

Internet Draft Dafna Sheinwald
Document: draft-ietf-ips-iscsi-crc-00.txt Julian Satran
Category: informational IBM

 Pat Thaler
 Vicente Cavanna
 Matt Wakeley
 Agilent

iSCSI CRC/Checksum Considerations

Sheinwald D., Informational, Expires November 2002 1

 iSCSI CRC considerations 14-Apr-02

Status of this Memo

This document is an Internet-Draft and is in full conformance
with all provisions of Section 10 of RFC2026 [RFC2026].

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts. Internet-Drafts are draft documents valid for a maximum
of six months and may be updated, replaced, or made obsolete by
other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as "work
in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

Cyclic redundancy check (CRC) codes [Peterson] are shortened
cyclic codes used for error detection. A number of CRC codes have
been adopted in standards: ATM, IEC, IEEE, CCITT, IBM-SDLC, and
more [Baicheva]. The most important expectation from this kind
of code is a very low probability for undetected errors. The
probability of undetected errors in such codes has been, and
still is, subject to extensive studies that have included both
analytical models and simulations. Those codes have been used
extensively in communications and magnetic recording as they
demonstrate good "burst error" detection capabilities, but are
also good at detecting several independent bit errors. Hardware
implementations are very simple and well known; their simplicity
has made them popular with hardware developers for many years.
However, algorithms and software for effective implementations of
CRC are now also widely available [Williams].

The probability of undetected errors depends on the polynomial
selected to generate the code, the error distribution (error
model), and the data length.

In this memo, we attempt to give some estimates for the
probability of undetected errors to facilitate the selection of
an error detection code for iSCSI.

We will also attempt to compare CRCs with other checksum forms
(Fletcher, Adler, weighted checksums), as permitted by available
data.

Sheinwald, D. Informational , Expires November 2002 2

 iSCSI CRC considerations 14-Apr-02

1. Error models and goals

We will analyze the code behavior under two conditions:

- noisy channel - burst errors with an average length of n
bits
- low noise channel - independent single bit errors

Burst errors are the prevalent natural phenomenon on
communication lines and recording media. The numbers quoted for
them revolve around the BER (bit error rate). However, those
numbers are frequently nothing than a reflection of the Burst
Error Rate multiplied by the average burst length. In field
engineering tests, three numbers are usually quoted together --
BER, error-free-seconds and severely-error-seconds; this
illustrates our point.

Even beyond communication and recording media, the effects of
errors will be bursty. An example this is a memory error that
will affect more than a single bit and the total effect will not
be very different from the communication error, or software
errors that occur while manipulating packets will have a burst
effect. Software errors also result in burst errors. In
addition, serial internal interconnects will make this type of
error the most common within machines as well.

We also analyze the effects of single independent bit errors,
since these may be caused by certain defects.

On burst, we assume an average burst error duration of bd, which
at a given transmission rate s, will result in an average burst
of a = bd*s bits. (E.g., an average burst duration of 3 ns at
1Gbs gives an average burst of 3 bits).

For the burst error rate, we will take 10^-10. The numbers
quoted for BER on wired communication channels are between 10^-10
to 10^-12 and we consider the BER as burst-error-rate*average-
burst-length. Nevertheless, please keep in mind that if the
channel includes wireless links, the error rates may be
substantially higher.

For independent single bit errors, we assume a 10^-11 error rate.

Because the error detection mechanisms will have to transport
large amounts of data (petabytes=10^16 bits) without errors, we
will target very low probabilities for undetected errors for all
block lengths (at 10Gb/s that much data can be sent in less than
2 weeks! on a single link).

Alternatively, as iSCSI has to perform efficiently, we will
require that the error detection capability of a selected
protection mechanism should be very good, at least up to block
lengths of 8k bytes (64kbits).

Sheinwald, D. Informational , Expires November 2002 3

 iSCSI CRC considerations 14-Apr-02

The error detection capability should keep the probability of
undetected errors at values that would be "next-to-impossible".
We recognize, however, that such attributes are hard to quantify
and we resorted to physics. The value 10^23 is the Avogadro
number while 10^45 is the number of atoms in the known Universe
(or it was many years ago when we read about it) and those are
the bounds of incertitude we could live with. (10^-23 at worst
and 10^-45 if we can afford it). For 8k blocks, the per/bit
equivalent would be (10^-28 to 10^-50).

Sheinwald, D. Informational , Expires November 2002 4

 iSCSI CRC considerations 14-Apr-02

2. Background and literature survey

Each codeword of a binary (n,k) CRC code C consists of n = k+r
bits. The block of r parity bits is computed from the block of k
information bits. The code has a degree r generator polynomial
g(x).

The code is linear in the sense that the bitwise addition of any
two codewords yields a codeword.

For the minimal m such that g(x) divides (x^m)-1, either n=m, and
the code C comprises the set D of all the multiplications of g(x)
modulo (x^m)-1, or n<m, and C is obtained from D by shortening
each word in the latter in m-n specific positions. (This also
reduces the number of words since all zero words are then
discarded and duplicates are not maintained.)

Error detection at the receiving end is made by computing the
parity bits from the received information block, and comparing
them with the received parity bits.

An undetected error occurs when the received word c' is a
codeword, but is different from the c that is transmitted.

This is only possible when the error pattern e=c'-c is a codeword
by itself (because of the linearity of the code). The performance
of a CRC code is measured by the probability Pud of undetected
channel errors.

Let Ai denote the number of codewords of weight i, (i.e., with i
1-bits). For a binary symmetric channel (BSC), with sporadic,
independent bit error ratio of probability 0<=epsilon<=0.5, the
probability of undetected errors for the code C is thus given by:

Pud(C,epsilon) = Sigma[for i=d to n] (Ai*(epsilon^i)*(1-
epsilon)^(n-i))

where d is the distance of the code: the minimal weight
difference between two codewords in C which, by the linearity of
the code, is also the minimal weight of any codeword in the code.
Pud can also be expressed by the weight distribution of the dual
code: the set of words each of which is orthogonal (bitwise AND
yields an even number of 1-bits) to every word of C.
The fact that Pud can be computed using the dual code is
extremely important; while the number of codewords in the code is
2^k, the number of codewords in the dual code is 2^r. k is in the
orders of thousands, and r in the order of 16 or 24 or 32. If we
use Bi to denote the number of codewords in the dual code which
are of weight i, then ([LinCostello]):

Pud (C,epsilon) = 2^-r Sigma [for i=0 to n] Bi*(1-2*epsilon)^i -
(1-epsilon)^n

Sheinwald, D. Informational , Expires November 2002 5

 iSCSI CRC considerations 14-Apr-02

Wolf [Wolf94o] introduced an efficient algorithm for enumerating
all the codewords of a code and finding their weight
distribution.

Wolf [Wolf82] found that, counter to what was assumed, (1) there
exist codes for which Pud(C,epsilon)>Pud(C,0.5) for some epsilon
not= 0.5 and (2) Pud is not always increasing for
0<=epsilon<=0.5. The value of what was assumed to be the worst
Pud is Pud(C,0.5)=(2^-r) - (2^-n). This stems from the fact that
with epsilon=0.5, all 2^n received words are equally likely and
out of them 2^(n-r)-1 will be accepted as codewords of no errors,
although they are different from the codeword transmitted.
Previously Pud had been assumed to equal [2^(n-r)-1]/(2^n-1) or
the ratio of the number of non-zero multiples of the polynomial
of degree less than n (each such multiple is undetected) and the
number of possible error polynomials. With either formula Pud
approaches 1/2^r as n approaches infinity, but Wolf's formula is
more accurate.

Wolf [Wolf94j] investigated the CCITT code of r=16 parity bits.
This code is a member of the family of (shortened codes of) BCH
codes of length 2^(r-1) -1 (r=16 in the CCITT 16-bit case)
generated by a polynomial of the form g(x) =(x+1)p(x) with p(x)
being a primitive polynomial of degree r-1 (=15 in this case).
These codes have a BCH design distance of 4. That is, the minimal
distance between any two codewords in the code is at least 4 bits
(which is earned by the fact that the sequence of powers of
alpha, the root of p(x), which are roots of g(x), includes three
consecutive powers -- alpha^0, alpha^1, alpha^2). Hence, every 3
single bit errors are detectable.

Wolf found that different shortened versions of a given code, of
the same codeword length, perform the same (independent of which
specific indexes are omitted from the original code). He also
found that for the unshortened codes, all primitive polynomials
yield codes of the same performance. But for the shortened
versions, the choice of the primitive polynomial does make a
difference. Wolf [Wolf94j found a primitive polynomial which
(when multiplied by x+1) yields a generating polynomial that
outperforms the CCITT one by an order of magnitude. For 32-bit
redundancy bits, he found an example of two polynomials that
differ in their probability of undetected burst of length 33 by 4
orders of magnitude.

It so happens, that for some shortened codes, the minimum
distance, or the distribution of the weights, is better than for
others derived from different unshortened codes.

Baicheva et al [Baicheva] made a comprehensive comparison of
different generating polynomials of degree 16 of the form g(x) =
(x+1)p(x), and of other forms. They computed their Pud for code
lengths up to 1024 bits. They measured their "goodness" -- if
Pud(C,epsilon) <= Pud(C,0.5) and being "well-behaved" -- if

Sheinwald, D. Informational , Expires November 2002 6

 iSCSI CRC considerations 14-Apr-02

Pud(C,epsilon) increases with epsilon in the range (0,0.5). The
paper gives a comprehensive table that lists which of the
polynomials is good and which is well-behaved for different
length ranges.

For a single burst error, Wolf [Wolf94J] suggested the model of
(b:p) burst -- the errors only occur within a span of b bits, and
within that span, the errors occur randomly, with a bit error
probability 0 <= p <= 1.

For p=0.5, which used to be considered the worst case, it is well
known [Wolf94J] that the probability of undetected one burst
error of length b <= r is 0, of length b=r+1 is 2^-(r-1), and of
b > r+1, is 2^-r, independently of the choice of the primitive
polynomial.

With Wolf's definition, where p can be different from 0.5, indeed
it was found that for a given b there are values of p, different
from 0.5 which maximize the probability of undetected (b:p) burst
error.

Wolf proved that for a given code, for all b in the range r < b <
n, the conditional probability of undetected error for the (n, n-
r) code, given that a (b:p) burst occurred, is equal to the
probability of undetected errors for the same code (the same
generating polynomial), shortened to block length b, when this
shortened code is used with a binary symmetric channel with
channel (sporadic, independent) bit error probability p.

For the IEEE-802.3 used CRC32, Fujiwara et al. [Fujiwara89]
measured the weights of all words of all shortened versions of
the IEEE 802.3 code of 32 check bits. This code is generated by a
primitive polynomial of degree 32:
g(x) = x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 +
x^8 + x^7 + x^5 + x^4 + x^2 + x + 1 and hence the designed
distance of it is only 3. This distance holds for codes as long
as 2^32-1. However, the frame format of the MAC (Media Access
Control) of the data link layer in IEEE 802.3, as well as that of
the data link layer for the Ethernet (1980) forbid lengths
exceeding 12,144 bits. Thus, only such bounded lengths are
investigated in [Fujiwara89]. For shortened versions, the minimum
distance was found to be 4 for lengths 4096 to 12,144; 5 for
lengths 512 to 2048; and even 15 for lengths 33 through 42.
A chart of results of calculations of Pud is presented in
[Fujiwara89] from which we can see that for codes of length
12,144 and BSC of epsilon = 10^-5 - 10^-4, Pud(12,144,epsilon)=
10^-14 - 10^-13 and for epsilon = 10^-4 - 10^-3,
Pud(512,epsilon) = 10^-15, Pud(1024,epsilon) = 10^-14,
Pud(2048,epsilon) = 10^-13, Pud(4096,epsilon) = 10^-12 - 10^-11,
and Pud(8192,epsilon) = 10^-10 which is rather close to 2^-32.

Castagnoli et al. [Castagnoli93] extended Fujiwara's technique
for efficiently calculating the minimum distance through the

Sheinwald, D. Informational , Expires November 2002 7

 iSCSI CRC considerations 14-Apr-02

weight distribution of the dual code and explored a large number
of CRC codes with 24 and 32 redundancy bit. They explored several
codes built as a multiplication of several lower degree
irreducible polynomials.
In the popular class of (x+1)*deg31-irreducible-polynomial they
explored 47000 polynomials (not all the possible ones). The best
they found has d=6 up to block lengths of 5275 and d=4 up to
2^31-1 (bits).
The investigation was done in 1993 with a special purpose
processor.

By comparison, the IEEE-802 code has d=4 up to at least 64,000
bits (Fujikura stopped looking at 12,144) and d=3 up to 2^32-1
bits.

CRC32/4 (we will refer to it as CRC32C for the remainder of this
memo) is 11EDC6F41; IEEE-802 CRC is 104C11DB7, denoting the
coefficients as a bit vector.

[Stone98] evaluated the performance of CRC (the AAL5 CRC that is
the same as IEEE802) and the TCP and Fletcher checksums on large
amounts of data. The results of this experiment indicate a
serious weakness of the checksums on real-data that stems from
the fact that checksums do not spread the "hot spots" in input
data. However, the results show that Fletcher behaves by a
factor of 2 better than the regular TCP checksum.

Sheinwald, D. Informational , Expires November 2002 8

 iSCSI CRC considerations 14-Apr-02

3. Probability of undetected errors - burst error

3.1 CRC32C (derivations from [Wolf94j])

Wolf [Wolf94j] found a 32-bit polynomial of the form g(x) =
(1+x)p(x) for which the conditional probability of undetected
error, given that a burst of length 33 occurred, is at most
(i.e., maximized over all possible channel bit error
probabilities within the burst) 4 * 10^-10.

We will now figure the probability of undetected error, given
that a burst of length 34 occurred, using the result derived in
this paper, namely that for a given code, for all b in the range
32 < b < n, the conditional probability of undetected error for
the (n, n-32) code, given that a (b:p) burst occurred, is equal
to the probability of undetected errors for the same code (the
same generating polynomial), shortened to block length b, when
this shortened code is used with a binary symmetric channel with
channel (sporadic, independent) bit error probability p.

The approximation formula for Pud of sporadic errors, if the
weights Ai are distributed binomially, is

Pud(C, epsilon) =~= Sigma[for i=d to n] ((n choose i) / 2^r)*(1-
epsilon)^(n-i) * epsilon^i .

Assuming a very small epsilon, this expression is dominated by
i=d. From [Fujiwara89] we know that for 32-bit CRC, for such
small n, d=15. Thus, when n grows from 33 to 34, we find that the
approximation of Pud grows by (34 choose 15) / (33 choose 15) =
34/19; when n grows further to 35, Pud grows by another 35/20.

Taking, from Wolf [Wolf94j], the most generous conditional
probability, computed with the bit error probability p* that
maximizes Pub(p|b), we derive: Pud(p*|33) = 4 x 10^{-10},
yielding Pud(p*|34) = 7.15 x 10^{-10} and
Pud(p*|35) = 1.25 x 10^{-9}.

For the density function of the burst length, we assume the
Rayleigh density function (the discretization thereof to
integers), which is the density of the absolute values of complex
numbers of Gauss distribution:
 f(x) = x / a^2 exp {-x^2 / 2a^2 } , x>0 .
This density function has a peak at the parameter a and it
decreases smoothly as x increases.
We take three consecutive bits as the most common burst event
once an error does occur, and thus a=3.

Now, the probability that a burst of length b occurs in a
specific position is the burst error rate, which we estimate as
10^{-10}, times f(b).
Calculating for b=33 we find f(33) = 1.94 x 10^{-26}.
Together, we found that the probability that a burst of length 33
occurred, starting at a specific position, is 1.94 x 10^{-36}.

Sheinwald, D. Informational , Expires November 2002 9

 iSCSI CRC considerations 14-Apr-02

Multiplying this by the generous upper bound on the probability
that this burst error is not detected, Pud(p*|33), we get that
the probability that a burst occurred at a specific position, and
is not detected, is 7.79 x 10 ^{-46}.

Going again along this path of calculations, this time for b=34
we find that f(34) = 4.85*10^{-28}. Multiplying by 10^{-10} and
by Pud(p*|34) = 7.15*10^{-10} we find that the probability that a
burst of length 34 occurred at a specific position, and is not
detected, is 3.46*10^{-47}.

Last, computing for b=35, we get 1*10^{-29} * 10^{-10} *
1.25*10^{-9} = 1.25*10^{-48}.

It looks like the total can be approximated at 10^-45 which is
within the bounds of what we are looking for.

When we multiply this by the length of the code (because thus far
we calculated for a specific position) we have 10^-45 * 6.5*10^4
= 6.5*10^-41 as an upper bound on the probability of undetected
burst error for a code of length 8K Bytes.

We can also apply this overestimation for IEEE 802.3.

Comment:
2^{-32} = 2.33*10^{-10}.

Sheinwald, D. Informational , Expires November 2002 10

 iSCSI CRC considerations 14-Apr-02

4. Probability of undetected errors - independent errors

4.1 CRC (derivations from [Castagnoli93])

It is reported in [Castagnoli93] that for BER = epsilon=10^-6,
Pud for a single bit error, for a code of length 8KB, for both
cases, IEEE-802.3 and CRC32C is 10^{-20}. They also report that
CRC32C has distance 4, and IEEE either 3 or 4 for this code
length. From this, and the minimum distance of the code of this
length, we conclude that with our estimation of epsilon, namely
10^{-11}, we should multiply the reported result by {10^{-5}}^4 =
10^{-20} for CRC32C, and either 10^{-15} or 10^{-20} for
IEEE802.3.

4.2 Checksums

For independent bit errors, Pud of CRC is approximately 12,000
better than Fletcher, and 22,000 better than Adler. For burst
errors, by the simple examples that exist for three consecutive
values that can produce an undetected burst, we take the factor
to be at least the same.

If in three consecutive bytes, the error values are x, -2x, x
then the error is undetected. Even for this error pattern alone,
the conditional probability of undetected error, assuming a
uniform distribution of data, is 2^-16 = 1.5 * 10^-5. The
probability that a burst of length 3 bytes occurs, is f(24) =
3*10^-14. Together: 4.5*10^-19. Multiplying this by the length of
the code, we get close to 4.5*10^-16, way worse than the vicinity
of 10^-40.
The numbers in the table in Section 6 below reflect a more
"tolerant" difference (10*4).

Sheinwald, D. Informational , Expires November 2002 11

 iSCSI CRC considerations 14-Apr-02

5. Incremental CRC Updates

In some protocols the packet header changes frequently.
If the CRC includes the changing part, the CRC will have to be
recomputed. This raises two issues:

- the complete computation is expensive
- the packet is not protected against unwanted changes
between the last check and the re-computation

Fortunately, changes in the header do not imply a need for
completed CRC computation. The reason is the linearity of the
CRC function. Namely, with I1 and I2 denoting two equal-length
blocks of information bits, CRC(I) denoting the CRC check bits
calculated for I, and + denoting bitwise modulo-2 addition, we
have CRC(I1+I2) = CRC(I1)+CRC(I2).

Hence, for an IP packet, made of a header h followed by data d
followed by CRC bits c = CRC(h d), arriving at a node, which
updates header h to become h’, the implied update of c is an
addition of CRC(h’-h 0), where 0 is an all 0 block of the length
of the data block d, and addition and subtraction are bitwise
modulo 2.

We know that a predetermined permutation of bits does not change
distance and weight statistics of the codewords. It follows that
such a transformation does not change the probability of
undetected errors.

We can then conceive the packet as if it was built from data d
followed by header h, compute the CRC accordingly, c=CRC(d h),
and update at the node with an addition of CRC(0 h’-h)=CRC(h’-h),
but on transmission, send the header part before the data and the
CRC bits. This will allow a faster computation of the CRC, while
still letting the header part lead (no change to the protocol).

Error detection, i.e., computing the CRC bits by the data and
header parts that arrive, and comparing them with the CRC part
that arrives together with them, can be done at the final, end-
target node only, and the detected errors will include unwanted
changes introduced by the intermediate nodes.

The analysis of the undetected error probability remains valid
according to the following rationale:

The packet started its way as a codeword. On its way, several
codewords were added to it (any information followed by the
corresponding CRC is a codeword). Let e to denote the totality of
errors added to the packet, on its long, multi-hop journey.
Because the code is linear (i.e., the sum of two codewords is
also a codeword) the packet arriving to the end-target node is
some codeword + e, and hence, as in our preceding analysis, e is
undetected if and only if it is a codeword by itself. This fact

Sheinwald, D. Informational , Expires November 2002 12

 iSCSI CRC considerations 14-Apr-02

is the basis of our above analysis, and hence that analysis
applies here too. (See a detailed discussion at [braun01].)

Sheinwald, D. Informational , Expires November 2002 13

 iSCSI CRC considerations 14-Apr-02

6. Complexity of Hardware Implementation

Comparing the cost of various CRC polynomials, we used a tool
available at http://www.easics.com/webtools/crctool to implement
CRC generators/checkers for various CRC polynomials. The program
gives either Verilog or VHDL code after specifying a polynomial,
as well as the number of data bits, k, to be handled in one clock
cycle. For a serial implementation, k would be one.

The cost for either one generator or checker is shown in the
following table.

The number of 2-input XOR gates, for an un-optimized
implementation, required for various values of k:

+--+
| Polynomial | k=32 | k=64 | k=128 |
+--+
| CCITT-CRC32 | 488 | 740 | 1430 |
+--+
| IEEE-802 | 872 | 1390 | 2518 |
+--+
| CRC32Q(Wolf)| 944 | 1444 | 2534 |
+--+
| CRC32C | 1036 | 1470 | 2490 |
+--+

After optimizing (sharing terms) and in terms of Cells (4 cells
per 2 input AND, 7 cells per 2 input XOR, 3 cells per inverter)
the cost for two candidate polynomials is shown in the following
table.

+-----------------------------------+
| Polynomial | k=32 | k=64 |
+-----------------------------------+
| CCITT-CRC32 | 1855 | 3572 |
+-----------------------------------+
| CRC32C | 4784 | 7111 |
+-----------------------------------+

For 32-bit datapath, CCITT-CRC32 requires 40% of the number of
cells required by the CRC32C. For a 64-bit datapath, CCITT-CRC32
requires 50% of the number of cells.

The total size of one of our smaller chips is roughly 1 million
cells. The fraction represented by the CRC circuit is less than
1%.

Sheinwald, D. Informational , Expires November 2002 14

 iSCSI CRC considerations 14-Apr-02

7. Implementation of CRC32C

7.1 A Serial Implementation in Hardware

A serial implementation that processes one data bit at a time and
performs simultaneous multiplication of the data polynomial by
x^32 and division by the CRC32C polynomial is described in the
following Verilog code.

///
//////
// File: CRC32_D1.v
// Date: Tue Feb 26 02:47:05 2002
//
// Copyright (C) 1999 Easics NV.
// This source file may be used and distributed without
restriction
// provided that this copyright statement is not removed from the
file
// and that any derivative work contains the original copyright
notice
// and the associated disclaimer.
//
// THIS SOURCE FILE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS
// OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED
// WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.
//
// Purpose: Verilog module containing a synthesizable CRC
function
// * polynomial: (0 1 2 4 5 7 8 10 11 12 16 22 23 26 32)
// * data width: 1
//
// Info: jand@easics.be (Jan Decaluwe)
// http://www.easics.com
///
//////
module CRC32_D1;
// polynomial: (0 1 2 4 5 7 8 10 11 12 16 22 23 26 32)
// data width: 1
function [31:0] nextCRC32_D1;
input Data;
input [31:0] CRC;
reg [0:0] D;
reg [31:0] C;
reg [31:0] NewCRC;
begin
D[0] = Data;
C = CRC;
NewCRC[0] = D[0] ^ C[31];
NewCRC[1] = D[0] ^ C[0] ^ C[31];
NewCRC[2] = D[0] ^ C[1] ^ C[31];
NewCRC[3] = C[2];

Sheinwald, D. Informational , Expires November 2002 15

 iSCSI CRC considerations 14-Apr-02

NewCRC[4] = D[0] ^ C[3] ^ C[31];
NewCRC[5] = D[0] ^ C[4] ^ C[31];
NewCRC[6] = C[5];
NewCRC[7] = D[0] ^ C[6] ^ C[31];
NewCRC[8] = D[0] ^ C[7] ^ C[31];
NewCRC[9] = C[8];
NewCRC[10] = D[0] ^ C[9] ^ C[31];
NewCRC[11] = D[0] ^ C[10] ^ C[31];
NewCRC[12] = D[0] ^ C[11] ^ C[31];
NewCRC[13] = C[12];
NewCRC[14] = C[13];
NewCRC[15] = C[14];
NewCRC[16] = D[0] ^ C[15] ^ C[31];
NewCRC[17] = C[16];
NewCRC[18] = C[17];
NewCRC[19] = C[18];
NewCRC[20] = C[19];
NewCRC[21] = C[20];
NewCRC[22] = D[0] ^ C[21] ^ C[31];
NewCRC[23] = D[0] ^ C[22] ^ C[31];
NewCRC[24] = C[23];
NewCRC[25] = C[24];
NewCRC[26] = D[0] ^ C[25] ^ C[31];
NewCRC[27] = C[26];
NewCRC[28] = C[27];
NewCRC[29] = C[28];
NewCRC[30] = C[29];
NewCRC[31] = C[30];
nextCRC32_D1 = NewCRC;
end
endfunction
endmodule

7.2 A Parallel Implementation in Hardware

A parallel implementation that processes 32 data bits at a time
is described in the following Verilog code. In software
implementations, the next state logic is typically implemented by
means of tables indexed by the input and the current state.

///
//////
// File: CRC32_D32.v
// Date: Tue Feb 26 02:50:08 2002
//
// Copyright (C) 1999 Easics NV.
// This source file may be used and distributed without
restriction
// provided that this copyright statement is not removed from the
file
// and that any derivative work contains the original copyright
notice
// and the associated disclaimer.

Sheinwald, D. Informational , Expires November 2002 16

 iSCSI CRC considerations 14-Apr-02

//
// THIS SOURCE FILE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS
// OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED
// WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.
//
// Purpose: Verilog module containing a synthesizable CRC
function
// * polynomial: p(0 to 32) :=
"100000101111011000111011011110001"
// * data width: 32
//
// Info: jand@easics.be (Jan Decaluwe)
// http://www.easics.com
///
//////
module CRC32_D32;
// polynomial: p(0 to 32) := "100000101111011000111011011110001"
// data width: 32
// convention: the first serial data bit is D[31]
function [31:0] nextCRC32_D32;
input [31:0] Data;
input [31:0] CRC;
reg [31:0] D;
reg [31:0] C;
reg [31:0] NewCRC;
begin
D = Data;
C = CRC;
NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[27] ^ D[26] ^ D[25] ^ D[23]
^
D[21] ^ D[18] ^ D[17] ^ D[16] ^ D[12] ^ D[9] ^ D[8] ^
D[7] ^ D[6] ^ D[5] ^ D[4] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^
C[6] ^ C[7] ^ C[8] ^ C[9] ^ C[12] ^ C[16] ^ C[17] ^
C[18] ^ C[21] ^ C[23] ^ C[25] ^ C[26] ^ C[27] ^ C[28] ^
C[30] ^ C[31];
NewCRC[1] = D[31] ^ D[29] ^ D[28] ^ D[27] ^ D[26] ^ D[24] ^ D[22]
^
D[19] ^ D[18] ^ D[17] ^ D[13] ^ D[10] ^ D[9] ^ D[8] ^
D[7] ^ D[6] ^ D[5] ^ D[1] ^ C[1] ^ C[5] ^ C[6] ^ C[7] ^
C[8] ^ C[9] ^ C[10] ^ C[13] ^ C[17] ^ C[18] ^ C[19] ^
C[22] ^ C[24] ^ C[26] ^ C[27] ^ C[28] ^ C[29] ^ C[31];
NewCRC[2] = D[30] ^ D[29] ^ D[28] ^ D[27] ^ D[25] ^ D[23] ^ D[20]
^
D[19] ^ D[18] ^ D[14] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^
D[7] ^ D[6] ^ D[2] ^ C[2] ^ C[6] ^ C[7] ^ C[8] ^ C[9] ^
C[10] ^ C[11] ^ C[14] ^ C[18] ^ C[19] ^ C[20] ^ C[23] ^
C[25] ^ C[27] ^ C[28] ^ C[29] ^ C[30];
NewCRC[3] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[26] ^ D[24] ^ D[21]
^
D[20] ^ D[19] ^ D[15] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^
D[8] ^ D[7] ^ D[3] ^ C[3] ^ C[7] ^ C[8] ^ C[9] ^ C[10] ^

Sheinwald, D. Informational , Expires November 2002 17

 iSCSI CRC considerations 14-Apr-02

C[11] ^ C[12] ^ C[15] ^ C[19] ^ C[20] ^ C[21] ^ C[24] ^
C[26] ^ C[28] ^ C[29] ^ C[30] ^ C[31];
NewCRC[4] = D[31] ^ D[30] ^ D[29] ^ D[27] ^ D[25] ^ D[22] ^ D[21]
^
D[20] ^ D[16] ^ D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^
D[8] ^ D[4] ^ C[4] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^
C[12] ^ C[13] ^ C[16] ^ C[20] ^ C[21] ^ C[22] ^ C[25] ^
C[27] ^ C[29] ^ C[30] ^ C[31];
NewCRC[5] = D[31] ^ D[30] ^ D[28] ^ D[26] ^ D[23] ^ D[22] ^ D[21]
^
D[17] ^ D[14] ^ D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^
D[5] ^ C[5] ^ C[9] ^ C[10] ^ C[11] ^ C[12] ^ C[13] ^
C[14] ^ C[17] ^ C[21] ^ C[22] ^ C[23] ^ C[26] ^ C[28] ^
C[30] ^ C[31];
NewCRC[6] = D[30] ^ D[29] ^ D[28] ^ D[26] ^ D[25] ^ D[24] ^ D[22]
^
D[21] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^ D[11] ^
D[10] ^ D[9] ^ D[8] ^ D[7] ^ D[5] ^ D[4] ^ D[0] ^ C[0] ^
C[4] ^ C[5] ^ C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^
C[13] ^ C[14] ^ C[15] ^ C[16] ^ C[17] ^ C[21] ^ C[22] ^
C[24] ^ C[25] ^ C[26] ^ C[28] ^ C[29] ^ C[30];
NewCRC[7] = D[31] ^ D[30] ^ D[29] ^ D[27] ^ D[26] ^ D[25] ^ D[23]
^
D[22] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[12] ^
D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[6] ^ D[5] ^ D[1] ^
C[1] ^ C[5] ^ C[6] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^
C[12] ^ C[14] ^ C[15] ^ C[16] ^ C[17] ^ C[18] ^ C[22] ^
C[23] ^ C[25] ^ C[26] ^ C[27] ^ C[29] ^ C[30] ^ C[31];
NewCRC[8] = D[25] ^ D[24] ^ D[21] ^ D[19] ^ D[15] ^ D[13] ^ D[11]
^
D[10] ^ D[8] ^ D[5] ^ D[4] ^ D[2] ^ D[0] ^ C[0] ^ C[2] ^
C[4] ^ C[5] ^ C[8] ^ C[10] ^ C[11] ^ C[13] ^ C[15] ^
C[19] ^ C[21] ^ C[24] ^ C[25];
NewCRC[9] = D[31] ^ D[30] ^ D[28] ^ D[27] ^ D[23] ^ D[22] ^ D[21]
^
D[20] ^ D[18] ^ D[17] ^ D[14] ^ D[11] ^ D[8] ^ D[7] ^
D[4] ^ D[3] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[4] ^
C[7] ^ C[8] ^ C[11] ^ C[14] ^ C[17] ^ C[18] ^ C[20] ^
C[21] ^ C[22] ^ C[23] ^ C[27] ^ C[28] ^ C[30] ^ C[31];
NewCRC[10] = D[30] ^ D[29] ^ D[27] ^ D[26] ^ D[25] ^ D[24] ^
D[22] ^
D[19] ^ D[17] ^ D[16] ^ D[15] ^ D[7] ^ D[6] ^ D[2] ^
D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^ C[6] ^ C[7] ^ C[15] ^
C[16] ^ C[17] ^ C[19] ^ C[22] ^ C[24] ^ C[25] ^ C[26] ^
C[27] ^ C[29] ^ C[30];
NewCRC[11] = D[21] ^ D[20] ^ D[12] ^ D[9] ^ D[6] ^ D[5] ^ D[4] ^
D[3] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^ C[3] ^
C[4] ^ C[5] ^ C[6] ^ C[9] ^ C[12] ^ C[20] ^ C[21];
NewCRC[12] = D[22] ^ D[21] ^ D[13] ^ D[10] ^ D[7] ^ D[6] ^ D[5] ^
D[4] ^ D[3] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[3] ^ C[4] ^
C[5] ^ C[6] ^ C[7] ^ C[10] ^ C[13] ^ C[21] ^ C[22];
NewCRC[13] = D[31] ^ D[30] ^ D[28] ^ D[27] ^ D[26] ^ D[25] ^
D[22] ^

Sheinwald, D. Informational , Expires November 2002 18

 iSCSI CRC considerations 14-Apr-02

D[21] ^ D[18] ^ D[17] ^ D[16] ^ D[14] ^ D[12] ^ D[11] ^
D[9] ^ D[3] ^ D[2] ^ D[0] ^ C[0] ^ C[2] ^ C[3] ^ C[9] ^
C[11] ^ C[12] ^ C[14] ^ C[16] ^ C[17] ^ C[18] ^ C[21] ^
C[22] ^ C[25] ^ C[26] ^ C[27] ^ C[28] ^ C[30] ^ C[31];
NewCRC[14] = D[30] ^ D[29] ^ D[25] ^ D[22] ^ D[21] ^ D[19] ^
D[16] ^
D[15] ^ D[13] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^ D[6] ^
D[5] ^ D[3] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[5] ^
C[6] ^ C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[13] ^ C[15] ^
C[16] ^ C[19] ^ C[21] ^ C[22] ^ C[25] ^ C[29] ^ C[30];
NewCRC[15] = D[31] ^ D[30] ^ D[26] ^ D[23] ^ D[22] ^ D[20] ^
D[17] ^
D[16] ^ D[14] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^
D[6] ^ D[4] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[4] ^ C[6] ^
C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[11] ^ C[14] ^ C[16] ^
C[17] ^ C[20] ^ C[22] ^ C[23] ^ C[26] ^ C[30] ^ C[31];
NewCRC[16] = D[31] ^ D[27] ^ D[24] ^ D[23] ^ D[21] ^ D[18] ^
D[17] ^
D[15] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^
D[5] ^ D[3] ^ D[2] ^ C[2] ^ C[3] ^ C[5] ^ C[7] ^ C[8] ^
C[9] ^ C[10] ^ C[11] ^ C[12] ^ C[15] ^ C[17] ^ C[18] ^
C[21] ^ C[23] ^ C[24] ^ C[27] ^ C[31];
NewCRC[17] = D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[19] ^ D[18] ^
D[16] ^
D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[6] ^
D[4] ^ D[3] ^ C[3] ^ C[4] ^ C[6] ^ C[8] ^ C[9] ^ C[10] ^
C[11] ^ C[12] ^ C[13] ^ C[16] ^ C[18] ^ C[19] ^ C[22] ^
C[24] ^ C[25] ^ C[28];
NewCRC[18] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[27] ^ D[21] ^
D[20] ^
D[19] ^ D[18] ^ D[16] ^ D[14] ^ D[13] ^ D[11] ^ D[10] ^
D[8] ^ D[6] ^ D[0] ^ C[0] ^ C[6] ^ C[8] ^ C[10] ^ C[11] ^
C[13] ^ C[14] ^ C[16] ^ C[18] ^ C[19] ^ C[20] ^ C[21] ^
C[27] ^ C[28] ^ C[29] ^ C[30] ^ C[31];
NewCRC[19] = D[29] ^ D[27] ^ D[26] ^ D[25] ^ D[23] ^ D[22] ^
D[20] ^
D[19] ^ D[18] ^ D[16] ^ D[15] ^ D[14] ^ D[11] ^ D[8] ^
D[6] ^ D[5] ^ D[4] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[4] ^
C[5] ^ C[6] ^ C[8] ^ C[11] ^ C[14] ^ C[15] ^ C[16] ^
C[18] ^ C[19] ^ C[20] ^ C[22] ^ C[23] ^ C[25] ^ C[26] ^
C[27] ^ C[29];
NewCRC[20] = D[31] ^ D[25] ^ D[24] ^ D[20] ^ D[19] ^ D[18] ^
D[15] ^
D[8] ^ D[4] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^
C[4] ^ C[8] ^ C[15] ^ C[18] ^ C[19] ^ C[20] ^ C[24] ^
C[25] ^ C[31];
NewCRC[21] = D[26] ^ D[25] ^ D[21] ^ D[20] ^ D[19] ^ D[16] ^ D[9]
^
D[5] ^ D[3] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[3] ^ C[5] ^
C[9] ^ C[16] ^ C[19] ^ C[20] ^ C[21] ^ C[25] ^ C[26];
NewCRC[22] = D[31] ^ D[30] ^ D[28] ^ D[25] ^ D[23] ^ D[22] ^
D[20] ^
D[18] ^ D[16] ^ D[12] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^

Sheinwald, D. Informational , Expires November 2002 19

 iSCSI CRC considerations 14-Apr-02

D[5] ^ D[3] ^ D[2] ^ D[0] ^ C[0] ^ C[2] ^ C[3] ^ C[5] ^
C[7] ^ C[8] ^ C[9] ^ C[10] ^ C[12] ^ C[16] ^ C[18] ^
C[20] ^ C[22] ^ C[23] ^ C[25] ^ C[28] ^ C[30] ^ C[31];
NewCRC[23] = D[30] ^ D[29] ^ D[28] ^ D[27] ^ D[25] ^ D[24] ^
D[19] ^
D[18] ^ D[16] ^ D[13] ^ D[12] ^ D[11] ^ D[10] ^ D[7] ^
D[5] ^ D[3] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[5] ^
C[7] ^ C[10] ^ C[11] ^ C[12] ^ C[13] ^ C[16] ^ C[18] ^
C[19] ^ C[24] ^ C[25] ^ C[27] ^ C[28] ^ C[29] ^ C[30];
NewCRC[24] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[26] ^ D[25] ^
D[20] ^
D[19] ^ D[17] ^ D[14] ^ D[13] ^ D[12] ^ D[11] ^ D[8] ^
D[6] ^ D[4] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[4] ^ C[6] ^
C[8] ^ C[11] ^ C[12] ^ C[13] ^ C[14] ^ C[17] ^ C[19] ^
C[20] ^ C[25] ^ C[26] ^ C[28] ^ C[29] ^ C[30] ^ C[31];
NewCRC[25] = D[29] ^ D[28] ^ D[25] ^ D[23] ^ D[20] ^ D[17] ^
D[16] ^
D[15] ^ D[14] ^ D[13] ^ D[8] ^ D[6] ^ D[4] ^ D[3] ^
D[2] ^ D[0] ^ C[0] ^ C[2] ^ C[3] ^ C[4] ^ C[6] ^ C[8] ^
C[13] ^ C[14] ^ C[15] ^ C[16] ^ C[17] ^ C[20] ^ C[23] ^
C[25] ^ C[28] ^ C[29];
NewCRC[26] = D[31] ^ D[29] ^ D[28] ^ D[27] ^ D[25] ^ D[24] ^
D[23] ^
D[15] ^ D[14] ^ D[12] ^ D[8] ^ D[6] ^ D[3] ^ D[1] ^
D[0] ^ C[0] ^ C[1] ^ C[3] ^ C[6] ^ C[8] ^ C[12] ^ C[14] ^
C[15] ^ C[23] ^ C[24] ^ C[25] ^ C[27] ^ C[28] ^ C[29] ^
C[31];
NewCRC[27] = D[31] ^ D[29] ^ D[27] ^ D[24] ^ D[23] ^ D[21] ^
D[18] ^
D[17] ^ D[15] ^ D[13] ^ D[12] ^ D[8] ^ D[6] ^ D[5] ^
D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^ C[5] ^ C[6] ^
C[8] ^ C[12] ^ C[13] ^ C[15] ^ C[17] ^ C[18] ^ C[21] ^
C[23] ^ C[24] ^ C[27] ^ C[29] ^ C[31];
NewCRC[28] = D[31] ^ D[27] ^ D[26] ^ D[24] ^ D[23] ^ D[22] ^
D[21] ^
D[19] ^ D[17] ^ D[14] ^ D[13] ^ D[12] ^ D[8] ^ D[5] ^
D[4] ^ D[3] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^
C[3] ^ C[4] ^ C[5] ^ C[8] ^ C[12] ^ C[13] ^ C[14] ^
C[17] ^ C[19] ^ C[21] ^ C[22] ^ C[23] ^ C[24] ^ C[26] ^
C[27] ^ C[31];
NewCRC[29] = D[28] ^ D[27] ^ D[25] ^ D[24] ^ D[23] ^ D[22] ^
D[20] ^
D[18] ^ D[15] ^ D[14] ^ D[13] ^ D[9] ^ D[6] ^ D[5] ^
D[4] ^ D[3] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[3] ^ C[4] ^
C[5] ^ C[6] ^ C[9] ^ C[13] ^ C[14] ^ C[15] ^ C[18] ^
C[20] ^ C[22] ^ C[23] ^ C[24] ^ C[25] ^ C[27] ^ C[28];
NewCRC[30] = D[29] ^ D[28] ^ D[26] ^ D[25] ^ D[24] ^ D[23] ^
D[21] ^
D[19] ^ D[16] ^ D[15] ^ D[14] ^ D[10] ^ D[7] ^ D[6] ^
D[5] ^ D[4] ^ D[3] ^ D[2] ^ C[2] ^ C[3] ^ C[4] ^ C[5] ^
C[6] ^ C[7] ^ C[10] ^ C[14] ^ C[15] ^ C[16] ^ C[19] ^
C[21] ^ C[23] ^ C[24] ^ C[25] ^ C[26] ^ C[28] ^ C[29];

Sheinwald, D. Informational , Expires November 2002 20

 iSCSI CRC considerations 14-Apr-02

NewCRC[31] = D[30] ^ D[29] ^ D[27] ^ D[26] ^ D[25] ^ D[24] ^
D[22] ^
D[20] ^ D[17] ^ D[16] ^ D[15] ^ D[11] ^ D[8] ^ D[7] ^
D[6] ^ D[5] ^ D[4] ^ D[3] ^ C[3] ^ C[4] ^ C[5] ^ C[6] ^
C[7] ^ C[8] ^ C[11] ^ C[15] ^ C[16] ^ C[17] ^ C[20] ^
C[22] ^ C[24] ^ C[25] ^ C[26] ^ C[27] ^ C[29] ^ C[30];
nextCRC32_D32 = NewCRC;
end
endfunction

7.3 Some Hardware Implementation Comments

The iSCSI spec specifies that the most significant 32 bits of the
data be complemented. For most implementations of the division
algorithm, such as the ones described here, this is equivalent to
initializing the CRC register to ones regardless of the CRC
polynomial. For other implementations, in particular one that
only performs division by the CRC polynomial (and for which the
prescribed multiplication by x^32 is performed externally)
initializing the CRC register to ones does not have the same
effect as complementing the most significant 32 bits of the
message. For the CRC32c polynomial, initializing the CRC register
to 0x2a26f826 has the same effect as complementing the most
significant 32 bits of the data.
See reference [Tuikov&Cavanna] for more details.

7.4 Fast Hardware Implementation References

Fast hardware implementations start from a canonic scheme (as the
one presented in 7.2 and optimize it based on different criteria.
Two classic papers on this subject are [Albertengo1990] and
[Glaise1997]. A more modern (and systematic) approach can be
found in [Shie2001] and [Sprachman2001].

Sheinwald, D. Informational , Expires November 2002 21

 iSCSI CRC considerations 14-Apr-02

8. Summary and conclusions

The following table is a summary of the error detection
capabilities of the different codes analyzed. In the table, d is
the minimal distance at block length block (in bits), i/byte -
software instructions/byte, Table size (if table lookup needed),
T-look number of lookups/byte, Pudb - Pud burst and Puds - Pud
sporadic:

+---+
| Code |d| Block |i/Byte|Tsize|T-look| Pudb | Puds |
+---+
| Fletcher32|3| 2^19 | 2 | - | - | 10^-37 | 10^-36 |
+---+
| Adler32 |3| 2^19 | 3 | - | - | 10^-36 | 10^-35 |
+---+
| IEEE-802 |3| 2^16 | 2.75 | 2^18| 0.5/b| 10^-41 | 10^-40 |
+---+
| CRC32C |3| 2^31-1| 2.75 | 2^18| 0.5/b| 10^-41 | 10^-40 |
+---+

The probabilities for undetected errors in the above table are
computed assuming uniformly distributed data. For real data -
that can be biased - [Stone98], checksums behave substantially
worse than CRCs

Considering the protection level it offers, the lack of
sensitivity for biased data and the large block it can protect,
we think that CRC32C is a good choice as a basic error detection
mechanism for iSCSI.

Please observe also that burst errors characterized by a fixed
average time will have a higher impact on error detection
capability as the speed of the channels (machines and networks)
increases. The only way to keep the Pud within bounds for the
long-term is to reduce the BER by using better coding of lower
levels of the channel.

Sheinwald, D. Informational , Expires November 2002 22

 iSCSI CRC considerations 14-Apr-02

9. References and Bibliography

[Albertengo1990] G. Albertengo, R. Sisto Parallel CRC
Generation IEEE Micro, Vol. 10, No. 5, October 1990, pp.
63-71
[Arazi] B Arazi A commonsense Approach to the Theory of
Error Correcting codes
[Baicheva]T Baicheva, S Dodunekov and P Kazakov. Undetected
error probability performance of cyclic redundancy-check
codes of 16-bit redundancy. IEEE Proceedings on
Communications, 147:253-256, October 2000
[Black] "Fast CRC32 in Software" by Richard Black, 1994,
at www.cl.cam.ac.uk/Research/SRG/bluebook/21/crc/crc.html
[Castagnoli93] Guy Castagnoli, Stefan Braeuer and Martin
Herrman "Optimization of Cyclic Redundancy-Check Codes with
24 and 32 Parity Bits", IEEE Transact. on Communications,
Vol. 41, No. 6, June 1993
[braun01] Florian Braun and Marcel Waldvogel, "Fast
Incremental CRC Updates for IP over ATM Networks", IEEE,
High Performance Switching and Routing, 2001, pp. 48-52.
[FITS] "NASA FITS documents" at
http://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/general
/checksum/node26.html
[Fujiwara89] Toru Fujiwara, Tadao Kasami, and Shu Lin.
“Error detecting capabilities of the shortened hamming
codes adopted for error detection in IEEE standard 802.3".
IEEE Transactions on Communications, COM-37:986–989,
September 1989.
[Glaise1997] Glaise, R. J. A two-step computation of cyclic
redundancy code CRC-32 for ATM networks, IBM Journal of
Research and Development, Volume 41, Number 6, 1997
[LinCostello] S. Lin and D.J. Costello, Jr. – Error Control
Coding: Fundamentals and Applications. Englewood Cliffs,
NJ: Prentice Hall, 1983.
[Peterson]W Wesley Peterson & E J Weldon - Error Correcting
Codes - First Edition 1961/Second Edition 1972
[RFC2026] Bradner, S., "The Internet Standards Process --
Revision 3", RFC 2026, October 1996.
[Ritter] Ritter, T. 1986. The Great CRC Mystery. Dr. Dobb's
Journal of Software Tools. February. 11(2): 26-34, 76-83.
[Polynomials] "Information on Primitive and Irreducible
Polynomials" at
http://www.theory.csc.uvic.ca/~cos/inf/neck/PolyInfo.html
[RFC1146] TCP Alternate Checksum Options
[RFC1950] ZLIB Compressed Data Format Specification version
3.3
[Shie2001] Ming-Der Shieh et. al, A Systematic Approach for
Parallel CRC Computations. Journal of Information Science
and Engineering, Vol.17 No.3, pp.445-461
[Sprachman2001] Michael Sprachman, Automatic Generation of
Parallel CRC Circuits, IEEE Design & Test May-June 2001

Sheinwald, D. Informational , Expires November 2002 23

 iSCSI CRC considerations 14-Apr-02

[Stone98] J. Stone et. al "Performance of Checksums and
CRC's over Real Data" IEEE/ACM Transactions on Networking,
Vol. 6, No. 5, October 1998
[Williams] Ross Williams - A PAINLESS GUIDE TO CRC ERROR
DETECTION ALGORITHMS widely available on the net - (e.g.,
ftp.adelaide.edu.au/pub/rocksoft/crc_v3.txt)
[Wolf82] J.K. Wolf, Arnold Michelson and Allen Levesque. On
the probability of undetected error for linear block codes.
IEEE Transactions on Communications, COM-30:317-324, 1982
[Wolf88] J.K. Wolf, R.D. Blackeney An Exact Evaluation of
the Probability of Undetected Error for Certain Shortened
Binary CRC Codes - Proc. MILCOM - IEEE 1988
[Wolf94J] J.K. Wolf and Dexter Chun The single burst error
detection performance of binary cyclic codes. IEEE
Transactions on Communications COM-42:11-13, January 1994
[Wolf94O] Dexter Chun and J.K. Wolf. Special Hardware for
computing the probability of undetected error for certain
binary crc codes and test results. IEEE Transactions on
Communications, COM-42:2769-2772
[Tuikov&Cavanna] Luben Tuikov and Vicente Cavanna. The
iSCSI CRC32C Digest and the Simultaneous Multiply and
Divide Algorithm. January 30, 2002. White paper distributed
to the IETF ips iSCSI reflector.

Sheinwald, D. Informational , Expires November 2002 24

 iSCSI CRC considerations 14-Apr-02

10. Author's Addresses

 Julian Satran
 Dafna Sheinwald
 IBM, Haifa Research Lab
 MATAM - Advanced Technology Center
 Haifa 31905, Israel

 Pat Thaler
 Vicente Cavanna
 Matt Wakeley
 Agilent Technologies
 1101 Creekside Ridge Drive
 Suite 100, M/S RH21
 Roseville, CA 95661

Sheinwald, D. Informational , Expires November 2002 25

 iSCSI CRC considerations 14-Apr-02

Sheinwald, D. Informational , Expires November 2002 26

Full Copyright Statement

"Copyright (C) The Internet Society (date). All Rights Reserved.
This document and translations of it may be copied and furnished
to others, and derivative works that comment on or otherwise
explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative
works. However, this document itself may not be modified in any
way, such as by removing the copyright notice or references to
the Internet Society or other Internet organizations, except as
needed for the purpose of developing Internet standards in which
case the procedures for copyrights defined in the Internet
Standards process must be followed, or as required to translate
it into languages other than English.

The limited permissions granted above are perpetual and will not
be revoked by the Internet Society or its successors or
assigns.

This document and the information contained herein is provided on
an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE."

