EAP Working Group J. Vollbrecht
Internet-Draft VdlIbrecht Consulting LLC
Expires: March 25, 2005 P. Bonen
draft-ietf-eap-statemachine-05 Nokia
N. Petroni
University of Maryland
Y. Ohba
TARI
September 24, 2004

State Machines for Extensible Authentication Protocol (EAP)
Peer and Authenticator

Status of this Memo

By submitting this Internet-Draft, | certify thatyaspplicable patent or other IPR claims of which | am
awae have keen disclosed, or will be disclosed, ang ahwhich | becomeaare will be disclosed, in
accordance with RFC 3668.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or
obsoleted by other documents ay #ime. Itis inappropriate to use Internet-Drafts as reference material or
to cite them other than a "work in progress.”

The list of current Internet-Drafts can be accessed at http://www.ietf.org/1lid-abstracts.html
The list of Internet-Draft ShadoDirectories can be accessed at http://www.ietf.org/shudiml
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract

This document describes a set of state machines for Extensible Authentication Protocol (EAZAReer
standalone authenticator (non-pass-through), EAP backend authenticator (for use on Authentication,
Authorization and Accounting (AAA) servers), and EAP full authenticator (for both local and pass-through).
This set of state machines showsvHeAP can be implemented to support deployment in either a
peer/authenticator or peer/authenticator/AAA Serveirenment. Thepeer and standalone authenticator
machines are illustrag d how the EAP protocol defined in RFC 3748 may be implemented. The backend
and full/pass-through authenticators illustrates E©AP/AAA protocol support defined in RFC 3579 may be
implemented. Wherthere are differences RFC 3748/RFC 3579 are authueitati

The state machines are based on the EAP "Switch" model. This model incladissaed actions for the
interaction between the EAP Switch and EAP metha@dbrief description of the EAP "Switch" model is
given in the Introduction section.

The state machine and associated model are infmenaiy. Implementations may achie the same results
using different methods.

Vollbrecht, et al. Informational [Rge 1]

Internet-Draft EAPState Machines September 2004

Table of Contents

1. SpecCificationdf REGUIFEIMENTSoiiiiiiiiiei ittt e e e e e s b e e e s s b e et e e s anbre et e s abbeee e e s annrneeens 3

2. ThEEAP SWILCH MOEI ...ttt e e e e e e s ettt e e e e e e e s e s e ntnbbeeeeeeaeeeeesaaannnes 3

3. Notationakornventions used in State dIAgraMS.cuuuiiie i 4
3.1, NOtAtIONABEPECITICS ...eiiiiiiiiiiiei ittt st e st et e e s aabb e e e s e nnnee e 4.
3.2, StatVIaChing SYMDOISooiiiiiiiieii et e e e e e e b e e e e b e e e nees 6
3.3. DOCUMENAULNOIILYviiiiiiiiiiiiie ittt ettt e e e s e e e s snnne e e e s snnneeessnnneeeessnnnnes D annnneeens

4. PeEISTALE IMBCKHINE ...ooiiiiiiiiii et e bt e e e ek b et e e e et b et e e e ek b b e e e e e e be et e e e e bbe e e e e aarrreeeeaa 8
4.1. Interhice between peer state machine and IOWET [aYEroccuviiiiiiiiiiie e 9
4.2. Interhice between peer state machine and MethodS ... 11
4.3. Peestate machine locaBwiables ... 12.......
4.4. Peestate Maching PrOCEAUIESooiiiiiiiiiiiiiiiiie ettt et e s abb et e s st et e e s anbr e e e s annneeas 13
4.5. PeeBtate MACKING STALEScoiiiiiiiiiiiiiii ettt et st e e e s bt e e s abbr e e e e sbbne e e e s annnneee s 14

5. Standalon@uthenticator State MaAChINGooiiiiiiiiiei e 16
5.1. Interhce between standalone authenticator state machine and lower layercccoocoveeiiiiiiiennnn. 17
5.2. Interhce between standalone authenticator state machine and methodsccccooiiieiniie e, 19
5.3. Standalonauthenticator state machine locali@blescccoooiiiiiiiie 20....
5.4. EAPstandalone authentiCator PrOCEAUIESocueeiiiiiiiiiie ettt e ettt e st e e e e e e st e e e e eaees 21
5.5. EAPstandalone authentiCator STALESc.ueiieiiiiiiie ittt e e e 23

6. EAPBACKENT AULNENTICALONcoiiiiiiii ittt ettt e et e e e ekt e e e e nbb e e e e abbe e e e e ennnes 25
6.1. Interbice between backend authenticator state machine and lower layerccccceeeiiiiiiieiiiiieen, 27
6.2. Interbice between backend authenticator state Machingcccccviiiiiiiiiii e 28
6.3. Baclend authenticator state machine IoGHIADIESccoocviiiiiiiiii e 28....
6.4. EAPbackend authentiCator PrOCEAUIESoocuuiiiiiiiiiiie ettt e e 28
6.5. EAPbackend authentiCator STAESoicuiiiiiiiiiiie e 29

A =7 o | AT 1 =T o i o= 1 (o TR PRUPPPR 30
7.1. Interbice between full authenticator state machine and lower [ayersccccccvveviiiiiieiiniiee e, 31
7.2. Interbice between full authenticator state Maching and ... 33
7.3. Fullauthenticator state machine locahi@bles ... 33....
7.4. EAPTUll aUthentiCator PrOCEAUIEScoiiiiiieiiiieit ettt e st e e s e e e e e nnees 34
7.5. EAPTUIl aUTNENTICATON STAESciiiiiiiie ittt e e e e e e s e e e e s ennnee s 34

8. IMplementatioCONSIAEIALIONSuuiiiiiiiiii et e e e e s e b e e s nnees 36.........
8.1 ROMISINESS ..ttt ettt e e ek e e e e s st b e e e e e et be e e e e s anbneeeeeaa 36...oueeeen.
8.2 Method/Method and Method/Lower-Layer INBEIESooooiiiiiiieiiiiiieee e 36....

9. SECUNEYCONSIAEIALIONSvveieeeiiiieee ettt ettt e e e st e e e st e e e e abb e e e e e s aabb e e e e s abbeeeeeaanrneeeenans 36..........

10. ACKNGVIEAGIMENTSeiiiiiiiiit ettt e ettt e e e s et et e e s st e e e e e s aabe e e e e s aabbe e e e e aabbeeeeesaabnneeaaan YA

I = (=TT o To T PP UUP SR 38
11.2. NOIMAWE REFEIENCES ...ooiiiiiiie ettt e e e e e e e b e e e e 38.........
11.2. INfOrMatie REFEIEINCESeiiiiiiiie et e s e e e e e e e 38.........

Appendix. ASCII versions Of State dIAgIaMSooiuiiiiiiiiiiie ettt e st e e e s r e e e s abreeeeeaaes 39
A.1l. EAPPeer State Machine (FIQUIE 3) ..ottt 39
A.2. EAPStandalone Authenticator State Machine (FIQUIe 4)ocueviiiiiiiiiieiiee e 42
A.3. EAPBackend Authenticator State Machinge (Figure 5).........cooiiiiiiiiiiiiiie e 45
A.4. EAPFull Authenticator State Machine (FIgures 6 and 7)..........coooviieiiiiiiie e 48

AULNOTS’ AQUIESSESeteeeee ittt ettt e kbt e ook bttt e oo bttt e ook b e et e a4 aa kb e et e e e s b b et e e e aabbe et e e ssbbs e e e s annnneeee s 51

FUIl COPYFIGNT STATEIMENTeiiiieiieie ettt s et e e e e bt e e s aab b bt e e s e sb b e e e e e annbneeeeannes 52

Vollbrecht, et al. Informational [Rge 2]

Internet-Draft EAPState Machines September 2004

1. Specificationof Requirements

In this document, seral words are used to signify the requirements of the specification. These words are
often capitalized. Thedy words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

2. TheEAP Switch Model

This document offers a proposed state machine for RFCs [RFC3748] and [RFC3579]. There are state
machines for the pedghe standalone authenticgtarbackend authenticator and a full/pass-through
authenticatar Accompanying each state machine diagram is a description of the variables, the functions and
the states in the diagram. Wheaepossible, the same notation has been used in each of the state machines.

An EAP authentication consists of one or more EAP methods in sequence followed by an EAP Success or
EAP Failure sent from the authenticator to the p&ae EAP Switches control negotiation of EAP methods
and sequences of methods.

Peer Peer | Authenticator Aut h
Met hod | Met hod
\ | /

\ | /
Peer | Aut h
EAP <Cmmmm [---------- > EAP
Swi tch | Swi tch

Figure 1. EAP Switch Model

At both the peer and authenticator one or more EAP methts #heEAP switches select which methods
each is willing to use, and negotiate between themselves to pick a method or sequence of methods.

Note that the methods may alsw@aate machines. The details of these are outside the scope of this paper.

/
| \ pass-through

Peer | Authenticator | Backend
| / Local |
| / Met hod |
Peer | Aut h | Backend
EAP --]|----- > EAP | -> EAP
Switch | Swi tch | / Server
|
|

Figure 2: EAP Pass-Through Mbodel

Vollbrecht, et al. Informational [Rge 3]

Internet-Draft EAPState Machines September 2004

The Full/Pass-Through state machine allows a NAS or Edge Device to pass EAP Response messages to a
Backend Server where the Authentication Method resides. This paper includes a state machine for the EAP
authenticator that supports both local and pass-through methods as well as a state machine for the backend
authenticator existing at the AAA servek simple "Standalone" authenticator is also provided tavsho

basic, non-pass-through authenticatdehavior.

This document describes a set of State Machines that can manage EAP authentication from the peer to an
EAP method on the authenticator or from the peer through the authenticator pass-through method to the EAP
method on the Backend EAP server.

Some environments where EAP is used, such asm3Fsupport peer-to-peer operation. That is, both
parties act as peers and authenticators at the same time,dmuitaneous and independent EAP
corversations. lIrthis case, the implementation at each node has to perform demultiplexing of incoming
EAP paclets. EAPpackets with Code set to Response arevglelil to the authenticator state machine and
EAP packets with Code set to Request, Success or Failure aeeadetd the peer state machine.

The state diagrams presented in this documer been coordinated with the diagrams in [1X-REV]. The
format of the diagrams is adapted from the format therein. The interface between the state machines defined
here and the IEEE-802-1X-REV state machines is also explained in Appendix F of [LX-REV].

3. Notational corventions used in state diagrams
3.1. Notationalspecifics

The following state diagrams V&been completed based on thewsntions specified in [1X-REV], section
8.2.1. Thecomplete text is reproduced here:

State diagrams are used to represent the operation of the protocol by a number of cooperating state
machines each comprising a group of connected, mutually exeltisies. Onlyone state of each
machine can be acé & any gven time.

Each state is represented in the state diagram as a rectangular box, divided jartstiyy a
horizontal line. The upper part contains the state identifigiten in upper case letters. The lower
part contains anprocedures that arxecuted on entry to the state.

All permissible transitions between states are represented by arrows, the arrowhead denoting the
direction of the possible transition. Labels attached to arrows denote the condition(s) that must be
met in order for the transition to taklace. Allconditions are expressions thasleate to TRUE or
FALSE; if a condition ealuates to TRUE, then the condition is met. The label UCT denotes an
unconditional transition (i.e., UCTwa#lys evaluates to TRIE). A transition that is global in nature

(i.e., a transition that occurs fromyaof the possible states if the condition attached to thevaso

met) is denoted by an open arrow; i.e., no specific state is identified as the origin of the transition.
When the condition associated with a global transition is met, it supersedes all other exit conditions
including UCT The special global condition BEGIN supersedes all other global conditions, and once
asserted remains asserted until all state blocks éeeuted to the point that variable assignments

and other consequences of theieaition remain unchanged.

Vollbrecht, et al. Informational [Rge 4]

Internet-Draft EAPState Machines September 2004

On entry to a state, the procedures defined for the state (if anyeauteel exactly once, in the order
that the appear on the page. Each action is deemed to be atomicxéeutien of a procedure
completes before the next sequential procedure startedote. Noprocedures»@ecute outside of a
state block. The procedures in only one state blgegute at a time,\@n if the conditions for
execution of state blocks in different state machines are satisfied, and all procedureseguinge
state block completexecution before the transition to ankeeution of ary other state block occurs,
i.e., the ®ecution of aly state block appears to be atomic with respect toxbeudion of aly other
state block and the transition condition to that state from the previous state is TRUExedutiore
commences. Therder of &ecution of state blocks in different state machines is undefined except as
constrained by their transition condition&.variable that is set to a particular value in a state block
retains this value until a subsequent state blaekwges a procedure that modifies the value.

On completion of all of the procedures within a state, all exit conditions for the state (including all
conditions associated with global transitions) amuated continuously until one of the conditions is
met. Thelabel ELSE denotes a transition that occurs if none of the other conditions for transitions
from the state are met (i.e., ELSE@ates to TRUE if all other possible exit conditions from the

state galuate to ALSE). Wheretwo or nore exit conditions with the samevékof precedence

become TRUE simultaneousthe choice as to which exit condition causes the state transition to take
place is arbitrary.

Where it is necessary to split a state machine description across more than one diagram, a transition
between tw dates that appear on different diagrams is represented by an exiteaven with

dashed lines, plus a reference to the diagram that contains the destination state. ,Sknsitesdly

arrows and a dashed state box are used on the destination diagram tleestnansition to the

destination state. In a state machine that has been split in thisnyajobal transitions that can

cause entry to states defined in one of the diagrams are deemed to be potential exit conditions for all
of the states of the state machingardless of which diagram the state boxes appear in.

Should a conflict exist between the interpretation of a state diagram and either the corresponding
global transition tables or the textual description associated with the state machine, the state diagram
takes precedence. The interpretation of the special symbols and operators used in the state diagrams
is as defined in Section 3.2; these symbols and operators aegldeyin the notation of the C++
programming language, ISO/IEC 14882. If a boolean variable is described in this clause as being set
it has or is assigned the value TRUE, if reset or clear the value FALSE.

In addition to the abe rotation, there are a couple of clarifications specific to this document. First, all
boolean variables are initialized to FALSE before the state mackegnetion bgins. Secondhe following
notational shorthand is specific to this document:

<variable> = <expressionl> | <expression2> | ...
Execution of a statement of this form will result in <variable> having a value of exactly one of the
expressions. Thégic for which of those expressions geteaited is outside of the state machine

and could be environmental, configurable, or based on another state machine such as that of the
method.

Vollbrecht, et al. Informational [Rge 5]

Internet-Draft EAPState Machines September 2004

3.2. StateMachine Symbols

0

Used to force the precedence of operators in Boolean expressions and to delimit the argument(s) of
actions within state boxes.

Used as a terminating delimiter for actions within stateeboXVhere gate box contains multiple
actions, the order ofkecution follows the normal English language wentions for reading text.

Assignment action. The value of the expression to the right of the operator is assigned to the variable
to the left of the operatoiwWhere this operator is used to define multiple assignments, e.g.,a=b =X
the action causes the value of the expression following the right-most assignment operator to be
assigned to all of the variables that appear to the left of the right-most assignment operator.

Logical NOT operator.
&&

Logical AND operator.

Logical OR operator.
if...then...

Conditional action. If the Boolean expression following thevélgates to TRUE, then the action
following the then isecuted.

{ statement 1, ... statement N }

Compound statement. Braces are used to group statements tha&catedetogether as if thavere
a sngle statement.

Inequality Evaluates to TRUE if the expression to the left of the operator is not equal in value to the
expression to the right.

Vollbrecht, et al. Informational [Rge 6]

Internet-Draft EAPState Machines September 2004

Equality Evaluates to TRUE if the expression to the left of the operator is equal in value to the
expression to the right.

>
Greater than. Evaluates to TRUE if the value of the expression to the left of the operator is greater
than the value of the expression to the right.

<=
Less than or equal to. Evaluates to TRUE if the value of the expression to the left of the operator is
either less than or equal to the value of the expression to the right.

++

Increment the preceding integer operator by 1.
3.3. Documentauthority

Should a conflict exist between the interpretation of a state diagram and either the corresponding global
transition tables or the textual description associated with the state machine, the state diagram takes
precedence. Whemdscrepang occurs between grpart of this document (text or diagram) ang ahthe
related documents ([RFC3748], [RFC3579], etc.) the latter (the other document) is considered awgthoritati
and takes precedence.

Vollbrecht, et al. Informational [Rge 7]

Internet-Draft EAPState Machines September 2004

4. Peer State Machine

The following is a diagram of the EAP peer state machine. Also included is an explanation of theeprimiti
and procedures referenced in the diagram, as well as a clarification of notation.

eapRestart && portEnabled
INITIALIZE
selectedMethod = NONE
methodState = NONE
allowNotifications = TRUE
decision = FAIL
IportEnabled — DISABLED portEnabled —m| idlewhile = ClientTimeout
lastld = NONE
eapSuccess = FALSE
eapFail = FALSE
eapKeyData = NONE
eapKeyAvailable = FALSE
eapRestart = FALSE
I
UCT
hJ
- IDLE
I
eapReq ucT ucT
\ \
RECEIVED DISCARD SEND_RESPONSE
(rxReq, rxSuccess, rxFailure, reqld, reqMethod) = eapReq = FALSE lastld = reqld
parseEapReq(eapReqData) eapNoResp = TRUE lastRespData = eapRespData
eapReq = FALSE
f ? eapResp = TRUE
else) idlewhile = ClientTimeout
ignore
| A
rxReq && METHOD
(reqld != lastld) && ignore = m.check(eapRegData)
(reqMethod == if (lignore) {
selectedMethod) && (methodState, decision, allowNotifications) =
(methodState != DONE) m.process(eapRegData)
/* methodState is CONT, MAY_CONT, or DONE */ —else —
[* decisionis FAIL, COND_SUCC, or UNCOND_SUCC */
rxReq && eapRespData = m.buildResp(reqld)
(reqld != lastld) && if (m.isKeyAvailable()) L
(selectedMethod == NONE) && eapKeyData = m.getKey()
(reqMethod != IDENTITY) && }
(reqMethod != NOTIFICATION)
L
selectedMethod == reqMethod
rxReq && |
(reqld = lastld) && — GET_METHOD
(Se('ree%‘;de“t"he;h":d: IDQ\?T’\I'E\)()&& if (allowMethod(reqMethod)) {
selectedMethod = reqMethod
rxReq && methodState = INIT —else —]
(reqld = lastld) && — }else {
(reqMethod == NOTIFICATION) && eapRespData = buildNak(reqld)
allowNotifications }
rxReq &&
(reqld == lastld) IDENTITY
] » processldentity(eapReqData) —UCT—]
— (methodState !'= CONT) && eapRespData = buildldentity(reqld)
rxSuccess && ((rxFailure && decision = UNCOND_SUCC) ||
(reqld == lastld) && (rxSuccess && decision == FAIL)) &&
(decision 1= FAIL) (reqld == lastld) NOTIFICATION
| processNotify(eapRegData) ~UCT—
SUCCESS FAILURE eapRespData = buildNotify(reqld)
if (eapKeyData != NONE) eapFail = TRUE
eapKeyAvailable = TRUE A RETRANSMIT ucT
eapSuccess = TRUE altReject | eapRespData = lastRespData
(idleWhile == 0 &&
(altAccept && Qecision 1= FAIL) || decision = UNCOND_SUCC) ||
~ (idlewhile == 0 && (altAccept && (methodState == DONE) &&
decision == UNCOND_SUCC) methodState = CONT && (decision == FAIL)
decision == FAIL)
|

Figure 3: EAP Peer State Machine

Vollbrecht, et al. Informational [Rge 8]

Internet-Draft EAPState Machines September 2004

4.1. Interfacebetween peer state machine and lower layer
The lower layer presents messages to the EAP peer state machine by storing the packet in eapReqData and
setting the eapReq signal to UR. Notethat despite the name of the signal, the lower layer does not
actually inspect the contents of the EAP packet (it could be a Success or Failure message instead of a
Request).
When the EAP peer state machine has finished processing the message it sets either eapResp or eapNoResp.
If it sets eapResp, the corresponding response packet is stored in eapRespData. The lower layer is
responsible for actually transmitting this message. When the EAP peer state machine authentication is
complete it will set eapSuccess or eapFailure to indicate to the lower layer that the authentication has
succeeded or failed.

4.1.1. \ariables (lower layer to peer)
eapReq (boolean)

Set to TRUE in lower layeFALSE in peer state machine. Indicates there is a requakitde in the
lower layer.

eapRegData (EAP packet)
Set in lower layer when eapReq is set tdJER Thecontents of theailable request.

portEnabled (boolean)
Indicates that the EAP peer state machine should be ready for communication. This is set to TRUE
when the EAP corersation is started by the lower layéf at any point the communication port or
session is notvailable, portEnabled is set to FALSE and the state machine transitions to
DISABLED. To avoid unnecessary resets, the lower layer may dampen link down indications when it
believes that the link is only temporarily down and that it will soon be back up (see [RFC3748],
Section 7.12). In this case, portEnabled may ne&a be equal to the the "link up” flag of the lower
layer.

idleWhile (integer)

Outside timer used to indicatevinbong remains before the peer will timeout while waiting for a valid
request.

eapRestart (boolean)
Indicates the lower layer would &Ko restart authentication
altAccept (boolean)

Alternate indication of success, as described in [RFC3748].

Vollbrecht, et al. Informational [Rge 9]

Internet-Draft EAPState Machines September 2004

altReject (boolean)
Alternate indication of failure, as described in [RFC3748].
4.1.2. \ariables (peer to lower layer)
eapResp (boolean)
Set to TRUE in peer state machine, FALSE in lower layeilicates there is a response to be sent.
eapNoResp (boolean)

Set to TRUE in peer state machine, FALSE in lower lajdicates the request has been processed,
but there is no response to send.

eapSuccess (boolean)

Set to TRUE in peer state machine, FALSE in lower lajmdicates the Peer has reached the
SUCCESS state.

eapFail (boolean)

Set to TRUE in peer state machine, FALSE in lower lajmdicates the Peer has reached the
FAILURE state.

eapRespData (EAP packet)

Set in peer state machine when eapResp is setUi& TRheEAP packet which is the response to
send.

eapkeyData (EAP ley)
Set in peer state machine whaayikg material becomewailable. Setduring the METHOD state.
Note that this document does not yet define the structure of the type &yAPMe expect it to be
defined in [Keying].

eapkeyAvailable (boolean)

Set to TRUE in the SUCCESS stateéfjing material is @ailable. Theactual ley is gored in
eapkeyData.

4.1.3. Constants
ClientTimeout (integer)

Configurable amount of time to wait for a valid request before aborting, initialized by
implementation-specific means (e.g., a configuration setting).

Vollbrecht, et al. Informational [Rge 10]

Internet-Draft EAPState Machines September 2004

4.2. Interfacebetween peer state machine and methods
IN: eapReqData (includes reqld)
OUT: ignore, eapRespData, allowNotifications, decision
IN/OUT: methodState, (method-specific state)
The following describes the interaction between the state machine and EAP methods.
If methodState==INITthe method starts by initializing its own method-specific state.
Next, the method must decide whether to process the packet or silently discard it. If the packet appears to
have teen sent by someone other than the legitimate authenticator (for instance, message integrity check
fails) and the method is capable of treating such situations as non-fatal, the method can set igitorés TR
this case, the method should not modify ather variables.
If the method decides to process the packet, itusstes dllows.
o Updates its own method-specific state.
o If the method has desd keying material it wants to export, stores thegikg material to eap&yData.
o Creates a response packet (with the same identifier as the request), and stores it to eapRespData.
0 Sets ignore=FALSE.

Next, the method must update methodState and decision according to the following rules.

methodState=CONTThe method alays continues at this point (and the
peer wants to continue it). The decision variablewsyd set to FAIL.

methodState=MAY_CONTAt this point, the authenticator can decide
either to continue the method or end theversation. Thedecision variable tells us what to do in the
case the comrsation ends. If the current situation does not satisfy thespeedrity polig (that is,
if the authenticator e decides to allev access, the peer will not use it), set decision=FAIL.
Otherwise, set decision=COND_SUCC.

methodState=DONE: The methodvaecontinues at this point, (or the
peer sees no point in continuing it).

If either (a) the authenticator has informed us that it will notediccess, or (b) we're not willing to
talk to this authenticator (e.g., our security pplgnot satisfied), set decisionAR.. (Note that this
state can occuwven if the method still has additional messages left, if continuing it can not change
the peess decision to success).

If both (a) the server has informed us that it willallaccess and the next packet will be EAP
Success, and (b) we're willing to use this access, set decision=UNCOND_SUCC.

Vollbrecht, et al. Informational [Rge 11]

Internet-Draft EAPState Machines September 2004
Otherwise, we do not kmowhat the serves' decision is, but are willing to use the access if the server
allows. Inthis case, set decision=COND_SUCC.

Finally, the method must set the allowNotificatiossiable. Ifthe nev methodState is either CONT or
MAY_CONT, and the method specification does not forbid the use of Notification messages, set
allowNotifications=TRJE. Otherwiseset allowNotifications=FALSE.

4.3. Reer state machine local variables

4.3.1. Long-term(maintained between packets)

selectMethod (EAP type)

Set in GET_METHOD state. The method the peer bedi¢o be arrently "in progress"
methodState (enumeration)

As described ahe.
lastld (integer)

0-255 or NONE. Setin SEND_RESPONSE state. The EAP identifier value of the last request.
lastRespData (EAP packet)

Set in SEND_RESPONSE state. The EAP packet last sent from the peer.
decision (enumeration)

As described ahe

NOTE: EAP type can be normal type (0..253,255), or an extended type consisting of type 254, Vendor-1d,
and Vendor-Type.

4.3.2. Short-term(not maintained between packets)
rxReq (boolean)
Set in RECEIVED state. Indicates the current nekpacket is an EAP request.
rxSuccess (boolean)
Set in RECEIVED state. Indicates the current nekpacket is an EAP Success.
rxFailure (boolean)

Set in RECEIVED state. Indicates the current nekpacket is an EAP Failure.

Vollbrecht, et al. Informational [Rge 12]

Internet-Draft EAPState Machines September 2004

regld (integer)
Set in RECEIVED state. The identifier value associated with the current EAP request.
reqMethod (EAP type)
Set in RECEIVED state. The method type of the current EAP request
ignore (boolean)
Set in METHOD state. Indicates whether the method has decided to drop the current packet.
4.4. Reer state machine procedures
NOTE: For method procedures, the method uses its internal state in addition to the information provided by
the EAP layer The only arguments that are explicitly shown as inputs to the procedures are those provided
to the method by EAPThose inputs provided by the meth®diternal state remain implicit.
parseEapReq()
Determine the code, identifier value, and type of the current request. In case of a parsing error (e.g.,
the length field is longer than the reaei packet), rxReq, rxSuccess, and rxFailure will all be set to
FALSE. Thevalues of regld and reqMethod may be undefined as a result. Returns three booleans,
one integerand one EAP type.
processNotify()

Process the contents of Notification Request (for instance, display it to the user or log it). Return
value is undefined.

buildNotify()

Create the appropriate notification response. Returns an EAP packet.
processldentity()

Process the contents of Identity Request. Return value is undefined.
buildldentity()

Create the appropriate identity response. Returns an EAP packet.
m.check()

Method-specific procedure to test for the validity of a message. Returns a boolean.

Vollbrecht, et al. Informational [Rge 13]

Internet-Draft EAPState Machines September 2004

m.process()

Method procedure to parse and process a request for that method. Returns a methodState
enumeration, a decision enumeration, and a boolean.

m.buildResp()
Method procedure to create a response message. Returns an EAP packet.
m.getkey()
Method procedure to obtairek material for use by EAP or lower layers. Returns an E&pP k
4.5. Reer state machine states
DISABLED

This state is reached anytime service from the lower layer is interruptedvailalia. Immediate
transition to INITIALIZE occurs when the port becomes enabled.

INITIALIZE

Initializes variables when the state machine isvatetil.
IDLE

The state machine spends most of its time here, waiting for something to happen.
RECEIVED

This state is entered when an EAP packet isvedeihe packet header is parsed here.
GET_METHOD

This state is entered when a request forvatgpe comes in: either the correct method is started, or a
Nak response is built.

METHOD

The method processing happens here: the request from the authenticator is processed, and an
appropriate response packet is built.

SEND_RESPONSE

This state signals the lower layer that a response packet is ready to be sent.

Vollbrecht, et al. Informational [Rge 14]

Internet-Draft EAPState Machines September 2004

DISCARD

This state signals the lower layer that the request was discarded, and no response packet will be sent
at this time.

IDENTITY:

Handles requests for Identity method, and builds a response.
NOTIFICATION

Handles requests for Notification method, and builds a response.
RETRANSMIT

Retransmits the previous response packet.
SUCCESS

A final state indicating success.
FAILURE

A final state indicating failure.

Vollbrecht, et al. Informational [Rge 15]

Internet-Draft EAPState Machines September 2004

5. StandaloneAuthenticator State Machine

The following is a diagram of the "Standalone" EAP authenticator state machine. This diagram should be
used for those interested in a self-contained, or non-pass-through, autheniticdiioied is an explanation
of the primitives and procedures referenced in the diagram, as well as a clarification of notation.

eapRestart && portEnabled
INITIALIZE

currentld = NONE
eapSuccess = FALSE

DISABLED eapFail = FALSE [-
IportEnabled = portEnabled eapTimeout = FALSE ver
eapKeyData = NONE
eapKeyAvailable = FALSE
eapRestart = FALSE
o IDLE
retransWhile = calculateTimeout(retransCount, eapSRTT, eapRTTVAR, methodTimeout)
retransWhile==0 eapResp UCT UCT
else A \i | ‘
RETRANSMIT RECEIVED DISCARD SEND_REQUEST
retransCount++ (rxResp,respld,respMethod)= eapResp = FALSE retransCount = 0
if (retransCount <= MaxRetrans) { parseEapResp(eapRespData) eapNoReq = TRUE lastReqgData = eapReqgData
eapReqData = lastReqData eapResp = FALSE
eapReq = TRUE eapReq = TRUE
}
——else T

rxResp && ianore
retransCount > MaxRetrans (respld == currentld) && 9 uer
(respMethod == currentMethod) ‘
INTEGRITY_CHECK METHOD_REQUEST
P ignore = currentld = nextld(currentld)
m.check(eapRespData) eapReqgData = m.buildReq(currentld)
‘ methodTimeout = m.getTimeout()
lignore *
+ else ucT
|
METHOD_RESPONSE PROPOSE_METHOD
m.process(eapRespData) currentMethod = Policy.getNextMethod()
if (m.isDone()) { m.init()
Policy.update(<...>) if (currentMethod==IDENTITY ||
eapKeyData = m.getKey() currentMethod==NOTIFICATION)
methodState = END methodState = CONTINUE
}else else
Resp && methodState = CONTINUE methodState = PROPOSED
(respld == currentld) &&
(respMethod==NAK || ‘ f
respMethod==EXPANDED_NAK) &&
(methodState == PROPOSED) methodState == END else
NAK SELECT_ACTION
m.reset() —UCT®| decision = Policy.getDecision() -
Policy.update(<...>) /* SUCCESS, FAILURE, or CONTINUE */
decision == FAILURE decision == SUCCESS
FAILURE SUCCESS
\ eapReqData = buildFailure(currentld) eapReqData = buildSuccess(currentld)
eapFail = TRUE if (eapKeyData != NONE)
TIMEOUT_FAILURE eapKeyAvailable = TRUE
eapTimeout = TRUE eapSuccess = TRUE

Figure 4: EAP Standalone Authenticator State Machine

Vollbrecht, et al. Informational [Rge 16]

Internet-Draft EAPState Machines September 2004

5.1. Interfacebetween standalone authenticator state machine and lower layer

5.1.1.

The lower layer presents messages to the EAP authenticator state machine by storing the packet in
eapRespData and setting the eapResp signal to TRUE.

When the EAP authenticator state machine has finished processing the message, it sets one of the signals
eapReq, eapNoReq, eapSuccess, andadapfit sets eapReq, eapSuccess, or eapFail, the corresponding
request (or success/failure) packet is stored in eapReqData. The lower layer is responsible for actually
transmitting this message.

\ariables (lower layer to standalone authenticator)

eapResp (boolean)

Set to TRUE in lower layeFALSE in authenticator state machine. Indicates an EAP response is
available for processing.

eapRespData (EAP packet)
Set in lower layer when eapResp is set t&JER TheEAP packet to be processed.
portEnabled (boolean)
Indicates that the EAP authenticator state machine should be ready for communication. This is set to
TRUE when the EAP ceersation is started by the lower layéf at any point the communication
port or session is notvalable, portEnabled is set to FALSE and the state machine transitions to
DISABLED. To avoid unnecessary resets, the lower layer may dampen link down indications when it
believes that the link is only temporarily down and that it will soon be back up (see [RFC3748],
Section 7.12). In this case, portEnabled may ne&a be equal to the the "link up” flag of the lower
layer.
retransWhile (integer)
Outside timer used to indicateviabong the authenticator has waited for afealid) response.
eapRestart (boolean)
Indicates the lower layer would &Ko restart authentication
eapSRTT (integer)
Smoothed round-trip time. (see [RFC3748], Section 4.3)
eapRTTVAR (integer)

Round-trip time wariation. (se¢RFC3748], Section 4.3)

Vollbrecht, et al. Informational [Rge 17]

Internet-Draft EAPState Machines September 2004

5.1.2. \ariables (standalone authenticator to lower layer)
eapReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpelicates a ne EAP request is
ready to be sent.

eapNoReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpedicates the most recent
response has been processed, but there ismoeneest to send.

eapSuccess (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpeicates the state machine has
reached the SUCCESS state.

eapFail (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpelicates the state machine has
reached the FAILURE state.

eapTimeout (boolean)
Set to TRUE in the TIMEOUT _FAILURE state if the authenticator has reached its maximum number
of retransmissions without receiving a response.

eapRegData (EAP packet)

Set in authenticator state machine when eapReq, eapSuccess, or eapFail isl$Et tdHeRctual
EAP request to be sent (or success/failure).

eapkeyData (EAP ley)
Set in authenticator state machine wheyirig material becomewailable. Setduring the
METHOD state. Note that this document does not yet define the structure of the typeeiEAP k
We expect it to be defined in g§ing].

eapkeyAvailable (boolean)

Set to TRUE in the SUCCESS stateéfjing material is @ailable. Theactual ley is gored in
eapkeyData.

Vollbrecht, et al. Informational [Rge 18]

Internet-Draft EAPState Machines September 2004

5.1.3. Constants

MaxRetrans (integer)

Configurable maximum for momary retransmissions should be attempted before aborting.

5.2. Interfacebetween standalone authenticator state machine and methods

IN: eapRespData, methodState

OUT: ignore, eapRegData

IN/OUT: currentld, (method-specific state), (policy)

The following describes the interaction between the state machine and EAP methods.

m.init (in: -, out: -)

When the method is first started, it must initialize its own method-specific state, possibly using some
information from Polig (e.g., identity).

m.buildReq (in: integewout: EAP packet)

Next, the method creates ammEAP Request packet, with thevgn identifier value, and updates its method-
specific state accordingly.

m.getTimeout (in: -, out: integer or NONE)

The method can also provide a hint for retransmission timeout with m.getTimeout.

m.check (in: EAP packet, out: boolean)

When a ne/ EAP Response is reced, the method must first decide whether to process the packet or
silently discard it. If the packet looks &kt was not sent by the legitimate peer (e.g., it heaithMIC, and
this case should mer occur), the method can indicate this by returnidg $E. Inthis case, the method
should not modify its own method-specific state.

m.process (in: EAP packet, out: -)

m.isDone (in: -, out: boolean)

m.getkey (in: -, out: EAP ley a NONE)

Next, the method processes the EAP Response and updates its own method-specificvsthie optimns
are to continue the cweersation (send another request) or end this method.

Vollbrecht, et al. Informational [Rge 19]

Internet-Draft EAPState Machines September 2004

If the method wants to end the wersation, it

o Tells Poligy about the outcome of the method, and possibly other information.

o If the method has desd keying material it wants to export, returns it from m.geyf.

o Indicates that the method wants to end by returning TRUE from m.isDone().

Otherwise, the method continues by sending another request, as described earlier.
5.3. Standaloneauthenticator state machine local variables
5.3.1. Long-term(maintained between packets)

currentMethod (EAP type)

EAP type, IDENTITY or NOTIFICATION.
currentld (integer)

0-255 or NONE. Usually updated in PROPOSE_METHOD state. Indicates the identifier value of
the currently outstanding EAP request.

methodState (enumeration)
As described ahe.
retransCount (integer)

Reset in SEND_REQUEST state and updated in RETRANSMIT state. Current number of
retransmissions.

lastRegData (EAP packet)
Set in SEND_REQUEST state. EAP packet containing the last sent request.
methodTimeout (integer)
Method-provided hint for suitable retransmission timeout, or NONE.
5.3.2. Short-term(not maintained between packets)
rxResp (boolean)

Set in RECEIVED state. Indicates the current nebpacket is an EAP response.

Vollbrecht, et al. Informational [Rge 20]

Internet-Draft EAPState Machines September 2004

respld (integer)
Set in RECEIVED state. The identifier from the current EAP response.
respMethod (EAP type)
Set in RECEIVED state. The method type of the current EAP response.
ignore (boolean)
Set in METHOD state. Indicates whether the method has decided to drop the current packet.
decision (enumeration)
Set in SELECT_ACTION stateTemporarily store the policdecision to succeed, fail, or continue.
5.4. EAPstandalone authenticator procedures
NOTE: For method procedures, the method uses its internal state in addition to the information provided by
the EAP layer The only arguments that are explicitly shown as inputs to the procedures are those provided
to the method by EAPThose inputs provided by the meth®diternal state remain implicit.

calculateTimeout()

Calculates the retransmission timeout, taking into account the retransmission count, round-trip time
measurements, and method-specific timeout hint (see [RFC3748], Section 4.3). Returns an integer.

parseEapResp()
Determine the code, identifier value, and type of the current response. In case of a parsing error (e.g.,
the length field is longer than the reei packet), rxResp will be set tq(AESE. Thevalues of
respld and respMethod may be undefined as a result. Returns a boolean, graiutegeEAP type.
buildSuccess()
Create an EAP Success PetckReturnsan EAP packet.
buildFailure()
Create an EAP Failure Pastk Returngin EAP packet.
nextld()
Determine the next identifier value to use, based on the previous one. Returns an integer.

Policy.update()

Update all variables related to internal pplétate. Returrvalue is undefined.

Vollbrecht, et al. Informational [Rge 21]

Internet-Draft EAPState Machines September 2004

Policy.getNextMethod()
Determine the method that should be used at this point in thiersation based on pre-defined
policy. Policy.getNextMethod() MUST comply with [RFC3748] (Section 2.1), which forbids the use
of sequences of authentication methods within an EARecsation. Hencef an authentication
method has already beexeeuted within an EAP dialog, PoligetNextMethod() MUST NOT
propose another authentication method within the same EAP dialog. Returns an EAP type.
Policy.getDecision()

Determine if the polig will allow SUCCESS, FAIL, or is yet to determine (CONTINUE). Returns a
decision enumeration.

m.check()
Method-specific procedure to test for the validity of a message. Returns a boolean.
m.process()
Method procedure to parse and process a response for that method. Return value is undefined.
m.init()
Method procedure to initialize state just before use. Return value is undefined.
m.reset()

Method procedure to indicate the method is ending in the middle or before completion. Return value
is undefined.

m.isDone()

Method procedure to check for method completion. Returns a boolean.
m.getTimeout()

Method procedure to determine an appropriate timeout hint for that method. Returns an integer.
m.getkey()

Method procedure to obtairek material for use by EAP or lower layers. Returns an E&pP k
m.buildReq()

Method procedure to produce the next request. Returns an EAP packet.

Vollbrecht, et al. Informational [Rge 22]

Internet-Draft EAPState Machines September 2004

5.5. EAPstandalone authenticator states

DISABLED

The authenticator is disabled until the port is enabled by the lower layer.
INITIALIZE

Initializes variables when the state machine is/atetil.
IDLE

The state machine spends most of its time here, waiting for something to happen.
RECEIVED

This state is entered when an EAP packet isvedeihe packet header is parsed here.
INTEGRITY_CHECK

A method state in which the integrity of the incoming packet from the peer is verified by the method.
METHOD_RESPONSE

A method state in which the incoming packet is processed.
METHOD_REQUEST

A method state in which a werequest is formulated if necessary.
PROPOSE_METHOD

A state in which the authenticator decides which method to try next in the authentication.
SELECT_ACTION

In between methods, the state machinevatdates whether or not its pojiés satisfied and succeeds,
fails, or remains undecided.

SEND_REQUEST
This state signals the lower layer that a request packet is ready to be sent.
DISCARD

This state signals the lower layer that the response was discarded, amdraquest packet will be
sent at this time.

Vollbrecht, et al. Informational [Rge 23]

Internet-Draft EAPState Machines September 2004

NAK
This state processes Nak responses from the peer.
RETRANSMIT
Retransmits the previous request packet.
SUCCESS
A final state indicating success.
FAILURE
A final state indicating failure.
TIMEOUT_FAILURE
A final state indicating failure because no response has beeareded®@ecaus@o response was

received, no n&v message (including failure) should be sent to the. pgdete that this is different
from the FAILURE state, where a message indicating failure is sent to the peer.

Vollbrecht, et al. Informational [Rge 24]

Internet-Draft EAPState Machines September 2004

6. EAP Backend Authenticator

When operating in pass-through mode, there are conceptualljatts to the authenticator - the part that

passes packets through and the backend that actually implements the EAP method. The following diagram
shows a state machine for the backend part of this model when using a AAA d&rteethat this diagram

is identical to Figure 4 except no retransmit is included in the IDLE state because with RADIUS retransmit is
handled by the NAS, and ACK_UP_METHOD state and variable in INITIALIZE state are added to allow

the Method to "pickup" a method started inASN Includeds an explanation of the primigs and

procedures referenced in the diagram, yrfrwhich are the same as afeo It should be noted that the

"lower layer" in this case is some AAA protocol (e.g., RADIUS).

Vollbrecht, et al. Informational [Rge 25]

Internet-Draft EAPState Machines September 2004

IbackendEnabled
backendEnabled && INITIALIZE
DISABLED | aaaEapResp—»
currentMethod = NONE
(rxResp,respld,respMethod) =
parseEapResp(aaaEapRespData) I—IrxResp
if (ixResp) :
IXResp &&. currentld = respld

else

— (respMethod==NAK || =

respMethod==EXPANDED_NAK) currentld = NONE

els‘e
v

PICK_UP_METHOD
if (Policy.doPickUp(respMethod)) {

else

currentMethod = respMethod — currentMethod==NONE
m.initPickUp()
IDLE
aaaEapResp UCT UCT
RECEIVED DISCARD SEND_REQUEST
(rxResp,respld,respMethod)= aaaEapResp = FALSE aaaEapResp = FALSE
parseEapResp(aaaEapRespData) | | aaaEapNoReq = TRUE aaaEapReq = TRUE
L else J T
rxResp && ignore uct
(respld == currentld) && 9
(respMethod == currentMethod)
INTEGRITY_CHECK METHOD_REQUEST

P ignore = currentld = nextld(currentld)

m.check(aaaEapRespData) aaaEapReqgData = m.buildReq(currentld)
‘ MethodTimeout = m.getTimeout()
lignore +
+ ’—else ucT
|
METHOD_RESPONSE PROPOSE_METHOD
m.process(aaaEapRespData) currentMethod = Policy.getNextMethod()
if (m.isDone()) { m.init()

» Policy.update(<...>) if (currentMethod==IDENTITY ||
aaaEapKeyData = m.getKey() currentMethod==NOTIFICATION)
methodState = END methodState = CONTINUE

} else else
Resp && methodState = CONTINUE methodState = PROPOSED
(respld == currentld) &&
(respMethod==NAK || ‘ ?
respMethod==EXPANDED_NAK) &&
(methodState == PROPOSED) methodState == END else
NAK SELECT_ACTION
> m.reset() —UCT®| decision = Policy.getDecision() !
Policy.update(<...>) * SUCCESS, FAILURE, or CONTINUE */
decision == FAILURE decision == SUCCESS
FAILURE SUCCESS
aaaEapReqData = buildFailure(currentld) aaaEapReqData = buildSuccess(currentld)
aaaEapFail = TRUE if (aaaEapKeyData != NONE)
aaaEapKeyAvailable = TRUE
aaaEapSuccess = TRUE

Figure 5: EAP Backend Authenticator State Machine

Vollbrecht, et al. Informational [Rge 26]

Internet-Draft EAPState Machines September 2004

6.1. Interfacebetween backend authenticator state machine and lower layer

The lower layer presents messages to the EAP backend authenticator state machine by storing the packet in
aaaEapRespData and setting the aaaEapResp signal to TRUE.

When the EAP backend authenticator state machine has finished processing the message, it sets one of the
signals aaaEapReq, aaaEapNoReq, aaaSuccess, aaill daddfsets eapReq, eapSuccess, or eapFail, the
corresponding request (or success/failure) packet is stored in aaaEapReqData. The lower layer is responsible
for actually transmitting this message.
6.1.1. \ariables (AAA interface to backend authenticator)
aaaEapResp (boolean)
Set to TRUE in lower layeFALSE in authenticator state machine. Usually indicates that an EAP
response, stored in aaaEapRespDatajgitable for processing by the AAA servelf
aaaEapRespData is set to NONE, indicates that the AAA server should send the initial EAP request.
aaaEapRespData (EAP packet)
Set in lower layer when eapResp is set t&JER TheEAP packet to be processed or NONE.

backendEnabled (boolean)

Indicates that there is a valid link to use for the communication. Ifygp@int the port is not
available, backendEnabled is set to FALSE and the state machine transitions to DISABLED.

6.1.2. \ariables (backend authenticator to AAA interface)
aaaEapReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpelicates a ne EAP request is
ready to be sent.

aaaEapNoReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpeéicates the most recent
response has been processed, but there ismoeneest to send.

aaaSuccess (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpelicates the state machine has
reached the SUCCESS state.

aaaFail (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpelicates the state machine has
reached the FAILURE state.

Vollbrecht, et al. Informational [Rge 27]

Internet-Draft EAPState Machines September 2004

aaaEapRegData (EAP packet)

Set in authenticator state machine when aaaEapReq, aaaSuccess, or aaaFail it/Eet ThdR
actual EAP request to be sent (or success/failure).

aaaEaplkéyData (EAP ley)
Set in authenticator state machine wheyirkg material becomewailable. Setduring the
METHOD_RESPONSE state. Note that this document does not yet define the structure of the type
"EAP key'. We expect it to be defined in g4ing].

aaaEapkyAvailable (boolean)

Set to TRUE in the SUCCESS stateéfjing material is @ailable. Theactual ley is gored in
aaaEaplkyData.

aaaMethodTimeout (integer)

Method-provided hint for suitable retransmission timeout, or NONE (note that this hint is for the
EAP retransmissions done by the pass-through authenticatoetransmissions of AAA packets).

6.2. Interfacebetween backend authenticator state machine and methods
The backend method interface is almost the same as in standalone authenticator described in Section 5.2.
The only difference is that some methods on the backend may support "picking upéraat@n started by
the pass-through. That is, the EAP Request packet was sent by the pass-through, but the backend must
process the corresponding EAP Response. Usually only the Identity method supports this, but others are
possible.

When "picking up" a corersation, m.initPickUp() is called instead of m.init(). Next, m.process() must
examine eapRespData and update its own method-specific state to match what it webkhaf it had

actually sent the corresponding request. (Obvigtisiy only works for methods that can determine what the
initial request contained; Identity and EAP-TLS are good examples.)

After this, the processing continues as described in Section 5.2.
6.3. Baclend authenticator state machine local variables
For definitions of the variables used in the Backend AuthenticsgerSection 5.3.
6.4. EAPbackend authenticator procedures
Most of the procedures of the backend authenticater 8iseady been defined in Section 5.4. This section
contains definitions for those not existent in the standalone version, as well as those which are defined

differently.

NOTE: For method procedures, the method uses its internal state in addition to the information provided by

Vollbrecht, et al. Informational [Rge 28]

Internet-Draft EAPState Machines September 2004
the EAP layer The only arguments that are explicitly shown as inputs to the procedures are those provided
to the method by EAPThose inputs provided by the methedtiternal state remain implicit.

Policy.doPickUp()

Notify the polig/ that an already-chosen method is being picked up and will be completed. Returns a
boolean.

m.initPickUp()

Method procedure to initialize state when continuing from an already-started method. Return value is
undefined.

6.5. EAPbackend authenticator states
Most of the states of the backend authenticatee ldaeady been defined in Section 5.5. This section
contains definitions for those not existent in the standalone version, as well as those which are defined
differently.
PICK_UP_METHOD

Set an initial state for a method that is being continued and was started elsewhere.

Vollbrecht, et al. Informational [Rge 29]

Internet-Draft

7. EAP Full Authenticator

EAPState Machines

September 2004

The following two diagrams sha the state machine for a complete authenticalbe first diagram is

identical to the Standalone State Machine, shown in Figure 4, with the exception that the SELECT_ACTION

state has an added transition to PASSDHISH. Thesecond diagram also keeps most of the logic except
the four method states, and showw tibe state machine works once it goes to Pass-Through Mode.

The first diagram is largely a reproduction of that foundrebaith the added hooks for a transition to
PASSTHROUGH mode.

DISABLED
>

eapRestart && portEnabled

v

INITIALIZE

currentld = NONE
eapSuccess = FALSE
eapFail = FALSE

IportEnabled e portEnabled eapTimeout = FALSE
eapKeyData = NONE
eapKeyAvailable = FALSE
eapRestart = FALSE
| IDLE |
retransWhile = calculateTimeout(retransCount, eapSRTT, eapRTTVAR, methodTimeout) ‘
\ \
retransWhile==0 eapResp UCT UCT
else v | |
RECEIVED DISCARD SEND_REQUEST

eapReq = TRUE
}

RETRANSMIT
retransCount++
if (retransCount <= MaxRetrans) {

eapReqData = lastRegData

(rxResp,respld,respMethod)=
parseEapResp(eapRespData)

eapResp = FALSE
eapNoReq = TRUE

retransCount = 0
lastRegqData = eapReqData

retransCount > MaxRetrans

4

rxResp &&
(respld == currentld) &&

rxResp &&

(respld == currentld) &&
(respMethod == currentMethod)

L]

ignore

eapResp = FALSE
eapReq = TRUE

ucT

INTEGRITY_CHECK

METHOD_REQUEST

A

ignore =
m.check(eapRespData)

currentld = nextld(currentld)
eapReqData = m.buildReq(currentld)
methodTimeout = m.getTimeout()

l

lignore

| }
’79 se uct

i

METHOD_RESPONSE

1
PROPOSE_METHOD

m.process(eapRespData)

if (m.isDone()) {
Policy.update(<...>)
eapKeyData = m.getKey()
methodState = END

}else
methodState = CONTINUE

currentMethod = Policy.getNextMethod()
m.init()
if (currentMethod==IDENTITY ||
currentMethod==NOTIFICATION)
methodState = CONTINUE
else
methodState = PROPOSED

(respMethod==NAK ||
respMethod==EXPANDED_NAK) &&
(methodState == PROPOSED)

methodState == END

}

else

NAK

SELECT_ACTION

— T

m.reset()
Policy.update(<...>)

—UCTm

decision = Policy.getDecision()

/* SUCCESS, FAILURE, CONTINUE, or PASSTHROUGH */

-

‘ TIMEOUT_FAILURE |

‘ eapTimeout = TRUE

decision == FAILURE

decision == SUCCESS

FAILURE

SUCCESS

eapReqData = buildFailure(currentld)
eapFail = TRUE

eapReqData = buildSuccess(currentld)
if (eapKeyData != NONE)

eapSuccess = TRUE

eapKeyAvailable = TRUE

Figure 6: EAP Full Authenticator State Machine (Part 1)

= =
‘ decision==PASSTHROUGH

The second diagram describes the functionality necessary for an authenticator operating in pass-through
mode. Thissection of the diagram is the counterpart of the backend diagram abo

\ollbrecht, et al.

Informational

[Rge 30]

Internet-Draft

INITIALIZE_PASSTHROUGH

decision==PASSTHROUGH — — —
! aaaEapRespData = NONE

T T
currentld I= NONE currentld == NONE
| L

EAPState Machines

‘ TIMEOUT_FAILURE2 ‘ eapFail = TRUE

‘ eapTimeout = TRUE ‘

IDLE2
‘ retransWhile = calculateTimeout(retransCount, eapSRTT, eapRTTVAR, methodTimeout)
retransWhile==0 eapResp ucT ucT
else | |
RETRANSMIT2 RECEIVED2 DISCARD2 SEND_REQUEST2
retransCount++ (rxResp,respld,respMethod)= eapResp = FALSE retransCount = 0
if (retransCount <= MaxRetrans) { parseEapResp(eapRespData) eapNoReq = TRUE lastReqData = eapRegData
eapRegData = lastRegData Y eapResp = FALSE
eapReq = TRUE T eapReq = TRUE
else
rxResp &&
retransCount > MaxRetrans (respld == currentld) UC‘T
AAA_REQUEST AAA_RESPONSE
o | if (respMethod==IDENTITY) eapRegData = aaaEapReqData
o aaaldentity = eapRespData currentld = getld(eapRegData)
aaaEapRespData = eapRespData methodTimeout = aaaMethodTimeout
uct aaaEapNoReq aaaETpReq
AAA_IDLE
aaaFail = FALSE
aaaSuccess = FALSE
aaaEapReq = FALSE
aaaEapNoReq = FALSE
aaaTimeout—————— aaaEapResp = TRUE
aaaFail aaaSuccess
FAILURE2 SUCCESS2
\ eapRegData = aaaEapRegData eapRegData = aaaEapReqgData

eapKeyData = aaaEapKeyData
eapKeyAvalable = aaaEapKeyAvailable
eapSuccess = TRUE

Figure 7: EAP Full Authenticator State Machine (Part 2)

7.1. Interfacebetween full authenticator state machine and lower layers

September 2004

The full authenticator is unique in that it interfaces to multiple lower layers in order to support pass-through

mode. Thenterface to the primary EAP transport layer is the same as described in Section 5. The following

describes the interface to the second lower Jayigich represents an interface to AAA. It should be noted
that there is not necessarily a direct interaction between the EAP layer and the AAAdagdre case of

[1X-REV].

Vollbrecht, et al. Informational

[Rge 31]

Internet-Draft EAPState Machines September 2004

7.1.1. \ariables (AAA interface to full authenticator)
aaaEapReq (boolean)

Set to TRUE in lower layeFALSE in authenticator state machine. IndicatesvaBAP request is
available from the AAA server.

aaaEapNoReq (boolean)

Set to TRUE in lower layeFALSE in authenticator state machine. Indicates the most recent
response has been processed, but there ismoeneest to send.

aaaSuccess (boolean)

Set to TRUE in lower layerindicates the AAA backend authenticator has reached the SUCCESS
state.

aaaFail (boolean)

Set to TRUE in lower layerindicates the AAA backend authenticator has reached the FAILURE
state.

aaaEapRegData (EAP packet)

Set in the lower layer when aaaEapReq, aaaSuccess, or aaaFail is $#EtoTheactual EAP
request to be sent (or success/ failure).

aaaEapléyData (EAP ley)

Set in lower layer whenelging material becomewalable from the AAA serverNote that this
document does not yet define the structure of the type "EXP Ve expect it to be defined in

[Keying].
aaaEapkyAvailable (boolean)

Set to TRUE in the lower layer ieking material is @ailable. Theactual ey is gored in
aaaEaplkyData.

aaaMethodTimeout (integer)

Method-provided hint for suitable retransmission timeout, or NONE (note that this hint is for the
EAP retransmissions done by the pass-through authenticatoetransmissions of AAA packets).

Vollbrecht, et al. Informational [Rge 32]

Internet-Draft EAPState Machines September 2004

7.1.2. \ariables (full authenticator to AAA interface)
aaaEapResp (boolean)

Set to TRUE in authenticator state machine, FALSE in the lower. l&ygicates an EAP response is
available for processing by the AAA server.

aaaEapRespData (EAP packet)
Set in authenticator state machine when eapResp is sette. TRheEAP packet to be processed.
aaaldentity (EAP packet)

Set in authenticator state machine when an IDENTITY response igactcdakes that identity
available to AAA lower layer.

aaaTimeout (boolean)
Set in AAA_IDLE if after a configurable amount of time there is no response from the AAA layer.
The AAA layer in the NAS is itself ale and OK, but for some reason it has not reegia \alid
Access-Accept/Reject indication from the backend
7.1.3. Constants
Same as Section 5.
7.2. Interfacebetween full authenticator state machine and methods
Same as standalone authenticator (Section 5.2)

7.3. Fullauthenticator state machine local variables

Mary of the variables of the full authenticatonvkadready been defined in Section 5. This section contains
definitions for those not existent in the standalone version, as well as those which are defined differently.

7.3.1. Short-term(not maintained between packets)
decision (enumeration)

Setin SELECT_ACTION stateTemporarily store the policdecision to succeed, fail, continue with
a local method, or continue in pass-through mode.

Vollbrecht, et al. Informational [Rge 33]

Internet-Draft EAPState Machines September 2004

7.4. EAPfull authenticator procedures

All of the procedures defined in Section 5 exist in the ferlsion. Inaddition, the following procedures are
defined.

getld()

Determine the identifier value chosen by the AAA server for the current EAP request. Return value
is an integer.

7.5. EAPfull authenticator states
All of the states defined in Section 5 exist in the falision. Inaddition, the following states are defined.
INITIALIZE_PASSTHROUGH
Initializes variables when the pass-through portion of the state machinevétealcti
IDLE2

The state machine waits for a response from the primary lower Velyieh transports EAP traffic
from the peer.

IDLE
The state machine spends most of its time here, waiting for something to happen.
RECEIVED2

This state is entered when an EAP packet isvedend the authenticator is in PASSTHROUGH
mode: the packet header is parsed here.

AAA_REQUEST
The incoming EAP packet is parsed for sending to the AAA server.
AAA_IDLE

Idle state which tells the AAA layer it has a response and then waits far @geest, a no-request
signal, or success/failure.

AAA_RESPONSE
State in which the request from the AAA interface is processed into an EAP request.
SEND_REQUEST?2

This state signals the lower layer that a request packet is ready to be sent.

Vollbrecht, et al. Informational [Rge 34]

Internet-Draft EAPState Machines September 2004

DISCARD2

This state signals the lower layer that the response was discarded, amdraquest packet will be
sent at this time.

RETRANSMIT2
Retransmits the previous request packet.
SUCCESS2
A final state indicating success.
FAILURE2
A final state indicating failure.
TIMEOUT_FAILURE2
A final state indicating failure because no response has beeareded®@ecaus@o response was

received, no n&v message (including failure) should be sent to the. pgdete that this is different
from the FAILURE?2 state, where a message indicating failure is sent to the peer.

Vollbrecht, et al. Informational [Rge 35]

Internet-Draft EAPState Machines September 2004

8. Implementation Considerations
8.1. Rolustness

In order to deal with erroneous cases that are not directly related to the protocol bahpigarentations
may need additional considerations to provide robustness against errors.

For example, an implementation of a state machine may spend a significant amount of time in a particular
state for performing the procedure defined for the state without returning a response. If such an
implementation is made on a multithreading system, the procedure may be performed in a separate thread so
that the implementation can perform appropriate action to deal with the case without blocking on the state for
a long time (or foreer if the procedure mer completes due to, e.g., a non-responding user or a bug in an
application callback function.)

The following states are identified as the possible places of blocking:

o] IDENTITY state in the peer state machine. It maytsime time to process Identity request when a
user input is needed for obtaining an identity from the. uBlee user may nver input an identity An
implementation may define an additional state transition from IDENTITY state to FAILURE state so
that authentication can fail if no identity is obtained from the user before ClientTimeout timer
expires.

o] METHOD state in the peer state machine and in METHOD_RESPONSE state in the authenticator
state machines. It may @kome time to perform method-specific procedures in these states. An
implementation may define an additional state transition from METHOD state and

METHOD_RESPONSE state to FAILURE or TIMEOUT_FAILURE state so that authentication can
fail if no method processing result is obtained from the method before methodTimeout timer expires.

8.2. Method/Methodand Method/Lower-Layer Interfaces

Implementations may define additional interfaces to pass method-specific information between methods and
lower layers. These interfaces are beyond the scope of this document.

9. SecurityConsiderations

This documens intent is to describe the EAP state machine fully this end, ay security concerns with
this document are likely a reflection of security concerns with EAP itself.

An accurate state machine can help reduce implementation errors. While [RFC3748] remains theenormati
protocol description, this state machine should help in thsde

As noted in [RFC3748], there are some security concerns that arise because of the following EAP packets:
1. EAP-Request/Response ldentity
2. EAP-Response/NAK
3. EAP-Success/Failure

Since these packets are not cryptographically protected by themselves, an attacker can modify or insert them

Vollbrecht, et al. Informational [Rge 36]

Internet-Draft EAPState Machines September 2004

without immediate detection by the peer or authenticator.
Fadlowing Figure 3 specification, an attacker may cause denial of service by:

o] Sending an EAP-Failure to the peer before the peer has started an EAP authentication method. As
long as the peer has not modified the methodState variable (initialized to NONE), the peer MUST
accept an EAP-Failure.

o] Forcing the peer to engage in endless EAP-Request/Response Identity exchanges before it has started
an EAP authentication method. As long as the peer has not modified the selectedMethod variable
(initialized to NONE), the peer MUST accept an EAP-Request/Identity and respond to it with an
EAP-Response/ Identity.

Fadlowing Figure 4 specification, an attacker may cause denial of service by:

o] Sending a NAK to the authenticator after the authenticator first proposes an EAP authentication
method to the peeWhen the methodState variable has the value PROPOSED, the authenticator is
obliged to process a NAK that is rege in response to its first packet of an EAP authentication
method.

There MAY be ome cases when it is desired toverd such attacks. This can be done by modifying initial
values of some variables of the EAP state machines. Wayaich modifications are NOT
RECOMMENDED.

There is a trade-bbetween mitigating these denial of service attacks and being able to deal with EAP peers
and authenticators in gener&lor instance, should the sending of a NAK to the authenticator after it has just
proposed an EAP authentication method to the peer be ignored, then a legitimate peer that is not able or
willing to process the proposed EAP authentication method would fail without an opportunity to negotiate
another EAP method.

10. Acknowledgments

The work in this document was done as part of the EAP Desigm.T Itwas done primarily by Nick

Petroni, John Vollbrecht, Pasi Eronen and Yoshihiro Ohba. Nick started this work with Bryan Payne and
Chuk Seng at the Uversity of Maryland. John Vollbrecht, of Vollbrecht Consulting, started independently
with help from Dae Jence at Interlink Netarks. Johrand Nick combined to create a common document,
and then were joined by Pasi Eronen of Nokia who has made major contributions in creating coherent state
machines, and Yoshihiro Ohba of Toshiba who insisted on including Pass-Through documentation and
provided significant support for understanding implementation issues.

In addition significant response and eersation has come from the design team, especially including Jari

Arkko of Ericsson and Bernard Aboba of Microsoft as well as the rest of the team. It has also been passed
through the 802.1aa group, and has had input from Jim Burns of Meetinghouse and Paul Congdon of Hewlett
Packard.

Vollbrecht, et al. Informational [Rge 37]

Internet-Draft EAPState Machines September 2004

11. Refeences
11.1. Normative References

[RFC2119] BradnelS., "Key words for use in RFCs to Indicate Requirementd, BCP 14, RFC
2119, March 1997.

[RFC3579] AbobaB. and PCalhoun, "RADIUS (Remote Authentication Dial In User Service)
Support For Extensible Authentication Protocol (EAP)", RFC 3579, September 2003.

[RFC3748] AbobaB., Blunk, L., Vollbrecht, J., Carlson, J., and H. Lewktz, Ed., "Extensible
Authentication Protocol (EAP)", RFC 3748, June 2004.

11.2. Informative References

[Keying] Aboba,B., Simon, D., Arkko, J., Eronen, P., Lewvketz, H., "Extensible Authentication
Protocol (EAP) Ky Management Fram@rk", Work in Progress, July 2004.

[1X-REV] Instituteof Electrical and Electronics Engineers, "DRAFT Standard for Local and

Metropolitan Area Networks: Port-Based Network Access Control (Revision)", IEEE
802-1X-REV/D11, July 2004.

Vollbrecht, et al. Informational [Rge 38]

Internet-Draft EAPState Machines September 2004

Appendix A. ASCII versions of state diagrams

This appendix contains the state diagrams in ASCII format. Please use the PDF versimengossible:
it is much easier to understand.

The notation is as follows: state name and pseudoc@dated when entering it are shown on the left;
outgoing transitions with their conditions are shown on the right.

A.1l. EAP Peer State Machine (Figue 3

(gl obal transitions) | I port Enabl ed | DI SABLED
[----mmmmm - - Fmmm e e
| eapRestart && | I NI TI ALI ZE
| por t Enabl ed |

_____________________________ e

Dl SABLED | port Enabl ed | I NI TI ALI ZE

_____________________________ e

I NI TI ALI ZE

sel ect edMet hod = NONE
met hodSt at e = NONE
al l owNotifications = TRUE

| |
| |
| |
| |
| |
deci sion = FAIL | ucr | | DLE
idlewile = dientTi neout | |
[ast1d = NONE | |
eapSuccess = FALSE | |
eapFai|l = FALSE | |
eapKeyData = NONE | |
eapKeyAvail abl e = FALSE | |
eapRestart = FALSE | |
_____________________________ e
| DLE | eapReq | RECEI VED
[----mmmmm - - Fmmm e e
| (al t Accept && |
| decision I= FAIL) || |
| (idleWiile == 0 & | SUCCESS
| deci si on == |
| UNCOND_SUCC) |
[----mmmmm - - Fmmm e e

Vollbrecht, et al. Informational [Rge 39]

Internet-Draft

RECEI VED

(rxReq, rxSuccess, rxFai | ure,
reql d, reghet hod)
par seEapReq(eapReqDat a)

\ollbrecht, et al.

EAPState Machines

al t Rej ect
(idlewile
decision !=

I N I
I I
I I
| UNCOND_SUCO) | | |
I I
I I
I I

0 &&

(al t Accept &&
nmet hodState ! = CONT &&
FAI L)

deci sion ==
| rxReq &&
| (reqgld !'=Tlastld) &
| (regMet hod
I
I

I
I
== |
sel ect edMet hod) && |
(methodState ! = DONE) |

| rxReq && |
| (reqgld !'=lastld) && |
| (sel ect edMet hod |
I NONE) && I
| (regMethod ! = |
I I
I I
I I

| DENTI TY) &&
(regMethod !=
NOTI FI CATI ON)

| rxReq && |
| (regld !'=Tlastld) && |
| (sel ect edMet hod |
I NONE) && I
I I
I I

(reqMet ho
| DENTI TY)

rxReq &&
(reqld !'= lastld)

|

| &&
| (regMet hod ==

|

|

|

|

== |
NOTI FI CATI ON) && |
al l owNot i fications |

| rxReq && |
| (reqld [ast1d) |

| rxsuccess && |
| (reqgld lastld) && |
| (decision !'= FAIL) |

Informational

September 2004

FAI LURE

GET_METHOD

| DENTI TY

[Rge 40]

Internet-Draft EAPState Machines September 2004

I L Fmmm e e e
| (et hodSt ate! =CONT) && |
| ((rxFailure & |
| decision I= |
| UNCOND_SUCC) | | | FAI LURE
| (rxSuccess && |
| decision == FAIL)) && |
| (regld == lastld) |
I L Fmmm e e e
| el se | DI SCARD
_____________________________ e
VETHOD | |
I I
i gnore = m check(eapRegData) | i gnore | DI SCARD
if (lignore) { | |
(et hodSt at e, deci si on, | |
al l owNotifications) = I L R L
m pr ocess(eapReqDat a) |
/* methodState i s CONT, |
MAY_CONT, or DONE */ (et hodSt at e==DONE) && | FAI LURE

COND_SUCC, or
UNCOND_SuUcCC */
eapRespData = I L R L
m bui | dResp(reql d)

I
I
I
/* decision is FAIL, | (decision == FAIL) |
I
I

I I
if (misKeyAvailable()) | el se | SEND_RESPONSE
eapKeyData = m getKey() | |
} I I
_____________________________ e
GET_METHOD |

I
| sel ect edMet hod == |
if (allowvethod(regMethod)) {] reqMet hod | METHOD
sel ect edMet hod = reqgMet hod | |
net hodState = INIT | |

} else { [----mmmm - L
eapRespData = | |
bui | dNak(reql d) | el se | SEND_ RESPONSE
} | |
_____________________________ o
| DENTI TY

eapRespData =

I I
I I
processldentity(eapRegData) | uct | SEND_ RESPONSE
I I
buil dl dentity(reqld) | |

Vollbrecht, et al. Informational [Rge 41]

Internet-Draft

NOTI FI CATI ON

processNoti f y(eapRegDat a)
eapRespData =
bui | dNoti fy(reqld)

eapReq = FALSE
eapNoResp = TRUE

SEND_RESPONSE

lastld = reqld
| ast RespData =
eapReq = FALSE
eapResp = TRUE
idlewhile = dientTi neout

eapRespDat a

i f (eapKeyData != NONE)
eapKeyAvail abl e = TRUE
eapSuccess = TRUE

FAI LURE

eapFail = TRUE

EAPState Machines

e e e e e e e e e e e
|

|

| UCT

|

|

e e e e e e e e e e e
|

| UCT

|

e e e e e e e e e e e
|

| UCT

|

|

e e e e e e e e e e e
|

|

|

| UCT

|

|

|

e e e e e e e e e e e
|

|

|

|

|

e e e e e e e e e e e
|

|

|

Figure 8

A.2. EAP Standalone Authenticator State Machine (Figue 4)

(gl obal transitions)

\ollbrecht, et al.

I L +-

| eapRestart && |

| por t Enabl ed |
e +-

| por t Enabl ed |
e +-

Informational

September 2004
o e e e e e m .-
|
|
| SEND_RESPONSE
|
|
o e e e e e m .-
|
| SEND_RESPONSE
|
o e e e e e m .-
|
| | DLE
|
|
o e e e e e m .-
|
|
|
| | DLE
|
|
|
o e e e e e m .-
|
|
|
|
|
o e e e e e m .-
|
|
|
DI SABLED
I NI TI ALI ZE
I NI TI ALI ZE

[Rge 42]

Internet-Draft EAPState Machines September 2004

I NI TI ALl ZE

| |
| |
currentld = NONE | |
eapSuccess = FALSE | |
eapFai|l = FALSE | ucr | SELECT_ACTI ON
eapTi meout = FALSE | |
eapKeyData = NONE | |
eapKeyAvai | abl e = FALSE | |
eapRestart = FALSE | |

______________________________ e
| DLE | |
| retransWile == | RETRANSM T
retransWile = | |
cal cul at eTi meout (I L R
retransCount, eapSRITT, | eapResp | RECEI VED
eapRTTVAR, met hodTi meout) | |
______________________________ e

retransCount >
ret ransCount ++ MaxRet r ans

i f (retransCount <=MaxRetrans) {

eapRegDat a = | ast ReqDat a R L R R
eapReq = TRUE | el se | | DLE
} I I
______________________________ e
RECEI VED rxResp &&
(respld ==

(rxResp, respld, respMet hod) =
par seEapResp(eapRespDat a)

I I
I I
| currentld) && |
| (respMethod == NAK |
I N I NAK
| respMet hod == |
| EXPANDED NAK) && |
| (rmet hodSt ate == |
| PROPCSED) |

| rxResp && |
| (respld == |
| currentld) && | I NTEGRI TY_CHECK
| (respMet hod == |
| curr ent Met hod) |

Vollbrecht, et al. Informational [Rge 43]

Internet-Draft

m reset ()
Pol i cy. update(<...>)

SELECT_ACTI ON

decision =

Pol i cy. get Deci si on()
SUCCESS, FAI LURE, or
CONTI NUE */

| NTEGRI TY_CHECK

/*

i gnore = m check(eapRespDat a)

VETHOD_RESPONSE

m pr ocess(eapRespDat a)

if (misbDone()) {
Pol i cy. update(<...>)
eapKeyData = m get Key()
nmet hodState = END

} else
nmet hodSt at e = CONTI NUE

PROPOSE._ METHOD

current Met hod =
Pol i cy. get Next Met hod()

minit()

i f (currentMethod==I DENTITY ||
cur rent Met hod==NOTI FI CATI
nmet hodSt at e = CONTI NUE

el se
net hodSt at e PROPCOSED

METHOD REQUEST

currentld =

eapReqgData =
m bui | dReq(current|d)

nmet hodTi meout = m get Ti neout ()

nextld(currentld)

\ollbrecht, et al.

EAPState Machines

e e e e e e e e e e m e .-

|

| ucr

|

|

e e e e e e e e e e m e .-

| decision == FAI LURE

|

IR

| decision == SUCCESS

IR

| el se

e e e e e e e e e e m e .-

| i gnore

| = cm e

| l'ignore

e e e e e e e e e e m e .-

|

| methodState == END

|

|

IR

|

| el se

|

|

e e e e e e e e e e m e .-

|

|

|

|

| ucr

|

|

|

|

|

e e e e e e e e e e m e .-

|

|

| ucr

|

|

|

e e e e e e e e e e m e .-
Informational

September 2004

P
|

| SELECT_ACTION
|

|
P

| FAl LURE
|
P

| SUCCESS
P

| PROPOSE_METHOD
P

| DI SCARD
P

METHOD REQUEST

[Rge 44]

Internet-Draft EAPState Machines September 2004

|
|
eapResp = FALSE |
eapNoReq = TRUE |

SEND_REQUEST

retransCount = 0

| ast RegDat a = eapRegDat a
eapResp = FALSE

eapReq = TRUE

TI MEQUT_FAI LURE | |
eapTi meout = TRUE | |

FAI LURE

bui | dFai l ure(currentld)

| |
| |
eapRegData = | |
| |
eapFail = TRUE | |

| |
| |
eapReqData = | |

bui | dSuccess(currentld) | |
i f (eapKeyData != NONE) | |

eapKeyAvail abl e = TRUE | |
eapSuccess = TRUE | |

Figure 9

A.3. EAP Backend Authenticator State Machine (Figue 5

(gl obal transitions) | I backendEnabl ed | DI SABLED

Dl SABLED | backendEnabl ed && | I NI TI ALI ZE
| aaaEapResp |

Vollbrecht, et al. Informational [Rge 45]

Internet-Draft EAPState Machines September 2004

______________________________ e
I NI TI ALI ZE | I'rxResp | SELECT_ACTI ON
I L Fomm e e ae e
current Met hod = NONE | rxResp && |
(rxResp, respld, respMet hod) = | (respMethod == NAK |
par seEapResp(aaaEapRespDat a) | [] | NAK
if (rxResp) | respMet hod == |
currentld = respld | EXPANDED _NAK) |
el se I L R
currentld = NONE | el se | PICK UP_METHOD
______________________________ e

Pl CK_UP_METHOD

I I
I I
if (Policy.doPi ckUp(| NONE |
I I

respMet hod)) ({

current Method = respMethod |--------------------- T
m i nitPi ckUp() | el se | METHOD_RESPONSE

} I I
______________________________ e
| DLE | aaaEapResp | RECEI VED
______________________________ e

RECEI VED | rxResp && |

I (respld == I

(rxResp, respld, respMet hod) = | currentld) && |

par seEapResp(aaaEapRespData)| (respMethod == NAK |
I N I NAK

| respMet hod == |

| EXPANDED NAK) && |

| (rmet hodSt ate == |

| PROPCSED) |
I L Fomm e e ae e

| rxResp && |

| (respld == |
| currentld) && | I NTEGRI TY_CHECK

| (respMet hod == |

| curr ent Met hod) |
I L Fomm e e ae e
| el se | DI SCARD
______________________________ e

NAK I I
| UCT | SELECT_ACTI ON

m reset () | |

Pol i cy. update(<...>) | |
______________________________ e

Vollbrecht, et al. Informational [Rge 46]

Internet-Draft

SELECT_ACTI ON

decision =

Pol i cy. get Deci si on()
SUCCESS, FAI LURE, or
CONTI NUE */

| NTEGRI TY_CHECK

/*

ignore =
m check(aaaEapRespDat a)

METHOD RESPONSE

m pr ocess(aaaEapRespDat a)
if (misbDone()) {
Pol i cy. update(<...>)

aaaEapKeyDat a = m get Key()
net hodState = END

} else
nmet hodSt at e = CONTI NUE

PROPCSE_METHOD

current Met hod =
Pol i cy. get Next Met hod()

minit()

i f (currentMethod==I DENTITY ||
cur r ent Met hod==NOTI FI CATI ON)
nmet hodSt at e = CONTI NUE

el se
net hodSt at e = PROPOSED

METHOD_REQUEST

currentld = nextld(currentld)

aaaEapReqDat a =
m bui | dReq(current| d)

aaaMet hodTi neout =
m get Ti neout ()

DI SCARD

aaaEapResp = FALSE

aaaEapNoReq = TRUE

\ollbrecht, et al.

EAPState Machines

FAI LURE

| decision

met hodSt at e END

IR
I

| el se

I

I

e e e e e e e e e e m e .-
I

I

I

I

| UCT

I

I

I

I

I

e e e e e e e e e e m e .-
I

I

I

| UCT

I

I

I

e e e e e e e e e e m e .-
I

| UCT

I

I

e e e e e e e e e e m e .-

Informational

September 2004
e m e e e e e e e e
| FAI LURE
I
e m e e e e e e e e
| SUCCESS
e m e e e e e e e e
| PROPCSE_METHOD
e m e e e e e e e e
| Dl SCARD
I
e m e e e e e e e e
| METHOD RESPONSE
e m e e e e e e e e
I
| SELECT_ACTI ON
I
I
e m e e e e e e e e
I
| METHOD REQUEST
I
I
e m e e e e e e e e
I
I
I
I
| METHOD REQUEST
I
I
I
I
I
e m e e e e e e e e
I
I
I
| SEND REQUEST
I
I
I
e m e e e e e e e e
I
| | DLE
I
I
e m e e e e e e e e

[Rge 47]

Internet-Draft EAPState Machines September 2004

SEND_REQUEST

|
|
aaaEapResp = FALSE |
aaaEapReq = TRUE |

FAI LURE

bui | dFai l ure(currentld)

| |
| |
aaaEapReqDat a = | |
| |
aaaEapFai |l = TRUE | |

| |
| |
aaaEapReqDat a = | |

bui | dSuccess(currentld) | |
i f (aaaEapKeyData != NONE) | |

aaaEapKeyAvai |l abl e = TRUE | |
aaaEapSuccess = TRUE | |

Figure 10
A.4. EAP Full Authenticator State Machine (Figures 6 and 7)

This state machine contains all the states from EAP Standalone Authenticator State Machine, except that
SELECT_ACTION state is replaced with the following:

SELECT_ACTI ON | decision == FAILURE | FAI LURE

| |
decision = I L R
Pol i cy. get Deci si on() | decision == SUCCESS | SUCCESS
[* SUCCESS, FAILURE, CONTINUE,|--------------------- R L
or PASSTHROUGH */ | deci sion == | I NI TI ALI ZE_
| PASSTHROUGH | PASSTHROUGH
I L Fomm e e ae e
| el se | PROPOSE_METHOD

Figure 11

I NI TI ALI ZE_PASSTHROUGH | currentlid !'= NONE | AAA REQUEST

I L Fomm e e ae e
aaaEapRespDat a = NONE | currentld == NONE | AAA | DLE
______________________________ e m e -

Vollbrecht, et al. Informational [Rge 48]

Internet-Draft EAPState Machines September 2004

______________________________ e
| DLE2 | |
| retransWiile == 0 | RETRANSM T2
retransWile = | |
cal cul at eTi meout (I L R
retransCount, eapSRITT, | eapResp | RECEI VED2
eapRTTVAR, met hodTi meout) | |
______________________________ e
RETRANSM T2 | |
| retransCount > | TI MEQUT_
retransCount ++ | MaxRet r ans | FAI LURE2
i f (retransCount <=MaxRetrans){| |
eapRegDat a = | ast ReqDat a I L R
eapReq = TRUE | el se | | DLE2
} | |
______________________________ e
RECEI VED2 | rxResp && |
| (respld == | AAA REQUEST
(rxResp, respl d, respMet hod) = | currentld) |
par seEapResp(eapRespDat a) I L R
| el se | DI SCARD2
______________________________ e
AAA REQUEST | |
| |
if (respMethod == IDENTITY) { | Uct | AAA | DLE
aaal dentity = eapRespData | |
aaaEapRespData = eapRespData | |
______________________________ e
AAA | DLE | aaaEapNoReq | DI SCARD2
I L Fomm e e ae e
aaaFai |l = FALSE | aaaEapReq | AAA RESPONSE
aaaSuccess = FALSE I L R
aaaEapReq = FALSE | aaaTi meout | TI MEQUT _
aaaEapNoReq = FALSE | | FAI LURE2
aaaEapResp = TRUE I L R
| aaaFai | | FAI LURE2
I L Fomm e e ae e
| aaasSuccess | SUCCESS?2
______________________________ e
AAA RESPONSE | |
| |
eapRegDat a = aaaEapReqgDat a | Uuct | SEND REQUEST?2
currentld = getld(eapRegData) | |
nmet hodTi meout = | |
aaaMet hodTi neout | |
______________________________ e

Vollbrecht, et al. Informational [Rge 49]

Internet-Draft EAPState Machines September 2004

|
|
eapResp = FALSE |
eapNoReq = TRUE |

SEND_REQUEST2

retransCount = 0 | DLE2

| ast RegDat a = eapRegDat a
eapResp = FALSE

eapReq = TRUE

TI MEQUT_FAI LURE2 | |
eapTi meout = TRUE | |
FAI LURE2

eapReqDat a = aaaEapRegDat a
eapFail = TRUE

| |
| |
eapRegDat a aaaEapRegDat a | |
eapKeyDat a aaaEapKeyDat a | |
| |
| |
| |

eapKeyAvail abl e =
aaaEapKeyAvai | abl e
eapSuccess = TRUE

Figure 12

Vollbrecht, et al. Informational [Rge 50]

Internet-Draft EAPState Machines September 2004

Authors’ Addresses

John R. Vollbrecht
Vollbrecht Consulting LLC
9682 Alice Hill Drive
Dexter Ml 48130

USA

EMail: jrv@umich.edu

Pasi Eronen

Nokia Research Center
PO. Box 407

FIN-00045 Nokia Group,
Finland

EMail: pasi.eronen@nokia.com

Nick L. Petroni, Jr.

University of Maryland, College Park
A.V. Williams Building

College Park, MD 20742

USA

EMail: npetroni@cs.umd.edu
Yoshihiro Ohba

Toshiba America Research, Inc.
1 Telcordia Drve

Piscatavay, NJ 08854

USA

EMail: yohba@tari.toshiba.com

Vollbrecht, et al. Informational [Rge 51]

Internet-Draft EAPState Machines September 2004

Full Copyright Statement
Copyright (C) The Internet Society (2004).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth
therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE
CONTRIBUTOR, THE ORGANIZATION HE/S HE REPRESENTS OR IS SPONSORED BY (IF ANY),
THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NDLIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL N@ INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no positiongarding the validity or scope of ginintellectual Property Rights or other rights

that might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which arlicense under such rights might or might not elable; nor does it represent that it

has made gnindependent effort to identify gsuch rights. Information on the IET$procedures with

respect to rights in IETF Documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat grabsmrances of licenses to be madglable,
or the result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at
http://lwww.ietf.org/ipr.
The IETF invites ayinterested party to bring to its attentiory aopyrights, patents or patent applications,
or other proprietary rights that mayventechnology that may be required to implement this standard.
Please address the information to the IETF at ietf-ipr@ietf.org.
Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.

Vollbrecht, et al. Informational [Rge 52]

