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1 Introduction

This paper describes the Wrapper Facade pattern. The intent
of this pattern is to encapsulate low-level functions and data
structures with object-oriented (OO) class interfaces. Com-
mon examples of the Wrapper Facade pattern are class li-
braries like MFC, ACE, and AWT that encapsulate native
OS C APIs, such as sockets, pthreads, or GUI functions.

Programming directly to native OS C APIs makes net-
working applications verbose, non-robust, non-portable, and
hard to maintain because it exposes many low-level, error-
prone details to application developers. This paper illus-
trates how the Wrapper Facade pattern can help to make
these types of applications more concise, robust, portable,
and maintainable.

This paper is organized as follows: Section 2 describes
the Wrapper Facade pattern in detail using the Siemens for-
mat [1] and Section 3 presents concluding remarks.

2 Wrapper Facade Pattern

2.1 Intent

Encapsulate low-level functions and data structures within
more concise, robust, portable, and maintainable higher-
level object-oriented class interfaces.

2.2 Example

To illustrate the Wrapper Facade pattern, consider the server
for a distributed logging service shown in Figure 1. Client
applications use the logging service to record information
about their execution status in a distributed environment.
This status information commonly includes error notifica-
tions, debugging traces, and performance diagnostics. Log-
ging records are sent to a central logging server, which writes
the records to various output devices, such as a network man-
agement console, a printer, or a database.
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Figure 1: Distributed Logging Service

The logging server shown in Figure 1 handles connec-
tion requests and logging records sent by clients. Logging
records and connection requests can arrive concurrently on
multiple sockethandles. Each handle identifies network
communication resources managed within an OS.

Clients communicate with the logging server using a
connection-oriented protocol like TCP [2]. Thus, when a
client wants to log data, it must first send a connection re-
quest to the logging server. The server accepts connection
requests using ahandle factory, which listens on a network
address known to clients. When a connection request ar-
rives, the OS handle factory accepts the client’s connection
and creates a socket handle that represents this client’s con-
nection endpoint. This handle is returned to the logging
server, which waits for client logging requests to arrive on
this and other socket handles. Once clients are connected,
they can send logging records to the server. The server re-
ceives these records via the connected socket handles, pro-
cesses the records, and writes them to their output device(s).

A common way to develop a logging server that processes
multiple clients concurrently is to use low-level C language
functions and data structures for threading, synchronization

1



and network communication. For instance, Figure 2 illus-
trates the use of Solaris threads [3] and the socket [4] net-
work programming API to develop a multi-threaded logging
server.
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Figure 2: Multi-threaded Logging Server

In this design, the logging server’s handle factory accepts
client network connections in its main thread. It then spawns
a new thread that runs alogging handler function to
process logging records from each client in a separate con-
nection. The following two C functions illustrates how to
implement this logging server design using the native Solaris
OS APIs for sockets, mutexes, and threads.1

// At file scope.

// Keep track of number of logging requests.
static int request_count;

// Lock to protect request_count.
static mutex_t lock;

// Forward declaration.
static void *logging_handler (void *);

// Port number to listen on for requests.
static const int logging_port = 10000;

// Main driver function for the multi-threaded
// logging server. Some error handling has been
// omitted to save space in the example.

int
main (int argc, char *argv[])
{

struct sockaddr_in sock_addr;

// Handle UNIX/Win32 portability differences.
#if defined (_WINSOCKAPI_)

SOCKET acceptor;
#else

int acceptor;
#endif /* _WINSOCKAPI_ */

// Create a local endpoint of communication.

acceptor = socket (PF_INET, SOCK_STREAM, 0);

1Readers who are not interested in the complete code details of this ex-
ample can skip to the pattern’s Context in Section 2.3.

// Set up the address to become a server.
memset (reinterpret_cast <void *> (&sock_addr),

0, sizeof sock_addr);
sock_addr.sin_family = AF_INET;
sock_addr.sin_port = htons (logging_port);
sock_addr.sin_addr.s_addr = htonl (INADDR_ANY);

// Associate address with endpoint.
bind (acceptor,

reinterpret_cast <struct sockaddr *>
(&sock_addr),

sizeof sock_addr);

// Make endpoint listen for connections.
listen (acceptor, 5);

// Main server event loop.
for (;;) {

thread_t t_id;

// Handle UNIX/Win32 portability differences.
#if defined (_WINSOCKAPI_)

SOCKET h;
#else

int h;
#endif /* _WINSOCKAPI_ */

// Block waiting for clients to connect.
int h = accept (acceptor, 0, 0);

// Spawn a new thread that runs the
// <logging_handler> entry point and
// processes client logging records on
// socket handle <h>.
thr_create (0, 0,

logging_handler,
reinterpret_cast <void *> (h),
THR_DETACHED,
&t_id);

}

/* NOTREACHED */
return 0;

}

The logging handler function runs in a separate thread
of control, i.e., one thread per connected client. It receives
and processes logging records on each connection, as fol-
lows:

// Entry point that processes logging records for
// one client connection.
void *logging_handler (void *arg)
{

// Handle UNIX/Win32 portability differences.
#if defined (_WINSOCKAPI_)

SOCKET h = reinterpret_cast <SOCKET> (arg);
#else

int h = reinterpret_cast <int> (arg);
#endif /* _WINSOCKAPI_ */

for (;;) {
UINT_32 len; // Ensure a 32-bit quantity.
char log_record[LOG_RECORD_MAX];

// The first <recv> reads the length
// (stored as a 32-bit integer) of
// adjacent logging record. This code
// does not handle "short-<recv>s".
ssize_t n = recv

(h,
reinterpret_cast <char *> (&len),
sizeof len, 0);

// Bail out if we don’t get the expected len.
if (n <= sizeof len) break;
len = ntohl (len); // Convert byte-ordering.
if (len > LOG_RECORD_MAX) break;

// The second <recv> then reads <len>
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// bytes to obtain the actual record.
// This code handles "short-<recv>s".
for (size_t nread = 0;

nread < len;
nread += n) {

n = recv (h,
log_record + nread,
len - nread, 0);

// Bail out if an error occurs.
if (n <= 0)

return 0;
}

mutex_lock (&lock);

// Execute following two statements in a
// critical section to avoid race conditions
// and scrambled output, respectively.
++request_count; // Count # of requests received.

if (write (1, log_record, len) == -1)
// Unexpected error occurred, bail out.
break;

mutex_unlock (&lock);
}

close (h);
return 0;

}

Note how all the threading, synchronization, and networking
code is programmed using the low-level C functions and data
structures provided by the Solaris operating system.

2.3 Context

Applications that access services provided by low-level func-
tions and data structures.

2.4 Problem

Networking applications are often written using the low-
level functions and data structures illustrated in Section 2.2.
Although this is common practice, it causes problems for
application developers by failing to resolve the following
forces:

Verbose, non-robust programs: Application developers
who program directly to low-level functions and data struc-
tures must repeatedly rewrite a great deal of tedious software
logic. In general, code that is tedious to write and maintain
often contains subtle and pernicious errors.

For instance, the code for creating and initializing an
acceptor socket in themain function in Section 2.2 is
prone to errors, such as failing to zero-out thesock addr
or not usinghtons on the logging port number [5].
The mutex lock and mutex unlock are also easy to
misuse. For example, if thewrite call returns�1 the
logging handler code breaks out of the loop without
releasing the mutex lock. Similarly, the socket handleh will
not be closed if the nestedfor loop returns when it encoun-
ters an error.

Lack of portability: Software written using low-level
functions and data structures is often non-portable between
different OS platforms and compilers. Moreover, it’s of-
ten not even portable to program to low-level functions

across different versions of the same OS or compiler. Non-
portability stems from the lack of information hiding in low-
level APIs based on functions and data structures.

For instance, the logging server implementation in Sec-
tion 2.2 has hard-coded dependencies on several non-
portable native OS threading and network programming C
APIs. In particular, the use ofthr create , mutex lock ,
andmutex unlock is not portable to non-Solaris OS plat-
forms. Likewise, certain socket features, such as the use of
int to represent a socket handle, are not portable to non-
UNIX platforms like WinSock on Win32, which represent a
socket handle as a pointer.

High maintenance effort: C and C++ developers typically
achieve portability by explicitly adding conditional com-
pilation directives into their application source code using
#ifdef s. However, using conditional compilation to ad-
dress platform-specific variationsat all points of usein-
creases thephysical designcomplexity [6] of application
source code. It is hard to maintain and extend such software
since platform-specific implementation details are scattered
throughout the application source files.

For instance, the#ifdef s that handle Win32 and UNIX
portability with respect to the data type of a socket,i.e.,
SOCKETvs. int , impedes the readability of the code.
Developers who program to low-level C APIs like these
must have intimate knowledge of many OS platform idiosyn-
crasies to write and maintain this code.

As a result of these drawbacks, developing applications by
programming directly to low-level functions and data struc-
tures is rarely an effective design choice for application soft-
ware.

2.5 Solution

An effective way to ensure applications avoid accessing
low-level functions and data structures directly is to use
the Wrapper Facadepattern. For each set of related func-
tions and data structures, create one or more wrapper facade
classes that encapsulate low-level functions and data struc-
tures within more concise, robust, portable, and maintainable
methods provided by the wrapper facade interface.

2.6 Structure

The structure of the participants of the Wrapper Facade pat-
tern is illustrated in the following UML class diagram:

1: method_k()

2: function_k()

clientclient

FunctionsFunctions

function_1()
...
function_n()

WrapperWrapper
FacadeFacade

method_1()
...
method_m()
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The key participants in the Wrapper Facade pattern include
the following:

Functions:

� TheFunctionsare existing low-level functions and data
structures that provide a cohesive service.

Wrapper Facade:

� The Wrapper Facadeis a set of one or more classes
that encapsulate the Functions and their associated data
structures. The Wrapper Facade provides methods that
forward client invocations to one or more of the low-
level Functions.

2.7 Dynamics

The following figure illustrates the collaborations in the
Wrapper Facade pattern:

client

FORWARDING

CLIENT  INVOCATION

: Wrapper
Facade

: Functions

function_k()

method_k()

These collaborations are straightforward, as described be-
low:

1. Client invocation: The client invokes a method via an
instance of the Wrapper Facade.

2. Forwarding: The Wrapper Facade method forwards the
request to one or more of the underlying Functions that it en-
capsulates, passing along any internal data structures needed
by the function(s).

2.8 Implementation

This section explains the steps involved in implementing
components and applications with the Wrapper Facade pat-
tern. We illustrate how these Wrapper Facades overcome the
problems with verbose, non-robust programs, lack of porta-
bility, and high maintenance effort plaguing the solution that
used low-level functions and data structures.

Figure 3 illustrates the structure and participants in this
example, which is based on the logging server described in
Section 2.2 The examples in this section apply the reusable
components from the ACE framework [7]. ACE provides a
rich set of reusable C++ wrappers and framework compo-
nents that perform common communication software tasks
across a wide range of OS platforms.

The following steps can be taken to implement the Wrap-
per Facade pattern:
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Figure 3: Multi-threaded Logging Server

1. Identify the cohesive abstractions and relation-
ships among existing functions: Conventional APIs like
Win32, POSIX, or X Windows that are implemented as in-
dividual functions and data structures provide many cohe-
sive abstractions, such as mechanisms for network program-
ming, synchronization and threading, and GUI management.
Due to the lack of data abstraction support in low-level lan-
guages like C, however, it is often not immediately obvious
how these existing functions and data structures are related
to each other. Therefore, the first step in applying the Wrap-
per Facade pattern is to identify the cohesive abstractions and
relationships among the lower level functions in an existing
API. In other words, we define an “object model” by cluster-
ing the existing low-level API functions and data structures
into one or more classes.

In our logging example, we start by carefully examining
our original logging server implementation. This implemen-
tation used many low-level functions that actually provide
several cohesive services, such as synchronization and net-
work communication. For instance, themutex lock and
mutex unlock functions are associated with a mutex syn-
chronization abstraction. Likewise, thesocket , bind ,
listen , andaccept functions play various roles as a net-
work programming abstraction.

2. Cluster cohesive groups of functions into Wrapper Fa-
cade classes and methods:This step can be broken down
into the following substeps:

In this step, we define one or more wrapper facade classes
for each group of functions and data structures that are re-
lated to a particular abstraction.

A. Create cohesive classes:We start by define one or
more wrapper facade classes for each group of functions and
data structures that are related to a particular abstraction.
Several common criteria used to create cohesive classes in-
clude the following:
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� Coalesce functions with highcohesioninto individ-
ual classes, while minimizing unnecessarycouplingbe-
tween classes.

� Determine what iscommonand what isvariable in the
underlying functions and to group functions into classes
that isolate the variation behind a uniform interface.

In general, if the original API contains a wide range of re-
lated functions it may be necessary to create several wrapper
facade classes in order to properly separate concerns.

B. Coalesce multiple individual functions into class
methods: In addition to grouping existing into classes, it
is also often beneficial to combine multiple individual func-
tions into a smaller number of methods in each wrapper fa-
cade class. For instance, this design may be necessary to
ensure that a group of low-level functions are called in the
appropriate order.

C. Select the level of indirection: Most wrapper facade
classes simply forward their method calls directly to the un-
derlying low-level functions. If the wrapper facade methods
are inlined there may be no additional indirection compared
to invoking the low-level functions directly. To enhance ex-
tensibility, it is also possible to add another level of indirec-
tion by dynamically dispatching the wrapper facade method
implementations. In this case, the wrapper facade classes
play the role of theAbstractionin the Bridge pattern [8].

D. Determine where to handle platform-specific varia-
tion: Minimizing platform-specific application code is an
important benefit of using the Wrapper Facade pattern. Thus,
although wrapper facade class methodimplementationsmay
differ across different OS platforms they should provide uni-
form, platform-independentinterfaces.

One strategy for handling platform-specific variation is
to #ifdef s the wrapper facade class method implementa-
tions. When#ifdef s are used in conjunction with auto-
configuration tools, such as GNUautoconf , uniform,
platform-independent wrapper facades can be created with a
single source tree. An alternative strategy is to factor out dif-
ferent wrapper facade class implementations into separate di-
rectories,e.g., one per platform, and configure the language
processing tools to include the appropriate wrapper facade
class into applications at compile-time.

Choosing a particular strategy depends largely on how fre-
quently the wrapper facade method implementations change.
For instance, if they change frequently, it can be tedious to
update the#ifdef s correctly for each platform. Likewise,
all files that depend on this file may need to be recompiled,
even if the change is only necessary for one platform.

In our logging example, we’ll define wrapper facade
classes for mutexes, sockets, and threads in order to illustrate
how each of these substeps can be addressed, as follows:

� The mutex wrapper facade: We first define a
Thread Mutex abstraction that encapsulates the Solaris
mutex functions in a uniform and portable class interface:

class Thread_Mutex
{
public:

Thread_Mutex (void) {
mutex_init (&mutex_, 0, 0);

}
˜Thread_Mutex (void) {

mutex_destroy (&mutex_);
}
int acquire (void) {

return mutex_lock (&mutex_);
}
int release (void) {

return mutex_unlock (&mutex_);
}

private:
// Solaris-specific Mutex mechanism.
mutex_t mutex_;

// = Disallow copying and assignment.
Thread_Mutex (const Thread_Mutex &);
void operator= (const Thread_Mutex &);

};

By defining a Thread Mutex class interface, and then
writing applications to use it rather than the low-level native
OS C APIs, we can easily port our wrapper facade to other
platforms. For instance, the followingThread Mutex im-
plementation works on Win32:

class Thread_Mutex
{
public:

Thread_Mutex (void) {
InitializeCriticalSection (&mutex_);

}

˜Thread_Mutex (void) {
DeleteCriticalSection (&mutex_);

}

int acquire (void) {
EnterCriticalSection (&mutex_); return 0;

}

int release (void) {
LeaveCriticalSection (&mutex_); return 0;

}

private:
// Win32-specific Mutex mechanism.
CRITICAL_SECTION mutex_;

// = Disallow copying and assignment.
Thread_Mutex (const Thread_Mutex &);
void operator= (const Thread_Mutex &);

};

As described earlier, we can simultaneously support multi-
ple OS platforms by using#ifdef s in theThread Mutex
method implementations along with auto-configuration
tools, such as GNUautoconf , to provide a uniform,
platform-independent mutex abstraction using a single
source tree. Conversely, we could also factor out the differ-
entThread Mutex implementations into separate directo-
ries and instruct our language processing tools to include the
appropriate version into our application at compile-time.

In addition to improving portability, ourThread Mutex
wrapper facade provides a mutex interface that is less error-
prone than programming directly to the low-level Solaris
functions andmutex t data structure. For instance, we can
use the C++private access control specifier to disallow
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copying and assignment of mutexes, which is an erroneous
use-case that is not prevented by the less strongly-typed C
programming API.

� The socket wrapper facades: The socket API is
much larger and more expressive than the Solaris mutex
API [5]. Therefore, we must define a group of related wrap-
per facade classes to encapsulate sockets. We’ll start by
defining the following typedef that handles UNIX/Win32
portability differences:

#if !defined (_WINSOCKAPI_)
typedef int SOCKET;
#define INVALID_HANDLE_VALUE -1
#endif /* _WINSOCKAPI_ */

Next, we’ll define anINET Addr class that encapsulates the
Internet domain addressstruct :

class INET_Addr
{
public:

INET_Addr (u_short port, long addr) {
// Set up the address to become a server.
memset (reinterpret_cast <void *> (&addr_),

0, sizeof addr_);
addr_.sin_family = AF_INET;
addr_.sin_port = htons (port);
addr_.sin_addr.s_addr = htonl (addr);

}

u_short get_port (void) const {
return addr_.sin_port;

}

long get_ip_addr (void) const {
return addr_.sin_addr.s_addr;

}

sockaddr *addr (void) const {
return reinterpret_cast <sockaddr *>

(&addr_);
}

size_t size (void) const {
return sizeof (addr_);

}
// ...

private:
sockaddr_in addr_;

};

Note how theINET Addr constructor eliminates several
common socket programming errors by zeroing-out the
sockaddr in field and ensuring the port and IP address
are converted into network byte order.

The next wrapper facade class,SOCKStream , encapsu-
lates the I/O operations, such asrecv andsend , that an
application can invoke on a connected socket handle:

class SOCK_Stream
{
public:

// = Constructors.

// Default constructor.
SOCK_Stream (void)

: handle_ (INVALID_HANDLE_VALUE) {}

// Initialize from an existing HANDLE.
SOCK_Stream (SOCKET h): handle_ (h) {}

// Automatically close the handle on destruction.

˜SOCK_Stream (void) { close (handle_); }

void set_handle (SOCKET h) { handle_ = h; }
SOCKET get_handle (void) const { return handle_; }

// = I/O operations.
int recv (char *buf, size_t len, int flags = 0);
int send (const char *buf, size_t len,

int flags = 0);
// ...

private:
// Handle for exchanging socket data.
SOCKET handle_;

};

Note how this class ensures that a socket handle is automati-
cally closed when aSOCKStream object goes out of scope.

SOCKStream objects are created by a connection fac-
tory, SOCKAcceptor , which encapsulatespassivecon-
nection establishment logic [9]. TheSOCKAcceptor con-
structor initializes the passive-mode acceptor socket to lis-
ten at thesock addr address. Likewise, theaccept fac-
tory method initializes theSOCKStream with the newly
accepted connection, as follows:

class SOCK_Acceptor
{
public:

SOCK_Acceptor (const INET_Addr &sock_addr) {
// Create a local endpoint of communication.
handle_ = socket (PF_INET, SOCK_STREAM, 0);

// Associate address with endpoint.
bind (handle_,

sock_addr.addr (),
sock_addr.size ());

// Make endpoint listen for connections.
listen (handle_, 5);

};

// Accept a connection and initialize
// the <stream>.
int accept (SOCK_Stream &stream) {

stream.set_handle (accept (handle_, 0, 0));
if (stream.get_handle ()

== INVALID_HANDLE_VALUE)
return -1;

else return 0;
}

private:
// Socket handle factory.
SOCKET handle_;

};

Note how the constructor for theSOCKAcceptor ensures
that the low-levelsocket , bind , and listen functions
are always called in the right order.

A complete set of wrapper facades for sockets [5] would
also include aSOCKConnector , which encapsulates the
activeconnection establishment logic [9].

� The threading facade: Many threading APIs are
available on different OS platforms, including Solaris
threads, POSIX Pthreads, and Win32 threads. These APIs
exhibit subtle syntactic and semantic differences,e.g., So-
laris and POSIX threads can be spawned in “detached”
mode, whereas Win32 threads cannot. It is possible, how-
ever, to provide aThread Manager wrapper facade that
encapsulates these differences within a uniform API, as fol-
lows:

6



class Thread_Manager
{
public:

int spawn (void *(*entry_point) (void *),
void *arg,
long flags,
long stack_size = 0,
void *stack_pointer = 0,
thread_t *t_id = 0) {

thread_t t;
if (t_id == 0)

t_id = &t;
return thr_create (stack_size,

stack_pointer,
entry_point,
arg,
flags,
t_id);

}

// ...
};

TheThread Manager can also provide methods for join-
ing and canceling threads, as well.

3. Determine an error handling mechanism: Low-level
C function APIs typically use return values and integer
codes, such aserrno , to communicate errors back to their
callers. This technique is error-prone, however, since callers
may neglect to check the return status of their function calls.

A more elegant way of reporting errors is to use excep-
tion handling. Many programming languages, such as C++
and Java, use exception handling as an error reporting mech-
anism. It is also used in some operating systems, such as
Win32.

There are several benefits to using exception handling as
the error handling mechanism for wrapper facade classes:

� It is extensible: Modern programming languages al-
low the extension of exception handling policies and mech-
anisms via features that have minimal intrusion on existing
interfaces and usage. For instance, C++ and Java use inheri-
tance to define hierarchies of exception classes.

� It cleanly decouples error handling from normal pro-
cessing: For example, error handling information is not
passed explicitly to an operation. Moreover, an application
cannot accidentally ignore an exception by failing to check
function return values.

� It can be type-safe: In a languages like C++ and Java
exceptions are thrown and caught in a strongly-typed manner
to enhance the organization and correctness of error handling
code. In contrast to checking a thread-specific error value
explicitly, the compiler ensures that the correct handler is
executed for each type of exception.

However, there are several drawbacks to the use of excep-
tion handling for wrapper facade classes:

� It is not universally available: Not all languages pro-
vide exception handling. For instance, some C++ compilers
do not implement exceptions. Likewise, when an OS pro-
vides exception handling services, they must be supported
by language extensions, thereby reducing the portability of
the code.

� It complicates the use of multiple languages: Since
languages implement exceptions in different ways, or do not
implement exceptions at all, it can be hard to integrate com-
ponents written in different languages when they throw ex-
ceptions. In contrast, reporting error information using inte-
ger values or structures provides a more universal solution.

� It complicates resource management: Resource
management can be complicated if there are multiple exit
paths from a block of C++ or Java code [10]. Thus, if
garbage collection is not supported by the language or pro-
gramming environment, care must be taken to ensure that
dynamically allocated objects are deleted when an exception
is thrown.

� It is potentially time and/or space inefficient: Poor
implements of exception handling incur time and/or space
overhead even when exceptions are not thrown [10]. This
overhead can be particularly problematic for embedded sys-
tems that must be efficient and have small memory foot-
prints.

The drawbacks of exception handling are particularly
problematic for wrapper facades that encapsulate kernel-
level device drivers or low-level native OS APIs that must
run portably on many platforms [5]. For these types of wrap-
per facades, a more portable, efficient, and thread-safe way
to handle errors is to define an error handler abstraction that
maintains information about the success or failure of opera-
tions explicitly. One widely used solution for these system-
level wrapper facades is to use the Thread-Specific Storage
pattern [11].

4. Define related helper classes (optional): Once the low-
level functions and data structures are encapsulated within
cohesive wrapper facade classes, it often becomes possible
to create other helper classes that further simplify application
development. The utility of these helper classes typically be-
comes apparent only after the Wrapper Facade pattern has
been applied to cluster low-level functions and their associ-
ated data into classes.

In our logging example, for instance, we can leverage
the followingGuard class that implements the C++Scoped
Locking idiom, which ensures that aThread Mutex is
properly released regardless of how the program’s flow of
control exits a scope:

template <class LOCK>
class Guard
{
public:

Guard (LOCK &lock): lock_ (lock) {
lock_.acquire ();

}

˜Guard (void) {
lock_.release ();

}

private:
// Hold the lock by reference to avoid
// the use of the copy constructor...
LOCK &lock_;
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The Guard class applies the C++ idiom described in [12]
whereby “a constructor acquires resources and the destructor
releases them” within a scope, as follows:

// ...
{

// Constructor of <mon> automatically
// acquires the <mutex> lock.
Guard<Thread_Mutex> mon (mutex);

// ... operations that must be serialized ...

// Destructor of <mon> automatically
// releases the <mutex> lock.

}

// ...

Since we use aclassas theThread Mutex wrapper fa-
cade, we can easily substitute a different type of locking
mechanism, while still reusing theGuard ’s automatic lock-
ing/unlocking protocol. For instance, we can replace the
Thread Mutex class with aProcess Mutex class, as
follows:

// Acquire a process-wide mutex.
Guard<Process_Mutex> mon (mutex);

It’s much harder to achieve this degree of “pluggability” if C
functions and data structures are used instead of C++ classes.

2.9 Example Resolved

The code below illustrates themain function of the logging
server after its been rewritten to use our wrapper facades for
mutexes, sockets, and threads described in Section 2.8:

// At file scope.

// Keep track of number of logging requests.
static int request_count;

// Manage threads in this process.
static Thread_Manager thr_mgr;

// Lock to protect request_count.
static Thread_Mutex lock;

// Forward declaration.
static void *logging_handler (void *);

// Port number to listen on for requests.
static const int logging_port = 10000;

// Main driver function for the multi-threaded
// logging server. Some error handling has been
// omitted to save space in the example.

int
main (int argc, char *argv[])
{

// Internet address of server.
INET_Addr addr (port);

// Passive-mode acceptor object.
SOCK_Acceptor server (addr);

SOCK_Stream new_stream;

// Wait for a connection from a client.

for (;;) {
// Accept a connection from a client.
server.accept (new_stream);

// Get the underlying handle.
SOCKET h = new_stream.get_handle ();

// Spawn off a thread-per-connection.
thr_mgr.spawn (logging_handler,

reinterpret_cast <void *> (h),
THR_DETACHED);

}

The logging handler function runs in a separate thread
of control, i.e., one thread for each connected client. It re-
ceives and processes logging records on each connection, as
follows:

// Entry point that processes logging records for
// one client connection.
void *logging_handler (void *arg)
{

SOCKET h = reinterpret_cast <SOCKET> (arg);

// Create a <SOCK_Stream> object from SOCKET <h>.
SOCK_Stream stream (h);

for (;;) {
UINT_32 len; // Ensure a 32-bit quantity.
char log_record[LOG_RECORD_MAX];

// The first <recv_n> reads the length
// (stored as a 32-bit integer) of
// adjacent logging record. This code
// handles "short-<recv>s".
ssize_t n = stream.recv_n

(reinterpret_cast <char *> (&len),
sizeof len);

// Bail out if we’re shutdown or
// errors occur unexpectedly.
if (n <= 0) break;
len = ntohl (len); // Convert byte-ordering.
if (len > LOG_RECORD_MAX) break;

// The second <recv_n> then reads <len>
// bytes to obtain the actual record.
// This code handles "short-<recv>s".
n = stream.recv_n (log_record, len);

// Bail out if we’re shutdown or
// errors occur unexpectedly.
if (n <= 0) break;

{
// Constructor of Guard automatically
// acquires the lock.
Guard<Thread_Mutex> mon (lock);

// Execute following two statements in a
// critical section to avoid race conditions
// and scrambled output, respectively.
++request_count; // Count # of requests

if (write (STDOUT, log_record, len) == -1)
break;

// Destructor of Guard automatically
// releases the lock, regardless of
// how we exit this block!

}
}

// Destructor of <stream> automatically
// closes down <h>.
return 0;

}

Note how the code above fixes the various problems with
the previous code shown in Section 2.2. For instance, the de-
structors ofSOCKStream andGuard will close down the
socket handle and release theThread Mutex , respectively,
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regardless of how the blocks of code are exited. Likewise,
this code is much easier to port and maintain since it uses no
platform-specific APIs.

2.10 Known Uses

The example in this paper focuses on concurrent network
programming. However, the Wrapper Facade pattern has
also been applied to many other domains, such as GUI
frameworks and database class libraries. The following are
some well known uses of the Wrapper Facade pattern:

Microsoft Foundation Classes (MFC): MFC provides a
set of wrapper facades that encapsulate most of the low-level
C Win32 APIs, focusing largely on providing GUI compo-
nents that implement the Microsoft Document/Template ar-
chitecture.

The ACE framework: The mutex, thread, and socket
wrapper facades described in Section 2.8 are based
on components in the ACE framework [7], such as
the ACEThread Mutex , ACEThread Manager , and
ACESOCK*classes, respectively.

Rogue Wave class libraries: Rogue Wave’sNet.h++
andThreads.h++ class libraries implement wrapper fa-
cades for sockets, threads, and synchronization mechanisms
on a number of OS platforms.

ObjectSpace System<Toolkit>: Wrapper facades for
sockets, threads, and synchronization mechanisms are also
provided by the ObjectSpaceSystem <Toolkit >.

Java Virtual Machine and Java foundation class li-
braries: The Java Virtual Machine (JVM) and various Java
foundation class libraries, such as AWT and Swing, provide
a set of wrapper facades that encapsulate most of the low-
level native OS system calls and GUI APIs.

2.11 Consequences

The Wrapper Facade pattern provides the following benefits:

More concise and robust programming interface: The
Wrapper Facade pattern encapsulates many low-level func-
tions within a more concise set of OO class methods. This re-
duces the tedium of developing applications using low-level
functions and data structures, thereby reducing the potential
for programming errors.

Improve application portability and maintainability:
Wrapper Facade classes can be implemented to shield ap-
plication developers from non-portable aspects of low-level
functions and data structures. Moreover, the Wrapper Facade
pattern improves software structure by replacing an applica-
tion configuration strategy based onphysical designentities,
such as files and # ifdefs, withlogical designentities, such as
base classes, subclasses, and their relationships [6]. It is gen-
erally easier to understand and maintain applications in terms
of their logical design rather than their physical design.

Improve modularity, reusability, and configurability
of applications: The Wrapper Facade pattern creates
reusable class components that can be “plugged” in and out
of other components in a wholesale fashion using OO lan-
guage features like inheritance and parameterized types. In
contrast, it is much harder to replace groups of functions
without resorting to coarse-grained OS utilities, such as link-
ers or file systems.

The Wrapper Facade pattern has the following liability:

Additional indirection: The Wrapper Facade pattern can
incur additional indirection compared with using low-level
functions and data structures directly. However, languages
that support inlining, such as C++, can implement this pat-
tern with no significant overhead since compilers can inline
the method calls used to implement the wrapper facades.

2.12 See Also

The Wrapper Facade pattern is similar to the Facade pat-
tern [8]. The intent of the Facade pattern is to simplify the
interface for a subsystem. The intent of the Wrapper Facade
pattern is more specific: it provides concise, robust, portable,
and maintainable class interfaces that encapsulate low-level
functions and data structures, such as the native OS mutex,
socket, thread, and GUI C language APIs. In general, Fa-
cades hide complex class relationships behind a simpler API,
whereas Wrapper Facades hide complex function and data
structure relationships behind a richer class API.

The Wrapper Facade pattern can be implemented using
the Bridge pattern [8] if dynamic dispatching is used to im-
plement wrapper facade methods that play the role of the
Abstractionin the Bridge pattern.

3 Concluding Remarks

This paper describes the Wrapper Facade pattern and gives a
detailed example illustrating how to use it. Implementations
of the ACE wrapper facade components described in this pa-
per are freely available in the ACE [7] software distribution
at URL www.cs.wustl.edu/˜schmidt/ACE.html .
This distribution contains complete C++ source code, docu-
mentation, and example test drivers developed at Washington
University, St. Louis. ACE is currently being used in many
communication software projects at companies like Bellcore,
Boeing, DEC, Ericsson, Kodak, Lucent, Motorola, SAIC,
and Siemens.
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