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Status of this Memo 

 
 
This document is an Internet-Draft and is in full conformance 
with all provisions of Section 10 of RFC2026 [RFC2026].  
 
Internet-Drafts are working documents of the Internet Engineering 
Task Force (IETF), its areas, and its working groups. Note that 
other groups may also distribute working documents as Internet-
Drafts. Internet-Drafts are draft documents valid for a maximum 
of six months and may be updated, replaced, or made obsolete by 
other documents at any time. It is inappropriate to use Internet- 
Drafts as reference material or to cite them other than as "work 
in progress."  
The list of current Internet-Drafts can be accessed at 
http://www.ietf.org/ietf/1id-abstracts.txt  
The list of Internet-Draft Shadow Directories can be accessed at 
http://www.ietf.org/shadow.html. 
 
 

Abstract 
 
Cyclic redundancy check (CRC) codes [Peterson] are shortened 
cyclic codes used for error detection. A number of CRC codes have 
been adopted in standards: ATM, IEC, IEEE, CCITT, IBM-SDLC, and 
more [Baicheva].  The most important expectation from this kind 
of code is a very low probability for undetected errors.  The 
probability of undetected errors in such codes has been, and 
still is, subject to extensive studies that have included both 
analytical models and simulations. Those codes have been used 
extensively in communications and magnetic recording as they 
demonstrate good "burst error" detection capabilities, but are 
also good at detecting several independent bit errors.  Hardware 
implementations are very simple and well known; their simplicity 
has made them popular with hardware developers for many years. 
However, algorithms and software for effective implementations of 
CRC are now also widely available [Williams]. 
 
The probability of undetected errors depends on the polynomial 
selected to generate the code, the error distribution (error 
model), and the data length. 
 
In this memo, we attempt to give some estimates for the 
probability of undetected errors to facilitate the selection of 
an error detection code for iSCSI.  
 
We will also attempt to compare CRCs with other checksum forms 
(Fletcher, Adler, weighted checksums), as permitted by available 
data. 
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1. Error models and goals 
 
We will analyze the code behavior under two conditions: 
 

- noisy channel - burst errors with an average length of n 
bits 
- low noise channel - independent single bit errors 
 

Burst errors are the prevalent natural phenomenon on 
communication lines and recording media. The numbers quoted for 
them revolve around the BER (bit error rate). However, those 
numbers are frequently nothing than a reflection of the Burst 
Error Rate multiplied by the average burst length. In field 
engineering tests, three numbers are usually quoted together -- 
BER, error-free-seconds and severely-error-seconds; this 
illustrates our point. 
 
Even beyond communication and recording media, the effects of 
errors will be bursty. An example this is a memory error that 
will affect more than a single bit and the total effect will not 
be very different from the communication error, or software 
errors that occur while manipulating packets will have a burst 
effect.  Software errors also result in burst errors. In 
addition, serial internal interconnects will make this type of 
error the most common within machines as well. 
 
We also analyze the effects of single independent bit errors, 
since these may be caused by certain defects.  
 
On burst, we assume an average burst error duration of bd, which 
at a given transmission rate s, will result in an average burst 
of a = bd*s bits. (E.g., an average burst duration of 3 ns at 
1Gbs gives an average burst of 3 bits). 
 
For the burst error rate, we will take 10^-10.  The numbers 
quoted for BER on wired communication channels are between 10^-10 
to 10^-12 and we consider the BER as burst-error-rate*average-
burst-length.  Nevertheless, please keep in mind that if the 
channel includes wireless links, the error rates may be 
substantially higher. 
 
For independent single bit errors, we assume a 10^-11 error rate. 
 
Because the error detection mechanisms will have to transport 
large amounts of data (petabytes=10^16 bits) without errors, we 
will target very low probabilities for undetected errors for all 
block lengths (at 10Gb/s that much data can be sent in less than 
2 weeks! on a single link). 
 
Alternatively, as iSCSI has to perform efficiently, we will 
require that the error detection capability of a selected 
protection mechanism should be very good, at least up to block 
lengths of 8k bytes (64kbits). 
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The error detection capability should keep the probability of 
undetected errors at values that would be "next-to-impossible".  
We recognize, however, that such attributes are hard to quantify 
and we resorted to physics. The value 10^23 is the Avogadro 
number while 10^45 is the number of atoms in the known Universe 
(or it was many years ago when we read about it) and those are  
the bounds of incertitude we could live with. (10^-23 at worst 
and 10^-45 if we can afford it). For 8k blocks, the per/bit 
equivalent would be (10^-28 to 10^-50).  
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2. Background and literature survey 
 
Each codeword of a binary (n,k) CRC code C consists of n = k+r 
bits. The block of r parity bits is computed from the block of k 
information bits. The code has a degree r generator polynomial 
g(x).  
 
The code is linear in the sense that the bitwise addition of any 
two codewords yields a codeword.  
 
For the minimal m such that g(x) divides (x^m)-1, either n=m, and 
the code C comprises the set D of all the multiplications of g(x) 
modulo (x^m)-1, or n<m, and C is obtained from D by shortening 
each word in the latter in m-n specific positions. (This also 
reduces the number of words since all zero words are then 
discarded and duplicates are not maintained.) 
 
Error detection at the receiving end is made by computing the 
parity bits from the received information block, and comparing 
them with the received parity bits.  
  
An undetected error occurs when the received word c' is a 
codeword, but is different from the c that is transmitted.  
 
This is only possible when the error pattern e=c'-c is a codeword 
by itself (because of the linearity of the code). The performance 
of a CRC code is measured by the probability Pud of undetected 
channel errors. 
 
Let Ai denote the number of codewords of weight i, (i.e., with i 
1-bits). For a binary symmetric channel (BSC), with sporadic, 
independent bit error ratio of probability 0<=epsilon<=0.5, the 
probability of undetected errors for the code C is thus given by: 
 
Pud(C,epsilon) = Sigma[for i=d to n] (Ai*(epsilon^i)*(1-
epsilon)^(n-i)) 
 
where d is the distance of the code: the minimal weight 
difference between two codewords in C which, by the linearity of 
the code, is also the minimal weight of any codeword in the code.  
Pud can also be expressed by the weight distribution of the dual 
code: the set of words each of which is orthogonal (bitwise AND 
yields an even number of 1-bits) to every word of C.  
The fact that Pud can be computed using the dual code is 
extremely important; while the number of codewords in the code is 
2^k, the number of codewords in the dual code is 2^r. k is in the 
orders of thousands, and r in the order of 16 or 24 or 32. If we 
use Bi to denote the number of codewords in the dual code which 
are of weight i, then ([LinCostello]): 
 
Pud (C,epsilon) = 2^-r Sigma [for i=0 to n] Bi*(1-2*epsilon)^i - 
(1-epsilon)^n 
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Wolf [Wolf94o] introduced an efficient algorithm for enumerating 
all the codewords of a code and finding their weight 
distribution. 
 
Wolf [Wolf82] found that, counter to what was assumed, (1) there 
exist codes for which Pud(C,epsilon)>Pud(C,0.5) for some epsilon 
not= 0.5 and (2) Pud is not always increasing for 
0<=epsilon<=0.5.  The value of what was assumed to be the worst 
Pud is Pud(C,0.5)=(2^-r) - (2^-n). This stems from the fact that 
with epsilon=0.5, all 2^n received words are equally likely and 
out of them 2^(n-r)-1 will be accepted as codewords of no errors, 
although they are different from the codeword transmitted. 
Previously Pud had been assumed to equal [2^(n-r)-1]/(2^n-1) or 
the ratio of the number of non-zero multiples of the polynomial 
of degree less than n (each such multiple is undetected) and the 
number of possible error polynomials. With either formula Pud 
approaches 1/2^r as n approaches infinity, but Wolf's formula is 
more accurate. 
 
Wolf [Wolf94j] investigated the CCITT code of r=16 parity bits. 
This code is a member of the family of (shortened codes of) BCH 
codes of length 2^(r-1) -1 (r=16 in the CCITT 16-bit case) 
generated by a polynomial of the form g(x) =(x+1)p(x) with p(x) 
being a primitive polynomial of degree r-1 (=15 in this case). 
These codes have a BCH design distance of 4. That is, the minimal 
distance between any two codewords in the code is at least 4 bits 
(which is earned by the fact that the sequence of powers of 
alpha, the root of p(x), which are roots of g(x), includes three 
consecutive powers -- alpha^0, alpha^1, alpha^2). Hence, every 3 
single bit errors are detectable.  
 
Wolf found that different shortened versions of a given code, of 
the same codeword length, perform the same (independent of which 
specific indexes are omitted from the original code). He also 
found that for the unshortened codes, all primitive polynomials 
yield codes of the same performance. But for the shortened 
versions, the choice of the primitive polynomial does make a 
difference. Wolf [Wolf94j found a primitive polynomial which 
(when multiplied by x+1) yields a generating polynomial that 
outperforms the CCITT one by an order of magnitude. For 32-bit 
redundancy bits, he found an example of two polynomials that 
differ in their probability of undetected burst of length 33 by 4 
orders of magnitude. 
 
It so happens, that for some shortened codes, the minimum 
distance, or the distribution of the weights, is better than for 
others derived from different unshortened codes. 
 
Baicheva et al [Baicheva] made a comprehensive comparison of 
different generating polynomials of degree 16 of the form g(x) = 
(x+1)p(x), and of other forms. They computed their Pud for code 
lengths up to 1024 bits. They measured their "goodness"  -- if 
Pud(C,epsilon)  <= Pud(C,0.5) and being "well-behaved" -- if 
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Pud(C,epsilon) increases with epsilon in the range (0,0.5).  The 
paper gives a comprehensive table that lists which of the 
polynomials is good and which is well-behaved for different 
length ranges. 
 
For a single burst error, Wolf [Wolf94J] suggested the model of 
(b:p) burst -- the errors only occur within a span of b bits, and 
within that span, the errors occur randomly, with a bit error 
probability 0 <= p <= 1. 
 
For p=0.5, which used to be considered the worst case, it is well 
known [Wolf94J] that the probability of undetected one burst 
error of length b <= r is 0, of length b=r+1 is 2^-(r-1), and of 
b > r+1, is 2^-r, independently of the choice of the primitive 
polynomial.  
 
With Wolf's definition, where p can be different from 0.5, indeed 
it was found that for a given b there are values of p, different 
from 0.5 which maximize the probability of undetected (b:p) burst 
error. 
 
Wolf proved that for a given code, for all b in the range r < b < 
n, the conditional probability of undetected error for the (n, n-
r) code, given that a (b:p) burst occurred, is equal to the 
probability of undetected errors for the same code (the same 
generating polynomial), shortened to block length b, when this 
shortened code is used with a binary symmetric channel with 
channel (sporadic, independent) bit error probability p. 
 
For the IEEE-802.3 used CRC32, Fujiwara et al. [Fujiwara89] 
measured the weights of all words of all shortened versions of 
the IEEE 802.3 code of 32 check bits. This code is generated by a 
primitive polynomial of degree 32:  
g(x) = x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + 
x^8 + x^7 + x^5 + x^4 + x^2 + x + 1 and hence the designed 
distance of it is only 3. This distance holds for codes as long 
as 2^32-1. However, the frame format of the MAC (Media Access 
Control) of the data link layer in IEEE 802.3, as well as that of 
the data link layer for the Ethernet (1980) forbid lengths 
exceeding 12,144 bits. Thus, only such bounded lengths are 
investigated in [Fujiwara89]. For shortened versions, the minimum 
distance was found to be 4 for lengths 4096 to 12,144; 5 for 
lengths 512 to 2048; and even 15 for lengths 33 through 42.  
A chart of results of calculations of Pud is presented in 
[Fujiwara89] from which we can see that for codes of length 
12,144 and BSC of epsilon = 10^-5 - 10^-4, Pud(12,144,epsilon)= 
10^-14 - 10^-13 and for epsilon = 10^-4 - 10^-3,  
Pud(512,epsilon) = 10^-15, Pud(1024,epsilon) = 10^-14,  
Pud(2048,epsilon) = 10^-13, Pud(4096,epsilon) = 10^-12 - 10^-11, 
and Pud(8192,epsilon) = 10^-10 which is rather close to 2^-32. 
 
Castagnoli et al. [Castagnoli93] extended Fujiwara's technique 
for efficiently calculating the minimum distance through the 
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weight distribution of the dual code and explored a large number 
of CRC codes with 24 and 32 redundancy bit. They explored several 
codes built as a multiplication of several lower degree 
irreducible polynomials. 
In the popular class of (x+1)*deg31-irreducible-polynomial they 
explored 47000 polynomials (not all the possible ones). The best 
they found has d=6 up to block lengths of 5275 and d=4 up to 
2^31-1 (bits). 
The investigation was done in 1993 with a special purpose 
processor. 
 
By comparison, the IEEE-802 code has d=4 up to at least 64,000 
bits (Fujikura stopped looking at 12,144) and d=3 up to 2^32-1 
bits. 
 
CRC32/4 (we will refer to it as CRC32C for the remainder of this 
memo) is 11EDC6F41;  IEEE-802 CRC is 104C11DB7, denoting the 
coefficients as a bit vector.  
 
[Stone98] evaluated the performance of CRC (the AAL5 CRC that is 
the same as IEEE802) and the TCP and Fletcher checksums on large 
amounts of data. The results of this experiment indicate a 
serious weakness of the checksums on real-data that stems from 
the fact that checksums do not spread the "hot spots" in input 
data.  However, the results show that Fletcher behaves by a 
factor of 2 better than the regular TCP checksum.  
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3. Probability of undetected errors - burst error  
 

3.1 CRC32C (derivations from [Wolf94j]) 
 
Wolf [Wolf94j] found a 32-bit polynomial of the form g(x) = 
(1+x)p(x) for which the conditional probability of undetected 
error, given that a burst of length 33 occurred, is at most 
(i.e., maximized over all possible channel bit error 
probabilities within the burst) 4 * 10^-10. 
 
We will now figure the probability of undetected error, given 
that a burst of length 34 occurred, using the result derived in 
this paper, namely that for a given code, for all b in the range 
32 < b < n, the conditional probability of undetected error for 
the (n, n-32) code, given that a (b:p) burst occurred, is equal 
to the probability of undetected errors for the same code (the 
same generating polynomial), shortened to block length b, when 
this shortened code is used with a binary symmetric channel with 
channel (sporadic, independent) bit error probability p. 
 
The approximation formula for Pud of sporadic errors, if the 
weights Ai are distributed binomially, is 
 
Pud(C, epsilon) =~= Sigma[for i=d to n] ((n choose i) / 2^r )*(1-
epsilon)^(n-i) * epsilon^i . 
 
Assuming a very small epsilon, this expression is dominated by 
i=d. From [Fujiwara89] we know that for 32-bit CRC, for such 
small n, d=15. Thus, when n grows from 33 to 34, we find that the 
approximation of Pud grows by (34 choose 15) / (33 choose 15) = 
34/19; when n grows further to 35, Pud grows by another 35/20.  
 
Taking, from Wolf [Wolf94j], the most generous conditional 
probability, computed with the bit error probability p* that 
maximizes Pub(p|b), we derive: Pud(p*|33) = 4 x 10^{-10}, 
yielding Pud(p*|34) = 7.15 x 10^{-10} and 
Pud(p*|35) = 1.25 x 10^{-9}. 
 
For the density function of the burst length, we assume the 
Rayleigh density function (the discretization thereof to 
integers), which is the density of the absolute values of complex 
numbers of Gauss distribution: 
      f(x) = x / a^2  exp {-x^2 / 2a^2 }     , x>0 . 
This density function has a peak at the parameter a and it 
decreases smoothly as x increases. 
We take three consecutive bits as the most common burst event 
once an error does occur, and thus a=3. 
 
Now, the probability that a burst of length b occurs in a 
specific position is the burst error rate, which we estimate as 
10^{-10}, times f(b).  
Calculating for b=33 we find f(33) = 1.94 x 10^{-26}. 
Together, we found that the probability that a burst of length 33 
occurred, starting at a specific position, is 1.94 x 10^{-36}. 
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Multiplying this by the generous upper bound on the probability 
that this burst error is not detected, Pud(p*|33), we get that 
the probability that a burst occurred at a specific position, and 
is not detected, is 7.79 x 10 ^{-46}. 
 
Going again along this path of calculations, this time for b=34 
we find that f(34) = 4.85*10^{-28}. Multiplying by 10^{-10} and 
by Pud(p*|34) = 7.15*10^{-10} we find that the probability that a 
burst of length 34 occurred at a specific position, and is not 
detected, is 3.46*10^{-47}. 
 
Last, computing for b=35, we get 1*10^{-29} * 10^{-10} * 
1.25*10^{-9} = 1.25*10^{-48}. 
 
It looks like the total can be approximated at 10^-45 which is 
within the bounds of what we are looking for. 
 
When we multiply this by the length of the code (because thus far 
we calculated for a specific position) we have 10^-45 * 6.5*10^4 
= 6.5*10^-41 as an upper bound on the probability of undetected 
burst error for a code of length 8K Bytes. 
 
We can also apply this overestimation for IEEE 802.3. 
 
Comment: 
2^{-32} = 2.33*10^{-10}. 
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4. Probability of undetected errors - independent errors  
 

4.1 CRC (derivations from [Castagnoli93]) 
 
It is reported in [Castagnoli93] that for BER = epsilon=10^-6, 
Pud for a single bit error, for a code of length 8KB, for both 
cases, IEEE-802.3 and CRC32C is 10^{-20}. They also report that 
CRC32C has distance 4, and IEEE either 3 or 4 for this code 
length. From this, and the minimum distance of the code of this 
length, we conclude that with our estimation of epsilon, namely 
10^{-11}, we should multiply the reported result by {10^{-5}}^4 = 
10^{-20} for CRC32C, and either 10^{-15} or 10^{-20} for 
IEEE802.3. 
 

4.2 Checksums 
 
For independent bit errors, Pud of CRC is approximately 12,000 
better than Fletcher, and 22,000 better than Adler. For burst 
errors, by the simple examples that exist for three consecutive 
values that can produce an undetected burst, we take the factor 
to be at least the same. 
 
If in three consecutive bytes, the error values are x, -2x, x 
then the error is undetected. Even for this error pattern alone, 
the conditional probability of undetected error, assuming a 
uniform distribution of data, is 2^-16 = 1.5 * 10^-5. The 
probability that a burst of length 3 bytes occurs, is f(24) = 
3*10^-14. Together: 4.5*10^-19. Multiplying this by the length of 
the code, we get close to 4.5*10^-16, way worse than the vicinity 
of 10^-40. 
The numbers in the table in Section 6 below reflect a more 
"tolerant" difference (10*4). 
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5. Incremental CRC Updates 
 
In some protocols the packet header changes frequently. 
If the CRC includes the changing part, the CRC will have to be 
recomputed. This raises two issues: 
 

- the complete computation is expensive 
- the packet is not protected against unwanted changes 
between the last check and the re-computation 

 
Fortunately, changes in the header do not imply a need for 
completed CRC computation.  The reason is the linearity of the 
CRC function. Namely, with I1 and I2 denoting two equal-length 
blocks of information bits, CRC(I) denoting the CRC check bits 
calculated for I, and + denoting bitwise modulo-2 addition, we 
have CRC(I1+I2) = CRC(I1)+CRC(I2).   
 
Hence, for an IP packet, made of a header h followed by data d 
followed by CRC bits c = CRC(h d), arriving at a node, which 
updates header h to become h’, the implied update of c is an 
addition of CRC(h’-h 0), where 0 is an all 0 block of the length 
of the data block d, and addition and subtraction are bitwise 
modulo 2.  
 
We know that a predetermined permutation of bits does not change 
distance and weight statistics of the codewords.  It follows that 
such a transformation does not change the probability of 
undetected errors. 
 
We can then conceive the packet as if it was built from data d 
followed by header h, compute the CRC accordingly, c=CRC(d h), 
and update at the node with an addition of CRC(0 h’-h)=CRC(h’-h), 
but on transmission, send the header part before the data and the 
CRC bits. This will allow a faster computation of the CRC, while 
still letting the header part lead (no change to the protocol).  
  
Error detection, i.e., computing the CRC bits by the data and 
header parts that arrive, and comparing them with the CRC part 
that arrives together with them, can be done at the final, end-
target node only, and the detected errors will include unwanted 
changes introduced by the intermediate nodes.   
 
The analysis of the undetected error probability remains valid 
according to the following rationale:  
 
The packet started its way as a codeword. On its way, several 
codewords were added to it (any information followed by the 
corresponding CRC is a codeword). Let e to denote the totality of 
errors added to the packet, on its long, multi-hop journey. 
Because the code is linear (i.e., the sum of two codewords is 
also a codeword) the packet arriving to the end-target node is 
some codeword + e, and hence, as in our preceding analysis, e is 
undetected if and only if it is a codeword by itself.  This fact 
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is the basis of our above analysis, and hence that analysis 
applies here too. (See a detailed discussion at [braun01].)  
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6. Complexity of Hardware Implementation 
 
Comparing the cost of various CRC polynomials, we used a tool 
available at http://www.easics.com/webtools/crctool to implement 
CRC generators/checkers for various CRC polynomials. The program 
gives either Verilog or VHDL code after specifying a polynomial, 
as well as the number of data bits, k, to be handled in one clock 
cycle. For a serial implementation, k would be one. 
 
The cost for either one generator or checker is shown in the 
following table. 
 
The number of 2-input XOR gates, for an un-optimized 
implementation, required for various values of k: 
                                                          
+----------------------------------------------+ 
| Polynomial  | k=32     | k=64     | k=128    | 
+----------------------------------------------+ 
| CCITT-CRC32 | 488      | 740      | 1430     | 
+----------------------------------------------+ 
| IEEE-802    | 872      | 1390     | 2518     | 
+----------------------------------------------+ 
| CRC32Q(Wolf)| 944      | 1444     | 2534     | 
+----------------------------------------------+ 
| CRC32C      | 1036     | 1470     | 2490     | 
+----------------------------------------------+ 
 
 
After optimizing (sharing terms) and in terms of Cells (4 cells 
per 2 input AND, 7 cells per 2 input XOR, 3 cells per inverter) 
the cost for two candidate polynomials is shown in the following 
table. 
 
+-----------------------------------+ 
| Polynomial  | k=32     | k=64     |  
+-----------------------------------+ 
| CCITT-CRC32 | 1855     | 3572     |  
+-----------------------------------+ 
| CRC32C      | 4784     | 7111     |  
+-----------------------------------+ 
 
 
 
For 32-bit datapath, CCITT-CRC32 requires 40% of the number of 
cells required by the CRC32C. For a 64-bit datapath, CCITT-CRC32 
requires 50% of the number of cells. 
 
The total size of one of our smaller chips is roughly 1 million 
cells. The fraction represented by the CRC circuit is less than 
1%. 
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7. Implementation of CRC32C 
 

7.1 A Serial Implementation in Hardware 
 
A serial implementation that processes one data bit at a time and 
performs simultaneous multiplication of the data polynomial by 
x^32 and division by the CRC32C polynomial is described in the 
following Verilog code. 
 
/////////////////////////////////////////////////////////////////
////// 
// File: CRC32_D1.v 
// Date: Tue Feb 26 02:47:05 2002 
// 
// Copyright (C) 1999 Easics NV. 
// This source file may be used and distributed without 
restriction 
// provided that this copyright statement is not removed from the 
file 
// and that any derivative work contains the original copyright 
notice 
// and the associated disclaimer. 
// 
// THIS SOURCE FILE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS 
// OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE 
IMPLIED 
// WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR 
PURPOSE. 
// 
// Purpose: Verilog module containing a synthesizable CRC 
function 
// * polynomial: (0 1 2 4 5 7 8 10 11 12 16 22 23 26 32) 
// * data width: 1 
// 
// Info: jand@easics.be (Jan Decaluwe) 
// http://www.easics.com 
/////////////////////////////////////////////////////////////////
////// 
module CRC32_D1; 
// polynomial: (0 1 2 4 5 7 8 10 11 12 16 22 23 26 32) 
// data width: 1 
function [31:0] nextCRC32_D1; 
input Data; 
input [31:0] CRC; 
reg [0:0] D; 
reg [31:0] C; 
reg [31:0] NewCRC; 
begin 
D[0] = Data; 
C = CRC; 
NewCRC[0] = D[0] ^ C[31]; 
NewCRC[1] = D[0] ^ C[0] ^ C[31]; 
NewCRC[2] = D[0] ^ C[1] ^ C[31]; 
NewCRC[3] = C[2]; 
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NewCRC[4] = D[0] ^ C[3] ^ C[31]; 
NewCRC[5] = D[0] ^ C[4] ^ C[31]; 
NewCRC[6] = C[5]; 
NewCRC[7] = D[0] ^ C[6] ^ C[31]; 
NewCRC[8] = D[0] ^ C[7] ^ C[31]; 
NewCRC[9] = C[8]; 
NewCRC[10] = D[0] ^ C[9] ^ C[31]; 
NewCRC[11] = D[0] ^ C[10] ^ C[31]; 
NewCRC[12] = D[0] ^ C[11] ^ C[31]; 
NewCRC[13] = C[12]; 
NewCRC[14] = C[13]; 
NewCRC[15] = C[14]; 
NewCRC[16] = D[0] ^ C[15] ^ C[31]; 
NewCRC[17] = C[16]; 
NewCRC[18] = C[17]; 
NewCRC[19] = C[18]; 
NewCRC[20] = C[19]; 
NewCRC[21] = C[20]; 
NewCRC[22] = D[0] ^ C[21] ^ C[31]; 
NewCRC[23] = D[0] ^ C[22] ^ C[31]; 
NewCRC[24] = C[23]; 
NewCRC[25] = C[24]; 
NewCRC[26] = D[0] ^ C[25] ^ C[31]; 
NewCRC[27] = C[26]; 
NewCRC[28] = C[27]; 
NewCRC[29] = C[28]; 
NewCRC[30] = C[29]; 
NewCRC[31] = C[30]; 
nextCRC32_D1 = NewCRC; 
end 
endfunction 
endmodule 
 

7.2 A Parallel Implementation in Hardware 
 
A parallel implementation that processes 32 data bits at a time 
is described in the following Verilog code. In software 
implementations, the next state logic is typically implemented by 
means of tables indexed by the input and the current state. 
 
/////////////////////////////////////////////////////////////////
////// 
// File: CRC32_D32.v 
// Date: Tue Feb 26 02:50:08 2002 
// 
// Copyright (C) 1999 Easics NV. 
// This source file may be used and distributed without 
restriction 
// provided that this copyright statement is not removed from the 
file 
// and that any derivative work contains the original copyright 
notice 
// and the associated disclaimer. 
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// 
// THIS SOURCE FILE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS 
// OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE 
IMPLIED 
// WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR 
PURPOSE. 
// 
// Purpose: Verilog module containing a synthesizable CRC 
function 
// * polynomial: p(0 to 32) := 
"100000101111011000111011011110001" 
// * data width: 32 
// 
// Info: jand@easics.be (Jan Decaluwe) 
// http://www.easics.com 
/////////////////////////////////////////////////////////////////
////// 
module CRC32_D32; 
// polynomial: p(0 to 32) := "100000101111011000111011011110001" 
// data width: 32 
// convention: the first serial data bit is D[31] 
function [31:0] nextCRC32_D32; 
input [31:0] Data; 
input [31:0] CRC; 
reg [31:0] D; 
reg [31:0] C; 
reg [31:0] NewCRC; 
begin 
D = Data; 
C = CRC; 
NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[27] ^ D[26] ^ D[25] ^ D[23] 
^ 
D[21] ^ D[18] ^ D[17] ^ D[16] ^ D[12] ^ D[9] ^ D[8] ^ 
D[7] ^ D[6] ^ D[5] ^ D[4] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ 
C[6] ^ C[7] ^ C[8] ^ C[9] ^ C[12] ^ C[16] ^ C[17] ^ 
C[18] ^ C[21] ^ C[23] ^ C[25] ^ C[26] ^ C[27] ^ C[28] ^ 
C[30] ^ C[31]; 
NewCRC[1] = D[31] ^ D[29] ^ D[28] ^ D[27] ^ D[26] ^ D[24] ^ D[22] 
^ 
D[19] ^ D[18] ^ D[17] ^ D[13] ^ D[10] ^ D[9] ^ D[8] ^ 
D[7] ^ D[6] ^ D[5] ^ D[1] ^ C[1] ^ C[5] ^ C[6] ^ C[7] ^ 
C[8] ^ C[9] ^ C[10] ^ C[13] ^ C[17] ^ C[18] ^ C[19] ^ 
C[22] ^ C[24] ^ C[26] ^ C[27] ^ C[28] ^ C[29] ^ C[31]; 
NewCRC[2] = D[30] ^ D[29] ^ D[28] ^ D[27] ^ D[25] ^ D[23] ^ D[20] 
^ 
D[19] ^ D[18] ^ D[14] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ 
D[7] ^ D[6] ^ D[2] ^ C[2] ^ C[6] ^ C[7] ^ C[8] ^ C[9] ^ 
C[10] ^ C[11] ^ C[14] ^ C[18] ^ C[19] ^ C[20] ^ C[23] ^ 
C[25] ^ C[27] ^ C[28] ^ C[29] ^ C[30]; 
NewCRC[3] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[26] ^ D[24] ^ D[21] 
^ 
D[20] ^ D[19] ^ D[15] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^ 
D[8] ^ D[7] ^ D[3] ^ C[3] ^ C[7] ^ C[8] ^ C[9] ^ C[10] ^ 
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C[11] ^ C[12] ^ C[15] ^ C[19] ^ C[20] ^ C[21] ^ C[24] ^ 
C[26] ^ C[28] ^ C[29] ^ C[30] ^ C[31]; 
NewCRC[4] = D[31] ^ D[30] ^ D[29] ^ D[27] ^ D[25] ^ D[22] ^ D[21] 
^ 
D[20] ^ D[16] ^ D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^ 
D[8] ^ D[4] ^ C[4] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^ 
C[12] ^ C[13] ^ C[16] ^ C[20] ^ C[21] ^ C[22] ^ C[25] ^ 
C[27] ^ C[29] ^ C[30] ^ C[31]; 
NewCRC[5] = D[31] ^ D[30] ^ D[28] ^ D[26] ^ D[23] ^ D[22] ^ D[21] 
^ 
D[17] ^ D[14] ^ D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^ 
D[5] ^ C[5] ^ C[9] ^ C[10] ^ C[11] ^ C[12] ^ C[13] ^ 
C[14] ^ C[17] ^ C[21] ^ C[22] ^ C[23] ^ C[26] ^ C[28] ^ 
C[30] ^ C[31]; 
NewCRC[6] = D[30] ^ D[29] ^ D[28] ^ D[26] ^ D[25] ^ D[24] ^ D[22] 
^ 
D[21] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^ D[11] ^ 
D[10] ^ D[9] ^ D[8] ^ D[7] ^ D[5] ^ D[4] ^ D[0] ^ C[0] ^ 
C[4] ^ C[5] ^ C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^ 
C[13] ^ C[14] ^ C[15] ^ C[16] ^ C[17] ^ C[21] ^ C[22] ^ 
C[24] ^ C[25] ^ C[26] ^ C[28] ^ C[29] ^ C[30]; 
NewCRC[7] = D[31] ^ D[30] ^ D[29] ^ D[27] ^ D[26] ^ D[25] ^ D[23] 
^ 
D[22] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[12] ^ 
D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[6] ^ D[5] ^ D[1] ^ 
C[1] ^ C[5] ^ C[6] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^ 
C[12] ^ C[14] ^ C[15] ^ C[16] ^ C[17] ^ C[18] ^ C[22] ^ 
C[23] ^ C[25] ^ C[26] ^ C[27] ^ C[29] ^ C[30] ^ C[31]; 
NewCRC[8] = D[25] ^ D[24] ^ D[21] ^ D[19] ^ D[15] ^ D[13] ^ D[11] 
^ 
D[10] ^ D[8] ^ D[5] ^ D[4] ^ D[2] ^ D[0] ^ C[0] ^ C[2] ^ 
C[4] ^ C[5] ^ C[8] ^ C[10] ^ C[11] ^ C[13] ^ C[15] ^ 
C[19] ^ C[21] ^ C[24] ^ C[25]; 
NewCRC[9] = D[31] ^ D[30] ^ D[28] ^ D[27] ^ D[23] ^ D[22] ^ D[21] 
^ 
D[20] ^ D[18] ^ D[17] ^ D[14] ^ D[11] ^ D[8] ^ D[7] ^ 
D[4] ^ D[3] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[4] ^ 
C[7] ^ C[8] ^ C[11] ^ C[14] ^ C[17] ^ C[18] ^ C[20] ^ 
C[21] ^ C[22] ^ C[23] ^ C[27] ^ C[28] ^ C[30] ^ C[31]; 
NewCRC[10] = D[30] ^ D[29] ^ D[27] ^ D[26] ^ D[25] ^ D[24] ^ 
D[22] ^ 
D[19] ^ D[17] ^ D[16] ^ D[15] ^ D[7] ^ D[6] ^ D[2] ^ 
D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^ C[6] ^ C[7] ^ C[15] ^ 
C[16] ^ C[17] ^ C[19] ^ C[22] ^ C[24] ^ C[25] ^ C[26] ^ 
C[27] ^ C[29] ^ C[30]; 
NewCRC[11] = D[21] ^ D[20] ^ D[12] ^ D[9] ^ D[6] ^ D[5] ^ D[4] ^ 
D[3] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^ C[3] ^ 
C[4] ^ C[5] ^ C[6] ^ C[9] ^ C[12] ^ C[20] ^ C[21]; 
NewCRC[12] = D[22] ^ D[21] ^ D[13] ^ D[10] ^ D[7] ^ D[6] ^ D[5] ^ 
D[4] ^ D[3] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[3] ^ C[4] ^ 
C[5] ^ C[6] ^ C[7] ^ C[10] ^ C[13] ^ C[21] ^ C[22]; 
NewCRC[13] = D[31] ^ D[30] ^ D[28] ^ D[27] ^ D[26] ^ D[25] ^ 
D[22] ^ 
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D[21] ^ D[18] ^ D[17] ^ D[16] ^ D[14] ^ D[12] ^ D[11] ^ 
D[9] ^ D[3] ^ D[2] ^ D[0] ^ C[0] ^ C[2] ^ C[3] ^ C[9] ^ 
C[11] ^ C[12] ^ C[14] ^ C[16] ^ C[17] ^ C[18] ^ C[21] ^ 
C[22] ^ C[25] ^ C[26] ^ C[27] ^ C[28] ^ C[30] ^ C[31]; 
NewCRC[14] = D[30] ^ D[29] ^ D[25] ^ D[22] ^ D[21] ^ D[19] ^ 
D[16] ^ 
D[15] ^ D[13] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^ D[6] ^ 
D[5] ^ D[3] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[5] ^ 
C[6] ^ C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[13] ^ C[15] ^ 
C[16] ^ C[19] ^ C[21] ^ C[22] ^ C[25] ^ C[29] ^ C[30]; 
NewCRC[15] = D[31] ^ D[30] ^ D[26] ^ D[23] ^ D[22] ^ D[20] ^ 
D[17] ^ 
D[16] ^ D[14] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^ 
D[6] ^ D[4] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[4] ^ C[6] ^ 
C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^ C[14] ^ C[16] ^ 
C[17] ^ C[20] ^ C[22] ^ C[23] ^ C[26] ^ C[30] ^ C[31]; 
NewCRC[16] = D[31] ^ D[27] ^ D[24] ^ D[23] ^ D[21] ^ D[18] ^ 
D[17] ^ 
D[15] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^ 
D[5] ^ D[3] ^ D[2] ^ C[2] ^ C[3] ^ C[5] ^ C[7] ^ C[8] ^ 
C[9] ^ C[10] ^ C[11] ^ C[12] ^ C[15] ^ C[17] ^ C[18] ^ 
C[21] ^ C[23] ^ C[24] ^ C[27] ^ C[31]; 
NewCRC[17] = D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[19] ^ D[18] ^ 
D[16] ^ 
D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[6] ^ 
D[4] ^ D[3] ^ C[3] ^ C[4] ^ C[6] ^ C[8] ^ C[9] ^ C[10] ^ 
C[11] ^ C[12] ^ C[13] ^ C[16] ^ C[18] ^ C[19] ^ C[22] ^ 
C[24] ^ C[25] ^ C[28]; 
NewCRC[18] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[27] ^ D[21] ^ 
D[20] ^ 
D[19] ^ D[18] ^ D[16] ^ D[14] ^ D[13] ^ D[11] ^ D[10] ^ 
D[8] ^ D[6] ^ D[0] ^ C[0] ^ C[6] ^ C[8] ^ C[10] ^ C[11] ^ 
C[13] ^ C[14] ^ C[16] ^ C[18] ^ C[19] ^ C[20] ^ C[21] ^ 
C[27] ^ C[28] ^ C[29] ^ C[30] ^ C[31]; 
NewCRC[19] = D[29] ^ D[27] ^ D[26] ^ D[25] ^ D[23] ^ D[22] ^ 
D[20] ^ 
D[19] ^ D[18] ^ D[16] ^ D[15] ^ D[14] ^ D[11] ^ D[8] ^ 
D[6] ^ D[5] ^ D[4] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[4] ^ 
C[5] ^ C[6] ^ C[8] ^ C[11] ^ C[14] ^ C[15] ^ C[16] ^ 
C[18] ^ C[19] ^ C[20] ^ C[22] ^ C[23] ^ C[25] ^ C[26] ^ 
C[27] ^ C[29]; 
NewCRC[20] = D[31] ^ D[25] ^ D[24] ^ D[20] ^ D[19] ^ D[18] ^ 
D[15] ^ 
D[8] ^ D[4] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^ 
C[4] ^ C[8] ^ C[15] ^ C[18] ^ C[19] ^ C[20] ^ C[24] ^ 
C[25] ^ C[31]; 
NewCRC[21] = D[26] ^ D[25] ^ D[21] ^ D[20] ^ D[19] ^ D[16] ^ D[9] 
^ 
D[5] ^ D[3] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[3] ^ C[5] ^ 
C[9] ^ C[16] ^ C[19] ^ C[20] ^ C[21] ^ C[25] ^ C[26]; 
NewCRC[22] = D[31] ^ D[30] ^ D[28] ^ D[25] ^ D[23] ^ D[22] ^ 
D[20] ^ 
D[18] ^ D[16] ^ D[12] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^ 
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D[5] ^ D[3] ^ D[2] ^ D[0] ^ C[0] ^ C[2] ^ C[3] ^ C[5] ^ 
C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[12] ^ C[16] ^ C[18] ^ 
C[20] ^ C[22] ^ C[23] ^ C[25] ^ C[28] ^ C[30] ^ C[31]; 
NewCRC[23] = D[30] ^ D[29] ^ D[28] ^ D[27] ^ D[25] ^ D[24] ^ 
D[19] ^ 
D[18] ^ D[16] ^ D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[7] ^ 
D[5] ^ D[3] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[5] ^ 
C[7] ^ C[10] ^ C[11] ^ C[12] ^ C[13] ^ C[16] ^ C[18] ^ 
C[19] ^ C[24] ^ C[25] ^ C[27] ^ C[28] ^ C[29] ^ C[30]; 
NewCRC[24] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[26] ^ D[25] ^ 
D[20] ^ 
D[19] ^ D[17] ^ D[14] ^ D[13] ^ D[12] ^ D[11] ^ D[8] ^ 
D[6] ^ D[4] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[4] ^ C[6] ^ 
C[8] ^ C[11] ^ C[12] ^ C[13] ^ C[14] ^ C[17] ^ C[19] ^ 
C[20] ^ C[25] ^ C[26] ^ C[28] ^ C[29] ^ C[30] ^ C[31]; 
NewCRC[25] = D[29] ^ D[28] ^ D[25] ^ D[23] ^ D[20] ^ D[17] ^ 
D[16] ^ 
D[15] ^ D[14] ^ D[13] ^ D[8] ^ D[6] ^ D[4] ^ D[3] ^ 
D[2] ^ D[0] ^ C[0] ^ C[2] ^ C[3] ^ C[4] ^ C[6] ^ C[8] ^ 
C[13] ^ C[14] ^ C[15] ^ C[16] ^ C[17] ^ C[20] ^ C[23] ^ 
C[25] ^ C[28] ^ C[29]; 
NewCRC[26] = D[31] ^ D[29] ^ D[28] ^ D[27] ^ D[25] ^ D[24] ^ 
D[23] ^ 
D[15] ^ D[14] ^ D[12] ^ D[8] ^ D[6] ^ D[3] ^ D[1] ^ 
D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[6] ^ C[8] ^ C[12] ^ C[14] ^ 
C[15] ^ C[23] ^ C[24] ^ C[25] ^ C[27] ^ C[28] ^ C[29] ^ 
C[31]; 
NewCRC[27] = D[31] ^ D[29] ^ D[27] ^ D[24] ^ D[23] ^ D[21] ^ 
D[18] ^ 
D[17] ^ D[15] ^ D[13] ^ D[12] ^ D[8] ^ D[6] ^ D[5] ^ 
D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^ C[5] ^ C[6] ^ 
C[8] ^ C[12] ^ C[13] ^ C[15] ^ C[17] ^ C[18] ^ C[21] ^ 
C[23] ^ C[24] ^ C[27] ^ C[29] ^ C[31]; 
NewCRC[28] = D[31] ^ D[27] ^ D[26] ^ D[24] ^ D[23] ^ D[22] ^ 
D[21] ^ 
D[19] ^ D[17] ^ D[14] ^ D[13] ^ D[12] ^ D[8] ^ D[5] ^ 
D[4] ^ D[3] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^ 
C[3] ^ C[4] ^ C[5] ^ C[8] ^ C[12] ^ C[13] ^ C[14] ^ 
C[17] ^ C[19] ^ C[21] ^ C[22] ^ C[23] ^ C[24] ^ C[26] ^ 
C[27] ^ C[31]; 
NewCRC[29] = D[28] ^ D[27] ^ D[25] ^ D[24] ^ D[23] ^ D[22] ^ 
D[20] ^ 
D[18] ^ D[15] ^ D[14] ^ D[13] ^ D[9] ^ D[6] ^ D[5] ^ 
D[4] ^ D[3] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[3] ^ C[4] ^ 
C[5] ^ C[6] ^ C[9] ^ C[13] ^ C[14] ^ C[15] ^ C[18] ^ 
C[20] ^ C[22] ^ C[23] ^ C[24] ^ C[25] ^ C[27] ^ C[28]; 
NewCRC[30] = D[29] ^ D[28] ^ D[26] ^ D[25] ^ D[24] ^ D[23] ^ 
D[21] ^ 
D[19] ^ D[16] ^ D[15] ^ D[14] ^ D[10] ^ D[7] ^ D[6] ^ 
D[5] ^ D[4] ^ D[3] ^ D[2] ^ C[2] ^ C[3] ^ C[4] ^ C[5] ^ 
C[6] ^ C[7] ^ C[10] ^ C[14] ^ C[15] ^ C[16] ^ C[19] ^ 
C[21] ^ C[23] ^ C[24] ^ C[25] ^ C[26] ^ C[28] ^ C[29]; 
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NewCRC[31] = D[30] ^ D[29] ^ D[27] ^ D[26] ^ D[25] ^ D[24] ^ 
D[22] ^ 
D[20] ^ D[17] ^ D[16] ^ D[15] ^ D[11] ^ D[8] ^ D[7] ^ 
D[6] ^ D[5] ^ D[4] ^ D[3] ^ C[3] ^ C[4] ^ C[5] ^ C[6] ^ 
C[7] ^ C[8] ^ C[11] ^ C[15] ^ C[16] ^ C[17] ^ C[20] ^ 
C[22] ^ C[24] ^ C[25] ^ C[26] ^ C[27] ^ C[29] ^ C[30]; 
nextCRC32_D32 = NewCRC; 
end 
endfunction 
 

7.3 Some Hardware Implementation Comments 
 
The iSCSI spec specifies that the most significant 32 bits of the 
data be complemented. For most implementations of the division 
algorithm, such as the ones described here, this is equivalent to 
initializing the CRC register to ones regardless of the CRC 
polynomial. For other implementations, in particular one that 
only performs division by the CRC polynomial (and for which the 
prescribed multiplication by x^32 is performed externally) 
initializing the CRC register to ones does not have the same 
effect as complementing the most significant 32 bits of the 
message. For the CRC32c polynomial, initializing the CRC register 
to 0x2a26f826 has the same effect as complementing the most 
significant 32 bits of the data. 
See reference [Tuikov&Cavanna] for more details. 
 

7.4 Fast Hardware Implementation References 
 
Fast hardware implementations start from a canonic scheme (as the 
one presented in 7.2 and optimize it based on different criteria. 
Two classic papers on this subject are [Albertengo1990] and 
[Glaise1997]. A more modern (and systematic) approach can be 
found in [Shie2001] and [Sprachman2001].  
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8. Summary and conclusions 
 
 
The following table is a summary of the error detection 
capabilities of the different codes analyzed. In the table, d is 
the minimal distance at block length block (in bits), i/byte - 
software instructions/byte, Table size (if table lookup needed), 
T-look number of lookups/byte, Pudb - Pud burst and Puds - Pud 
sporadic: 
 
+-----------------------------------------------------------+ 
| Code      |d| Block |i/Byte|Tsize|T-look| Pudb   | Puds   | 
+-----------------------------------------------------------+ 
| Fletcher32|3| 2^19  | 2    |  -  | -    | 10^-37 | 10^-36 | 
+-----------------------------------------------------------+ 
| Adler32   |3| 2^19  | 3    |  -  | -    | 10^-36 | 10^-35 | 
+-----------------------------------------------------------+ 
| IEEE-802  |3| 2^16  | 2.75 | 2^18| 0.5/b| 10^-41 | 10^-40 | 
+-----------------------------------------------------------+ 
| CRC32C    |3| 2^31-1| 2.75 | 2^18| 0.5/b| 10^-41 | 10^-40 | 
+-----------------------------------------------------------+ 
 
The probabilities for undetected errors in the above table are 
computed assuming uniformly distributed data.  For real data - 
that can be biased - [Stone98], checksums behave substantially 
worse than CRCs 
 
Considering the protection level it offers, the lack of 
sensitivity for biased data and the large block it can protect, 
we think that CRC32C is a good choice as a basic error detection 
mechanism for iSCSI. 
 
Please observe also that burst errors characterized by a fixed 
average time will have a higher impact on error detection 
capability as the speed of the channels (machines and networks) 
increases. The only way to keep the Pud within bounds for the 
long-term is to reduce the BER by using better coding of lower 
levels of the channel.  
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