non-OO languages like C servants'&‘?@d not know whether the server ORB uses static skeletons or
typically implemented using functions astiuct s. A client dynamic skeletons. Likewise, servers need not know if clients

use the DIl or Sl to invoke requests.

Object Adapter: An Object Adapter associates a servairt the ORB Core and underlying OS to ensure that the infor-
with objects, demultiplexes incoming requests to the servangtion necessary to reach an object is present in the object
and collaborates with the IDL skeleton to dispatch the appreference.

priate operation upcall on that servant. Recent CORBA portafigure 2 shows a typical Interoperable Object Reference
bility enhancements [1] define the Portable Object Adap¢®R), which supports the Internet Inter-ORB Protocol (II0P)
(POA), which supports multiple nested POAs per ORB. Oft]. An IOR contains the IIOP version, host name, and port
ject Adapters enable ORBs to support various types of ser-

vants that possess similar requirements. This design res protocol Id Time Stamp Object Id

in a smaller and simpler ORB that can still support a wide l l .l.

range of object granularities, lifetimes, policies, implementa-—y ¢ ¢

tion styles, and other properties. iiop:1.0//pachanga:10015/P353bccdb00094ae8/firstPOA/myservant
A A

Interface Repository: The Interface Repository provides T]l

run-time information about IDL interfaces. Using this infor-
mation, it is possible for a program to encounter an object
whose interface was not known when the program was com-
piled, yet, be able to determine what operations are valid on
the object and make invocations on it. In addition, the In-
terface Repository provides a common location to store ad-
ditional information associated with interfaces ORB objec
such as stub/skeleton type libraries.

Communication Object
Endpoint Adapter Id

Figure 2: Interoperable Object Reference

ﬁ’Umberthat identifies a communication endpoint for the server
process; some means to ensure uniqueness for certain types of
Implementation Repository: The Implementation Reposi-IORs, e.g, timestamps fotransientlORs; the identity of the

tory [9] contains information that allows an ORB to activat@bject Adapter; and the identity of the CORBA object.

servers to process servants. Most of the information in the IAttivation and deactivation of servants: Object Adapters
plementation Repository is specific to an ORB or OS enviragan activate CORBA objects to handle client requests. To ac-
ment. In addition, the Implementation Repository provides@mplish this, an Object Adapter can be programmed to cre-
common location to store information associated with servesge servants that handle requests for those objects. Similarly,
such as administrative control, resource allocation, securiypject Adapters can deactivate objects and can destroy their

and activation modes. corresponding servants when they are no longer needgd,
to reduce server memory consumption.
3 Object Adapter Overview Demultiplexing requests to servants: Object Adapters de-

multiplex CORBA requests to the appropriate servants. When

This section describes the functionality provided by a corel! ORB Core receives a request, I coIIaborgtes W'th the Ob-
Object Adapter. In addition, this section introduces tgct Adapter through a privatee, non-standardized, interface

Portable Object Adapter (POA) and contrasts the POA wigy ensure that the request reaches the proper servant. The Ob-
its predecessor, the Basic Object Adapter (BOA) ject Adapter parses the request to locate the Object Id of the

servant, which it uses to locate the correct servant and invoke
the appropriate operation on the servant.

3.1 Object Adapter Functionality Invoking servant operations: The operation name is spec-

A CORBA Obiject Adapter is responsible for: (a) generatiffied in the CORBA request. Once the Object Adapter locates
object references, (b) activation and deactivation of servaf§ farget servant, it dispatches the requested operation on the
(c) demultiplexing requests to servants, and (d) collaboratffgfvant. Before the request is invoked on the servant, how-

with IDL skeletons to invoke servant operations. These f@Zer, the Object Adapter uses an IDL skeleton to transform
sponsibilities are described in detail below: the parameters in the request into arguments. The skeleton

then passes the demarshaled arguments as parameters to the
Generating object references: An Object Adapter is re- intended servant operation.
sponsible for generating object references for the CORBA ob-
jegts registered yvith it. Object.referenges identify a C.ORB§_2 Portable Object Adapter (POA)
object and contain addressing information that allow clients to
to invoke operations on that object in a distributed system. Olie Portable Object Adapter (POA) is a standard component
ject Adapters cooperate with the communication mechanisime¢he CORBA model recently specified by the OMG [4].

The POA allows programmers to construct servants that arel the object’s state, managing the storage and retrieval of the
portable between different ORB implementations. Portabilibpject’s state, providing code that will be executed in response
is achieved by standardizing the skeletons classes producetblrgquests, and determining whether or not the object exists
the IDL compiler, as well as the interactions between the sat-any point in time.
vants and th,e Object Adapter. . . ehavior governed by policies: The POA provides an ex-
The POAs predecessor was the Basic Object Adapfer . . I - . :
. .) ensible mechanism for associating policies with servants in
(BOA). The BOA was widely recognized to be incomplete o
e . o a POA. Currently, the POA supports seven policies, such as
and underspecified. For instance, the API for registering S§readi " . -
; e . “threading, retention, and lifespan policies, that can be selected
vants with the BOA was unspecified. Therefore, different im- o . S
. . . at POA creation time. An overview of these policies is pre-
plementors made many interpretations and extensions to pro-, ~ . X
: . . .sented in Section 5.
vide a complete ORB. These interpretations and extensions
were incompatible with each other, however, and there wdssted POAs: The POA allows multiple distinct, nested in-
no simple upgrade to the BOA that made existing applicatiostances of the POA to exist in a server. Each POA in the server
portable. provides a namespace for all the objects registered with that
The solution adopted by the OMG was to abandon the BGOA and all the child POAs that are created by this POA.
and create a new Object Adapter theds portable. ORB The POA supports recursive deletés,, destroying a POA
implementors can maintain their proprietary BOA to suppatéstroys all its child POAs.
their current customer base. Emstmg programs contmuestgI and DSI support: The POA allows programmers to
work and are supported by their ORB vendors. In the future . : :
. . . cdnstruct servants that inherit from (1) static skeleton classes
the OMG will no longer include the BOA with the CORBA . .
specification (SSI) generated by OMG IDL compilers or (2) a Dynamic
' Skeleton Interface (DSI). Clients need not be aware that a
CORBA object is serviced by a DSI servant or an IDL ser-
4 The POA Design Goals vant. Two CORBA objects supporting the same interface can
be serviced one by a DSI servant and the other with an IDL

The OMG's design goals for the Portable Object Adapté@rvant. Furthermore, a CORBA object may be serviced by a
(POA) specification include the following: DSl servant during some period of time, while the rest of the

- time is serviced by an IDL servant.
Portability: The POA allows programmers to construct ser-

vants that are portable between different ORB implementa-

tions. Hence, the programmer can switch ORBs without hdy- The PQOA Architecture

ing to modify existing servant code. The lack of this feature

was a major shortcoming of the Basic Object Adapter (BOAJhe ORB is an abstraction visible to both the client and server.

Persistentidentities: The POA supports objects with persisil contrast, the POA is an ORB component visible on’Iy to the
tent identities. More precisely, the POA is designed to suppdffVehi-€. clients are not directly aware of the POA's exis-

servants that can provide consistent service for objects whig&¥€ Or structure. This section describes the architecture of
lifetimes span multiple server process lifetimes. the request dispatching model defined by the POA and the

] ~_ interactions between its standard components and the ORB
Automation: The POA supports transparent activation @fyre.

objects and implicit activation of servants. This automation User-supplied servants are registered with the POA.
makes the POA easier and simpler to use. Clients hold object references upon which they make requests,

Conserving resources: There are many situations where which the POA ultimately dispatches as operations on a ser-
server must support many CORBA objects_ For examp|e\,/@’lt. The ORB, POA, servant, and skeleton all collaborate to
database server that models each database record as a CO¥@mine (1) which servant the operation should be invoked
object can potentially service hundreds of objects. The POA and (2) to dispatch the invocation.

allows a single servant to support multiple Object Ids simul- Figure 3 shows the POA architecture. As shown in this fig-

taneously. This allows one servant to service many CORBIe, a distinguished POA, called tioot POA, is created

objects, thereby conserving memory resources on the servéfd managed by the ORB. TiRoot POA is always avail-

. able to an application through the ORB initialization interface,
Flexibility: The POA allows servants to assume compleltg bp g

2 o)) solve _initial _references . The application devel-
responsibility for an object’s behavior. For instance, a servailt.. can register servants with tReot POA if the policies
can control an object’s behavior by defining the object’s iden-

tity, determining the relationship between the object’s identity This statement is a simplification — more detail is provided below.

T omA A
POA A @

SERVANT *
default servant destroy

POA Manager |
v Active Object Map | __y| SERVANT _ deactivate

Activator

Object Id O Inactive)<
Object Id O
Object Id O » SERVANT
Object Id O))
e) deactivate deactivate
. e discard_requests
T o) Adapter . .
ROOtPOA POA B ” Discarding

Active Object Map adapter activatof|
Objectid O _.w| Servant
se_rvant L-4- Activator
activator activate
SERVANT Active Object Map SERVANT
Object Id O |
ObjectId O » SERVANT
Legend L Object Id &j\ SERVANT

hold_requests

hold_requests

Holding

discard_requests

] ; create_ POA
Object reference , ' | -
"""" Y Servant ®

Pointer K \ Locator
—_— '

v

.- C - POAC .-° Figure 4: POA Manager Processing States
object POA Manager servant
locator

) _ . Adapter Activator: An adapter activator can be associated
Figure 3: POA Architecture with a POA by an application. The ORB will invoke an op-
eration on an adapter activator when a request is received for
a child POA that does not yet exist. The adapter activator can
T e .then decide whether or not to create the required POA on de-
of theRoot POA specified in the POA specification are Su'tr'nand q

able for the applllcatl_on. _ For example, if the target object reference was created by
A server application may want to create multiple POAS poa whose full name i#A/B/C and only POA/A and

to support different kinds of CORBA objects and/or diffelpoa /a/B currently exist, theunknown _adapter opera-

ent kinds of servant styles. For example, a server applicatipfh yill be invoked on the adapter activator associated with

might have two POAs: one supporting transient CORBA oBpa /A/B . In this case, POAA/B will be passed as the par-

jects and the other supporting persistent CORBA objects [1Q}+ parameter an@ as the name of the missing POA to the
A nested POA can be created by invoking treate _POA ,nknown _adapter operation.

factory operation on a parent POA.

The server application in Figure 3 contains three oth@frvant Manager: A servant manager is a locality con-
nested POAsA, B, andC. POA A andB are children of the Strainted servant that server applications can associate with
Root POA; POA Cis B's child. Each POA has anActive @ POA [11]. The ORB uses a servant manager to activate

Object Tablethat maps Object Ids to servants. Other key corsérvants on demand, as well as to deactivate servants. Ser-
ponents in a POA are described below: vant managers are responsible for (1) managing the associa-

tion of an object (as characterized by its Object Id value) with

_ a particular servant and (2) for determining whether an ob-
POA Manager: A POA manager encapsulates the procegset exists or not. There are two types of servant managers:

ing state of one or more PQA;. By invoking operations 0Ny antActivator and ServantLocator . The type
POA manager, server applications can cause requests fof gy i a particular situation depends on the policies in a POA,
associated POAs to be queued or discarded. In add|t|on,®mch are described next.

plications can use the POA manager to deactivate POAs. Fig-
ure 4 shows the processing states of a POA Manager andRA Policies: The characteristics of each POA other than
operations required to transition from one state to another. theRoot POA can be customized at POA creation time using

differentpolicies The policies of th&Root POA are specified e Consult its Active Object Map only If the Object Id is
in the POA specification. The POA specification defines the not found in the Active Object Map, the POA returns an
following policies: CORBA::OBJECTNOTEXIST exception to the client.

¢ Threading policy: This policy is used to specify the e Use a default servant If the Object Id is not found in
threading model used with the POA. A POA can either be the Active Object Map, the request is dispatched to the
single-threaded or have the ORB control its threads. If itis default servant (if available).
single-threaded, all requests are processed sequentially. In a
multi-threaded environment, all upcalls made by this POA to®
implementation coda,e., servants and servant managers, are
invoked in a manner that is safe for code that is unaware of
multi-threading.

In contrast, if the ORB-controlled threading policy is speci-
fied, the ORB determines the thread (or threads) that the POA
dispatches its requests in. In a multi-threaded environment,
concurrent requests may be delivered using multiple threads.

Invoke a servant managerlf the Object Id is not found
in the Active Object Map, the servant manager (if avail-
able) is given the opportunity to locate a servant or raise
an exception. The servant manager is an application-
supplied object that can incarnate or activate a servant
and return it to the POA for continued request pro-
cessing. Two forms of servant manager are supported:
ServantActivator , which is used for a POA with
the RETAIN policy, andServantLocator , which is

e Lifespan policy: This policy is used to specify whether ysed with theNONRETAIN policy.
the CORBA objects created within a POA are persistent

or transient. Persistent objects can outlive the processgimbining these policies with the retention policies described

which they are created initially. In contrast, transient olgyqye provides the POA with a great deal of flexibility. Sec-

jects cannot outlive the process in which they are creaigsh 6 provides further details on how the POA processes re-
initially. Once the POA is deactivated, use of any Objeﬁhests.

references generated for a transient object will result in an
CORBA::OBJECTNOTEXIST exception.

e Object Id uniqueness policy: This policy is usedto 6 The POA Semantics
specify whether the servants activated in the POA must have
unique Object Ids. With the unique Id policy, servants actihe POA is used primarily in two modes: (1) request process-
vated with that POA support exactly one Object Id. Howeverig and (2) the activation and deactivation of servants and ob-
with the multiple 1d policy, a servant activated with that POfects. This section describes these two modes and outlines the
may support one or more Object Ids. semantics and behavior of the interactions that occur between

e Objectld assignment policy: This policy is used to the components in the POA architecture.
specify whether Object Ids in the POA are generated by the
application or by the ORB. If the POA also has the persié-l
tent lifespan policy, ORB assigned Object Ids must be uniqué&

across all instantiations of the same POA. Each client request contains @bject Key The Object Key

« Implicit activation policy: ~ This policy is used to spec-conveys the Object Id of the target object and the identity of
ify whether implicit activation of servants is supported in thi@e POA that created the target object reference. The end-to-
POA. A C++ server can create a servant, and then by sett@i§l processing of a client request occurs in the follow steps:

its POA and invoking itsthis method, it can register the

servant implicitly and create an object reference in a sindle Locate the server process: When a client issues a re-
operation. quest, the ORB first locates an appropriate server process, us-

]]] o ing the Implementation Repository to create a new process if
» Servant retention policy: This policy is used to spec-necessary. In an ORB that uses IIOP, the host name and port

ify whether the POA retains active servants inAgtive Ob- nymper in the Interoperable Object Reference (IOR) identify
ject Map A POA either retains the associations between s@fa communication endpoint of the server process.

vants and CORBA obijects or it establishes a new CORBA ob-
ject/servant association for each incoming request. 2. Locate the POA: Once the server process has been lo-
« Request processing policy: This policy is used to Spec_cated, the ORB locates the appropriate POA within that server.

ify how requests should be processed by the POA. whelff the designated POA does not exist in the server process, the

request arrives for a given CORBA object, the POA can d6"Ver has the opportunity to re-create the required POA by us-
one of the following: ing an adapter activator. The name of the target POA is speci-

fied by the IOR in a manner that is opaque to the client.

Request Processing

3. Locate the servant: Once the ORB has located the appraeference usinCORBA::string _to _object . Moreover,
priate POA, it delivers the request to that POA. The POA findsan be returned as the result of an operation invocatien,

the appropriate servant by following its servant retention anging thefactory methodattern [12]. Regardless of how an
request processing policies, which are described in Sectiorobject reference is obtained, however, once a client has an ob-

4. Locate the skeleton: The final step the POA performs idect reference it can invoke operations on the object.

to locate the IDL skeleton that will transform the parameters

in the request into arguments. The skeleton then passes7he Designing a POA for Real-time

demarshaled arguments as parameters to the correct servant

operation, which it locates via one of the operation demulti- ORBS

plexing strategies described in Section 7.1.

5. Handling replies, exceptions and location forwarding: The 'Dlstrlbuted Object Com.putlng group at Washlngton Uni-

The skeleton marshals any exceptions, return vainesyt versity has developed a high-performance, real-tlme'ORB

andout parameters returned by the servant so that they c,eannd system calleq The ACE ORB (TAO) [13]. TAO. prqwdes
end-to-end quality of service guarantees to applications by

be sent to the client. The only exception that is given Spec\'/%rtically integrating CORBA middleware with OS I/O sub-

treatment is thé&orwardRequest exception. It causes the 2 .
tems, communication protocols, and network interfaces.

ORB to deliver the current request and subsequent reques@/ .
the object denoted in tHerward _reference member of EOO adapt the CORBA Portable Object Adapter (POA) spec-

the exception. ification into TAQ, certai'n archite.ctural considgratioqs were
necessary to fulfill real-time requirements. This section out-

)) lines these considerations, describes the design patterns we ap-

6.2 Object Reference Creation plied to maximize the predictability and performance of TAO’s

and provides references to information on TAO’s design

Object references are created in servers. Object refererﬁ:%é’
erformance results.

encapsulate Object Id and other information required by A
ORB to locate the server and POA with which the object is as-
sociatedg.g, in which POA scope the reference was creatéf.1 Efficient Request Demultiplexing

Object references can be created in the following ways:) ,) .
o] . ~7.1.1 Conventional ORB Demultiplexing Strategies
Explicit creation of object references: A server application

can directly create a reference with ttreate _reference A standard GIOP-compliant client request contains the iden-
andcreate _reference _with _id operations on a POAtity of its remote object and remote operation. A remote ob-
object. These operations only create a reference, but doj@etis represented by an Object Kegtet sequence and

associate the designated object with an active servant. @ remote operation is represented atrimg . Conventional
ORBs demultiplex client requests to the appropriate operation

of the servant implementation using tlasered demultiplex-

thn can ac'qvate a sgrvant expl'|C|tIy by gssomatmg iﬁg architecture shown in Figure 5. These steps perform the
with an Object Id using theactivate _object or following tasks:

activate _object _with _id operations. Once activated,
the server application can map the servant to its corféteps 1 and 2: The OS protocol stack demultiplexes the in-
sponding reference using tiservant _to _reference or coming client request multiple times,g, through the data

id _to _reference operations. link, network, and transport layers up to the user/kernel bound-

Implicit activation of servants: If the server application at- ary and the ORB Core.

tempts to obtain an object reference corresponding to an in8teps 3, 4, and 5: The ORB Core uses the addressing in-

tive servant and the POA supports the implicit activation pdbrmation in the client’s Object Key to locate the appropriate
icy, the POA can automatically assign a generated unique @bject Adapter, servant, and the skeleton of the target IDL op-
ject Id to the servant and activate the resulting object. eration.

Explicit activation of servants: A server applica-

Once a reference is created in the server, it can
exported to clients in a variety of ways. For instanc Erforms the operation uncall
it can be advertised via the OMG Naming and TradirPg P pcafl.

Services. Likewise, it can be converted to a string via) o .)
CORBA::object _to string and published in some way However, layered demultiplexing is generally inappropriate

that allows the client to discover the string and convert it td @ high-performance and real-time applications for the fol-

lowing reasons [14]:

ep 6: The IDL skeleton locates the appropriate operation,
emarshals the request buffer into operation parameters, and

(A) LAYERED DEMUXING, (B) DE-LAYERED ACTIVE
PERFECT HASHING DEMUXING

=
LAYERED
DEMUXING

OPERATIONK

OPERATION2

OPERATION2
OPERATION1

%
g
Z
=
5

000
6: DEMUX TO

sh(operation)
OPERATION = T =
(SKEL 1) (SKEL 2) eee GKEL M)
1
[

SKEL KEL K
5:DEMUX TO [I

SKELETON (SERVANT 1) (SERVANT 2) ON(SERVANT N)
SERVANT 1 | (SERVANT 2 | eee |SERVANT N

4: DEMUX TO hash(object key) index(object key/operation)

SERVANT
(OBJ ECT AD APTER) OBJECT ADAPTER OBJECT ADAPTER
3:DEMUX TO |
OBJECT ADAPTER

Figure 6: Optimized CORBA Request Demultiplexing Strate-

:
:
=
:
pe

|SERVANTN: :OPERATIONM |

| SERVANT1::0PERATION1 |
| SERVANT1::0PERATION2 |
| SERVANTIN::OPERATION1 |

_)I SERVANT1::0PERATIONM |

2: DEMUX TO .
I/O HANDLE OS KERNEL gies
1: DEMUX THRU
PROTOCOL STACK Perfect hashing: The perfect hashing strategy shown in Fig-

ure 6(A) is a two-step layered demultiplexing strategy. This
Figure 5: Layered CORBA Request Demultiplexing strategy uses an automatically-generated perfect hashing func-

tion to locate the servant. A second perfect hashing function

is then used to locate the operation. The primary benefit of
Decreased efficiency: Layered demultiplexing reduces pertihjs strategy is that servant and operation lookups requijie
formance by increasing the number of internal tables thghe in the worst-case.
must be searched as incoming client requests ascend througiho yses the GNWperf [18] tool to generate perfect
the processing layers in an ORB endsystem. Demultiplexiagsh functions for object keys and operation names. This per-
client requests through all these layers is expensive, partigt hashing scheme is applicable when the keys to be hashed
larly when a large number of operations appear in an IDL igre knowna priori. In many deterministic real-time systems,
terface and/or a large number of servants are managed by@h as avionic mission control systems [19], the servants and

Object Adapter. operations can be configured statically. For these applications,

Increased priority inversion and non-determinism: Lay- it is possible to use perfect hashing to locate servants and op-
ered demultiplexing can cause priority inversions becal@&tions.

servant-level quality of service (QoS) information is inacceggtive demultiplexing: TAO also provides a more dynamic
sible to the lowest-level device drivers and protocol StaCde@multipIexing strategy calleattive demultiplexingshown in

the 1/0O subsystem of an ORB endsystem. Therefore, an @pyure 6(B). In this strategy, the client passes a handle that di-
ject Adapter may demultiplex packets according to their FIRQctly identifies the servant and operation(il) time in the
order of arrival. FIFO demultiplexing can cause higher prigjorst-case. This handle can be configured into a client when it
ity packets to wait for an indeterminate period of time whilgptains a servant’s object referenegy, via a Naming service
lower priority packets are demultiplexed and dispatched [13]) Trading service. Once the request arrives at the server ORB,

Conventional implementations of CORBA incur significarif'® OPject Adapter uses the handle supplied in the CORBA re-
demultiplexing overhead. For instance, [16, 17] show that cSiiest header to locate the servant and its associated operation
ventional ORBs spene17% of the total server time process! @ Single step. . o S
ing demultiplexing requests. Unless this overhead is reducelnlike perfect hashing, TAO's active demultiplexing strat-
and demultiplexing is performed predictably, ORBs canr@@y does not require that all Object Ids be knaavipriori.

provide uniform, scalable QoS guarantees to real-time apa—lh-is makes it more suitable for applications that incarnate and
cations. etherealize CORBA objects dynamically.

Both perfect hashing and active demultiplexing can demul-
7.1.2 TAO'’s Optimized ORB Demultiplexing Strategies tiplex client requests efficiently and predictably. Moreover,

L)) these strategies perform optimally regardless of the number of
To address the limitations with conventional ORBs, TAO P'3ctive connections, application-level servant implementations,

vides the demultiplexing strategies shown in Figure 6. TAQg,q gperations defined in IDL interfaces. [20] presents a de-
optimized demultiplexing strategies include the following:

8

tailed study of these and other request demultiplexing strateTo ensure consistent behavior throughout the layers in an
gies for a range of target objects and operations. ORB endsystem, TAO's POA is designed to support TAO'’s
TAO's Object Adapter uses the Service Configurator patterarious ORB Core configurations. The important variations
[21] to select perfect hashing or active demultiplexing dynamre (1) each ORB Core in a process has its own POA and (2) all
ically at ORB installation-time [22]. Both of these strategig@RB Cores in a process share one POA, as described below:
improve request demultiplexing performance and predictabil-
ity above the ORB Core. R .)
To facilitate various strategies for finding and dispatcf?-OA per ORB Core: F|gure'8 shows this ORB conf!gurg-
ing servants, TAO uses the active object map class hierarER?’ where each ORB Core in a server process maintains a
shown in Figure 7. This design is an example of the Bridge

’ SERVANT‘ ’ SERVANT‘ ’ SERVANT‘

\ N\

Table_Impl

N/

forward

ObjectId O Obj&m\b Object Id O
Object Id O Object Id~O

Active Object Map

Active Object Map Active Object Map

Array POA B

ObjTable

POA A

POA C

Active
Demux

ORB Core
©

Linear ORB Core ORB Core
ObjTable A B

Figure 7: Class Hierarchy of POA Active Object Maps

Network

]] Figure 8: POA-per-ORB Configuration
and Strategy patterns [12], where the interface of the map is

decoupled from its implementation so that the two can vary

independently. distinct POA instance. This configuration is generally chosen

for deterministic real-time applications, such as avionics mis-
7.2 Supporting Custom ORB Core and POA sion computing [19], where each ORB Core has its own thread
Configurations of control that runs at a distinct priority.

AN inalv i | ¢ distributed licati When this configuration is used, each POA is not accessed
n increasingly important class of distributed applications 1y, Jiher threads in the process. Thus, no locking is re-

| INCTe: ! : by
quire stringent quality of service (QoS) guarantees. These aﬁfred within a POA, thereby reducing the overhead and non-

pllca.tlons mclud_e!elgcommumcaﬂon systerssch as call pro- determinism incurred to dispatch servant requests. The draw-
cessing an.d s_wnchmg:,ommand and contrql systgmsch 8S hack of this configuration, however, is that registering servants
avionics mls'S|on'controI programs and tactical shipboard COf&comes more complicated if servants must be registered in
puting; multimediasuch as video-on-demand and teleconfellﬁuItiple POAS.
encing; andsimulationssuch as battle readiness planning.

In order for ORB middleware to support real-time applica-
tion QoS requirements, it must be adaptable and configuraimbal POA: Figure 9 show this ORB configuration, where
To achieve this, TAO supports various server configuratioai, ORB Cores in a server process share the same POA in-
including different ORB Core configurations that allow applstance. The main benefit of this configuration is that servant
cations to customize request processing and the managemegistration is straightforward since there is only one POA.
of transport connections. For instance, TAO's ORB Core cHowever, the drawback is that this POA requires additional
be configured to process all requests in one thread, eacHaeks since it is shared by all the threads in the process. These
guest in a separate thread, or each connection in a sepahatsads may simultaneously change the state of active object

thread. maps in the POA by adding and removing servants.

SERVANT Objects that support th&ynchronizationPolicy
interface can be obtained using the POAs

create _synchronization _policy operation. They
are passed to theOA::.create _POAoperation to specify
the synchronization used in the created POA. Takie

ggifgct :d 9 attribute ofSynchronizationPolicy contains the value
Object Id supplied to thecreate _synchronization _policy
Active Object Map operation from which it was obtained. The following values

can be supplied:

NULL _LOCK: No synchronization will be used to protect
the internal state of the POA. This option should be used when
the state of the created POA will not change during the execu-
tion of the server or when only one thread will use the POA.

/N
=

[ORB Core j [ORB Core] [ORB Core j THREAD _LOCK: The internal state of the POA will be

A B C

protected against simultaneous changes from multiple threads.
This option should be used when multiple threads will use the
POA simultaneously.

DEFAULT _LOCK: The ORB configuration file will be
consulted to determine whether to use a thread lock or null
lock. This option should be used when the server programmer
wants to delay the POA synchronization choice until run-time.

Network

Figure 9: Global POA Configuration

L. If no SynchronizationPolicy object is passed
7.3 POA Synchronization to create _POA the synchronization policy defaults to

TAO has been designed to minimize synchronization in th&-FAULTLOCK The DEFAULTLOCKoption allows appli-

critical request processing path of the ORB in order to improg@lions to make the synchronization decision once for all the
its predictability and maximize its performance. Under certdiP/AS created in the server. For example, if the server is sin-
ORB configurations, no synchronization is required in a podle threaded, the application can specify in the configuration

For example, if only one thread uses a POA, as describecf"f?\ that the default lock should be the null lock. Hence, the
Section 7.2, there is no need for mutual exclusion in the PG2RPlication does not have to specify BLL LOCKpolicy in
Likewise, no synchronization is needed if the state of a PGGXETY call tocreate _POA

does not changed during the execution of a server. This situ- .)
drigure 10 shows the class hierarchy of the POA locks. The

ation can happen when all the servants and servant managers) 4
g}qglng strategies used in TAO's POA are an example of the

are registered at server startup and no dynamic registrati -
oceur at run-time. External Polymorphism pattern [23], where C++ classes unre-

To enable applications to select the most efficient POA s;}ﬂged by inheritange and/or having no virtual methods can be
chronization, TAO’s POA contains the following POA creatioHeated polymorphically.
policy extensions: _ . o
7.4 POA Dispatching Optimizations

/I DL
enum SynchronizationPolicyValue The POA is in the critical request processing path of a server
ORB. Thus, TAO performs the following upcall and colloca-
\ NULL_LOCK, THREAD_LOCK, DEFAULT_LOCK tion optimizations to reduce run-time processing overhead and
' jitter:
interface SynchronizationPolicy Upcall optimizations: Figure 11 shows a naive way to
: CORBA::Policy
parse an object key. The Object Key is parsed and the indi-
readonly attribute vidual fields of the key are stored in their respective objects.
~ SynchronizationPolicyValue value; The problem with this approach is that it requires memory al-
g location for the individual objects and data copying to move
SynchronizationPolicy create_synchronization_policy the Object Key fields to the individual objects. Both of these
(in SynchronizationPolicyValue value); operations increase POA overhead.

10

LOCK

LOCK Adapter
< LOCK_IMPL >

/ \ ~ < forward
’ \ AN

/ \
s forward \ forward
J \

2) N
Thread Readers/Writer
Lock Lock

Figure 10: Class Hierarchy of POA Locks

Object Key

P353bccdb00094ae8/firstPOA/myseryant

firstPOA

POA Name
(P353bccdb00094a 8
Object Id

Time Stamp

Figure 11: Naive Parsing of Object Key

Certain optimizations are possible during request dispatch-
ing in the POA. TAO takes advantage of the fact that the Ob-
ject Key is available through the entire upcall. Thus, it does
not modify the contents of the Object Key and the objects for
the individual portions of the Object Key can be optimized to
point to the correct locations in the Object Key. This approach
is shown in Figure 12.

Object Key
P353bccdb00094ae8/firstPOA/myservant

/ \

Time Stamp Object Id
POA Name

Figure 12: Optimized Parsing of Object Key

Collocation optimizations: One of the key strengths of
CORBA is that it decouples (1) the implementation of servants
from (2) how servants are configured into server processes
throughout a distributed system. CORBA is largely used for
communication between remote objects. However, there are
configurations where a client and servant must be collocated
in the same address space [24]. In this case, there is ho need
to marshal data or transmit operations through a “loopback”
device.

TAO’s POA optimizes for collocated client/servant configu-
rations by generating a special stub for the client. This stub
forwards all requests to the servant. Figure 13 shows the
classes produced by the TAO IDL compiler.

The stub and skeleton classes shown in Figure 13 are re-
quired by the POA specification; the collocation class is spe-
cific to TAO. This feature is entirely transparent since the
client only uses the abstract interface and never uses the collo-
cation class directly. Therefore, the POA provides the colloca-
tion class, rather than the regular stub class when the servant
is in the same address space of the client.

7.5 Predictability

Guaranteeing end-to-end predictability in TAO requires the
POA to avoid calling external, unpredictable operations such
as calling a servant locator for an incoming request. Hence,
for TAO the following features of the POA can be disabfed:

2The emerging Real-time CORBA standard [25] also specifies that these
POA features can be disabled for real-time applications.

11

opers to tailor an ORB’s behavior to meet many different ap-

CLIENT -SIDE SERVER-SIDE plication use-cases. Although the POA is a relatively recent
MAPPING MAPPING addition to the OMG CORBA model, it builds on the experi-
T Ty Y ence of the users and designers of the the Basic Object Adapter
(CORBA:: | \ Servant) (BOA) [29] and other Object Adapters, such as OO Database
\ Object / /W Base / Adapters [30]. In general, the POA is much more powerful
NV re and portable than the BOA, however.
—\T In this paper, we provided a detailed discussion of the
r/’ R design and implementation of OMG’s POA. In addition,
) Interfafe/J //él;elle ;c;r;\ we explained the features and optimizations necessary for
/\W/ g Lvﬁ\ W) a POA to work with the TAO real-time ORB. The imple-
= ’(gdlio—c’a’té(\j‘ ~ v mentation of the POA described in this paper is available
7709 e at www.cs.wustl.edu/ ~schmidt/TAO.html . TAO
o=t . IR S has the first implementation of the POA specification in the
/ Stub) ¢ “servant —‘:) CORBA industry.

/ Implementation Y,

Acknowledgements

Figure 13: POA Mapping and Collocation Class Thanks to the DOC group at Washington University, espe-
cially Carlos O’'Ryan, Aniruddha Gokhale, James Hu, and
Sumedh Mungee for helping with the implementation of the

: . POA and TAO, as well as providing comments on this paper.
Servant Managers are not required: There is no need to

locate servants in a real-time environment since all servants
must be registered with POAsspriori. References

Adapter Activators are not required: Real-time applica-

tions create all their POAs at the beginning of executio
Therefore, they need not use or provide an adapter activator. _) _
The alternative is to create POAs during request processing,[fd D- Box, Essential COMAddison-Wesley, Reading, MA, 1997.
which case guarantees of end-to-end predictability are hard8t A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object

to achieve. Model for the Java SystemUSENIX Computing Systems
vol. 9, November/December 1996.

Ec())(ﬁjcl:\gagz?:ﬁvzg ngt L:(;ﬂ?r:rei?{ th-(l;th\l’DI;) A Teuu?;n?:ta:]_leéé] Object Management Groujgpecification of the Portable Ob-
q 9 -Q 9 ject Adapter (POA)OMG Document orbos/97-05-15 ed., June

to priority inversion and extra locking. Therefore, the POA 7997
Manager in TAO can be disabled.

r{1] Object Management Groufthe Common Object Request Bro-
* ker: Architecture and Specificatip@.2 ed., Feb. 1998.

[5] D. C. Schmidt and S. Vinoski, “Object Adapters: Concepts
Our previous experience [20, 16, 26, 27, 28] measuring the and Terminology,’C++ Report, vol. 11, November/December
performance of CORBA implementations showed that TAO 1997
supports efficient and predictable QoS better than other ORB8] S. Vinoski, “CORBA: Integrating Diverse Applications Within
Distributed Heterogeneous Environment&EE Communica-
tions Magazinevol. 14, February 1997.

8 COﬂC|Udln9 Remarks [7] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick:
A Flexible, Optimizing IDL Compiler,” inProceedings of ACM

A CORBA Object Adapter provides the following function- SIGPLAN 97 Conference on Programming Language Design
ality: it (1) generates and interprets object references, (2) ac- and Implementation (PLDJ)(Las Vegas, NV), ACM, June
tivates and deactivates servants, (3) demultiplexes requests to 1997.

map object references onto their corresponding servants, g8f Object Management GroupMessaging Service Specification
(4) collaborates with the automatically-generated IDL skele- OMG Document orbos/98-05-05 ed., May 1998.

tons to invoke operations on servants. ~[9] M. Henning, “Binding, Migration, and Scalability in CORBA,”
OMG’s new Portable Object Adapter (POA) specification = Communications of the ACM special issue on CORBA 41,
defines a wide range of standard policies that enable devel- Oct. 1998.

12

[10] D. C. Schmidt and S. Vinoski, “Using the Portable Objed25] Object Management GrouRealtime CORBA 1.0 Initial RFP

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Adapter for Transient and Persistent CORBA ObjecGt+
Report vol. 12, April 1998.

D. C. Schmidt and S. Vinoski, “C++ Servant Managers for tHa6]
Portable Object AdapterC++ Report, vol. 12, Sept. 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissi@Esign Pat-
terns: Elements of Reusable Object-Oriented Softw&ead-
ing, MA: Addison-Wesley, 1995.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design ar{gn
Performance of Real-Time Object Request BrokeCgmputer
Communicationsvol. 21, pp. 294—-324, Apr. 1998.

D. L. Tennenhouse, “Layered Multiplexing Considered Harn@s]
ful,”in Proceedings of thé*! International Workshop on High-
Speed Networkday 1989.

D. C. Schmidt, F. Kuhns, R. Bector, and D. L. Levine, “The De-
sign and Performance of an 1/0O Subsystem for Real-time OF[’E)]
Endsystem Middleware Submitted to the International Jour-

nal of Time-Critical Computing Systems, special issue on Real-
Time Middleware [30]

A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM '9§Stanford, CA), pp. 306-317,
ACM, August 1996.

A. Gokhale and D. C. Schmidt, “Evaluating Latency and Scal-
ability of CORBA Over High-Speed ATM Networks,” iRro-
ceedings of the International Conference on Distributed Com-
puting SystemgBaltimore, Maryland), IEEE, May 1997.

D. C. Schmidt, “GPERF: A Perfect Hash Function Generator,”
in Proceedings of the™ C++ Conference (San Francisco,
California), pp. 87-102, USENIX, April 1990.

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
sign and Performance of a Real-time CORBA Event Service,”
in Proceedings of OOPSLA '9TAtlanta, GA), ACM, October
1997.

A. Gokhale and D. C. Schmidt, “Evaluating the Performance
of Demultiplexing Strategies for Real-time CORBA,” Pro-
ceedings of GLOBECOM '97Phoenix, AZ), IEEE, November
1997.

P. Jain and D. C. Schmidt, “Service Configurator: A Pattern
for Dynamic Configuration of Services,” iRroceedings of the
3" Conference on Object-Oriented Technologies and Systems
USENIX, June 1997.

D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop
Extensible ORB Middleware Submitted to the IEEE Commu-
nications Magazingl1998.

C. Cleeland, D. C. Schmidt, and T. Harrison, “External Poly-
morphism — An Object Structural Pattern for Transparently Ex-
tending Concrete Data Types,” Pattern Languages of Pro-
gram Design(R. Martin, F. Buschmann, and D. Riehle, eds.),
Reading, MA: Addison-Wesley, 1997.

D. C. Schmidt and S. Vinoski, “Developing C++ Servant
Classes Using the Portable Object Adapte€*+ Report,
vol. 12, June 1998.

13

Submission OMG Document orbos/98-01-08 ed., January
1998.

A. Gokhale and D. C. Schmidt, “The Performance of the
CORBA Dynamic Invocation Interface and Dynamic Skele-
ton Interface over High-Speed ATM Networks,” iAroceed-
ings of GLOBECOM '96(London, England), pp. 50-56, IEEE,
November 1996.

A. Gokhale and D. C. Schmidt, “Measuring and Optimizing
CORBA Latency and Scalability Over High-speed Networks,”
Transactions on Computingol. 47, no. 4, 1998.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Alleviating Priority Inversion and Non-determinism in Real-
time CORBA ORB Core Architectures,” iRroceedings of the
Fourth IEEE Real-Time Technology and Applications Sympo-
sium (Denver, CO), IEEE, June 1998.

Object Management Grouphe Common Object Request Bro-
ker: Architecture and Specificatip@.0 ed., July 1995.

IONA, “IONAs Object Database Framework Adapter
(ODAF).” www-usa.iona.com/Press/PR/odaf.html, 1997.

