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Abstract 

A framing protocol is defined for TCP that is fully compliant with 
applicable TCP RFCs and fully interoperable with existing TCP 
implementations. The framing mechanism is designed to work as an 
"adaptation layer" between TCP and the Direct Data Placement [DDP] 
protocol, preserving the reliable, in-order delivery of TCP, while 
adding the preservation of higher-level protocol record boundaries 
that DDP requires.  
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Revision history 

[draft-ietf-rddp-mpa-02] workgroup draft with following changes: 

Added the "R" bit (Rejected) to the "MPA Reply Frame" and 
described its semantics. 

Added some comments on recent decisions regarding startup. 

Updated RFC3667 boilerplate. 

[draft-ietf-rddp-mpa-01] Alias of draft-ietf-rddp-map-00. 

[draft-ietf-rddp-mpa-00] workgroup draft with following changes: 

Changed "Start Key" to two separate startup frames to facilitate 
identification of incorrect Active/Active startup. 

Changed Active/Passive nomenclature to Initiator/Responder to 
reduce confusion with TCP startup and verbs doc (which used 
opposite sense). 

Added "Private Data" to the startup key sequences.  This also 
required describing the motivation and expected usage models 
along with some interface hints.  Removed the "Private data" 
stuff from appendix. 

Added example "Immediate" startup with TCP and explanation. 

[draft-culley-iwarp-mpa-03]  

Add option to allow receivers to specify Marker use. 

Add option that allows both sides to agree not to use CRC. 
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Added startup declaration "Start Key" with options and larger 
MPA mode recognition "key". 

Updated MPA/DDP connection startup rules and sequence to deal 
with "Start Key". 

Added Appendix that provides a more detailed analysis of the 
effects of MPA on TCP data streams. 

Added appendix that describes a mechanism to deal with "private 
data" prior to full MPA/DDP operation. 

[draft-culley-iwarp-mpa-02] 

Enhanced descriptions of how MPA is used over an unmodified TCP. 

Removed "No Packing" text. 

Made MPA an adaptation layer for DDP, instead of a generalized 
framing solution. 

Added clarifications of the MPA/TCP interaction for optimized 
implementations and that any such optimizations are to be used 
only when requested by MPA. 

Note: a discussion of reasons for these changes can be found in 
[ELZER-MPA]. 

[draft-culley-iwarp-mpa-01] initial draft. 
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1 Introduction 

This section discusses the reason for creating MPA on TCP and a 
general overview of the protocol.  Later sections show the MPA 
headers (see section 4 on page 14), and detailed protocol 
requirements and characteristics (see section 5 on page 16), as well 
as Connection Semantics (section 6 on page 25), Error Semantics 
(section 7 on page 39), and Security Considerations (section 8 on 
page 40). 

1.1 Motivation 

The Direct Data Placement protocol [DDP], when used with TCP [RFC793] 
requires a mechanism to detect record boundaries.  The DDP records 
are referred to as Upper Layer Protocol Data Units by this document.  
The ability to locate the Upper Layer Protocol Data Unit (ULPDU) 
boundary is useful to a hardware network adapter that uses DDP to 
directly place the data in the application buffer based on the 
control information carried in the ULPDU header.  This may be done 
without requiring that the packets arrive in order.  Potential 
benefits of this capability are the avoidance of the memory copy 
overhead and a smaller memory requirement for handling out of order 
or dropped packets. 

Many approaches have been proposed for a generalized framing 
mechanism.  Some are probabilistic in nature and others are 
deterministic.  A probabilistic approach is characterized by a 
detectable value embedded in the octet stream.  It is probabilistic 
because under some conditions the receiver may incorrectly interpret 
application data as the detectable value.  Under these conditions, 
the protocol may fail with unacceptable frequency.  A deterministic 
approach is characterized by embedded controls at known locations in 
the octet stream.  Because the receiver can guarantee it will only 
examine the data stream at locations that are known to contain the 
embedded control, the protocol can never misinterpret application 
data as being embedded control data.  For unambiguous handling of an 
out of order packet, the deterministic approach is preferred. 

The MPA protocol provides a framing mechanism for DDP running over 
TCP using the deterministic approach.  It allows the location of the 
ULPDU to be determined in the TCP stream even if the TCP segments 
arrive out of order. 

1.2 Protocol Overview 

MPA is described as an extra layer above TCP and below DDP.  The 
operation sequence is: 

1. A TCP connection is established by ULP action.  This is done 
using methods not described by this specification.  The ULP may 
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exchange some amount of data in streaming mode prior to starting 
MPA, but is not required to do so. 

2. The Consumer negotiates the use of DDP and MPA at both ends of a 
connection.  The mechanisms to do this are not described in this 
specification.  The negotiation may be done in streaming mode, or 
by some other mechanism (such as a pre-arranged port number). 

3. The ULP activates MPA on each end in the "Startup Phase", either 
as an "Initiator" or a "Responder", as determined by the ULP.  
This mode verifies the usage of MPA, specifies the use of CRC and 
Markers, and allows the ULP to communicate some additional data 
via a "private data" exchange.  See section 6.1 Connection setup 
for more details on the startup process. 

4. At the end of the Startup Phase, the ULP puts MPA (and DDP) into 
full operation and begins sending DDP data as further described 
below.  In this document, DDP data chunks are called ULPDUs.  For 
a description of the DDP data, see [DDP]. 

Following is a description of data transfer when MPA is in full 
operation. 

1. DDP determines the Maximum ULPDU (MULPDU) size by querying MPA 
for this value.  MPA derives this information from TCP, when it 
is available, or chooses a reasonable value.  This information is 
already supported on many TCP implementations, including all 
modern flavors of BSD networking, through the TCP_MAXSEG socket 
option. 

2. DDP creates ULPDUs of MULPDU size or smaller, and hands them to 
MPA at the sender. 

3. MPA creates a Framed Protocol Data Unit (FPDU) by pre-pending a 
header, optionally inserting markers, and appending a CRC field 
after the ULPDU and PAD (if any).  MPA delivers the FPDU to TCP. 

4. The TCP sender puts the FPDUs into the TCP stream.  If the TCP 
Sender is MPA-aware, it segments the TCP stream in such a way 
that a TCP Segment boundary is also the boundary of an FPDU.  TCP 
then passes each segment to the IP layer for transmission. 

5. The TCP receiver may be MPA-aware or may not be MPA-aware. If it 
is MPA-aware, it may separate passing the TCP payload to MPA from 
passing the TCP payload ordering information to MPA. In either 
case, RFC compliant TCP wire behavior is observed at both the 
sender and receiver. 
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7. MPA then provides the complete ULPDUs to DDP.  MPA may also 
separate passing MPA payload to DDP from passing the MPA payload 
ordering information.   

The layering of PDUs with MPA is shown in Figure 1, below. 

MPA-aware TCP is a TCP layer which potentially contains some 
additional semantics as defined in this document.  MPA is implemented 
as a data stream ULP for TCP and is therefore RFC compliant.  MPA-
aware TCP is RFC compliant.  

            +------------------+ 
            |     ULP client   | 
            +------------------+  <- Consumer messages 
            |        DDP       | 
            +------------------+  <- ULPDUs 
            |        MPA       | 
            +------------------+  <- FPDUs (containing ULPDUs) 
            |        TCP*      | 
            +------------------+  <- TCP Segments (containing FPDUs) 
            |      IP etc.     |      
            +------------------+ 
                                   * TCP or MPA-aware TCP. 
 

Figure 1 ULP MPA TCP Layering 

An MPA-aware TCP sender is able to segment the data stream such that 
TCP segments begin with FPDUs (FPDU Alignment).  This has significant 
advantages for receivers.  When segments arrive with aligned FPDUs 
the receiver usually need not buffer any portion of the segment, 
allowing DDP to place it in its destination memory immediately, thus 
avoiding copies from intermediate buffers (DDP's reason for 
existence). 

MPA with an MPA-aware TCP receiver allows a DDP on MPA implementation 
to recover ULPDUs that may be received out of order.  This enables a 
DDP on MPA implementation to save a significant amount of 
intermediate storage by placing the ULPDUs in the right locations in 
the application buffers when they arrive, rather than waiting until 
full ordering can be restored. 

The ability of a receiver to recover out of order ULPDUs is optional 
and declared to the transmitter during startup.  When the receiver 
declares that it does not support out of order recovery, the 
transmitter does not add the control information to the data stream 
needed for out of order recovery.  

MPA implementations that support recovery of out of order ULPDUs MUST 
support a mechanism to indicate the ordering of ULPDUs as the sender 
transmitted them and indicate when missing intermediate segments 
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arrive.  These mechanisms allow DDP to reestablish record ordering 
and report Delivery of complete messages (groups of records). 

MPA also addresses enhanced data integrity.  Many users of TCP have 
noted that the TCP checksum is not as strong as could be desired 
[CRCTCP].  Studies have shown that the TCP checksum indicates 
segments in error at a much higher rate than the underlying link 
characteristics would indicate.  With these higher error rates, the 
chance that an error will escape detection, when using only the TCP 
checksum for data integrity, becomes a concern.  A stronger integrity 
check can reduce the chance of data errors being missed. 

MPA includes a CRC check to increase the ULPDU data integrity to the 
level provided by other modern protocols, such as SCTP [RFC2960].  
This check may be disabled with agreement by providers and 
administrators at both ends of a connection.  This disabling of CRCs 
should only be done when it is clear that the connection through the 
network has data integrity at least as good as a CRC (for example 
when IPSEC is implemented end to end).  DDP's ULP expects this level 
of data integrity and therefore the ULP SHOULD NOT have to provide 
its own duplicate data integrity and error recovery for lost data.   
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2 Glossary 

Consumer - the ULPs or applications that lie above MPA and DDP.  The 
Consumer is responsible for making TCP connections, starting MPA 
and DDP connections, and generally controlling operations. 

Delivery - (Delivered, Delivers) - For MPA, Delivery is defined as 
the process of informing DDP that a particular PDU is ordered for 
use.  This is specifically different from "passing the PDU to 
DDP", which may generally occur in any order, while the order of 
"Delivery" is strictly defined. 

EMSS - Effective Maximum Segment Size.  EMSS is the smaller of the 
TCP maximum segment size (MSS) as defined in RFC 793 [RFC793], 
and the current path Maximum Transfer Unit (MTU) [RFC1191]. 

FPDU - Framing Protocol Data Unit.  The unit of data created by an 
MPA sender. 

FPDU Alignment - the property that a TCP segment begins with an FPDU. 

Header Alignment - the property that a TCP segment begins with an 
FPDU and the TCP segment includes an integer number of FPDUs. 

PDU - protocol data unit 

MPA-aware TCP - a TCP implementation that is aware of the receiver 
efficiencies of MPA Header Alignment and is capable of sending 
TCP segments that begin with an FPDU. 

MPA-enabled - MPA is enabled if the MPA protocol is visible on the 
wire.  When the sender is MPA-enabled, it is inserting framing 
and markers.  When the receiver is MPA-enabled, it is 
interpreting framing and markers. 

MPA - Marker-based ULP PDU Aligned Framing for TCP protocol.   This 
document defines the MPA protocol. 

MULPDU - Maximum ULPDU. The current maximum size of the record that 
is acceptable for DDP to pass to MPA for transmission. 

Node - A computing device attached to one or more links of a Network. 
A Node in this context does not refer to a specific application 
or protocol instantiation running on the computer. A Node may 
consist of one or more MPA on TCP devices installed in a host 
computer. 
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Nodes. 
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ULP - Upper Layer Protocol. The protocol layer above the protocol 
layer currently being referenced. The ULP for MPA is DDP [DDP]. 

ULPDU - Upper Layer Protocol Data Unit.  The data record defined by 
the layer above MPA (DDP).  ULPDU corresponds to DDP's "DDP 
Segment". 
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3 LLP and DDP requirements 

3.1 TCP implementation Requirements to support MPA  

The TCP implementation MUST inform MPA when the TCP connection is 
closed or has begun closing the connection (e.g. received a FIN). 

3.1.1 TCP Transmit side 

To provide optimum performance, an MPA-aware transmit side TCP 
implementation SHOULD be enabled to: 

* 

* 

* 

With an EMSS large enough to contain the FPDU(s), segment the 
outgoing TCP stream such that the first octet of every TCP 
Segment begins with an FPDU.  Multiple FPDUs MAY be packed into a 
single TCP segment as long as they are entirely contained in the 
TCP segment.  

Report the current EMSS to the MPA transmit layer. 

An MPA-aware TCP transmit side implementation MUST continue to use 
the method of segmentation expected by non-MPA applications (and 
described in TCP RFCs) when MPA is not enabled on the connection.  
When MPA is enabled above an MPA-aware TCP, it SHOULD specifically 
enable the segmentation rules described above for the DDP segments 
(FPDUs) posted for transmission.  

If the transmit side TCP implementation is not able to segment the 
TCP stream as indicated above, MPA SHOULD make a best effort to 
achieve that result.  For example, using the TCP_NODELAY socket 
option to disable the Nagle algorithm will usually result in many of 
the segments starting with an FPDU. 

If the transmit side TCP implementation is not able to report the 
EMSS, MPA may assume that TCP will use 1460 octet segments in 
creating FPDUs.  If the implementation has reason to believe that the 
TCP segment size is actually smaller than 1460, it may instead use a 
536 octet FPDU. 

3.1.2 TCP Receive side 

When an MPA receive implementation and the MPA-aware receive side TCP 
implementation support handling out of order ULPDUs, the TCP receive 
implementation SHOULD be enabled to: 
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Pass incoming TCP segments to MPA as soon as they have been 
received and validated, even if not received in order.  The TCP 
layer MUST have committed to keeping each segment before it can 
be passed to the MPA.  This means that the segment must have 
passed the TCP, IP, and lower layer data integrity validation 
(i.e., checksum), must be in the receive window, must not be a 
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duplicate, must be part of the same epoch (if timestamps are used 
to verify this) and any other checks required by TCP RFCs.  The 
segment MUST NOT be passed to MPA more than once unless 
explicitly requested (see Section 7). 
 
This is not to imply that the data must be completely ordered 
before use.  An implementation may accept out of order segments, 
SACK them [RFC2018], and pass them to DDP when the reception of 
the segments needed to fill in the gaps arrive.  Such an 
implementation can "commit" to the data early on, and will not 
overwrite it even if (or when) duplicate data arrives.  MPA 
expects to utilize this "commit" to allow the passing of ULPDUs 
to DDP when they arrive, independent of ordering. 

* 

* 

Provide a mechanism to indicate the ordering of TCP segments as 
the sender transmitted them.  One possible mechanism might be 
attaching the TCP sequence number to each segment. 

Provide a mechanism to indicate when a given TCP segment (and the 
prior TCP stream) is complete.  One possible mechanism might be 
to utilize the leading (left) edge of the TCP Receive Window. 

DDP on MPA MUST utilize these two mechanisms to establish the 
Delivery semantics that DDP's consumers agree to.  These 
semantics are described fully in [DDP]. These include 
requirements on DDP's consumer to respect ownership of buffers 
prior to the time that DDP delivers them to the consumer. 

An MPA-aware TCP receive side implementation MUST continue to buffer 
TCP segments until completely ordered and then deliver them as 
expected by non-MPA applications (and described in TCP RFCs) when MPA 
is not enabled on the connection.  When MPA is enabled above an MPA-
aware TCP, TCP SHOULD enable the in and out of order passing of data, 
and the separate ordering information as described above.  

When an MPA receive implementation is coupled with a TCP receive 
implementation that does not support the preceding mechanisms, TCP 
passes and Delivers incoming stream data to MPA in order. 

3.2 MPA's interactions with DDP 

DDP requires MPA to maintain DDP record boundaries from the sender to 
the receiver.  When using MPA on TCP to send data, DDP provides 
records (ULPDUs) to MPA.  MPA will use the reliable transmission 
abilities of TCP to transmit the data, and will insert appropriate 
additional information into the TCP stream to allow the MPA receiver 
to locate the record boundary information. 

As such, MPA accepts complete records (ULPDUs) from DDP at the sender 
and returns them to DDP at the receiver. 
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MPA combined with an MPA-aware TCP can only ensure FPDU Alignment 
with the TCP Header if the FPDU is less than or equal to TCP's EMSS.  
Since FPDU alignment is generally desired by the receiver, DDP must 
cooperate with MPA to ensure FPDUs' lengths do not exceed the EMSS 
under normal conditions.  This is done with the MULPDU mechanism. 

MPA provides information to DDP on the current maximum size of the 
record that is acceptable to send (MULPDU).  DDP SHOULD limit each 
record size to MULPDU.  The range of MULPDU values MUST be between 
128 octets and 64768 octets, inclusive. 

The sending DDP MUST NOT post a ULPDU larger than 64768 octets to 
MPA. DDP MAY post a ULPDU of any size between one and 64768 octets, 
however MPA is NOT REQUIRED to support a ULPDU length that is greater 
than the current MULPDU.   

While the maximum theoretical length supported by the MPA header 
ULPDU_Length field is 65535, TCP over IP requires the IP datagram 
maximum length to be 65535 octets. To enable MPA to support FPDU 
Alignment, the maximum size of the FPDU must fit within an IP 
datagram. Thus the ULPDU limit of 64768 octets was derived by taking 
the maximum IP datagram length, subtracting from it the maximum total 
length of the sum of the IPv4 header, TCP header, IPv4 options, TCP 
options, and the worst case MPA overhead, and then rounding the 
result down to a 128 octet boundary. 

On receive, MPA MUST pass each ULPDU with its length to DDP when it 
has been validated. 

If an MPA implementation supports passing out of order ULPDUs to DDP, 
the MPA implementation SHOULD: 

* 

* 

* 

* 

Pass each ULPDU with its length to DDP as soon as it has been 
fully received and validated. 

Provide a mechanism to indicate the ordering of ULPDUs as the 
sender transmitted them.  One possible mechanism might be 
providing the TCP sequence number for each ULPDU. 

Provide a mechanism to indicate when a given ULPDU (and prior 
ULPDUs) are complete.  One possible mechanism might be to allow 
DDP to see the current outgoing TCP Ack sequence number. 

Provide an indication to DDP that the TCP has closed or has begun 
to close the connection (e.g. received a FIN). 
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4 FPDU Formats 

MPA senders create FPDUs out of ULPDUs.  The format of an FPDU shown 
below MUST be used for all MPA FPDUs.  For purposes of clarity, 
markers are not shown in Figure 2. 

    0                   1                   2                   3 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |          ULPDU_Length         |                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               + 
   |                                                               | 
   ~                                                               ~ 
   ~                            ULPDU                              ~ 
   |                                                               | 
   |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                               |          PAD (0-3 octets)     | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                             CRC                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 2 FPDU Format 

ULPDU_Length: 16 bits (unsigned integer).  This is the number of 
octets of the contained ULPDU.  It does not include the length of the 
FPDU header itself, the pad, the CRC, or of any markers that fall 
within the ULPDU. The 16-bit ULPDU Length field is large enough to 
support the largest IP datagrams for IPv4 or IPv6. 

PAD: The PAD field trails the ULPDU and contains between zero and 
three octets of data.  The pad data MUST be set to zero by the sender 
and ignored by the receiver (except for CRC checking).  The length of 
the pad is set so as to make the size of the FPDU an integral 
multiple of four. 

CRC: 32 bits, When CRCs are enabled, this field contains a CRC32C 
check value, which is used to verify the entire contents of the FPDU, 
using CRC32C.  See section 5.2 CRC Calculation on page 18.  When CRCs 
are not enabled, this field is still present, may contain any value, 
and MUST NOT be checked. 

The FPDU adds a minimum of 6 octets to the length of the ULPDU.  In 
addition, the total length of the FPDU will include the length of any 
markers and from 0 to 3 pad octets added to round-up the ULPDU size. 
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4.1 Marker Format 

The format of a marker MUST be as specified in Figure 3: 

    0                   1                   2                   3 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |           RESERVED            |            FPDUPTR            | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 3 Marker Format 

RESERVED: The Reserved field MUST be set to zero on transmit and 
ignored on receive (except for CRC calculation). 

FPDUPTR: The FPDU Pointer is a relative pointer, 16-bits long, 
interpreted as an unsigned integer, that indicates the number of 
octets in the TCP stream from the beginning of the FPDU to the first 
octet of the entire marker. 
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5 Data Transfer Semantics 

This section discusses some characteristics and behavior of the MPA 
protocol as well as implications of that protocol. 

5.1 MPA Markers 

MPA markers are used to identify the start of FPDUs when packets are 
received out of order.  This is done by locating the markers at fixed 
intervals in the data stream (which is correlated to the TCP sequence 
number) and using the marker value to locate the preceding FPDU 
start. 

The MPA receiver's ability to locate out of order FPDUs and pass the 
ULPDUs to DDP is implementation dependent.  MPA/DDP allows those 
receivers that are able to deal with out of order FPDUs in this way 
to require the insertion of markers in the data stream.  When the 
receiver cannot deal with out of order FPDUs in this way, it may 
disable the insertion of markers at the sender.  All MPA senders MUST 
be able to generate markers when their use is declared by the 
opposing receiver (see section 6.1 Connection setup on page 26). 

When Markers are enabled, MPA senders MUST insert a marker into the 
data stream at a 512 octet periodic interval in the TCP Sequence 
Number Space. The marker contains a 16 bit unsigned integer referred 
to as the FPDUPTR (FPDU Pointer).  

If the FPDUPTR's value is non-zero, the FPDU Pointer is a 16 bit 
relative back-pointer. FPDUPTR MUST contain the number of octets in 
the TCP stream from the beginning of the current FPDU to the first 
octet of the marker, unless the marker falls between FPDUs. Thus the 
location of the first octet of the previous FPDU header can be 
determined by subtracting the value of the given marker from the 
current octet-stream sequence number (i.e. TCP sequence number) of 
the first octet of the marker. Note that this computation must take 
into account that the TCP sequence number could have wrapped between 
the marker and the header. 

An FPDUPTR value of 0x0000 is a special case - it is used when the 
marker falls exactly between FPDUs.  In this case, the marker MUST be 
placed in the following FPDU and viewed as being part of that FPDU 
(e.g. for CRC calculation). Thus an FPDUPTR value of 0x0000 means 
that immediately following the marker is an FPDU header. 

Since all FPDUs are integral multiples of 4 octets, the bottom two 
bits of the FPDUPTR as calculated by the sender are zero.  MPA 
reserves these bits so they MUST be treated as zero for computation 
at the receiver. 
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When Markers are enabled (see section 6.1 Connection setup on page 
26), the MPA markers MUST be inserted immediately following MPA 
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connection establishment, and at every 512th octet of the TCP octet 
stream thereafter.  As a result, the first marker has an FPDUPTR 
value of 0x0000.  If the first marker begins at octet sequence number 
SeqStart, then markers are inserted such that the first octet of the 
marker is at octet sequence number SeqNum if the remainder of (SeqNum 
- SeqStart) mod 512 is zero.  Note that SeqNum can wrap. 

For example, if the TCP sequence number were used to calculate the 
insertion point of the marker, the starting TCP sequence number is 
unlikely to be zero, and 512 octet multiples are unlikely to fall on 
a modulo 512 of zero. If the MPA connection is started at TCP 
sequence number 11, then the 1st marker will begin at 11, and 
subsequent markers will begin at 523, 1035, etc.  

If an FPDU is large enough to contain multiple markers, they MUST all 
point to the same point in the TCP stream: the first octet of the 
FPDU. 

If a marker interval contains multiple FPDUs (the FPDUs are small), 
the marker MUST point to the start of the FPDU containing the marker 
unless the marker falls between FPDUs, in which case the marker MUST 
be zero. 

The following example shows an FPDU containing a marker. 

    0                   1                   2                   3 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |       ULPDU Length (0x0010)   |                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               + 
   |                                                               | 
   +                                                               + 
   |                         ULPDU (octets 0-9)                    | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |            (0x0000)           |        FPDU ptr (0x000C)      | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                        ULPDU (octets 10-15)                   | 
   |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                               |          PAD (2 octets:0,0)   | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                              CRC                              | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 4 Example FPDU Format with Marker 

MPA Receivers MUST preserve ULPDU boundaries when passing data to 
DDP. MPA Receivers MUST pass the ULPDU data and the ULPDU Length to 
DDP and not the markers, headers, and CRC. 
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5.2 CRC Calculation 

An MPA implementation MUST implement CRC support and MUST either: 

(1) always use CRCs 

 or 

(2) only negotiate the non-use of CRC on the explicit request of the 
system administrator, via an interface not defined in this spec.  
The default configuration for a connection MUST be to use CRCs. 

(3) The MPA provider at either peer MAY ignore its administrator's 
request that CRCs not be used. 

The decision for one host to request CRC suppression MAY be made on 
an administrative basis for any path that provides equivalent 
protection from undetected errors as an end-to-end CRC32c. 

The process MUST be invisible to the ULP. 

After receipt of an MPA startup declaration indicating that its peer 
requires CRCs, an MPA instance MUST continue generating and checking 
CRCs until the connection terminates.  If an MPA instance has 
declared that it does not require CRCs, it MUST turn off CRC checking 
immediately after receipt of an MPA mode declaration indicating that 
its peer also does not require CRCs.  It MAY continue generating 
CRCs.  See section 6.1 Connection setup on page 26 for details on the 
MPA startup. 

When sending an FPDU, the sender MUST include a CRC field.  When CRCs 
are enabled, the CRC field in the MPA FPDU MUST be computed using the 
CRC32C polynomial in the manner described in the iSCSI Protocol 
[iSCSI] document for Header and Data Digests. 
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The fields which MUST be included in the CRC calculation when sending 
an FPDU are as follows: 

1) If the first octet of the FPDU is the "ULPDU Length" field, the 
CRC-32c is calculated from the first octet of the "ULPDU Length" 
header, through all the ULPDU and markers (if present), to the 
last octet of the PAD (if present), inclusive. If there is a 
marker immediately following the PAD, the marker is included in 
the CRC calculation for this FPDU. 

2) If the first octet of the FPDU is a marker, (i.e. the marker fell 
between FPDUs, and thus is required to be included in the second 
FPDU), the CRC-32c is calculated from the first octet of the 
marker, through the "ULPDU Length" header, through all the ULPDU 
and markers (if present), to the last octet of the PAD (if 
present), inclusive. 

3) After calculating the CRC-32c, the resultant value is placed into 
the CRC field at the end of the FPDU. 

When an FPDU is received, and CRC checking is enabled, the receiver 
MUST first perform the following: 

1) Calculate the CRC of the incoming FPDU in the same fashion as 
defined above. 

2) Verify that the calculated CRC-32c value is the same as the 
received CRC-32c value found in the FPDU CRC field.  If not, the 
receiver MUST treat the FPDU as an invalid FPDU. 

The procedure for handling invalid FPDUs is covered in the Error 
Section (see section 7 on page 39) 

The following is an annotated hex dump of an example FPDU sent as the 
first FPDU on the stream.  As such, it starts with a marker. The FPDU 
contains 24 octets of the contained ULPDU, which are all zeros. The 
CRC32c has been correctly calculated and can be used as a reference.  
See the [DDP] and [RDMA] specification for definitions of the DDP 
Control field, Queue, MSN, MO, and Send Data.  
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 Octet Contents Annotation 
 Count 
 
 0000 00 00 Marker: Reserved 
 0002 00 00         FPDUPTR 
 0004 00 2a Length 
 0006 40 03 DDP Control Field, Send with Last flag set 
 0008 00 00 Reserved (STag position with no STag) 
 000a 00 00  
 000c 00 00 Queue = 0 
 000e 00 00  
 0010 00 00 MSN = 1 
 0012 00 01  
 0014 00 00 MO = 0 
 0016 00 00  
 0018 00 00  
     Send Data (24 octets of zeros) 
 002e 00 00  
 0030 4C 86 CRC32c 
 0032 B3 84  

Figure 5 Annotated Hex Dump of an FPDU 

The following is an example sent as the second FPDU of the stream 
where the first FPDU (which is not shown here) had a length of 492 
octets and was also a Send to Queue 0 with Last Flag set.  This 
example contains a marker. 
 
 Octet Contents Annotation 
 Count  
 
 01ec 00 2a Length 
 01ee 40 03 DDP Control Field: Send with Last Flag set 
 01f0 00 00 Reserved (STag position with no STag) 
 01f2 00 00  
 01f4 00 00 Queue = 0 
 01f6 00 00  
 01f8 00 00 MSN = 2 
 01fa 00 02  
 01fc 00 00 MO = 0 
 01fe 00 00  
 0200 00 00 Marker: Reserved 
 0202 00 14         FPDUPTR 
 0204 00 00  
     Send Data (24 octets of zeros) 
 021a 00 00  
 021c A1 9C CRC32c 
 021e D1 03  

Figure 6 Annotated Hex Dump of an FPDU with Marker 

 
 
Culley et. al. Expires: January 2005 [Page 20] 
 



INTERNET-DRAFT MPA Framing for TCP 16 July 2004 
 

5.3 MPA on TCP Sender Segmentation 

The various TCP RFCs allow considerable choice in segmenting a TCP 
stream.  In order to optimize FPDU recovery at the MPA receiver, MPA 
specifies additional segmentation rules. 

MPA MUST encapsulate the ULPDU such that there is exactly one ULPDU 
contained in one FPDU.   

An MPA-aware TCP sender SHOULD, when enabled for MPA, on TCP 
implementations that support this, and with an EMSS large enough to 
contain at least one FPDU, segment the outbound TCP stream such that 
each TCP segment begins with an FPDU, and fully contains all included 
FPDUs. 

Implementation note: To achieve the previous segmentation rule, 
TCP's Nagle [RFC0896] algorithm SHOULD be disabled.  

There are exceptions to the above rule.  Once an ULPDU is provided to 
MPA, the MPA on TCP sender MUST transmit it or fail the connection; 
it cannot be repudiated.  As a result, during changes in MTU and 
EMSS, or when TCP's Receive Window size (RWIN) becomes too small, it 
may be necessary to send FPDUs that do not conform to the 
segmentation rule above. 

A possible, but less desirable, alternative is to use IP 
fragmentation on accepted FPDUs to deal with MTU reductions or 
extremely small EMSS.   

The sender MUST still format the FPDU according to FPDU format as 
shown in Figure 2. 

On a retransmission, TCP does not necessarily preserve original TCP 
segmentation boundaries. This can lead to the loss of FPDU alignment 
and containment within a TCP segment during TCP retransmissions. An 
MPA-aware TCP sender SHOULD try to preserve original TCP segmentation 
boundaries on a retransmission. 

5.3.1 Effects of MPA on TCP Segmentation 

Applications expected to see strong advantages from Direct Data 
Placement include transaction-based applications and throughput 
applications. Request/response protocols typically send one FPDU per 
TCP segment and then wait for a response. Therefore, the application 
is expected to set TCP parameters such that it can trade off latency 
and wire efficiency. This is accomplished by setting the TCP_NODELAY 
socket option.  
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When latency is not critical, and the application provides data in 
chunks larger than EMSS at one time, the TCP implementation may 
"pack" any available stream data into TCP segments so that the 
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segments are filled to the EMSS.  If the amount of data available is 
not enough to fill the TCP segment when it is prepared for 
transmission, TCP can send the segment partly filled, or use the 
Nagle algorithm to wait for the ULP to post more data (discussed 
below). 

DDP/MPA senders will fill TCP segments to the EMSS with a single FPDU 
when a DDP message is large enough.  Since the DDP message may not 
exactly fit into TCP segments, a "message tail" often occurs that 
results in an FPDU that is smaller than a single TCP segment.  If a 
"message tail", small DDP messages, or the start of a larger DDP 
message are available, MPA MAY "pack" the resulting FPDUs into TCP 
segments.  When this is done, the TCP segments can be more fully 
utilized, but, due to the size constraints of FPDUs, segments may not 
be filled to the EMSS. 

Note that MPA receivers must do more processing of a TCP segment 
that contains multiple FPDUs, this may affect the performance of 
some receiver implementations. 

TCP implementations often utilize the "Nagle" [RFC0896] algorithm to 
ensure that segments are filled to the EMSS whenever the round trip 
latency is large enough that the source stream can fully fill 
segments before Acks arrive.  The algorithm does this by delaying the 
transmission of TCP segments until a ULP can fill a segment, or until 
an ACK arrives from the far side.  The algorithm thus allows for 
smaller segments when latencies are shorter to keep the ULP's end to 
end latency to reasonable levels. 

The Nagle algorithm is not mandatory to use [RFC1122]. 

It is up to the ULP to decide if Nagle is useful with DDP/MPA.  Note 
that many of the applications expected to take advantage of MPA/DDP 
prefer to avoid the extra delays caused by Nagle. In such scenarios 
it is anticipated there will be minimal opportunity for packing at 
the transmitter and receivers may choose to optimize their 
performance for this anticipated behavior.  
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5.3.2 FPDU Size Considerations 

MPA defines the Maximum Upper Layer Protocol Data Unit (MULPDU) as 
the size of the largest ULPDU fitting in an FPDU.  For an empty TCP 
Segment, MULPDU is EMSS minus the FPDU overhead (6 octets) minus 
space for markers and pad octets.   

The maximum ULPDU Length for a single ULPDU when markers are 
present MUST be computed as: 

MULPDU = EMSS - (6 + 4 * Ceiling(EMSS / 512) + EMSS mod 4) 

The formula above accounts for the worst-case number of markers.   

The maximum ULPDU Length for a single ULPDU when markers are NOT 
present MUST be computed as: 

MULPDU = EMSS - (6 + EMSS mod 4) 

As a further optimization of the wire efficiency an MPA 
implementation MAY dynamically adjust the MULPDU (see section 7.3.1. 
for latency and wire efficiency trade-offs). When one or more FPDUs 
are already packed into a TCP Segment, MULPDU MAY be reduced 
accordingly. 

DDP SHOULD provide ULPDUs that are as large as possible, but less 
than or equal to MULPDU. 

If the TCP implementation needs to adjust EMSS to support MTU 
changes, the MULPDU value is changed accordingly. 

In certain rare situations, the EMSS may shrink to very small sizes.  
If this occurs, the MPA on TCP sender MUST NOT shrink the MULPDU 
below 128 octets and is not required to follow the segmentation rules 
in Section 5.3 MPA on TCP Sender Segmentation on page 21. 

If one or more FPDUs are already packed into a TCP segment, such that 
the remaining room is less than 128 octets, MPA MUST NOT provide a 
MULPDU smaller than 128.  In this case, MPA would typically provide a 
MULPDU for the next full sized segment, but may still pack the next 
FPDU into the small remaining room, provide that the next FPDU is 
small enough to fit. 

The value 128 is chosen as to allow DDP designers room for the DDP 
Header and some user data. 
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5.4 MPA Receiver FPDU Identification 

An MPA receiver MUST first verify the FPDU before passing the ULPDU 
to DDP.  To do this, the receiver MUST: 

* locate the start of the FPDU unambiguously, 

* verify its CRC (if CRC checking is enabled). 

If the above conditions are true, the MPA receiver passes the ULPDU 
to DDP.  

To detect the start of the FPDU unambiguously one of the following 
MUST be used: 

1: In an ordered TCP stream, the ULPDU Length field in the current 
FPDU when FPDU has a valid CRC, can be used to identify the 
beginning of the next FPDU. 

2: For receivers that support out of order reception of FPDUs (see 
section 5.1 MPA Markers on page 16) a Marker can always be used 
to locate the beginning of an FPDU (in FPDUs with valid CRCs).  
Since the location of the marker is known in the octet stream 
(sequence number space), the marker can always be found. 

3: Having found an FPDU by means of a Marker, following contiguous 
FPDUs can be found by using the ULPDU Lengths (from FPDUs with 
valid CRCs) to establish the next FPDU boundary. 

The ULPDU Length field (see section 4) MUST be used to determine if 
the entire FPDU is present before forwarding the ULPDU to DDP. 

CRC calculation is discussed in section 5.2 on page 18 above. 
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5.4.1 Re-segmenting Middle boxes and non MPA-aware TCP senders 

Since MPA on MPA-aware TCP senders start FPDUs on TCP segment 
boundaries, a receiving DDP on MPA on TCP implementation may be able 
to optimize the reception of data in various ways. 

However, MPA receivers MUST NOT depend on FPDU Alignment on TCP 
segment boundaries.   

Some MPA senders may be unable to conform to the sender requirements 
because their implementation of TCP is not designed with MPA in mind.  
Even if the sender is MPA-aware, the network may contain "middle 
boxes" which modify the TCP stream by changing the segmentation.  
This is generally interoperable with TCP and its users and MPA must 
be no exception. 

The presence of markers in MPA (when enabled) allows an MPA receiver 
to recover the FPDUs despite these obstacles, although it may be 
necessary to utilize additional buffering at the receiver to do so. 

Some of the cases that a receiver may have to contend with are listed 
below as a reminder to the implementer: 

* 

* 

* 

* 

* 

A single Aligned and complete FPDU, either in order, or out of 
order:  This can be passed to DDP as soon as validated, and 
Delivered when ordering is established. 

Multiple FPDUs in a TCP segment, aligned and fully contained, 
either in order, or out of order:  These can be passed to DDP as 
soon as validated, and Delivered when ordering is established. 

Incomplete FPDU: The receiver should buffer until the remainder 
of the FPDU arrives.  If the remainder of the FPDU is already 
available, this can be passed to DDP as soon as validated, and 
Delivered when ordering is established.   

Unaligned FPDU start: The partial FPDU must be combined with its 
preceding portion(s).  If the preceding parts are already 
available, and the whole FPDU is present, this can be passed to 
DDP as soon as validated, and Delivered when ordering is 
established.  If the whole FPDU is not available, the receiver 
should buffer until the remainder of the FPDU arrives. 

Combinations of Unaligned or incomplete FPDUs (and potentially 
other complete FPDUs) in the same TCP segment:  If any FPDU is 
present in its entirety, or can be completed with portions 
already available, it can be passed to DDP as soon as validated, 
and Delivered when ordering is established. 
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6 Connection Semantics 

6.1 Connection setup 

MPA requires that the consumer MUST activate MPA, and any TCP 
enhancements for MPA, on a TCP half connection at the same location 
in the octet stream at both the sender and the receiver. This is 
required in order for the marker scheme to correctly locate the 
markers (if enabled) and to correctly locate the first FPDU. 

MPA, and any TCP enhancements for MPA are enabled by the ULP in both 
directions at once at an endpoint. 

This can be accomplished several ways, and is left up to DDP's ULP: 

* DDP's ULP MAY require DDP on MPA startup immediately after TCP 
connection setup.  This has the advantage that no streaming mode 
negotiation is needed. An example of such a protocol is shown in 

 on page 35. Figure 9: Example Immediate Startup negotiation

This may be accomplished by using a well-known port, or a service 
locator protocol to locate an appropriate port on which DDP on 
MPA is expected to operate. 

* DDP's ULP MAY negotiate the start of DDP on MPA sometime after a 
normal TCP startup, using TCP streaming data exchanges on the 
same connection.  The exchange establishes that DDP on MPA (as 
well as other ULPs) will be used, and exactly locates the point 
in the octet stream where MPA is to begin operation.  Note that 
such a negotiation protocol is outside the scope of this 
specification.  A simplified example of such a protocol is shown 
in Figure 8: Example Delayed Startup negotiation on page 32. 

An MPA endpoint operates in two distinct phases. 

The "Startup Phase" is used to verify correct MPA setup, exchange CRC 
and Marker configuration, and optionally pass "private data" between 
endpoints prior to completing a DDP connection.  During this phase, 
specifically formatted frames are exchanged as TCP byte streams 
without using CRCs or Markers.  During this phase a DDP endpoint need 
not be "bound" to the MPA connection.  In fact, the choice of DDP 
endpoint and its operating parameters may not be known until the 
consumer supplied "private data" (if any) has been examined by the 
consumer. 

The second distinct phase is "Full operation" during which FPDUs are 
sent using all the rules that pertain (CRCs, Markers, MULPDU 
restrictions etc.).  A DDP endpoint MUST be "bound" to the MPA 
connection at entry to this phase. 
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When "private data" is passed between ULPs in the "Startup Phase", 
the ULP is responsible for interpreting that data, and then placing 
MPA into "Full operation". 

Note: The following text differentiates the two endpoints by calling 
them "Initiator" and "Responder".  This is quite arbitrary and is 
NOT related to the TCP startup (SYN, SYN/ACK sequence).  The 
Initiator is the side that sends first in the MPA startup 
sequence (the "MPA Request Frame"). 

Note: The possibility that both endpoints would be allowed to make a 
connection at the same time, sometimes called an "Active/Active" 
connection, was considered by the work group and rejected.  There 
were several motivations for this decision.  One was that 
applications needing this facility were few (none other than 
theoretical at the time of this draft).  Another was that the 
facility created some implementation difficulties, particularly 
with the "Dual Stack" designs described later on. A last issue 
was that dealing with rejected connections at startup would have 
required at least an additional frame type, and more recovery 
actinos, complicating the protocol.  While none of these issues 
was overwhelming, the group and implementers were not motivated 
to do the work to resolve these issues. 

The ULP is responsible for determining which side is "Initiator" or 
"Responder".  For "Client/Server" type ULPs this is easy.  For peer-
peer ULPs (which might utilize a TCP style "active/active" startup), 
some mechanism (not defined by this specification) must be 
established, or some streaming mode data exchanged prior to MPA 
startup to determine the side which starts in "Initiator" and which 
starts in "Responder" MPA mode.   

The following rules apply to MPA connection startup phase: 

1. When MPA is started in the "Initiator" mode, the MPA 
implementation MUST send a valid "MPA Request Frame".  The "MPA 
Request Frame" MAY include ULP supplied "Private Data". 

2. When MPA is started in the "Responder" mode, the MPA 
implementation MUST wait until a "MPA Request Frame" is received 
and validated before entering full MPA/DDP operation.   

If the "MPA Request Frame" is improperly formatted, the 
implementation MUST close the TCP connection and exit MPA.   
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If the "MPA Request Frame" is properly formatted but the "Private 
Data" is not acceptable, the implementation SHOULD return an "MPA 
Reply Frame" with the "Rejected Connection" bit set to '1'; the 
"MPA Reply Frame" MAY include ULP supplied "Private Data"; the 
implementation MUST exit MPA, leaving the TCP connection open.  
The ULP may close TCP or use the connection for other purposes.  
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If the "MPA Request Frame" is properly formatted and the "Private 
Data" is acceptable, the implementation SHOULD return an "MPA 
Reply Frame" with the "Rejected Connection" bit set to '0'; the 
"MPA Reply Frame" MAY include ULP supplied "Private Data"; and 
the responder SHOULD prepare to interpret any data received as 
FPDUs and pass any received ULPDUs to DDP. 

Note: Since the receiver's ability to deal with markers is 
unknown until the Request and Reply frames have been 
received, sending FPDUs before this occurs is not possible. 

Note: The requirement to wait on a Request Frame before sending a 
Reply frame is a design choice, it makes for well ordered 
sequence of events at each end, and avoids having to specify 
how to deal with situations where both ends start at the same 
time. 

3. MPA "Initiator" mode implementations MUST receive and validate a 
"MPA Reply Frame".   

If the "MPA Reply Frame" is improperly formatted, the 
implementation MUST close the TCP connection and exit MPA.   

If the "MPA Reply Frame" is properly formatted but is the 
"Private Data" is not acceptable, or if the "Rejected Connection" 
bit set to '1', the implementation MUST exit MPA, leaving the TCP 
connection open.  The ULP may close TCP or use the connection for 
other purposes. 

If the "MPA Reply Frame" is properly formatted and the "Private 
Data" is acceptable, and the "Reject Connection" bit is set to 
'0', the implementation SHOULD enter full MPA/DDP operation mode; 
interpreting any received data as FPDUs and sending DDP ULPDUs as 
FPDUs.  

4. MPA "Responder" mode implementations MUST receive and validate at 
least one FPDU before sending any FPDUs or markers. 

Note: this requirement is present to allow the Initiator time to 
get its receiver into full operation before an FPDU arrives, 
avoiding potential race conditions at the initiator.  This 
was also subject to some debate in the work group before 
rough consensus was reached.  Eliminating this requirement 
would allow faster startup in some types of applications.  
However, that would also make certain implementations 
(particularly "Dual Stack") much harder. 

5. If a received "Key" does not match the expected value, (See 6.1.1 
 below) the TCP/DDP connection 

MUST be closed, and an error returned to the ULP. 
MPA Request and Reply Frame Format
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6. The received "Private Data" fields may be used by consumers at 
either end to further validate the connection, and set up DDP or 
other ULP parameters.  The Initiator ULP MAY close the 
TCP/MPA/DDP connection as a result of validating the "Private 
Data" fields.  The Responder SHOULD return a "MPA Reply Frame" 
with the "Reject Connection" Bit set to '1' if the validation of 
the "Private Data" is not acceptable to the ULP.  

7. When the first FPDU is to be sent, then if markers are enabled, 
the first octets sent are the special marker 0x00000000, followed 
by the start of the FPDU (the FPDU's "ULPDU Length" field).  If 
markers are not enabled, the first octets sent are the start of 
the FPDU (the FPDU's "ULPDU Length" field). 

8. MPA implementations MUST use the difference between the "MPA 
Request Frame" and the "MPA Reply Frame" to check for incorrect 
"Initiator/Initiator" startups.  Implementations SHOULD put a 
timeout on waiting for the "MPA Request Frame" when started in 
"Responder" mode, to detect incorrect "Responder/Responder" 
startups. 

9.  MPA implementations MUST validate the PD_Length field.  The 
buffer that receives the "Private Data" field MUST be large 
enough to receive that data; the amount of "Private Data" MUST 
not exceed the PD_Length, or the application buffer.  If any of 
the above fails, the startup frame MUST be considered improperly 
formatted. 

10. MPA implementations SHOULD implement a reasonable timeout while 
waiting for the entire startup frames; this prevents certain 
denial of service attacks.  ULPs SHOULD implement a reasonable 
timeout while waiting for FPDUs, ULPDUs and application level 
messages to guard against application failures and certain denial 
of service attacks.   
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6.1.1 MPA Request and Reply Frame Format 

    0                   1                   2                   3 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
0  |                                                               | 
   +         Key (16 bytes containing "MPA ID Req Frame")          + 
4  |      (4D 50 41 20 49 44 20 52 65 71 20 46 72 61 6D 65)        | 
   +         Or  (16 bytes containing "MPA ID Rep Frame")          + 
8  |      (4D 50 41 20 49 44 20 52 65 70 20 46 72 61 6D 65)        | 
   +                                                               + 
12 |                                                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
16 |M|C|R| Res     |     Rev       |          PD_Length            | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                                                               | 
   ~                                                               ~ 
   ~                   Private Data                                ~ 
   |                                                               | 
   |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 7 "MPA Request/Reply Frame" 

Key: This field contains the "key" used to authenticate that the 
sender is an MPA sender.  Initiator mode senders must set this 
field to the fixed value "MPA ID Req frame" or (in byte order) 4D 
50 41 20 49 44 20 52 65 71 20 46 72 61 6D 65 (in hexadecimal).  
Responder mode receivers MUST check this field for the same 
value, and close the connection and report an error locally if 
any other value is detected. Responder mode senders must set this 
field to the fixed value "MPA ID Rep frame" or (in byte order) 4D 
50 41 20 49 44 20 52 65 70 20 46 72 61 6D 65 (in hexadecimal).  
Initiator mode receivers MUST check this field for the same 
value, and close the connection and report an error locally if 
any other value is detected. 

M: This bit, when sent in an "MPA Request Frame" or an "MPA Reply 
Frame", declares a receiver's requirement for Markers.  When in a 
received "MPA Request Frame" or "MPA Reply Frame" and the value 
is '0', markers MUST NOT be added to the data stream by the 
sender.  When '1' markers MUST be added as described in section 
5.1 MPA Markers on page 16. 

C: This bit declares an endpoint's preferred CRC usage.  When this 
field is '0' in the "MPA Request Frame" and the "MPA Reply 
Frame", CRCs MUST not be checked and need not be generated by 
either endpoint.  When this bit is '1' in either the "MPA Request 
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Frame" or "MPA Reply Frame", CRCs MUST be generated and checked 
by both endpoints. 

R: This bit is set to zero, and not checked on reception in the "MPA 
Request Frame".  In the "MPA Reply Frame", this bit is the 
"Rejected Connection" bit, set by the responders ULP to indicate 
acceptance '0', or rejection '1', of the connection parameters 
provided in the "Private Data".   

Res: This field is reserved for future use.  It must be set to zero 
when sending, and not checked on reception. 

Rev: This field contains the Revision of MPA.  For this version of 
the specification senders MUST set this field to zero.  MPA 
receivers compliant with this version of the specification MUST 
check this field for zero, and close the connection and report an 
error locally if any other value is detected. 

PD_Length: This field MUST contain the length in Octets of the 
Private Data field.  A value of zero indicates that there is no 
private data field present at all.  The private data field may be 
as long as 65535 Octets. 

Private Data: This field may contain any value defined by ULPs or may 
not be present.  ULPs define how to set and validate this field. 

 

6.1.2 Example Delayed Startup sequence 

A variety of startup sequences are possible when using MPA on TCP.  
Following is an example of an MPA/DDP startup that occurs after TCP 
has been running for a while and has exchanged some amount of 
streaming data.  This example does not use any private data (an 
example that does is shown later in 6.1.3.2 

 on page 35), although it is perfectly legal to 
include the private data. Note that since the example does not use 
any Private Data, there are no ULP interactions shown between 
receiving "Startup frames" and putting MPA into "Full operation".

Example Immediate Startup 
using Private Data
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       Initiator                                 Responder 

+---------------------------+ 
|ULP streaming mode         | 
| <Hello> request to        | 
| transition to DDP/MPA     |           +--------------------------+ 
| mode (optional)           | --------> |ULP gets request;         | 
+---------------------------+           |enables MPA Responder mode|  
                                        |with last (optional)      | 
                                        |streaming mode <Hello Ack>| 
                                        |for MPA to send.          | 
+---------------------------+           |MPA waits for incoming    | 
|ULP receives streaming     | <-------- |  <MPA Request frame>     | 
| <Hello Ack>;              |           +--------------------------+ 
|Enters MPA Initiator mode; | 
|MPA sends                  | 
|  <MPA Request Frame>;     | 
|MPA waits for incoming     |           +--------------------------+ 
|  <MPA Reply Frame         | - - - - > |MPA receives              | 
+---------------------------+           |  <MPA Request Frame>     | 
                                        |Consumer binds DDP to MPA,| 
                                        |MPA sends the             | 
                                        |  <MPA Reply Frame>.      | 
                                        |DDP/MPA enables FPDU      | 
+---------------------------+           |decoding, but does not    | 
|MPA receives the           | < - - - - |send any FPDUs.           | 
|  <MPA Reply Frame>        |           +--------------------------+ 
|Consumer binds DDP to MPA, | 
|DDP/MPA begins full        | 
|operation.                 | 
|MPA sends first FPDU (as   |           +--------------------------+ 
|DDP ULPDUs become          | ========> |MPA Receives first FPDU.  | 
|available).                |           |MPA sends first FPDU (as  | 
+---------------------------+           |DDP ULPDUs become         | 
                                <====== |available.                | 
                                        +--------------------------+ 

Figure 8: Example Delayed Startup negotiation 
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An example Delayed Startup sequence is described below: 

*   Active and passive sides start up a TCP connection in the 
usual fashion, probably using sockets APIs.  They exchange 
some amount of streaming mode data.  At some point one side 
(the MPA Initiator) sends streaming mode data that 
effectively says "Hello, Lets go into MPA/DDP mode." 

* When the remote side (the MPA Responder) gets this streaming mode 
message, the consumer would send a last streaming mode message 
that effectively says "I Acknowledge your Hello, and am now in 
MPA Responder Mode".   The exchange of these messages establishes 
the exact point in the TCP stream where MPA is enabled.  The 
Responding Consumer enables MPA in the Responder mode and waits 
for the initial MPA startup message. 

*   The Initiating Consumer would enable MPA startup in the 
Initiator mode which then sends the "MPA Request Frame".  It 
is assumed that no "Private Data" messages are needed for 
this example, although it is possible to do so.  The 
Initiating MPA (and Consumer) would also wait for the MPA 
connection to be accepted. 

*   The Responding MPA would receive the initial "MPA Request Frame" 
and would inform the consumer that this message arrived.  The 
Consumer can then accept the MPA/DDP connection or close the TCP 
connection. 

*   To accept the connection request, the Responding Consumer would 
use an appropriate API to bind the TCP/MPA connections to a DDP 
endpoint, thus enabling MPA/DDP into full operation. In the 
process of going to full operation, MPA sends the "MPA Reply 
Frame".  MPA/DDP waits for the first incoming FPDU before sending 
any FPDUs. 

* If the initial TCP data was not a properly formatted "MPA Request 
Frame" MPA will close or reset the TCP connection immediately. 

*   The Initiating MPA would receive the "MPA Reply Frame" and 
would report this message to the Consumer.  The Consumer can 
then accept the MPA/DDP connection, or close or reset the TCP 
connection to abort the process. 

*   On determining that the Connection is acceptable, the 
Initiating Consumer would use an appropriate API to bind the 
TCP/MPA connections to a DDP endpoint thus enabling MPA/DDP 
into full operation.  MPA/DDP would begin sending DDP 
messages as MPA FPDUs. 
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6.1.3 Use of "Private Data" 

This section is advisory in nature, in that it suggests a method that 
a ULP can deal with pre-DDP connection information exchange. 

6.1.3.1 Motivation 

Prior RDMA protocols have been developed that provide "private data" 
via out of band mechanisms.  As a result, many applications now 
expect some form of "private data" to be available for application 
use prior to setting up the DDP/RDMA connection.  For example,  

An RDMA Endpoint (referred to as a Queue Pair, or QP, in InfiniBand 
and the [Verbs]) must be associated with a Protection Domain.  No 
receive operations may be posted to the endpoint before it is 
associated with a Protection Domain.  Indeed under both the 
InfiniBand and proposed iWARP verbs [Verbs] an endpoint/QP is created 
within a Protection Domain. 

There are some applications where the choice of Protection Domain is 
dependent upon the identity of the remote ULP client. For example, if 
a user session requires multiple connections, it is highly desirable 
for all of those connections to use a single Protection Domain. 

InfiniBand, the DAT APIs and the IT-API all provide for the active 
side ULP to provide "Private Data" when requesting a connection. This 
data is passed to the ULP to allow it to determine whether to accept 
the connection, and if so with which endpoint (and implicitly which 
Protection Domain). 

The Private Data can also be used to ensure that both ends of the 
connection have configured their RDMA endpoints compatibly on such 
matters as the RDMA Read capacity. Further ULP-specific uses are also 
presumed, such as establishing the identity of the client. 

Private Data is also allowed for when accepting the connection, to 
allow completion of any negotiation on RDMA resources and for other 
ULP reasons. 

There are several potential ways to exchange this "Private Data".  
For Example, the InfiniBand specification includes a connection 
management protocol that allows a small amount of "private data" to 
be exchanged using datagrams before actually starting the RDMA 
connection. 

This draft allows for small amounts of "Private Data" to be exchanged 
as part of the MPA startup sequence.  The actual Private Data fields 
are carried in the "MPA Request Frame", and the "MPA Reply Frame". 
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6.1.3.2 Example Immediate Startup using Private Data 

       Initiator                                 Responder 

+---------------------------+ 
|TCP SYN sent               |           +--------------------------+ 
+---------------------------+ --------> |TCP gets SYN packet;      | 
+---------------------------+           |  Sends SYN-Ack           | 
|TCP gets SYN-Ack           | <-------- +--------------------------+ 
|  Sends Ack                |  
+---------------------------+ --------> +--------------------------+ 
+---------------------------+           |Consumer enables MPA      | 
|Enters MPA Initiator mode; |           |Responder Mode, waits for | 
|MPA sends                  |           |  <MPA Request frame>     | 
|  <MPA Request Frame>;     |           +--------------------------+ 
|MPA waits for incoming     |           +--------------------------+ 
|  <MPA Reply Frame         | - - - - > |MPA receives              | 
+---------------------------+           |  <MPA Request Frame>     | 
                                        |Consumer examines "Private| 
                                        |Data", provides MPA with  | 
                                        |return "Private Data",    | 
                                        |binds DDP to MPA, and     | 
                                        |enables MPA to send an    | 
                                        |  <MPA Reply Frame>.      | 
                                        |DDP/MPA enables FPDU      | 
+---------------------------+           |decoding, but does not    | 
|MPA receives the           | < - - - - |send any FPDUs.           | 
|  <MPA Reply Frame>        |           +--------------------------+ 
|Consumer examines "Private | 
|Data", binds DDP to MPA,   | 
|and enables DDP/MPA to     | 
|begin full operation.      | 
|MPA sends first FPDU (as   |           +--------------------------+ 
|DDP ULPDUs become          | ========> |MPA Receives first FPDU.  | 
|available).                |           |MPA sends first FPDU (as  | 
+---------------------------+           |DDP ULPDUs become         | 
                                <====== |available.                | 
                                        +--------------------------+ 

Figure 9: Example Immediate Startup negotiation 

Note: the exact order of when MPA is started in the TCP connection 
sequence is implementation dependent; the above diagram shows one 
possible sequence.  Also, the Initiator "Ack" to the Responder's 
"SYN-Ack" may be combined into the same TCP segment containing 
the "MPA Request Frame" (as is allowed by TCP RFCs).  
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The example immediate startup sequence is described below: 

*   The passive side (Responding Consumer) would listen on the TCP 
destination port, to indicate its readiness to accept a 
connection. 

*   The active side (Initiating Consumer) would request a 
connection from a TCP endpoint (that expected to upgrade to 
MPA/DDP/RDMA and expected the private data) to a destination 
address and port. 

*   The Initiating Consumer would initiate a TCP connection to 
the destination port. Acceptance/rejection of the connection 
would proceed as per normal TCP connection establishment.   

* The passive side (Responding Consumer) would receive the TCP 
connection request as usual allowing normal TCP gatekeepers, such 
as INETD and TCPserver, to exercise their normal 
safeguard/logging functions.  On acceptance of the TCP 
connection, the Responding consumer would enable MPA in the 
Responder mode and wait for the initial MPA startup message. 

*   The Initiating Consumer would enable MPA startup in the 
Initiator mode to send an initial "MPA Request Frame" with 
its included "Private Data" message to send.  The Initiating 
MPA (and Consumer) would also wait for the MPA connection to 
be accepted, and any returned private data. 

*   The Responding MPA would receive the initial "MPA Request Frame" 
with the "Private Data" message and would pass the Private Data 
through to the consumer.  The Consumer can then accept the 
MPA/DDP connection, close the TCP connection, or reject the MPA 
connection with a return message. 

*   To accept the connection request, the Responding Consumer would 
use an appropriate API to bind the TCP/MPA connections to a DDP 
endpoint, thus enabling MPA/DDP into full operation.  In the 
process of going to full operation, MPA sends the "MPA Reply 
Frame" which includes the Consumer supplied "Private Data" 
containing any appropriate consumer response.  MPA/DDP waits for 
the first incoming FPDU before sending any FPDUs. 

* If the initial TCP data was not a properly formatted "MPA Request 
Frame", MPA will close or reset the TCP connection immediately. 

*   To reject the MPA connection request, the Responding Consumer 
would send an "MPA Reply Frame" with any ULP supplied "Private 
Data" (with reason for rejection), with the "Rejected Connection" 
bit set to '1', and may close the TCP connection. 
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*   The Initiating MPA would receive the "MPA Reply Frame" with 
the "Private Data" message and would report this message to 
the Consumer, including the supplied Private Data.   

    If the "rejected Connection" bit is set to a '1', MPA will 
close the TCP connection and exit.   

    If the "Rejected Connection" bit is set to a '0', and on 
determining from the "MPA Reply Frame" "Private Data" that 
the Connection is acceptable, the Initiating Consumer would 
use an appropriate API to bind the TCP/MPA connections to a 
DDP endpoint thus enabling MPA/DDP into full operation.  
MPA/DDP would begin sending DDP messages as MPA FPDUs. 

 

6.1.4 "Dual Stack" implementations 

MPA/DDP implementations are commonly expected to be implemented as 
part of a "Dual stack" architecture.  One "stack" is the traditional 
TCP stack, usually with a sockets interface API.  The second stack is 
the MPA/DDP "stack" with its own API, and potentially separate code 
or hardware to deal with the MPA/DDP data.  Of course, 
implementations may vary, so the following comments are of an 
advisory nature only. 

The use of the two "stacks" offers advantages: 

TCP connection setup is usually done with the TCP stack. This 
allows use of the usual naming and addressing mechanisms.  It 
also means that any mechanisms used to "harden" the connection 
setup against security threats are also used when starting 
MPA/DDP. 

Some applications may have been originally designed for TCP, but 
are "enhanced" to utilize MPA/DDP after a negotiation reveals 
the capability to do so.  The negotiation process takes place in 
TCP's streaming mode, using the usual TCP APIs. 

Some new applications, designed for RDMA or DDP, still need to 
exchange some data prior to starting MPA/DDP.  This exchange can 
be of arbitrary length or complexity, but often consists of only 
a small amount of "private data", perhaps only a single message.  
Using the TCP streaming mode for this exchange allows this to be 
done using well understood methods. 

The main disadvantage of using two stacks is the conversion of an 
active TCP connection between them.  This process must be done with 
care to prevent loss of data. 

 
 
Culley et. al. Expires: January 2005 [Page 37] 
 



INTERNET-DRAFT MPA Framing for TCP 16 July 2004 
 

To avoid some of the problems when using a "dual stack" architecture 
the following additional restrictions may be required by the 
implementation: 

1. Enabling the DDP/MPA stack SHOULD be done only when no incoming 
stream data is expected.  This is typically managed by the ULP 
protocol.  When following the recommended startup sequence, the 
"Responder" side enters DDP/MPA mode, sends the last streaming 
mode data, and then waits for the "MPA Request frame".  No 
additional streaming mode data is expected.  The "Initiator" side 
ULP receives the last streaming mode data, and then enters 
DDP/MPA mode.  Again, no additional streaming mode data is 
expected. 

2. The DDP/MPA MAY provide the ability to send a "Last streaming 
message" as part of its "Responder" DDP/MPA enable function.  
This allows the DDP/MPA stack to more easily manage the 
conversion to DDP/MPA mode (and avoid problems with a very fast 
return of the "MPA Request Frame" from the Initiator side). 

Note: Regardless of the "stack" architecture used, TCP's rules must 
be followed.  For example, if network data is lost, re-segmented 
or re-ordered, TCP must recover appropriately even when this 
occurs while switching stacks. 

6.2 Normal Connection Teardown 

Each half connection of MPA terminates when DDP closes the 
corresponding TCP half connection. 

A mechanism SHOULD be provided by MPA to DDP for DDP to be made aware 
that a graceful close of the LLP connection has been received by the 
LLP (e.g. FIN is received). 
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7 Error Semantics 

The following errors MUST be detected by MPA and the codes SHOULD be 
provided to DDP or other consumer: 

Code Error 

1 TCP connection closed, terminated or lost.  This includes 
lost by timeout, too many retries, RST received or FIN 
received. 

2 Received MPA CRC does not match the calculated value for the 
FPDU. 

3 In the event that the CRC is valid, received MPA marker (if 
enabled) and 'ULPDU Length' fields do not agree on the start 
of a FPDU.  If the FPDU start determined from previous ULPDU 
Length fields does not match with the MPA marker position, 
MPA SHOULD deliver an error to DDP.  It may not be possible 
to make this check as a segment arrives, but the check 
SHOULD be made when a gap creating an out of order sequence 
is closed and any time a marker points to an already 
identified FPDU.  It is OPTIONAL for a receiver to check 
each marker, if multiple markers are present in an FPDU, or 
if the segment is received in order. 

4 Invalid MPA Request Frame or MPA Response Frame received.  
In this case, the TCP connection MUST be immediately closed.  
DDP and other ULPs should treat this similar to code 1, 
above. 

When conditions 2 or 3 above are detected, an MPA-aware TCP 
implementation MAY choose to silently drop the TCP segment rather 
than reporting the error to DDP.  In this case, the sending TCP will 
retry the segment, usually correcting the error, unless the problem 
was at the source.  In that case, the source will usually exceed the 
number of retries and terminate the connection. 

Once MPA delivers an error of any type, it MUST NOT pass or deliver 
any additional FPDUs on that half connection. 

For Error codes 2 and 3, MPA MUST NOT close the TCP connection 
following a reported error.  Closing the connection is the 
responsibility of DDP's ULP. 
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8 Security Considerations 

This section discusses the security considerations for MPA. 

8.1 Protocol-specific Security Considerations 

The vulnerabilities of MPA to third-party attacks are no greater than 
any other protocol running over TCP.  A third party, by sending 
packets into the network that are delivered to an MPA receiver, could 
launch a variety of attacks that take advantage of how MPA operates.  
For example, a third party could send random packets that are valid 
for TCP, but contain no FPDU headers.  An MPA receiver reports an 
error to DDP when any packet arrives that cannot be validated as an 
FPDU when properly located on an FPDU boundary.  This would have a 
severe impact on performance.  Communication security mechanisms such 
as IPsec [RFC2401] may be used to prevent such attacks.  Independent 
of how MPA operates, a third party could use ICMP messages to reduce 
the path MTU to such a small size that performance would likewise be 
severely impacted.  Range checking on path MTU sizes in ICMP packets 
may be used to prevent such attacks. 

8.2 Using IPsec With MPA 

IPsec can be used to protect against the packet injection attacks 
outlined above.  Because IPsec is designed to secure individual IP 
packets, MPA can run above IPsec without change.  IPsec packets are 
processed (e.g., integrity checked and decrypted) in the order they 
are received, and an MPA receiver will process the decrypted FPDUs 
contained in these packets in the same manner as FPDUs contained in 
unsecured IP packets. 
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9 IANA Considerations 

If a well-known port is chosen as the mechanism to identify a DDP on 
MPA on TCP, the well-known port must be registered with IANA.  
Because the use of the port is DDP specific, registration of the port 
with IANA is left to DDP. 

 

 
 
Culley et. al. Expires: January 2005 [Page 41] 
 



INTERNET-DRAFT MPA Framing for TCP 16 July 2004 
 

10 References 

10.1 Normative References 

[iSCSI] Satran, J., "iSCSI", draft-ietf-ips-iscsi-20.txt (work in 
progress), January 2003. 

[RFC1191] Mogul, J., and Deering, S., "Path MTU Discovery", RFC 1191, 
November 1990.  

[RFC2018] Mathis, M., Mahdavi, J., Floyd, S., Romanow, A., "TCP 
Selective Acknowledgment Options", RFC 2018, October 1996. 

[RFC2026] Bradner, S., "The Internet Standards Process -- Revision    
3", BCP 9, RFC 2026, October 1996. 

[RFC793] Postel, J., "Transmission Control Protocol - DARPA Internet 
Program Protocol Specification", RFC 793, September 1981.  

10.2 Informative References 

[CRCTCP] Stone J., Partridge, C., "When the CRC and TCP checksum 
disagree", ACM Sigcomm, Sept. 2000. 

[DDP] H. Shah et al., "Direct Data Placement over Reliable 
Transports", draft-ietf-rddp-ddp-02.txt (Work in progress), 
February 2004 

[RFC2401]  Atkinson, R., Kent, S., "Security Architecture for the 
Internet Protocol", RFC 2401, November 1998. 

[RFC0896] J. Nagle, "Congestion Control in IP/TCP Internetworks", RFC 
896, January 1984.  

[NagleDAck] Minshall G., Mogul, J., Saito, Y., Verghese, B., 
"Application performance pitfalls and TCP's Nagle algorithm", 
Workshop on Internet Server Performance, May 1999.  

[RDMA] R. Recio et al., "RDMA Protocol Specification", 
draft-ietf-rddp-rdmap-02.txt, May 2004 

[RFC2960] R. Stewart et al., "Stream Control Transmission Protocol", 
RFC 2960, October 2000. 

[RFC792] Postel, J., "Internet Control Message Protocol". September 
1981 

[RFC1122] Braden, R.T., "Requirements for Internet hosts - 
communication layers". October 1989. 

 
 
Culley et. al. Expires: January 2005 [Page 42] 
 



INTERNET-DRAFT MPA Framing for TCP 16 July 2004 
 

[ELZUR-MPA] Elzur, U., "Analysis of MPA over TCP Operations" draft-
elzur-iwarp-mpa-tcp-analysis-00.txt, February 2003. 

[Verbs] J. Hilland et al., "RDMA Protocol Verbs Specification" draft-
hilland-rddp-verbs-00.txt, April 2003. 

 
 
Culley et. al. Expires: January 2005 [Page 43] 
 



INTERNET-DRAFT MPA Framing for TCP 16 July 2004 
 

11 Appendix  

This appendix is for information only and is NOT part of the 
standard. 

11.1 Analysis of MPA over TCP Operations 

This appendix analyzes the impact of MPA (Marker PDU Aligned Framing 
for TCP [MPA]) on the TCP sender, receiver, and wire protocol.  

One of MPA's high level goals is to provide enough information, when 
combined with the Direct Data Placement Protocol [DDP], to enable 
out-of-order placement of DDP payload into the final Upper Layer 
Protocol (ULP) buffer. Note that DDP separates the act of placing 
data into a ULP buffer from that of notifying the ULP that the ULP 
buffer is available for use. In DDP terminology, the former is 
defined as "Placement", and the later is defined as "Delivery". MPA 
supports in-order delivery of the data to the ULP, including support 
for Direct Data Placement in the final ULP buffer location when TCP 
segments arrive out-of-order. Effectively, the goal is to use the 
pre-posted ULP buffers as the TCP receive buffer, where the 
reassembly of the ULP Protocol Data Unit (PDU) by TCP (with MPA and 
DDP) is done in place, in the ULP buffer, with no data copies. 

This Appendix walks through the advantages and disadvantages of the 
TCP sender modifications proposed by MPA: 

1) that MPA require the TCP sender to do "Header Alignment", where a 
TCP segment is required to begin with an MPA Framing Protocol Data 
Unit (FPDU) (if there is payload present). 

2) that there be an integral number of FPDUs in a TCP segment (under 
conditions where the Path MTU is not changing). 

This Appendix concludes that the scaling advantages of Header 
Alignment are strong, based primarily on fairly drastic TCP receive 
buffer reduction requirements and simplified receive handling. The 
analysis also shows that there is little effect to TCP wire behavior. 

11.1.1 Assumptions 

11.1.1.1 MPA is layered beneath DDP [DDP] 

MPA is an adaptation layer between DDP and TCP.  DDP requires 
preservation of DDP segment boundaries and a CRC32C digest covering 
the DDP header and data.   MPA adds these features to the TCP stream 
so that DDP over TCP has the same basic properties as DDP over SCTP. 
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11.1.1.2 MPA preserves DDP message framing 

MPA was designed as a framing layer specifically for DDP and was not 
intended as a general-purpose framing layer for any other ULP using 
TCP.   

A framing layer allows ULPs using it to receive indications from the 
transport layer only when complete ULPDUs are present.  As a framing 
layer, MPA is not aware of the content of the DDP PDU, only that it 
has received and, if necessary, reassembled a complete PDU for 
delivery to the DDP.   

11.1.1.3 The size of the ULPDU passed to MPA is less than EMSS under 
normal conditions  

To make reception of a complete DDP PDU on every received segment 
possible, DDP passes to MPA a PDU that is no larger than the EMSS of 
the underlying fabric. Each FPDU that MPA creates contains sufficient 
information for the receiver to directly place the ULP payload in the 
correct location in the correct receive buffer.  

Edge cases when this condition does not occur are dealt with, but do 
not need to be on the fast path 

11.1.1.4 Out-of-order placement but NO out-of-order delivery 

DDP receives complete DDP PDUs from MPA.  Each DDP PDU contains the 
information necessary to place its ULP payload directly in the 
correct location in host memory. 

Because each DDP segment is self-describing, it is possible for DDP 
segments received out of order to have their ULP payload placed 
immediately in the ULP receive buffer.  

Data delivery to the ULP is guaranteed to be in the order the data 
was sent.  DDP only indicates data delivery to the ULP after TCP has 
acknowledged the complete byte stream.   

 

11.1.2 The Value of Header Alignment 
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Significant receiver optimizations can be achieved when Header 
Alignment and complete FPDUs are the common case. The optimizations 
allow utilizing significantly fewer buffers on the receiver and less 
computation per FPDU. The net effect is the ability to build a "Flow-
Through" receiver that enables TCP-based solutions to scale to 10G 
and beyond in an economical way. The optimizations are especially 
relevant to hardware implementations of receivers that process 
multiple protocol layers - Data Link Layer (e.g., Ethernet), Network 
and Transport Layer (e.g., TCP/IP), and even some ULP on top of TCP 
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(e.g., MPA/DDP). As network speed increases, there is an increasing 
desire to use a hardware based receiver in order to achieve an 
efficient high performance solution.  

A TCP receiver, under worst case conditions, has to allocate buffers 
(BufferSizeTCP) whose capacities are a function of the bandwidth-
delay product. Thus: 

     BufferSizeTCP = K * bandwidth [octets/S] * Delay [S].  

Where bandwidth is the end-to-end bandwidth of the connection, delay 
is the round trip delay of the connection, and K is an implementation 
dependent constant. 

Thus BufferSizeTCP scales with the end-to-end bandwidth (10x more 
buffers for a 10x increase in end-to-end bandwidth). As this 
buffering approach may scale poorly for hardware or software 
implementations alike, several approaches allow reduction in the 
amount of buffering required for high-speed TCP communication.  

The MPA/DDP approach is to enable the ULP's buffer to be used as the 
TCP receive buffer. If the application pre-posts a sufficient amount 
of buffering, and each TCP segment has sufficient information to 
place the payload into the right application buffer, when an out-of-
order TCP segment arrives it could potentially be placed directly in 
the ULP buffer. However, placement can only be done when a complete 
FPDU with the placement information is available to the receiver, and 
the FPDU contents contain enough information to place the data into 
the correct ULP buffer (e.g., there is a DDP header available).  

For the case when the FPDU is not aligned with the TCP segment, it 
may take, on average, 2 TCP segments to assemble one FPDU. Therefore, 
the receiver has to allocate BufferSizeNAF (Buffer Size, Non-Aligned 
FPDU) octets: 

    BufferSizeNAF = K1* EMSS * number_of_connections + K2 * EMSS 

Where K1 and K2 are implementation dependent constants and EMSS is 
the effective maximum segment size.  

For example, a 1 Gbps link with 10,000 connections and an EMSS of 
1500B would require 15 MB of memory. Often the number of connections 
used scales with the network speed, aggravating the situation for 
higher speeds.  

A Header Aligned FPDU would allow the receiver to allocate 
BufferSizeAF (Buffer Size, Aligned FPDU) octets:  

    BufferSizeAF = K2 * EMSS  
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for the same conditions. A Header Aligned receiver may require memory 
in the range of ~100s of KB - which is feasible for an on-chip memory 
and enables a "Flow-Through" design, in which the data flows through 
the NIC and is placed directly in the destination buffer. Assuming 
most of the connections support Header Alignment, the receiver 
buffers no longer scale with number of connections.  

Additional optimizations can be achieved in a balanced I/O sub-system 
-- where the system interface of the network controller provides 
ample bandwidth as compared with the network bandwidth. For almost 
twenty years this has been the case and the trend is expected to 
continue - while Ethernet speeds have scaled by 1000 (from 10 
megabit/sec to 10 gigabit/sec), I/O bus bandwidth of volume CPU 
architectures has scaled from ~2 MB/sec to ~2 GB/sec (PC-XT bus to 
PCI-X DDR). Under these conditions, the Header Aligned FPDU approach 
allows BufferSizeAF to be indifferent to network speed. It is 
primarily a function of the local processing time for a given frame. 
Thus when the Header Aligned FPDU approach is used, receive buffering 
is expected to scale gracefully (i.e. less than linear scaling) as 
network speed is increased. 

 

11.1.2.1 Impact of lack of Header Alignment on the receiver 
computational load and complexity 

The receiver must perform IP and TCP processing, and then perform 
FPDU CRC checks, before it can trust the FPDU header placement 
information. For simplicity of the description, the assumption is 
that a FPDU is carried in no more than 2 TCP segments. In reality, 
with no Header Alignment, an FPDU can be carried by more than 2 TCP 
segments (e.g., if the PMTU was reduced). 

 

----++-----------------------------++-----------------------++----- 
+---||---------------+    +--------||--------+   +----------||----+ 
|   TCP Seg X-1      |    |     TCP Seg X    |   |  TCP Seg X+1   | 
+---||---------------+    +--------||--------+   +----------||----+ 
----++-----------------------------++-----------------------++----- 
                FPDU #N-1                  FPDU #N 

Figure 10: Non-aligned FPDU freely placed in TCP octet stream 

The receiver algorithm for processing TCP segments (e.g., TCP segment 
#X in Figure 10: Non-aligned FPDU freely placed in TCP octet stream) 
carrying non-aligned FPDUs (in-order or out-of-order) includes: 
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Data Link Layer processing (whole frame) - typically including a 
CRC calculation. 

1. Network Layer processing (assuming not an IP fragment, the 
whole Data Link Layer frame contains one IP datagram. IP 
fragments should be reassembled in a local buffer. This is not 
a performance optimization goal) 

2. Transport Layer processing -- TCP protocol processing, header 
and checksum checks.  

a. Classify incoming TCP segment using the 5 tuple (IP SRC, 
IP DST, TCP SRC Port, TCP DST Port, protocol) 

3. Find FPDU message boundaries.  

a. Get MPA state information for the connection 

If the TCP segment is in-order, use the receiver managed 
MPA state information to calculate where the previous 
FPDU message (#N-1) ends in the current TCP segment X. 
(previously, when the MPA receiver processed the first 
part of FPDU #N-1, it calculated the number of bytes 
remaining to complete FPDU #N-1 by using the MPA 
Length field).  

Get the stored partial CRC for FPDU #N-1  

Complete CRC calculation for FPDU #N-1 data (first 
portion of TCP segment #X) 

Check CRC calculation for FPDU #N-1  

If no FPDU CRC errors, placement is allowed 

Locate the local buffer for the first portion of 
FPDU#N-1, CopyData(local buffer of first portion 
of FPDU #N-1, host buffer address, length) 

Compute host buffer address for second portion of FPDU 
#N-1 

CopyData (local buffer of second portion of FPDU #N-1, 
host buffer address for second portion, length)  

Calculate the octet offset into the TCP segment for 
the next FPDU #N. 

Start Calculation of CRC for available data for FPDU 
#N 
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Store partial CRC results for FPDU #N 

Store local buffer address of first portion of FPDU #N 

No further action is possible on FPDU #N, before it is 
completely received 

If TCP out-of-order, receiver must buffer the data until 
at least one complete FPDU is received. Typically 
buffering for more than one TCP segment per connection 
is required. Use the MPA based Markers to calculate 
where FPDU boundaries are.  

When a complete FPDU is available, a similar procedure 
to the in-order algorithm above is used. There is 
additional complexity, though, because when the 
missing segment arrives, this TCP segment must be 
run through the CRC engine after the CRC is 
calculated for the missing segment.  

If we assume Header Alignment, the following diagram and the 
algorithm below apply. Note that when using MPA, the receiver is 
assumed to actively detect presence or loss of Header Alignment for 
every TCP segment received. 

 

   +--------------------------+      +--------------------------+ 
+--|--------------------------+   +--|--------------------------+ 
|  |       TCP Seg X          |   |  |         TCP Seg X+1      | 
+--|--------------------------+   +--|--------------------------+ 
   +--------------------------+      +--------------------------+ 
             FPDU #N                          FPDU #N+1 

Figure 11: Aligned FPDU placed immediately after TCP header 
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The receiver algorithm for Header Aligned frames (in-order or out-of-
order) includes: 

 

1) Data Link Layer processing (whole frame) - typically 
including a CRC calculation. 

2) Network Layer processing (assuming not an IP fragment, the 
whole Data Link Layer frame contains one IP datagram. IP 
fragments should be reassembled in a local buffer. This is 
not a performance optimization goal) 

3) Transport Layer processing -- TCP protocol processing, header 
and checksum checks.  

a. Classify incoming TCP segment using the 5 tuple (IP SRC, 
IP DST, TCP SRC Port, TCP DST Port, protocol) 

4) Check for Header Alignment. (Described in detail in [MPA] 
section 7.4). Assuming Header Alignment for the rest of the 
algorithm below.  

a. If the header is not aligned, see the algorithm defined 
in the prior section. 

5) If TCP is in-order or out-of-order the MPA header is at the 
beginning of the current TCP payload. Get the FPDU length 
from the FPDU header.  

6) Calculate CRC over FPDU 

7) Check CRC calculation for FPDU #N 

8) If no FPDU CRC errors, placement is allowed 

9) CopyData(TCP segment #X, host buffer address, length) 

10) Loop to #5 until all the FPDUs in the TCP segment are 
consumed in order to handle FPDU packing. 

Implementation note: In both cases the receiver has to classify the 
incoming TCP segment and associate it with one of the flows it 
maintains. In the case of no Header Alignment, the receiver is forced 
to classify incoming traffic before it can calculate the FPDU CRC. In 
the case of Header Alignment the operations order is left to the 
implementer. 
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The Header Aligned receiver algorithm is significantly simpler. There 
is no need to locally buffer portions of FPDUs. Accessing state 
information is also substantially simplified - the normal case does 
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not require retrieving information to find out where a FPDU starts 
and ends or retrieval of a partial CRC before the CRC calculation can 
commence. This avoids adding internal latencies, having multiple data 
passes through the CRC machine, or scheduling multiple commands for 
moving the data to the host buffer.  

The aligned FPDU approach is useful for in-order and out-of-order 
reception. The receiver can use the same mechanisms for data storage 
in both cases, and only needs to account for when all the TCP 
segments have arrived to enable delivery. . The Header Alignment, 
along with the high probability that at least one complete FPDU is 
found with every TCP segment, allows the receiver to perform data 
placement for out-of-order TCP segments with no need for intermediate 
buffering. Essentially the TCP receive buffer has been eliminated and 
TCP reassembly is done in place within the ULP buffer. 

In case Header Alignment is not found, the receiver should follow the 
algorithm for non aligned FPDU reception which may be slower and less 
efficient. 

11.1.2.2 Header Alignment effects on TCP wire protocol 

An MPA-aware TCP exposes its EMSS to MPA.  MPA uses the EMSS to 
calculate its MULPDU, which it then exposes to DDP, its ULP.  DDP 
uses the MULPDU to segment its payload so that each FPDU sent by 
MPA fits completely into one TCP segment. This has no impact on 
wire protocol and exposing this information is already supported 
on many TCP implementations, including all modern flavors of BSD 
networking, through the TCP_MAXSEG socket option. 
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In the common case, the ULP (i.e. DDP over MPA) messages provided to 
the TCP layer are segmented to MULPDU size. It is assumed that the 
ULP message size is bounded by MULPDU, such that a single ULP message 
can be encapsulated in a single TCP segment. Therefore, in the common 
case, there is no increase in the number of TCP segments emitted. For 
smaller ULP messages, the sender can also apply packing, i.e. the 
sender packs as many complete FPDUs as possible into one TCP segment. 
The requirement to always have a complete FPDU may increase the 
number of TCP segments emitted. Typically, a ULP message size varies 
from few bytes to multiple EMSS (e.g., 64 Kbytes). In some cases the 
ULP may post more than one message at a time for transmission, giving 
the sender an opportunity for packing. In the case where more than 
one FPDU is available for transmission and the FPDUs are encapsulated 
into a TCP segment and there is no room in the TCP segment to include 
the next complete FPDU, another TCP segment is sent. In this corner 
case some of the TCP segments are not full size. In the worst case 
scenario, the ULP may choose a FPDU size that is EMSS/2 +1 and has 
multiple messages available for transmission. For this poor choice of 
FPDU size, the average TCP segment size is therefore about 1/2 of the 
EMSS and the number of TCP segments emitted is approaching 2x of what 
is possible without the requirement to encapsulate an integer number 
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of complete FPDUs in every TCP segment. This is a dynamic situation 
that only lasts for the duration where the sender ULP has multiple 
non-optimal messages for transmission and this causes a minor impact 
on the wire utilization.  

However, it is not expected that requiring Header Alignment will have 
a measurable impact on wire behavior of most applications. Throughput 
applications with large I/Os are expected to take full advantage of 
the EMSS.  Another class of applications with many small outstanding 
buffers (as compared to EMSS) is expected to use packing when 
applicable. Transaction oriented applications are also optimal. 

TCP retransmission is another area that can affect sender behavior. 
TCP supports retransmission of the exact, originally transmitted 
segment (see [RFC0793] section 2.6, [RFC0793] section 3.7 "managing 
the window" and [RFC1122] section 4.2.2.15 ). In the unlikely event 
that part of the original segment has been received and acknowledged 
by the remote peer (e.g., a re-segmenting middle box, as documented 
in 5.4.1 Re-segmenting Middle boxes and non MPA-aware TCP senders on 
page 25), a better available bandwidth utilization may be possible by 
re-transmitting only the missing octets. If an MPA-aware TCP 
retransmits complete FPDUs, there may be some marginal bandwidth 
loss. 

Another area where a change in the TCP segment number may have impact 
is that of Slow Start and Congestion Avoidance. Slow-start 
exponential increase is measured in segments per second, as the 
algorithm focuses on the overhead per segment at the source for 
congestion that eventually results in dropped segments. Slow-start 
exponential bandwidth growth for MPA-aware TCP is similar to any TCP 
implementation. Congestion Avoidance allows for a linear growth in 
available bandwidth when recovering after a packet drop. Similar to 
the analysis for slow-start, MPA-aware TCP doesn't change the 
behavior of the algorithm. Therefore the average size of the segment 
versus EMSS is not a major factor in the assessment of the bandwidth 
growth for a sender. Both Slow Start and Congestion Avoidance for an 
MPA-aware TCP will behave similarly to any TCP sender and allow an 
MPA-aware TCP to enjoy the theoretical performance limits of the 
algorithms. 

In summary, the ULP messages generated at the sender (e.g., the 
amount of messages grouped for every transmission request) and 
message size distribution has the most significant impact over the 
number of TCP segments emitted. The worst case effect for certain 
ULPs (with average message size of EMSS/2+1 to EMSS), is bounded by 
an increase of up to 2x in the number of TCP segments and 
acknowledges.  In reality the effect is expected to be marginal.  
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11.2 Receiver implementation 

Transport & Network Layer Reassembly Buffers: 

The use of reassembly buffers (either TCP reassembly buffers or IP 
fragmentation reassembly buffers) is implementation dependent. When 
MPA is enabled, reassembly buffers are needed if out of order packets 
arrive and Markers are not enabled.  Buffers are also needed if FPDU 
Alignment is lost or if IP fragmentation occurs. This is because the 
incoming out of order segment may not contain enough information for 
MPA to process all of the FPDU. For cases where a re-segmenting 
middle box is present, or where the TCP sender is not MPA-aware, the 
presence of markers significantly reduces the amount of buffering 
needed. 

Recovery from IP Fragmentation must be transparent to the MPA 
Consumers. 

11.2.1 Network Layer Reassembly Buffers 

Most IP implementations set the IP Don't Fragment bit. Thus upon a 
path MTU change, intermediate devices drop the IP datagram if it is 
too large and reply with an ICMP message which tells the source TCP 
that the path MTU has changed. This causes TCP to emit segments 
conformant with the new path MTU size. Thus IP fragments under most 
conditions should never occur at the receiver. But it is possible. 

There are several options for implementation of network layer 
reassembly buffers: 

1. drop any IP fragments, and reply with an ICMP message according 
to [RFC792] (fragmentation needed and DF set) to tell the Remote 
Peer to resize its TCP segment 

2. support an IP reassembly buffer, but have it of limited size 
(possibly the same size as the local link's MTU). The end Node 
would normally never advertise a path MTU larger than the local 
link MTU. It is recommended that a dropped IP fragment cause an 
ICMP message to be generated according to RFC792. 

3. multiple IP reassembly buffers, of effectively unlimited size. 

4. support an IP reassembly buffer for the largest IP datagram (64 
KB). 

5. support for a large IP reassembly buffer which could span 
multiple IP datagrams. 

An implementation should support at least 2 or 3 above, to avoid 
dropping packets that have traversed the entire fabric.  
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There is no end-to-end ACK for IP reassembly buffers, so there is no 
flow control on the buffer. The only end-to-end ACK is a TCP ACK, 
which can only occur when a complete IP datagram is delivered to TCP. 
Because of this, under worst case, pathological scenarios, the 
largest IP reassembly buffer is the TCP receive window (to buffer 
multiple IP datagrams that have all been fragmented).  

Note that if the Remote Peer does not implement re-segmentation of 
the data stream upon receiving the ICMP reply updating the path MTU, 
it is possible to halt forward progress because the opposite peer 
would continue to retransmit using a transport segment size that is 
too large. This deadlock scenario is no different than if the fabric 
MTU (not last hop MTU) was reduced after connection setup, and the 
remote Node's behavior is not compliant with [RFC1122]. 

11.2.2 TCP Reassembly buffers 

A TCP reassembly buffer is also needed. TCP reassembly buffers are 
needed if FPDU Alignment is lost when using TCP with MPA or when the 
MPA FPDU spans multiple TCP segments.  Buffers are also needed if 
Markers are disabled and out of order packets arrive. 

Since lost FPDU Alignment often means that FPDUs are incomplete, an 
MPA on TCP implementation must have a reassembly buffer large enough 
to recover an FPDU that is less than or equal to the MTU of the 
locally attached link (this should be the largest possible advertised 
TCP path MTU). If the MTU is smaller than 140 octets, the buffer MUST 
be at least 140 octets long to support the minimum FPDU size.  The 
140 octets allows for the minimum MULPDU of 128, 2 octets of pad, 2 
of ULPDU_Length, 4 of CRC, and space for a possible marker. As usual, 
additional buffering may provide better performance. 

Note that if the TCP segment were not stored, it is possible to 
deadlock the MPA algorithm. If the path MTU is reduced, FPDU 
Alignment requires the source TCP to re-segment the data stream to 
the new path MTU. The source MPA will detect this condition and 
reduce the MPA segment size, but any FPDUs already posted to the 
source TCP will be re-segmented and lose FPDU Alignment. If the 
destination does not support a TCP reassembly buffer, these segments 
can never be successfully transmitted and the protocol deadlocks. 

When a complete FPDU is received, processing continues normally. 
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