
W
3C

W
or

ki
ng

D
ra

ft

Mathematical Markup Language (MathML) Version 2.0

W3C Working Draft 28 March 2000

This version: http://www.w3.org/TR/2000/WD-MathML2-20000328
Also available as: HTML zip archive, XHTML zip archive, XML zip archive, PDF (screen), PDF (paper)

Latest version: http://www.w3.org/TR/MathML2
Previous versions:

http://www.w3.org/TR/2000/WD-MathML2-20000211
http://www.w3.org/TR/1999/WD-MathML2-19991222
http://www.w3.org/TR/1999/WD-MathML2-19991201

Editors: Nico Poppelier (Penta Scope)
Robert Miner (Geometry Technologies, Inc.)
Patrick Ion (Mathematical Reviews, American Mathematical Society)
David Carlisle (NAG)

Principal Writers: Ron Ausbrooks, Stephen Buswell, Stéphane Dalmas, Stan Devitt, Angel Diaz, Roger Hunter, Bruce Smith, Neil Soiffer, Robert Sutor, Stephen Watt

Copyright c© 1998-2000 W3C R© (MIT, INRIA, Keio), All Rights Reserved.W3C liability, trademark, document use and software licensing rules apply.

Abstract

This specification defines the Mathematical Markup Language, or MathML. MathML is an XML application for describing mathematical notation and capturing both
its structure and content. The goal of MathML is to enable mathematics to be served, received, and processed on the World Wide Web, just as HTML has enabled
this functionality for text.

This specification of the markup language MathML is intended primarily for a readership consisting of those who will be developing or implementing renderers or
editors using it, or software that will communicate using MathML as a protocol for input or output. It is not a User’s Guide but rather a reference document.

This document begins with background information on mathematical notation, the problems it poses, and the philosophy underlying the solutions MathML proposes.
MathML can be used to encode both mathematical notation and mathematical content. About thirty of the MathML tags describe abstract notational structures, while
another one hundred provide a way of unambiguously specifying the intended meaning of an expression. Additional chapters discuss how the MathML content and
presentation elements interact, and how MathML renderers might be implemented and should interact with browsers. Finally, this document addresses the issue of
MathML characters and their relation to fonts.

While MathML is human-readable, it is anticipated that, in all but the simplest cases, that authors will use equation editors, conversion programs, and other specialized
software tools to generate MathML. Several early versions of such MathML tools already exist, and a number of others, both freely available software and commercial
products, are under development.

Status of this document

This is the Last Call Working Draft of the MathML 2.0 specification prepared by the W3C Math Working Group. The Last Call review period ends 30 April 2000. The
Math Working Group decided to proceed to Last Call with this draft at its recent Ann Arbor face-to-face meeting (minutes message).

http://www.w3.org
http://www.w3.org/TR/2000/WD-MathML2-20000328/
file:WD-MathML2-20000328.zip
file:XHTML-MathML-20000328.zip
file:XML-MathML-20000328.zip
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/2000/WD-MathML2-20000211/
http://www.w3.org/TR/1999/WD-MathML2-19991222/
http://www.w3.org/TR/1999/WD-MathML2-19991201/
http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-software.html
http://lists.w3.org/Archives/Member/w3c-math-wg/2000JanMar/0358.html

2

This is a W3C Working Draft for review by W3C members and other interested parties. It is a draft document and may be updated, replaced or made obsolete by
other documents at any time. It is inappropriate to use W3C working drafts as reference material or to cite them as other than ‘work in progress’. This is work in
progress and does not imply endorsement by, or the consensus of, either W3C or participants in the Math Working Group.

This document has been produced by the W3C Math Working Group.

A list of current W3C Technical Reports can be found at http://www.w3.org/TR.

This document has been produced as part of the activity of the W3C User Interface Domain. The goals of the W3C Math Working Group are discussed in the W3C
Math WG Charter (revised February 2000 from original of 11 June 1998). A list of participants in the W3C Math Working Group is available.

The present draft is a revision of the earlier corrected W3C Recommendation MathML 1.01. It differs from it in that all chapters have been updated and two added.

Chapters 1 and 2, which are introductory material have been revised to reflect the changes elsewhere in the document, and in the rapidly eveolving Web context.
Chapters 3 and 4 have been extended to describe new functionalities added, as well as smaller improvements of material already proposed. Chapter 5 has been
newly written to reflect changes in the technology available. The major tables in Chapter 6 have been regenerated to reflect an improved list of Unicode characters
useful for mathematics, and the text revised to reflect the new preferred form for accessing them. Chapter 7 has been completely revised for Web technology has
changed. A new chapter 8 on the DOM for MathML has been added; the latter points to a new appendix E for a detailed listing.

The appendices have been reorganized into normative and non-normative groups. Appendices E and H are completely new.

Comments on this document should be sent to the public mailing list of the Math Working Group.

2

http://www.w3.org/Math/
http://www.w3.org/TR/
http://www.w3.org/UI/
http://www.w3.org/Math/W3CDocs/mathcharter.html
http://www.w3.org/Math/W3CDocs/mathcharter.html
http://www.w3.org/1999/07/REC-MathML-19990707/
mailto:www-math@w3.org

Contents

1 Introduction 8
1.1 Mathematics and its Notation 8
1.2 Origins and Goals 8
1.2.1 The History of MathML 8
1.2.2 Acknowledgments 9
1.2.3 Limitations of HTML 9
1.2.4 Requirements for Mathematics Markup10
1.2.5 Design Goals of MathML 11
1.3 The Role of MathML on the Web 11
1.3.1 Layered Design of Mathematical Web Services12
1.3.2 Relation to Other Web Technology12
2 MathML Fundamentals 15
2.1 MathML Overview 15
2.1.1 Taxonomy of MathML Elements15
2.1.2 Presentation Markup17
2.1.3 Content Markup 17
2.1.4 Mixing Presentation and Content18
2.2 Some MathML Examples 18
2.2.1 Presentation Examples18
2.2.2 Content Examples20
2.2.3 Mixed Markup Examples 23
2.3 MathML Syntax and Grammar 25
2.3.1 MathML Syntax and Grammar25
2.3.2 An XML Syntax Primer 25
2.3.3 Children versus Arguments25
2.3.4 MathML Attribute Values 26
2.3.5 Attributes Shared by all MathML Elements31
2.3.6 Collapsing Whitespace in Input31
3 Presentation Markup 33
3.1 Introduction 33
3.1.1 What Presentation Elements Represent33
3.1.2 Terminology Used In This Chapter34
3.1.3 Required Arguments35
3.1.4 Elements with Special Behaviors36
3.1.5 Summary of Presentation Elements36
3.2 Token Elements 38
3.2.1 Attributes common to token elements38

3

4

3.2.2 Identifier (mi) 39
3.2.3 Number (mn) 40
3.2.4 Operator, Fence, Separator or Accent (mo) 41
3.2.5 Text (mtext) 49
3.2.6 Space (mspace) 51
3.2.7 String Literal (ms) 53
3.2.8 Referring to non-ASCII characters (mchar) 53
3.2.9 Adding new character glyphs to MathML (mglyph) 54
3.3 General Layout Schemata 55
3.3.1 Horizontally Group Sub-Expressions (mrow) 55
3.3.2 Fractions (mfrac) 57
3.3.3 Radicals (msqrt, mroot) 59
3.3.4 Style Change (mstyle) 59
3.3.5 Error Message (merror) 63
3.3.6 Adjust Space Around Content (mpadded) 64
3.3.7 Making Content Invisible (mphantom) 67
3.3.8 Content Inside Pair of Fences (mfenced) 69
3.3.9 Enclose Content Inside Notation (menclose) 72
3.4 Script and Limit Schemata 74
3.4.1 Subscript (msub) 74
3.4.2 Superscript (msup) 75
3.4.3 Subscript-superscript Pair (msubsup) 75
3.4.4 Underscript (munder) 76
3.4.5 Overscript (mover) 77
3.4.6 Underscript-overscript Pair (munderover) 79
3.4.7 Prescripts and Tensor Indices (mmultiscripts) 80
3.5 Tables and Matrices 82
3.5.1 Table or Matrix (mtable) 82
3.5.2 Row in Table or Matrix (mtr) 85
3.5.3 Labeled Row in Table or Matrix (mlabeledtr) 85
3.5.4 Entry in Table or Matrix (mtd) 87
3.5.5 Alignment Markers 87
3.6 Enlivening Expressions 94
3.6.1 Bind Action to Sub-Expression (maction) 94
4 Content Markup 96
4.1 Introduction 96
4.1.1 The Intent of Content Markup96
4.1.2 The Scope of Content Markup96
4.1.3 Basic Concepts of Content Markup97
4.2 Content Element Usage Guide 97
4.2.1 Overview of Syntax and Usage98
4.2.2 Containers 107
4.2.3 Functions, Operators and Qualifiers110
4.2.4 Relations 114
4.2.5 Conditions 115
4.2.6 Syntax and Semantics117
4.2.7 Semantic Mappings118

4

5

4.2.8 Constants and Symbols118
4.2.9 MathML element types 119
4.3 Content Element Attributes 119
4.3.1 Content Element Attribute Values119
4.3.2 Attributes Modifying Content Markup Semantics119
4.3.3 Attributes Modifying Content Markup Rendering121
4.4 The Content Markup Elements 122
4.4.1 Token Elements 126
4.4.2 Basic Content Elements129
4.4.3 Arithmetic, Algebra and Logic 138
4.4.4 Relations 151
4.4.5 Calculus and Vector Calculus155
4.4.6 Theory of Sets 165
4.4.7 Sequences and Series170
4.4.8 Elementary classical functions174
4.4.9 Statistics 177
4.4.10 Linear Algebra 179
4.4.11 Semantic Mapping Elements184
4.4.12 Constant and Symbol Elements187
5 Combining Presentation and Content Markup 194
5.1 Why Two Different Kinds of Markup? 194
5.2 Mixed Markup 195
5.2.1 Reasons to Mix Markup 195
5.2.2 Combinations that are prohibited197
5.2.3 Presentation Markup Contained in Content Markup198
5.2.4 Content Markup Contained in Presentation Markup198
5.3 Parallel Markup 199
5.3.1 Top-level Parallel Markup 199
5.3.2 Fine-grained Parallel Markup199
5.3.3 Parallel Markup via Cross-References:id andxref 200
5.3.4 Annotation Cross-References using XLink:id andhref 202
5.4 Tools, Style Sheets and Macros for Combined Markup 203
5.4.1 Notational Style Sheets203
5.4.2 Content-Faithful Transformations205
5.4.3 Style Sheets for Extensions206
6 Characters, Entities and Fonts 208
6.1 Introduction 208
6.1.1 The Intent of Character Names208
6.1.2 The STIX Project 208
6.1.3 Character Listings 209
6.1.4 Non-Marking Characters209
6.1.5 Printing Character Symbol Listings210
6.1.6 Special Constants210
6.1.7 Alphabetical Lists 211
6.1.8 ISO Character Set Groupings211
7 The MathML Interface 213
7.1 Embedding MathML in other Documents 213

5

6

7.1.1 MathML and Namespaces214
7.1.2 The Top-Levelmath Element 216
7.1.3 Invoking MathML Processors216
7.1.4 Mixing and Linking MathML and HTML 217
7.2 Generating, Processing and Rendering MathML 218
7.2.1 MathML Compliance 218
7.2.2 Handling of Errors 220
7.2.3 Attributes for unspecified data220
7.3 Future Extensions 220
7.3.1 Macros and Style Sheets221
7.3.2 XML Extensions to MathML 221
8 Document Object Model for MathML 222
8.1 Introduction 222
8.1.1 MathML DOM Extensions 223
A Parsing MathML 224
A.1 The MathML DTD 225
B Content Markup Validation Grammar 263
C Content Element Definitions 268
C.1 About Content Markup Elements 268
C.1.1 The Default Definitions 268
C.1.2 The Structure of an MMLdefinition. 269
C.2 Definitions of MathML Content Elements 270
C.2.1 Leaf Elements 270
C.2.2 Basic Content Element272
C.2.3 Arithmetic, Algebra and Logic 281
C.2.4 Relations 303
C.2.5 Calculus 305
C.2.6 Theory of Sets 308
C.2.7 Sequences and Series311
C.2.8 Trigonometry 312
C.2.9 Statistics 318
C.2.10 Lineary Algebra 322
D Operator Dictionary (Non-Normative) 327
D.1 Format of operator dictionary entries 327
D.2 Indexing of operator dictionary 327
D.3 Choice of entity names 328
D.4 Notes on lspace and rspace attributes 328
D.5 Operator dictionary entries 328
E Document Object Model for MathML (Non-Normative) 336
E.1 IDL Interfaces 336
E.1.1 Miscellaneous Object Definitions336
E.1.2 Generic MathML Elements337
E.1.3 Presentation Elements341
E.1.4 Content Elements361
F Glossary (Non-Normative) 377
G Working Group Membership (Non-Normative) 380
H Changes (Non-Normative) 382

6

7

I References (Non-Normative) 385

7

Chapter 1

Introduction

1.1 Mathematics and its Notation

A distinguishing feature of mathematics is the use of a complex and highly evolved system of two-dimensional symbolic notations. As J.R. Pierce has written in his
book on communication theory, mathematics and its notations should not be viewed as one and the same thing [Pierce1961]. Mathematical ideas exist independently
of the notations that represent them. However, the relation between meaning and notation is subtle, and part of the power of mathematics to describe and analyze
derives from its ability to represent and manipulate ideas in symbolic form. The challenge in putting mathematics on the World Wide Web is to capture both notation
and content (that is, meaning) in such a way that documents can utilize the highly-evolved notational forms of written and printed mathematics, and the potential for
interconnectivity in electronic media.

Mathematical notations are constantly evolving as people continue to make innovations in ways of approaching and expressing ideas. Even the commonplace nota-
tions of arithmetic have gone through an amazing variety of styles, including many defunct ones advocated by leading mathematical figures of their day [Cajori1928].
Modern mathematical notation is the product of centuries of refinement, and the notational conventions for high-quality typesetting are quite complicated. For exam-
ple, variables, or letters which stand for numbers, are usually typeset today in a special italic font subtly distinct from the usual text italic. Spacing around symbols
for operations such as +, -, × and / is slightly different from that of text, to reflect conventions about operator precedence. Entire books have been devoted to the
conventions of mathematical typesetting, from the alignment of superscripts and subscripts, to rules for choosing parenthesis sizes, to specialized notational practices
for subfields of mathematics (for instance, [Chaundy1954], [Swanson1979],[Swanson1999], [Higham1993], or in the TEX literature [Knuth1986] and [Spivak1986]).

Notational conventions in mathematics, and printed text in general, guide the eye and make printed expressions much easier to read and understand. Though we
usually take them for granted, we rely on hundreds of conventions such as paragraphs, capital letters, font families and cases, and even the device of decimal-like
numbering of sections such as we are using in this document (an invention due to G. Peano, who is probably better known for his axioms for the natural numbers).
Such notational conventions are perhaps even more important for electronic media, where one must contend with the difficulties of on-screen reading.

However, there is more to putting mathematics on the Web than merely finding ways of displaying traditional mathematical notation in a Web browser. The Web rep-
resents a fundamental change in the underlying metaphor for knowledge storage, a change in which interconnectivity plays a central role. It is becoming increasingly
important to find ways of communicating mathematics which facilitate automatic processing, searching and indexing, and reuse in other mathematical applications
and contexts. With this advance in communication technology, there is an opportunity to expand our ability to represent, encode, and ultimately to communicate our
mathematical insights and understanding with each other. We believe that MathML is an important step in developing mathematics on the Web.

1.2 Origins and Goals

1.2.1 The History of MathML

The problem of encoding mathematics for computer processing or electronic communication is much older than the Web. The common practice among scientists
before the Web was to write papers in some encoded form based on the ASCII character set, and e-mail them to each other. Several markup methods for mathematics,
in particular TEX [Knuth1986], were already in wide use in 1992 just before the Web rose to prominence, [Poppelier1992].

8

9

Since its inception, the Web has demonstrated itself to be a very effective method of making information available to widely separated groups of individuals. However,
even though the World Wide Web was initially conceived and implemented by scientists for scientists, the possibilities for including mathematical expressions in HTML
has been very limited. At present, most mathematics on the Web consists of text with images of scientific notation (in GIF or JPEG format), which are difficult to read
and to author, or of entire documents in PDF form.

The World Wide Web Consortium (W3C) recognized that lack of support for scientific communication was a serious problem. Dave Raggett included a proposal for
HTML Math in the HTML 3.0 working draft in 1994. A panel discussion on mathematical markup was held at the WWW Conference in Darmstadt in April 1995. In
November 1995, representatives from Wolfram Research presented a proposal for doing math in HTML to the W3C team. In May 1996, the Digital Library Initiative
meeting in Champaign-Urbana played an important role in bringing together many interested parties. Following the meeting, an HTML Math Editorial Review Board
was formed. In the intervening years, this group has grown, and was formally reconstituted as the W3C Math working group in March 1997.

The MathML proposal reflects the interests and expertise of a very diverse group. Many contributions to the development of MathML deserve special mention, some
of which we touch on here. One such contribution concerns the question of accessibility, especially for the visually handicapped. T.V. Raman is particularly notable
in this regard. Neil Soiffer and Bruce Smith from Wolfram Research shared their experience with the problems of representing mathematics in connection with the
design of Mathematica 3.0; this expertise an important influence in the design of the presentation elements. Paul Topping from Design Science also contributed his
expertise in mathematical formatting and editing. MathML has benefited from the participation of a number of working group members involved in other mathematical
encoding efforts in the SGML and computer-algebra communities, including Stephen Buswell from Stilo Technologies, Nico Poppelier (then with Elsevier Science),
Stéphane Dalmas from INRIA (Sophia Antipolis), Stan Devitt at first with Waterloo Maple, Angel Diaz and Robert S. Sutor from IBM, and Stephen M. Watt from the
University of Western Ontario. In particular, MathML has been influenced by the OpenMath project, the work of the ISO 12083 working group, and Stilo Technologies’
work on a ‘semantic’ mathematics DTD fragment. The American Mathematical Society has played a key role in the development of MathML. Among other things, it
has provided two working group chairs: Ron Whitney led the group from May 1996 to March 1997, and Patrick Ion, who has co-chaired the group with Robert Miner
from The Geometry Center, from March 1997 to the present.

1.2.2 Acknowledgments

The working group benefited from the help of many other people in developing the specification for MathML 1.0. We would like to particularly name Barbara Beeton,
Chris Hamlin, John Jenkins, Ira Polans, Arthur Smith, Robby Villegas and Joe Yurvati for help and information in assembling the character tables in Chapter 6, as
well as Peter Flynn, Russel S.S. O’Connor, Andreas Strotmann, and other contributors to the www-math mailing list for their careful proofreading and constructive
criticisms.

As the Math Working Group went on to MathML 2.0 it again was helped by many from the W3C family of Working Groups with whom we necessarily had a great deal
of interaction. Outside the W3C, a particularly active relevant front was the interface with the Unicode Technical Committee (UTC) and the NTSC WG2 dealing with
ISO 10646. There the STIX project put together a proposal for the addition of characters for mathematical notation to Unicode, and this work was again spear-headed
by Barbara Beeton of the AMS. The whole problem ended split into three proposals, two of which were advanced by Murray Sargent of Microsoft, a Math WG member
and member of the UTC. But the mathematical community should be grateful for essential help and guidance over a couple of years of refinement of the proposals to
help mathematics provided by Kenneth Whistler of Oracle, and a UTC and WG2 member. Asmus Freitag, also involved in the UTC and WG2 deliberations was also
a stalwart supporter of the needs of scientific notation.

1.2.3 Limitations of HTML

The demand for effective means of electronic scientific communication remains high. Ever increasingly, researchers, scientists, engineers, educators, students and
technicians find themselves working at dispersed locations and relying on electronic communication. At the same time, the image-based methods that are currently
the predominant means of transmitting scientific notation over the Web are primitive and inadequate. Document quality is poor, authoring is difficult, and mathematical
information contained in images is not available for searching, indexing, or reuse in other applications.

The most obvious problems with HTML for mathematical communication are of two types.

9

10

Display Problems. Consider the equation 22x
= 10. This equation is sized to match the surrounding line in 14pt type on the system where it was authored. Of course,

on other systems, or for other font sizes, the equation is too small or too large. A second point to observe is that the equation image was generated against a white
background. Thus, if a reader or browser resets the page background to another color, the anti-aliasing in the image results in white ‘halos’. Next, consider the

equation x = −b±
√

b2−4ac
2a which is an example with the equation’s horizontal alignment axis above the tops of the lower-case letters in surrounding text.

This equation has a descender which places the baseline for the equation at a point about a third of the way from the bottom of the image. One can pad the image

like this: x = −b±
√

b2−4ac
2a , so that the centerline of the image and the baseline of the equation coincide, but this causes problems with the inter-line spacing, resulting

in the equation becoming difficult to read. Moreover, center alignment of images is handled in slightly different ways by different browsers, making it impossible to
guarantee proper alignment for different clients.

Image-based equations are generally harder to see, read and comprehend than the surrounding text in the browser window. Moreover, these problems become worse
when the document is printed. The resolution of the equations as images will be around 70 dots per inch, while the surrounding text will typically be 300, 600 or more
dots per inch. The disparity in quality is judged to be unacceptable by most people.

Encoding Problems. Consider trying to search this document for part of an equation, for example, the ‘=10’ from the first equation above. In a similar vein, consider
trying to cut and paste an equation into another application; even more demanding is to cut and paste a sub-expression. Using image-based methods, neither of
these common needs can be adequately addressed. Although the use of the alt in the document source can help, it is clear that highly interactive Web documents
must provide a more sophisticated interface between browsers and mathematical notation. Another problem with encoding mathematics as images is that it requires
more bandwidth. Markup describing an equation is typically smaller and more compressible than an image of the equation. Also by using markup-based encoding,
more of the rendering process is moved to the client machine.

1.2.4 Requirements for Mathematics Markup

Some display problems associated with including mathematical notation in HTML documents as images could be addressed by improving image handling by browsers.
However, even if image handling were improved, the problem of making the information contained in mathematical expressions available to other applications would
remain. Therefore, in planning for the future, it is not sufficient merely to upgrade image-based methods. To integrate mathematical material fully into Web documents,
a markup-based encoding of mathematical notation and content is required.

In designing any markup language, it is essential to consider carefully the needs of its potential users. In the case of MathML, the needs of potential users cover a
broad spectrum, from education to research, and on to commerce:

The education community is a large and important group that must be able to put scientific curriculum materials on the Web. At the same time, educators often have
limited resources of time and equipment, and are severely hampered by the difficulty of authoring technical Web documents. Students and teachers need to be able
to create mathematical content quickly and easily, using intuitive, easy-to-learn, low-cost tools.

Electronic textbooks are another way of using the Web which will potentially be very important in education. Management consultant Peter Drucker has prophe-
sied the end of big-campus residential higher education and its distribution over the Web [Drucker1997]. Electronic textbooks will need to be interactive, allowing
intercommunication between the text and scientific software and graphics.

The academic and commercial research communities generate large volumes of dense scientific material. Increasingly, research publications are being stored in
databases, such as the highly successful physics preprint server and archive, www.arXiv.org, which replaces xxx.lanl.gov, at Los Alamos National Laboratory. This
is especially true in some areas of physics and mathematics where academic journal prices have been increasing at an unsustainable rate. In addition, databases of
information on mathematical research, such as Mathematical Reviews and Zentralblatt für Mathematik, offer millions of records on the Web containing mathematics.

To accommodate the research community, a design for mathematical markup must facilitate the maintenance and operation of large document collections, for which
automatic searching and indexing are important. Because of the large collection of legacy documents, for mathematics especially in TEX, the ability to convert between
existing formats and any new one is also very important to the research community. Finally, the ability to maintain information for archival purposes is vital to academic
research.

Corporate and academic scientists and engineers also use technical documents in their work to collaborate, to record results of experiments and computer simulations,
and to verify calculations. For such uses, mathematics on the Web must provide a standard way of sharing information that can be easily read, processed and
generated using commonly available, easy-to-use tools.

10

http://www.arXiv.org
http://xxx.lanl.gov
http://www.ams.org/mathscinet
http://www.zblmath.fiz-karlsruhe.de

11

Another general design requirement is the ability to render mathematical material in other media such as speech or braille, which is extremely important for the
visually impaired.

Commercial publishers are also involved with mathematics on the Web at all levels from electronic versions of print books to interactive textbooks and academic
journals. Publishers require a method of putting mathematics on the Web that is capable of high-quality output, robust enough for large-scale commercial use, and
preferably compatible with their previous, often SGML-based, production systems.

1.2.5 Design Goals of MathML

In order to meet the diverse needs of the scientific community, MathML has been designed with the following ultimate goals in mind.

MathML should:

• Encode mathematical material suitable for teaching and scientific communication at all levels.
• Encode both mathematical notation and mathematical meaning.
• Facilitate conversion to and from other mathematical formats, both presentational and semantic. Output formats should include:

– graphical displays
– speech synthesizers
– input for computer algebra systems
– other mathematics typesetting languages, such as TEX
– plain text displays, e.g. VT100 emulators
– print media, including braille
It is recognized that conversion to and from other notational systems or media may entail loss of information in the process.

• Allow the passing of information intended for specific renderers and applications.
• Support efficient browsing of lengthy expressions.
• Provide for extensibility.
• Be well suited to template and other mathematics editing techniques.
• Be human legible, and simple for software to generate and process.

No matter how successfully MathML may achieve its goals as a markup language, it is clear that MathML will only be useful if it is implemented well. To this end, the
W3C Math Working Group has identified a short list of additional implementation goals. These goals attempt to describe concisely the minimal functionality MathML
rendering and processing software should try to provide.

• MathML equations in HTML pages should render properly in popular Web browsers, in accordance with reader and author viewing preferences, and at the
highest quality possible given the capabilities of the platform.

• HTML documents containing MathML equations should print properly and at high-quality printer resolutions.
• MathML equations in Web pages should be able to react to user gestures, such those as with a mouse, and coordinate communication with other

applications through the browser.
• Equation editors and converters should be developed to facilitate the creation of Web pages containing MathML equations.

These goals have begun to be addressed for the near term by using embedded elements such as Java applets, plug-ins and ActiveX controls to render MathML.
However, the extent to which these goals are ultimately met depends on the cooperation and support of browser vendors, and other software developers. The W3C
Math working group has continued to work with the working groups for the Document Object Model (DOM) and the Extensible Style Language (XSL) to ensure that
the needs of the scientific community will be met in the future, and feels that MathML 2.0 shows considerable progress in this area over the situation that obtained at
the time of the MathML 1.0 Recommendation (April 1998).

1.3 The Role of MathML on the Web

11

12

1.3.1 Layered Design of Mathematical Web Services

The design goals of MathML require a system for encoding mathematical material for the Web which is flexible and extensible, suitable for interaction with external
software, and capable of producing high-quality rendering in several media. Any markup language that encodes enough information to do all these tasks well will of
necessity involve some complexity.

At the same time, it is important for many groups, such as students, to have simple ways to include mathematics in Web pages by hand. Similarly, other groups,
such as the TEX community, would be best served by a system which allowed the direct entry of markup languages like TEX into Web pages. In general, specific user
groups are better served by specialized kinds of input and output tailored to their needs. Therefore, the ideal system for communicating mathematics on the Web
should provide both specialized services for input and output, and general services for interchange of information and rendering to multiple media.

In practical terms, the observation that mathematics on the Web should provide for both specialized and general needs naturally leads to the idea of a layered
architecture. One layer consists of powerful, general software tools exchanging, processing and rendering suitably encoded mathematical data. A second layer
consists of specialized software tools, aimed at specific user groups, which are capable of easily generating encoded mathematical data which can then be shared
with a particular audience.

MathML is designed to provide the encoding of mathematical information for the bottom, more general layer in a two-layer architecture. It is intended to encode
complex notational and semantic structure in an explicit, regular, and easy-to-process way for renderers, searching and indexing software, and other mathematical
applications.

As a consequence, raw MathML markup is not primarily intended for direct use by authors. While MathML is human-readable, which helps a lot in debugging it, in all
but the simplest cases it is too verbose and error-prone for hand generation. Instead, it is anticipated that authors will use equation editors, conversion programs, and
other specialized software tools to generate MathML. Alternatively, some renderers may convert other kinds of input directly included in Web pages into MathML on
the fly, in response to a cut-and-paste operation, for example.

In some ways, MathML is analogous to other low-level, communication formats such as Adobe’s PostScript language. You can create PostScript files in a variety of
ways, depending on your needs; experts write and modify them by hand, authors create them with word processors, graphic artists with illustration programs, and
so on. Once you have a PostScript file, however, you can share it with a very large audience, since devices which render PostScript, such as printers and screen
previewers, are widely available.

Part of the reason for designing MathML as a markup language for a low-level, general, communication layer is to stimulate mathematical Web software development
in the layer above. MathML provides a way of coordinating the development of modular authoring tools and rendering software. By making it easier to develop a
functional piece of a larger system, MathML can stimulate a ‘critical mass’ of software development, greatly to the benefit of potential users of mathematics on the
Web.

One can envision a similar situation for mathematical data. Authors are free to create MathML documents using the tools best suited to their needs. For example,
a student might prefer to use a menu-driven equation editor that can write out MathML to an HTML file. A researcher might use a computer algebra package that
automatically encodes the mathematical content of an expression, so that it can be cut from a Web page and evaluated by a colleague. An academic journal publisher
might use a program that converts TEX markup to HTML and MathML. Regardless of the method used to create a Web page containing MathML, once it exists, all
the advantages of a powerful and general communication layer become available. A variety of MathML software could all be used with the same document to render
it in speech or print, to send it to a computer algebra system, or to manage it as part of a large Web document collection. To render high-quality printed mathematics
the MathML encoding will often be converted back to standard typesetting and composition languages, including TEX which is widely appreciated for the job it does in
this regard. Finally, one may expect that eventually MathML will be integrated into other arenas where mathematical formulas occur, such as spreadsheets, statistical
packages and engineering tools.

The W3C Math working group has been working with vendors to ensure that a variety of MathML software will soon be available, including both rendering and
authoring tools. A current list of MathML software is maintained on the public Math page at the World Wide Web Consortium .

1.3.2 Relation to Other Web Technology

The original conception of HTML Math was a simple, straightforward extension to HTML that would be natively implemented in browsers. However, very early on, the
explosive growth of the Web made it clear that a general extension mechanism was required, and that mathematics was only one of many kinds of structured data
which would have to be integrated into the Web using such a mechanism.

12

http://www.w3.org/Math

13

Given that MathML must integrate into the Web as an extension, it is extremely important that MathML and MathML software can interact well with the existing Web
environment. In particular, MathML has been designed with three kinds of interaction in mind. First, in order to create mathematical Web content, it is important that
existing mathematical markup languages can be converted to MathML, and that existing authoring tools can be modified to generate MathML. Second, it must be
possible to embed MathML markup seamlessly in HTML markup in such a way that it will be accessible to future browsers, search engines, and all kinds of Web
applications which now manipulate HTML. Finally, it must be possible to render MathML embedded in HTML in today’s Web browsers in some fashion, even if it is
less than ideal.

1.3.2.1 Existing Mathematical Markup Languages

Perhaps the most important influence on mathematical markup languages of the last two decades is the TEX typesetting system developed by Donald Knuth
[Knuth1986]. TEX is a de facto standard in the mathematical research community, and it is pervasive in the scientific community at large. TEX sets a standard for
quality of visual rendering, and a great deal of effort has gone into ensuring MathML can provide the same visual rendering quality. Moreover, because of the many
legacy documents in TEX, and because of the large authoring community versed in TEX, a priority in the design of MathML was the ability to convert TEX mathematics
input into MathML format. The feasibility of such conversion has been demonstrated by prototype software.

Extensive work on encoding mathematics has also been done in the SGML community, and SGML-based encoding schemes are widely used by commercial
publishers. ISO 12083 is an important markup language which contains a DTD fragment primarily intended for describing the visual presentation of mathematical
notation. Because ISO 12083 mathematical notation and its derivatives share many presentational aspects with TEX, and because SGML enforces structure and
regularity more than TEX, much of the work in ensuring MathML is compatible with TEX also applies well to ISO 12083.

MathML also pays particular attention to compatibility with other mathematical software, and in particular, with computer algebra systems. Many of the presentation
elements of MathML are derived in part from the mechanism of typesetting boxes. The MathML content elements are heavily indebted to the OpenMath project and
the work by Stilo Technologies on a mathematical DTD fragment. The OpenMath project has close ties to both the SGML and computer algebra communities, and
has laid a foundation for an SGML- and XML-based means of communication between mathematical software packages, amongst other things. The feasibility of both
generating and interpreting MathML in computer algebra systems has been demonstrated by prototype software.

1.3.2.2 HTML Extension Mechanisms

As noted above, the success of HTML has led to enormous pressure to incorporate a wide variety of data types and software applications into the Web. Each new
format or application potentially places new demands on HTML and on browser vendors. For some time, it has been clear that a general extension mechanism is
necessary to accommodate new extensions to HTML. At the very beginning the working group began its work thinking of a plain extension to HTML in the spirit of
the first mathematics support suggested for HTML 3.2. But for a good number of reasons, once we got into the details this proved to be not so good an idea. Since
work first began on MathML, XML has emerged as the dominant such general extension mechanism.

XML stands for Extensible Markup Language. It is designed as a simplified version of SGML (Standard Generalized Markup Language), the meta-language used to
define the grammar and syntax of HTML. One of the goals of XML is to be suitable for use on the Web, and in the context of this discussion it can be viewed as the
general mechanism for extending HTML. As its name implies, extensibility is a key feature of XML; authors are free to declare and use new elements and attributes.
At the same time, XML grammar and syntax rules carefully enforce regular document structure to facilitate automatic processing and maintenance of large document
collections. Mathematically speaking XML is essentially a notation for decorated rooted planar trees, and thus of great generality as an encoding tool.

Since the setting up of the first W3C Math Working Group, XML has garnered broad industry support including that of major browser vendors. The migration of HTML
to an XML form has been important to the W3C, and has resulted in the XHTML Recommendation which delivers a new modularized form of HTML. MathML can be
viewed as another module which fits very well with the new XHTML. Indeed in Appendix A there is a new DTD for math which is the result of collaboration with the
W3C HTML Working Group.

Furthermore, other applications of XML for all kinds of document publishing and processing promise to become increasingly important. Consequently, both on
theoretical and pragmatic grounds, it has made a great deal of sense to specify MathML as an XML application.

13

14

1.3.2.3 Browser Extension Mechanisms

By now, as opposed to the situation when the MathML 1.0 Recommendation was adopted, the details of a general model for rendering and processing XML extensions
to HTML are largely clear. Formatting Properties, developed by the Cascading Style Sheets and Formatting Properties Working Group for CSS and made available
through the Document Object Model (DOM), will be applied to MathML elements to obtain stylistic control over the presentation of MathML. Further development
of these Formatting Properties falls within the charters of both the CSS&FP and the XSL working groups. For an introduction to this topic see the discussion in
Chapter 7. For detailed commentary on how to render MathML with current systems consult the W3C Math WG Home Page.

Until style sheet mechanisms are capable of delivering native browser rendering of MathML, however, it is necessary to extend browser capabilities by using
embedded elements to render MathML. It is already possible to instruct a browser to use a particular embedded renderer to process embedded XML markup such
as MathML, and to coordinate the resulting output with the surrounding Web page, however the results are not yet entirely as one wishes. See Chapter 7.

For specialized processing, such as connecting to a computer algebra system, the capability of calling out to other programs is likely to remain highly desirable.
However, for such an interaction to be really satisfactory, it is necessary to define a document object model rich enough to facilitate complicated interactions between
browsers and embedded elements. For this reason, the W3C Math working group has coordinated its efforts closely with the Document Object Model (DOM) working
group. The results are described in Chapter 8.

For processing by embedded elements, and for inter-communication between scientific software generally, a style sheet-based layout model is in some ways less than
ideal. It can impose an additional implementation burden in a setting where it may offer few advantages, and it imposes implementation requirements for coordination
between browsers and embedded renderers that will likely be unavailable in the immediate future.

For these reasons, the MathML specification defines an attribute-based layout model, which has proven very effective for high-quality rendering of complicated
mathematical expressions in several independent implementations. MathML presentation attributes utilize W3C Formatting Properties where possible. Also, MathML
elements accept class, style and id attributes to facilitate their use with CSS style sheets. However, at present, there are few settings where CSS machinery is
currently available to MathML renderers.

The use of CSS style sheet mechanisms has been mentioned above. The mechanisms of XSL have also recently become available for the transformation of XML
documents to effect their rendering. Indeed the alternative forms of this present recommendation, including the definitive public HTML version, have been prepared
from an underlying XML source using XSL transformation language tools. As further developments in this direction become available to MathML, it is anticipated their
use will become the dominant method of stylistic control of MathML presentation meant for use in rendering environments which support those mechanisms.

14

http://www.w3.org/TR/REC-MathML
http://www.w3.org/Math

Chapter 2

MathML Fundamentals

2.1 MathML Overview

This chapter introduces the basic ideas of MathML. The first section describes the overall design of MathML. The second section presents a number of motivating
examples, to give the reader something concrete to refer to while reading subsequent chapters of the MathML Specification. The final section describes basic features
of the MathML syntax and grammar, which apply to all MathML markup. In particular, Section 2.3 should be read before Chapter 3, Chapter 4 and Chapter 5.

A fundamental challenge in defining a markup language for mathematics on the Web is reconciling the need to encode both the presentation of a mathematical
notation and the content of the mathematical idea or object which it represents.

The relationship between a mathematical notation and a mathematical idea is subtle and deep. On a formal level, the results of mathematical logic raise unsettling
questions about the correspondence between systems of symbolic logic and the phenomena they model. At a more intuitive level, anyone who uses mathematical
notation knows the difference that a good choice of notation can make; the symbolic structure of the notation suggests the logical structure. For example, the Leibniz
notation for derivatives ‘suggests’ the chain rule of calculus through the symbolic cancellation of fractions: d f

dx
dx
dt = d f

dt .

Mathematicians and teachers intuitively understand this very well; part of their expertise lies in choosing notation that emphasizes key aspects of a problem while
hiding or diminishing extraneous aspects. It is commonplace in mathematics and science to write one thing when strictly technically something else is meant, because
long experience shows this actually communicates the idea better at some higher level than rigorous detail.

In many other settings, though, mathematical notation is used to encode the full, precise meaning of a mathematical object. Mathematical notation is capable of
prodigious rigor, and when used carefully, it can be virtually free of ambiguity. Moreover, it is precisely this lack of ambiguity which makes it possible to describe
mathematical objects so that they can be used by software applications such as computer algebra systems and voice renderers. In situations where such inter-
application communication is of paramount importance, the nuances of visual presentation generally play a minimal role.

MathML allows authors to encode both the notation which represents a mathematical object and the mathematical structure of the object itself. Moreover, authors
can mix both kinds of encoding in order to specify both the presentation and content of a mathematical idea. The remainder of this section gives a basic overview of
how MathML can be used in each of these ways.

2.1.1 Taxonomy of MathML Elements

All MathML elements fall into one of three categories: presentation elements, content elements and interface elements. Each of these categories is described in detail
in Chapter 3, Chapter 4 and Chapter 7, respectively.

Presentation elements describe mathematical notation’s visually oriented two-dimensional structure. Typical examples are the mrow element, which is usually em-
ployed to indicate a horizontal row of pieces of expressions, and the msup element, which is used to mark up a base expression and a superscript to it. As a general
rule, each presentation element corresponds to a single kind of ‘???’ such as digits, letters, or other symbol characters.

15

16

Although this particular example involves mathematical notation, and hence presentation markup, the same observation about decomposition applies equally well to
abstract mathematical objects, and hence to content markup. For example, in the context of content markup our superscript example would typically be denoted by
an exponentiation operation that would require two operands: a ‘base’ and an ‘exponent’. This is no coincidence, since as a general rule, mathematical notation’s
layout closely follows the logical structure of the underlying mathematical objects.

The recursive nature of mathematical objects and notation is strongly reflected in MathML markup. In use, most presentation or content elements contain some
number of other MathML elements corresponding to the constituent pieces out of which the original object is recursively built. The original schema is commonly
called the parent schema, and the constituent pieces are called child schemata. More generally, MathML expressions can be regarded as trees, where each node
corresponds to a MathML element, the branches under a ‘parent’ node correspond to its ‘children’, and the leaves in the tree correspond to atomic notation or content
units such as numbers, characters, etc.

Most leaf nodes in a MathML expression tree are either canonically empty elements with no bodies, or token elements. Canonically empty elements represent
symbols directly in MathML, for example, the content element <plus/> does this. MathML token elements are the only MathML elements permitted to contain
MathML character data. The MathML character data may consist of Unicode characters and MathML <mchar/> elements. These <mchar/> elements, such as
<mchar name="alpha" /> and <mchar name="rightarrow" />, typically denote Unicode characters not in ASCII code and the name attribute carries the
information as to which special symbol is being represented. The <mchar/> construction supersedes the use of special MathML entities such as α to encode
special symbols specified in MathML 1 for compatibility with general XML mechanisms. A third kind of leaf node permitted in MathML is the annotation element,
which is used to hold data which is not in MathML format.

The most important presentation token elements are mi, mn and mo for representing identifiers, numbers and operators respectively. Typically a renderer will employ
slightly different typesetting styles for each of these kinds of character data: numbers are usually in upright font, identifiers in italics, and operators have extra space
around them. In content markup, there are only three tokens, ci, cn and csymbol, for identifiers, numbers and new symbols introduced in the document itself,
respectively. In content markup, separate elements are provided for commonly used functions and operators. The fn element is provided for user-defined extensions
to the base set.

In terms of markup, most MathML elements are denoted by start tag and an end tag, which enclose the markup for their contents. In the case of tokens, the content is
character data, and in most other cases, the content is the markup for child elements. A third category of elements, called canonically empty elements, don’t require
any contents, and denoted by a single tag of the form <name/>. An example of this kind of markup is <plus/> in content markup.

Returning to the example of (a + b)2, we can now see how the principles discussed above play out in practice. One form of presentation markup for this example is:

<msup>
<mfenced>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>

</mrow>
</mfenced>
<mn>2</mn>

</msup>

This example demonstrates a number of presentation elements. The first element, one that is used a great deal is mrow. This element is used to denote a row of
horizontally aligned material. The material contained between the <mrow> and </mrow> tags is considered to be an argument to the mrow element. Thus the whole
expression here is contained in an mrow element. As previously noted, almost all mathematical expressions decompose into subexpressions. These subexpressions
can can, in turn, also be contained in an mrow element. For example, a+b is also contained in an mrow.

The mfenced element is used to provide fences (braces, brackets, and parentheses) around formula material. It defaults to using parentheses.

Note the use of the mi element for displaying the variables a and b and the mo element for marking the + operator.

The msup element is for expressions involving superscripts and takes two arguments, in order, the base expression (here, (a+b)) and the exponent expression (here,
2).

16

17

The content markup for the same example is:

<apply>
<power/>
<apply>
<plus/>
<ci>a</ci>
<ci>b</ci>

</apply>
<cn>2</cn>

</apply>

Here, the apply content element means apply an operation to an expression. In this example, the power element (for exponentiation), which requires no body, and
the similar plus element (for addition) are both applied. Observe that both operators take two arguments, the order being particularly significant in the case of the
power operator.

Note the use of the ci element to denote the variables a and b, and the cn element for denoting the number 2.

2.1.2 Presentation Markup

MathML presentation markup consists of about 30 elements which accept over 50 attributes. Most of the elements correspond to layout schemata, which contain other
presentation elements. Each layout schema corresponds to a two-dimensional notational device, such as a superscript or subscript, fraction or table. In addition, there
are the presentation token elements mi, mn and mo introduced above, as well as several other less commonly used token elements. The remaining few presentation
elements are empty elements, and are used mostly in connection with alignment.

The layout schemata fall into several classes. One group of elements is concerned with scripts, and contains elements such as msub, munder, and mmultiscripts.
Another group focuses on more general layout and includes mrow, mstyle, and mfrac. A third group deals with tables. The maction element is in a category by
itself, and allows coding of various kinds of actions on notation, such as occur in an expression which toggles between two pieces of notation.

An important feature of many layout schemata is that the order of child schemata is significant. For example, the first child of an mfrac element is the numerator and
the second child is the denominator. Since the order of child schemata is not enforced at the XML level by the MathML DTD, the information added by ordering is only
available to a MathML processor, as opposed to a generic XML processor. When we want to emphasize that a MathML element such as mfrac requires children in
a specific order, we will refer to them as arguments, and think of the mfrac element as a notational ‘constructor’.

2.1.3 Content Markup

Content markup consists of about 100 elements accepting roughly a dozen attributes. The majority of these elements are empty elements corresponding to a wide
variety of operators, relations and named functions. Examples of this sort include partialdiff, leq and tan. Others such as matrix and set are used to encode
various mathematical data types, and a third, important category of content elements such as apply are used to apply operations to expressions and also to make
new mathematical objects from others.

The apply element is perhaps the single most important content element. It is used to apply a function or operation to a collection of arguments. The positions of
the child schemata are again significant, with the first child denoting the function to be applied, and the remaining children denoting the arguments of the function
in order. Note that the apply construct always uses prefix notation, like the programming language LISP. In particular, even binary operations like subtraction are
marked up by applying a prefix subtraction operator to two arguments. For example, a - b would be marked up as

<apply>
<minus/>
<ci>a</ci>
<ci>b</ci>

</apply>

17

18

A number of functions and operations require one or more quantifiers to be well-defined. For example, in addition to an integrand, a definite integral must specify the
limits of integration and the bound variable. For this reason, there are several qualifier schemata such as bvar and lowlimit. They are used with operators such
as diff and int.

The declare construct is especially important for content markup that might be evaluated by a computer algebra system. The declare element provides a basic
assignment mechanism, where a variable can be declared to be of a certain type, with a certain value.

2.1.4 Mixing Presentation and Content

Different kinds of markup will be found most appropriate for different kinds of tasks. Documents written before the world-wide web became important were most
often intended only for visual communication of information, so that legacy data is probably best translated into pure presentation markup, since semantic information
about what the author meant can only be guessed at heuristically. By contrast, some mathematical applications and pedagogically-oriented authoring tools will likely
choose to be entirely content-based. The majority of applications fall somewhere in between these extremes. For these applications, the most appropriate markup is
a mixture of both presentation and content markup.

The rules for mixing presentation and content markup derive from the general principle that mixed content should only be allowed in places where it makes sense.
For content markup embedded in presentation markup this basically means that any content fragments should be semantically meaningful, and should not require
additional arguments or quantifiers to be fully specified. For presentation markup embedded in content markup, this usually means that presentation markup must be
contained in a content token element, so that it will be treated as an indivisible notational unit used as a variable or function name.

Another option is to use a semantics element. The semantics element is used to bind MathML expressions to various kinds of annotations. One common use for
the semantics element is to bind a piece of content markup to some presentation markup as a semantic annotation. In this way, an author can specify a non-standard
notation to be used when displaying a particular content expression. Another use of the semantics element is to bind some other kind of semantic specification,
such as an OpenMath expression, to a MathML expression. In this way, the semantics element can be used to extend the scope of MathML content markup.

2.2 Some MathML Examples

2.2.1 Presentation Examples

Notation: x2 + 4x + 4 = 0.

Markup:

<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mo>+</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>x</mi>

</mrow>
<mo>+</mo>
<mn>4</mn>

</mrow>
<mo>=</mo>
<mn>0</mn>

</mrow>

18

19

The mfrac and msqrt elements are used for generating fractions and square roots, respectively.

Note the use of nested mrow elements to denote terms, for example, the left-hand side of the equation functioning as an operand of ‘=’. Marking terms greatly
facilitates spacing for visual rendering, voice rendering, and line breaking. The InvisibleTimes MathML character entity is used here to indicate to a renderer that
there are special spacing rules between the 4 and the x, and that the 4 and the x should not be broken onto separate lines. In fact, this use of an entity is now explicitly
deprecated in favor of the use of <mchar name="InvisibleTimes" /> but was introduced in MathML 1.0. The new version, which was mentioned above, will be
used in the examples below, and is explcitly discussed in Section 4.4.1.

Notation: x = −b±
√

b2−4ac
2a .

Markup:

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>-</mo>
<mi>b</mi>

</mrow>
<mo><mchar name="PlusMinus"/></mo>
<msqrt>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>

</msup>
<mo>-</mo>
<mrow>
<mn>4</mn>
<mo><mchar name="InvisibleTimes"/></mo>
<mi>a</mi>
<mo><mchar name="InvisibleTimes"/></mo>
<mi>c</mi>

</mrow>
</mrow>

</msqrt>
</mrow>
<mrow>
<mn>2</mn>
<mo><mchar name="InvisibleTimes"/></mo>
<mi>a</mi>

</mrow>
</mfrac>

</mrow>

19

20

Notice that the ‘plus or minus’ sign is given by a special element used for specific symbol names <mchar name="PlusMinus" />. Then the same construction is
used with <mchar name="InvisibleTimes" />, instead of the old form in the previous example. MathML provides a very comprehensive list of character names
for mathematical symbols. In addition to the mathematical symbols needed for screen and print rendering, MathML provides symbols to facilitate audio rendering. For
audio rendering, it is important to be able to automatically determine whether

<mrow>
<mi>z</mi>
<mfenced>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>

</mrow>
</mfenced>

</mrow>

should be read as ‘z times the quantity x plus y’ or ‘zof x plus y’. The markup elements <mchar name="InvisibleTimes" /> and <mchar name="ApplyFunction"
/> provide a way for authors to directly encode the distinction for audio renderers. For instance, in the first case <mchar name="InvisibleTimes" /> should be
inserted after the line containing the z. MathML also introduces entities like <mchar name="dd" /> which represents a ‘differential d’ which renders with slightly
different spacing in print, and can be rendered as ‘d’ or ‘with respect to’ in speech. Unless content tags, or some other mechanism, are used to eliminate the ambiguity,
authors should always use these entities, in order to make their documents more accessible.

Notation: A =
[

x y
z w

]
.

Markup:

<mrow>
<mi>A</mi>
<mo>=</mo>
<mfenced open="[" close="]">
<mtable>
<mtr>

<mtd><mi>x</mi></mtd>
<mtd><mi>y</mi></mtd>

</mtr>
<mtr>

<mtd><mi>z</mi></mtd>
<mtd><mi>w</mi></mtd>

</mtr>
</mtable>

</mfenced>
</mrow>

Most elements have a number of attributes that control the details of their screen and print rendering. For example, there are several attributes for the mfenced
element that controls what delimiters should be used at the beginning and the end of the grouped expression above. The attributes for operator elements given using
<mo> are set to default values determined by a dictionary. For the suggested MathML operator dictionary, see Appendix D.

2.2.2 Content Examples

Notation: x2 + 4x + 4 = 0.

20

21

Markup:

<apply>
<eq/>
<apply>
<plus/>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
<apply>
<times/>
<cn>4</cn>
<ci>x</ci>

</apply>
<cn>4</cn>

</apply>
<cn>0</cn>

</apply>

Note that the apply element is used for relations, operators and functions.

Notation: x = −b±
√

b2−4ac
2a .

Markup:

21

22

<apply>
<eq/>
<ci>x</ci>
<apply>
<divide/>
<apply>
<fn><mo><mchar name=’PlusMinus’/></mo></fn>
<apply>
<minus/>
<ci>b</ci>

</apply>
<apply>
<root/>
<apply>
<minus/>
<apply>
<power/>
<ci>b</ci>
<cn>2</cn>

</apply>
<apply>
<times/>
<cn>4</cn>
<ci>a</ci>
<ci>c</ci>

</apply>
</apply>
<cn>2</cn>

</apply>
</apply>
<apply>
<times/>
<cn>2</cn>
<ci>a</ci>

</apply>
</apply>

</apply>

MathML content markup does not directly contain an element for the ‘plus or minus’ operation. Therefore, we use the fn element to declare that we want the
presentation markup for this operator to act as a content operator. This is a simple example of how presentation and content markup can be mixed to extend content
markup.

Notation: A =
(

x y
z w

)
.

Markup:

22

23

<apply>
<eq/>
<ci>A</ci>
<matrix>
<matrixrow>
<ci>x</ci>
<ci>y</ci>

</matrixrow>
<matrixrow>
<ci>z</ci>
<ci>w</ci>

</matrixrow>
</matrix>

</apply>

Note that, by default, the rendering of the content element matrix includes enclosing parentheses, so we need not directly encode them. This is quite different from
the presentation element mtable which may or may not refer to a matrix, and hence requires explicit encoding of parentheses if they are desired.

2.2.3 Mixed Markup Examples

Notation:

t∫
0

dx
x

.

Markup:

<semantics>
<mrow>
<msubsup>
<mo><mchar name=’int’/></mo>
<mn>0</mn>
<mi>t</mi>

</msubsup>
<mfrac>
<mrow>
<mo><mchar name=’dd’/></mo>
<mi>x</mi>

</mrow>
<mi>x</mi>

</mfrac>
</mrow>
<annotation-xml encoding="MathML-Content">
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>
<apply>
<divide/>
<cn>1</cn>

23

24

<ci>x</ci>
</apply>

</apply>
</annotation-xml>

</semantics>

In this example, we use the semantics element to provide a MathML content expression to serve as a ‘semantic annotation’ for a presentation expression. The
semantics element has as its first child the expression being annotated, and the subsequent children are the annotations. There is no restriction on the kind of
annotation that can be attached using the semantics element. For example, one might give a TEX encoding, or computer algebra input in an annotation. The type of
annotation is specified by the encoding attribute and the annotation and annotation-xml elements.

Another common use of the semantics element arises when one wants to use a content coding, and provide a suggestion for its presentation. In such a case,
applied to the formula above we would have the markup:

<semantics>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>
<apply>
<divide/>
<cn>1</cn>
<ci>x</ci>

</apply>
</apply>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<msubsup>
<mo><mchar name=’int’/></mo>
<mn>0</mn>
<mi>t</mi>

</msubsup>
<mfrac>
<mrow>
<mo><mchar name=’dd’/></mo>
<mi>x</mi>

</mrow>
<mi>x</mi>

</mfrac>
</mrow>

</annotation-xml>
</semantics>

This kind of annotation is useful when something other than the default rendering of the content encoding is desired. For example, by default, some renderers might
layout the integrand something like ‘(1/x) dx’. Specifying that the integrand should by preference render as ‘dx/x’ instead can be accomplished with the use of a
MathML Presentation annotation as shown. Be aware, however, that renderers are not required to take into account information contained in annotations, and what
use is made of them, if any, will depend on the renderer.

24

25

2.3 MathML Syntax and Grammar

2.3.1 MathML Syntax and Grammar

MathML is an application of XML, or Extensible Markup Language [Bray1998], and as such its syntax is governed by the rules of XML syntax, and its grammar is
in part specified by a DTD, or Document Type Definition. In other words, the details of using tags, attributes, entity references and so on are defined in the XML
language specification, and the details about MathML element and attribute names, which elements can be nested inside each other, and so on are specified in the
MathML DTD. This is in Appendix A

The W3C in seeking to increase the flexibility of the use of XML for the Web, and to encourage modularization of applications built with XML, has found that the basic
form of a DTD is not ideally suited. Therefore a W3C Working Group was created to develop a specification for XML Schemas [XMLSchemas], which are specification
documents that will eventually supersede DTDs. MathML 2.0 is consciously designed so that math may take advantage of the latest in the evolving Web technology.
Thus there is to be a Schema for MathML. For further information on a MathML Schema see Appendix A and the MathML Home Page ().

However, MathML also specifies some syntax and grammar rules in addition to the general rules it inherits as an XML application. These rules allow MathML to
encode a great deal more information than would ordinarily be possible with pure XML, without introducing many more elements, and using a substantially more
complex DTD or schema. A grammar for content markup expressions is given in Appendix B. Of course, one drawback to using MathML specific rules is that they
are invisible to generic XML processors and validators.

There are basically two kinds of additional MathML grammar and syntax rules. One kind involves placing additional criteria on attribute values. For example, it is not
possible in pure XML to require that an attribute value be a positive integer. The second kind of rule specifies more detailed restrictions on the child elements (for
example on ordering) than are given in the DTD or even a schema. For example, it is not possible in XML to specify that the first child be interpreted one way, and the
second in another.

The following sections discuss features both of XML syntax and grammar in general, and of MathML in particular. Throughout the remainder of the MathML specifi-
cation, we will usually take care to distinguish between usage required by XML syntax and the MathML DTD (and schema) and usage required by MathML specific
rules. However, we will frequently allude to ‘MathML errors’ without identifying which part of the specification is being violated.

2.3.2 An XML Syntax Primer

Since MathML is an application of XML, the MathML Specification uses the terminology of XML to describe it. Briefly, XML data is composed of Unicode characters
(which include ordinary ASCII characters), ‘entity references’ (informally called ‘entities’) such as < which usually represent ‘extended characters’, and ‘elements’
such as <mi fontstyle="normal"> x </mi>.

An element quite often encloses other XML data called its ‘content’, or ‘body’, between a ‘start tag’ (sometimes called a ‘begin tag’) and an ‘end tag’, much as
in HTML. There are also ‘empty elements’ such as <plus/>, whose start tag ends with /> to indicate that the element has no content or end tag. The start tag
can contain named parameters called ‘attributes’, such as fontstyle="normal" in the example above. For further details on XML, consult the XML specification
[Bray1998].

As XML is case-sensitive, MathML element and attribute names are case-sensitive. For reasons of legibility, the MathML defines them almost all in lowercase.

In formal discussions of XML markup a distinction is maintained between an element, such as an mrow element, and the tags <mrow> and </mrow> marking it.
What is between the <mrow> start tag and the </mrow> end tag is the content or body of the mrow element. An ‘empty element’ such as none is defined to have no
body and so has a single tag of the form <none/>. Usually, the distinction between elements and tags will not be so finely drawn in this specification. For instance,
we will sometimes refer to the <mrow> and <none/> elements, really meaning the elements whose tags these are, in order that references to elements are visually
distinguishable from references to attributes. However, the words ‘element’ and ‘tag’ themselves will be used strictly in accordance with XML terminology.

2.3.3 Children versus Arguments

Many MathML elements require a specific number of child elements or attach additional meanings to children in certain positions. As noted above, these kinds of
requirements are MathML specific, and cannot be given entirely using XML syntax and grammar. When the children of a given MathML element are subject to these
kinds of additional conditions, we will often refer to them as arguments instead of merely as children in order to emphasize their MathML specific usage. Note that
especially in Chapter 3 the term ‘argument’ is usually used in this technical sense, unless otherwise noted, and therefore refers to a child element.

25

http://www.w3.org/Math

26

In the detailed discussions of element syntax given with each element throughout the MathML specification, the number of required arguments and their order
is implicitly indicated by giving names for the arguments at various positions. This information is also given for presentation elements in the table of argument
requirements in Section 3.1.3, and for content elements in Appendix B.

A few elements have other requirements on the number or type of arguments. These additional requirements are described together with the individual elements.

2.3.4 MathML Attribute Values

According to the XML language specification, attributes given to elements must have one of the forms

attribute-name = "value"

or

attribute-name = ’value’

where whitespace around the ’=’ is optional.

Attribute names are generally shown in a monospaced font within descriptive text in this specification, just as the monospaced font is used for examples.

An attribute’s value, which in general in MathML can be a string of arbitrary characters, must be surrounded by a pair of either double quotes (") or single quotes (’).
The kind of quotes not used to surround the value may be included within it.

MathML uses a more complicated syntax for attribute values than the generic XML syntax required by the MathML DTD. These additional rules are intended for use
by MathML applications, and it is a MathML error to violate them, though they cannot be enforced by XML processing. The MathML syntax of each attribute value
is specified in the table of attributes provided with the description of each element, using a notation described below. In MathML applications these attribute values
should be further processed as follows, unless otherwise specified: whitespace is to be ignored except to separate letter and digit sequences into individual words
or numbers; and the numerical Unicode references (listed in Chapter 6) which can be used within token elements to represent characters can be used to represent
those characters in attribute values (whenever those characters would be permitted by that attribute value’s syntax). Note that the use of entity references for most
synbols is now deprecated in MathML 2. Thus the use of a numerical Unicode character reference is better, if the input encoding does not allow you to use it directly.

In particular, the characters ", ’, & and < can be included in MathML attribute values (when permitted by the attribute value syntax) using the entity references
", ', & and <, respectively.

The MathML DTD provided in Appendix A declares most attribute value types as CDATA strings. This permits increased interoperability with existing SGML and XML
software and allows extension to the lists of predefined values. Similar sorts of considerations apply with schemas.

2.3.4.1 Syntax notations used in the MathML specification

To describe the MathML-specific syntax of permissible attribute values, the following conventions and notations are used for most attributes in the present document.

26

27

Notation What it matches
number decimal integer or rational number (a string of digits with one decimal point), optionally starting with ’-’
unsigned-number decimal integer or real number, no sign
integer decimal integer, optionally starting with ’-’
positive-integer decimal integer, unsigned, not 0
string arbitrary string (always the entire attribute value)
character single non-whitespace character, or MathML entity reference; whitespace separation is optional
#rrggbb RGB color value; the three pairs of hexadecimal digits in the example #5599dd define proportions of red, green and blue on a scale of x00 through xFF, which gives

a strong sky blue.
h-unit unit of horizontal length (allowable units are listed below)
v-unit unit of vertical length (allowable units are listed below)
css-fontfamily explained in CSS subsection, below
css-color-name explained in CSS subsection, below
other italicized words explained in the text for each attribute
form + one or more instances of ’form’
form * zero or more instances of ’form’
f1 f2 ... fn one instance of each form, in sequence, perhaps separated by whitespace
f1 | f2 | ... | fn any one of the specified forms
[form] an optional instance of ’form’
(form) same as form
word in plain text that word, literally present in the attribute value (unless it is obviously part of an explanatory phrase)
quoted symbol that symbol, literally present in attribute value (e.g. "+" or ’+’)

The order of precedence of the syntax notation operators is, from highest to lowest precedence:

• form + or form *
• f1 f2 ... fn (sequence of forms)
• f1 | f2 | ... | fn (alternative forms)

A string can contain arbitrary characters which are specifiable within XML CDATA attribute values; it must use entity references for certain characters, as described
earlier. It can contain XML-format entity or character references for any of the characters listed in Chapter 6. No syntax rule in MathML includes a string as only part
of an attribute value, only as the entire value.

A character is a single non-whitespace Unicode character, or a character entity reference, or an expression using the mchar and giving a name character. Examples
of this last form are given by the hundreds in Chapter 6.

As a simple example, the permissible values of boolean attributes are specified as true | false, meaning that the entire attribute value should be either true or
false.

Adjacent keywords and numbers must be separated by whitespace in the actual attribute values, except for unit identifiers (denoted by h-unit or v-unit syntax
symbols) following numbers. Whitespace is not otherwise required, but is permitted between any of the tokens listed above, except (for compatibility with CSS1)
immediately before unit identifiers, between the ’-’ signs and digits of negative numbers, or between # or rrggbb and rgb

Numerical attribute values for dimensions that should depend upon the current font can be given in font-related units, or in named absolute units (described in a
separate subsection below). Horizontal dimensions are conventionally given in em’s, and vertical dimensions in ex’s, by immediately following a number by one of the
unit identifiers em or ex. For example, the horizontal spacing around an operator such as ‘+’ is conventionally given in ems, though other units can be used. Using
font-related units is usually preferable to using absolute units, since it allows renderings to grow or shrink in proportion to the current font size.

For most numerical attributes, only those in a subset of the expressible values are sensible; values outside this subset are not errors, unless otherwise specified,
but rather are rounded up or down (at the discretion of the renderer) to the closest value within the allowed subset. The set of allowed values may depend on the
renderer, and is not specified by MathML.

27

28

If a numerical value within an attribute value syntax description is declared to allow a minus sign (’-’), e.g. number or integer, it is not a syntax error when one is
provided in cases where a negative value is not sensible. Instead, the value should be handled by the processing application as described in the preceding paragraph.
An explicit plus sign (’+’) is not allowed as part of a numerical value except when it is specifically listed in the syntax (as a quoted ’+’ or "+"), and its presence can
change the meaning of the attribute value (as documented with each attribute which permits it).

The symbols h-unit, v-unit, css-fontfamily, and css-color-name are explained in the following subsections.

2.3.4.2 Attributes with units

Some attributes accept horizontal or vertical lengths as numbers followed by a ‘unit identifier’ (often just called a ‘unit’). The syntax symbols h-unit and v-unit refer
to a unit for horizontal or vertical length, respectively. The possible units and the lengths they refer to are shown in the table below; they are the same for horizontal
and vertical lengths, but the syntax symbols are distinguished in attribute syntaxes as a reminder of the direction each is used in.

The unit identifiers and meanings are taken from CSS1. However, the syntax of numbers followed by unit identifiers in MathML is not identical to the syntax of length
values with units in CSS style sheets, since numbers in CSS cannot end with decimal points, and are allowed to start with ’+’ signs.

The possible horizontal or vertical units in MathML are:

Unit identifier Unit description
em em (font-relative unit traditionally used for horizontal lengths)
ex ex (font-relative unit traditionally used for vertical lengths)
px pixels, or pixel size of the current display
in inches (1 inch = 2.54 centimeters)
cm centimeters
mm millimeters
pt points (1 point = 1/72 inch)
pc picas (1 pica = 12 points)
% percentage of default value

The typesetting units em and ex are defined in Appendix F, and discussed further under ‘Additional notes’ below.

% is a ‘relative unit’; when an attribute value is given as n% (for any numerical value n), the value being specified is the default value for the property being controlled
multiplied by n divided by 100. The default value (or the way in which it is obtained, when it is not constant) is listed in the table of attributes for each element, and its
meaning is described in the subsequent documentation about that attribute. (The mpadded element has its own syntax for % and does not allow it as a unit identifier.)

For consistency with CSS, length units in MathML are rarely optional. When they are, the unit symbol is enclosed in square brackets in the attribute syntax, following
the number to which it applies, e.g. number [h-unit]. The meaning of specifying no unit is given in the documentation for each attribute; in general it is that the
number given is a multiplier for the default value of the attribute. (In such cases, specifying the number nnn without a unit is equivalent to specifying the number nnn
times 100 followed by %. For example, <mo maxsize="2"> (</mo> is equivalent to <mo maxsize="200%"> (</mo>.)

As a special exception (also consistent with CSS), a numerical value equal to 0 need not be followed by a unit identifier even if the syntax specified here requires
one. In such cases, the unit identifier (or lack of one) would not matter, since 0 times any unit is 0.

For most attributes, the typical unit which would be used to describe them in typesetting is chosen as the one used in that attribute’s default value in this specification;
when a specific default value is not given, the typical unit is usually mentioned in the syntax table or in the documentation for that attribute. The most common units
are em or ex. However, any unit can be used, unless otherwise specified for a specific attribute.

Additional notes about units

Note that some attributes, e.g. framespacing on a <mtable>, can contain more than one numerical value, each followed by its own unit.

28

29

It is conventional to use the font-relative unit ex mainly for vertical lengths, and em mainly for horizontal lengths, but this is not required. These units are relative to the
font and fontsize which would be used for rendering the element in whose attribute value they are specified, which means they should be interpreted after attributes
such as fontfamily and fontsize are processed, if those occur on the same element, since changing the current font or fontsize can change the length of one of
these units.

The definition of the length of each unit (but not the MathML syntax for length values) is as specified in CSS1, except that if a font provides specific values for em and
ex which differ from the values defined by CSS1 (the font size and ‘x’-height respectively), those values should be used.

2.3.4.3 CSS-compatible attributes

Several MathML attributes, listed below, correspond closely to text rendering properties defined by Cascading Style Sheets, Level 1 (CSS1).

The names and acceptable values of these attributes have been aligned with the CSS1 recommendation where possible. In general, the MathML syntax for each
attribute is intended to be a subset of the CSS syntax for the corresponding property. Differences of detail, where they exist, are explained with the documentation
about each attribute, in the sections of this specification listed in the table above.

The syntax of certain attributes is partially specified, in the tables of attribute syntax in this specification, using one of the symbols css-fontfamily or css-color-
name, as shown in the following table. These symbols refer to syntaxes from other W3C Recommendations, and are explained in the sections of this specification
referred to in the table.

MathML attribute CSS property syntax symbol MathML elements refer to
fontsize font-size - presentation tokens; mstyle Section 3.2.1
fontweight font-weight - presentation tokens; mstyle Section 3.2.1
fontstyle font-style - presentation tokens; mstyle Section 3.2.1
fontfamily font-family css-fontfamily presentation tokens; mstyle Section 3.2.1
color color css-color-name presentation tokens; mstyle Section 3.3.4
background background css-color-name mstyle Section 3.3.4

See also Section 2.3.5 below for a discussion of the class, style and id attributes for use with style sheets.

Order of processing attributes versus style sheets

CSS or analogous style sheets can specify changes to rendering properties of selected MathML elements; the selection of the elements can happen in various ways).
Either the properties listed above, or other MathML rendering attributes or properties supported by a style sheet mechanism, can be affected, in principle, for any
element. Since rendering properties can also be changed by attributes on an element or automatically it is necessary to specify the order in which changes from
various sources occur. An example of automatic adjustment is what happens for fontsize, as explained in the discussion on scriptlevel in Section 3.3.4. In the
case of ‘absolute’ changes, i.e. setting a new property value independent of the old value (as opposed to ‘relative’ changes, such as increments or multiplications by
a factor), the absolute change performed last will be the only absolute change which is effective, so the sources of changes which should have the highest priority
must be processed last.

In the case of CSS1, the order of processing of changes from various sources which affect one MathML element’s rendering properties should be as follows:

(first changes; lowest priority)

• automatic changes to properties or attributes based on the type of the parent element, and this element’s position in the parent, as for the changes to
fontsize in relation to scriptlevel mentioned above; such changes will usually be implemented by the parent element itself before it passes a set of
rendering properties to this element

• from a style sheet from the reader: styles which are not declared ‘important’
• explicit attribute settings on this MathML element
• from a style sheet from the author: styles which are not declared ‘important’
• from a style sheet from the reader: styles which are declared ‘important’
• from a style sheet from the author: styles which are declared ‘important’

29

30

(last changes; highest priority)

Note that the order of the changes derived from CSS style sheets is specified by CSS itself. The following rationale is related only to the issue of where in this
pre-existing order the changes caused by explicit MathML attribute settings should be inserted.

Rationale: MathML rendering attributes are analogous to HTML rendering attributes such as align, which the CSS1 section on cascading order specifies should be
processed with the same priority. Furthermore, this choice of priority permits readers, by declaring certain CSS styles as ‘important’, to decide which of their style
preferences should override explicit attribute settings in MathML. Since MathML expressions, whether composed of ‘presentation’ or ‘content’ elements, are primarily
intended to convey meaning, with their ‘graphic design’ (if any) intended mainly to aid in that purpose but not to be essential in it, it is likely that readers will often want
their own style preferences to have priority; the main exception will be when a rendering attribute is intended to alter the meaning conveyed by an expression, which
is generally discouraged in the presentation attributes of MathML.

2.3.4.4 Default values of attributes

Default values for MathML attributes are in general given along with the detailed descriptions of specific elements in the text. Default values shown in plain text in
the tables of attributes for an element are literal (unless they are obviously explanatory phrases), but when italicized are descriptions of how default values can be
computed.

Default values described as inherited are taken from the rendering environment, as described under mstyle, or in some cases (described individually) from the
values of other attributes of surrounding elements, or from certain parts of those values. The value used will always be one which could have been specified explicitly,
had it been known; it will never depend on the content or attributes of the same element, only on its environment. (What it means when used may, however, depend
on those attributes or the content.)

Default values described as automatic should be computed by a MathML renderer in a way which will produce a high-quality rendering; how to do this is not usually
specified by the MathML specification. The value computed will always be one which could have been specified explicitly, had it been known, but it will usually depend
on the element content and possibly on the rendering environment.

Other italicized descriptions of default values which appear in the tables of attributes are explained for each attribute individually.

The single or double quotes which are required around attribute values in an XML start tag are not shown in the tables of attribute value syntax for each element, but
are shown around example attribute values in the text.

Note that, in general, there is no value which can be given explicitly for a MathML attribute which will simulate the effect of not specifying the attribute at all for
attributes which are inherited or automatic. Giving the words ‘inherited’ or ‘automatic’ explicitly will not work, and is not generally allowed. Furthermore, even for
presentation attributes for which a specific default value is documented here, the mstyle element (Section 3.3.4) can be used to change this for the elements it
contains. Therefore, the MathML DTD declares most presentation attribute default values as #IMPLIED, which prevents XML preprocessors from adding them with
any specific default value. This point of view is carried through to the MathML schema

2.3.4.5 Attribute values in the MathML DTD

In an XML DTD, allowed attribute values can be declared as general strings, or they can be constrained in various ways, either by enumerating the possible values,
or by declaring them to be certain special data types. The choice of an XML attribute type affects the extent to which validity checks can be performed using a DTD.

The MathML DTD specifies formal XML attribute types for all MathML attributqes, including enumerations of legitimate values in some cases. In general, however,
the MathML DTD is relatively permissive, frequently declaring attribute values as strings; this is done to provide for interoperability with SGML parsers while allowing
multiple attributes on one MathML element to accept the same values (such as true and false), and also to allow extension to the lists of predefined values.

At the same time, even though an attribute value may be declared as a string in the DTD, only certain values are legitimate in MathML, as described above and in
the rest of this specification. For example, many attributes expect numerical values. In the sections which follow, the allowed attribute values are described for each
element. To determine when these constraints are actually enforced in the MathML DTD, consult Appendix A. However, lack of enforcement of a requirement in the
DTD does not imply that the requirement is not part of the MathML language itself, or that it will not be enforced by a particular MathML renderer. (See Section 7.2.2
for a description of how MathML renderers should respond to MathML errors.)

30

31

Furthermore, the MathML DTD is provided for convenience; although it is intended to be fully compatible with the text of the specification, the text should be taken
as definitive if there is a contradiction. (Any contradictions which may exist between various chapters of the text should be resolved by favoring Chapter 6 first, then
Chapter 3, Chapter 4, then Section 2.3, and then other parts of the text.) For the MathML Schema the situation will be the same: the published Recommendation text
takes precedence. Though this is what is intended to happen, there is a practical difficulty. If the system processing the MathML uses a validating parser, whether it be
based on a DTD or on a Schema, the process will probably simply stop when it hits something held to be incorrect syntax, whether or not further MathML processing
in full harmony with the specification would have processed the piece correctly.

2.3.5 Attributes Shared by all MathML Elements

In order to facilitate compatibility with Cascading Style Sheets, Level 1 (CSS1), all MathML elements accept class, style, and id attributes in addition to the
attributes described specifically for each element. MathML renderers not supporting CSS may ignore these attributes. MathML specifies these attribute values as
general strings, even if style-sheet mechanisms have more restrictive syntaxes for them. That is, any value for them is valid in MathML.

Renderers supporting CSS (or analogous style sheet mechanisms) may use these attributes to help determine which MathML elements should be subject to which
style sheet-induced changes to various rendering properties. The properties that can be affected, and how these changes affect them, are discussed in Section 2.3.4.3
above.

Every MathML element, because of a legacy from MathML 1.0, also accepts the deprecated attribute other (Section 7.2.3) which was conceived for passing non-
standard attributes without violating the MathML DTD. MathML renderers are only required to process this attribute if they respond to any attributes which are not
standard in MathML. However, the use of other is strongly deprecated when there are already other ways within MathML of passing specific information.

See also Section 3.2.1 for a list of MathML attributes which can be used on most presentation token elements.

2.3.6 Collapsing Whitespace in Input

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there. Whitespace occurring within the content of token
elements is ‘trimmed’ from the ends, i.e. all whitespace at the beginning and end of the content is removed. Whitespace internal to content of MathML elements is
‘collapsed’ canonically, i.e. each sequence of 1 or more whitespace characters is replaced with one space character (sometimes called a blank character).

In MathML, as in XML, ‘whitespace’ means simple spaces, tabs, newlines, or carriage returns, i.e. characters with hexadecimal Unicode codes U+0020, U+0009,
U+000a, or U+000d, respectively.

For example, <mo> (</mo> is equivalent to <mo>(</mo>, and

<mtext>
Theorem
1:

</mtext>

is equivalent to <mtext>Theorem 1:</mtext>.

Authors wishing to encode whitespace characters at the start or end of the content of a token, or in sequences other than a single space, without having them ignored,
must use or other ‘whitespace’ non-marking entities as described in Section 6.1.4. For example, compare

<mtext>
Theorem
1:

</mtext>

with

<mtext>
 Theorem
 1:
</mtext>

31

32

When the first example is rendered, there is no whitespace before ‘Theorem’, one space between ‘Theorem’ and ‘1:’, and no whitespace after ‘1:’. In the second
example, a single space is rendered before ‘Theorem’, a new line is placed after ‘Theorem’, two spaces are rendered before ‘1:’, and there is no whitespace after the
‘1:’.

Note that the xml:space attribute does not apply in this situation since XML processors pass whitespace in tokens to a MathML processor; it is the MathML
processing rules which specify that whitespace is trimmed and collapsed.

For whitespace occurring outside the content of the token elements mi, mn, mo, ms, mtext, ci, cn and annotation, an mspace element should be used, as opposed
to an mtext element containing only ‘whitespace’ entities.

32

Chapter 3

Presentation Markup

3.1 Introduction

This chapter specifies the ‘presentation’ elements of MathML, which can be used to describe the layout structure of mathematical notation.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the ‘constructors’ of traditional mathematical notation - that is, to the basic kinds of symbols and expression-building structures
out of which any particular piece of traditional mathematical notation is built. Because of the importance of traditional visual notation, the descriptions of the notational
constructs the elements represent are usually given here in visual terms. However, the elements are medium-independent in the sense that they have been designed
to contain enough information for good spoken renderings as well. Some attributes of these elements may make sense only for visual media, but most attributes can
be treated in an analogous way in audio as well (for example, by a correspondence between time duration and horizontal extent).

MathML presentation elements only suggest (i.e. do not require) specific ways of rendering in order to allow for medium-dependent rendering and for individual
preferences of style. This specification describes suggested visual rendering rules in some detail, but a particular MathML renderer is free to use its own rules as
long as its renderings are intelligible.

The presentation elements are meant to express the syntactic structure of mathematical notation in much the same way as titles, sections, and paragraphs capture
the higher level syntactic structure of a textual document. Because of this, for example, a single row of identifiers and operators, such as ‘x + a / b’, will often be
represented not just by one mrow element (which renders as a horizontal row of its arguments), but by multiple nested mrow elements corresponding to the nested
sub-expressions of which one mathematical expression is composed - in this case,

<mrow>
<mi> x </mi>
<mo> + </mo>
<mrow>
<mi> a </mi>
<mo> / </mo>
<mi> b </mi>

</mrow>
</mrow>

Similarly, superscripts are attached not just to the preceding character, but to the full expression constituting their base. This structure allows for better-quality
rendering of mathematics, especially when details of the rendering environment such as display widths are not known to the document author; it also greatly eases
automatic interpretation of the mathematical structures being represented.

33

34

Certain MathML characters are used to name operators or identifiers that in traditional notation render the same as other symbols, such as ⅆ,
ⅇ, or ⅈ, or operators that usually render invisibly, such as ⁢, ⁡, or ⁣. These
are distinct notational symbols or objects, as evidenced by their distinct spoken renderings and in some cases by their effects on linebreaking and spacing in visual
rendering, and as such should be represented by the appropriate specific entity references. For example, the expression represented visually as ‘ f (x)’ would usually
be spoken in English as ‘ f of x’ rather than just ‘ f x’; this is expressible in MathML by the use of the ⁡ operator after the ‘ f ’, which (in this case)
can be aurally rendered as ‘of’.

The complete list of MathML entities is described in Chapter 6.

3.1.2 Terminology Used In This Chapter

It is strongly recommended that, before reading the present chapter, one read Section 2.3 on MathML syntax and grammar, which contains important information
on MathML notations and conventions. In particular, in this chapter it is assumed that the reader has an understanding of basic XML terminology described in
Section 2.3.2, and the attribute value notations and conventions described in Section 2.3.4.

The remainder of this section introduces MathML-specific terminology and conventions used in this chapter.

3.1.2.1 Types of presentation elements

The presentation elements are divided into two classes. Token elements represent individual symbols, names, numbers, labels, etcetera. In general, tokens can have
only characters and mchar elements as content. The only exceptions are the vertical alignment element malignmark, and entity references. (Note, however, that
entity references are deprecated in favor of the mchar element in MathML 2.0 .) Layout schemata build expressions out of parts, and can have only elements as
content (except for whitespace, which they ignore). There are also a few empty elements used only in conjunction with certain layout schemata.

All individual ‘symbols’ in a mathematical expression should be represented by MathML token elements. The primary MathML token element types are identifiers (e.g.
variables or function names), numbers, and operators (including fences, such as parentheses, and separators, such as commas). There are also token elements for
representing text or whitespace that has more aesthetic than mathematical significance, and for representing ‘string literals’ for compatibility with computer algebra
systems. Note that although a token element represents a single meaningful ‘symbol’ (name, number, label, mathematical symbol, etcetera), such symbols may be
comprised of more than one character. For example sin and 24 are represented by the single tokens <mi>sin</mi> and <mn>24</mn> respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller expressions, and ultimately out of single symbols, with the parts grouped
and positioned using one of a small set of notational structures, which can be thought of as ‘expression constructors’. In MathML, expressions are constructed in
the same way, with the layout schemata playing the role of the expression constructors. The layout schemata specify the way in which sub-expressions are built into
larger expressions. The terminology derives from the fact that each layout schema corresponds to a different way of ‘laying out’ its sub-expressions to form a larger
expression in traditional mathematical typesetting.

3.1.2.2 Terminology for other classes of elements and their relationships

The terminology used in this chapter for special classes of elements, and for relationships between elements, is as follows: The presentation elements are the
MathML elements defined in this chapter. These elements are listed in Section 3.1.5. The content elements are the MathML elements defined in Chapter 4. The
content elements are listed in Section 4.4.

A MathML expression is a single instance of any of the presentation elements with the exception of the empty elements none or mprescripts, or is a single instance
of any of the content elements which are allowed as content of presentation elements (listed in Section 5.2.4). The intuition behind the definition of an expression is
that it is an element with an unambiguous rendering without some larger, enclosing construct. A sub-expression of an expression E is any MathML expression that is
part of the content of E, whether directly or indirectly, i.e. whether it is a ‘child’ of E or not.

Since layout schemata attach special meaning to the number and/or positions of their children, a child of a layout schema is also called an argument of that element.
As a consequence of the above definitions, the content of a layout schema consists exactly of a sequence of zero or more non-overlapping elements that are its
arguments.

34

35

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1, 2, or 3). In the detailed descriptions of element syntax given below, the
number of required arguments is implicitly indicated by giving names for the arguments at various positions. A few elements have additional requirements on the
number or type of arguments, which are described with the individual element. For example, some elements accept sequences of zero or more arguments - that is,
they are allowed to occur with no arguments at all.

Note that MathML elements encoding rendered space do count as arguments of the elements in which they appear. See Section 3.2.6 for a discussion of the proper
use of such space-like elements.

3.1.3.1 Inferred mrows

The elements listed in the following table as requiring 1* argument (msqrt, mstyle, merror, menclose, mpadded, mphantom, and mtd) actually accept any number
of arguments. However, if the number of arguments is 0, or is more than 1, they treat their contents as a single inferred mrow formed from all their arguments.

For example,

<mtd>
</mtd>

is treated as if it were

<mtd>
<mrow>
</mrow>

</mtd>

and

<msqrt>
<mo> - </mo>
<mn> 1 </mn>

</msqrt>

is treated as if it were

<msqrt>
<mrow>
<mo> - </mo>
<mn> 1 </mn>

</mrow>
</msqrt>

This feature allows MathML data not to contain (and its authors to leave out) many mrow elements that would otherwise be necessary.

In the descriptions in this chapter of the above-listed elements’ rendering behaviors, their content can be assumed to consist of exactly one expression, which may
be an mrow element formed from their arguments in this manner. However, their argument counts are shown in the following table as 1*, since they are most naturally
understood as acting on a single expression.

3.1.3.2 Table of argument requirements

For convenience, here is a table of each element’s argument count requirements, and the roles of individual arguments when these are distinguished. An argument
count of 1* indicates an inferred mrow as described above.

35

36

Element Required argument count Argument roles (when these differ by position)
mrow 0 or more
mfrac 2 numerator denominator
msqrt 1*
mroot 2 base index
mstyle 1*
merror 1*
mpadded 1*
mphantom 1*
mfenced 0 or more
menclose 1*
msub 2 base subscript
msup 2 base superscript
msubsup 3 base subscript superscript
munder 2 base underscript
mover 2 base overscript
munderover 3 base underscript overscript
mmultiscripts 1 or more base (subscript superscript)* [<mprescripts/> (presubscript presuperscript)*]
mtable 0 or more rows 0 or more mtr or mlabeledtr elements
mlabeledtr 1 or more a label and 0 or more mtd elements
mtr 0 or more 0 or more mtd elements
mtd 1*
maction 1 or more depend on actiontype attribute

3.1.4 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such special behaviors are discussed in the detailed element descriptions below.
However, for convenience, some of the most important classes of special behavior are listed here.

Certain elements are considered space-like; these are defined in Section 3.2.6. This definition affects some of the suggested rendering rules for mo elements
(Section 3.2.4).

Certain elements, e.g. msup, are able to embellish operators that are their first argument. These elements are listed in Section 3.2.4, which precisely defines an
‘embellished operator’ and explains how this affects the suggested rendering rules for stretchy operators.

Certain elements treat their arguments as the arguments of an ‘inferred mrow’ if they are not given exactly one argument, as explained in Section 3.1.3.

In MathML 1.x, the mtable element could infer mtr elements around its arguments, and the mtr element could infer mtd elements. In MathML 2.0, mtr and mtd
elements must be explicit. However, for backward compatibility renderers may wish to continue supporting inferred mtr and mtd elements.

3.1.5 Summary of Presentation Elements

36

37

3.1.5.1 Token Elements

mi identifier
mn number
mo operator, fence, or separator
mtext text
mspace space
ms string literal
mchar referring to non-ASCII characters
mglyph adding new character glyphs to MathML

3.1.5.2 General Layout Schemata

mrow group any number of sub-expressions horizontally
mfrac form a fraction from two sub-expressions
msqrt form a square root sign (radical without an index)
mroot form a radical with specified index
mstyle style change
merror enclose a syntax error message from a preprocessor
mpadded adjust space around content
mphantom make content invisible but preserve its size
mfenced surround content with a pair of fences
menclose enclose content with a stretching symbol such as a long division sign.

3.1.5.3 Script and Limit Schemata

msub attach a subscript to a base
msup attach a superscript to a base
msubsup attach a subscript-superscript pair to a base
munder attach an underscript to a base
mover attach an overscript to a base
munderover attach an underscript-overscript pair to a base
mmultiscripts attach prescripts and tensor indices to a base

3.1.5.4 Tables and Matrices

mtable table or matrix
mlabeledtr row in a table or matrix with a label or equation number
mtr row in a table or matrix
mtd one entry in a table or matrix
maligngroup and malignmark alignment markers

3.1.5.5 Enlivening Expressions

maction bind actions to a sub-expression

37

38

3.2 Token Elements

Token elements can contain any sequence of zero or more MathML characters. In particular, tokens with empty content are allowed, and should typically render
invisibly, with no width except for the normal extra spacing for that kind of token element.

The complete set of MathML characters described in Chapter 6. In general, MathML characters can be either represented directly as Unicode character data, or
indirectly via the &mchar; element (see Section 3.2.8). MathML characters can also be represented via entity references, although this practice is deprecated in
MathML 2.0. New MathML characters, or non-standard glyphs for existing MathML characters, may be represented by means of the &mglyph; element.

MathML characters are only allowed to occur as part of the content of a token element. The only exception is whitespace between elements, which is ignored.

Apart from the &mchar; and &mglyph; elements, the malignmark element is the only other element allowed in the content of tokens. See Section 3.5.5 for details.

3.2.1 Attributes common to token elements

Several attributes related to text formatting are provided on all presentation token elements except mspace, mchar and mglyph, and on no other elements except
mstyle. These are:

Name values default
fontsize number v-unit inherited
fontweight normal | bold inherited
fontstyle normal | italic normal (except on <mi>)
fontfamily string | css-fontfamily inherited
color #rgb | #rrggbb | html-color-name inherited

(See Section 2.3.4 for terminology and notation used in attribute value descriptions.)

Token elements (other than mspace) should be rendered as their content (i.e. in the visual case, as a closely-spaced horizontal row of standard glyphs for the
characters in their content) using the attributes listed above, with surrounding spacing modified by rules or attributes specific to each type of token element. Some of
the individual attributes are further discussed below.

Recall that all MathML elements, including tokens, accept class, style, and id attributes for compatibility with style sheet mechanisms, as described in Sec-
tion 2.3.5. In general, the font properties controlled by the attributes listed above are better handled using CSS or XSL style sheets depending on the context.

MathML expressions are often embedded in a textual data format such as HTML, and their renderings are likewise embedded in a rendering of the surrounding text.
The renderer of the surrounding text (e.g. a browser) should provide the MathML renderer with information about the rendering environment, including attributes of
the surrounding text such as its font size, so that the MathML can be rendered in a compatible style. For this reason, most attribute values affecting text rendering are
inherited from the rendering environment, as shown in the ‘default’ column in the table above. (Note that it is also important for the rendering environment to provide
the renderer with additional information, such as the baseline position of surrounding text, which is not specified by any MathML attributes.)

The exception to the general pattern of inheritance is the fontstyle attribute, whose default value is normal (non-slanted) for most tokens, but for mi depends
on the content in a way described in the section about mi, Section 3.2.2. Note that fontstyle is not inherited in MathML, even though the corresponding CSS1
property ‘font-style’ is inherited in CSS.

The fontsize attribute specifies the desired font size. v-unit represents a unit of vertical length (see Section 2.3.4.3). The most common unit for specifying font
sizes in typesetting is pt (points).

If the requested size of the current font is not available, the renderer should approximate it in the manner likely to lead to the most intelligible, highest quality rendering.

Many MathML elements automatically change fontsize in some of their children; see the discussion of scriptlevel in the section on mstyle, Section 3.3.4.

The value of the fontfamily attribute should be the name of a font that may be available to a MathML renderer, or information that permits the renderer to select
a font in some manner; acceptable values and their meanings are dependent on the specific renderer and rendering environment in use, and are not specified by
MathML (but see the note about css-fontfamily below). (Note that the renderer’s mechanism for finding fonts by name may be case-sensitive.)

38

39

If the value of fontfamily is not recognized by a particular MathML renderer, this should never be interpreted as a MathML error; rather, the renderer should either
use a font that it considers to be a suitable substitute for the requested font, or ignore the attribute and act as if no value had been given.

Note that any use of the fontfamily attribute is unlikely to be portable across all MathML renderers. In particular, it should never be used to try to achieve the effect
of a reference to an non-ASCII MathML character (for example, by using a reference to a character in some symbol font that maps ordinary characters to glyphs for
non-ASCII characters). As a corollary to this principle, MathML renderers should attempt to always produce intelligible renderings for the MathML characters listed
in Chapter 6, even when these characters are not available in the font family indicated. Such a rendering is always possible - as a last resort, a character can be
rendered to appear as an XML-style entity reference using one of the entity names given for the same character in Chapter 6.

The symbol css-fontfamily refers to a legal value for the font-family property in CSS1, which is a comma-separated list of alternative font family names or
generic font types in order of preference, as documented in more detail in CSS1. MathML renderers are encouraged to make use of the CSS syntax for specifying
fonts when this is practical in their rendering environment, even if they do not otherwise support CSS. (See also the subsection CSS-compatible attributes within
Section 2.3.4.3.

The syntax and meaning of the color attribute are as described for the same attribute of <mstyle> (Section 3.3.4).

3.2.2 Identifier (mi)

3.2.2.1 Description

An mi element represents a symbolic name or arbitrary text that should be rendered as an identifier. Identifiers can include variables, function names, and symbolic
constants.

Not all ‘mathematical identifiers’ are represented by mi elements - for example, subscripted or primed variables should be represented using msub or msup respec-
tively. Conversely, arbitrary text playing the role of a ‘term’ (such as an ellipsis in a summed series) can be represented using an mi element, as shown in an example
in Section 3.2.5.4.

It should be stressed that mi is a presentation element, and as such, it only indicates that its content should be rendered as an identifier. In the majority of cases,
the contents of an mi will actually represent a mathematical identifier such as a variable or function name. However, as the preceding paragraph indicates, the
correspondence between notations that should render like identifiers and notations that are actually intended to represent mathematical identifiers is not perfect. For
an element whose semantics is guaranteed to be that of an identifier, see the description of ci in Chapter 4.

3.2.2.2 Attributes

mi elements accept the attributes listed in Section 3.2.1, but in one case with a different default value:

Name values default
fontstyle normal | italic (depends on content; described below)

A typical graphical renderer would render an mi element as the characters in its content, with no extra spacing around the characters (except spacing associated with
neighboring elements). The default fontstyle would (typically) be normal (non-slanted) unless the content is a single character, in which case it would be italic.
Note that this rule for fontstyle is specific to mi elements; the default value for the fontstyle attribute of other MathML token elements is normal.

3.2.2.3 Examples

<mi> x </mi>
<mi> D </mi>
<mi> sin </mi>
<mi></mi>

An mi element with no content is allowed; <mi></mi> might, for example, be used by an ‘expression editor’ to represent a location in a MathML expression which
requires a ‘term’ (according to conventional syntax for mathematics) but does not yet contain one.

39

40

Identifiers include function names such as ‘sin’. Expressions such as ‘sin x’ should be written using the ⁡ operator (which also has the short name
⁡) as shown below; see also the discussion of invisible operators in Section 3.2.4.

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

Miscellaneous text that should be treated as a ‘term’ can also be represented by an mi element, as in:

<mrow>
<mn> 1 </mn>
<mo> + </mo>
<mi> ... </mi>
<mo> + </mo>
<mi> n </mi>

</mrow>

When an mi is used in such exceptional situations, explicitly setting the fontstyle attribute may give better results than the default behavior of some renderers.

The names of symbolic constants should be represented as mi elements:

<mi> π </mi>
<mi> ⅈ </mi>
<mi> ⅇ </mi>

Use of special entity references for such constants can simplify the interpretation of MathML presentation elements. See Chapter 6 for a complete list of character
entity references in MathML.

3.2.3 Number (mn)

3.2.3.1 Description

An mn element represents a ‘numeric literal’ or other data that should be rendered as a numeric literal. Generally speaking, a numeric literal is a sequence of digits,
perhaps including a decimal point, representing an unsigned integer or real number.

The concept of a mathematical ‘number’ depends on the context, and is not well-defined in the abstract. As a consequence, not all mathematical numbers should be
represented using mn; examples of mathematical numbers that should be represented differently are shown below, and include negative numbers, complex numbers,
ratios of numbers shown as fractions, and names of numeric constants.

Conversely, since mn is a presentation element, there are a few situations where it may desirable to include arbitrary text in the content of an mn that should merely
render as a numeric literal, even though that content may not be unambiguously interpretable as a number according to any particular standard encoding of numbers
as character sequences. As a general rule, however, the mn element should be reserved for situations where its content is actually intended to represent a numeric
quantity in some fashion. For an element whose semantics are guaranteed to be that of a particular kind of mathematical number, see the description of cn in
Chapter 4.

3.2.3.2 Attributes

mn elements accept the attributes listed in Section 3.2.1.

A typical graphical renderer would render an mn element as the characters of its content, with no extra spacing around them (except spacing from neighboring
elements such as mo). Unlike mi, mn elements are (typically) rendered in an unslanted font by default, regardless of their content.

40

41

3.2.3.3 Examples

<mn> 2 </mn>
<mn> 0.123 </mn>
<mn> 1,000,000 </mn>
<mn> 2.1e10 </mn>
<mn> 0xFFEF </mn>
<mn> MCMLXIX </mn>
<mn> twenty one </mn>

3.2.3.4 Numbers that should not be written using mn alone

Many mathematical numbers should be represented using presentation elements other than mn alone; this includes complex numbers, ratios of numbers shown as
fractions, and names of numeric constants. Examples of MathML representations of such numbers include:

<mrow>
<mn> 2 </mn>
<mo> + </mo>
<mrow>
<mn> 3 </mn>
<mo> ⁢ </mo>
<mi> ⅈ </mi>

</mrow>
</mrow>
<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
<mi> π </mi>
<mi> ⅇ </mi>

3.2.4 Operator, Fence, Separator or Accent (mo)

3.2.4.1 Description

An mo element represents an operator or anything that should be rendered as an operator. In general, the notational conventions for mathematical operators are
quite complicated, and therefore MathML provides a relatively sophisticated mechanism for specifying the rendering behavior of an mo element. As a consequence,
in MathML the list of things that should ‘render as an operator’ includes a number of notations that are not mathematical operators in the ordinary sense. Besides
ordinary operators with infix, prefix, or postfix forms, these include fence characters such as braces, parentheses, and ‘absolute value’ bars, separators such as
comma and semicolon, and mathematical accents such as a bar or tilde over a symbol.

The term ‘operator’ as used in the present chapter means any symbol or notation that should render as an operator, and that is therefore representable by an mo
element. That is, the term ‘operator’ includes any ordinary operator, fence, separator, or accent unless otherwise specified or clear from the context.

All such symbols are represented in MathML with mo elements since they are subject to essentially the same rendering attributes and rules; subtle distinctions in the
rendering of these classes of symbols, when they exist, are supported using the boolean attributes fence, separator and accent, which can be used to distinguish
these cases.

A key feature of the mo element is that its default attribute values are set on a case-by-case basis from an ‘operator dictionary’ as explained below. In particular,
default values for fence, separator and accent can usually be found in the operator dictionary and therefore need not be specified on each mo element.

Note that some mathematical operators are represented not by mo elements alone, but by mo elements ‘embellished’ with (for example) surrounding superscripts;
this is further described below. Conversely, as presentation elements, mo elements can contain arbitrary text, even when that text has no standard interpretation as
an operator; for an example, see the discussion ‘Mixing text and mathematics’ in Section 3.2.5. See also Chapter 4 for definitions of MathML content elements that
are guaranteed to have the semantics of specific mathematical operators.

41

42

3.2.4.2 Attributes

mo elements accept the attributes listed in Section 3.2.1, and the additional attributes listed here. Most attributes get their default values from the Section 3.2.4.7, as
described later in this section. When a dictionary entry is not found for a given mo element, the default value shown here in parentheses is used.

Name values default
form prefix | infix | postfix set by position of operator in an mrow (rule given below); used with mo content to index operator dictionary
fence true | false set by dictionary (false)
separator true | false set by dictionary (false)
lspace number h-unit | namedspace set by dictionary (thickmathspace)
rspace number h-unit | namedspace set by dictionary (thickmathspace)
stretchy true | false set by dictionary (false)
symmetric true | false set by dictionary (true)
maxsize number [v-unit | h-unit] | namedspace | infinity set by dictionary (infinity)
minsize number [v-unit | h-unit] | namedspace set by dictionary (1)
largeop true | false set by dictionary (false)
movablelimits true | false set by dictionary (false)
accent true | false set by dictionary (false)

h-unit represents a unit of horizontal length, and v-unit represents a unit of vertical length (see Section 2.3.4.2). namedspace is one of veryverythinmath-
space, verythinmathspace, thinmathspace, mediummathspace, thickmathspace, verythickmathspace, or veryverythickmathspace. These values
are settable by the mstyle element which is discussed in Section 3.3.4. The default values of veryverythinmathspace... veryverythickmathspace are
1/18em...7/18em, respectively.

If no unit is given with maxsize or minsize, the number is a multiplier of the normal size of the operator in the direction (or directions) in which it stretches. These
attributes are further explained below.

Typical graphical renderers show all mo elements as the characters of their content, with additional spacing around the element determined from the attributes listed
above. Detailed rules for determining operator spacing in visual renderings are described in a subsection below. As always, MathML does not require a specific
rendering, and these rules are provided as suggestions for the convenience of implementors.

Renderers without access to complete fonts for the MathML character set may choose not to render an mo element as precisely the characters in its content in some
cases. For example, <mo> ≤ </mo> might be rendered as <= to a terminal. However, as a general rule, renderers should attempt to render the content of an
mo element as literally as possible. That is, <mo> &le </mo> and <mo> <= </mo> should render differently. (The first one should render as a single character
representing a less-than-or-equal-to sign, and the second one as the two-character sequence <=.)

3.2.4.3 Examples with ordinary operators

<mo> + </mo>
<mo> < </mo>
<mo> ≤ </mo>
<mo> <= </mo>
<mo> ++ </mo>
<mo> ∑ </mo>
<mo> .NOT. </mo>
<mo> and </mo>
<mo> ⁢ </mo>

42

43

3.2.4.4 Examples with fences and separators

Note that the mo elements in these examples don’t need explicit fence or separator attributes, since these can be found using the operator dictionary as described
below. Some of these examples could also be encoded using the mfenced element described in Section 3.3.8.

(a+b)

<mrow>
<mo> (</mo>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
<mo>) </mo>

</mrow>

[0,1)

<mrow>
<mo> [</mo>
<mrow>
<mn> 0 </mn>
<mo> , </mo>
<mn> 1 </mn>

</mrow>
<mo>) </mo>

</mrow>

f (x,y)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

3.2.4.5 Invisible operators

Certain operators that are ‘invisible’ in traditional mathematical notation should be represented using specific entity references within mo elements, rather than simply
by nothing. The entity references used for these ‘invisible operators’ are:

43

44

Full name Short name Examples of use
⁢ ⁢ xy
⁡ ⁡ f (x) sin x
⁣ ⁣ m_12

The MathML representations of the examples in the above table are:

<mrow>
<mi> x </mi>
<mo> ⁢ </mo>
<mi> y </mi>

</mrow>
<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>
<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>
<msub>
<mi> m </mi>
<mrow>
<mn> 1 </mn>
<mo> ⁣ </mo>
<mn> 2 </mn>

</mrow>
</msub>

The reasons for using specific mo elements for invisible operators include:

• such operators should often have specific effects on visual rendering (particularly spacing and linebreaking rules) that are not the same as either the lack
of any operator, or spacing represented by mspace or mtext elements;

• these operators should often have specific audio renderings different than that of the lack of any operator;
• automatic semantic interpretation of MathML presentation elements is made easier by the explicit specification of such operators.

For example, an audio renderer might render f (x) (represented as in the above examples) by speaking ‘f of x’, but use the word ‘times’ in its rendering of xy. Although
its rendering must still be different depending on the structure of neighboring elements (sometimes leaving out ‘of’ or ‘times’ entirely), its task is made much easier
by the use of a different mo element for each invisible operator.

3.2.4.6 Names for other special operators

MathML also includes ⅆ for use in an mo element representing the differential operator symbol usually denoted by ‘d’. The reasons for explicitly
using this special entity are similar to those for using the special entities for invisible operators described in the preceding section.

44

45

3.2.4.7 Detailed rendering rules for mo elements

Typical visual rendering behaviors for mo elements are more complex than for the other MathML token elements, so the rules for rendering them are described in this
separate subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than requirements. Furthermore, no attempt is made to specify the rendering
completely; rather, enough information is given to make the intended effect of the various rendering attributes as clear as possible.

The operator dictionary

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have a well-established, predictable, traditional notational usage. Typically, this
usage amounts to certain default attribute values for mo elements with specific contents and a specific form attribute. Since these defaults vary from symbol to
symbol, MathML anticipates that renderers will have an ‘operator dictionary’ of default attributes for mo elements (see Appendix D) indexed by each mo element’s
content and form attribute. If an mo element is not listed in the dictionary, the default values shown in parentheses in the table of attributes for mo should be used,
since these values are typically acceptable for a generic operator.

Some operators are ‘overloaded’, in the sense that they can occur in more than one form (prefix, infix, or postfix), with possibly different rendering properties for each
form. For example, ‘+’ can be either a prefix or an infix operator. Typically, a visual renderer would add space around both sides of an infix operator, while only on the
left of a prefix operator. The form attribute allows specification of which form to use, in case more than one form is possible according to the operator dictionary and
the default value described below is not suitable.

Default value of the form attribute

The form attribute does not usually have to be specified explicitly, since there are effective heuristic rules for inferring the value of the form attribute from the context.
If it is not specified, and there is more than one possible form in the dictionary for an mo element with given content, the renderer should choose which form to use as
follows (but see the exception for embellished operators, described later):

• If the operator is the first argument in an mrow of length (i.e. number of arguments) greater than one (ignoring all space-like arguments (see Section 3.2.6)
in the determination of both the length and the first argument), the prefix form is used;

• if it is the last argument in an mrow of length greater than one (ignoring all space-like arguments), the postfix form is used;
• in all other cases, including when the operator is not part of an mrow, the infix form is used.

Note that these rules make reference to the mrow in which the mo element lies. In some situations, this mrow might be an inferred mrow implicitly present around the
arguments of an element such as msqrt or mtd.

Opening (left) fences should have form="prefix", and closing (right) fences should have form="postfix"; separators are usually ‘infix’, but not always, depending on
their surroundings. As with ordinary operators, these values do not usually need to be specified explicitly.

If the operator does not occur in the dictionary with the specified form, the renderer should use one of the forms that is available there, in the order of preference:
infix, postfix, prefix; if no forms are available for the given mo element content, the renderer should use the defaults given in parentheses in the table of attributes for
mo.

Exception for embellished operators

There is one exception to the above rules for choosing an mo element’s default form attribute. An mo element that is ‘embellished’ by one or more nested subscripts,
superscripts, surrounding text or whitespace, or style changes behaves differently. It is the embellished operator as a whole (this is defined precisely, below) whose
position in an mrow is examined by the above rules and whose surrounding spacing is affected by its form, not the mo element at its core; however, the attributes
influencing this surrounding spacing are taken from the mo element at the core (or from that element’s dictionary entry).

For example, the ‘+4’ in a+4b should be considered an infix operator as a whole, due to its position in the middle of an mrow, but its rendering attributes should be
taken from the mo element representing the ‘+’, or when those are not specified explicitly, from the operator dictionary entry for <mo form="infix"> + </mo>. The
precise definition of an ‘embellished operator’ is:

45

46

• an mo element;
• or one of the elements msub, msup, msubsup, munder, mover, munderover, mmultiscripts, mfrac, or semantics (Section 4.2.6), whose first argu-

ment exists and is an embellished operator;
• or one of the elements mstyle, mphantom, or mpadded, such that an mrow containing the same arguments would be an embellished operator;
• or an maction element whose selected sub-expression exists and is an embellished operator;
• or an mrow whose arguments consist (in any order) of one embellished operator and zero or more space-like elements.

Note that this definition permits nested embellishment only when there are no intervening enclosing elements not in the above list.

The above rules for choosing operator forms and defining embellished operators are chosen so that in all ordinary cases it will not be necessary for the author to
specify a form attribute.

Rationale for definition of embellished operators

The following notes are included as a rationale for certain aspects of the above definitions, but should not be important for most users of MathML.

An mfrac is included as an ‘embellisher’ because of the common notation for a differential operator:

<mfrac>
<mo> ⅆ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>

</mrow>
</mfrac>

Since the definition of embellished operator affects the use of the attributes related to stretching, it is important that it includes embellished fences as well as ordinary
operators; thus it applies to any mo element.

Note that an mrow containing a single argument is an embellished operator if and only if its argument is an embellished operator. This is because an mrow with a
single argument must be equivalent in all respects to that argument alone (as discussed in Section 3.3.1). This means that an mo element that is the sole argument
of an mrow will determine its default form attribute based on that mrow’s position in a surrounding, perhaps inferred, mrow (if there is one), rather than based on its
own position in the mrow in which it is the sole argument.

Note that the above definition defines every mo element to be ‘embellished’ - that is, ‘embellished operator’ can be considered (and implemented in renderers) as a
special class of MathML expressions, of which mo is a specific case.

Spacing around an operator

The amount of space added around an operator (or embellished operator), when it occurs in an mrow, can be directly specified by the lspace and rspace attributes.
These values are in ems if no units are given. By convention, operators that tend to bind tightly to their arguments have smaller values for spacing than operators that
tend to bind less tightly. This convention should be followed in the operator dictionary included with a MathML renderer. In TEX, these values can only be one of three
values; typically they are 3/18em, 4/18em, and 5/18em. MathML does not impose this limit.

Some renderers may choose to use no space around most operators appearing within subscripts or superscripts, as is done in TEX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes described here, in analogous ways for their rendering medium.

3.2.4.8 Stretching of operators, fences and accents

Four attributes govern whether and how an operator (perhaps embellished) stretches so that it matches the size of other elements: stretchy, symmetric, maxsize,
and minsize. If an operator has the attribute stretchy=true, then it (that is, each character in its content) obeys the stretching rules listed below, given the
constraints imposed by the fonts and font rendering system. In practice, typical renderers will only be able to stretch a small set of characters, and quite possibly will
only be able to generate a discrete set of character sizes.

46

47

There is no provision in MathML for specifying in which direction (horizontal or vertical) to stretch a specific character or operator; rather, when stretchy=true it
should be stretched in each direction for which stretching is possible. It is up to the renderer to know in which directions it is able to stretch each character. (Most
characters can be stretched in at most one direction by typical renderers, but some renderers may be able to stretch certain characters, such as diagonal arrows, in
both directions independently.)

The minsize and maxsize attributes limit the amount of stretching (in either direction). These two attributes are given as multipliers of the operator’s normal size
in the direction or directions of stretching, or as absolute sizes using units. For example, if a character has maxsize="3", then it can grow to be no more than three
times its normal (unstretched) size.

The symmetric attribute governs whether the height and depth above and below the axis of the character are forced to be equal (by forcing both height and depth
to become the maximum of the two). An example of a situation where one might set symmetric=false arises with parentheses around a matrix not aligned on the
axis, which frequently occurs when multiplying non-square matrices. In this case, one wants the parentheses to stretch to cover the matrix, whereas stretching the
parentheses symmetrically would cause them to protrude beyond one edge of the matrix. The symmetric attribute only applies to characters that stretch vertically
(otherwise it is ignored).

If a stretchy mo element is embellished (as defined earlier in this section), the mo element at its core is stretched to a size based on the context of the embellished
operator as a whole, i.e. to the same size as if the embellishments were not present. For example, the parentheses in the following example (which would typically
be set to be stretchy by the operator dictionary) will be stretched to the same size as each other, and the same size they would have if they were not underlined and
overlined, and furthermore will cover the same vertical interval:

<mrow>
<munder>
<mo> (</mo>
<mo> _ </mo>

</munder>
<mfrac>
<mi> a </mi>
<mi> b </mi>

</mfrac>
<mover>
<mo>) </mo>
<mo> ‾ </mo>

</mover>
</mrow>

Note that this means that the stretching rules given below must refer to the context of the embellished operator as a whole, not just to the mo element itself.

Example of stretchy attributes

This shows one way to set the maximum size of a parenthesis so that it does not grow, even though its default value is stretchy=true.

<mrow>
<mo maxsize="1"> (</mo>
<mfrac>
<mi> a </mi> <mi> b </mi>

</mfrac>
<mo maxsize="1">) </mo>

</mrow>

The above should render as (a
b) as opposed to the default rendering

(
a
b

)
.

Note that each parenthesis is sized independently; if only one of them had maxsize="1", they would render with different sizes.

47

48

Vertical Stretching Rules

• If a stretchy operator is a direct sub-expression of an mrow element, or is the sole direct sub-expression of an mtd element in some row of a table, then
it should stretch to cover the height and depth (above and below the axis) of the non-stretchy direct sub-expressions in the mrow element or table row,
unless stretching is constrained by minsize or maxsize attributes.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its core.
• If symmetric=true, then the maximum of the height and depth is used to determine the size, before application of the minsize or maxsize attributes.
• The preceding rules also apply in situations where the mrow element is inferred.

Most common opening and closing fences are defined in the operator dictionary to stretch by default; and they stretch vertically. Also, operators such as ∑,
∫, /, and vertical arrows stretch vertically by default.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each cell of the table row containing the stretchy operator covers
exactly one row. (Equivalently, the value of the rowspan attribute is assumed to be 1 for all the table cells in the table row, including the cell containing the operator.)
When this is not the case, the operator should only be stretched vertically to cover those table cells that are entirely within the set of table rows that the operator’s cell
covers. Table cells that extend into rows not covered by the stretchy operator’s table cell should be ignored. See Section 3.5.4.2 for details about the the rowspan
attribute.

Horizontal Stretching Rules

• If a stretchy operator, or an embellished stretchy operator, is a direct sub-expression of an munder, mover, or munderover element, or if it is the sole
direct sub-expression of an mtd element in some column of a table (see mtable), then it, or the mo element at its core, should stretch to cover the width
of the other direct sub-expressions in the given element (or in the same table column), given the constraints mentioned above.

• If a stretchy operator is a direct sub-expression of an munder, mover, or munderover element, or if it is the sole direct sub-expression of an mtd element
in some column of a table, then it should stretch to cover the width of the other direct sub-expressions in the given element (or in the same table column),
given the constraints mentioned above.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its core.

By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each cell of the table column containing the stretchy operator
covers exactly one column. (Equivalently, the value of the columnspan attribute is assumed to be 1 for all the table cells in the table row, including the cell containing
the operator.) When this is not the case, the operator should only be stretched horizontally to cover those table cells that are entirely within the set of table columns
that the operator’s cell covers. Table cells that extend into columns not covered by the stretchy operator’s table cell should be ignored. See Section 3.5.4.2 for details
about the the rowspan attribute.

The rules for horizontal stretching include mtd elements to allow arrows to stretch for use in commutative diagrams laid out using mtable. The rules for the horizontal
stretchiness include scripts to make examples such as the following work:

<mrow>
<mi> x </mi>
<munder>
<mo> → </mo>
<mtext> maps to </mtext>

</munder>
<mi> y </mi>

</mrow>

This displays as x−−−−→
maps to

y.

48

49

Rules Common to both Vertical and Horizontal Stretching

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations mentioned above, or if there are no other expressions whose size it should stretch
to match), then it has the standard (unstretched) size determined by the font and current fontsize.

If a stretchy operator is required to stretch, but all other expressions in the containing element or object (as described above) are also stretchy, all elements that can
stretch should grow to the maximum of the normal unstretched sizes of all elements in the containing object, if they can grow that large. If the value of minsize or
maxsize prevents this then that (min or max) size is used.

For example, in an mrow containing nothing but vertically stretchy operators, each of the operators should stretch to the maximum of all of their normal unstretched
sizes, provided no other attributes are set that override this behavior. Of course, limitations in fonts or font rendering may result in the final, stretched sizes being only
approximately the same.

3.2.4.9 Other attributes of mo

The largeop attribute specifies whether the operator should be drawn larger than normal if displaystyle=true in the current rendering environment. This roughly
corresponds to TEX’s \displaystyle style setting. MathML uses two attributes, displaystyle and scriptlevel, to control orthogonal presentation features
that TEX encodes into one ‘style’ attribute with values \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle. These attributes are discussed
further in Section 3.3.4 describing the mstyle element. Note that these attributes can be specified directly on an mstyle element’s begin tag, but not on most other
elements. Examples of large operators include ∫ and ∏.

The movablelimits attribute specifies whether underscripts and overscripts attached to this mo element should be drawn as subscripts and superscripts when
displaystyle=false. movablelimits=false means that underscripts and overscripts should never be drawn as subscripts and superscripts. In general, dis-
playstyle is true for displayed mathematics and false for inline mathematics. Also, displaystyle is false by default within tables, scripts and fractions,
and a few other exceptional situations detailed in Section 3.3.4. Thus, operators with movablelimits=true will display with limits (i.e. underscripts and over-
scripts) in displayed mathematics, and with subscripts and superscripts in inline mathematics, tables, scripts and so on. Examples of operators that typically have
movablelimits=true are sum, prod, and lim.

The accent attribute determines whether this operator should be treated by default as an accent (diacritical mark) when used as an underscript or overscript; see
munder, mover, and munderover (Section 3.4.4, Section 3.4.5 and Section 3.4.6).

The separator attribute may affect automatic linebreaking in renderers that position ordinary infix operators at the beginnings of broken lines rather than at the ends
(that is, which avoid linebreaking just after such operators), since linebreaking should be avoided just before separators, but is acceptable just after them.

The fence attribute has no effect in the suggested visual rendering rules given here; it is not needed for properly rendering traditional notation using these rules. It
is provided so that specific MathML renderers, especially non-visual renderers, have the option of using this information.

3.2.5 Text (mtext)

3.2.5.1 Description

An mtext element is used to represent arbitrary text that should be rendered as itself. In general, the mtext element is intended to denote commentary text that is
not central to the mathematical meaning or notational structure of the expression it is contained in.

Note that some text with a clearly defined notational role might be more appropriately marked up using mi or mo; this is discussed further below.

An mtext element can be used to contain ‘renderable whitespace’, i.e. invisible characters that are intended to alter the positioning of surrounding elements. In
non-graphical media, such characters are intended to have an analogous effect, such as introducing positive or negative time delays or affecting rhythm in an audio
renderer. This is not related to any whitespace in the source MathML consisting of blanks, newlines, tabs, or carriage returns; whitespace present directly in the
source is trimmed and collapsed, as described in Section 2.3.6. Whitespace that is intended to be rendered as part of an element’s content must be represented by
entity references (unless it consists only of single blanks between non-whitespace characters).

49

50

Renderable whitespace can have a positive or negative width, as in   and ​, or zero width, as in ​. The
complete list of such characters is given in Chapter 6. Note that there is no formal distinction in MathML between renderable whitespace characters and any other
class of characters, in mtext or in any other element.

Renderable whitespace can also include characters that affect alignment or linebreaking. Some of these characters are:

Entity name Purpose (rough description)
NewLine start a new line and do not indent
IndentingNewLine start a new line and do indent
NoBreak do not allow a linebreak here
GoodBreak if a linebreak is needed on the line, here is a good spot
BadBreak if a linebreak is needed on the line, try to avoid breaking here

For the complete list of MathML entities, consult Chapter 6.

3.2.5.2 Attributes

mtext elements accept the attributes listed in Section 3.2.1.

See also the warnings about the legal grouping of ‘space-like elements’ in Section 3.2.6, and about the use of such elements for ‘tweaking’ or conveying meaning in
Section 3.3.6.

3.2.5.3 Examples

<mtext> Theorem 1: </mtext>
<mtext>   </mtext>
<mtext>      </mtext>
<mtext> /* a comment */ </mtext>

3.2.5.4 Mixing text and mathematics

In some cases, text embedded in mathematics could be more appropriately represented using mo or mi elements. For example, the expression ‘there exists δ > 0
such that f (x) <1’ is equivalent to ∃δ> 03 f (x)< 1 and could be represented as:

50

51

<mrow>
<mo> there exists </mo>
<mrow>
<mrow>
<mi> δ </mi>
<mo> > </mo>
<mn> 0 </mn>

</mrow>
<mo> such that </mo>
<mrow>
<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>
<mo> < </mo>
<mn> 1 </mn>

</mrow>
</mrow>

</mrow>

An example involving an mi element is: x+x2+···+xn. In this example, ellipsis should be represented using an mi element, since it takes the place of a term in the sum
(see Section 3.2.2, mi).

On the other hand, expository text within MathML is best represented with an mtext element. An example of this is:

Theorem 1: if x > 1, then x2 > x.

However, when MathML is embedded in HTML, or another document markup language, the example is probably best rendered with only the two inequalities
represented as MathML at all, letting the text be part of the surrounding HTML.

Another factor to consider in deciding how to mark up text is the effect on rendering. Text enclosed in an mo element is unlikely to be found in a renderer’s operator
dictionary, so it will be rendered with the format and spacing appropriate for an ‘unrecognized operator’, which may or may not be better than the format and spacing
for ‘text’ obtained by using an mtext element. An ellipsis entity in an mi element is apt to be spaced more appropriately for taking the place of a term within a series
than if it appeared in an mtext element.

3.2.6 Space (mspace)

3.2.6.1 Description

An mspace empty element represents a blank space of any desired size, as set by its attributes. It can also be used to make linebreaking suggestions to a visual
renderer. Note that the default values for attributes have been chosen so that they typically will have no effect on rendering. Thus, the mspace element is generally
used with one or more attribute values explicitly specified.

51

52

3.2.6.2 Attributes

Name values default
width number h-unit | namedspace 0em
height number v-unit 0ex
depth number v-unit 0ex
linebreak auto | NewLine | IndentingNewLine | NoBreak | GoodBreak | BadBreak auto

h-unit and v-unit represent units of horizontal or vertical length, respectively (see Section 2.3.4.2).

The linebreak attribute is used to give a linebreaking hint to a visual renderer. The default value is auto, which indicates that a renderer should use whatever
default linebreaking algorithm it would normally use. The meaning of the other possible values for the linebreak attribute are described above in the discussion on
renderable whitespace in the mtext element. See Section 3.2.5 for details.

In the case when both dimensional attributes and a linebreaking attribute are set, the linebreaking attribute is ignored.

Note the warning about the legal grouping of ‘space-like elements’ given below, and the warning about the use of such elements for ‘tweaking’ or conveying meaning
in Section 3.3.6. See also the other elements that can render as whitespace, namely mtext, mphantom, and maligngroup.

3.2.6.3 Definition of space-like elements

A number of MathML presentation elements are ‘space-like’ in the sense that they typically render as whitespace, and do not affect the mathematical meaning of
the expressions in which they appear. As a consequence, these elements often function in somewhat exceptional ways in other MathML expressions. For example,
space-like elements are handled specially in the suggested rendering rules for mo given in Section 3.2.4. The following MathML elements are defined to be ‘space-like’:

• an mtext, mspace, maligngroup, or malignmark element;
• an mstyle, mphantom, or mpadded element, all of whose direct sub-expressions are space-like;
• an maction element whose selected sub-expression exists and is space-like;
• an mrow all of whose direct sub-expressions are space-like.

Note that an mphantom is not automatically defined to be space-like, unless its content is space-like. This is because operator spacing is affected by whether adjacent
elements are space-like. Since the mphantom element is primarily intended as an aid in aligning expressions, operators adjacent to an mphantom should behave as
if they were adjacent to the contents of the mphantom, rather than to an equivalently sized area of whitespace.

3.2.6.4 Legal grouping of space-like elements

Authors who insert space-like elements or mphantom elements into an existing MathML expression should note that such elements are counted as arguments, in
elements that require a specific number of arguments, or that interpret different argument positions differently.

Therefore, space-like elements inserted into such a MathML element should be grouped with a neighboring argument of that element by introducing an mrow for that
purpose. For example, to allow for vertical alignment on the right edge of the base of a superscript, the expression

<msup> <mi> x </mi> <malignmark edge="right"/> <mn> 2 </mn> </msup>

is illegal, because msup must have exactly 2 arguments; the correct expression would be:

<msup>
<mrow>
<mi> x </mi>
<malignmark edge="right"/>

</mrow>
<mn> 2 </mn>

</msup>

See also the warning about ‘tweaking’ in Section 3.3.6.

52

53

3.2.7 String Literal (ms)

3.2.7.1 Description

The ms element is used to represent ‘string literals’ in expressions meant to be interpreted by computer algebra systems or other systems containing ‘programming
languages’. By default, string literals are displayed surrounded by double quotes. As explained in Section 3.2.5, ordinary text embedded in a mathematical expression
should be marked up with mtext, or in some cases mo or mi, but never with ms.

Note that the string literals encoded by ms are ‘Unicode strings’ rather than ‘ASCII strings’. In practice, non-ASCII characters will typically be represented by mchar
elements. For example, <ms><mchar name="amp"/></ms> represents a string literal containing a single character, &, and <ms><mchar name="amp"/>amp;</
ms> represents a string literal containing 5 characters, the first one of which is &.

Like all token elements, ms does trim and collapse whitespace in its content according to the rules of Section 2.3.6, so whitespace intended to remain in the content
should be encoded as described in that section.

3.2.7.2 Attributes

ms elements accept the attributes listed in Section 3.2.1, and additionally:

Name values default
lquote string "
rquote string "

In visual renderers, the content of an ms element is typically rendered with no extra spacing added around the string, and a quote character at the beginning and the
end of the string. By default, the left and right quote characters are both the standard double quote character ". However, these characters can be changed
with the lquote and rquote attributes respectively.

The content of ms elements should be rendered with visible ‘escaping’ of certain characters in the content, including at least ‘double quote’ itself, and preferably
whitespace other than individual space characters. The intent is for the viewer to see that the expression is a string literal, and to see exactly which characters form
its content. For example, <ms>double quote is "</ms> might be rendered as "double quote is \"".

3.2.8 Referring to non-ASCII characters (mchar)

3.2.8.1 Description

The mchar element is used to reference characters. This provides an alternative to using entity references. Character entities are deprecated for MathML 2.0 because
they are not a part of the current proposal for schemas, and documents containing entities are not well-formed XML in the absence of the MathML DTD.

Numeric character references (e.g. Ӓ) are not deprecated because they do not have the problems listed above.

mchar is valid content in any MathML token element listed in Section 3.1.5 (mi, etc.) or Section 4.2.2 (ci, etc.) unless otherwise restricted by an attribute (e.g.
base="2" to <cn>).

3.2.8.2 Attributes of mchar

Name values default
name string required

The name attribute must be one of the names specified in Chapter 6. It is an error to use a name that is not in that list.

3.2.8.3 Examples

In MathML 1.x expressions involving entity references such as <mi> α1 </mi> were common. In MathML 2.0, the equivalent construction using mchar is
preferred:

<mi> <mchar name=’alpha’/>1 </mi>

53

54

3.2.9 Adding new character glyphs to MathML (mglyph)

3.2.9.1 Description

Unicode defines a large number of characters used in mathematics, and in most all cases, glyphs representing these characters are widely available in a variety of
fonts. Although these characters should meet almost all users needs, MathML recognizes that Mathematics is not static and that new characters are added when
convenient. Characters that become well accepted will likely be eventually incorporated by the Unicode Consortium or other standards bodies, but that is often a
lengthy process. In the mean time, a mechanism is necessary for accessing glyphs from non-standard fonts representing these characters.

The mglyph element is the means by which users can directly access glyphs for characters that are not defined by Unicode. Similarly, the mglyph element can also
be used to select glyph variants for existing Unicode characters, as might be desirable when a glyph variant has begun to differentiate itself as a new character by
taking on a distinguished mathematical meaning.

The mglyph element names a specific character glyph, and is valid inside any MathML leaf content listed in Section 3.1.5 (mi, etc.) or Section 4.2.2 (ci, etc.) unless
otherwise restricted by an attribute (e.g. base=2 to <cn>). In order for a visually-oriented renderer to render the character, the renderer must be told what font to use
and what index within that font to use.

3.2.9.2 Attributes

Name values default
alt string required
fontfamily string | css-fontfamily required
index integer required

The alt attribute provides an alternate name for the glyph. If the specified font can’t be found, the renderer may use this name in a warning message or some
unknown glyph notation. The name might also be used by an audio renderer or symbol processing system and should be chosen to be descriptive. The fontfamily
and index uniquely identify the mglyph; two mglyphs with the same values for fontfamily and index should be considered identical by applications that must
determine whether two characters/glyphs are identical. The alt attribute should not be part of the identity test.

The fontfamily and index attributes name a font and position within that font. All font properties apart from fontfamily are inherited. Variants of the font (e.g.,
bold) that may be inherited may be ignored if the variant of the font is not present.

Authors should be aware that rendering requires the fonts referenced by mglyph, which the MathML renderer may not have access to or may be not be supported by
the system on which the renderer runs. For these reasons, authors are encouraged to use mglyph only when absolutely necessary, and not for stylistic purposes.

3.2.9.3 Example

The following example illustrates how a researcher might use the mglyph construct with an experimental font to work with braid group notation.

<mrow>
<mi><mglyph fontfamily="my-braid-font" index="2" alt="23braid"/></mi>
<mo>+</mo>
<mi><mglyph fontfamily="my-braid-font" index="5" alt="132braid"/></mi>
<mo>=</mo>
<mi><mglyph fontfamily="my-braid-font" index="3" alt="13braid"/></mi>

</mrow>

This might render as:

54

55

3.3 General Layout Schemata

Besides tokens there are several families of MathML presentation elements. One family of elements deals with various ‘scripting’ notations, such as subscript and
superscript. Another family is concerned with matrices and tables. The remainder of the elements, discussed in this section, describe other basic notations such as
fractions and radicals, or deal with general functions such as setting style properties and error handling.

3.3.1 Horizontally Group Sub-Expressions (mrow)

3.3.1.1 Description

An mrow element is used to group together any number of sub-expressions, usually consisting of one or more mo elements acting as ‘operators’ on one or more other
expressions that are their ‘operands’.

Several elements automatically treat their arguments as if they were contained in an mrow element. See the discussion of inferred mrows in Section 3.1.3. See also
mfenced (Section 3.3.8), which can effectively form an mrow containing its arguments separated by commas.

3.3.1.2 Attributes

None (except the attributes allowed for all MathML elements, listed in Section 2.3.5).

mrow elements are typically rendered visually as a horizontal row of their arguments, left to right in the order in which the arguments occur, or audibly as a sequence
of renderings of the arguments. The description in Section 3.2.4 of suggested rendering rules for mo elements assumes that all horizontal spacing between operators
and their operands is added by the rendering of mo elements (or, more generally, embellished operators), not by the rendering of the mrows they are contained in.

MathML is designed to allow renderers to automatically linebreak expressions (that is, to break excessively long expressions into several lines), without requiring
authors to specify explicitly how this should be done. This is because linebreaking positions can’t be chosen well without knowing the width of the display device and
the current font size, which for many uses of MathML will not be known except by the renderer at the time of each rendering.

Determining good positions for linebreaks is complex, and rules for this are not described here; whether and how it is done is up to each MathML renderer. Typically,
linebreaking will involve selection of ‘good’ points for insertion of linebreaks between successive arguments of mrow elements.

Although MathML does not require linebreaking or specify a particular linebreaking algorithm, it has several features designed to allow such algorithms to pro-
duce good results. These include the use of special entities for certain operators, including invisible operators (see Section 3.2.4), or for providing hints related to
linebreaking when necessary (see Section 3.2.5), and the ability to use nested mrows to describe sub-expression structure (see below).

mrow of one argument

MathML renderers are required to treat an mrow element containing exactly one argument as equivalent in all ways to the single argument occurring alone, provided
there are no attributes on the mrow element’s begin tag. If there are attributes on the mrow element’s begin tag, no requirement of equivalence is imposed. This
equivalence condition is intended to simplify the implementation of MathML-generating software such as template-based authoring tools. It directly affects the
definitions of embellished operator and space-like element and the rules for determining the default value of the form attribute of an mo element; see sections
Section 3.2.4 and Section 3.2.6. See also the discussion of equivalence of MathML expressions in Chapter 7.

3.3.1.3 Proper grouping of sub-expressions using mrow

Sub-Expressions should be grouped by the document author in the same way as they are grouped in the mathematical interpretation of the expression; that is,
according to the underlying ‘syntax tree’ of the expression. Specifically, operators and their mathematical arguments should occur in a single mrow; more than one
operator should occur directly in one mrow only when they can be considered (in a syntactic sense) to act together on the interleaved arguments, e.g. for a single
parenthesized term and its parentheses, for chains of relational operators, or for sequences of terms separated by + and -. A precise rule is given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it allows for more intelligent linebreaking and indentation; and it simplifies
possible semantic interpretation of presentation elements by computer algebra systems, and audio renderers.

55

56

Although improper grouping will sometimes result in suboptimal renderings, and will often make interpretation other than pure visual rendering difficult or impossible,
any grouping of expressions using mrow is allowed in MathML syntax; that is, renderers should not assume the rules for proper grouping will be followed.

Precise rule for proper grouping

A precise rule for when and how to nest sub-expressions using mrow is especially desirable when generating MathML automatically by conversion from other formats
for displayed mathematics, such as TEX, which don’t always specify how sub-expressions nest. When a precise rule for grouping is desired, the following rule should
be used:

Two adjacent operators (i.e. mo elements, possibly embellished), possibly separated by operands (i.e. anything other than operators), should occur in the same mrow
only when the left operator has an infix or prefix form (perhaps inferred), the right operator has an infix or postfix form, and the operators are listed in the same group
of entries in the operator dictionary provided in Appendix D. In all other cases, nested mrows should be used.

When forming a nested mrow (during generation of MathML) that includes just one of two successive operators with the forms mentioned above (which mean that
either operator could in principle act on the intervening operand or operands), it is necessary to decide which operator acts on those operands directly (or would do
so, if they were present). Ideally, this should be determined from the original expression; for example, in conversion from an operator-precedence-based format, it
would be the operator with the higher precedence. If this cannot be determined directly from the original expression, the operator that occurs later in the suggested
operator dictionary (Appendix D) can be assumed to have a higher precedence for this purpose.

Note that the above rule has no effect on whether any MathML expression is valid, only on the recommended way of generating MathML from other formats for
displayed mathematics or directly from written notation.

(Some of the terminology used in stating the above rule in defined in Section 3.2.4.)

3.3.1.4 Examples

As an example, 2x+y-z should be written as:

<mrow>
<mrow>
<mn> 2 </mn>
<mo> ⁢ </mo>
<mi> x </mi>

</mrow>
<mo> + </mo>
<mi> y </mi>
<mo> - </mo>
<mi> z </mi>

</mrow>

The proper encoding of (x, y) furnishes a less obvious example of nesting mrows:

<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>

In this case, a nested mrow is required inside the parentheses, since parentheses and commas, thought of as fence and separator ‘operators’, do not act together on
their arguments.

56

57

3.3.2 Fractions (mfrac)

3.3.2.1 Description

The mfrac element is used for fractions. It can also be used to mark up fraction-like objects such as binomial coefficients and Legendre symbols. The syntax for
mfrac is

<mfrac> numerator denominator </mfrac>

3.3.2.2 Attributes of mfrac

Name values default
linethickness number [v-unit] | thin | medium | thick 1 (rule thickness)
numalign left | center | right center
denomalign left | center | right center
bevelled true | false false

The linethickness attribute indicates the thickness of the horizontal ‘fraction bar’, or ‘rule’, typically used to render fractions. A fraction with linethickness="0"
renders without the bar, and might be used within binomial coefficients. A linethickness greater than one might be used with nested fractions. These cases are
shown below:(a

b

)
a
b

c
d

In general, the value of linethickness can be a number, as a multiplier of the default thickness of the fraction bar (the default thickness is not specified by MathML),
or a number with a unit of vertical length (see Section 2.3.4.2), or one of the keywords medium (same as 1), thin (thinner than 1, otherwise up to the renderer), or
thick (thicker than 1, otherwise up to the renderer).

The numalign and denomalign attributes control the horizontal alignment of the numerator and denominator respectively. Typically, numerators and denominators
are centered, but a very long numerator or denominator might be displayed on several lines and a left alignment might be more appropriate for displaying them.

The bevelled attribute determines whether the fraction is displayed with the numerator above the denominator separated by a horizontal line or whether a diagonal
line is used to separate a slightly raised numerator from a slightly lowered denominator. The later form corresponds to the attribute value being true and provides
for a more compact form for simple numerator and denominators. An example illustrating the bevelled form is show below:

1
x3 + x

3
= 1

/
x3 + x

3

The mfrac element sets displaystyle to false, or if it was already false increments scriptlevel by 1, within numerator and denominator. These attributes are
inherited by every element from its rendering environment, but can be set explicitly only on the mstyle element. (See Section 3.3.4.)

3.3.2.3 Examples

The examples shown above can be represented in MathML as:

57

58

<mrow>
<mo> (</mo>
<mfrac linethickness="0">

<mi> a </mi>
<mi> b </mi>

</mfrac>
<mo>) </mo>

</mrow>
<mfrac linethickness="2">

<mfrac>
<mi> a </mi>
<mi> b </mi>

</mfrac>
<mfrac>

<mi> c </mi>
<mi> d </mi>

</mfrac>
</mfrac>

<mfrac>
<mn> 1 </mn>
<mrow>

<msup>
<mi> x </mi>
<mn> 3 </mn>

</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>

</mfrac>
</mrow>

</mfrac>
<mo> = </mo>
<mfrac bevelled="true">

<mn> 1 </mn>
<mrow>

<msup>
<mi> x </mi>
<mn> 3 </mn>

</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>

</mfrac>
</mrow>

</mfrac>

58

59

A more generic example is:

<mfrac>
<mrow>

<mn> 1 </mn>
<mo> + </mo>
<msqrt>

<mn> 5 </mn>
</msqrt>

</mrow>
<mn> 2 </mn>

</mfrac>

3.3.3 Radicals (msqrt, mroot)

3.3.3.1 Description

These elements construct radicals. The msqrt element is used for square roots, while the mroot element is used to draw radicals with indices, e.g. a cube root. The
syntax for these elements is:

<msqrt> base </msqrt>
<mroot> base index </mroot>

The mroot element requires exactly 2 arguments. However, msqrt accepts any number of arguments; if this number is not 1, its contents are treated as a single
‘inferred mrow’ containing its arguments, as described in Section 3.1.3.

3.3.3.2 Attributes

None (except the attributes allowed for all MathML elements, listed in Section 2.3.5).

The mroot element increments scriptlevel by 2, and sets displaystyle to false, within index, but leaves both attributes unchanged within base. The msqrt
element leaves both attributes unchanged within all its arguments. These attributes are inherited by every element from its rendering environment, but can be set
explicitly only on mstyle. (See Section 3.3.4.)

3.3.4 Style Change (mstyle)

3.3.4.1 Description

The mstyle element is used to make style changes that affect the rendering of its contents. mstyle can be given any attribute accepted by any MathML presentation
element provided that the attribute value is inherited, computed or has a default value; presentation element attributes whose values are required are not accepted
by the mstyle element. In addition mstyle can also be given certain special attributes listed below.

The mstyle element accepts any number of arguments. If this number is not 1, its contents are treated as a single ‘inferred mrow’ formed from all its arguments, as
described in Section 3.1.3.

Loosely speaking, the effect of the mstyle element is to change the default value of an attribute for the elements it contains. Style changes work in one of several
ways, depending on the way in which default values are specified for an attribute. The cases are:

• Some attributes, such as displaystyle or scriptlevel (explained below), are inherited from the surrounding context when they are not explicitly set.
Specifying such an attribute on an mstyle element sets the value that will be inherited by its child elements. Unless a child element overrides this inherited
value, it will pass it on to its children, and they will pass it to their children, and so on. But if a child element does override it, either by an explicit attribute
setting or automatically (as is common for scriptlevel), the new (overriding) value will be passed on to that element’s children, and then to their children,
etc, until it is again overridden.

59

60

• Other attributes, such as linethickness on mfrac, have default values that are not normally inherited. That is, if the linethickness attribute is not set
on the begin tag of an mfrac element, it will normally use the default value of 1, even if it was contained in a larger mfrac element that set this attribute to
a different value. For attributes like this, specifying a value with an mstyle element has the effect of changing the default value for all elements within its
scope. The net effect is that setting the attribute value with mstyle propagates the change to all the elements it contains directly or indirectly, except for
the individual elements on which the value is overridden. Unlike in the case of inherited attributes, elements that explicitly override this attribute have no
effect on this attribute’s value in their children.

• Another group of attributes, such as stretchy and form, are computed from operator dictionary information, position in the enclosing mrow, and other
similar data. For these attributes, a value specified by an enclosing mstyle overrides the value that would normally be computed.

Note that attribute values inherited from an mstyle in any manner affect a given element in the mstyle’s content only if that attribute is not given a value in that
element’s begin tag. On any element for which the attribute is set explicitly, the value specified on the begin tag overrides the inherited value. The only exception to
this rule is when the value given on the begin tag is documented as specifying an incremental change to the value inherited from that element’s context or rendering
environment.

Note also that the difference between inherited and non-inherited attributes set by mstyle, explained above, only matters when the attribute is set on some element
within the mstyle’s contents that has children also setting it. Thus it never matters for attributes, such as color, which can only be set on token elements (or on
mstyle itself).

There is one exceptional element, mpadded, whose attributes cannot be set with mstyle. When the attributes width, height and depth are specified on an mstyle
element, they apply only to the mspace element. Similarly, when lspace is set with mstyle, it applies only to the mo element.

3.3.4.2 Attributes

As stated above, mstyle accepts all attributes of all MathML presentation elements which do not have required values. That is, all attributes which have an explicit
default value or a default value which is inherited or computed are accepted by the mstyle element. Additionally, mstyle can be given the following special attributes
that are implicitly inherited by every MathML element as part of its rendering environment:

Name values default
scriptlevel [’+’ | ’-’] unsigned-integer inherited
displaystyle true | false inherited
scriptsizemultiplier number 0.71
scriptminsize number v-unit 8pt
color #rgb | #rrggbb | html-color-name inherited
background #rgb | #rrggbb | transparent | html-color-name transparent
veryverythinmathspace number h-unit 0.0555556em
verythinmathspace number h-unit 0.111111em
thinmathspace number h-unit 0.166667em
mediummathspace number h-unit 0.222222em
thickmathspace number h-unit 0.277778em
verythickmathspace number h-unit 0.333333em
veryverythickmathspace number h-unit 0.388889em

scriptlevel and displaystyle

MathML uses two attributes, displaystyle and scriptlevel, to control orthogonal presentation features that TEX encodes into one style attribute with values
\displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle. The corresponding values of displaystyle and scriptlevel for those TEX styles would be true and 0,
false and 0, false and 1, and false and 2, respectively.

60

61

The main effect of the displaystyle attribute is that it determines the effect of other attributes such as the largeop and movablescripts attributes of mo.
The main effect of the scriptlevel attribute is to control the font size. Typically, the higher the scriptlevel, the smaller the font size. (Non-visual renderers
can respond to the font size in an analogous way for their medium.) More sophisticated renderers may also choose to use these attributes in other ways, such as
rendering expressions with displaystyle=false in a more vertically compressed manner.

These attributes are given initial values for the outermost expression of an instance of MathML based on its rendering environment. A short list of layout schemata
described below modify these values for some of their sub-expressions. Otherwise, values are determined by inheritance whenever they are not directly specified on
a given element’s start tag.

For an instance of MathML embedded in a textual data format (such as HTML) in ‘display’ mode, i.e. in place of a paragraph, displaystyle = true and
scriptlevel = 0 for the outermost expression of the embedded MathML; if the MathML is embedded in ‘inline’ mode, i.e. in place of a character, displaystyle
= false and scriptlevel = 0 for the outermost expression. See Chapter 7 for further discussion of the distinction between ‘display’ and ‘inline’ embedding of
MathML and how this can be specified in particular instances. In general, a MathML renderer may determine these initial values in whatever manner is appropriate
for the location and context of the specific instance of MathML it is rendering, or if it has no way to determine this, based on the way it is most likely to be used; as a
last resort it is suggested that it use the most generic values displaystyle = "true" and scriptlevel = "0".

The MathML layout schemata that typically display some of their arguments in smaller type or with less vertical spacing, namely the elements for scripts, fractions,
radicals, and tables or matrices, set displaystyle to false, and in some cases increase scriptlevel, for those arguments. The new values are inherited by all
sub-expressions within those arguments, unless they are overridden.

The specific rules by which each element modifies displaystyle and/or scriptlevel are given in the specification for each element that does so; the complete list
of elements that modify either attribute are: the ‘scripting’ elements msub, msup, msubsup, munder, mover, munderover, and mmultiscripts; and the elements
mfrac, mroot, and mtable.

When mstyle is given a scriptlevel attribute with no sign, it sets the value of scriptlevel within its contents to the value given, which must be a nonnegative
integer. When the attribute value consists of a sign followed by an integer, the value of scriptlevel is incremented (for ’+’) or decremented (for ’-’) by the amount
given. The incremental syntax for this attribute is an exception to the general rules for setting inherited attributes using mstyle, and is not allowed by any other
attribute on mstyle.

Whenever the scriptlevel is changed, either automatically or by being explicitly incremented, decremented, or set, the current font size is multiplied by the
value of scriptsizemultiplier to the power of the change in scriptlevel. For example, if scriptlevel is increased by 2, the font size is multiplied by
scriptsizemultiplier twice in succession; if scriptlevel is explicitly set to 2 when it had been 3, the font size is divided by scriptsizemultiplier.

The default value of scriptsizemultiplier is less than one (in fact, it is approximately the square root of 1/2), resulting in a smaller font size with increasing
scriptlevel. To prevent scripts from becoming unreadably small, the font size is never allowed to go below the value of scriptminsize as a result of a change to
scriptlevel, though it can be set to a lower value using the fontsize attribute (Section 3.2.1) on mstyle or on token elements. If a change to scriptlevel would
cause the font size to become lower than scriptminsize using the above formula, the font size is instead set equal to scriptminsize within the sub-expression
for which scriptlevel was changed.

In the syntax for scriptminsize, v-unit represents a unit of vertical length (as described in Section 2.3.4.2). The most common unit for specifying font sizes in
typesetting is pt (points).

Explicit changes to the fontsize attribute have no effect on the value of scriptlevel.

Further details on scriptlevel for renderers

For MathML renderers that support CSS1 style sheets, or some other analogous style sheet mechanism, absolute or relative changes to fontsize (or other
attributes) may occur implicitly on any element in response to a style sheet. Changes to fontsize of this kind also have no effect on scriptlevel. A style sheet-
induced change to fontsize overrides scriptminsize in the same way as for an explicit change to fontsize in the element’s begin tag (discussed above),
whether it is specified in the style sheet as an absolute or a relative change. (However, any subsequent scriptlevel-induced change to fontsize will still be
affected by it.) As is required for inherited attributes in CSS1, the style sheet-modified fontsize is inherited by child elements.

61

62

If the same element is subject to both a style sheet-induced and an automatic (scriptlevel-related) change to its own fontsize, the scriptlevel-related
change is done first - in fact, in the simplest implementation of the element-specific rules for scriptlevel, this change would be done by the element’s parent as
part of producing the rendering properties it passes to the given element, since it is the parent element that knows whether scriptlevel should be changed for
each of its child elements.

If the element’s own fontsize is changed by a style sheet and it also changes scriptlevel (and thus fontsize) for one of its children, the style sheet-induced
change is done first, followed by the change inherited by that child. If more than one child’s scriptlevel is changed, the change inherited by each child has no
effect on the other children. (As a mnemonic rule that applies to a ‘parse tree’ of elements and their children, style sheet-induced changes to fontsize can be
associated to nodes of the tree, i.e. to MathML elements, and scriptlevel-related changes can be associated to the edges between parent and child elements;
then the order of the associated changes corresponds to the order of nodes and edges in each path down the tree.) For general information on the relative order of
processing of properties set by style sheets versus by attributes, see the appropriate subsection of CSS-compatible attributes in Section 2.3.4.3.

If scriptlevel is changed incrementally by an mstyle element that also sets certain other attributes, the overall effect of the changes may depend on the order in
which they are processed. In such cases, the attributes in the following list should be processed in the following order, regardless of the order in which they occur in
the XML-format attribute list of the mstyle begin tag: scriptsizemultiplier, scriptminsize, scriptlevel, fontsize.

Note that scriptlevel can, in principle, attain any integral value by being decremented sufficiently, even though it can only be explicitly set to nonnegative values.
Negative values of scriptlevel generated in this way are legal and should work as described, generating font sizes larger than those of the surrounding expression.
Since scriptlevel is initially 0 and never decreases automatically, it will always be nonnegative unless it is decremented past 0 using mstyle.

Explicit decrements of scriptlevel after the font size has been limited by scriptminsize as described above would produce undesirable results. This might
occur, for example, in a representation of a continued fraction, in which the scriptlevel was decremented for part of the denominator back to its value for the fraction as
a whole, if the continued fraction itself was located in a place that had a high scriptlevel. To prevent this problem, MathML renderers should, when decrementing
scriptlevel, use as the initial font size the value the font size would have had if it had never been limited by scriptminsize. They should not, however, ignore
the effects of explicit settings of fontsize, even to values below scriptminsize.

Since MathML renderers may be unable to make use of arbitrary font sizes with good results, they may wish to modify the mapping from scriptlevel to fontsize to
produce better renderings in their judgment. In particular, if fontsizes have to be rounded to available values, or limited to values within a range, the details of how this
is done are up to the renderer. Renderers should, however, ensure that a series of incremental changes to scriptlevel resulting in its return to the same value for
some sub-expression that it had in a surrounding expression results in the same fontsize for that sub-expression as for the surrounding expression.

Color and background attributes

The color attribute controls the color in which the content of tokens is rendered. Additionally, when inherited from mstyle or from a MathML expression’s rendering
environment, it controls the color of all other drawing by MathML elements, including the lines or radical signs that can be drawn by mfrac, mtable, or msqrt.

Note that the background attribute, though not inherited, has the default value ‘transparent’ (as in CSS1), which effectively allows an element’s parent to control its
background.

The values of color and background can be specified as a string consisting of ’#’ followed without intervening whitespace by either 1-digit or 2-digit hexadecimal
values for the red, green, and blue components, respectively, of the desired color, with the same number of digits used for each component (or as the keyword
‘transparent’ for background). The hexadecimal digits are not case-sensitive. The possible 1-digit values range from 0 (component not present) to F (component
fully present), and the possible 2-digit values range from 00 (component not present) to FF (component fully present), with the 1-digit value x being equivalent to the
2-digit value xx (rather than x0). % x0 would be a more strictly correct notation, but renders terribly in some browsers.

These attributes can also be specified as an html-color-name, which is defined in the following subsection.

CSS compatibility of color attributes

The color syntax described above is a subset of the syntax of the color and background-color properties of CSS1. (The background-color syntax is in turn a
subset of the full CSS1 background property syntax, which also permits specification of (for example) background images with optional repeats. The more general
attribute name background is used in MathML to facilitate possible extensions to the attribute’s scope in future versions of MathML.)

62

63

Color values on either attribute can also be specified as an html-color-name, that is, as one of the color-name keywords defined in [HTML4.0]. The list of allowed
color names includes most of the commonest English color words, though not orange, brown, or pink, and also includes a number of less-common color words;
see the reference for the complete list and the equivalent RGB values. Note that the color name keywords are not case-sensitive, unlike most keywords in MathML
attribute values. (The same color name keywords are defined for the CSS1 color property, but with unspecified RGB values. See also Section 2.3.4.3.)

Precise background region not specified

The suggested MathML visual rendering rules do not define the precise extent of the region whose background is affected by using the background attribute on
mstyle, except that, when mstyle’s content does not have negative dimensions and its drawing region is not overlapped by other drawing due to surrounding
negative spacing, this region should lie behind all the drawing done to render the content of the mstyle, but should not lie behind any of the drawing done to render
surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on the extent of the region affected by the background attribute is not
defined by these rules.

Meaning of named mathspaces

The spacing between operators is often one of a small number of potential values. MathML names these values and allows their values to be changed. Because the
default values for spacing around operators that are given in the operator dictionary Appendix D are defined using these named spaces, changing their values will
produce tighter or looser spacing. These values can be used anywhere a h-unit or v-unit unit is allowed Section 2.3.4.2.

The predefined namedspaces are: veryverythinmathspace, verythinmathspace, thinmathspace, mediummathspace, thickmathspace, verythick-
mathspace, or veryverythickmathspace. The default values of veryverythinmathspace... veryverythickmathspace are 1/18em...7/18em, respectively.

3.3.4.3 Examples

The example of limiting the stretchiness of a parenthesis shown in the section on <mo>,

<mrow>
<mo maxsize="1"> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo maxsize="1">) </mo>

</mrow>

can be rewritten using mstyle as:

<mstyle maxsize="1">
<mrow>

<mo> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo>) </mo>

</mrow>
</mstyle>

3.3.5 Error Message (merror)

3.3.5.1 Description

The merror element displays its contents as an ‘error message’. This might be done, for example, by displaying the contents in red, flashing the contents, or changing
the background color. The contents can be any expression or expression sequence.

merror accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferred mrow’ as described in Section 3.1.3.

63

64

The intent of this element is to provide a standard way for programs that generate MathML from other input to report syntax errors in their input. Since it is anticipated
that preprocessors that parse input syntaxes designed for easy hand entry will be developed to generate MathML, it is important that they have the ability to indicate
that a syntax error occurred at a certain point. See Section 7.2.2.

The suggested use of merror for reporting syntax errors is for a preprocessor to replace the erroneous part of its input with an merror element containing a
description of the error, while processing the surrounding expressions normally as far as possible. By this means, the error message will be rendered where the
erroneous input would have appeared, had it been correct; this makes it easier for an author to determine from the rendered output what portion of the input was in
error.

No specific error message format is suggested here, but as with error messages from any program, the format should be designed to make as clear as possible (to a
human viewer of the rendered error message) what was wrong with the input and how it can be fixed. If the erroneous input contains correctly formatted subsections,
it may be useful for these to be preprocessed normally and included in the error message (within the contents of the merror element), taking advantage of the ability
of merror to contain arbitrary MathML expressions rather than only text.

3.3.5.2 Attributes

None (except the attributes allowed for all MathML elements, listed in Section 2.3.5).

3.3.5.3 Example

If a MathML syntax-checking preprocessor received the input

<mfraction>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mn> 2 </mn>

</mfraction>

which contains the non-MathML element mfraction (presumably in place of the MathML element mfrac), it might generate the error message

<merror>
<mtext> Unrecognized element: mfraction;

arguments were: </mtext>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mtext> and </mtext>
<mn> 2 </mn>

</merror>

Note that the preprocessor’s input is not, in this case, valid MathML, but the error message it outputs is valid MathML.

3.3.6 Adjust Space Around Content (mpadded)

3.3.6.1 Description

An mpadded element renders the same as its content, but with its overall size and other dimensions (such as baseline position) modified according to its attributes.
The mpadded element does not rescale (stretch or shrink) its content; its only effect is to modify the apparent size and position of the ‘bounding box’ around its content,
so as to affect the relative position of the content with respect to the surrounding elements. The name of the element reflects the use of mpadded to effectively add
‘padding’, or extra space, around its content. If the ‘padding’ is negative, it is possible for the content of mpadded to be rendered outside the mpadded element’s
bounding box; see below for warnings about several potential pitfalls of this effect.

The mpadded element accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferred mrow’ as described in Section 3.1.3.

It is suggested that audio renderers add (or shorten) time delays based on the attributes representing horizontal space (width and lspace).

64

65

3.3.6.2 Attributes

Name values default
width [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | h-unit | namedspace) same as content
lspace [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | h-unit) 0
height [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | v-unit) same as content
depth [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | v-unit) same as content

(The pseudo-unit syntax symbol is described below.)

These attributes modify the dimensions of the ‘bounding box’ of the mpadded element. The dimensions (which have the same names as the attributes) are defined
in the next subsection. Depending on the format of the attribute value, a dimension may be set to a new value, or to an incremented or decremented version of the
content’s corresponding dimension. Values may be specified as multiples or percentages of any of the dimensions of the normal rendering of the element’s content
(using so-called ‘pseudo-units’), or they can be set directly using standard units Section 2.3.4.2.

If an attribute value begins with a + or - sign, it specifies an increment or decrement of the corresponding dimension by the following length value (interpreted as
explained below). Otherwise, the corresponding dimension is set directly to the following length value. Note that the + and - do not mean that the following value is
positive or negative, even when an explicit length unit (h-unit or v-unit) is given. In particular, these attributes cannot directly set a dimension to a negative value.

Length values (after the optional sign, which is not part of the length value) can be specified in several formats. Each format begins with an unsigned-number, which
may be followed by a % sign and an optional ‘pseudo-unit’ (denoted by pseudo-unit in the attribute syntaxes above), by a pseudo-unit alone, or by one of the length
units (denoted by h-unit or v-unit) specified in Section 2.3.4.2, not including %. The possible pseudo-units are the keywords width, lspace, height, and depth;
they each represent the length of the same-named dimension of the mpadded element’s content (not of the mpadded element itself). The lengths represented by
h-unit or v-unit are described in Section 2.3.4.2.

In any of these formats, the length value specified is the product of the specified number the length represented by the unit or pseudo-unit, and multiplied by 0.01 if %
is given. If no pseudo-unit is given after %, the one with the same name as the attribute being specified is assumed.

Some examples of attribute formats using pseudo-units (explicit or default) are as follows: depth="100% height" and depth="1.0 height" both set the depth
of the mpadded element to the height of its content. depth="105%" sets the depth to 1.05 times the content’s depth, and either depth="+100%" or depth="200%"
sets the depth to twice the content’s depth.

Dimensions that would be positive if the content was rendered normally cannot be made negative using mpadded; a positive dimension is set to 0 if it would otherwise
become negative. Dimensions that are initially 0 can be made negative, but this should generally be avoided. See the warnings below on the use of negative spacing
for ‘tweaking’ or conveying meaning.

The rules given above imply that all of the following attribute settings have the same effect, which is to leave the content’s dimensions unchanged:

<mpadded width="+0em"> ... </mpadded>
<mpadded width="+0%"> ... </mpadded>
<mpadded width="-0em"> ... </mpadded>
<mpadded width="- 0 height"> ... </mpadded>
<mpadded width="100%"> ... </mpadded>
<mpadded width="100% width"> ... </mpadded>
<mpadded width="1 width"> ... </mpadded>
<mpadded width="1.0 width"> ... </mpadded>
<mpadded> ... </mpadded>

3.3.6.3 Meanings of dimension attributes

See Appendix F for further information about some of the typesetting terms used here.

65

66

The width attribute refers to the overall horizontal width of a bounding box. By default (i.e. when lspace is not modified), the bounding box of the content of an
mpadded element should be rendered flush with the left edge of the mpadded element’s bounding box. Thus, increasing width alone effectively adds space on the
right edge of the box.

The lspace attribute refers to the amount of space between the left edge of a bounding box and where the rendering of its contents’ bounding box actually begins.
Unlike the other dimensions, lspace does not correspond to a real property of a bounding box, but exists only transiently during the computations done by each
instance of mpadded. It is provided so that there is a way to add space on the left edge of a bounding box.

The rationale behind using width and lspace to control horizontal padding instead of more symmetric attributes, such as a hypothetical rspace and lspace, is
that it is desirable to have a ‘width’ pseudo unit, in part because ‘width’ is an actual property of a bounding box.

The height attribute refers to the amount of vertical space between the baseline (the line along the bottom of most letter glyphs in normal text rendering) and the
top of the bounding box.

The depth attribute refers to the amount of vertical space between the bottom of the bounding box and the baseline.

MathML renderers should ensure that, except for the effects of the attributes, relative spacing between the contents of mpadded and surrounding MathML elements
is not modified by replacing an mpadded element with an mrow element with the same content. This holds even if linebreaking occurs within the mpadded element.
However, if an mpadded element with non-default attribute values is subjected to linebreaking, MathML does not define how its attributes or rendering interact with
the linebreaking algorithm.

3.3.6.4 Warning: nonportability of ‘tweaking’

A likely temptation for the use of the mpadded and mspace elements (and perhaps also mphantom and mtext) will be for an author to improve the spacing generated
by a specific renderer by slightly modifying it in specific expressions, i.e. to ‘tweak’ the rendering.

Authors are strongly warned that different MathML renderers may use different spacing rules for computing the relative positions of rendered symbols in expressions
that have no explicit modifications to their spacing; if renderer B improves upon renderer A’s spacing rules, explicit spacing added to improve the output quality of
renderer A may produce very poor results in renderer B, very likely worse than without any ‘tweaking’ at all.

Even when a specific choice of renderer can be assumed, its spacing rules may be improved in successive versions, so that the effect of tweaking in a given MathML
document may grow worse with time. Also, when style sheet mechanisms are extended to MathML, even one version of a renderer may use different spacing rules
for users with different style sheets.

Therefore, it is suggested that MathML markup never use mpadded or mspace elements to tweak the rendering of specific expressions, unless the MathML is
generated solely to be viewed using one specific version of one MathML renderer, using one specific style sheet (if style sheets are available in that renderer).

In cases where the temptation to improve spacing proves too strong, careful use of mpadded, mphantom, or the alignment elements (Section 3.5.5) may give more
portable results than the direct insertion of extra space using mspace or mtext. Advice given to the implementors of MathML renderers might be still more productive,
in the long run.

3.3.6.5 Warning: spacing should not be used to convey meaning

MathML elements that permit ‘negative spacing’, namely mspace, mpadded, and mtext, could in theory be used to simulate new notations or ‘overstruck’ characters
by the visual overlap of the renderings of more than one MathML sub-expression.

This practice is strongly discouraged in all situations, for the following reasons:

• it will give different results in different MathML renderers (so the warning about ‘tweaking’ applies);
• it is likely to appear much worse than a more standard construct supported by good renderers;
• such expressions are almost certain to be uninterpretable by audio renderers, computer algebra systems, text searches for standard symbols, or other

processors of MathML input.

66

67

More generally, any construct that uses spacing to convey mathematical meaning, rather than simply as an aid to viewing expression structure, is discouraged. That
is, the constructs that are discouraged are those that would be interpreted differently by a human viewer of rendered MathML if all explicit spacing was removed.

If such constructs are used in spite of this warning, they should be enclosed in a semantics element that also provides an additional MathML expression that can
be interpreted in a standard way.

For example, the MathML expression

<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>

forms an overstruck symbol in violation of the policy stated above; it might be intended to represent the set of complex numbers for a MathML renderer that lacks
support for the standard symbol used for this purpose. This kind of construct should always be avoided in MathML, for the reasons stated above; indeed, it should
never be necessary for standard symbols, since a MathML renderer with no better method of rendering them is free to use overstriking internally, so that it can still
support general MathML input.

However, if for whatever reason such a construct is used in MathML, it should always be enclosed in a semantics element such as

<semantics>
<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>
<annotation-xml encoding="MathML-Presentation">
<mi> ℂ </mi>

</annotation-xml>
</semantics>

which provides an alternative, standard encoding for the desired symbol, which is much more easily interpreted than the construct using negative spacing. (The
alternative encoding in this example uses MathML presentation elements; the content elements described in Chapter 4 should also be considered.)

(The above warning also applies to most uses of rendering attributes to alter the meaning conveyed by an expression, with the exception of attributes on mi (such as
fontweight) used to distinguish one variable from another.)

3.3.7 Making Content Invisible (mphantom)

3.3.7.1 Description

The mphantom element renders invisibly, but with the same size and other dimensions, including baseline position, that its contents would have if they were rendered
normally. mphantom can be used to align parts of an expression by invisibly duplicating sub-expressions.

The mphantom element accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferred mrow’ formed from all its arguments,
as described in Section 3.1.3.

It is suggested that audio renderers render mphantom elements in an analogous way for their medium, by rendering them as silence of the same duration as the
normal rendering of their contents.

3.3.7.2 Attributes

None (except the attributes allowed for all MathML elements, listed in Section 2.3.5).

67

68

Note that it is possible to wrap both an mphantom and an mpadded element around one MathML expression, as in <mphantom><mpadded attribute-settings>
... </mpadded></mphantom>, to change its size and make it invisible at the same time.

MathML renderers should ensure that the relative spacing between the contents of an mphantom element and the surrounding MathML elements is the same as it
would be if the mphantom element were replaced by an mrow element with the same content. This holds even if linebreaking occurs within the mphantom element.

For the above reason, mphantom is not considered space-like (Section 3.2.6) unless its content is space-like, since the suggested rendering rules for operators are
affected by whether nearby elements are space-like. Even so, the warning about the legal grouping of space-like elements may apply to uses of mphantom.

There is one situation where the preceding rule for rendering an mphantom may not give the desired effect. When an mphantom is wrapped around a subsequence of
the arguments of an mrow, the default determination of the form attribute for an mo element within the subsequence can change. (See the default value of the form
attribute described in Section 3.2.4.) It may be necessary to add an explicit form attribute to such an mo in these cases. This is illustrated in the following example.

3.3.7.3 Examples

In this example, mphantom is used to ensure alignment of corresponding parts of the numerator and denominator of a fraction:

<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo form="infix"> + </mo>
<mi> y </mi>

</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

This would render as something like
x+y+z
x +z

rather than as
x+y+z

x+z
The explicit attribute setting form="infix" on the mo element inside the mphantom sets the form attribute to what it would have been in the absence of the surrounding
mphantom. This is necessary since otherwise, the + sign would be interpreted as a prefix operator, which might have slightly different spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by wrapping each of the arguments <mo>+</mo> and <mi>y</mi> in its own
mphantom element, i.e.

68

69

<mfrac>
<mrow>

<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>

<mi> x </mi>
<mphantom>

<mo> + </mo>
</mphantom>
<mphantom>

<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

3.3.8 Content Inside Pair of Fences (mfenced)

3.3.8.1 Description

The mfenced element provides a convenient form in which to express common constructs involving fences (i.e. braces, brackets, and parentheses), possibly including
separators (such as comma) between the arguments.

For example, <mfenced> <mi>x</mi> </mfenced> renders as ‘(x)’and is equivalent to

<mrow> <mo> (</mo> <mi>x</mi> <mo>) </mo> </mrow>

and <mfenced> <mi>x</mi> <mi>y</mi> </mfenced> renders as ‘(x, y)’ and is equivalent to

<mrow>
<mo> (</mo>
<mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
<mo>) </mo>

</mrow>

Individual fences or separators are represented using mo elements, as described in Section 3.2.4. Thus, any mfenced element is completely equivalent to an
expanded form described below; either form can be used in MathML, at the convenience of an author or of a MathML-generating program. A MathML renderer is
required to render either of these forms in exactly the same way.

In general, an mfenced element can contain zero or more arguments, and will enclose them between fences in an mrow; if there is more than one argument, it
will insert separators between adjacent arguments, using an additional nested mrow around the arguments and separators for proper grouping (Section 3.3.1). The
general expanded form is shown below. The fences and separators will be parentheses and comma by default, but can be changed using attributes, as shown in the
following table.

69

70

3.3.8.2 Attributes

Name values default
open string (
close string)
separators character * ,

A generic mfenced element, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"
close="closing-fence"
separators="sep#1 sep#2 ... sep#(n-1)" >

arg#1
...
arg#n

</mfenced>

The opening-fence and closing-fence are arbitrary strings. (Since they are used as the content of mo elements, any whitespace they contain will be trimmed
and collapsed as described in Section 2.3.6.)

The value of separators is a sequence of zero or more separator characters (or entity references), optionally separated by whitespace. Each sep#i consists of
exactly one character or entity reference. Thus, separators=",;" is equivalent to separators=" , ; ".

The general mfenced element shown above is equivalent to the following expanded form:

<mrow>
<mo fence="true"> opening-fence </mo>
<mrow>

arg#1
<mo separator="true"> sep#1 </mo>
...
<mo separator="true"> sep#(n-1) </mo>
arg#n

</mrow>
<mo fence="true"> closing-fence </mo>

</mrow>

Each argument except the last is followed by a separator. The inner mrow is added for proper grouping, as described in Section 3.3.1.

When there is only one argument, the above form has no separators; since <mrow> arg#1 </mrow> is equivalent to arg#1 (as described in Section 3.3.1), this
case is also equivalent to:

<mrow>
<mo fence="true"> opening-fence </mo>
arg#1
<mo fence="true"> closing-fence </mo>

</mrow>

If there are too many separator characters, the extra ones are ignored. If separator characters are given, but there are too few, the last one is repeated as necessary.
Thus, the default value of separators="," is equivalent to separators="„", separators="„,", etcetera. If there are no separator characters provided but some
are needed, for example if separators=" " or "" and there is more than one argument, then no separator elements are inserted at all - that is, the elements <mo
separator="true"> sep#i </mo> are left out entirely. Note that this is different from inserting separators consisting of mo elements with empty content.

Finally, for the case with no arguments, i.e.

70

71

<mfenced open="opening-fence"
close="closing-fence"
separators="anything" >

</mfenced>

the equivalent expanded form is defined to include just the fences within an mrow:

<mrow>
<mo fence="true"> opening-fence </mo>
<mo fence="true"> closing-fence </mo>

</mrow>

Note that not all ‘fenced expressions’ can be encoded by an mfenced element. Such exceptional expressions include those with an ‘embellished’ separator or fence
or one enclosed in an mstyle element, a missing or extra separator or fence, or a separator with multiple content characters. In these cases, it is necessary to encode
the expression using an appropriately modified version of an expanded form. As discussed above, it is always permissible to use the expanded form directly, even
when it is not necessary. In particular, authors cannot be guaranteed that MathML preprocessors won’t replace occurrences of mfenced with equivalent expanded
forms.

Note that the equivalent expanded forms shown above include attributes on the mo elements that identify them as fences or separators. Since the most common
choices of fences and separators already occur in the operator dictionary with those attributes, authors would not normally need to specify those attributes explicitly
when using the expanded form directly. Also, the rules for the default form attribute (Section 3.2.4) cause the opening and closing fences to be effectively given the
values form="prefix" and form="postfix" respectively, and the separators to be given the value form="infix".

Note that it would be incorrect to use mfenced with a separator of, for instance, ‘+’, as an abbreviation for an expression using ‘+’ as an ordinary operator, e.g.

<mrow>
<mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>

</mrow>

This is because the + signs would be treated as separators, not infix operators. That is, it would render as if they were marked up as <mo separator="true">+</
mo>, which might therefore render inappropriately.

3.3.8.3 Examples

(a+b)

<mfenced>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
</mfenced>

Note that the above mrow is necessary so that the mfenced has just one argument. Without it, this would render incorrectly as ‘(a, +, b)’.

[0,1)

<mfenced open="[">
<mn> 0 </mn>
<mn> 1 </mn>

</mfenced>

f (x,y)

71

72

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mfenced>
<mi> x </mi>
<mi> y </mi>

</mfenced>
</mrow>

3.3.9 Enclose Content Inside Notation (menclose)

3.3.9.1 Description

The menclose element renders its content inside the enclosing notation specified by its notation attribute. menclose accepts any number of arguments; if this
number is not 1, its contents are treated as a single ‘inferred mrow’ containing its arguments, as described in Section 3.1.3.

3.3.9.2 Attributes

Name values default
notation longdiv | actuarial | radical longdiv

When notation has the value longdiv, the contents are drawn enclosed by a long division symbol. A complete example of long division is accomplished by also
using mtable and malign. When notation is specified as actuarial, the contents are drawn enclosed by an actuarial symbol. The case of notation=radical
is equivalent to the msqrt schema.

3.3.9.3 Examples

The following markup might be used to encode an elementary US-style long division problem.

72

73

<mtable columnspacing=’0’ rowspacing=’0’>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>10</mn></mtd>

</mtr>
<mtr>
<mtd columnalign=’right’><mn>131</mn></mtd>
<mtd columnalign=’right’>
<menclose notation=’longdiv’><mn>1413</mn></menclose>

</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’>
<mrow>
<munder>
<mn>131</mn>
<mo>_</mo>

</munder>
<mphantom><mn>3</mn></mphantom>
</mrow>

</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>103</mn></mtd>

</mtr>
</mtable>

This might be rendered roughly as:

10
131)1413

131
103

An example of using menclose for actuarial notation is

<msub>
<mi>a</mi>
<mrow>
<menclose notation=’actuarial’>
<mi>n</mi>

</menclose>
<mo>⁢</mo>
<mi>i</mi>

</mrow>
</msub>

73

74

which renders roughly as

a
n | i

3.4 Script and Limit Schemata

The elements described in this section position one or more scripts around a base. Attaching various kinds of scripts and embellishments to symbols is a very
common notational device in mathematics. For purely visual layout, a single general-purpose element could suffice for positioning scripts and embellishments in any
of the traditional script locations around a given base. However, in order to capture the abstract structure of common notation better, MathML provides several more
specialized scripting elements.

In addition to sub/superscript elements, MathML has overscript and underscript elements that place scripts above and below the base. These elements can be used
to place limits on large operators, or for placing accents and lines above or below the base. The rules for rendering accents differ from those for overscripts and
underscripts, and this difference can be controlled with the accent and accentunder attributes, as described in the appropriate sections below.

Rendering of scripts is affected by the scriptlevel and displaystyle attributes, which are part of the environment inherited by the rendering process of every
MathML expression, and are described under mstyle (Section 3.3.4). These attributes cannot be given explicitly on a scripting element, but can be specified on the
start tag of a surrounding mstyle element if desired.

MathML also provides an element for attachment of tensor indices. Tensor indices are distinct from ordinary subscripts and superscripts in that they must align in
vertical columns. Tensor indices can also occur in prescript positions.

Because presentation elements should be used to describe the abstract notational structure of expressions, it is important that the base expression in all ‘scripting’
elements (i.e. the first argument expression) should be the entire expression that is being scripted, not just the rightmost character. For example, (x+y)2 should be
written as:

<msup>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
<mn> 2 </mn>

</msup>

3.4.1 Subscript (msub)

3.4.1.1 Description

The syntax for the msub element is:

<msub> base subscript </msub>

74

75

3.4.1.2 Attributes

Name values default
subscriptshift number v-unit automatic (typical unit is ex)

The subscriptshift attribute specifies the minimum amount to shift the baseline of subscript down.

v-unit represents a unit of vertical length (see Section 2.3.4.2).

The msub element increments scriptlevel by 1, and sets displaystyle to false, within subscript, but leaves both attributes unchanged within base. (These
attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4.)

3.4.2 Superscript (msup)

3.4.2.1 Description

The syntax for the msup element is:

<msub> base superscript </msub>

3.4.2.2 Attributes

Name values default
superscriptshift number v-unit automatic (typical unit is ex)

The superscriptshift attribute specifies the minimum amount to shift the baseline of superscript up.

v-unit represents a unit of vertical length (see Section 2.3.4.2).

The msup element increments scriptlevel by 1, and sets displaystyle to false, within superscript, but leaves both attributes unchanged within base. (These
attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4.)

3.4.3 Subscript-superscript Pair (msubsup)

3.4.3.1 Description

The msubsup element is used to attach both a subscript and superscript to a base expression. Note that both scripts are positioned tight against the base: x1
2 versus

x2
1.

The syntax for the msubsup element is:

<msubsup> base subscript superscript </msubsup>

3.4.3.2 Attributes

Name values default
subscriptshift number v-unit automatic (typical unit is ex)
superscriptshift number v-unit automatic (typical unit is ex)

The subscriptshift attribute specifies the minimum amount to shift the baseline of subscript down. The superscriptshift attribute specifies the minimum
amount to shift the baseline of superscript up.

v-unit represents a unit of vertical length (see Section 2.3.4.2).

The msubsup element increments scriptlevel by 1, and sets displaystyle to false, within subscript and superscript, but leaves both attributes unchanged
within base. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4.)

75

76

3.4.3.3 Examples

The msubsup is most commonly used for adding sub/superscript pairs to identifiers as illustrated above. However, another important use is placing limits on certain
large operators whose limits are traditionally displayed in the script positions even when rendered in display style. The most common of these is the integral. For
example,

1∫
0

ex dx

would be represented as

<mrow>
<msubsup>
<mo> ∫ </mo>
<mn> 0 </mn>
<mn> 1 </mn>

</msubsup>
<mrow>
<msup>
<mi> ⅇ </mi>
<mi> x </mi>

</msup>
<mo> ⁢ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>

</mrow>
</mrow>

</mrow>

3.4.4 Underscript (munder)

3.4.4.1 Description

The syntax for the munder element is:

<munder> base underscript </munder>

3.4.4.2 Attributes

Name values default
accentunder true | false automatic

The accentunder attribute controls whether underscript is drawn as an ‘accent’ or as a limit. The main difference between an accent and a limit is that the limit is
reduced in size whereas an accent is the same size as the base. A second difference is that the accent is drawn closer to the base.

The default value of accentunder is false, unless underscript is an mo element or an embellished operator (see Section 3.2.4). If underscript is an mo element, the
value of its accent attribute is used as the default value of accentunder. If underscript is an embellished operator, the accent attribute of the mo element at its
core is used as the default value. As with all attributes, an explicitly given value overrides the default.

Here is an example (accent versus underscript): x+y+z︸ ︷︷ ︸ versus x+y+z︸ ︷︷ ︸. The MathML representation for this example is shown below.

76

77

If the base is an operator with movablelimits=true (or an embellished operator whose mo element core has movablelimits=true), and displaystyle=false,
then underscript is drawn in a subscript position. In this case, the accentunder attribute is ignored. This is often used for limits on symbols such as ∑.

Within underscript, munder always sets displaystyle to false, but increments scriptlevel by 1 only when accentunder is false. Within base, it always
leaves both attributes unchanged. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see
Section 3.3.4.)

3.4.4.3 Examples

The MathML representation for the example shown above is:

<mrow>
<munder accentunder="true">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
<mtext> versus </mtext>
<munder accentunder="false">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
</mrow>

3.4.5 Overscript (mover)

3.4.5.1 Description

The syntax for the mover element is:

<mover> base overscript </mover>

3.4.5.2 Attributes

Name values default
accent true | false automatic

The accent attribute controls whether overscript is drawn as an ‘accent’ (diacritical mark) or as a limit. The main difference between an accent and a limit is that
the limit is reduced in size whereas an accent is the same size as the base. A second difference is that the accent is drawn closer to the base. This is shown below
(accent versus limit): x̂ versus x̂.

77

78

These differences also apply to ‘mathematical accents’ such as bars over expressions:
︷ ︸︸ ︷
x+y+z versus

︷ ︸︸ ︷
x+y+z. The MathML representation for each of these

examples is shown below.

The default value of accent is false, unless overscript is an mo element or an embellished operator (see Section 3.2.4). If overscript is an mo element, the value of its
accent attribute is used as the default value of accent for mover. If overscript is an embellished operator, the accent attribute of the mo element at its core is used
as the default value.

If the base is an operator with movablelimits=true (or an embellished operator whose mo element core has movablelimits=true), and displaystyle=false,
then overscript is drawn in a superscript position. In this case, the accent attribute is ignored. This is often used for limits on symbols such as ∑.

Within overscript, mover always sets displaystyle to false, but increments scriptlevel by 1 only when accent is false. Within base, it always leaves both
attributes unchanged. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4.)

3.4.5.3 Examples

The MathML representation for the examples shown above is:

<mrow>
<mover accent="true">
<mi> x </mi>
<mo> ^ </mo>

</mover>
<mtext> versus </mtext>
<mover accent="false">
<mi> x </mi>
<mo> ^ </mo>

</mover>
</mrow>

78

79

<mrow>
<mover accent="true">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ‾ </mo>

</mover>
<mtext> versus </mtext>
<mover accent="false">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ‾ </mo>

</mover>
</mrow>

3.4.6 Underscript-overscript Pair (munderover)

3.4.6.1 Description

The syntax for the munderover element is:

<munderover> base underscript overscript </munderover>

3.4.6.2 Attributes

Name values default
accent true | false automatic
accentunder true | false automatic

The munderover element is used so that the underscript and overscript are vertically spaced equally in relation to the base and so that they follow the slant of the
base as in the second expression shown below:

∞∫
0

versus
∞∫

0

The MathML representation for this example is shown below.

79

80

The difference in the vertical spacing is too small to be noticed on a low resolution display at a normal font size, but is noticeable on a higher resolution device such
as a printer and when using large font sizes. In addition to the visual differences, attaching both the underscript and overscript to the same base more accurately
reflects the semantics of the expression.

The accent and accentunder attributes have the same effect as the attributes with the same names on mover (Section 3.4.5) and munder (Section 3.4.4),
respectively. Their default values are also computed in the same manner as described for those elements, with the default value of accent depending on overscript
and the default value of accentunder depending on underscript.

If the base is an operator with movablelimits=true (or an embellished operator whose mo element core has movablelimits=true), and displaystyle=false,
then underscript and overscript are drawn in a subscript and superscript position, respectively. In this case, the accent and accentunder attributes are ignored.
This is often used for limits on symbols such as ∑.

Within underscript, munderover always sets displaystyle to false, but increments scriptlevel by 1 only when accentunder is false. Within overscript,
munderover always sets displaystyle to false, but increments scriptlevel by 1 only when accent is false. Within base, it always leaves both attributes
unchanged. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4).

3.4.6.3 Examples

The MathML representation for the example shown above with the first expression made using separate munder and mover elements, and the second one using an
munderover element, is:

<mrow>
<mover>
<munder>
<mo> ∫ </mo>
<mn> 0 </mn>

</munder>
<mi> ∞ </mi>

</mover>
<mtext> versus </mtext>
<munderover>
<mo> ∫ </mo>
<mn> 0 </mn>
<mi> ∞ </mi>

</munderover>
</mrow>

3.4.7 Prescripts and Tensor Indices (mmultiscripts)

3.4.7.1 Description

The syntax for the mmultiscripts element is:

<mmultiscripts>
base

(subscript superscript)*
[<mprescripts/> (presubscript presuperscript)*]

</mmultiscripts>

Presubscripts and tensor notations are represented by a single element, mmultiscripts. This element allows the representation of any number of vertically-aligned
pairs of subscripts and superscripts, attached to one base expression. It supports both postscripts (to the right of the base in visual notation) and prescripts (to the
left of the base in visual notation). Missing scripts can be represented by the empty element none.

80

81

The prescripts are optional, and when present are given after the postscripts, because prescripts are relatively rare compared to tensor notation.

The argument sequence consists of the base followed by zero or more pairs of vertically-aligned subscripts and superscripts (in that order) that represent all of the
postscripts. This list is optionally followed by an empty element mprescripts and a list of zero or more pairs of vertically-aligned presubscripts and presuperscripts
that represent all of the prescripts. The pair lists for postscripts and prescripts are given in a left-to-right order. If no subscript or superscript should be rendered in a
given position, then the empty element none should be used in that position.

The base, subscripts, superscripts, the optional separator element mprescripts, the presubscripts, and the presuperscripts, are all direct sub-expressions of the
mmultiscripts element, i.e. they are all at the same level of the expression tree. Whether a script argument is a subscript or a superscript, or whether it is a
presubscript or a presuperscript is determined by whether it occurs in an even-numbered or odd-numbered argument position, respectively, ignoring the empty
element mprescripts itself when determining the position. The first argument, the base, is considered to be in position 1. The total number of arguments must be
odd, if mprescripts is not given, or even, if it is.

The empty elements mprescripts and none are only allowed as direct sub-expressions of mmultiscripts.

3.4.7.2 Attributes

Same as the attributes of msubsup.

The mmultiscripts element increments scriptlevel by 1, and sets displaystyle to false, within each of its arguments except base, but leaves both
attributes unchanged within base. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see
Section 3.3.4.)

3.4.7.3 Examples

Two examples of the use of mmultiscripts are:

0F1(;a;z).

<mrow>
<mmultiscripts>
<mi> F </mi>
<mn> 1 </mn>
<none/>
<mprescripts/>
<mn> 0 </mn>
<none/>

</mmultiscripts>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mo> ; </mo>
<mi> a </mi>
<mo> ; </mo>
<mi> z </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

81

82

Ri
j
kl (where k and l are different indices)

<mmultiscripts>
<mi> R </mi>
<mi> i </mi>
<none/>
<none/>
<mi> j </mi>
<mi> k </mi>
<none/>
<mi> l </mi>
<none/>

</mmultiscripts>

3.5 Tables and Matrices

Matrices, arrays and other table-like mathematical notation are marked up using mtable, mtr, mlabeledtr and mtd elements. These elements are similar to the
TABLE, TR and TD elements of HTML, except that they provide specialized attributes for the fine layout control necessary for commutative diagrams, block matrices
and so on.

The mlabeledtr element represents a labeled row of a table and can be used for numbered equations. mlabeledtr first child is the label. A label is somewhat
special in that it is not considered an expression in the matrix and is not counted when determining the number of columns in that row.

3.5.1 Table or Matrix (mtable)

3.5.1.1 Description

A matrix or table is specified using the mtable element. Inside of the mtable element, only mtr or mlabeledtr elements may appear.

In MathML 1.x, the mtable element could infer mtr elements around its arguments, and the mtr element could infer mtd elements. In other words, if some argument
to an mtable was not an mtr element, a MathML application was to assume a row with a single column (i.e. the argument was effectively wrapped with an inferred
mtr). Similarly, if some argument to a (possibly inferred) mtr element was not an mtd element, that argument was to be treated as a table entry by wrapping it with
an inferred mtd element.

In MathML 2.0, mtr and mtd elements are required, and may no longer be inferred. However, for backward compatibility renderers may wish to continue supporting
inferred mtr and mtd elements. In this case, however, renderers should make an effort to notify users that inferred mtr and mtd elements are not valid in MathML
2.0.

Table rows that have fewer columns than other rows of the same table (whether the other rows precede or follow them) are effectively padded on the right with empty
mtd elements so that the number of columns in each row equals the maximum number of columns in any row of the table. Note that the use of mtd elements with
non-default values of the rowspan or columnspan attributes may affect the number of mtd elements that should be given in subsequent mtr elements to cover a
given number of columns. Note also that the label in an mtlabeledtr element is not considered a column in the table.

82

83

3.5.1.2 Attributes

Name values default
align (top | bottom | center | baseline | axis) [rownumber] axis
rowalign (top | bottom | center | baseline | axis) + baseline
columnalign (left | center | right) + center
groupalign group-alignment-list-list left
alignmentscope (true | false) + true
columnwidth (auto | number h-unit | namedspace | fit) + auto
width auto | number h-unit auto
rowspacing (number v-unit) + 1.0ex
columnspacing (number h-unit | namedspace) + 0.8em
rowlines (none | solid | dashed) + none
columnlines (none | solid | dashed) + none
frame none | solid | dashed none
framespacing (number h-unit | namedspace) (number v-unit | namedspace) 0.4em 0.5ex
equalrows true | false true
equalcolumns true | false true
displaystyle true | false false
side left | right | leftoverlap | rightoverlap right
minlabelspacing number h-unit 0.8em

Note that the default value for each of rowlines, columnlines and frame is the literal string ‘none’, meaning that the default is to render no lines, rather than that
there is no default.

As described in Section 2.3.4, the notation (x | y)+ means one or more occurrences of either x or y, separated by whitespace. For example, possible values for
columnalign are left, left left, and left right center center. If there are more entries than are necessary (e.g. more entries than columns for colum-
nalign), then only the first entries will be used. If there are fewer entries, then the last entry is repeated as often as necessary. For example, if columnalign="right
center" and the table has three columns, the first column will be right aligned and the second and third columns will be centered. The label in a mlabeledtr is not
considered as a column in the table and the attribute values that apply to columns do not apply to labels

The align attribute specifies where to align the table with respect to its environment. ‘axis’ means to align the center of the table on the environment’s axis. (The axis
of an equation is an alignment line used by typesetters. It is the line on which a minus sign typically lies. The center of the table is the midpoint of the table’s vertical
extent.) ‘center’ and ‘baseline’ both mean to align the center of the table on the environment’s baseline. ‘top’ or ‘bottom’ aligns the top or bottom of the table on the
environment’s baseline.

If the align attribute value ends with a rownumber between 1 and n (for a table with n rows), the specified row is aligned in the way described above, rather than
the table as a whole; the top (first) row is numbered 1, and the bottom (last) row is numbered n. The same is true if the row number is negative, between -1 and -n,
except that the bottom row is referred to as -1 and the top row as -n. Other values of rownumber are illegal.

The rowalign attribute specifies how the entries in each row should be aligned. For example, ‘top’ means that the tops of each entry in each row should be aligned
with the tops of the other entries in that row. The columnalign attribute specifies how the entries in each column should be aligned.

The groupalign and alignmentscope attributes are described with the alignment elements, maligngroup and malignmark, in Section 3.5.5.

The columnwidth attribute specifies how wide a column should be. The auto value means that the column should be as wide as needed, which is the default. If an
explicit value is given, then the column is exactly that wide and the contents of that column are made to fit in that width. The contents are linewrapped or clipped at
the discretion of the renderer. If fit is given as a value, the remaining page width after subtracting the widths for columns specified as auto and/or specific widths is
divided equally among the fit columns and this value is used for the column width. If insufficient room remains to hold the contents of the fit columns, renderers
may linewrap or clip the contents of the fit columns. When the columnwidth is specified as a percentage, the value is relative to the width of the table. That is, a
renderer should try to adjust the width of the column so that it covers the specified percentage of the entire table width.

83

84

The width attribute specifies the desired width of the entire table and is intended for visual user agents. When the value is a percentage value, the value is relative
to the horizontal space a MathML renderer has available for the table element. When the value is auto, the MathML renderer should calculate the table width from
its contents using whatever layout algorithm it chooses.

MathML 2.0 does not specify a table layout algorithm. In particular, it is the responsibility of a MathML renderer to resolve conflicts between the width attribute and
other constraints on the width of a table, such as explicit values for columnwidth attributes, and minimum sizes for table cell contents. For a discussion of table
layout algorithms, see Cascading Style Sheets, level 2.

The rowspacing and columnspacing attributes specify how much space should be added between each row and column. However, spacing before the first row
and after the last row (i.e. at the top and bottom of the table) is given by the second number in the value of the framespacing attribute, and spacing before the first
column and after the last column (i.e. on the left and on the right of the table) is given by the first number in the value of the framespacing attribute.

In those attributes’ syntaxes, h-unit or v-unit represents a unit of horizontal or vertical length, respectively (see Section 2.3.4.2). The units shown in the attributes’
default values (em or ex) are typically used.

The rowlines and columnlines attributes specify whether and what kind of lines should be added between each row and column. Lines before the first row or
column and after the last row or column are given using the frame attribute.

If a frame is desired around the table, the frame attribute is used. If the attribute value is not ‘none’, then framespacing is used to add spacing between the lines
of the frame and the first and last rows and columns of the table. If frame="none", then the framespacing attribute is ignored. The frame and framespacing
attributes are not part of the rowlines/columnlines, rowspacing/columnspacing options because having them be so would often require that rowlines and
columnlines would need to be fully specified instead of just giving a single value. For example, if a table had five columns and we wanted lines between the
columns, but no frame, then we would have to write columnlines="none solid solid solid solid none". By separating the frame from the internal lines,
we only need to write columnlines="solid".

The equalrows attribute forces the rows all to be the same total height when set to true. The equalcolumns attribute forces the columns all to be the same width
when set to true.

The displaystyle attribute specifies the value of displaystyle (described under mstyle in Section 3.3.4) within each cell (mtd element) of the table. Setting
displaystyle=true can be useful for tables whose elements are whole mathematical expressions; the default value of false is appropriate when the table is part
of an expression, for example, when it represents a matrix. In either case, scriptlevel (Section 3.3.4) is not changed for the table cells.

The side attribute specifies what side of a table a label for a table row should should be placed. This attribute is intended to be used for labeled expressions. If left
or right is specified, the label is placed on the left or right side of the table row respectively. The other two attribute values are variations on left and right: if the
labeled row fits within the width allowed for the table without the label, but does not fit within the width if the label is included, then the label overlaps the row and is
displayed above the row if rowalign for that row is top; otherwise the label is displayed below the row.

If there are multiple labels in a table, the alignment of the labels within the virtual column that they form is left-aligned for labels on the left side of the table, and
right-aligned for labels on the right side of the table. The alignment can be overridden by specifying columnalignment for a mlabeltr element.

The minlabelspacing attribute specifies the minimum space allowed between a label and the adjacent entry in the row.

3.5.1.3 Examples

A 3 by 3 identity matrix could be represented as follows:

84

http://www.w3.org/TR/CSS2/tables.html#width-layout

85

<mrow>
<mo> (</mo>
<mtable>
<mtr> <mn>1</mn> <mn>0</mn> <mn>0</mn> </mtr>
<mtr> <mn>0</mn> <mn>1</mn> <mn>0</mn> </mtr>
<mtr> <mn>0</mn> <mn>0</mn> <mn>1</mn> </mtr>

</mtable>
<mo>) </mo>

</mrow>

This might be rendered as: 1 0 0
0 1 0
0 0 1


Note that the parentheses must be represented explicitly; they are not part of the mtable element’s rendering. This allows use of other surrounding fences, such as
brackets, or none at all.

3.5.2 Row in Table or Matrix (mtr)

3.5.2.1 Description

An mtr element represents one row in a table or matrix. An mtr element is only allowed as a direct sub-expression of an mtable element, and specifies that its
contents should form one row of the table. Each argument of mtr is placed in a different column of the table, starting at the leftmost column.

As described in Section 3.5.1, mtr elements are effectively padded on the right with mtd elements when they are shorter than other rows in a table.

3.5.2.2 Attributes

Name values default
rowalign top | bottom | center | baseline | axis inherited
columnalign (left | center | right) + inherited
groupalign group-alignment-list-list inherited

The rowalign and columnalign attributes allow a specific row to override the alignment specified by the same attributes in the surrounding mtable element.

As with mtable, if there are more entries than necessary in the value of columnalign (i.e. more entries than columns in the row), then the extra entries will be
ignored. If there are fewer entries than columns, then the last entry will be repeated as many times as needed.

The groupalign attribute is described with the alignment elements, maligngroup and malignmark, in Section 3.5.5.

3.5.3 Labeled Row in Table or Matrix (mlabeledtr)

3.5.3.1 Description

An mlabeledtr element represents one row in a table that has a label on either the left or right side, as determined by the side attribute. The label is the first child
of mlabeledtr. The rest of the children represent the contents of the row and are identical to those used for mtr; all of the children except the first must be mtd
elements.

An mlabeledtr element is only allowed as a direct sub-expression of an mtable element. Each argument of mlabeledtr except for the first argument (the label)
is placed in a different column of the table, starting at the leftmost column.

85

86

Note that the label element is not considered to be a cell in the table row. In particular, the label element is not taken into consideration in the table layout for purposes
of width and alignment calculations. For example, in the case of an mlabeledtr with a label and a single centered mtd child, the child is first centered in the enclosing
mtable, and then the label is placed. Specifically, the child is not centered in the space that remains in the table after placing the label.

While MathML 2.0 does not specify an algorithm for placing labels, implementors of visual renderers may find the following formatting model useful. To place a
label, an implementor might think in terms of creating a larger table, with an extra column on both ends. The columnwidth attributes of both these border columns
would be set to fit so that they expand to fill whatever space remains after the inner columns have be laid out. Finally, depending on the values of side and
minlabelspacing, the label is placed in whatever border column is appropriate, possibly shifted down if necessary.

3.5.3.2 Attributes

The attributes for mlabeledtr are the same as for mtr. Unlike the attributes for the mtable element, attributes of mlabeledtr that apply to column elements also
apply to the label. For example, in a one column table,

<mlabeledtr rowalign=’center baseline’>

means that the label is vertically centered on the row, and that the actual entry is baseline aligned.

3.5.3.3 Equation Numbering

One of the important uses of mlabeledtr is for numbered equations. In a mlabeledtr, the label represents the equation number and the elements in the row are
the equation being numbered. The side and minlabelspacing attributes of of mtable determine the placement of the equation number.

In larger documents with many numbered equations, automatic numbering becomes important. While automatic equation numbering and automatically resolving
references to equation numbers is outside the scope of MathML, these problems can be addressed by the use of style sheets or other means. The mlabeledtr
construction provides support for both of these functions in a way that is intended to facilitate XSL processing. The mlabeledtr element can be used to indicate the
presence of a numbered equation, and the first child can be changed to the current equation number, along with incrementing the global equation number. For cross
references, an id on either the mlabeledtr element or on the first element itself could be used as a target of any link.

<mtable>
<mlabeledtr id=’e-is-m-c-square’>
<mtext> (2.1) </mtext>
<mtd>
<mrow>
<mi>E</mi>
<mo>=</mo>
<mrow>
<mi>m</mi>
<mo>⁢</mo>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>

</mrow>
</mtd>

</mlabeledtr>
</mtable>

86

87

This should be rendered as:

E = mĉ 2 (2.1)

3.5.4 Entry in Table or Matrix (mtd)

3.5.4.1 Description

An mtd element represents one entry in a table or matrix. An mtd element is only allowed as a direct sub-expression of an mtr or an mlabeledtr element.

The mtd element accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferred mrow’ formed from all its arguments, as
described in Section 3.1.3.

3.5.4.2 Attributes

Name values default
rowspan number 1
columnspan number 1
rowalign top | bottom | center | baseline | axis inherited
columnalign left | center | right inherited
groupalign group-alignment-list inherited

The rowspan and columnspan attributes allow a specific matrix element to be treated as if it occupied the number of rows or columns specified. The interpretation
of how this larger element affects specifying subsequent rows and columns is meant to correspond with the similar attributes for HTML 4.0 tables.

The rowspan and columnspan attributes can be used around an mtd element that represents the label in a mlabeledtr element. Also, the label of a mlabeledtr
element is not considered to be part of a previous rowspan and columnspan.

The rowalign and columnalign attributes allow a specific matrix element to override the alignment specified by a surrounding mtable or mtr element.

The groupalign attribute is described with the alignment elements, maligngroup and malignmark, in Section 3.5.5.

3.5.5 Alignment Markers

3.5.5.1 Description

These are space-like elements (see Section 3.2.6) that can be used to vertically align specified points within a column of MathML expressions, by the automatic
insertion of the necessary amount of horizontal space between specified sub-expressions.

The discussion that follows will use the example of a set of simultaneous equations that should be rendered with vertical alignment of the coefficients and variables
of each term, by inserting spacing somewhat like that shown here:

8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

If the example expressions shown above were arranged in a column but not aligned, they would appear as:

8.44x + 55y = 0
3.1x - 0.7y = -1.1

(For audio renderers, it is suggested that the alignment elements produce the analogous behavior of altering the rhythm of pronunciation so that it is the same for
several sub-expressions in a column, by the insertion of the appropriate time delays in place of the extra horizontal spacing described here.)

The expressions whose parts are to be aligned (each equation, in the example above) must be given as the table elements (i.e. as the mtd elements) of one column
of an mtable. To avoid confusion, the term ‘table cell’ rather than ‘table element’ will be used in the remainder of this section.

87

88

All interactions between alignment elements are limited to the mtable column they arise in. That is, every column of a table specified by an mtable element acts as
an ‘alignment scope’ that contains within it all alignment effects arising from its contents. It also excludes any interaction between its own alignment elements and the
alignment elements inside any nested alignment scopes it might contain.

The reason mtable columns are used as alignment scopes is that they are the only general way in MathML to arrange expressions into vertical columns. Future
versions of MathML may provide an malignscope element that allows an alignment scope to be created around any MathML element, but even then, table columns
would still sometimes need to act as alignment scopes, and since they are not elements themselves, but rather are made from corresponding parts of the content of
several mtr elements, they could not individually be the content of an alignment scope element.

An mtable element can be given the attribute alignmentscope=false to cause its columns not to act as alignment scopes. This is discussed further at the end of
this section. Otherwise, the discussion in this section assumes that this attribute has its default value of true.

3.5.5.2 Specifying alignment groups

To cause alignment, it is necessary to specify, within each expression to be aligned, the points to be aligned with corresponding points in other expressions, and
the beginning of each alignment group of sub-expressions that can be horizontally shifted as a unit to effect the alignment. Each alignment group must contain
one alignment point. It is also necessary to specify which expressions in the column have no alignment groups at all, but are affected only by the ordinary column
alignment for that column of the table, i.e. by the columnalign attribute, described elsewhere.

The alignment groups start at the locations of invisible maligngroup elements, which are rendered with zero width when they occur outside of an alignment scope,
but within an alignment scope are rendered with just enough horizontal space to cause the desired alignment of the alignment group that follows them. A simple
algorithm by which a MathML application can achieve this is given later. In the example above, each equation would have one maligngroup element before each
coefficient, variable, and operator on the left-hand side, one before the = sign, and one before the constant on the right-hand side.

In general, a table cell containing n maligngroup elements contains n alignment groups, with the ith group consisting of the elements entirely after the ith malign-
group element and before the (i+1)-th; no element within the table cell’s content should occur entirely before its first maligngroup element.

Note that the division into alignment groups does not necessarily fit the nested expression structure of the MathML expression containing the groups - that is, it is
permissible for one alignment group to consist of the end of one mrow, all of another one, and the beginning of a third one, for example. This can be seen in the
MathML markup for the present example, given at the end of this section.

The nested expression structure formed by mrows and other layout schemata should reflect the mathematical structure of the expression, not the alignment-group
structure, to make possible optimal renderings and better automatic interpretations; see the discussion of proper grouping in section Section 3.3.1. Insertion of
alignment elements (or other space-like elements) should not alter the correspondence between the structure of a MathML expression and the structure of the
mathematical expression it represents.

Although alignment groups need to coincide with the nested expression structure of layout schemata, there are nonetheless restrictions on where an maligngroup
element is allowed within a table cell. The maligngroup element may only be contained within elements of the following types (which are themselves contained in
the table cell):

• an mrow element, including an inferred mrow such as the one formed by a multi-argument mtd element;
• an mstyle element;
• an mphantom element;
• an mfenced element;
• an maction element, though only its selected sub-expression is checked;
• a semantics element.

These restrictions are intended to ensure that alignment can be unambiguously specified, while avoiding complexities involving things like overscripts, radical signs
and fraction bars. They also ensure that a simple algorithm suffices to accomplish the desired alignment.

88

89

Note that some positions for an maligngroup element, although legal, are not useful, such as for an maligngroup element to be an argument of an mfenced
element. When inserting an maligngroup element before a given element in pre-existing MathML, it will often be necessary, and always acceptable, to form a new
mrow element to contain just the maligngroup element and the element it is inserted before. In general, this will be necessary except when the maligngroup
element is inserted directly into an mrow or into an element that can form an inferred mrow from its contents. See the warning about the legal grouping of ‘space-like
elements’ in Section 3.2.6.

For the table cells that are divided into alignment groups, every element in their content must be part of exactly one alignment group, except the elements from the
above list that contain maligngroup elements inside them, and the maligngroup elements themselves. This means that, within any table cell containing alignment
groups, the first complete element must be an maligngroup element, though this may be preceded by the begin tags of other elements.

This requirement removes a potential confusion about how to align elements before the first maligngroup element, and makes it easy to identify table cells that are
left out of their column’s alignment process entirely.

Note that it is not required that the table cells in a column that are divided into alignment groups each contain the same number of groups. If they don’t, zero-width
alignment groups are effectively added on the right side of each table cell that has fewer groups than other table cells in the same column.

3.5.5.3 Table cells that are not divided into alignment groups

Expressions in a column that are to have no alignment groups should contain no maligngroup elements. Expressions with no alignment groups are aligned using
only the columnalign attribute that applies to the table column as a whole, and are not affected by the groupalign attribute described below. If such an expression
is wider than the column width needed for the table cells containing alignment groups, all the table cells containing alignment groups will be shifted as a unit within
the column as described by the columnalign attribute for that column. For example, a column heading with no internal alignment could be added to the column of
two equations given above by preceding them with another table row containing an mtext element for the heading, and using the default columnalign="center" for
the table, to produce:

equations with aligned variables
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

or, with a shorter heading,

some equations
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

3.5.5.4 Specifying alignment points using malignmark

Each alignment group’s alignment point can either be specified by an malignmark element anywhere within the alignment group (except within another alignment
scope wholly contained inside it), or it is determined automatically from the groupalign attribute. The groupalign attribute can be specified on the group’s
preceding maligngroup element or on its surrounding mtd, mtr, or mtable elements. In typical cases, using the groupalign attribute is sufficient to describe the
desired alignment points, so no malignmark elements need to be provided.

The malignmark element indicates that the alignment point should occur on the right edge of the preceding element, or the left edge of the following element or
character, depending on the edge attribute of malignmark. Note that it may be necessary to introduce an mrow to group an malignmark element with a neighboring
element, in order not to alter the argument count of the containing element. (See the warning about the legal grouping of ‘space-like elements’ in Section 3.2.6).

When an malignmark element is provided within an alignment group, it can occur in an arbitrarily deeply nested element within the group, as long as it is not within
a nested alignment scope. It is not subject to the same restrictions on location as maligngroup elements. However, its immediate surroundings need to be such that
the element to its immediate right or left (depending on its edge attribute) can be unambiguously identified. If no such element is present, renderers should behave
as if a zero-width element had been inserted there.

89

90

For the purposes of alignment, an element X is considered to be to the immediate left of an element Y, and Y to the immediate right of X, whenever X and Y are
successive arguments of one (possibly inferred) mrow element, with X coming before Y. In the case of mfenced elements, MathML applications should evaluate this
relation as if the mfenced element had been replaced by the equivalent expanded form involving mrow. Similarly, an maction element should be treated as if it
were replaced by its currently selected sub-expression. In all other cases, no relation of ‘to the immediate left or right’ is defined for two elements X and Y. However,
in the case of content elements interspersed in presentation markup, MathML applications should attempt to evaluate this relation in a sensible way. For example,
if a renderer maintains an internal presentation structure for rendering content elements, the relation could be evaluated with respect to that. (See Chapter 4 and
Chapter 5 for further details about mixing presentation and content markup.)

Unlike all other elements in MathML, malignmark elements are allowed to occur within the content of token elements, such as mn, mi, or mtext. When this occurs,
the character immediately before or after the malignmark element will carry the alignment point; in all other cases, the element to its immediate left or right will carry
the alignment point. The rationale for this is that it is sometimes desirable to align on the edges of specific characters within multi-character token elements.

If there is more than one malignmark element in an alignment group, all but the first one will be ignored. MathML applications may wish to provide a mode in
which they will warn about this situation, but it is not an error, and should trigger no warnings by default. (Rationale: it would be inconvenient to have to remove all
unnecessary malignmark elements from automatically generated data, in certain cases, such as when they are used to specify alignment on ‘decimal points’ other
than the ’.’ character.)

3.5.5.5 Attributes

Name values default
edge left | right left

malignmark has one attribute, edge, which specifies whether the alignment point will be found on the left or right edge of some element or character. The precise
location meant by ‘left edge’ or ‘right edge’ is discussed below. If edge="right", the alignment point is the right edge of the element or character to the immediate left
of the malignmark element. If edge="left", the alignment point is the left edge of the element or character to the immediate right of the malignmark element. Note
that the attribute refers to the choice of edge rather than to the direction in which to look for the element whose edge will be used.

For malignmark elements that occur within the content of MathML token elements, the preceding or following character in the token element’s content is used;
if there is no such character, a zero-width character is effectively inserted for the purpose of carrying the alignment point on its edge. For all other malignmark
elements, the preceding or following element is used; if there is no such element, a zero-width element is effectively inserted to carry the alignment point.

The precise definition of the ‘left edge’ or ‘right edge’ of a character or glyph (e.g. whether it should coincide with an edge of the character’s bounding box) is not
specified by MathML, but is at the discretion of the renderer; the renderer is allowed to let the edge position depend on the character’s context as well as on the
character itself.

For proper alignment of columns of numbers (using groupalign values of left, right, or decimalpoint), it is likely to be desirable for the effective width (i.e. the
distance between the left and right edges) of decimal digits to be constant, even if their bounding box widths are not constant (e.g. if ‘1’ is narrower than other digits).
For other characters, such as letters and operators, it may be desirable for the aligned edges to coincide with the bounding box.

The ‘left edge’ of a MathML element or alignment group refers to the left edge of the leftmost glyph drawn to render the element or group, except that explicit space
represented by mspace or mtext elements should also count as ‘glyphs’ in this context, as should glyphs that would be drawn if not for mphantom elements around
them. The ‘right edge’ of an element or alignment group is defined similarly.

3.5.5.6 Attributes

Name values default
groupalign left | center | right | decimalpoint inherited

maligngroup has one attribute, groupalign, which is used to determine the position of its group’s alignment point when no malignmark element is present. The
following discussion assumes that no malignmark element is found within a group.

90

91

In the example given at the beginning of this section, there is one column of 2 table cells, with 7 alignment groups in each table cell; thus there are 7 columns of
alignment groups, with 2 groups, one above the other, in each column. These columns of alignment groups should be given the 7 groupalign values ‘decimalpoint
left left decimalpoint left left decimalpoint’, in that order. How to specify this list of values for a table cell or table column as a whole, using attributes on elements
surrounding the maligngroup element is described later.

If groupalign is ‘left’, ‘right’, or ‘center’, the alignment point is defined to be at the group’s left edge, at its right edge, or halfway between these edges, respectively.
The meanings of ‘left edge’ and ‘right edge’ are as discussed above in relation to malignmark.

If groupalign is ‘decimalpoint’, the alignment point is the right edge of the last character before the decimal point. The decimal point is the first ‘.’ character
(ASCII 0x2e) in the first mn element found along the alignment group’s baseline. More precisely, the alignment group is scanned recursively, depth-first, for the first mn
element, descending into all arguments of each element of the types mrow (including inferred mrows), mstyle, mpadded, mphantom, mfenced, or msqrt, descending
into only the first argument of each ‘scripting’ element (msub, msup, msubsup, munder, mover, munderover, mmultiscripts) or of each mroot or semantics
element, descending into only the selected sub-expression of each maction element, and skipping the content of all other elements. The first mn so found always
contains the alignment point, which is the right edge of the last character before the first decimal point in the content of the mn element. If there is no decimal point
in the mn element, the alignment point is the right edge of the last character in the content. If the decimal point is the first character of the mn element’s content, the
right edge of a zero-width character inserted before the decimal point is used. If no mn element is found, the right edge of the entire alignment group is used (as for
groupalign="right").

In order to permit alignment on decimal points in cn elements, a MathML application can convert a content expression into a presentation expression that renders
the same way before searching for decimal points as described above.

If characters other than ‘.’ should be used as ‘decimal points’ for alignment, they should be preceded by malignmark elements within the mn token’s content itself.

For any of the groupalign values, if an explicit malignmark element is present anywhere within the group, the position it specifies (described earlier) overrides the
automatic determination of alignment point from the groupalign value.

3.5.5.7 Inheritance of groupalign values

It is not usually necessary to put a groupalign attribute on every maligngroup element. Since this attribute is usually the same for every group in a column of
alignment groups to be aligned, it can be inherited from an attribute on the mtable that was used to set up the alignment scope as a whole, or from the mtr or
mtd elements surrounding the alignment group. It is inherited via an ‘inheritance path’ that proceeds from mtable through successively contained mtr, mtd, and
maligngroup elements. There is exactly one element of each of these kinds in this path from an mtable to any alignment group inside it. In general, the value of
groupalign will be inherited by any given alignment group from the innermost element that surrounds the alignment group and provides an explicit setting for this
attribute.

Note, however, that each mtd element needs, in general, a list of groupalign values, one for each maligngroup element inside it, rather than just a single value.
Furthermore, an mtr or mtable element needs, in general, a list of lists of groupalign values, since it spans multiple mtable columns, each potentially acting as
an alignment scope. Such lists of group-alignment values are specified using the following syntax rules:

group-alignment := left | right | center | decimalpoint
group-alignment-list := group-alignment +
group-alignment-list-list := (’{’ group-alignment-list ’}’) +

As described in Section 2.3.4, | separates alternatives; + represents optional repetition (i.e. 1 or more copies of what precedes it), with extra values ignored and
the last value repeated if necessary to cover additional table columns or alignment group columns; ’’ and ’’ represent literal braces; and (and) are used for
grouping, but do not literally appear in the attribute value.

The permissible values of the groupalign attribute of the elements that have this attribute are specified using the above syntax definitions as follows:

Element type groupalign attribute syntax default value
mtable group-alignment-list-list left
mtr group-alignment-list-list inherited from mtable attribute
mtd group-alignment-list inherited from within mtr attribute
maligngroup group-alignment inherited from within mtd attribute

91

92

In the example near the beginning of this section, the group alignment values could be specified on every mtd element using groupalign = ‘decimalpoint left left
decimalpoint left left decimalpoint’, or on every mtr element using groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or (most conveniently) on
the mtable as a whole using groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, which provides a single braced list of group-alignment values
for the single column of expressions to be aligned.

3.5.5.8 MathML representation of an alignment example

The above rules are sufficient to explain the MathML representation of the example given near the start of this section. To repeat the example, the desired rendering
is:

8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

One way to represent that in MathML is:

<mtable groupalign="decimalpoint left left decimalpoint left left decimalpoint">
<mtd>
<mrow>
<mrow>
<maligngroup/>
<mn> 8.44 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>
<maligngroup/>
<mo> + </mo>
<mrow>
<maligngroup/>
<mn> 55 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mn> 0 </mn>

</mtd>
<mtd>
<mrow>
<mrow>
<maligngroup/>
<mn> 3.1 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>

92

93

<maligngroup/>
<mo> - </mo>
<mrow>
<maligngroup/>
<mn> 0.7 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mrow>
<mo> - </mo>
<mn> 1.1 </mn>

</mrow>
</mtd>

</mtable>

3.5.5.9 Further details of alignment elements

The alignment elements maligngroup and malignmark can occur outside of alignment scopes, where they are ignored. The rationale behind this is that in situations
in which MathML is generated, or copied from another document, without knowing whether it will be placed inside an alignment scope, it would be inconvenient for
this to be an error.

An mtable element can be given the attribute alignmentscope=false to cause its columns not to act as alignment scopes. In general, this attribute has the syntax
(true | false) +; if its value is a list of boolean values, each boolean value applies to one column, with the last value repeated if necessary to cover additional
columns, or with extra values ignored. Columns that are not alignment scopes are part of the alignment scope surrounding the mtable element, if there is one. Use
of alignmentscope=false allows nested tables to contain malignmark elements for aligning the inner table in the surrounding alignment scope.

As discussed above, processing of alignment for content elements is not well-defined, since MathML does not specify how content elements should be rendered.
However, many MathML applications are likely to find it convenient to internally convert content elements to presentation elements that render the same way. Thus,
as a general rule, even if a renderer does not perform such conversions internally, it is recommended that the alignment elements should be processed as if it did
perform them.

A particularly important case for renderers to handle gracefully is the interaction of alignment elements with the matrix content element, since this element may or
may not be internally converted to an expression containing an mtable element for rendering. To partially resolve this ambiguity, it is suggested, but not required,
that if the matrix element is converted to an expression involving an mtable element, that the mtable element be given the attribute alignmentscope=false,
which will make the interaction of the matrix element with the alignment elements no different than that of a generic presentation element (in particular, it will allow
it to contain malignmark elements that operate within the alignment scopes created by the columns of an mtable that contains the matrix element in one of its
table cells).

The effect of alignment elements within table cells that have non-default values of the columnspan or rowspan attributes is not specified, except that such use of
alignment elements is not an error. Future versions of MathML may specify the behavior of alignment elements in such table cells.

The effect of possible linebreaking of an mtable element on the alignment elements is not specified.

93

94

3.5.5.10 A simple alignment algorithm

A simple algorithm by which a MathML applications can perform the alignment specified in this section is given here. Since the alignment specification is deterministic
(except for the definition of the left and right edges of a character), any correct MathML alignment algorithm will have the same behavior as this one. Each mtable
column (alignment scope) can be treated independently; the algorithm given here applies to one mtable column, and takes into account the alignment elements, the
groupalign attribute described in this section, and the columnalign attribute described under mtable (Section 3.5.1).

First, a rendering is computed for the contents of each table cell in the column, using zero width for all maligngroup and malignmark elements. The final rendering
will be identical except for horizontal shifts applied to each alignment group and/or table cell. The positions of alignment points specified by any malignmark elements
are noted, and the remaining alignment points are determined using groupalign values.

For each alignment group, the horizontal positions of the left edge, alignment point, and right edge are noted, allowing the width of the group on each side of the
alignment point (left and right) to be determined. The sum of these two ‘side-widths’, i.e. the sum of the widths to the left and right of the alignment point, will equal
the width of the alignment group.

Second, each column of alignment groups, from left to right, is scanned. The ith scan covers the ith alignment group in each table cell containing any alignment
groups. Table cells with no alignment groups, or with fewer than i alignment groups, are ignored. Each scan computes two maximums over the alignment groups
scanned: the maximum width to the left of the alignment point, and the maximum width to the right of the alignment point, of any alignment group scanned.

The sum of all the maximum widths computed (two for each column of alignment groups) gives one total width, which will be the width of each table cell containing
alignment groups. Call the maximum number of alignment groups in one cell n; each such cell’s width is divided into 2n adjacent sections, called L(i) and R(i) for i
from 1 to n, using the 2n maximum side-widths computed above; for each i, the width of all sections called L(i) is the maximum width of any cell’s ith alignment group
to the left of its alignment point, and the width of all sections called R(i) is the maximum width of any cell’s ith alignment group to the right of its alignment point.

The alignment groups are then positioned in the unique way that places the part of each ith group to the left of its alignment point in a section called L(i), and places
the part of each ith group to the right of its alignment point in a section called R(i). This results in the alignment point of each ith group being on the boundary between
adjacent sections L(i) and R(i), so that all alignment points of ith groups have the same horizontal position.

The widths of the table cells that contain no alignment groups were computed as part of the initial rendering, and may be different for each cell, and different from the
single width used for cells containing alignment groups. The maximum of all the cell widths (for both kinds of cells) gives the width of the table column as a whole.

The position of each cell in the column is determined by the applicable part of the value of the columnalign attribute of the innermost surrounding mtable, mtr, or
mtd element that has an explicit value for it, as described in the sections on those elements. This may mean that the cells containing alignment groups will be shifted
within their column, in addition to their alignment groups having been shifted within the cells as described above, but since each such cell has the same width, it will
be shifted the same amount within the column, thus maintaining the vertical alignment of the alignment points of the corresponding alignment groups in each cell.

3.6 Enlivening Expressions

3.6.1 Bind Action to Sub-Expression (maction)

There are many ways in which it might be desirable to make mathematical content active. Adding a link to a MathML sub-expressions is one basic kind of interactivity
Section 7.1.4. However, many other kinds of interactivity cannot be easily accommodated by generic linking mechanisms. For example, in lengthy mathematical
expressions, the ability to ‘fold’ expressions might be provided, i.e. a renderer might allow a reader to toggle between an ellipsis and a much longer expression that it
represents.

To provide a mechanism for binding actions to expressions, MathML provides the maction element. This element accepts any number of sub-expressions as
arguments, and the following attributes:

Name values default
actiontype (described below) (required attribute, no default value)
selection positive-integer 1

94

95

By default, MathML applications that do not recognize the specified actiontype should render the selected sub-expression as defined below. If no selected sub-
expression exists, it is a MathML error; the appropriate rendering in that case is as described in Section 7.2.2 on the treatment of MathML errors.

Since a MathML-compliant application is not required to recognize any particular actiontypes, an application can be fully MathML compliant just by implementing
the above-described default behavior.

The selection attribute is provided for those actiontypes that permit someone viewing a document to select one of several sub-expressions for viewing. Its value
should be a positive integer that indicates one of the sub-expressions of the maction element, numbered from 1 to the number of children of the element. When this
is the case, the sub-expression so indicated is defined to be the ‘selected sub-expression’ of the maction element; otherwise the ‘selected sub-expression’ does not
exist, which is an error. When the selection attribute is not specified (including for actiontypes for which it makes no sense), its default value is 1, so the selected
sub-expression will be the first sub-expression.

Furthermore, as described in Chapter 7, if a MathML application responds to a user command to copy a MathML sub-expression to the environment’s ‘clipboard’,
any maction elements present in what is copied should be given selection attributes that correspond to their selection state in the MathML rendering at the time of
the copy command.

A suggested list of actiontypes and their associated actions is given below. Keep in mind, however, that this list is mainly for illustration, and recognized values and
behaviors will vary from application to application.

<maction actiontype="toggle" selection="positive-integer" > (first expression) (second expression)... </maction>
For this action type, a renderer would alternately display the given expressions, cycling through them when a reader clicked on the active expression, start-
ing with the selected expression and updating the selection attribute value as described above. Typical uses would be for exercises in education, ellipses
in long computer algebra output, or to illustrate alternate notations. Note that the expressions may be of significantly different size, so that size negotiation
with the browser may be desirable. If size negotiation is not available, scrolling, elision, panning, or some other method may be necessary to allow full
viewing.

<maction actiontype="statusline"> (expression) (message) </maction>
In this case, the renderer would display the expression in context on the screen. When a reader clicked on the expression or moved the mouse over it,
the renderer would send a rendering of the message to the browser statusline. Since most browsers in the foreseeable future are likely to be limited to
displaying text on their statusline, authors would presumably use plain text in an mtext element for the message in most circumstances. For non-mtext
messages, renderers might provide a natural language translation of the markup, but this is not required.

<maction actiontype="tooltip"> (expression) (message) </maction>
Here the renderer would also display the expression in context on the screen. When the mouse pauses over the expression for a long enough delay time,
the renderer displays a rendering of the message in a pop-up ‘tooltip’ box near the expression. These message boxes are also sometimes called ‘balloon
help’ boxes. Presumably authors would use plain text in an mtext element for the message in most circumstances. For non-mtext messages, renderers
may provide a natural language translation of the markup if full MathML rendering is not practical, but this is not required.

<maction actiontype="highlight" my:color="#ff0000"> expression </maction> <maction actiontype="highlight" my:background="#ff0000"> expression
</maction>

In this case, a renderer might highlight the enclosed expression on a ‘mouse-over’ event. In the example given above, non-standard attributes from another
namespace are being used to pass additional information to renderers that support them, without violating the MathML DTD (see Section 7.2.3). The
my:color attribute changes the color of the characters in the presentation, while the my:background attribute changes the color of the background
behind the characters.

<maction actiontype="menu" selection="1" > (menu item 1) (menu item 2) ... </maction>
This action type instructs a renderer to provide a pop up menu. This allows a one-to-many linking capability. Note that the menu items may be other <mac-
tion actiontype="menu">...</maction> expressions, thereby allowing nested menus.

95

Chapter 4

Content Markup

4.1 Introduction

4.1.1 The Intent of Content Markup

As has been noted in the introductory section of this recommendation, mathematics can be distinguished by its use of a (relatively) formal language, mathematical
notation. However, mathematics and its presentation should not be viewed as one and the same thing. Mathematical sums or products exist and are meaningful to
many applications completely without regard to how they are rendered aurally or visually. The intent of the content markup in the Mathematical Markup Language is
to provide an explicit encoding of the underlying mathematical structure of an expression, rather than any particular rendering for the expression.

There are many reasons for providing a specific encoding for content. Even a disciplined and systematic use of presentation tags cannot properly capture this
semantic information. This is because without additional information it is impossible to decide if a particular presentation was chosen deliberately to encode the
mathematical structure or simply to achieve a particular visual or aural effect. Furthermore, an author using the same encoding to deal with both the presentation and
mathematical structure might find a particular presentation encoding unavailable simply because convention had reserved it for a different semantic meaning.

The difficulties stem from the fact that there are many to one mappings from presentation to semantics and vice versa. For example the mathematical construct ‘ H
multiplied by e’ is often encoded using an explicit operator as in H × e. In different presentational contexts, the multiplication operator might be invisible ‘ H e’, or
rendered as the spoken word ‘times’. Generally, many different presentations are possible depending on the context and style preferences of the author or reader.
Thus, given ‘ H e’ out of context it may be impossible to decide if this is the name of a chemical or a mathematical product of two variables H and e.

Mathematical presentation also changes with culture and time: some expressions in combinatorial mathematics today have one meaning to an Russian mathemati-
cian, and quite another to a French mathematician; see Section 5.4.1 for an example. Notations may lose currency, for example the use of musical sharp and flat
symbols to denote maxima and minima [Chaundy1954]. A notation in use in 1644 for the multiplication mentioned above was � H e [Cajori1928].

When we encode the underlying mathematical structure explicitly, without regard to how it is presented aurally or visually, we are able to interchange information
more precisely with those systems that are able to manipulate the mathematics. In the trivial example above, such a system could substitute values for the variables
H and e and evaluate the result. Further interesting application areas include interactive textbooks and other teaching aids.

4.1.2 The Scope of Content Markup

The semantics of general mathematical notation is not a matter of consensus. It would be an enormous job to systematically codify most of mathematics - a task
that can never be complete. Instead, MathML makes explicit a relatively small number of commonplace mathematical constructs, chosen carefully to be sufficient in
a large number of applications. In addition, it provides a mechanism for associating semantics with new notational constructs. In this way, mathematical concepts that
are not in the base collection of elements can still be encoded (Section 4.2.6).

The base set of content elements are chosen to be adequate for simple coding of most of the formulas used from kindergarten to the end of high school in the United
States, and probably beyond through the first two years of college, that is up to A-Level or Baccalaureate level in Europe. Subject areas covered to some extent in
MathML are:

96

97

• arithmetic, algebra, logic and relations
• calculus and vector calculus
• set theory
• sequences and series
• elementary classical functions
• statistics
• linear algebra

It is not claimed, or even suggested, that the proposed set of elements is complete for these areas, but the provision for author extensibility greatly alleviates any
problem omissions from this finite list might cause.

4.1.3 Basic Concepts of Content Markup

The design of the MathML content elements are driven by the following principles:

• The expression tree structure of a mathematical expression should be directly encoded by the MathML content elements.
• The encoding of an expression tree should be explicit, and not dependent on the special parsing of PCDATA or on additional processing such as operator

precedence parsing.
• The basic set of mathematical content constructs that are provided should have default mathematical semantics.
• There should be a mechanism for associating specific mathematical semantics with the constructs.

The primary goal of the content encoding is to establish explicit connections between mathematical structures and their mathematical meanings. The content
elements correspond directly to parts of the underlying mathematical expression tree. Each structure has an associated default semantics and there is a mechanism
for associating new mathematical definitions with new constructs.

Significant advantages to the introduction of content-specific tags include:

• Usage of presentation elements is less constrained. When mathematical semantics are inferred from presentation markup, processing agents must either
be quite sophisticated, or they run the risk of inferring incomplete or incorrect semantics when irregular constructions are used to achieve a particular aural
or visual effect.

• It is immediately clear which kind of information is being encoded simply by the kind of elements that are used.
• Combinations of semantic and presentation elements can be used to convey both the appearance and its mathematical meaning much more effectively

than simply trying to infer one from the other.

Expressions described in terms of content elements must still be rendered. For common expressions, default visual presentations are usually clear. ‘Take care of the
sense and the sounds will take care of themselves’ wrote Lewis Carroll [Carroll1871]. Default presentations are included in the detailed description of each element
occurring in Section 4.4.

To accomplish these goals, the MathML content encoding is based on the concept of an expression tree. A content expression tree is constructed from a collection of
more primitive objects, referred to herein as containers and operators. MathML possesses a rich set of predefined container and operator objects, as well as constructs
for combining containers and operators in mathematically meaningful ways. The syntax and usage of these content elements and constructions is described in the
next section.

4.2 Content Element Usage Guide

Since the intent of MathML content markup is to encode mathematical expressions in such a way that the mathematical structure of the expression is clear, the
syntax and usage of content markup must be consistent enough to facilitate automated semantic interpretation. There must be no doubt when, for example, an
actual sum, product or function application is intended and if specific numbers are present, there must be enough information present to reconstruct the correct
number for purposes of computation. Of course, it is still up to a MathML-compliant processor to decide what is to be done with such a content-based expression,
and computation is only one of many options. A renderer or a structured editor might simply use the data and its own built-in knowledge of mathematical structure to
render the object. Alternatively, it might manipulate the object to build a new mathematical object. A more computationally oriented system might attempt to carry out
the indicated operation or function evaluation.

97

98

The purpose of this section is to describe the intended, consistent usage. The requirements involve more than just satisfying the syntactic structure specified by an
XML DTD. Failure to conform to the usage as described below will result in a MathML error, even though the expression may be syntactically valid according to the
DTD.

In addition to the usage information contained in this section, Section 4.4 gives a complete listing of each content element, providing reference information about
their attributes, syntax, examples and suggested default semantics and renderings. The rules for using presentation markup within content markup are explained in
Section 5.2.3. An informal EBNF grammar describing the syntax for the content markup is given in Appendix B.

4.2.1 Overview of Syntax and Usage

MathML content encoding is based on the concept of an expression tree. As a general rule, the terminal nodes in the tree represent basic mathematical objects, such
as numbers, variables, arithmetic operations and so on. The internal nodes in the tree generally represent some kind of function application or other mathematical
construction that builds up a compound object. Function application provides the most important example; an internal node might represent the application of a
function to several arguments, which are themselves represented by the terminal nodes underneath the internal node.

The MathML content elements can be grouped into the following categories based on their usage:

• containers
• operators and functions
• qualifiers
• relations
• conditions
• semantic mappings
• constants and symbols

These are the building blocks out of which MathML content expressions are constructed. Each category is discussed in a separate section below. In the remainder of
this section, we will briefly introduce some of the most common elements of each type, and consider the general constructions for combining them in mathematically
meaningful ways.

4.2.1.1 Constructing Mathematical Objects

Content expression trees are built up from basic mathematical objects. At the lowest level, leaf nodes are encapsulated in non-empty elements that define their type.
Numbers and symbols are marked by the token elements cn and ci. More elaborate constructs such as sets, vectors and matrices are also marked using elements
to denote their types, but rather than containing data directly, these container elements are constructed out of other elements. Elements are used in order to clearly
identify the underlying objects. In this way, standard XML parsing can be used and attributes can be used to specify global properties of the objects.

The containers such as <cn>12345<cn/> , <ci>x</ci> and <csymbol definitionURL="mySymbol.htm" encoding="text">S</csymbol>represent math-
ematical numbers , identifiers and externally defined symbols. Below, we will look at operator elements such as plus or sin, which provide access to the basic
mathematical operations and functions applicable to those objects. Additional containers such as set for sets, and matrix for matrices are provided for representing
a variety of common compound objects.

For example, the number 12345 is encoded as

<cn>12345</cn>

The attributes and PCDATA content together provide the data necessary for an application to parse the number. For example, a default base of 10 is assumed, but to
communicate that the underlying data was actually written in base 8, simply set the base attribute to 8 as in

<cn base="8">12345</cn>

while the complex number 3 + 4i can be encoded as

<cn type="complex">3<sep/>4</cn>

98

99

Such information makes it possible for another application to easily parse this into the correct number.

As another example, the scalar symbol v is encoded as

<ci>v</ci>

By default, ci elements represent elements from a commutative field (see Appendix C). If a vector is intended then this fact can be encoded as

<ci type="vector">v</ci>

This invokes default semantics associated with the vector element, namely an arbitrary element of a finite-dimensional vector space.

By using the ci and csymbol elements we have made clear that we are referring to a mathematical identifier or symbol but this does not say anything about how
it should be rendered. By default a symbol is rendered as if the ci or csymbolelement were actually the presentation element mi (see Section 3.2.2). The actual
rendering of a mathematical symbol can be made as elaborate as necessary simply by using the more elaborate presentational constructs (as described in Chapter 3)
in the body of the ci or csymbol element.

The default rendering of a simple cn-tagged object is the same as for the presentation element mn with some provision for overriding the presentation of the PCDATA
by providing explicit mntags. This is described in detail in Section 4.4.

The issues for compound objects such as sets, vectors and matrices are all similar to those outlined above for numbers and symbols. Each such object has global
properties as a mathematical object that impact how they are to be parsed. This may affect everything from the interpretation of operations that are applied to them
through to how to render the symbols representing them. These mathematical properties are captured by setting attribute values.

4.2.1.2 Constructing General Expressions

The notion of constructing a general expression tree is essentially that of applying an operator to sub-objects. For example, the sum a + b can be thought of as an
application of the addition operator to two arguments a and b. In MathML, elements are used for operators for much the same reason that elements are used to
contain objects. They are recognized at the level of XML parsing, and their attributes can be used to record or modify the intended semantics. For example, with the
MathML plus element, setting the definitionURL and encodingattributes as in

<plus definitionURL="www.vnbooks.com/VectorCalculus.htm"
encoding="text"/>

can communicate that the intended operation is vector-based.

There is also another reason for using elements to denote operators. There is a crucial semantic distinction between the function itself and the expression resulting
from applying that function to zero or more arguments which must be captured. This is addressed by making the functions self-contained objects with their own
properties and providing an explicit apply construct corresponding to function application. We will consider the apply construct in the next section.

MathML contains many pre-defined operator elements, covering a range of mathematical subjects. However, an important class of expressions involve unknown or
user-defined functions and symbols. For these situations, MathML provides a general csymbol element, which is discussed below.

4.2.1.3 The apply construct

The most fundamental way of building up a mathematical expression in MathML content markup is the apply construct. An apply element typically applies an
operator to its arguments. It corresponds to a complete mathematical expression. Roughly speaking, this means a piece of mathematics that could be surrounded by
parentheses or ‘logical brackets’ without changing its meaning.

For example, (x + y) might be encoded as

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>

99

100

The opening and closing tags of apply specify exactly the scope of any operator or function. The most typical way of using apply is simple and recursive.
Symbolically, the content model can the described as:

<apply>
op

a

b </apply>

where the operands a and b are containers or other content-based elements themselves, and op is an operator or function. Note that since apply is a container, this
allows apply constructs to be nested to arbitrary depth.

An apply may in principle have any number of operands:

<apply> op a b [c...] <apply>

For example, (x + y + z) can be encoded as

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</apply>

Mathematical expressions involving a mixture of operations result in nested occurrences of apply. For example, a x + b would be encoded as

<apply>
<plus/>
<apply>
<times/>
<ci> a </ci>
<ci> x </ci>

</apply>
<ci> b </ci>

</apply>

There is no need to introduce parentheses or to resort to operator precedence in order to parse the expression correctly. The apply tags provide the proper grouping
for the re-use of the expressions within other constructs. Any expression enclosed by an apply element is viewed as a single coherent object.

An expression such as (F + G)(x) might be a product, as in

<apply>
<times/>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>

</apply>
<ci> x </ci>

</apply>

or it might indicate the application of the function F + G to the argument x. This is indicated by constructing the sum

100

101

<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>

</apply>

and applying it to the argument x as in

<apply>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>

<ci> x </ci>
</apply>

Both the function and the arguments may be simple identifiers or more complicated expressions.

In MathML 1.0 , another construction closely related to the use of the apply element with operators and arguments was the reln element. The relnelement was
used to denote that a mathematical relation holds between its arguments, as opposed to applying an operator. Thus, the MathML markup for the expression x < y
was given in MathML 1.0 by:

<reln>
<lt/>
<ci> x </ci>
<ci> y </ci>

</reln>

In MathML 2.0, the apply construct is used with all operators, including logical operators. The expression above becomes

<apply>
<lt/>
<ci> x </ci>
<ci> y </ci>

</apply>

in MathML 2.0. The use of reln with relational operators is supported for reasons of backwards compatibility, but deprecated. Authors creating new content are
encouraged to use apply in all cases.

4.2.1.4 Explicitly defined functions and operators

The most common operations and functions such as plus and sin have been predefined explicitly as empty elements (see Section 4.4). They have type and
definitionURLattributes, and by changing these attributes, the author can record that a different sort of algebraic operation is intended. This allows essentially the
same notation to be re-used for a discussion taking place in a different algebraic domain.

Due to the nature of mathematics the notation must be extensible. The key to extensibility is the ability of the user to define new functions and other symbols to
expand the terrain of mathematical discourse.

101

102

It is always possible to create arbitrary expressions, and then to use them as symbols in the language. Their properties can then be inferred directly from that usage
as was done in the previous section. However, such an approach would preclude being able to encode the fact that the construct was a known symbol, or to record
its mathematical properties except by actually using it. The csymbol element is used as a container to construct a new symbol in much the same way that ci is
used to construct an identifier. (Note that ‘symbol’ is used here in the abstract sense and has no connection with any presentation of the construct on screen or
paper). The difference in usage is that csymbol should refer to some mathematically defined concept with an external definition referenced via the definitionURL
attribute, whereas ci is used for identifiers that are essentially ‘local’ to the MathML expression and do not use any external definition mechanism. The target of the
definitionURLattribute on the csymbol element may encode the definition in any format: the particular encoding in use is given by the encoding attribute

To use csymbol to describe a completely new function, we write for example

<csymbol definitionURL="www.vnbooks.com/VectorCalculus.htm"
encoding="text">

Christoffel
</csymbol>

The definitionURL attribute specifies a URI that provides a written definition for the Christoffel symbol. Suggested default definitions for the content elements
of MathML appear in Appendix C in a format based on OpenMath, although there is no requirement that a particular format be used. The role of the definitionURL
attribute is very similar to the role of definitions included at the beginning of many mathematical papers, and which often just refer to a definition used by a particular
book.

MathML 1.0 supported the use of the fn to encode the fact that a construct is explicitly being used as a function or operator. To record the fact that F+ G is being
used semantically as if it were a function, it was encoded as:

<fn>
<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>

</apply>
</fn>

This usage, although allowed in MathML 2.0 for reasons of backwards compatibility, is now deprecated. The fact that a construct is being used as an operator
is clear from the position of the construct as the first child of the apply. If it is required to add additional information to the construct, it should be wrapped in a
semanticselement, for example:

<semantics definitionURL="www.mathslib.com/vectorfuncs/plus.htm"
encoding="Mathematica">

<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>

</apply>
</semantics>

MathML 1.0 supported the use of definitionURL with fn to refer to external definitions for user-defined functions. This usage, although allowed for reasons of
backwards compatibility, is deprecated in MathML 2.0 in favour of using csymbol to define the function, and then apply to link the function to its arguments. For
example:

102

103

<apply>
<csymbol definitionURL="http://www.defs.org/function_spaces.html#my_def"

encoding="text">
BigK

</csymbol>
<ci>x</ci>
<ci>y</ci>

</apply>

4.2.1.5 The inverse construct

Given functions, it is natural to have functional inverses. This is handled by the inverse element.

Functional inverses can be problematic from a mathematical point of view in that it implicitly involves the definition of an inverse for an arbitrary function F . Even at
the K-through-12 level the concept of an inverse F −1 of many common functions F is not used in a uniform way. For example, the definitions used for the inverse
trigonometric functions may differ slightly depending on the choice of domain and/or branch cuts.

MathML adopts the view: if F is a function from a domain D to D’, then the inverse G of F is a function over D’ such that G(F(x)) = x for x in D. This definition does
not assert that such an inverse exists for all or indeed any x in D, or that it is single-valued anywhere. Also, depending on the functions involved, additional properties
such as F(G(y)) = y for y in D’ may hold.

The inverse element is applied to a function whenever an inverse is required. For example, application of the inverse sine function to x, i.e. sin −1 (x), is encoded
as:

<apply>
<apply> <inverse/> <sin/> </apply>
<ci> x </ci>

</apply>

While arcsin is one of the predefined MathML functions, an explicit reference to sin −1(x) might occur in a document discussing possible definitions of arcsin.

4.2.1.6 The declare construct

Consider a document discussing the vectors A = (a, b, c) and B = (d, e, f), and later including the expression V = A + B. It is important to be able to communicate
the fact that wherever A and Bare used they represent a particular vector. The properties of that vector may determine aspects of operators such as plus.

The simple fact that A is a vector can be communicated by using the markup

<ci type="vector">A</ci>

but this still does not communicate, for example, which vector is involved or its dimensions.

The declare construct is used to associate specific properties or meanings with an object. The actual declaration itself is not rendered visually (or in any other form).
However, it indirectly impacts the semantics of all affected uses of the declared object.

The scope of a declaration is, by default, local to the MathML element in which the declaration is made. If the scopeattribute of the declare element is set to global,
the declaration applies to the entire MathML expression in which it appears.

The uses of the declare element range from resetting default attribute values to associating an expression with a particular instance of a more elaborate structure.
Subsequent uses of the original expression (within the scope of the declare) play the same semantic role as would the paired object.

For example, the declaration

103

104

<declare>
<ci> A </ci>
<vector>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</vector>
</declare>

specifies that A stands for the particular vector (a, b, c) so that subsequent uses of A as in V = A + B can take this into account. When declare is used in this way,
the actual encoding

<apply>
<eq/>
<ci> V </ci>
<apply>
<plus/>
<ci> A </ci>
<ci> B </ci>

</apply>
</apply>

remains unchanged but the expression can be interpreted properly as vector addition.

There is no requirement to declare an expression to stand for a specific object. For example, the declaration

<declare type="vector">
<ci> A </ci>

</declare>

specifies that A is a vector without indicating the number of components or the values of specific components. The possible values for the type attribute include all
the predefined container element names such as vector, matrix or set (see Section 4.3.2.9).

4.2.1.7 The lambda construct

The lambda calculus allows a user to construct a function from a variable and an expression. For example, the lambda construct underlies the common mathematical
idiom illustrated here:

Let f be the function taking x to x 2 + 2

There are various notations for this concept in mathematical literature, such as λ(x, F(x)) = F or λ(x, [F]) =F , where x is a free variable in F .

This concept is implemented in MathML with the lambda element. A lambda construct with n internal variables is encoded by a lambda element with n+1 children.
All but the last child must be bvar elements containing the identifiers of the internal variables. The last child is an expression defining the function. This is typically
an apply, but can also be any container element.

The following constructs λ (x, sin(x+1)):

104

105

<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</apply>

</lambda>

To use declare and lambda to construct the function f for which f (x) = x 2 + x + 3 use:

<declare type="fn">
<ci> f </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<plus/>
<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</declare>

The following markup declares and constructs the function J such that J(x, y) is the integral from x to y of t 4 with respect to t.

105

106

<declare type="fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<apply> <int/>
<bvar>
<ci> t </ci>

</bvar>
<lowlimit>
<ci> x </ci>

</lowlimit>
<uplimit>
<ci> y </ci>

</uplimit>
<apply> <power/>
<ci>t</ci>
<cn>4</cn>

</apply>
</apply>

</lambda>
</declare>

The function J can then in turn be applied to an argument pair.

4.2.1.8 The use of qualifier elements and the condition construct

The last example of the preceding section illustrates the use of qualifier elements lowlimit, uplimit, and bvar used in conjunction with the int element. A
number of common mathematical constructions involve additional data that is either implicit in conventional notation, such as a bound variable, or thought of as part
of the operator rather than an argument, as is the case with the limits of a definite integral.

Content markup uses qualifier elements in conjunction with a number of operators, including integrals, sums, series, and certain differential operators. Qualifier
elements appear in the same apply element with one of these operators. In general, they must appear in a certain order, and their precise meaning depends on the
operators being used. For details, see Section 4.2.3.2.

The qualifier element bvar is also used in another important MathML construction. The condition element is used to place conditions on bound variables in other
expressions. This allows MathML to define sets by rule, rather than enumeration, for example. The following markup, for instance, encodes the set x | x < 1:

<set>
<bvar><ci> x </ci></bvar>
<condition>
<apply>
<lt/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</condition>

</set>

106

107

4.2.1.9 Rendering of Content elements

While the primary role of the MathML content element set is to directly encode the mathematical structure of expressions independent of the notation used to
present the objects, rendering issues cannot be ignored. Each content element has a default rendering, given in Section 4.4, and several mechanisms (including
Section 4.3.3.2) are provided for associating a particular rendering with an object.

4.2.2 Containers

Containers provide a means for the construction of mathematical objects of a given type.

Tokens ci, cn, csymbol
Constructors interval, list, matrix, matrixrow, set, vector, apply, reln, fn, lambda
Specials declare

4.2.2.1 Tokens

Token elements are typically the leaves of the MathML expression tree. Token elements are used to indicate mathematical identifiers, numbers and symbols.

It is also possible for the canonically empty operator elements such as exp, sin and cos to be leaves in an expression tree. The usage of operator elements is
described in Section 4.2.3.

cn The cn element is the MathML token element used to represent numbers. The supported types of numbers include: real, integer, rational, complex-
cartesian, and complex-polar, with real being the default type. An attribute base (with default value 10) is used to help specify how the content is
to be parsed. The content itself is essentially PCDATA, separated by <sep/> when two parts are needed in order to fully describe a number. For example,
the real number 3 is constructed by <cn type="real"> 3 </cn>, while the rational number 3/4 is constructed as <cn type="rational"> 3<sep/
>4 </cn>. The detailed structure and specifications are provided in Section 4.4.1.1.

ci The ci element, or ‘content identifier’ is used to construct a variable, or an identifier. A type attribute indicates the type of object the symbol represents. Typically,
ci represents a real scalar, but no default is specified. The content is either PCDATA or a general presentation construct (see Section 3.1.5). For example,
<ci>
<msub>
<mi>c</mi>
<mn>1</mn>

</msub>
</ci>
encodes an atomic symbol that displays visually as c 1which, for purposes of content, is treated as a single symbol representing a real number. The
detailed structure and specifications is provided in Section 4.4.1.2.

csymbol The csymbol element, or ‘content symbol’ is used to construct a symbol whose semantics are not part of the core content elements provided by MathML,
but defined externally. csymbol does not make any attempt to describe how to map the arguments occurring in any application of the function into a new
MathML expression. Instead, it depends on its definitionURL attribute to point to a particular meaning, and the encoding attribute to give the syntax of
this definition. The content of a csymbol is either PCDATAor a general presentation construct (see Section 3.1.5). For example,
<csymbol definitionURL="www.vnbooks.com/ContDiffFuncs.htm"

encoding="text">
<msup>
<mi>C</mi>
<mn>2</mn>

</msup>
</csymbol>
encodes an atomic symbol that displays visually as C 2 and that, for purposes of content, is treated as a single symbol representing the space of twice-
differentiable continuous functions. The detailed structure and specifications is provided in Section 4.4.1.3.

107

108

4.2.2.2 Constructors

MathML provides a number of elements for combining elements into familiar compound objects. The compound objects include things like lists, sets. Each constructor
produces a new type of object.

interval The interval element is described in detail in Section 4.4.2.4. It denotes an interval on the real line with the values represented by its children as end
points. The closure attribute is used to qualify the type of interval being represented. For example,
<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>

</interval>
represents the open-closed interval often written (a, b].

set and list The set and list elements are described in detail in Section 4.4.6.1 and Section 4.4.6.2. Typically, the child elements of a possibly empty list element
are the actual components of an ordered list. For example, an ordered list of the three symbols a, b, and c is encoded as
<list> <ci> a </ci> <ci> b </ci> <ci> c </ci> </list>
Alternatively, bvar and condition elements can be used to define lists where membership depends on satisfying certain conditions. An order attribute,
which is used to specify what ordering is to be used. When the nature of the child elements permits, the ordering defaults to a numeric or lexicographic
ordering. Sets are structured much the same as lists except that there is no implied ordering and the type of set may be normal or multiset with
multiset indicating that repetitions are allowed. For both sets and lists, the child elements must be valid MathML content elements. The type of the child
elements is not restricted. For example, one might construct a list of equations, or inequalities.

matrix and matrixrow The matrix element is used to represent mathematical matrices. It is described in detail in Section 4.4.10.2. It has zero or more child
elements, all of which are matrixrow elements. These in turn expect zero or more child elements that evaluate to algebraic expressions or numbers.
These sub-elements are often real numbers, or symbols as in
<matrix>
<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>
<matrixrow> <cn> 3 </cn> <cn> 4 </cn> </matrixrow>

</matrix>
The matrixrow elements must always be contained inside of a matrix, and all rows in a given matrix must have the same number of elements. Note that
the behavior of the matrix and matrixrow elements is substantially different from the mtable and mtr presentation elements.

vector The vector element is described in detail in Section 4.4.10.1. It constructs vectors from an n-dimensional vector space so that its n child elements typically
represent real or complex valued scalars as in the three-element vector
<vector>
<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>
<cn> 3 </cn>
<cn> 7 </cn>

</vector>
apply The apply element is described in detail in Section 4.4.2.1. Its purpose is apply a function or operator to its arguments to produce an an expression

representing an element of the range of the function. It is involved in everything from forming sums such as a + b as in
<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>

</apply>
through to using the sine function to construct sin(a) as in

108

109

<apply>
<sin/>
<ci> a </ci>

</apply>
or constructing integrals. Its usage in any particular setting is determined largely by the properties of the function (the first child element) and as such its
detailed usage is covered together with the functions and operators in Section 4.2.3.

reln The reln element is described in detail in Section 4.4.2.2. It was used in MathML 1.0 to construct an expression such as a = b, as in
<reln><eq/>
<ci> a </ci>
<ci> b </ci>

</reln>
indicating an intended comparison between two mathematical values. MathML 2.0 takes the view that this should be regarded as the application of
a boolean function, and as such could be constructed using apply. The use of reln with logical operators is supported for reasons of backwards
compatibility, but deprecated in favour of apply.

fn The fn element was used in MathML 1.0 to make explicit the fact that an expression is being used as a function or operator. This is allowed in MathML 2.0 for
backwards compatibility, but is deprecated, as the use of an expression as a function or operator is clear from its position as the first child of an apply. fn
is discussed in detail in Section 4.4.2.3.

lambda The lambda element is used to construct a user-defined function from an expression and one or more free variables. The lambda construct with n internal
variables takes n+1 children. The first (second, up to n) is a bvar containing the identifiers of the internal variables. The last is an expression defining the
function. This is typically an apply, but can also be any container element. The following constructs λ (x, sin x)
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<ci> x </ci>

</apply>
</lambda>
The following constructs the constant function λ (x, 3)
<lambda>
<bvar><ci> x </ci></bvar>
<cn> 3 </cn>

</lambda>

4.2.2.3 Special Constructs

The declare construct is described in detail in Section 4.4.2.8. It is special in that its entire purpose is to modify the semantics of other objects. It is not rendered
visually or aurally.

The need for declarations arises any time a symbol (including more general presentations) is being used to represent an instance of an object of a particular type.
For example, you may wish to declare that the symbolic identifier V represents a vector.

The declaration

<declare type="vector"><ci>V</ci></declare>

resets the default type attribute of <ci>V</ci> to vector for all affected occurrences of <ci>V</ci>. This avoids having to write <ci type="vector">V</ci>
every time you use the symbol.

More generally, declare can be used to associate expressions with specific content. For example, the declaration

109

110

<declare>
<ci>F</ci>
<lambda>
<bvar><ci> U </ci></bvar>
<apply>
<int/>
<bvar><ci> x </ci></bvar>
<lowlimit><cn> 0 </cn></lowlimit>
<uplimit><ci> a </ci></uplimit>
<ci> U </ci>

</apply>
</lambda>

</declare>

associates the symbol F with a new function defined by the lambda construct. Within the scope where the declaration is in effect, the expression

<apply>
<ci>F</ci>
<ci> U </ci>

</apply>

stands for the integral of U from 0 to a.

The declare element can also be used to change the definition of a function or operator. For example, if the URL http://.../MathML:noncommutplus described
a non-commutative plus operation encoded in Maple syntax, then the declaration

<declare definitionURL="http://.../MathML:noncommutplus"
encoding="Maple">

<plus/>
</declare>

would indicate that all affected uses of plus are to be interpreted as having that definition of plus.

4.2.3 Functions, Operators and Qualifiers

The operators and functions defined by MathML can be divided into categories as shown in the table below.

110

111

unary arithmetic exp, factorial, minus, abs, conjugate, arg, real, imaginary
unary logical not
unary functional inverse, ident
unary elementary classical functions sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan, arccosh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech,

arcsinh, arctanh, exp, ln, log
unary linear algebra determinant, transpose
unary calculus and vector calculus divergence, grad, curl, laplacian
unary set-theoretic card
binary arithmetic quotient, divide, minus, power, rem
binary logical implies, equivalent, approx
binary set operators setdiff
binary linear algebra vectorproduct, scalarproduct, outerproduct
n-ary arithmetic plus, times, max, min, gcd, lcm
n-ary statistical mean, sdev, variance, median, mode
n-ary logical and, or, xor
n-ary linear algebra selector
n-ary set operator union, intersect
n-ary functional fn, compose
integral, sum, product operators int, sum, product
differential operator diff, partialdiff
quantifier forall, exists

From the point of view of usage, MathML regards functions (for example sin and cos) and operators (for example plus and times) in the same way. MathML
predefined functions and operators are all canonically empty elements.

Note that the csymbol element can be used to construct a user-defined symbol that can be used as a function or operator.

4.2.3.1 Predefined functions and operators

MathML functions can be used in two ways. They can be used as the operator within an apply element, in which case they refer to a function evaluated at a specific
value. For example,

<apply>
<sin/>
<cn>5</cn>

</apply>

denotes a real number, namely sin(5).

MathML functions can also be used as arguments to other operators, for example

<apply>
<plus/><sin/><cos/>

</apply>

denotes a function, namely the result of adding the sine and cosine functions in some function space. (The default semantic definition of plus is such that it infers
what kind of operation is intended from the type of its arguments.)

The number of child elements in the apply is defined by the element in the first (i.e. operator) position.

Unary operators are followed by exactly one other child element within the apply.

Binary operators are followed by exactly two child elements.

111

112

N-ary operators are followed by zero or more child elements.

The one exception to these rules is that declare elements may be inserted in any position except the first. declare elements are not counted when satisfying the
child element count for an applycontaining a unary or binary operator element.

Integral, sum, product and differential operators are discussed below in Section 4.2.3.2.

4.2.3.2 Operators taking Qualifiers

The table below contains the qualifiers and the operators taking qualifiers in MathML.

qualifiers lowlimit, uplimit, bvar, degree, logbase, interval, condition
operators int, sum, product, root, diff, partialdiff, limit, log, moment, min, max, forall, exists

Operators taking qualifiers are canonically empty functions that differ from ordinary empty functions only in that they support the use of special qualifier elements
to specify their meaning more fully. They are used in exactly the same way as ordinary operators, except that when they are used as operators, certain qualifier
elements are also permitted to be in the enclosing apply. They always precede the argument if it is present. If more than one qualifier is present, they appear in the
order bvar, lowlimit, uplimit, interval, condition, degree, logbase. A typical example is:

<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>
<apply>

<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
</apply>

It is also valid to use qualifier schema with a function not applied to an argument. For example, a function acting on integrable functions on the interval [0,1] might be
denoted:

<fn>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>

</apply>
</fn>

The meaning and usage of qualifier schema varies from function to function. The following list summarizes the usage of qualifier schema with the MathML functions
taking qualifiers.

int The int function accepts the lowlimit, uplimit, bvar, interval and condition schemata. If both lowlimit and uplimit schema are present, they
denote the limits of a definite integral. The domain of integration may alternatively be specified using interval or condition. The bvar schema signifies the
variable of integration. When used with int, each qualifier schema is expected to contain a single child schema; otherwise an error is generated.

diff The diff function accepts the bvar schema. The bvar schema specifies with respect to which variable the derivative is being taken. The bvar may itself contain
a degree schema that is used to specify the order of the derivative, i.e. a first derivative, a second derivative, etc. For example, the second derivative of f
with respect to x is:

112

113

<apply>
<diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>

</degree>
</bvar>
<apply><fn><ci>f</ci></fn>
<ci> x </ci>

</apply>
</apply>

partialdiff The partialdiff function accepts zero or more bvar schemata. The bvarschema specify with respect to which variables the derivative is being taken.
The bvar elements may themselves contain degree schemata that are used to specify the order of the derivative. Variables specified by multiple bvar
elements will be used in order as the variable of differentiation in mixed partials. When used with partialdiff, the degree schema is expected to contain
a single child schema. For example,
<apply>
<partialdiff/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<fn><ci>f</ci></fn>

</apply>
denote the mixed partial (d 2 / d xd y) f .

sum, product The sum and productfunctions accept the bvar, lowlimit, uplimit, interval and conditionschemata. If both lowlimit and uplimit
schemata are present, they denote the limits of the sum or product. The limits may alternatively be specified using the interval or conditionschema.
The bvar schema signifies the index variable in the sum or product. A typical example might be:
<apply>
<sum/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>
<apply>
<power/>
<ci>x</ci>
<ci>i</ci>

</apply>
</apply>
When used with sum or product, each qualifier schema is expected to contain a single child schema; otherwise an error is generated.

limit The limit function accepts zero or more bvar schemata, and optional condition and lowlimitschemata. A condition may be used to place constraints
on the bvar. The bvar schema denotes the variable with respect to which the limit is being taken. The lowlimit schema denotes the limit point. When
used with limit, the bvar and lowlimit schemata are expected to contain a single child schema; otherwise an error is generated.

log The log function accepts only the logbase schema. If present, the logbase schema denotes the base with respect to which the logarithm is being taken.
Otherwise, the log is assumed to be base 10. When used with log, the logbase schema is expected to contain a single child schema; otherwise an error
is generated.

moment The moment function accepts only the degree schema. If present, the degree schema denotes the order of the moment. Otherwise, the moment is
assumed to be the first order moment. When used with moment, the degree schema is expected to contain a single child schema; otherwise an error is
generated.

113

114

min, max The min and maxfunctions accept a bvar schema in cases where the maximum or minimum is being taken over a set of values specified by a condition
schema together with an expression to be evaluated on that set. In MathML1.0, the bvar element was optional when using a condition; if a condition
element containing a single variable was given by itself following a min or max operator, the variable was implicitly assumed to be bound, and the expression
to be maximized or minimized (if absent) was assumed to be the single bound variable. This usage is deprecated in MathML 2.0 in favour of explicitly
stating the bound variable(s) and the expression to be maximised in all cases. The min and max elements may also be applied to a list of values in which
case no qualifier schemata are used. For examples of all three usages, see Section 4.4.3.4.

forall, exists The universal and existential quantifier operators forall and exists are used in conjuction with one or more bvar schemata to represent simple
logical assertions. There are two ways of using the logical quantifier operators. The first usage is for representing a simple, quantified assertion. For
example, the statement ‘there exists x< 9’ would be represented as:
<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<apply><lt/>
<ci> x </ci><cn> 9 </cn>

</apply>
</apply>
The second usage is for representing implications. Hypotheses are given by a condition element following the bound variables. For example the
statement ‘for all x < 9, x < 10’ would be represented as:
<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<ci> x </ci><cn> 9 </cn>

</apply>
</condition>
<apply><lt/>
<ci> x </ci><cn> 10 </cn>

</apply>
</apply>
Note that in both usages one or more bvar qualifiers are mandatory.

4.2.4 Relations

binary relation neq, equivalent, approx
binary logical relation implies
binary set relation in, notin, notsubset, notprsubset
binary series relation tendsto
n-ary relation eq, leq, lt, geq, gt
n-ary set relation subset, prsubset

The MathML content tags include a number of canonically empty elements which denote arithmetic and logical relations. Relations are characterized by the fact
that, if an external application were to evaluate them (MathML does not specify how to evaluate expressions), they would typically return a truth value. By contrast,
operators generally return a value of the same type as the operands. For example, the result of evaluating a < b is either true or false (by contrast, 1 + 2 is again a
number).

Relations are bracketed with their arguments using the apply element in the same way as other functions. In MathML 1.0, relational operators were bracketed using
reln. This usage, although still supported, is now deprecated in favour of apply. The element for the relational operator is the first child element of the apply. Thus,
the example from the preceding paragraph is properly marked up as:

114

115

<apply>
<lt/>
<ci>a</ci>
<ci>b</ci>

</apply>

It is an error to enclose a relation in an element other than apply or reln.

The number of child elements in the apply is defined by the element in the first (i.e. relation) position.

Unary relations are followed by exactly one other child element within the apply.

Binary relations are followed by exactly two child elements.

N-ary relations are followed by zero or more child elements.

The one exception to these rules is that declare elements may be inserted in any position except the first. declare elements are not counted when satisfying the
child element count for an applycontaining a unary or binary relation element.

4.2.5 Conditions

condition condition

The condition element is used to define the ‘such that’ construct in mathematical expressions. Condition elements are used in a number of contexts in MathML.
They are used to construct objects like sets and lists by rule instead of by enumeration. They can be used with the forall and exists operators to form logical
expressions. And finally, they can be used in various ways in conjunction with certain operators. For example, they can be used with and int element to specify
domains of integration, or to specify argument lists for operators like min and max.

The condition element is always used together with one or more bvar elements.

The exact interpretation depends on the context, but generally speaking, the condition element is used to restrict the permissible values of a bound variable
appearing in another expression to those that satisfy the relations contained in the condition. Similarly, when the condition element contains a set, the values
of the bound variables are restricted to that set.

A condition element contains a single child that is either a apply, or a reln element (deprecated). Compound conditions are indicated by applying relations such as
and inside the child of the condition.

4.2.5.1 Examples

The following encodes ‘there exists x such that x 5 < 3’.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<apply>
<power/>
<ci>x</ci>
<cn>5</cn>

</apply>
<cn>3</cn>

</apply>
</condition>

</apply>

115

116

The next example encodes ‘for all xin N there exists prime numbers p,q such that p+ q= 2x’.

<apply>
<forall/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><in/>

<ci>x</ci>
<csymbol encoding="text" definitionURL="www.naturalnums.htm">N</csymbol>

</apply>
</condition>

<apply><exists/>
<bvar><ci>p</ci></bvar>
<bvar><ci>q</ci></bvar>
<condition>
<apply><and/>

<apply><in/><ci>p</ci>
<csymbol encoding="text" definitionURL="www.primes.htm">P</csymbol>

</apply>
<apply><in/><ci>q</ci>
<csymbol encoding="text" definitionURL="www.primes.htm">P</csymbol>

</apply>
<apply><eq/>

<apply><plus/><ci>p</ci><ci>q</ci></apply>
<apply><times/><cn>2</cn><ci>x</ci></apply>

</apply>
</apply>

</condition>
</apply>

</apply>

A third example shows the use of quantifiers with condition. The following markup encodes ‘there exists x < 3 such that x 2 = 4’.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/><ci>x</ci><cn>3</cn></apply>

</condition>
<apply>
<eq/>
<apply>
<power/><ci>x</ci><cn>2</cn>

</apply>
<cn>4</cn>

</apply>
</apply>

116

117

4.2.6 Syntax and Semantics

mappings semantics, annotation, annotation-xml

The use of content markup rather than presentation markup for mathematics is sometimes referred to as semantic tagging [Buswell1996]. The parse-tree of a
valid element structure using MathML content elements corresponds directly to the expression tree of the underlying mathematical expression. We therefore regard
the content tagging itself as encoding the syntax of the mathematical expression. This is, in general, sufficient to obtain some rendering and even some symbolic
manipulation (e.g. polynomial factorization).

However, even in such apparently simple expressions as X + Y, some additional information may be required for applications such as computer algebra. Are X and
Y integers, or functions, etc.? ‘Plus’ represents addition over which field? This additional information is referred to as semantic mapping. In MathML, this mapping is
provided by the semantics, annotation and annotation-xml elements.

The semantics element is the container element for the MathML expression together with its semantic mappings. semantics expects a variable number of child
elements. The first is the element (which may itself be a complex element structure) for which this additional semantic information is being defined. The second and
subsequent children, if any, are instances of the elements annotation and/or annotation-xml.

The semantics tags also accepts the definitionURL and encoding attributes for use by external processing applications. One use might be a URI for a semantic
content dictionary, for example. Since the semantic mapping information might in some cases be provided entirely by the definitionURLattribute, the annotation
or annotation-xml elements are optional.

The annotation element is a container for arbitrary data. This data may be in the form of text, computer algebra encodings, C programs, or whatever a processing
application expects. annotation has an attribute encoding defining the form in use. Note that the content model of annotation is PCDATA, so care must be taken
that the particular encoding does not conflict with XML parsing rules.

The annotation-xml element is a container for semantic information in well-formed XML. For example, an XML form of the OpenMath semantics could be given.
Another possible use here is to embed, for example, the presentation tag form of a construct given in content tag form in the first child element of semantics (or vice
versa). annotation-xml has an attribute encoding defining the form in use.

For example:

117

118

<semantics>
<apply>
<divide/>
<cn>123</cn>
<cn>456</cn>

</apply>
<annotation encoding="Mathematica">
N[123/456, 39]

</annotation>
<annotation encoding="TeX">
$0.269736842105263157894736842105263157894\ldots$

</annotation>
<annotation encoding="Maple">
evalf(123/456, 39);

</annotation>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<mn> 0.269736842105263157894 </mn>
<mover accent=’true’>
<mn> 736842105263157894 </mn>
<mo> ‾ </mo>

</mover>
</mrow>

</annotation-xml>
<annotation-xml encoding="OpenMath">
<OMA>...</OMA>

</annotation-xml>
</semantics>

where OMA is the element defining the additional semantic information.

Of course, providing an explicit semantic mapping at all is optional, and in general would only be provided where there is some requirement to process or manipulate
the underlying mathematics.

4.2.7 Semantic Mappings

Although semantic mappings can easily be provided by various proprietary, or highly specialized encodings, there are no widely available, non-proprietary standard
schemes for semantic mapping. In part to address this need, the goal of the OpenMath effort is to provide a platform-independent, vendor-neutral standard for the
exchange of mathematical objects between applications. Such mathematical objects include semantic mapping information. The OpenMath group has defined an
SGML syntax for the encoding of this information [OpenMath1996]. This element set could provide the basis of one annotation-xml element set.

An attractive side of this mechanism is that the OpenMath syntax is specified in XML, so that a MathML expression together with its semantic annotations can be
validated using XML parsers.

4.2.8 Constants and Symbols

MathML provdies a collection of predefined constants and symbols which represent frequently-encountered concepts in K-12 mathematics. These include symbols
for well-known sets, such as integers integers and rationals, and also some widely known constant symbols such as false, true, exponentiale.

118

119

4.2.9 MathML element types

MathML functions, operators and relations can all be thought of as mathematical functions if viewed in a sufficiently abstract way. For example, the standard addition
operator can be regarded as a function mapping pairs of real numbers to real numbers. Similarly, a relation can be thought of as a function from some space of
ordered pairs into the set of values true, false. To be mathematically meaningful, the domain and range of a function must be precisely specified. In practical terms,
this means that functions only make sense when applied to certain kinds of operands. For example, thinking of the standard addition operator, it makes no sense to
speak of ‘adding’ a set to a function. Since MathML content markup seeks to encode mathematical expressions in a way that can be unambiguously evaluated, it is
no surprise that the types of operands is an issue.

MathML specifies the types of arguments in two ways. The first way is by providing precise instructions for processing applications about the kinds of arguments
expected by the MathML content elements denoting functions, operators and relations. These operand types are defined in a dictionary of default semantic bindings
for content elements, which is given in Appendix C. For example, the MathML content dictionary specifies that for real scalar arguments the plus operator is the
standard commutative addition operator over a field. The elements cn has a type attribute with a default value of real. Thus some processors will be able to use
this information to verify the validity of the indicated operations.

Although MathML specifies the types of arguments for functions, operators and relations, and provides a mechanism for typing arguments, a MathML-compliant
processor is not required to do any type checking. In other words, a MathML processor will not generate errors if argument types are incorrect. If the processor is a
computer algebra system, it may be unable to evaluate an expression, but no MathML error is generated.

4.3 Content Element Attributes

4.3.1 Content Element Attribute Values

Content element attributes are all of the type CDATA, that is, any character string will be accepted as valid. In addition, each attribute has a list of predefined values,
which a content processor is expected to recognize and process. The reason that the attribute values are not formally restricted to the list of predefined values is
to allow for extension. A processor encountering a value (not in the predefined list) which it does not recognize may validly process it as the default value for that
attribute.

4.3.2 Attributes Modifying Content Markup Semantics

Each attribute is followed by the elements to which it can be applied.

4.3.2.1 base

cn indicates numerical base of the number. Predefined values: any numeric string. The default value is 10

4.3.2.2 closure

interval indicates closure of the interval. Predefined values: open, closed, open-closed, closed-open. The default value is closed

119

120

4.3.2.3 definitionURL

csymbol, declare, semantics, any operator element points to an external definition of the semantics of the symbol or construct being declared. The value is a URL
or URI that should point to some kind of definition. This definition overrides the MathML default semantics. At present, MathML does not specify the format
in which external semantic definitions should be given. In particular, there is no requirement that the target of the URI be loadable and parsable.An external
definition could, for example, define the semantics in human-readable form. Ideally, in most situations the definition pointed to by the definitionURL
attribute would be some standard, machine-readable format. However, there are several reasons why MathML does not require such a format. First,
no such format currently exists. There are several projects underway to develop and implement standard semantic encoding formats, most notably the
OpenMath effort. But by nature, the development of a comprehensive system of semantic encoding is a very large enterprise, and while much work has
been done, much additional work remains. Therefore, even though the definitionURL is designed and intended for use with a formal semantic encoding
language such as OpenMath, it is premature to require any one particular format. Another reason for leaving the format of the definitionURL attribute
unspecified is that there will always be situations where some non-standard format is preferable. This is particularly true in situations where authors are
describing new ideas. It is anticipated that in the near term, there will be a variety of renderer-dependent implementations of the definitionURL attribute.
For example, a translation tool might simply prompt the user with the specified definition in situations where the proper semantics have been overridden,
and in this case, human-readable definitions will be most useful. Other software may utilize OpenMath encodings. Still other software may use proprietary
encodings, or look for definitions in any of several formats. As a consequence, authors need to be aware that there is no guarantee a generic renderer will
be able to take advantage of information pointed to by the definitionURL attribute. Of course, when widely-accepted standardized semantic encodings
are available, the definitions pointed to can be replaced without modifying the original document. However, this is likely to be labor intensive. There is no
default value for the definitionURLattribute, i.e. the semantics are defined within the MathML fragment, and/or by the MathML default semantics.

4.3.2.4 encoding

annotation, annotation-xml, csymbol, semantics, all operator elements indicates the encoding of the annotation, or in the case of csymbol , semantics and
operator elements, the syntax of the target referred to by definitionURL. Predefined values are MathML-Presentation, MathML-Content. Other
typical values: TeX, OpenMath. The default value is "", i.e. unspecified.

4.3.2.5 nargs

declare indicates number of arguments for function declarations. Pre-defined values: nary, or any numeric string. The default value is 1

4.3.2.6 occurrence

declare indicates occurrence for operator declarations. Pre-defined values: prefix, infix, function-model. The default value is function-model

4.3.2.7 order

list indicates ordering on the list. Predefined values: lexicographic, numeric. The default value is numeric

4.3.2.8 scope

declare indicates scope of applicability of the declaration. Pre-defined values: local, global.
• local means the containing MathML element.
• global means the containing math element.
The default value is local. At present, declarations cannot affect anything outside of the containing math element. Ideally, one would like to make
document-wide declarations by setting the value of the scope attribute to be global-document. However, the proper mechanism for document-wide
declarations very much depends on details of the way in which XML will be embedded in HTML, future XML style sheet mechanisms, and the underlying
Document Object Model. Since these supporting technologies are still in flux at present, the MathML specification does not include global-document as
a pre-defined value of the scope attribute. It is anticipated, however, that this issue will be revisited in future revisions of MathML as supporting technologies
stabilize. In the near term, MathML implementors that wish to simulate the effect of a document-wide declaration are encouraged to pre-process documents
in order to distribute document-wide declarations to each individual math element in the document.

120

121

4.3.2.9 type

cn indicates type of the number. Predefined values: integer, rational, real, float, complex, complex-polar, complex-cartesian, constant. The default
value is real. Notes. Each data type implies that the data adheres to certain formating conventions, detailed below. If the data fails to conform to the
expected format, an error is generated. Details of the individual formats are:
real A real number is presented in decimal notation. Decimal notation consists of an optional sign (‘+’or ‘-’) followed by a string of digits possibly separated

into an integer and a fractional part by a ‘decimal point’. Some examples are 0.3, 1, and -31.56. If a different base is specified, then the digits are
interpreted as being digits computed to that base. A real number may also be presented in scientific notation. Such numbers have two parts (a
mantissa and an exponent) separated by ‘e’. The first part is a real number, while the second part is an integer exponent indicating a power of the
base. For example, 12.3e5 represents 12.3 times 10^5.

integer An integer is represented by an optional sign followed by a string of 1 or more ‘digits’. What a ‘digit’ is depends on the baseattribute. If base is
present, it specifies the base for the digit encoding, and it specifies it base ten. Thus base=’16’ specifies a hex encoding. When base > 10, letters
are added in alphabetical order as digits. The legitimate values for base are therefore between 2 and 36.

rational A rational number is two integers separated by <sep/>. If base is present, it specifies the base used for the digit encoding of both integers.
complex-cartesian A complex number is of the form two real point numbers separated by <sep/>.
complex-polar A complex number is specified in the form of a magnitude and an angle (in radians). The raw data is in the form of two real numbers

separated by <sep/>.
constant The constant type is used to denote named constants. For example, an instance of <cn type="constant">π</cn>should be interpreted

as having the semantics of the mathematical constant Pi. The data for a constant cn tag may be one of the following common constants:
Symbol Value
π The usual π of trigonometry: approximately 3.141592653...
ⅇ (or ⅇ) The base for natural logarithms: approximately 2.718281828 ...
ⅈ (or ⅈ) Square root of -1
γ Euler’s constant: approximately 0.5772156649...
∞ (or &infty;) Infinity. Proper interpretation varies with context
&true; the logical constant true
&false; the logical constant false
&NotANumber; (or &NaN;) represents the result of an ill-defined floating point division

ci indicates type of the identifier. Predefined values: integer, rational, real, float, complex, complex-polar, complex-cartesian, constant, or the
name of any content element. The meaning of the various attribute values is the same as that listed above for the cn element. The default value is "", i.e.
unspecified.

declare indicates type of the identifier being declared. Predefined values: any content element name. The default value is ci , i.e. a generic identifier
set indicates type of the set. Predefined values: normal, multiset. multiset indicates that repetitions are allowed. The default value is normal.
tendsto indicates the direction from which the limiting value is approached. Predefined values: above, below, two-sided. The default value is above.

4.3.3 Attributes Modifying Content Markup Rendering

4.3.3.1 type

The type attribute, in addition to conveying semantic information, can be interpreted to provide rendering information. For example in

<ci type="vector">V</ci>

a renderer could display a bold V for the vector.

4.3.3.2 General Attributes

All content elements support the following general attributes that can be used to modify the rendering of the markup.

• class
• style

121

122

• id
• other

The class, style and id attributes are intended for compatibility with Cascading Style Sheets (CSS), as described in Section 2.3.5.

Content or semantic tagging goes along with the (frequently implicit) premise that, if you know the semantics, you can always work out a presentation form. When
an author’s main goal is to mark up re-usable, evaluatable mathematical expressions, the exact rendering of the expression is probably not critical, provided that it
is easily understandable. However, when an author’s goal is more along the lines of providing enough additional semantic information to make a document more
accessible by facilitating better visual rendering, voice rendering, or specialized processing, controlling the exact notation used becomes more of an issue.

MathML elements accept an attribute other (see Section 7.2.3), which can be used to specify things not specifically documented in MathML. On content tags,
this attribute can be used by an author to express a preference between equivalent forms for a particular content element construct, where the selection of the
presentation has nothing to do with the semantics. Examples might be

• inline or displayed equations
• script-style fractions
• use of x with a dot for a derivative over d x/d t

Thus, if a particular renderer recognized a display attribute to select between script-style and display-style fractions, an author might write

<apply other=’display="scriptstyle"’>
<divide/>
<mn> 1 </mn>
<mi> x </mi>

</apply>

to indicate that the rendering 1/ x is preferred.

The information provided in the other attribute is intended for use by specific renderers or processors, and therefore, the permitted values are determined by the
renderer being used. It is legal for a renderer to ignore this information. This might be intentional, in the case of a publisher imposing a house style, or simply because
the renderer does not understand them, or is unable to carry them out.

4.4 The Content Markup Elements

This section provides detailed descriptions of the MathML content tags. They are grouped in categories that broadly reflect the area of mathematics from which they
come, and also the grouping in the MathML DTD. There is no linguistic difference in MathML between operators and functions. Their separation here and in the DTD
is for reasons of historical usage.

When working with the content elements, it can be useful to keep in mind the following.

• The role of the content elements is analogous to data entry in a mathematical system. The information that is provided is there to facilitate the successful
parsing of an expression as the intended mathematical object by a receiving application.

• MathML content elements do not by themselves ‘perform’ any mathematical evaluations or operations. They do not ‘evaluate’ in a browser and any ‘action’
that is ultimately taken on those objects is determined entirely by the receiving mathematical application. For example, editing programs and applications
geared to computation for the lower grades would typically leave 3 + 4 as is, whereas computational systems targeting a more advanced audience might
evaluate this as 7. Similarly, some computational systems might evaluate sin(0) to 0, whereas others would leave it unevaluated. Yet other computational
systems might be unable to deal with pure symbolic expressions sin(x) and may even regard it as a data entry error. None of this has any bearing on the
correctness of the original MathML representation. Where evaluation is mentioned at all in the descriptions below, it is merely to help clarify the meaning
of the underlying operation.

• Apart from the instances where there is an explicit interaction with presentation tagging, there is no required rendering (visual or aural) - only a suggested
default. As such, the presentations that are included in this section are merely to help communicate to the reader the intended mathematical meaning by
association with the same expression written in a more traditional notation.

122

123

The available content elements are:

• token elements
– cn
– ci
– csymbol (MathML 2.0)

• basic content elements
– apply
– reln (deprecated)
– fn (deprecated for externally defined functions)
– interval
– inverse
– sep
– condition
– declare
– lambda
– compose
– ident

• arithmetic, algebra and logic
– quotient
– exp
– factorial
– divide
– max and min
– minus
– plus
– power
– rem
– times
– root
– gcd
– and
– or
– xor
– not
– implies
– forall
– exists
– abs
– conjugate
– arg (MathML 2.0)
– real (MathML 2.0)
– imaginary (MathML 2.0)
– lcm (MathML 2.0)

• relations
– eq
– neq
– gt

123

124

– lt
– geq
– leq
– equivalent (MathML 2.0)
– approx (MathML 2.0)

• calculus and vector calculus
– int
– diff
– partialdiff
– lowlimit
– uplimit
– bvar
– degree
– divergence (MathML 2.0)
– grad (MathML 2.0)
– curl (MathML 2.0)
– laplacian (MathML 2.0)

• theory of sets
– set
– list
– union
– intersect
– in
– notin
– subset
– prsubset
– notsubset
– notprsubset
– setdiff
– card (MathML 2.0)

• sequences and series
– sum
– product
– limit
– tendsto

• elementary classical functions
– exp
– ln
– log
– sin
– cos
– tan
– sec
– csc
– cot
– sinh
– cosh

124

125

– tanh
– sech
– csch
– coth
– arcsin
– arccos
– arctan
– arccosh
– arccot
– arccoth
– arccsc
– arccsch
– arcsec
– arcsech
– arcsinh
– arctanh

• statistics
– mean
– sdev
– variance
– median
– mode
– moment

• linear algebra
– vector
– matrix
– matrixrow
– determinant
– transpose
– selector
– vectorproduct (MathML 2.0)
– scalarproduct (MathML 2.0)
– outerproduct (MathML 2.0)

• semantic mapping elements
– annotation
– semantics
– annotation-xml

• constant and symbol elements
– integers (MathML2.0)
– reals (MathML2.0)
– rationals (MathML2.0)
– naturalnumbers (MathML2.0)
– complexes (MathML2.0)
– primes (MathML2.0)
– exponentiale (MathML2.0)
– imaginaryi (MathML2.0)
– notanumber (MathML2.0)

125

126

– true (MathML2.0)
– false (MathML2.0)
– emptyset (MathML2.0)
– pi (MathML2.0)
– eulergamma (MathML2.0)
– infinity (MathML2.0)

4.4.1 Token Elements

4.4.1.1 Number (cn)

Discussion

The cn element is used to specify actual numerical constants. The content model must provide sufficient information that a number may be entered as data into
a computational system. By default, it represents a signed real number in base 10. Thus, the content normally consists of PCDATA restricted to a sign, a string of
decimal digits and possibly a decimal point, or alternatively one of the predefined symbolic constants such as π.

The cn element uses the attribute type to represent other types of numbers such as, for example, integer, rational, real or complex, and uses the attribute base to
specify the numerical base.

In addition to simple PCDATA, cn accepts as content PCDATA separated by the (empty) element sep. This determines the different parts needed to construct a rational
or complex-cartesian number.

The cn element may also contain arbitrary presentation markup in its content (see Chapter 3) so that its presentation can be very elaborate.

Alternative input notations for numbers are possible, but must be explicitly defined by using the definitionURL and encoding attributes, to refer to a written
specification of how a sequence of real numbers separated by <sep/> should be interpreted.

Attributes

All attributes are CDATA:

type Allowed values are real, integer, rational, complex-cartesian, complex-polar, constant
base Number (CDATA for XML DTD) between 2 and 36.
definitionURL URL or URI pointing to an alternative definition.
encoding Syntax of the alternative definition.

Examples

<cn type="real"> 12345.7 </cn>
<cn type="integer"> 12345 </cn>
<cn type="integer" base="16"> AB3 </cn>
<cn type="rational"> 12342 <sep/> 2342342 </cn>
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>
<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>
<cn type="constant"> π </cn>

126

127

Default Rendering

By default, a contiguous block of PCDATA contained in a cn element should render as if it were wrapped in an mn presentation element. Similarly, presentation markup
contained in a cn element should render as it normally would. A mixture of PCDATA and presentation markup should render as if it were contained wrapped in an
mrow element, with contiguous blocks of PCDATAwrapped in mn elements.

However, not all mathematical systems that encounter content based tagging do visual or aural rendering. The receiving applications are free to make use of a
number in the manner it normally handles numerical data. Some systems might simplify the rational number 12342/2342342 to 6171/1171171 while pure floating
point based systems might approximate this as 0.5269085385e-2. All numbers might be re-expressed in base 10. The role of MathML is simply to record enough
information about the mathematical object and its structure so that it may be properly parsed.

The following renderings of the above MathML expressions are included both to help clarify the meaning of the corresponding MathML encoding and as suggestions
for authors of rendering applications. In each case, no mathematical evaluation is intended or implied.

• 12345.7
• 12345
• AB3 16

• 12342 / 2342342
• 12.3 + 5 i
• Polar(2 , 3.1415)
• π

4.4.1.2 Identifier (ci)

Discussion

The ci element is used to name an identifier in a MathML expression (for example a variable). Such names are used to identify mathematical objects. By default
they are assumed to represent complex scalars. The ci element may contain arbitrary presentation markup in its content (see Chapter 3) so that its presentation as
a symbol can be very elaborate.

The ci element uses the type attribute to specify the type of object that it represents. Valid types include integer, rational, real, float, complex, constant,
and more generally, any of the names of the MathML container elements (e.g. vector) or their type values. The definitionURL and encoding attributes can be
used to extend the definition of ci to include other types. For example, a more advanced use might require a complex-vector.

Examples

<ci> x </ci>

<ci type="vector"> V </ci>

<ci>
<msub>
<mi>x</mi>
<mi>a</mi>

</msub>
</ci>

Default Rendering

If the content of a ci element is tagged using presentation tags, that presentation is used. If no such tagging is supplied then the PCDATA content would typically be
rendered as if it were the content of an mi element. A renderer may wish to make use of the value of the type attribute to improve on this. For example, a symbol of
type vector might be rendered using a bold face. Typical renderings of the above symbols are:

127

128

• x
• V
• xi

4.4.1.3 Externally defined symbol (csymbol)

Discussion

The csymbol element allows a writer to create an element in MathML whose semantics are externally defined (i.e. not in the core MathML content). The element
can then be used in a MathML expression as for example an operator or constant. Attributes are used to give the syntax and location of the external definition of the
symbol semantics.

Use of csymbol for referencing external semantics can be contrasted with use of the semantics to attach additional information in-line (ie. within the MathML
fragment) to a MathML construct. See Section 4.2.6

Attributes

All attributes are CDATA:

definitionURL Pointer to external definition of the semantics of the symbol. MathML does not specify a particular syntax in which this definition should be written.
encoding Gives the syntax of the definition pointed to by definitionURL. An application can then test the value of this attribute to determine whether it is able to

process the target of the definitionURL. This syntax might be text, or a formal syntax such as OpenMath.

Examples

<!-- reference to OpenMath formal syntax definition of Bessel function -->
<apply>
<csymbol encoding="OpenMath"

definitionURL="www.openmath.org/cds/BesselFunctions.ocd">
<msub><mi>J</mi><mn>0</mn></msub>

</csymbol>
<ci>y</ci>

</apply>

<!-- reference to human readable text description of Boltzmann’s constant -->
<csymbol encoding="text"

definitionURL="www.uni.edu/universalconstants/Boltzmann.htm">
k

</csymbol>

Default Rendering

By default, a contiguous block of PCDATA contained in a csymbol element should render as if it were wrapped in an mo presentation element. Similarly, presentation
markup contained in a csymbol element should render as it normally would. A mixture of PCDATA and presentation markup should render as if it were contained
wrapped in an mrowelement, with contiguous blocks of PCDATA wrapped in mo elements. The examples above would render by default as

• J0(y)
• k

As csymbol is used to support reference to externally defined semantics, it is a MathML error to have embedded content MathML elements within the csym-
bolelement.

128

129

4.4.2 Basic Content Elements

4.4.2.1 Apply (apply)

Discussion

The apply element allows a function or operator to be applied to its arguments. Nearly all expression construction in MathML content markup is carried out by
applying operators or functions to arguments. The first child of apply is the operator, to be applied, with the other child elements as arguments.

The apply element is conceptually necessary in order to distinguish between a function or operator, and an instance of its use. The expression constructed by
applying a function to 0 or more arguments is always an element from the range of the function.

Proper usage depends on the operator that is being applied. For example, the plus operator may have zero or more arguments. while the minus operator requires
one or two arguments to be properly formed.

If the object being applied as a function is not already one of the elements known to be a function (such as fn, sin or plus) then it is treated as if it were the contents
of an fn element.

Some operators such as diff and int make use of ‘named’ arguments. These special arguments are elements that appear as children of the apply element and
identify ‘parameters’such as the variable of differentiation or the domain of integration. These elements are discussed further in Section 4.2.3.2.

Examples

<apply>
<factorial/>
<cn>3</cn>

</apply>

<apply>
<plus/>
<cn>3</cn>
<cn>4</cn>

</apply>

<apply>
<sin/>
<ci>x</ci>

</apply>

Default Rendering

A mathematical system that has been passed an apply element is free to do with it whatever it normally does with such mathematical data. It may be that no
rendering is involved (e.g. a syntax validator), or that the ‘function application’ is evaluated and that only the result is rendered (e.g. sin(0)→ 0).

When an unevaluated ‘function application’ is rendered there are a wide variety of appropriate renderings. The choice often depends on the function or operator
being applied. Applications of basic operations such as plus are generally presented using an infix notation while applications of sinwould use a more traditional
functional notation such as sin(x). Consult the default rendering for the operator being applied.

Applications of user-defined functions (see csymbol, fn) that are not evaluated by the receiving or rendering application would typically render using a traditional
functional notation unless an alternative presentation is specified using the semantics tag.

129

130

4.4.2.2 Relation (reln)

Discussion

The reln element was used in MathML 1.0 to construct an equation or relation. Relations were constructed in a manner exactly analogous to the use of apply. This
usage is deprecated in MathML 2.0 in favour of the more generally usable apply.

The first child of reln is the relational operator, to be applied, with the other child elements acting as arguments. See Section 4.2.4 for further details.

Examples

<reln>
<eq/>
<ci> a </ci>
<ci> b </ci>

</reln>

<reln>
<lt/>
<ci> a </ci>
<ci> b </ci>

</reln>

Default Rendering

• a = b
• a< b

4.4.2.3 Function (fn)

Discussion

The fn element makes explicit the fact that a more general (possibly constructed) MathML object is being used in the same manner as if it were a pre-defined function
such as sin or plus.

fn has exactly one child element, used to give the name (or presentation form) of the function. When fn is used as the first child of an apply, the number of following
arguments is determined by the contents of the fn.

In MathML 1.0, fn was also the primary mechanism used to extend the collection of ‘known’ mathematical functions. This usage is now deprecated in favour of the
more generally applicable csymbol element. (New functions may also be introduced by using declare in conjunction with a lambda expression.)

Examples

<fn><ci> L </ci> </fn>

130

131

<apply>
<fn>
<apply>
<plus/>
<ci> f </ci>
<ci> g </ci>

</apply>
</fn>
<ci>z</ci>

</apply>

Default Rendering

An fn object is rendered in the same way as its content. A rendering application may add additional adornments such as parentheses to clarify the meaning.

• L
• (f +g)z

4.4.2.4 Interval (interval)

Discussion

The interval element is used to represent simple mathematical intervals of the real number line. It takes an attribute closure, which can take on any of the values
open, closed, open-closed, or closed-open, with a default value of closed.

More general domains are constructed by using the condition and bvar elements to bind free variables to constraints.

The interval element expects either two child elements that evaluate to real numbers or one child element that is a condition defining the interval.

Examples

<interval>
<ci> a </ci>
<ci> b </ci>

</interval>

<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>

</interval>

Default Rendering

• [a,b]
• (a,b]

131

132

4.4.2.5 Inverse (inverse)

Discussion

The inverse element is applied to a function in order to construct a generic expression for the functional inverse of that function. (See also the discussion of inverse
in Section 4.2.1.5). As with other MathML functions, inverse may either be applied to arguments, or it may appear alone, in which case it represents an abstract
inversion operator acting on other functions.

A typical use of the inverse element is in an HTML document discussing a number of alternative definitions for a particular function so that there is a need to write
and define f (−1)(x). To associate a particular definition with f (−1), use the definitionURL and encodingattributes.

Examples

<apply>
<inverse/>
<ci> f </ci>

</apply>

<apply>
<inverse definitionURL="../MyDefinition.htm" encoding="text"/>
<ci> f </ci>

</apply>

<apply>
<apply><inverse/>
<ci type="matrix"> a </ci>

</apply>
<ci> A </ci>

</apply>

Default Rendering

The default rendering for a functional inverse makes use of a parenthesized exponent as in f (−1)(x).

4.4.2.6 Separator (sep)

Discussion

The sep element is to separate PCDATA into separate tokens for parsing the contents of the various specialized forms of the cn elements. For example, sep is used
when specifying the real and imaginary parts of a complex number (see Section 4.4.1). If it occurs between MathML elements, it is a MathML error.

Examples

<cn type="complex"> 3 <sep/> 4 </cn>

Default Rendering

The sep element is not directly rendered (see Section 4.4.1).

132

133

4.4.2.7 Condition (condition)

Discussion

The condition element is used to place a condition on one or more free variables or identifiers. The conditions may be specified in terms of relations that are to be
satisfied by the variables, including general relationships such as set membership.

It is used to define general sets and lists in situations where the elements cannot be explicitly enumerated. Condition contains either a single apply or relnelement;
the apply element is used to construct compound conditions. For example, it is used below to describe the set of all x such that x < 5. See the discussion on sets in
Section 4.4.6. See Section 4.2.5 for further details.

Examples

<condition>
<apply><in/><ci> x </ci><ci type="set"> R </ci></apply>

</condition>

<condition>
<apply>
<and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><lt/><ci> x </ci><cn> 1 </cn></apply>

</apply>
</condition>

<apply>
<max/>
<bvar><ci> x </ci></bvar>
<condition>
<apply> <and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><lt/><ci> x </ci><cn> 1 </cn></apply>

</apply>
</condition>
<apply>
<minus/>
<ci> x </ci>
<apply>
<sin/>
<ci> x </ci>

</apply>
</apply>

</apply>

Default Rendering

• x∈ R
• x> 0∧x< 1
• maxx{x−sinx | 0< x< 1}

133

134

4.4.2.8 Declare (declare)

Discussion

The declare construct has two primary roles. The first is to change or set the default attribute values for a specific mathematical object. The second is to establish
an association between a ‘name’ and an object. Once a declaration is in effect, the ‘name’ object acquires the new attribute settings, and (if the second object is
present) all the properties of the associated object.

The various attributes of the declare element assign properties to the object being declared or determine where the declaration is in effect.

By default, the scope of a declaration is ‘local’ to the surrounding container element. Setting the value of the scope attribute to global extends the scope of the
declaration to the enclosing mathelement. As discussed in Section 4.3.2.8, MathML contains no provision for making document-wide declarations at present, though
it is anticipated that this capability will be added in future revisions of MathML, when supporting technologies become available. declare takes one or two children.
The first child, which is mandatory, is a ci containing the identifier being declared:

<declare type="vector"> <ci> V </ci> </declare>

The second child, which is optional, is a constructor initialising the variable:

<declare type="vector">
<ci> V </ci>
<vector>
<cn> 1 </cn><cn> 2 </cn><cn> 3 </cn>

</vector>
</declare>

The constructor type and the type of the element declared must agree. For example, if the type attribute of the declaration is fn, the second child (constructor) must
be an element equivalent to an fn element (This would include actual fn elements, lambda elements and any of the defined function in the basic set of content
tags.) If no type is specified in the declaration then the type attribute of the declared name is set to the type of the constructor (second child) of the declaration. The
type attribute of the declaration can be especially useful in the special case of the second element being a semantic tag.

Attributes

All attributes are CDATA:

type defines the MathML element type of the identifier declared.
scope defines the scope of application of the declaration.
nargs number of arguments for function declarations.
occurrence describes operator usage as prefix, infix or function-modelindications.
definitionURL URI pointing to detailed semantics of the function.
encoding syntax of the detailed semantics of the function.

Examples

The declaration

<declare type="fn" nargs="2" scope="local">
<ci> f </ci>
<apply>
<plus/>
<ci> F </ci><ci> G </ci>

</apply>
</declare>

134

135

declares f to be a two-variable function with the property that f (x, y) = (F+ G)(x, y).

The declaration

<declare type="fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply><ln/>
<ci> x </ci>

</apply>
</lambda>

</declare>

associates the name J with a one-variable function defined so that J(x) = ln y. (Note that because of the type attribute of the declare element, the second argument
must be something of type fn, namely a known function like sin, an fn construct, or a lambdaconstruct.)

The type attribute on the declaration is only necessary if if the type cannot be inferred from the type of the second argument.

Even when a declaration is in effect it is still possible to override attributes values selectively as in <ci type="integer"> V </ci>. This capability is needed in
order to write statements of the form ‘Let Sbe a member of S’.

Default Rendering

Since the declare construct is not directly rendered, most declarations are likely to be invisible to a reader. However, declarations can produce quite different effects
in an application which evaluates or manipulates MathML content. While the declaration

<declare>
<ci> v </ci>
<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>

</vector>
</declare>

is active the symbol v acquires all the properties of the vector, and even its dimension and components have meaningful values. This may affect how v is rendered by
some applications, as well as how it is treated mathematically.

4.4.2.9 Lambda (lambda)

Discussion

The lambda element is used to construct a user-defined function from an expression and one or more free variables. The lambda construct with n internal variables
takes n+1 children. The first n children identify the variables that are used as placeholders in the last child for actual parameter values. See Section 4.2.2.2 for further
details.

Examples

The first example presents a simple lambda construct.

135

136

<lambda>
<bvar><ci> x </ci></bvar>
<apply><sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</apply>

</lambda>

The next example constructs a one-argument function in which the argument b specifies the upper bound of a specific definite integral.

<lambda>
<bvar><ci> b </ci></bvar>
<apply>
<int/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>
</lambda>

Such constructs are often used in conjunction with declare to construct new functions.

Default Rendering

• λ(x,sinx+1)
• λ(b,

∫ b
a f (x)dx)

4.4.2.10 Function composition (compose)

Discussion

The compose element represents the function composition operator. Note that MathML makes no assumption about the domain and range of the constituent functions
in a composition; the domain of the resulting composition may be empty.

To override the default semantics for the compose element, or to associate a more specific definition for function composition, use the definitionURL and encod-
ingattributes. See Section 4.2.3 for further details.

136

137

Examples

<apply>
<compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply>

<apply>
<compose/>
<ci type="fn"> f </ci>
<ci type="fn"> g </ci>
<ci type="fn"> h </ci>

</apply>

<apply>
<apply><compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply>
<ci> x </ci>

</apply>

<apply>
<fn><ci> f </ci></fn>
<apply>
<fn><ci> g </ci></fn>
<ci> x </ci>

</apply>
</apply>

Default Rendering

• f ◦g
• f ◦g◦h
• (f ◦g)(x)
• f (g(x))

4.4.2.11 Identity function (ident)

Discussion

The ident element represents the identity function. MathML makes no assumption about the function space in which the identity function resides. That is, proper
interpretation of the domain (and hence range) of the identity function depends on the context in which it is used.

To override the default semantics for the identelement, or to associate a more specific definition, use the definitionURL and encodingattributes (see Sec-
tion 4.2.3).

Examples

137

138

<apply>
<eq/>
<apply><compose/>
<fn><ci> f </ci></fn>
<apply><inverse/>
<fn><ci> f </ci></fn>

</apply>
</apply>
<ident/>

</apply>

Default Rendering

f ◦ f−1 = id

4.4.3 Arithmetic, Algebra and Logic

4.4.3.1 Quotient (quotient)

Discussion

The quotient element is the operator used for division modulo a particular base. When the quotient operator is applied to integer arguments a and b, the result is
the ‘quotient of adivided by b’. That is, quotientreturns the unique integer, q such that a = q b+ r . (In common usage, q is called the quotient and r is the remainder.)

The quotient element takes the attribute definitionURL and encodingattributes, which can be used override the default semantics.

The quotient element is a binary arithmetic operator (see Section 4.2.3).

Example

<apply>
<quotient/>
<ci> a </ci>
<ci> b </ci>

</apply>

Various mathematical applications will use this data in different ways. Editing applications might choose an image such as shown below, while a computationally
based application would evaluate it to 2 when a=13 and b=5.

Default Rendering

There is no commonly used notation for this concept. Some possible renderings are

• quotient of a divided by b
• integer part of a/ b
• ba/bc

138

139

4.4.3.2 Factorial (factorial)

Discussion

The factorial element is used to construct factorials.

The factorial element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The factorial element is a unary arithmetic operator (see Section 4.2.3).

Example

<apply>
<factorial/>
<ci> n </ci>

</apply>

If this were evaluated at n = 5 it would evaluate to 120.

Default Rendering

n!

4.4.3.3 Division (divide)

Discussion

The divide element is the division operator.

The divide element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The divide element is a binary arithmetic operator (see Section 4.2.3).

Example

<apply>
<divide/>
<ci> a </ci>
<ci> b </ci>

</apply>

As a MathML expression, this does not evaluate. However, on receiving such an expression, some applications may attempt to evaluate and simplify the value. For
example, when a=5 and b=2 some mathematical applications may evaluate this to 2.5 while others will treat is as a rational number.

Default Rendering

a/b

4.4.3.4 Maximum and minimum (max, min)

Discussion

The elements max and minare used to compare the values of their arguments. They return the maximum and minimum of these values respectively.

The max and min elements take the definitionURL and encoding attributes that can be used to override the default semantics.

The max and min elements are n-ary arithmetic operators (see Section 4.2.3).

139

140

Examples

When the objects are to be compared explicitly they are listed as arguments to the function as in:

<apply>
<max/>
<ci> a </ci>
<ci> b </ci>

</apply>

The elements to be compared may also be described using bound variables with a condition element and an expression to be maximised, as in:

<apply>
<min/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><notin/><ci> x </ci><ci type="set"> B </ci></apply>

</condition>
<apply>

<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
</apply>

Note that the bound variable must be stated even if it might be implicit in conventional notation. In MathML1.0, the bound variable and expression to be evaluated (x)
could be omitted in the example below: this usage is deprecated in MathML2.0 in favour of explicitly stating the bound variable and expression in all cases:

<apply>
<bvar><ci>x</ci></bvar>
<max/>
<condition>
<apply><and/>
<apply><in/><ci>x</ci><ci type="set">B</ci></apply>
<apply><notin/><ci>x</ci><ci type="set">C</ci></apply>

</apply>
</condition>
<ci>x</ci>

</apply>

Default Rendering

• max{a,b}
• minx{x2 | x /∈ B}
• max{x∈ B∧x /∈C}

4.4.3.5 Subtraction (minus)

Discussion

The minus element is the subtraction operator.

The minus element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

140

141

The minus element can be used as a unary arithmetic operator (e.g. to represent - x), or as a binary arithmetic operator (e.g. to represent x- y).

Example

<apply> <minus/>
<ci> x </ci>
<ci> y </ci>

</apply>

If this were evaluated at x=5 and y=2 it would yield 3.

Default Rendering

x−y

4.4.3.6 Addition (plus)

Discussion

The plus element is the addition operator.

The plus element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The plus element is an n-ary arithemtic operator (see Section 4.2.3).

Example

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
<ci> z </ci>

</apply>

If this were evaluated at x = 5, y = 2 and z = 1 it would yield 8.

Default Rendering

x+y+z

4.4.3.7 Exponentiation (power)

Discussion

The power element is a generic exponentiation operator. That is, when applied to arguments a and b, it returns the value the ‘ a to the power of b’.

The power element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The power element is an binary arithmetic operator (see Section 4.2.3).

141

142

Example

<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>

If this were evaluated at x= 5 it would yield 125.

Default Rendering

x3

4.4.3.8 Remainder (rem)

Discussion

The rem element is the operator that returns the ‘remainder’ of a division modulo a particular base. When the rem operator is applied to integer arguments a and b,
the result is the ‘remainder of adivided by b’. That is, rem returns the unique integer, r such that a = q b+ r , where r < q. (In common usage, q is called the quotient
and r is the remainder.)

The rem element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The rem element is a binary arithmetic operator (see Section 4.2.3).

Example

<apply>
<rem/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated at a = 15 and b = 8 it would yield 7.

Default Rendering

amodb

4.4.3.9 Multiplication (times)

Discussion

The times element is the multiplication operator.

times takes the definitionURL and encodingattributes, which can be used to override the default semantics.

142

143

Example

<apply>
<times/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated at a = 5.5 and b = 3 it would yield 16.5.

Default Rendering

ab

4.4.3.10 Root (root)

Discussion

The root element is used to construct roots. The kind of root to be taken is specified by a degreeelement, which should be given as the first child of the apply
element enclosing the root element. Thus, square roots correspond to the case where degree contains the value 2, cube roots correspond to 3, and so on. If no
degree is present, a default value of 2 is used.

The root element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The root element is an operator taking qualifiers (see Section 4.2.3.2).

Example

The nth root of a is is given by

<apply>
<root/>
<degree><ci type=’integer’> n </ci></degree>
<ci> a </ci>

</apply>

Default Rendering

n
√

a

4.4.3.11 Greatest common divisor (gcd)

Discussion

The gcd element is used to denote the greatest common divisor of its arguments.

The gcd takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The gcd element is an n-ary operator (see Section 4.2.3).

143

144

Example

<apply> <gcd/>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</apply>

If this were evaluated at a = 15, b = 21, c = 48 it would yield 3.

Default Rendering

gcd(a,b,c)

4.4.3.12 And (and)

Discussion

The and element is the boolean ‘and’ operator.

The and element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The and element is an n-ary logical operator (see Section 4.2.3).

Example

<apply>
<and/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated and both a and b had truth values of true, then the value would be true.

Default Rendering

a∧b

4.4.3.13 Or (or)

Discussion

The or element is the boolean ‘or’ operator.

The or element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The or element is an n-ary logical operator (see Section 4.2.3).

Example

<apply>
<or/>
<ci> a </ci>
<ci> b </ci>

</apply>

144

145

Default Rendering

a∨b

4.4.3.14 Exclusive Or (xor)

Discussion

The xor element is the boolean ‘exclusive or’operator.

xor takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The xor element is an n-ary logical operator (see Section 4.2.3).

Example

<apply>
<xor/>
<ci> a </ci>
<ci> b </ci>

</apply>

Default Rendering

axorb

4.4.3.15 Not (not)

The not operator is the boolean ‘not’ operator.

The not element takes the attribute definitionURL and encodingattributes, which can be used to override the default semantics.

The not element is a unary logical operator (see Section 4.2.3).

Example

<apply>
<not/>
<ci> a </ci>

</apply>

Default Rendering

¬a

4.4.3.16 Implies (implies)

Discussion

The implies element is the boolean relational operator ‘implies’.

The implies element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The implies element is a binary logical operator (see Section 4.2.4).

145

146

Example

<apply>
<implies/>
<ci> A </ci>
<ci> B </ci>

</apply>

Mathematical applications designed for the evaluation of such expressions would evaluate this to true when a = false and b = true.

Default Rendering

A⇒ B

4.4.3.17 Universal quantifier (forall)

The forall element represents the universal quantifier of logic. It must used in conjunction with one or more bound variables, an optional condition element, and
an assertion, which may either take the form of an apply or reln element.

The forall element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The forall element is an quantifier (see Section 4.2.3.2).

Examples

The first example encodes a simple identity.

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<minus/><ci> x </ci><ci> x </ci>

</apply>
<cn>0</cn>

</apply>
</apply>

The next example is more involved, and makes use of an optional condition element.

146

147

<apply>
<forall/>
<bvar><ci> p </ci></bvar>
<bvar><ci> q </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> p </ci><ci type="set"> Q </ci></apply>
<apply><in/><ci> q </ci><ci type="set"> Q </ci></apply>
<apply><lt/><ci> p </ci><ci> q </ci></apply>

</apply>
</condition>
<apply><lt/>

<ci> p </ci>
<apply>

<power/>
<ci> q </ci>
<cn> 2 </cn>

</apply>
</apply>

</apply>

The final example uses both the forall and exists quantifiers.

<apply>
<forall/>
<bvar><ci> n </ci></bvar>
<condition>
<apply><and/>
<apply><gt/><ci> n </ci><cn> 0 </cn></apply>
<apply><in/><ci> n </ci><ci type="set"> Z </ci></apply>

</apply>
</condition>
<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<bvar><ci> z </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> x </ci><ci type="set"> Z </ci></apply>
<apply><in/><ci> y </ci><ci type="set"> Z </ci></apply>
<apply><in/><ci> z </ci><ci type="set"> Z </ci></apply>

</apply>
</condition>
<apply>
<eq/>
<apply>
<plus/>
<apply><power/><ci> x </ci><ci> n </ci></apply>

147

148

<apply><power/><ci> y </ci><ci> n </ci></apply>
</apply>
<apply><power/><ci> z </ci><ci> n </ci></apply>

</apply>
</apply>

</apply>

Default Rendering

• ∀x : x−x = 0
• ∀p∈Q,q∈Q, p< q : p< q2

• ∀n> 0,n∈ Z : ∃x∈ Z,y∈ Z,z∈ Z : xn +yn = zn

4.4.3.18 Existential quantifier (exists)

The exists element represents the existential quantifier of logic. It must used in conjuction with one or more bound variables, an optional condition element, and
an assertion, which may either take the form of an apply or reln element.

The exists element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The exists element is an quantifier (see Section 4.2.3.2).

Example

The following example encodes the sense of the expression ‘there exists an x such that f (x) = 0’.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
<cn>0</cn>

</apply>
</apply>

Default Rendering

∃x : f (x) = 0

4.4.3.19 Absolute Value (abs)

The abs element represents the absolute value of a real quantity or the modulus of a complex quantity.

The abs element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The abs element is a unary arithmetic operator (see Section 4.2.3).

148

149

Example

The following example encodes the absolute value of x.

<apply>
<abs/>
<ci> x </ci>

</apply>

Default Rendering

|x|

4.4.3.20 Complex conjugate (conjugate)

The conjugate element represents the complex conjugate of a complex quantity.

The conjugate element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The conjugate element is a unary arithmetic operator (see Section 4.2.3).

Example

The following example encodes the conjugate of x + i y.

<apply>
<conjugate/>
<apply>
<plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

Default Rendering

x+ iy

4.4.3.21 Argument (arg)

The arg operator (introduced in MathML 2.0)) gives the ‘argument’ of a complex number, which is the angle (in radians) it makes with the positive real axis. Real
negative numbers have argument equal to + π.

The arg element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The arg element is a unary arithmetic operator (see Section 4.2.3).

149

150

Example

The following example encodes the argument operation on x + i y.

<apply>
<arg/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

Default Rendering

arg(x+ iy)

4.4.3.22 Real part (real)

The real operator (introduced in MathML 2.0) gives the real part of a complex number, that is the x component in x + i y

The real element takes the attributes encoding, definitionURL that can be used to override the default semantics.

The real element is a unary arithmetic operator (see Section 4.2.3).

Example

The following example encodes the real operation on x + i y.

<apply>
<real/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

A MathML-aware evaluation system would return the x component, suitably encoded.

Default Rendering

ℜ(x+ iy)

4.4.3.23 Imaginary part (imaginary)

The imaginary operator (introduced in MathML 2.0) gives the imaginary part of a complex number, that is the y component in x + i y

The imaginary element takes the attributes encoding, definitionURL that can be used to override the default semantics.

The imaginary element is a unary arithmetic operator (see Section 4.2.3).

150

151

Example

The following example encodes the imaginary operation on x + i y.

<apply>
<imaginary/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

A MathML-aware evaluation system would return the y component, suitably encoded.

Default Rendering

ℑ(x+ iy)

4.4.3.24 Lowest common multiple (lcm)

Discussion

The lcm element (introduced in MathML 2.0) is used to denote the lowest common multiple of its arguments.

The lcm takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The lcm element is an n-ary operator (see Section 4.2.3).

Example

<apply> <lcm/>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</apply>

If this were evaluated at a = 2, b = 4, c = 6 it would yield 12.

Default Rendering

lcm(a,b,c)

4.4.4 Relations

4.4.4.1 Equals (eq)

Discussion

The eq element is the relational operator ‘equals’.

The eq element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The equals element is an n-ary relation (see Section 4.2.3.2).

151

152

Example

<apply>
<eq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested at a = 5.5 and b = 6 it would yield the truth value false.

Default Rendering

a = b

4.4.4.2 Not Equals (neq)

Discussion

The neq element is the ‘not equal to’ relational operator.

neq takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The neq element is an binary relation (see Section 4.2.4).

Example

<apply>
<neq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested at a = 5.5 and b = 6 it would yield the truth value true.

Default Rendering

a 6= b

4.4.4.3 Greater than (gt)

Discussion

The gt element is the ‘greater than’ relational operator.

The gt element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The gt element is an n-ary relation (see Section 4.2.4).

152

153

Example

<apply>
<gt/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested at a = 5.5 and b = 6 it would yield the truth value false.

Default Rendering

a> b

4.4.4.4 Less Than (lt)

Discussion

The lt element is the ‘less than’ relational operator.

The lt element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The lt element is an n-ary relation (see Section 4.2.4).

Example

<apply>
<lt/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested at a = 5.5 and b = 6 it would yield the truth value ‘true’.

Default Rendering

a< b

4.4.4.5 Greater Than or Equal (geq)

Discussion

The geq element is the relational operator ‘greater than or equal’.

The geq element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The geq element is an n-ary relation (see Section 4.2.4).

153

154

Example

<apply>
<geq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested for a = 5.5 and b = 5.5 it would yield the truth value true.

Default Rendering

a≥ b

4.4.4.6 Less Than or Equal (leq)

Discussion

The leq element is the relational operator ‘less than or equal’.

The leq element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The leq element is an n-ary relation (see Section 4.2.4).

Example

<apply>
<leq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If a = 5.4 and b = 5.5 this will yield the truth value true.

Default Rendering

a≤ b

4.4.4.7 Equivalent (equivalent)

Discussion

The equivalent element is the ‘equivalence’ relational operator.

The equivalent element takes the attributes encoding, definitionURL that can be used to override the default semantics.

The equivalent element is an n-ary relation (see Section 4.2.3.2).

154

155

Example

<apply>
<equivalent/>
<ci> a </ci>
<apply>
<not/>
<apply> <not/> <ci> a </ci> </apply>

</apply>
</apply>

This yields the truth value true for all values of a.

Default Rendering

a≡ ¬(¬a)

4.4.4.8 Approximately (approx)

Discussion

The approx element is the relational operator ‘approximately equal’.

The approx element takes the attributes encoding, definitionURL that can be used to override the default semantics.

The approx element is a binary relation (see Section 4.2.3.2).

Example

<apply>
<approx/>
<cn type="rational"> 22 <sep/> 7 </cn>
<cn type="constant"> π </cn>

</apply>

Default Rendering

a≈ b

4.4.5 Calculus and Vector Calculus

4.4.5.1 Integral (int)

Discussion

The int element is the operator element for an integral. The lower limit, upper limit and bound variable are given by (optional) child elements, lowlimit, uplimit
and bvar in the enclosing apply element. The integrand is also specified as a child element of the enclosing apply element.

The domain of integration may alternatively be specified by using an interval element, or by a condition element. In such cases, if a bound variable of integration
is intended, it must be specified explicitly. (The condition may involve more than one symbol.)

The int element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The int element is an operator taking qualifiers (see Section 4.2.3.2).

155

156

Examples

This example specifies a lowlimit, uplimit, and bvar.

<apply>
<int/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<cn> 0 </cn>

</lowlimit>
<uplimit>
<ci> a </ci>

</uplimit>
<apply>
<fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

This example specifies the domain of integration with an interval element.

<apply>
<int/>
<bvar>
<ci> x </ci>

</bvar>
<interval>
<ci> a </ci>
<ci> b </ci>

</interval>
<apply><cos/>
<ci> x </ci>

</apply>
</apply>

The final example specifies the domain of integration with an condition element.

156

157

<apply>
<int/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply><in/>
<ci> x </ci>
<ci type="set"> D </ci>

</apply>
</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

Default Rendering
a∫

0

f (x)dx

b∫
a

cosxdx

∫
x∈D

f (x)dx

4.4.5.2 Differentiation (diff)

Discussion

The diff element is the differentiation operator element for functions of a single real variable. The bound variable is given by a bvar element that is a child of the
containing apply element. The bvar elements may also contain a degree element, which specifies the order of the derivative to be taken.

The diff element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The diff element is an operator taking qualifiers (see Section 4.2.3.2).

Example

<apply>
<diff/>
<bvar>
<ci> x </ci>

</bvar>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

157

158

Default Rendering

d f (x)
dx

4.4.5.3 Partial Differentiation (partialdiff)

Discussion

The partialdiff element is the partial differentiation operator element for functions of several real variables. The bound variables are given by bvar elements,
which are children of the containing apply element. The bvarelements may also contain a degree element, which specifies the order of the partial derivative to be
taken in that variable.

The partialdiff element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The partialdiff element is an operator taking qualifiers (see Section 4.2.3.2).

Example

<apply>
<partialdiff/>
<bvar>

<ci> x </ci>
<degree>

<cn> 2 </cn>
</degree>

</bvar>
<bvar>

<ci> y </ci>
</bvar>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
<ci> y </ci>

</apply>
</apply>

Default Rendering

∂3

∂x2∂y
f (x,y)

4.4.5.4 Lower limit (lowlimit)

Discussion

The lowlimit element is the container element used to indicate the ‘lower limit’ of an operator using qualifiers. For example, in an integral, it can be used to specify
the lower limit of integration. Similarly, it is also used to specify the lower limit of an index for sums and products.

The meaning of the lowlimit element depends on the context it is being used in. For further details about how qualifiers are used in conjunction with operators
taking qualifiers, consult Section 4.2.3.2.

158

159

Example

<apply>
<int/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<ci> a </ci>

</lowlimit>
<uplimit>
<ci> b </ci>

</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

Default Rendering

The default rendering of the lowlimit element and its contents depends on the context. In the preceding example, it should be rendered as a subscript to the
integral sign:

b∫
a

f (x)dx

Consult the descriptions of individual operators that make use of the lowlimit construct for default renderings.

4.4.5.5 Upper limit (uplimit)

Discussion

The uplimit element is the container element used to indicate the ‘upper limit’ of an operator using qualifiers. For example, in an integral, it can be used to specify
the upper limit of integration. Similarly, it is also used to specify the upper limit of an index for sums and products.

The meaning of the uplimit element depends on the context it is being used in. For further details about how qualifiers are used in conjunction with operators taking
qualifiers, consult Section 4.2.3.2.

Example

159

160

<apply>
<int/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>

Default Rendering

The default rendering of the uplimit element and its contents depends on the context. In the preceding example, it should be rendered as a superscript to the
integral sign:

b∫
a

f (x)dx

Consult the descriptions of individual operators that make use of the uplimit construct for default renderings.

4.4.5.6 Bound variable (bvar)

Discussion

The bvar element is the container element for the ‘bound variable’ of an operation. For example, in an integral it specifies the variable of integration. In a derivative,
it indicates which variable with respect to which a function is being differentiated. When the bvar element is used to quantify a derivative, the bvar element may
contain a child degree element that specifies the order of the derivative with respect to that variable. The bvarelement is also used for the internal variable in sums
and products and for the bound variable used with the universal and existential quantifiers forall and exists.

The meaning of the bvar element depends on the context it is being used in. For further details about how qualifiers are used in conjunction with operators taking
qualifiers, consult Section 4.2.3.2.

Examples

160

161

<apply>
<diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>

</degree>
</bvar>
<apply>
<power/>
<ci> x </ci>
<cn> 4 </cn>

</apply>
</apply>

<apply>
<int/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><in/><ci> x </ci><ci> D </ci></apply>

</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

Default Rendering

The default rendering of the bvar element and its contents depends on the context. In the preceding examples, it should be rendered as the x in the d x of the
integral, and as the x in the denominator of the derivative symbol:

dx4

dx2∫
x∈D

f (x)dx

Note that in the case of the derivative, the default rendering of the degree child of the bvar element is as an exponent.

Consult the descriptions of individual operators that make use of the bvar construct for default renderings.

4.4.5.7 Degree (degree)

Discussion

The degree element is the container element for the ‘degree’ or ‘order’ of an operation. There are a number basic mathematical constructs that come in families,
such as derivatives and moments. Rather than introduce special elements for each of these families, MathML uses a single general construct, the degree element
for this concept of ‘order’.

The meaning of the degree element depends on the context it is being used in. For further details about how qualifiers are used in conjunction with operators taking
qualifiers, consult Section 4.2.3.2.

161

162

Example

<apply>
<partialdiff/>
<bvar>
<ci> x </ci>
<degree>
<ci> n </ci>

</degree>
</bvar>
<bvar>
<ci> y </ci>
<degree>
<ci> m </ci>

</degree>
</bvar>
<apply><sin/>
<apply> <times/>
<ci> x </ci>
<ci> y </ci>

</apply>
</apply>

</apply>

Default Rendering

The default rendering of the degree element and its contents depends on the context. In the preceding example, the degree elements would be rendered as the
exponents in the differentiation symbols:

∂n+m

∂xn∂ym sin(xy)

Consult the descriptions of individual operators that make use of the degree construct for default renderings.

4.4.5.8 Divergence (divergence)

Discussion

The divergence element is the vector calculus divergence operator, often called div.

The divergence element takes the attributes encoding, definitionURL that can be used to override the default semantics.

The divergence element is an unary calculus operator (see Section 4.2.3).

Example

<apply>
<divergence/>
<ci> a </ci>

</apply>

If a is a vector field defined inside a closed surface Senclosing a volume V, then the divergence of a is given by

162

163

<apply>
<limit/>
<bvar>
<ci> V </ci>

</bvar>
<condition>
<apply>
<tendsto/>
<ci> V </ci>
<cn> 0 </cn>

</apply>
</condition>
<apply>
<divide/>
<apply><int encoding="text" definitionURL="SurfaceIntegrals.htm"/>
<bvar>
<ci> S</ci>

</bvar>
<ci> a </ci>
</apply>
<ci> V </ci>

</apply>
</apply>

Default Rendering

diva

4.4.5.9 Gradient (grad)

Discussion

The grad element is the vector calculus gradient operator, often called grad.

The grad element takes the attributes encoding, definitionURL that can be used to override the default semantics.

The grad element is an unary calculus operator (see Section 4.2.3).

Example

<apply>
<grad/>
<ci> f</ci>

</apply>

Where for example f is a scalar function and f (x, y, z) = k defines a surface S

Default Rendering

gradf

163

164

4.4.5.10 Curl (curl)

Discussion

The curl element is the vector calculus curl operator.

The curl element takes the attributes encoding, definitionURL that can be used to override the default semantics.

The curl element is an unary calculus operator (see Section 4.2.3).

Example

<apply>
<curl/>
<ci> a </ci>

</apply>

Where for example a is a vector.

Default Rendering

curla

4.4.5.11 Laplacian (laplacian)

Discussion

The laplacian element is the vector calculus laplacian operator.

The laplacian element takes the attributes encoding, definitionURL that can be used to override the default semantics.

The laplacian element is an unary calculus operator (see Section 4.2.3).

Example

<apply>
<eq/>
<apply><laplacian/>
<ci> f </ci>

</apply>
<apply>
<divergence/>
<apply><grad/>
<ci> f </ci>

</apply>
</apply>

</apply>

Where for example f is a vector

Default Rendering

∇2 f

164

165

4.4.6 Theory of Sets

4.4.6.1 Set (set)

Discussion

The set element is the container element that constructs a set of elements. The elements of a set can be defined either by explicitly listing the elements, or by using
the bvar and condition elements.

The set element is a constructor element (see Section 4.2.2.2).

Examples

<set>
<ci> b </ci>
<ci> a </ci>
<ci> c </ci>

</set>

<set>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<ci> x </ci>
<cn> 5 </cn>

</apply>
</condition>

</set>

Default Rendering

• {a,b,c}
• {x | x< 5}

4.4.6.2 List (list)

Discussion

The list element is the container element that constructs a list of elements. Elements can be defined either by explicitly listing the elements, or by using the bvar
and condition elements.

Lists differ from sets in that there is an explicit order to the elements. Two orders are supported: lexicographic and numeric. The kind of ordering that should be used
is specified by the order attribute.

The list element is a constructor element (see Section 4.2.2.2).

Examples

<list>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</list>

165

166

<list order="numeric">
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<ci> x </ci>
<cn> 5 </cn>

</apply>
</condition>

</list>

Default Rendering

• [a,b,c]
• [x | x< 5]

4.4.6.3 Union (union)

Discussion

The union element is the operator for a set-theoretic union or join of two (or more) sets.

The union attribute takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The union element is an n-ary set operator (see Section 4.2.3).

Example

<apply>
<union/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A∪B

4.4.6.4 Intersect (intersect)

Discussion

The intersect element is the operator for the set-theoretic intersection or meet of two (or more) sets.

The intersect element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The intersect element is an n-ary set operator (see Section 4.2.3).

166

167

Example

<apply>
<intersect/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>

</apply>

Default Rendering

A∩B

4.4.6.5 Set inclusion (in)

Discussion

The in element is the relational operator used for a set-theoretic inclusion (‘is in’ or ‘is a member of’).

The in element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The in element is a binary set relation (see Section 4.2.4).

Example

<apply>
<in/>
<ci> a </ci>
<ci type="set"> A </ci>

</apply>

Default Rendering

a∈ A

4.4.6.6 Set exclusion (notin)

Discussion

The notin element is the relational operator element used for set-theoretic exclusion (‘is not in’ or ‘is not a member of’).

The notin element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The notin element is a binary set relation (see Section 4.2.4).

Example

<apply>
<notin/>
<ci> a </ci>
<ci> A </ci>

</apply>

167

168

Default Rendering

a /∈ A

4.4.6.7 Subset (subset)

Discussion

The subset element is the relational operator element for a set-theoretic containment (‘is a subset of’).

The subset element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The subset element is an n-ary set relation (see Section 4.2.4).

Example

<apply>
<subset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A⊆ B

4.4.6.8 Proper Subset (prsubset)

Discussion

The prsubset element is the relational operator element for set-theoretic proper containment (‘is a proper subset of’).

The prsubset element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The subset element is an n-ary set relation (see Section 4.2.4).

Example

<apply>
<prsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A⊂ B

168

169

4.4.6.9 Not Subset (notsubset)

Discussion

The notsubset element is the relational operator element for the set-theoretic relation ‘is not a subset of’.

The notsubset element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The notsubset element is a binary set relation (see Section 4.2.4).

Example

<apply>
<notsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A 6⊂ B

4.4.6.10 Not Proper Subset (notprsubset)

Discussion

The notprsubset element is the operator element for the set-theoretic relation ‘is not a proper subset of’.

The notprsubset takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The notprsubset element is a binary set relation (see Section 4.2.4).

Example

<apply>
<notprsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A* B

4.4.6.11 Set Difference (setdiff)

Discussion

The setdiff element is the operator element for a set-theoretic difference of two sets.

The setdiff element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The setdiff element is a binary set operator (see Section 4.2.3).

169

170

Example

<apply>
<setdiff/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A\B

4.4.6.12 Cardinality (card)

Discussion

The card element is the operator element for deriving the size or cardinality of a set

The card element takes the attributes definitionURL, encoding that can be used to override the default semantics.

The card element is a unary set operator (see Section 4.2.3).

Example

<apply>
<eq/>
<apply><card/>
<ci> A </ci>

</apply>
<ci> 5 </ci>

</apply>

where A is a set with 5 elements.

Default Rendering

|A|

4.4.7 Sequences and Series

4.4.7.1 Sum (sum)

Discussion

The sum element denotes the summation operator. Upper and lower limits for the sum, and more generally a domains for the bound variables are specified using
uplimit, lowlimit or a condition on the bound variables. The index for the summation is specified by a bvar element.

The sum element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The sum element is an operator taking qualifiers (see Section 4.2.3.2).

170

171

Examples

<apply>
<sum/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<ci> a </ci>

</lowlimit>
<uplimit>
<ci> b </ci>

</uplimit>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

<apply>
<sum/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>

</apply>
</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

Default Rendering

b

∑
x=a

f (x)

∑
x∈B

f (x)

4.4.7.2 Product (product)

Discussion

The product element denotes the product operator. Upper and lower limits for the product, and more generally a domains for the bound variables are specified using
uplimit, lowlimit or a condition on the bound variables. The index for the product is specified by a bvar element.

The product element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

171

172

The product element is an operator taking qualifiers (see Section 4.2.3.2).

Examples

<apply>
<product/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<ci> a </ci>

</lowlimit>
<uplimit>
<ci> b </ci>

</uplimit>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

<apply>
<product/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>

</apply>
</condition>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
</apply>

Default Rendering

b

∏
x=a

f (x)

∏
x∈B

f (x)

4.4.7.3 Limit (limit)

Discussion

The limit element represents the operation of taking a limit of a sequence. The limit point is expressed by specifying a lowlimit and a bvar, or by specifying a
condition on one or more bound variables.

172

173

The limit element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The limit element is an operator taking qualifiers (see Section 4.2.3.2).

Examples

<apply>
<limit/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<cn> 0 </cn>

</lowlimit>
<apply><sin/>
<ci> x </ci>

</apply>
</apply>

<apply>
<limit/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply>
<tendsto type="above"/>
<ci> x </ci>
<ci> a </ci>

</apply>
</condition>
<apply><sin/>

<ci> x </ci>
</apply>

</apply>

Default Rendering

• lim
x→0

sinx

• lim
x↓a

sinx

4.4.7.4 Tends To (tendsto)

Discussion

The tendsto element is used to express the relation that a quantity is tending to a specified value.

The tendsto element takes the attributes type to set the direction from which the the limiting value is approached and the definitionURL and encoding attributes,
which can be used to override the default semantics.

The tendsto element is a binary relational operator (see Section 4.2.4).

173

174

Examples

<apply>
<tendsto type="above"/>
<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
<apply>
<power/>
<ci> a </ci>
<cn> 2 </cn>

</apply>
</apply>

To express (x, y)→(f (x, y), g(x, y)), one might use vectors, as in:

<apply>
<tendsto/>
<vector>

<ci> x </ci>
<ci> y </ci>

</vector>
<vector>
<apply><fn><ci> f </ci></fn>
<ci> x </ci>
<ci> y </ci>

</apply>
<apply><fn><ci> g </ci></fn>
<ci> x </ci>
<ci> y </ci>

</apply>
</vector>

</apply>

Default Rendering

x2 ↓ a2 (x,y)→ (f (x,y),g(x,y))

4.4.8 Elementary classical functions

The names of the common trigonometric functions supported by MathML are listed below. Since their standard interpretations are widely known, they are discussed
as a group.

174

175

sin cos tan
sec csc cot
sinh cosh tanh
sech csch coth
arcsin arccos arctan
arccosh arccot arccoth
arccsc arccsch arcsec
arcsech arcsinh arctanh

4.4.8.1 Discussion

These operator elements denote the standard trigonometrical functions.

These elements all take the definitionURL and encoding attributes, which can be used to override the default semantics.

They are all unary trigonometric operators. (see Section 4.2.3).

4.4.8.2 Examples

<apply>
<sin/>
<ci> x </ci>

</apply>

<apply>
<sin/>
<apply>
<plus/>
<apply><cos/>
<ci> x </ci>

</apply>
<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</apply>

</apply>

4.4.8.3 Default Rendering

• sinx
• sin(cosx+x3)

4.4.8.4 Exponential (exp)

Discussion

The exp element represents the exponential function associated with the inverse of the ln function. In particular, exp(1) is approximately 2.718281828.

The exp element takes the definitionURL and encodingattributes, which may be used to override the default semantics.

The exp element is a unary arithmetic operator (see Section 4.2.3).

175

176

Example

<apply>
<exp/>
<ci> x </ci>

</apply>

Default Rendering

ex

4.4.8.5 Natural Logarithm (ln)

Discussion

The ln element is the natural logarithm operator.

The ln element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The ln element is an unary calculus operator (see Section 4.2.3).

Example

<apply>
<ln/>
<ci> a </ci>

</apply>

If a = e this will yield the value 1.

Default Rendering

lnx

4.4.8.6 Logarithm (log)

Discussion

The log element is the operator that returns a logarithm to a given base. The base may be specified using a logbase element, which should be the first element
following log, i.e. the second child of the containing apply element. If the logbase element is not present, a default base of 10 is assumed.

The log element takes the definitionURL and encodingattributes, which can be used to override the default semantics.

The log element can be used as either an operator taking qualifiers or a unary calculus operator (see Section 4.2.3.2).

Example

<apply>
<log/>
<logbase>
<cn> 3 </cn>

</logbase>
<ci> x </ci>

</apply>

176

177

This markup represents ‘the base 3 logarithm of x’. For natural logarithms base e, the ln element should be used instead.

Default Rendering

log3x

4.4.9 Statistics

4.4.9.1 Mean (mean)

Discussion

mean is the operator element for a mean or average.

mean takes the definitionURL and encodingattributes, which can be used to override the default semantics.

Example

mean is an n-ary operator (see Section 4.2.3).

<apply>
<mean/>
<ci> X </ci>

</apply>

Default Rendering

X̄or 〈X〉

4.4.9.2 Standard Deviation (sdev)

Discussion

sdev is the operator element for the standard deviation.

sdev takes the definitionURL and encodingattributes, which can be used to override the default semantics.

Example

sdev is an n-ary operator (see Section 4.2.3).

<apply>
<sdev/>
<ci> X </ci>

</apply>

Default Rendering

σ(X)

177

178

4.4.9.3 Variance (variance)

Discussion

variance is the operator element for the statistical variance.

variance takes the definitionURL and encodingattributes, which can be used to override the default semantics.

Example

variance is an n-ary operator (see Section 4.2.3).

<apply>
<variance/>
<ci> X </ci>

</apply>

Default Rendering

σ(X)2

4.4.9.4 Median (median)

Discussion

median is the operator element for the median.

median takes the definitionURL and encodingattributes, which can be used to override the default semantics.

Example

median is an n-ary operator (see Section 4.2.3).

<apply>
<median/>
<ci> X </ci>

</apply>

Default Rendering

median(X)

4.4.9.5 Mode (mode)

Discussion

mode is the operator for the statistical mode.

mode takes the definitionURL and encodingattributes, which can be used to override the default semantics.

178

179

Example

mode is an n-ary operator (see Section 4.2.3).

<apply>
<mode/>
<ci> X </ci>

</apply>

Default Rendering

mode(X)

4.4.9.6 Moment (moment)

Discussion

The moment element represents statistical moments. Use degree for the n in ‘ n-th moment’.

moment takes the definitionURL and encodingattributes, which can be used to override the default semantics.

Example

moment is an operator taking qualifiers (see Section 4.2.3.2).

<apply>
<moment/>
<degree>
<cn> 3 </cn>

</degree>
<ci> X </ci>

</apply>

Default Rendering

〈X3〉

4.4.10 Linear Algebra

4.4.10.1 Vector (vector)

Discussion

vector is the container element for a vector. The child elements form the components of the vector.

For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent to a matrix consisting of a single column, and the transpose of
a vector behaves the same as a matrix consisting of a single row.

179

180

Example

vector is a constructor element (see Section 4.2.2.2).

<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>
<ci> x </ci>

</vector>

Default Rendering
1
2
3
x


(1, 2, 3, x)

4.4.10.2 Matrix (matrix)

Discussion

The matrix element is the container element for matrix rows, which are represented by matrixrow. The matrixrows contain the elements of a matrix.

Example

matrix is a constructor element (see Section 4.2.2.2).

<matrix>
<matrixrow>
<cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>

</matrixrow>
<matrixrow>
<cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>

</matrixrow>
<matrixrow>
<cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>

</matrixrow>
</matrix>

Default Rendering

A =

 0 1 0
0 0 1
1 0 0


4.4.10.3 Matrix row (matrixrow)

Discussion

The matrixrow element is the container element for the rows of a matrix.

180

181

Example

matrixrow is a constructor element (see Section 4.2.2.2).

<matrixrow>
<cn> 1 </cn>
<cn> 2 </cn>

</matrixrow>
<matrixrow>
<cn> 3 </cn>
<ci> x </ci>

</matrixrow>

Default Rendering

Matrix rows are not directly rendered by themselves outside of the context of a matrix.

4.4.10.4 Determinant (determinant)

Discussion

The determinant element is the operator for constructing the determinant of a matrix.

determinant takes the definitionURL and encodingattributes, which can be used to override the default semantics.

Example

determinant is a unary operator (see Section 4.2.3).

<apply>
<determinant/>
<ci type="matrix"> A </ci>

</apply>

Default Rendering

detA

4.4.10.5 Transpose (transpose)

Discussion

The transpose element is the operator for constructing the transpose of a matrix.

transpose takes the definitionURL and encodingattributes, which can be used to override the default semantics.

Example

transpose is a unary operator (see Section 4.2.3).

<apply>
<transpose/>
<ci type="matrix"> A </ci>

</apply>

181

182

Default Rendering

At

4.4.10.6 Selector (selector)

Discussion

The selector element is the operator for indexing into vectors matrices and lists. It accepts one or more arguments. The first argument identifies the vector, matrix
or list from which the selection is taking place, and the second and subsequent arguments, if any, indicate the kind of selection taking place.

When selector is used with a single argument, it should be interpreted as giving the sequence of all elements in the list, vector or matrix given. The ordering of
elements in the sequence for a matrix is understood to be first by column, then by row. That is, for a matrix (ai, j), where the indices denote row and column, the
ordering would be a 1,1, a 1,2, ... a 2,1, a 2,2 ... etcetera.

When three arguments are given, the last one is ignored for a list or vector, and in the case of a matrix, the second and third arguments specify the row and column
of the selected element.

When two arguments are given, and the first is a vector or list, the second argument specifies an element in the list or vector. When a matrix and only one index i is
specified as in

<apply>
<selector/>
<matrix>
<matrixrow>
<cn> 1 </cn> <cn> 2 </cn>

</matrixrow>
<matrixrow>
<cn> 3 </cn> <cn> 4 </cn>

</matrixrow>
</matrix>
<cn> 1 </cn>

</apply>

it refers to the i-th matrixrow. Thus, the preceding example selects the following row:

<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>

selector takes the definitionURL and encodingattributes, which can be used to override the default semantics.

selector is classified as an n-ary linear algebra operator even though it can take only one, two, or three arguments.

Example

<apply>
<selector/>
<ci type="matrix"> A </ci>
<cn> 3 </cn>
<cn> 2 </cn>

</apply>

Default Rendering

The selector construct renders the same as the expression it selects.

182

183

4.4.10.7 Vector product (vectorproduct)

Discussion

The vectorproduct is the operator element for deriving the vector product of two vectors

The vectorproduct element takes the attributes definitionURL, encoding that can be used to override the default semantics.

The vectorproduct element is a binary vector operator (see Section 4.2.3).

Example

<apply>
<eq/>
<apply><vectorproduct/>
<ci type="vector"> A </ci>
<ci type="vector"> B </ci>

</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><sin/>
<ci> θ </ci>

</apply>
</apply>

</apply>

where A and B are vectors, a, b are the magnitudes of A, B and θis the angle between A and B.

Default Rendering

A×B

4.4.10.8 Scalar product (scalarproduct)

Discussion

The scalarproduct is the operator element for deriving the scalar product of two vectors

The scalarproduct element takes the attributes definitionURL, encoding that can be used to override the default semantics.

The scalarproduct element is a binary vector operator (see Section 4.2.3).

Example

183

184

<apply>
<eq/>
<apply><scalarproduct/>
<ci type="vector"> A </ci>
<ci type="vector">B </ci>

</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><cos/>
<ci> θ </ci>

</apply>
</apply>

</apply>

where A and B are vectors, a, b are the magnitudes of A, B and θis the angle between A and B.

Default Rendering

A.B

4.4.10.9 Outer product (outerproduct)

Discussion

The outerproduct is the operator element for deriving the outer product of two vectors

The outerproduct element takes the attributes definitionURL, encoding that can be used to override the default semantics.

The outerproduct element is a binary vector operator (see Section 4.2.3).

Example

<apply>
<outerproduct/>
<ci type="vector">A</ci>
<ci type="vector">B</ci>

</apply>

where A and B are vectors.

Default Rendering

A.B

4.4.11 Semantic Mapping Elements

This section explains the use of the semantic mapping elements semantics, annotation and annotation-xml.

184

185

4.4.11.1 Annotation (annotation)

Discussion

The annotation element is the container element for a semantic annotation in a non-XML format.

The annotation element takes the attribute encoding to define the encoding being used.

Example

The annotation element is a semantic mapping element. It is always used with semantics.

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>

</apply>
<cn> 5 </cn>

</apply>
<annotation encoding="TeX">
\sin x + 5

</annotation>
</semantics>

Default Rendering

None. The information contained in annotations may optionally be used by a renderer able to process the kind of annotation given.

4.4.11.2 Semantics (semantics)

Discussion

The semantics element is the container element that associates additional representations with a given MathML construct. The semantics element has as its first
child the expression being annotated, and the subsequent children are the annotations. There is no restriction on the kind of annotation that can be attached using
the semantics element. For example, one might give a TEX encoding, or computer algebra input in an annotation.

The representations that are XML based are enclosed in an annotation-xml element while those representations that are to be parsed as PCDATA are enclosed in
an annotation element.

The semantics element takes the definitionURL and encodingattributes, which can be used to reference an external source for some or all of the semantic
information.

An important purpose of the semantics construct is to associate specific semantics with a particular presentation, or additional presentation information with a
content construct. The default rendering of a semantics element is the default rendering of its first child. When a MathML-presentation annotation is provided, a
MathML renderer may optionally use this information to render the MathML construct. This would typically be the case when the first child is a MathML content
construct and the annotation is provided to give a preferred rendering differing from the default for the content elements.

Use of semantics to attach additional information in-line to a MathML construct can be contrasted with use of the csymbol for referencing external semantics. See
Section 4.4.1.3

185

186

Examples

The semantics element is a semantic mapping element.

<semantics>
<apply>
<plus/>
<apply>
<sin/>
<ci> x </ci>

</apply>
<cn> 5 </cn>

</apply>
<annotation encoding="Maple">
sin(x) + 5

</annotation>
<annotation-xml encoding="MathML-Presentation">
...
...

</annotation-xml>
<annotation encoding="Mathematica">
Sin[x] + 5

</annotation>
<annotation encoding="TeX">
\sin x + 5

</annotation>
<annotation-xml encoding="OpenMath">
<OMA>...</OMA>

</annotation-xml>
</semantics>

Default Rendering

The default rendering of a semantics element is the default rendering of its first child.

4.4.11.3 XML-based annotation (annotation-xml)

Discussion

The annotation-xml container element is used to contain representations that are XML based. It is always used together with the semantics element, and takes
the attribute encoding to define the encoding being used.

annotation-xml is a semantic mapping element.

Example

186

187

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>

</apply>
<cn> 5 </cn>

</apply>
<annotation-xml encoding="OpenMath">
<OMA><OMS name="plus" cd="arith1"/>
<OMA><OMS name="sin" cd="transc1"/>
<OMV name="x"/>

</OMA>
<OMI>5</OMI>

</OMA>
</annotation-xml>

</semantics>

See also the discussion of semantics above.

Default Rendering

None. The information may optionally be used by a renderer able to process the kind of annotation given.

4.4.12 Constant and Symbol Elements

This section explains the use of the Constant and Symbol elements.

4.4.12.1 integers (integers)

Discussion

integers represents the set of all integers.

Example

<apply>
<in/>
<cn type="integer"> 42 </cn>
<integers/>

</apply>

Default Rendering

42∈ Z

4.4.12.2 reals (reals)

Discussion

reals represents the set of all real numbers.

187

188

Example

<apply>
<in/>
<cn type="real"> 44.997 </cn>
<reals/>

</apply>

Default Rendering

44.997∈ R

4.4.12.3 rationals (reals)

Discussion

rationals represents the set of all rational numbers.

Example

<apply>
<in/>
<cn type="rational"> 22 <sep/>7</cn>
<rationals/>

</apply>

Default Rendering

22/7∈Q

4.4.12.4 naturalnumbers (naturalnumbers)

Discussion

naturalnumbers represents the set of all natural numbers, ie. non-negative integers.

Example

<apply>
<in/>
<cn type="integer">1729</cn>
<naturalnumbers/>

</apply>

Default Rendering

1729∈ N

188

189

4.4.12.5 complexes (complexes)

Discussion

complexes represents the set of all complex numbers, ie. numbers which may have a real and an imaginary part.

Example

complexes represents the set of all complex numbers, ie. numbers which may have a real and an imaginary part.

Example

<apply>
<in/>
<ci type="complex">17<sep/>29</ci>
<complexes/>

</apply>

Default Rendering

17+29i ∈ C

4.4.12.6 primes (primes)

Discussion

primes represents the set of all natural prime numbers, ie. integers greater than 1 which have no positive integer factor other than themselves and 1.

Example

<apply>
<in/>
<cn type="integer">17</cn>
<primes/>

</apply>

Default Rendering

17∈ P

4.4.12.7 exponentiale (exponentiale)

Discussion

exponentiale represents the mathematical constant which is the exponential base of the natural logarithms, commonly written e . It is approximately 2.718281828..

189

190

Example

<apply> <eq/>
<apply>
<ln/>
<exponentiale/>

</apply>
<cn>1</cn>

</apply>

Default Rendering

lne= 1

4.4.12.8 imaginaryi (imaginaryi)

Discussion

imaginaryi represents the mathematical constant which is the square root of -1, commonly written i.

Example

<apply> <eq/>
<apply>
<power/>
<imaginaryi/>
<cn>2</cn>

</apply>
<cn>-1</cn>

</apply>

Default Rendering

i2 =−1

4.4.12.9 notanumber (notanumber)

Discussion

notanumber represents the result of an ill-defined floating point operation, sometimes also called NaN.

Example

<apply> <eq/>
<apply>
<divide/>
<cn>0</cn>
<cn>0</cn>

</apply>
<notanumber/>

</apply>

190

191

Default Rendering

0/0 = NaN

4.4.12.10 true (true)

Discussion

true represents the logical constant for truth.

Example

<apply> <eq/>
<apply>
<or/>
<true/>
<ci type = "logical">P</ci>

</apply>
<true/>

</apply>

Default Rendering

trueorP= true

4.4.12.11 false (false)

Discussion

false represents the logical constant for falsehood.

Example

<apply> <eq/>
<apply>
<and/>
<false/>
<ci type = "logical">P</ci>

</apply>
<false/>

</apply>

Default Rendering

f alseandP= f alse

4.4.12.12 emptyset (emptyset)

Discussion

emptyset represents the empty set.

191

192

Example

<apply>
<neq/>
<integers/>
<emptyset/>

</apply>

Default Rendering

Z 6= /0

4.4.12.13 pi (pi)

Discussion

pi represents the mathematical constant which is the ratio of a circle’s circumference to its diameter, approximately 3.141592653.

Example

<apply>
<approx/>
<pi/>
<cn type = "rational">22<sep/>7</cn>

</apply>

Default Rendering

π≈ 22/7

4.4.12.14 eulergamma (eulergamma)

Discussion

eulergamma represents Euler’s constant, approximately 0.5772156649

Example

<eulergamma/>

Default Rendering

Γ

4.4.12.15 infinity (infinity)

Discussion

infinity represents the concept of infinity. Proper interpretation depends on context.

192

193

Example

<infinity/>

Default Rendering

∞

193

Chapter 5

Combining Presentation and Content Markup

Presentation markup and content markup can be combined in two ways. The first manner is to intersperse content and presentation elements in what is essentially a
single tree. This is called mixed markup. The second manner is to provide both an explicit presentation and an explicit content in a pair of trees. This is called parallel
markup. This chapter describes both mixed and parallel markup, and how they may used in conjunction with style sheets and other tools.

5.1 Why Two Different Kinds of Markup?

Chapters 3 and 4 describe two kinds of markup for encoding mathematical material in documents.

Presentation markup captures notational structure. It encodes the notational structure of an expression in a sufficiently abstract way to facilitate rendering to various
media. Thus, the same presentation markup can be rendered with relative ease on screen in either wide and narrow windows, in ASCII or graphics, in print, or it can
be enunciated in a sensible way when spoken. It does this by providing information such as structured grouping of expression parts, classification of symbols, etc.

Presentation markup does not directly concern itself with the mathematical structure or meaning of an expression. In many situations, notational structure and
mathematical structure are closely related, so a sophisticated processing application may be able to heuristically infer mathematical meaning from notational structure,
provided sufficient context is known. However, in practice, the inference of mathematical meaning from mathematical notation must often be left to the reader.

Employing presentation tags alone may limit the ability to re-use a MathML object in another context, especially evaluation by external applications.

Content markup captures mathematical structure. It encodes mathematical structure in a sufficiently regular way in order to facilitate the assignment of mathematical
meaning to an expression by application programs. Though the details of mapping from mathematical expression structure to mathematical meaning can be extremely
complex, in practice, there is wide agreement about the conventional meaning of many basic mathematical constructions. Consequently, much of the meaning of a
content expression is easily accessible to a processing application, independently of where or how it is displayed to the reader. In many cases, content markup could
be cut from a Web browser and pasted into a mathematical software tool with confidence that sensible values will be computed.

Since content markup is not directly concerned with how an expression is displayed, a renderer must infer how an expression should be presented to a reader.
While a sufficiently sophisticated renderer and style-sheet mechanism could in principle allow a user to read mathematical documents using personalized notational
preferences, in practice, rendering content expressions with notational nuances may still require intervention of some sort.

Employing content tags alone may limit the ability of the author to precisely control how an expression is rendered.

Both content and presentation tags are necessary in order to provide the full expressive capability one would expect in a mathematical markup language. Often the
same mathematical notation is used to represent several completely different concepts. For example, the notation xi may be intended (in polynomial algebra) as the
i-th power of the variable x, or as the i-th component of a vector x (in tensor calculus). In other cases, the same mathematical concept may be displayed in one of
various notations. For instance, the factorial of a number might be expressed with an exclamation mark, a Gamma function, or a Pochhammer symbol.

194

195

Thus the same notation may represent several mathematical ideas, and, conversely, the same mathematical idea often has several notations. In order to provide
authors with the ability to precisely control notation while at the same time encoding meanings in a machine-readable way, both content and presentation markup are
needed.

In general, if it is important to control exactly how an expression is rendered, presentation markup will generally be more satisfactory. If it is important that the meaning
of an expression can be interpreted dependably and automatically, then content markup will generally be more satisfactory.

5.2 Mixed Markup

MathML offers authors elements for both content and presentation markup. Whether to use one or the other, or a combination of both, depends on what aspects of
rendering and interpretation an author wishes to control, and what kinds of re-use he or she wishes to facilitate.

5.2.1 Reasons to Mix Markup

In many common situations, an author or authoring tool may choose to generate either presentation or content markup exclusively. For example, a program for
translating legacy documents would most likely generate pure presentation markup. Similarly, an educational software package might very well generate only content
markup for evaluation in a computer algebra system. However, in many other situations, there are advantages to mixing both presentation and content markup within
a single expression.

If an author is primarily presentation-oriented, interspersing some content markup will often produce more accessible, more re-usable results. For example, an author
writing about linear algebra might write:

<mrow>
<apply>
<power/>
<ci>x</ci><cn>2</cn>

</apply>
<mo>+</mo>
<msup>
<mi>v</mi><mn>2</mn>

</msup>
</mrow>

where v is a vector and the superscript denotes a vector component, and x is a real variable. On account of the linear algebra context, a visually impaired reader may
have directed his or her voice synthesis software to render superscripts as vector components. By explicitly encoding the power, the content markup yields a much
better voice rendering than would likely happen by default.

If an author is primarily content-oriented, there are two reasons to intersperse presentation markup. First, using presentation markup provides a way of modifying or
refining how a content expression is rendered. For example, one might write:

<apply>
<in/>
<ci><mi fontweight="bold">v</mi></ci>
<ci>S</ci>

</apply>

In this case, the use of embedded presentation markup allows the author to specify that v should be rendered in boldface. In the same way, it is somtimes the case
that a completely different notation is desired for a content expression. For example, here we express a fact about factorials, n = n!/(n-1)!, using the ascending factorial
notation:

195

196

<apply>
<equivalent/>
<ci>n</ci>
<apply>

<divide/>
<semantics>

<apply>
<factorial/>
<ci>n</ci>

</apply>
<annotation-xml encoding="MathML-Presentation">

<msup>
<mn>1</mn>
<mover accent="true">

<mi>n</mi>
<mo><mchar name="OverBar"/></mo>

</mover>
</msup>

</annotation-xml>
</semantics>
<semantics>

<apply>
<factorial/>
<apply><minus/><ci>n</ci><cn>1</cn></apply>

</apply>
<annotation-xml encoding="MathML-Presentation">

<msup>
<mn>1</mn>
<mover accent="true">

<mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow>
<mo><mchar name="OverBar"/></mo>

</mover>
</msup>

</annotation-xml>
</semantics>

</apply>
</apply>

This content expresison would render using the given notation as: 1n̄

1n−1

A second reason to use presentation within content markup is that there is a continually growing list of areas of discourse that do not have pre-defined content
elements for encoding their objects and operators. As a consequence, any system of content markup inevitably requires an extension mechanism that combines
notation with semantics in some way. MathML content markup specifies several ways of attaching an external semantic definitions to content objects. It is necessary,
however, to use MathML presentation markup to specify how such user-defined semantic extensions should be rendered.

For example, the ‘rank’ operator from linear algebra is not included as a pre-defined MathML content element. Thus, to express the statement rank(uTv)=1 we use a
semantics element to bind a semantic definition to the symbol rank.

196

197

<apply>
<eq/>
<apply>
<fn>
<semantics>
<mi>rank</mi>
<annotation-xml encoding="OpenMath">
<OMS cd="linalg3" name="rank"/>

</annotation-xml>
</semantics>

</fn>
<apply>
<times/>
<apply> <transpose/> <ci>u</ci> </apply>
<ci>v</ci>

</apply>
</apply>
<cn>1</cn>

</apply>

Here, the semantics of rank have been given using a symbol from an OpenMath content dictionary (CD).

5.2.2 Combinations that are prohibited

The main consideration when presentation markup and content markup are mixed together in a single expression is that the result should still make sense. When
both kinds of markup are contained in a presentation expression, this means it should be possible to render the resulting mixed expressions simply and sensibly.
Conversely, when mixed markup appears in a content expression, it should be possible to simply and sensibly assign a semantic interpretation to the expression as
whole. These requirements place a few natural constraints on how presentation and content markup can be mixed in a single expression, in order to avoid ambiguous
or otherwise problematic expressions.

Two examples illustrate the kinds of problems that must be avoided in mixed markup. Consider:

<mrow>
<bvar> x </bvar> <mo> + </mo> <bvar> y </bvar>

</mrow>

In this example, the content element bvar has been indiscriminately embedded in a presentation expression. Since bvar requires an enclosing context for its
meaning, this expression is unclear.

Similarly, consider:

<apply>
<ci> x </ci> <mo> + </mo> <ci> y </ci>

</apply>

Here, the mo element is problematic. Should a renderer infer that the usual arithmetic operator is intended, and act as if the prefix content element plus had been
used? Or should this be literally interpreted as the operator x applied to two arguments, <mo>+</mo> and <mi>y</mi> ? Even if we were to decide that <mo>+</mo>
was the operator, then what should its meaning be? These questions do not have particularly compelling answers, so this kind of mixing of content and presentation
markup is also prohibited.

197

198

5.2.3 Presentation Markup Contained in Content Markup

The use of presentation markup within content markup is limited to situations that do not effect the ability of content markup to unambiguously encode mathematical
meaning. Specifically, presentation markup may only appear in content markup in three ways:

1. within ci and cn token elements
2. within the csymbol element
3. within the semantics element

Any other presentation markup occurring within a content markup is a MathML error. More detailed discussion of these three cases follows:

Presentation markup within token elements. The token elements ci and cn are permitted to contain any sequence of MathML characters (defined in Chapter 6),
presentation elements, and sep empty elements. Contiguous blocks of MathML characters in ci and cn elements are rendered as if they were wrapped in
mi and mn elements respectively. If a token element contains both MathML characters and presentation elements, contiguous blocks of MathML characters
(if any) are treated as if wrapped in mi or mn elements as appropriate, and the resulting collection of presentation elements are rendered as if wrapped in
an mrow element.

Presentation markup within the csymbol element. The csymbol element may contain either MathML characters interspersed with presentation markup, or con-
tent elements of the container type. It is a MathML error for a csymbol element to contain both presentation and content elements. When the csymbol
element contains both raw data and presentation markup, the same rendering rules that apply to content elements of the token type should be used.

Presentation markup within the semantics element. One of the main purposes of the semantics element is to provide a mechanism for incorporating arbitrary
MathML expressions into content markup in a semantically meaningful way. In particular, any valid presentation expression can be embedded in a content
expression by placing it as the first child of a semantics element. The meaning of this wrapped expression should be indicated by one or more annotation
elements also contained in the semantics element. Suggested rendering for a semantics element is discussed in Section 4.2.6.

5.2.4 Content Markup Contained in Presentation Markup

The guiding principle for embedding content markup within presentation expressions is that the resulting expression should still have an unambiguous rendering. In
general, this means that embedded content expressions must be semantically meaningful, since rendering of content markup depends on its meaning.

Certain content elements derive part of their semantic meaning from the surrounding context, such as whether a bvar element is qualifying an integral, logical
quantifier or lambda expression. Another example would be whether a degree element occurs in a root or partialdiff element. Thus, in a presentation context,
elements such as these do not have a clearly defined meaning, and hence there is no obvious choice for a rendering. Consequently, they are not allowed.

Using the terminology of Section 4.2.1, we see that operator, relation, container, constant and symbol elements make sense on their own, while elements of the
qualifier and condition type do not. (Note that interval may be used either as a general container, or as a qualifier.)

Outside these categories, certain elements deserve specific comment: the elements declare, sep, annotation and annotation-xml can only appear in very
specific contexts and consequently are not permitted as direct sub-expressions of any presentation element. Finally, the element semantics carries with it sufficient
information to be permitted in presentation.

The complete list of content elements that cannot appear as a child in a presentation element is: annotation, annotation-xml, sep, declare, bvar, condition,
degree, logbase, lowlimit, uplimit.

Note that within presentation markup, content expressions may only appear in locations where it is valid for any MathML expression to appear. In particular, content
expressions may not appear within presentation token elements. In this regard mixing presentation and content are asymmetrical.

Note that embedding content markup in presentation will often require applications to render operators outside of an apply context. E.g., it may be necessary to
render abs, plus, root or sin outside of an application. Content/presentation mixing does not introduce any new requirements, however, since unapplied operators
are already permitted in content expressions, for example:

198

199

<apply>
<compose/>
<sin/>
<apply>

<inverse/>
<root/>

</apply>
</apply>

5.3 Parallel Markup

Some applications are able to make use of both presentation and content information. For these applications it is desirable to provide both forms of markup for the
same mathematical expression. This is called parallel markup.

Parallel markup is achieved with the semantics element. Parallel markup for an expression can be used on its own, or can be incorporated as part of a larger content
or presentation tree.

5.3.1 Top-level Parallel Markup

In many cases what is desired is to provide presentation markup and content markup for a mathematical expression as a whole. To achieve this, a single semantics
element is used pairing two markup trees, with the first branch being the MathML presentation markup, and the second branch being the MathML content markup.

The following example encodes the boolean arithmetic expression (a+b)(c+d) in this way.

<semantics>
<mrow>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<mo>⁢</mo>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>

</mrow>
<annotation-xml encoding="MathML-Content">
<apply><and/>
<apply><xor/><ci>a</ci> <ci>b</ci></apply>
<apply><xor/><ci>c</ci> <ci>d</ci></apply>

</apply>
</annotation-xml>

</semantics>

This example is non-trivial in the sense that the content markup could not be easily derived from the presentation markup alone.

5.3.2 Fine-grained Parallel Markup

Top-level pairing of independent presentation and content markup is sufficient for many, but not all, situations. Applications that allow treatment of sub-expressions
of mathematical objects require the ability to associate presentation, content or information with the parts of an object with mathematical markup. Top-level pairing
with a semantics element is insufficient in this type of situation; identification of a sub-expression in one branch of semantics element gives no indication of the
corresponding parts in other branches.

The ability to identify corresponding sub-expressions is required in applications such as mathematical expression editors. In this situation, selecting a sub-expression
on a visual display can identify a particular portion of a presentation markup tree. The application then needs to determine the corresponding annotations of the
sub-expressions; in particular, the application requires the sub-expressions of the annotation-xml tree in MathML content notation.

199

200

It is, in principle, possible to provide annotations for each presentation node by incorporating semantics elements recursively.

<semantics>
<mrow>
<semantics>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">
<apply><plus/><ci>a</ci> <ci>b</ci></apply>

</annotation-xml>
</semantics>
<mo>⁢</mo>
<semantics>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">
<apply><plus/><ci>c</ci> <ci>d</ci></apply>

</annotation-xml>
</semantics>

</mrow>

<annotation-xml encoding="MathML-Content">
<apply><times/>
<apply><plus/><ci>a</ci> <ci>b</ci></apply>
<apply><plus/><ci>c</ci> <ci>d</ci></apply>

</apply>
</annotation-xml>

</semantics>

To be complete this example would be much more verbose, wrapping each of the individual leaves mi, mo and mn in a further seven semantics elements.

This approach is very general and works for all kinds of annotations (including non-MathML annotations and multiple annotations). It leads, however, to O(n2) increase
in size of the document. This is therefore not a suitable approach for fine-grained parallel markup of large objects.

5.3.3 Parallel Markup via Cross-References: id and xref

To better accomodate applications that must deal with sub-expressions of large objects, MathML uses cross-references between the branches of a semantics
element to identify corresponding sub-structures.

Cross-referencing is achieved using id and xref attributes within the branches of a containing semantics element. These attributes may optionally be placed on
MathML elements of any type.

The following example shows this cross-referencing for the boolean arithmetic expression (a+b)(c+d).

200

201

<semantics>
<mrow id="E">
<mrow id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>

</mrow>
<mo id="E.2">⁢</mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>

</mrow>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply xref="E">
<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>

</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>

</apply>
</apply>

</annotation-xml>
</semantics>

An id attribute and a corresponding xref appearing within the same semantics element create a correspondence between sub-expressions.

In creating these correspondences by cross-reference, all of the id attributes referenced by any xref must be in the same branch of an enclosing semantics
element. This constraint guarantees that these correspondences do not create unintentional cycles. (Note that this restriction does not exclude the use of id
attributes within the other branches of the enclosing semantics element. It does, however, exclude references to these other id attributes originating in the same
semantics element.)

There is no restriction on which branch of the semantics element may contain the destination id attributes. It is up to the application to determine which branch to
use.

In general, there will not be a one-to-one correspondence between nodes in parallel branches. For example, a presentation tree may contain elements, such as
parentheses, that have no correspondents in the content tree. It is therefore often useful to put the id attributes on the branch with the finest-grained node structure.
Then all of the other branches will have xref attributes to some subset of the id attributes.

In absence of other criteria, the first branch of the semantics element is a sensible choice to contain the id attributes. Applications that add or remove annotations
will then not have to re-assign attributes to the semantics trees.

201

202

In general, the use of id and xref attributes allows a full correspondence between sub-expressions to be given in text that is at most a constant factor larger than
the original. The direction of the references should not be taken to imply that sub-expression selection is intended to be permitted only on one child of the semantics
element. It is equally feasible to select a subtree in any branch and to recover the corresponding subtrees of the other branches.

5.3.4 Annotation Cross-References using XLink: id and href

It is possible to give cross-references between a MathML expression and a non-MathML XML annotation using the XLink protocol [XLink]. As an example, the boolean
expression of the previous section can be annotated with OpenMath, and cross-linked as follows:

<semantics>
<mrow id="E">
<mrow id="E.1" xlink:id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>

</mrow>
<mo id="E.2">⁢</mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>

</mrow>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply xref="E">
<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>

</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>

</apply>
</apply>

</annotation-xml>

<annotation-xml encoding="OpenMath">
<OMA xlink:href="id(’E’)" xmlns="www.openmath.org/OpenMath">
<OMS cd="logic1" name="and" xlink:href="id(’E’)"/>
<OMA xlink:href="id(’E.1’)">
<OMS cd="logic1" name="xor" xlink:href="id(’E.1.3’)"/>
<OMV name="a" xlink:href="id(’E.1.2’)"/>
<OMV name="b" xlink:href="id(’E.1.4’)"/>

</OMA>

202

203

<OMA xlink:href="id(’E.3’)">
<OMS cd="logic1" name="xor" xlink:href="id(’E.3.3’)"/>
<OMV name="c" xlink:href="id(’E.3.2’)"/>
<OMV name="d" xlink:href="id(’E.3.4’)"/>

</OMA>
</OMA>

</annotation-xml>
</semantics>

Here OMA, OMS and OMV are elements defined in the OpenMath standard for representing application, symbol and variable, respectively.

(Note that the application might or might not have a mechanism for extending DTDs. It will be the case, therefore that some applications will give well-formed, but not
"valid," XML within annotation-xml elements. Consequently, some MathML applications using annotation-xml will not be validated. More flexibility is offered by
the use of XML Schemas.)

5.4 Tools, Style Sheets and Macros for Combined Markup

The interaction of presentation and content markup can be greatly enhanced through the use of various tools. While the set of tools and standards for working with
XML applications is rapidly evolving at the present, we can already outline some specific techniques.

In general, the interaction of content and presentation is handled via transformation rules on MathML trees. These transformation rules are sometimes called ‘macros’.
In principle, these rules can be expressed using any one of a number of mechanisms, including DSSSL, Java programs operating on a DOM, etc. We anticipate,
however, that the principal mechanism for these transformations in most applications shall be XSLT.

In this section we discuss transformation rules for two specific purposes: for notational style sheets, and to simplify parallel markup.

5.4.1 Notational Style Sheets

Authors who make use of content markup may be required to deploy their documents in locales with notational conventions different than the default content rendering.
It is therefore expected that transformation tools will be used to determine notations for content elements in different settings. Certain elements, e.g. lambda, mean
and transpose, have widely varying common notations and will often require notational selection. Some examples of notational variations are given below.

• V versus ~V
• tan x versus tg x
•

(n
m

)
versus nCm versus Cn

m versus Cm
n

• a0 + 1 |
| a1

+ . . .+ 1 |
| ak

versus [a0,a1, . . . ,ak]

Other elements, for example plus and sin, are less likely to require these features.

We observe that selection of notational style is sometimes necessary for correct understanding of documents by locale. For instance, the binomial coefficient Cn
m in

French notation is equivalent to Cm
n in Russian notation.

A natural way for a MathML application to bind a particular notation to the set of content tags is with an XSLT style sheet [XSLT]. The examples of this section
shall assume this is the mechanism to express style choices. (Other choices are equally possible, for example an application program may provide menus offering a
number of rendering choices for all content tags.)

When writing XSLT style sheets for mathematical notation, some transformation rules can be purely local, while others will require multi-node context to determine
the correct output notation. The following example gives a local transformation rule that could be included in a notational style sheet displaying open intervals as]a,b[
rather than as (a,b).

203

204

<xsl:template match="m:interval">
<m:mrow>
<xsl:choose>
<xsl:when test="@closure=’closed’">
<m:mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>

</m:mfenced>
</xsl:when>
<xsl:when test="@closure=’open’">
<m:mfenced open="]" close="[" separators=",">
<xsl:apply-templates/>

</m:mfenced>
</xsl:when>
<xsl:when test="@closure=’open-closed’">
<m:mfenced open="]" close="]" separators=",">
<xsl:apply-templates/>

</m:mfenced>
</xsl:when>
<xsl:when test="@closure=’closed-open’">
<m:mfenced open="[" close="[" separators=",">
<xsl:apply-templates/>

</m:mfenced>
</xsl:when>
<xsl:otherwise>
<m:mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>

</m:mfenced>
</xsl:otherwise>

</xsl:choose>
</mrow>

</xsl:template>

Here m is established as the MathML namespace.

An example of a rule requiring context information would be:

204

205

<xsl:template match="m:apply[m:factorial]">
<m:mrow>
<xsl:choose>
<xsl:when test="not(*[2]=m:ci) and not(*[2]=m:cn)">
<m:mrow>
<m:mo>(</m:mo>
<xsl:apply-templates select="*[2]" />
<m:mo>)</m:mo>

</m:mrow>
</xsl:when>
<xsl:otherwise>
<xsl:apply-templates select="*[2]" />

</xsl:otherwise>
</xsl:choose>
<m:mo>!</m:mo>

</m:mrow>
</xsl:template>

Other examples of context-dependent transformations would be, e.g. for the apply of a plus to render a-b+c, rather than a+ -b+c, or for the apply of a power to
render sin2x, rather than sin x2.

Notational variation will occur both for built-in content elements as well as extensions. Notational style for extensions can be handled as described above, with rules
matching the names of any extension tags, and with the content handling (in a content-faithful style sheet) proceeding as described in Section 5.4.3.

5.4.2 Content-Faithful Transformations

There may be a temptation to view notational style sheets as a transformation from content markup to equivalent presentation markup. This viewpoint is explicitly
discouraged, since information will be lost and content-oriented applications will not function properly.

We define a ‘content-faithful’ transformation to be a transformation that retains the original content in parallel markup (Section 5.3).

Tools that support MathML should be ‘content-faithful’, and not gratuitously convert content elements to presentation elements in their processing. Notational style
sheets should be content-faithful whenever they may be used in interactive applications.

It is possible to write content-faithful style sheets in a number of ways. Top-level parallel markup can be achieved by incorporating the following rules in an XSLT style
sheet:

<xsl:template match="m:math">
<m:semantics>

<xsl:apply-templates/>

<m:annotation-xml m:encoding="MathML-Content">
<xsl:copy-of select="."/>

</annotation-xml>
</m:semantics>

</xsl:template>

The notation would be generated by additional rules for producing presentation from content, such as those in Section 5.4.1. Fine-grained parallel markup can be
achieved with additional rules treating id attributes.

205

206

5.4.3 Style Sheets for Extensions

The presentation tags of MathML form a closed vocabulary of notational structures, but are quite rich and can be used to express a rendering of most mathematical
notations. Complex notations can be composed from the basic elements provided for presentation markup. In this sense, the presentation ability of MathML is open-
ended. It is often useful, however, to give a name to new notational schemas if they are going to be used often. For example, we can shorten and clarify the ascending
factorial example of Section 5.2.1, with a rule which replaces

<mx:a-factorial>X</mx:a-factorial>

with

<semantics>
<apply> <factorial/> <mi>X</mi> </apply>
<annotation-xml encoding="MathML-Presentation">

<msup>
<mn>1</mn>
<mover accent="true">

<mi>X</mi>
<mo><mchar name="OverBar"/></mo>

</mover>
</msup>

</annotation-xml>
</semantics>

Then the example would be more clearly written as:

<apply>
<equivalent/>
<ci>n</ci>
<apply>

<divide/>
<mx:a-factorial><ci>n</ci></mx:a-factorial>
<mx:a-factorial>

<apply><minus/><ci>n</ci><cn>1</cn></apply>
</mx:a-factorial>

</apply>
</apply>

Likewise, the content tags form a fixed vocabulary of concepts covering the types of mathematics seen in most common applications. It is not reasonable to
expect users to compose existing MathML content tags to construct new content concepts. (This approach is frought with technical difficulties even for professional
mathematicians.) Instead, it is anticipated that applications whose mathematical content concepts extend beyond what is offered by MathML will use annotations
within semantics elements, and that these annotations will use content description languages outside of MathML.

Often the naming of a notation and the identification of a new semantic concept are related. This allows a single transformation rule to capture both a presentation
and a content markup for an expression. This is one of the areas of MathML that benefits most strongly from the use of macro processing.

<mx:rank/>

and

<mx:tr>X</mx:tr>

and respectively transform them to

206

207

<semantics>
<ci><mo>rank</mo></ci>
<annotation-xml encoding="OpenMath">

<OMS cd="linalg1" name="rank"/>
</annotation-xml>

</semantics>

and

<apply>
<transpose/>
<ci>X</ci>
</apply>

The lengthy sample encoding of rank(uTv)=1, from Section 5.2.1 could then be condensed to

<apply>
<eq/>
<apply>
<mx:rank/>
<apply> <times/> <mx:tr>u</mx:tr> <ci>v</ci> </apply>
</apply>
<cn>1</cn>

</apply>

From this example we see how the combination of presentation and content markup could become much simpler and effective to generate as standard style-sheet
libraries become available.

207

Chapter 6

Characters, Entities and Fonts

6.1 Introduction

6.1.1 The Intent of Character Names

Notation and symbols have proved very important for mathematics. Mathematics has grown in part because of the succinctness and suggestiveness of its evolving
notation. There have been many new signs evolved for use in mathematical notation, and mathematicians have not held back from making use of many symbols
originally developed elsewhere. The result is that mathematics makes use of a very large collection of symbols. It is difficult to write mathematics fluently if these
characters are not available for use in coding. It is difficult to read mathematics if corresponding glyphs are not available for presentation on specific display devices.

This situation posed a problem for the first W3C Math Working Group when it was brought into existence. It did not fall naturally within the purview of a developing
a specification enabling mathematics to be used with HTML and producing a DTD for this to worry about more than the entities allowed in the DTD. However, as
experience has shown, a long list of entities with no means to display them is of little use, and a cause of frequent frustrations in trying use a standard. On the other
hand, a large collection of glyphs and fonts of characters without a standard way to refer to them is not of much use either.

The W3C Math Working Group has therefore took on directly the task of specification of part of the full mechanism of needed to proceed from notation to final
presentation, and started collaboration with organizations undertaking specification of the rest.

For instance, in MathML 1 we tried to use entity names for the many character signs that are contained in ISO TR 9573, which supersedes the ISO TR 8879 annex as
far as mathematics is concerned. There are considerations of mathematical usage that do on occasion militate against this, and the TR 9573 lists need supplementing.
There was the hope of agreeing with the TR 9573 WG on suitable extensions, in the course of the revision of their document that they were undertaking. That has
not actually happened, and the expected TR 9573 revision has not appeared either.

The STIX project of the STIPUB group of scientific and technical publishers has also been working since 1997 toward a common collection of mathematical symbols
and names. The W3C Math Working Group itself has collaborated with that project and expects to have to issue further updates on the matter of character entities
as a consequence of useful work of this project and others. For the latest character tables and fonts information, see the W3C Math Working Group home page.

6.1.2 The STIX Project

The first STIX project team leader, Nico Poppelier, is a member of the W3C Math Working Group. The STIX project, set up by the STIPUB group of publishers includes
the American Chemical Society (ACS), the American Institute of Physics (APS), the American Mathematical Society (AMS), the AMerican Physical Society (APS),
Elsevier Science Publishers, the Institute of Electrical and Electronic Engineers (IEEE). An initial aim was to formulate a collection of characters needed in the course
of scientific and technical publishing. A database of characters in common use has been produced by collaborating publishing organizations, including information
from the TEX world, Springer Verlag (Heidelberg), Design Science Inc., Wolfram Research Inc., the Association for Computing Machinery (ACM) in addition to the
above-mentioned. The coordination and the major portion of the work on this have been carried out by Barbara Beeton of the AMS.

208

http://www.w3.org/Math

209

The STIX team has proposed to the Unicode Technical Committee (UTC) of the Unicode consortium the additions to the next revision of the Unicode character set
that this process shows are needed, together with the appropriate character codes. This has been the subject of on-going negotiation for some time. In March 2000
a honed proposal supported by the UTC went on the the ISO WG2 meeting in Beijing which deals with incorporation of new material into the standard ISO 10646.
The final results of that deliberation, which it is hoped will confirm assignement of code-points put forward by the UTC will be incorporated into the information made
public by the Math WG.

Finally, the STIX project’s intention has always been to commission the production of a complete set of fonts covering those Unicode characters for science and
technology, to be made available to the public under license, but free of charge. The STIPUB group recognizes that easy availability of the characters and fonts
greatly facilitates communication and publication. At the start of the year 2000 the process of commisioning the making of fonts is underway, and their wide-spread
availability is hoped with one or two years.

6.1.3 Character Listings

This chapter of the MathML Specification contains a listing of character names for use in MathML.

To provide more background on the characters used by mathematics we have used a large comparative database showing codes and meanings in other common
math environments. The W3C Math Working Group is very grateful to Elsevier Science, to Wolfram Research (makers of Mathematica R©) and to Design Science
(Makers of MathType R©) for making available to us so much useful data.

In MathML 1 the characters of the mathematical sciences were listed as entities. This is coherent with thinking in terms of SGML markup and the use of DTDs.
For the XML world with its use of documents well-formedness is to be sufficient for the examination of a particular one, which does not require validation against a
DTD, where character entities would be found declared. The next development that is expected to replace the DTD as a specifier of a class of documents is that of
Schemas. The specification for Schemas is presently under active development at the W3C. Though the final form of Schemas is not yet clear, it is known that their
use precludes effective use of large lists of entities. For that reason MathML 2 passes from the use of entities to name mathematical characters, which becomes a
deprecated usage, to the use of Error: mchar elements. For this reason the tables below just list the suggested character names, which should be used in the form
<mchar name="character_name" />.

6.1.4 Non-Marking Characters

Some characters although important for the quality of print rendering do not directly have glyph marks that correspond. They are called here non-marking characters.
Below we have a table of those adopted for the purposes of MathML. Their roles are discussed in Chapter 3 and Chapter 4, respectively. The values of the spaces
given are recommendations. Some of these characters do not have official Unicode values, and some are given as combinations of Unicode characters employing
the special mathematics modifier character (U02063). The correspondence between the spacing values mentioned below and those in the Unicode descriptions are
not exact, but are good matches.

It used to be in MathML 1.0 that there were a number more non-marking character entities listed here. These were conerned with composition control, such as
line-breaking, In MathML 2 such control is effected by the use of the proper attributes on the mspace element.

209

210

Character name Unicode Description
	 00009 tabulator stop; horizontal tabulation

 0000A force a line break; line feed
&Space; 00020 one em of space in the current font
 000A0 space that is not a legal breakpoint
​ 0200B space of no width at all
  0200A space of width 1/18 em
  02009 space of width 3/18 em
  02005 space of width 4/18 em
   02005-0200A space of width 5/18 em
​ 0200A-02063 space of width -1/18 em
​ 02009-02063 space of width -3/18 em
​ 0205F-02063 space of width -4/18 em
​ 02005-02063 space of width -5/18 em
⁢ 02062 marks multiplication when it is understood without a mark (Section 3.2.4
⁡ 02061 character showing function application in presentation tagging (Section 3.2.4

6.1.5 Printing Character Symbol Listings

Even though the situation concerning availability of character codes from Unicode and under ISO 10646 is not yet fully clear at the time of writing, we have decided to
proceed on the assumption that the code points suggested to ISO WG2 by the UTC will be confirmed. As before we can only reiterate that for current developments
on details of character standards as far as they influence mathematical formalism the Home Page of the W3C Math WG should be consulted.

The Math WG started from the ISO 9573-13 proposal, as conveyed to us from Anders Berglund, and added a number of informative additional aliases based in the
practice of the mathematical typesetting community. The main influence outside ISO has been the names to be found in the TEX community because they inform the
practice of the contributors to the STIX character database mentioned above.

To facilitate comprehension of a fairly large list of names, which totals over 2000 in this case, we offer the same information in more than one form.

We have characters listed by name and sample glyphs for all of them. Each character name is accompanied by a code for a character grouping chosen from a list
given below, a short verbal description, and a Unicode hex code if there is a corresponding sample glyph to be found in ISO 10646, now extended in accordance
with the proposal forwarded by the UTC to ISO WG2 in March 2000. We have excluded, with very few exceptions that seemed to us compelling, other characters that
may have appeared in the corresponding lists in MathML 1. Those characters thus lost will be found to be used very infrequently in the experience of mathematical
publishers, or simply to be completley unacceptable for inclusion in Unicode. However MathML 2 does provide the mglyph and csymbol elements to accommodate
new characters that authors may wish to introduce.

The character listings by alphabetical and Unicode order in Section 6.1.7 have now been brought more into line with the corresponding ISO character sets than was
the case in MathML 1.0, in that if some part of a set is included then the entire set is included. In addition, the group ISOCHEM has been dropped as more properly
the concern of chemists. These changes have also been reflected in the entity declarations in the DTD in Appendix A.

6.1.6 Special Constants

To commence we list separately a few of the special characters which MathML has seen fit to be a little radical in introducing. These have been accorded new Unicode
values. There used also the be entries below for &true;, &false; and &NotANumber;, but these do not yet have Unicode points assigned to them so have been
removed. They can be reintroduced by the character extension mechanisms provided by the mchar and csymbol elements.

Entity name Unicode Description
ⅅ 02145 D for use in differentials, e.g. within integrals
ⅆ 02146 d for use in differentials, e.g. within integrals
ⅇ 02147 e for use for the exponential base of the natural logarithms
ⅈ 02148F i for use as a square root of -1

210

211

6.1.7 Alphabetical Lists

The first table offered is a very large ASCII listing of printing entity names, ordered alphabetically, with upper-case preceding lower-case as in ASCII order. There is
also an ASCII listing of printing characters ordered by Unicode number. The Unicode point points are those of the current proposal which will, it is expected eventaully
be part of the next revision, Unicode 4. Unicode 3 has just been published in February 2000. Next we have collections of the entities in entity sets which correspond
to the groupings in the corresponding ISO documents.

6.1.8 ISO Character Set Groupings

In addition, we list the above material in the groupings used by ISO 9573-13 introduced. This table makes explicit the entity groupings and provides links to ASCII
listings of the groups and HTML tabular listings which display the glyphs, as well.

6.1.8.1 ISO Symbol Sets

The symbols for mathematics that ISO have considered are organized, for both historical and mnemonic reasons into groupings with somewhat descriptive names.
In the tables below we reproduce the newly proposed versions of these groups and give the corresponding Unicode sample glyphs. The entries are organized
alphabetically by character name.

It should be noted that the sample glyphs given here are in GIF files intended for viewing on a monitor’s screen at 72dpi. They are not suitable for printing, and in
particular do not constitute a set of fonts covering the symbols of mathematics. Such a set of fonts is under development in more than one context. The MathML
Working Group is engaged in the effort of ensuring that such fonts will be readily publicly available.

This first block of sets includes mostly non-letter symbols, along with a few letters loaded with mathematical semantics.

Group Descriptive Name
ISOAMSA Added Math Symbols: Arrows
ISOAMSB Added Math Symbols: Binary Operators
ISOAMSC Added Math Symbols: Delimiters
ISOAMSN Added Math Symbols: Negated Relations
ISOAMSO Added Math Symbols: Ordinary
ISOAMSR Added Math Symbols: Relations
ISOTECH General Technical
ISOPUB Publishing
ISODIA Diacritical Marks
ISONUM Numeric and Special Graphic
ISOBOX Box and Line Drawing

6.1.8.2 ISO Character Sets for Mathematics Alphabets

Mathematical literature displays the common use of particular font styles. Characters representing given letters which differ only in the glyph presentation are in
principle not different for the purposes of a character registry such as Unicode, which is not supposed to take into account mere font differences. However usage has
meant that both ISO and Unicode, like mathematics, recognize them as different entities. Therefore we wish to include lists for Greek, script, open face (also known
as double struck or blackboard bold), and fraktur (also known as gothic or German) fonts. The UTC has accepted a proposal for the inclusion of alphabetic character
runs in Unicode Plane 1 for the express use of mathematics, brought to them by Murray Sargent of Microsoft and supported by the STIX Project as a compromise
solution. However the tenets of the UTC preclude the duplication, if at all possible, of methods for encoding a character which conventionally has esentially one
glyphic representation. Thus there are holes at certain points in the alphabetic runs for mathematical use in Plane 1 coding. These holes will, however, be reserved
and not used for anything else, and so can be used, internally, in the obvious way by an application handling mathematics.

211

file:byalpha.html
file:bycodes.html
file:isoamsa.html
file:isoamsb.html
file:isoamsc.html
file:isoamsn.html
file:isoamso.html
file:isoamsr.html
file:isotech.html
file:isopub.html
file:isodia.html
file:isonum.html
file:isobox.html

212

Group Descriptive Name
ISOGRK3 Greek Symbols
ISOMSCR Math Alphabet Script
ISOMOPF Math Alphabet Open Face
ISOMFRK Math Alphabet Fraktur

212

file:isogrk3.html
file:isomscr.html
file:isomopf.html
file:isomfrk.html

Chapter 7

The MathML Interface

To be effective, MathML must work well with a wide variety of renderers, processors, translators and editors. This chapter addresses some of the interface issues
involved in generating and rendering MathML. Since MathML exists primarily to encode mathematics in Web documents, perhaps the most important interface issues
are related to embedding MathML in HTML [HTML4.0] and XHTML [XHTML1.0] and [XHTML1.1].

There are three kinds of interface issues that arise in embedding MathML in other XML documents. First, MathML must be semantically integrated. MathML markup
must be recognized as valid embedded XML content, and not as an error. This is primarily a question of managing namespaces in XML [Namespaces].

Second, in the case of HTML/XHTML, MathML rendering must be integrated into browser software. Some browsers already implement MathML rendering natively,
and one can expect more browsers will do so in the future. At the same time, other browsers have developed infrastructure to facilitate the rendering of MathML and
other embedded XML content by third-party software. Using these browser specific mechanisms generally requires some additional interface markup of some sort to
activate.

Third, other tools for generating and processing MathML must be able to intercommunicate. A number of MathML tools have been or are being developed, including
editors, translators, computer algebra systems, and other scientific software. However, since MathML expressions tend to be lengthy, and prone to error when entered
by hand, special emphasis must be given to insuring that MathML can be easily generated by user-friendly conversion and authoring tools, and that these tools work
together in a dependable, platform and vendor independent way.

The W3C Math working group is committed to providing support to software vendors developing all kinds of MathML tools. The working group monitors the public
mailing list www-math@w3.org, and will attempt to answer questions about the MathML specification. The working group works with MathML developer and user
groups. For current information about MathML tools, applications and user support activities, consult the home page of the W3C Math Working Group.

7.1 Embedding MathML in other Documents

While MathML can be used in isolation as a language for exchanging mathematical expressions between MathML-aware applications, the primary anticipated use of
MathML is to encode mathematical expression within larger documents. MathML is ideal for embedding math expressions in other applications of XML.

In particular, we focus here on the mechanics of embedding MathML in XHTML. XHTML [XHTML1.0] is a recently released W3C Recommendation formulating a
family of current and future XML-based document types and modules that reproduce, subset, and extend HTML 4. While HTML 4 [HTML4.0] is the dominant language
of the Web today, one may anticipate a shift from HTML 4 to XHTML. Indeed, XHTML already renders properly in HTML 4 user agents.

Since MathML and XHTML share a common XML framework, namespaces provide a standard mechanism for embedding MathML in XHTML. While some popular
user agents also support inclusion of MathML directly in HTML 4 as "XML data islands," the view point we adopt here is that this is a transitional strategy, and we
don’t elaborate on it. Consult your user agent documentation for specific information on its support for embedding XML in HTML.

213

mailto:www-math@w3.org
http://www.w3.org/Math/

214

7.1.1 MathML and Namespaces

Embedding MathML in XML-based documents in general, and XHTML in particular, is a matter of managing namespaces. See the W3C Recommendation "Names-
paces in XML" [Namespaces] for full details.

An XML namespace is a collection of names identified by a URI resource. The URI for the MathML namespace is:

http://www.w3.org/1998/Math/MathML

Using namespaces, embedding a MathML expression in a larger XML document is merely a matter of identifying the MathML markup as residing in the MathML
namespace. This can be accomplished by either explicitly identifying each MathML element name by attaching a namespace prefix, or by declaring a default
namespace on an enclosing element.

To declare a namespace, one uses an xmlns attribute, or an attribute with an xmlns prefix. When the xmlns attribute is used alone, it sets the namespace for the
element on which it appears, and for any children elements.

Example:

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...</mrow>
</math>

When the xmlns attribute is used as a prefix, it declares a prefix which can then be used to explicitly associate other elements and attributes with a particular
namespace.

Example:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
...
<m:math><m:mrow>...</m:mrow></m:math>
...
</body>

These two methods of namespace declaration can be used together. For example, by using both an explicit document-wide namespace prefix, and default namespace
declarations on individual math elements, it is possible to localize namespace related markup to the top-level math’ element. This is also important for implementation
with some user agents, since attaching rendering behaviors to element currently requires an explicit namespace prefix in these browsers. At the same time, a number
of MathML authoring tools are not yet namespace-aware, and thus the ability to use markup without prefixes is also desirable in the short term.

Example:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
...
<m:math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...<mrow>
</m:math>
...
</body>

7.1.1.1 Document Validation Issues

The use of namespace prefixes creates an issue for DTD validation of documents embedding MathML. DTD validation requires knowing the literal (possibly prefixed)
element names used in the document. However, the Namespaces in XML Recommendation [Namespaces] allows the prefix to be changed at arbitrary points in the
document, since namespace prefixes may be declared on any element.

214

215

The ‘historical’ method of bridging this gap was to write a DTD with a fixed prefix, or in the case of XHTML and MathML, with no prefix, and mandate that the specified
form must be used throughout the document. However, this is somewhat restricting for a modular DTD that is intended for use in conjunction with another DTD, which
is exactly the situation with MathML in XHTML. In essence, the MathML DTD would have to ‘allocate’ a prefix for itself and hope no other module uses the same
prefix to avoid name clashes, thus losing one of the main benefits of XML namespaces.

One strategy for addressing this problem is to make every element name in the DTD be accessed by an entity reference. This means that by declaring a couple
of entities to specify the prefix before the DTD is loaded, the prefix can be chosen by a document author, and compound DTDs that include several modules can,
without changing the module DTDs, specify unique prefixes for each module to avoid clashes. The MathML DTD has been designed in this fashion. See Section A.1,
[Modularization] and [Building] for details.

An extra issue arises in the case where explicit prefixes are used on the top-level math element, but a default namespace is used for other MathML elements. In
this case, one wants the MathML module to be included into XHTML with the prefix set to empty. However, the ‘driver’ DTD file that sets up the inclusion of the
MathML module would then need to define a new element called m:math. This would allow the top-level math element to use an explicit prefix, for attaching rendering
behaviors in current browsers, while the contents would not need an explicit prefix, for ease of interoperability between authoring tools, etc.

7.1.1.2 Compatibility Suggestions

While the use of namespaces to embed MathML in other XML applications is completely described by the relevant W3C recommendations, a certain degree of
pragmatism is still called for at present. Support for XML, namespaces and rendering behaviors in popular user agents is not always fully in alignment with W3C
Recommendations. In some cases the software predates the relevant standard, and in other cases, the relevant standards are not yet complete.

During the transitional period in which some software may not be fully namespace-aware, a few conventional practices will ease compatibility problems. After surveying
a number of user agents and other MathML-aware software applications, we offer the following suggestions.

1. If you use namespace prefixes with MathML markup, use m: as a conventional prefix for the MathML namespace. Using an explicit prefix is probably safer
for compatibility in current user agents.

2. If you use namespace prefixes, pick one and use it consistently within a document.
3. Explicitly declare the MathML namespace on all math elements.

Examples.

<body>
...
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>...<m:mrow>
</m:math>
...
</body>

Or

<body>
...
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...<mrow>
</math>
...
</body>

Note that these suggestions alone may not be sufficient for creating functional Web pages containing MathML markup. It will generally be the case that some
additional document-wide markup will be required. Additional work may also be required to make all MathML instances in a document compatible with document-
wide declarations. This is particularly true when documents are created by cutting and pasting MathML expressions, since current tools will probably not be able to
query global namespace information.

Consult the W3C Math Working Group homepage for compatibility and implementation suggestions for current browsers and other MathML-aware tools.

215

http://www.w3.org/Math

216

7.1.2 The Top-Level math Element

MathML specifies a single top-level or root math element, which encapsulates each instance of MathML markup within a document. All other MathML content must
be contained in a math element; equivalently, every valid, complete MathML expression must be contained in <math> tags. The math element must always be the
outermost element in a MathML expression; it is an error for one math element to contain another.

Applications that return sub-expressions of other MathML expressions, for example as the result of a cut-and-paste operation, should always wrap them in <math>
tags. Ideally, the presence of enclosing <math> tags should be a very good heuristic test for MathML content. Similarly, applications which insert MathML expressions
in other MathML expressions must take care to remove the <math> tags from the inner expressions.

The math element can contain an arbitrary number of children schemata. The children schemata render by default as if they were contained in a mrow element.

The attributes of the math element are:

class, id, style Provided for style sheet and DOM compatibility.
macros This attribute provides a way of pointing to external macro definition files. Macros are not part of the MathML specification, and much of the functionality

provided by macros in MathML can be accommodated by XSL transformations [XSLT]. However, the macros attribute is provided to make possible future
development of more streamlined, MathML-specific macro mechanisms. The value of this attribute is a sequence of URLs or URIs, separated by whitespace

mode The mode attribute specifies whether the enclosed MathML expression should be rendered in a display style or an in-line style. Allowed values are display
and inline (default). This attribute is deprecated in favor of the new display attribute, or the standard CSS2 ‘display’ property with the analogous block
and inline values.

display The display attribute replaces the deprecated mode element. It specifies whether the enclosed MathML expression should be rendered in a display style
or an in-line style. Allowed values are block and inline (default).

The attributes of the math element affect the entire enclosed expression. It is, in a sense, ‘inward looking’. However, to render MathML properly in a browser, and to
integrate it properly into an XHTML document, a second collection of ‘outward looking’ attributes are also useful.

While general mechanisms for attaching rendering behaviors to elements in XML documents are under development, wide variations in strategy and level of im-
plementation remain between various existing user agents. Consequently, the remainder of this section describes attributes and functionality that are desirable for
integrating third-party rendering modules with user agents:

overflow In cases where size negotiation is not possible or fails (for example in the case of an extremely long equation), this attribute is provided to suggest an
alternative processing method to the renderer. Allowed values are
scroll The window provides a viewport into the larger complete display of the mathematical expression. Horizontal or vertical scrollbars are added to the

window as necessary to allow the viewport to be moved to a different position.
elide The display is abbreviated by removing enough of it so that the remainder fits into the window. For example, a large polynomial might have the first

and last terms displayed with ‘+ ... +’ between them. Advanced renderers may provide a facility to zoom in on elided areas.
truncate The display is abbreviated by simply truncating it at the right and bottom borders. It is recommended that some indication of truncation is made

to the viewer.
scale The fonts used to display the mathematical expression are chosen so that the full expression fits in the window. Note that this only happens if the

expression is too large. In the case of a window larger than necessary, the expression is shown at its normal size within the larger window.
altimg This attribute provides a graceful fall-back for browsers that do not support embedded elements. The value of the attribute is an URL.
alttext This attribute provides a graceful fall-back for browsers that do not support embedded elements or images. The value of the attribute is a text string.

7.1.3 Invoking MathML Processors

In browsers where MathML is not natively supported, we anticipate that MathML rendering will be carried out via embedded objects such as plug-ins, applets, or
helper applications. The direction which has begun emerging for invoking third-party rendering and processing software is elucidated in the W3C Working Draft
"Behavioral Extensions to CSS" [Behaviors].

Behavioral extensions use the linking mechanism of CSS to attach executable components to elements. Typically, the executable components involve script code
which manipulate the DOM to instantiate other MathML processing components. Using experimental implementations of behavior extensions in current user agents,
it is possible to attach processing components to math elements which use applets or plug-ins to render MathML markup in an XHTML page.

216

http://www.w3.org/TR/CSS2/visuren.html#propdef-display

217

Work on on Behavior Extensions to CSS is ongoing at W3C, and existing implementations must be regarded as experimental at the time. However, it offers a very
promising direction for powerful and flexible invocation of third-party MathML processors.

MIME types offer an alternative strategy that can also be used in current user agents to invoke a MathML renderer. This is primarily useful when referencing separate
files containing MathML markup from an EMBED or OBJECT element. The W3C Math Working Group suggests that generic MathML be assigned the MIME type text/
x-mathml, and for browser registry, we suggest the standard file extension .mml be used. In MathML 1.0, text/mathml was given as the suggested MIME type.
However, the assignment of MIME types to XML applications has come into question in the interim. Thus, beginning with MathML 2.0, we suggest instead using the
less-regulated experimental MIME type text/x-mathml.

Although rendering MathML expressions typically occurs in place in a Web browser, other MathML processing functions take place more naturally in other applications.
Particularly common tasks include opening a MathML expression in an equation editor or computer algebra system.

At present, there is no standard way of selecting between various applications which might be used to render or process embedded MathML. As work progresses on
coordination between browsers and embedded elements and the Document Object Model [DOM], providing this kind of functionality should be a priority. Both authors
and readers should be able to indicate a preference about what MathML application to use in a given context. For example, one might imagine that some mouse
gesture over a MathML expression causes a browser to present the reader with a pop-up menu, showing the various kinds of MathML processing available on the
system, and the MathML processors recommended by the author.

Since MathML is most often generated by authoring tools, it is particularly important that opening a MathML expression in an editor should be easy to do and to
implement. In many cases, it will be desirable for an authoring tool to record some information about its internal state along with a MathML expression, so that an
author can pick up editing where he or she left off. The MathML specification does not explicitly contain provisions for recording information about the authoring tool.
In some circumstances, it may be possible to include authoring tool information that applies to an entire document in the form of meta-data; interested readers are
encouraged to consult the W3C Metadata Activity for current information about metadata and resource definition. For encoding authoring tool state information that
applies to a particular MathML instance, readers are referred to the possible use of the semantics element for this purpose.

In the short term, regardless of the methodology, implementors of embedded MathML processing applications are encouraged to try to allow for the following kinds
of functionality:

• An author wishing to reach an audience as wide as possible might want MathML to be rendered by any available processor.
• An author targeting a specific audience might want to indicate that a particular MathML processor be used.
• A reader might wish to specify which of several available processors installed locally should be used.

7.1.4 Mixing and Linking MathML and HTML

In order to be fully integrated into XHTML, it should be possible not only to embed MathML in XHTML, but also to embed XHTML in MathML. However, the problem
of supporting XHTML in MathML presents many difficulties. Moreover, the problems are not specific to MathML; they are problems for XML applications in XHTML
generally. Therefore, at present, the MathML specification does not permit any XHTML elements within a MathML expression, although this may be subject to change
in a future revision of MathML.

In most cases, XHTML elements either do not apply in mathematical contexts (headings, paragraphs, lists, etc.), or MathML already provides equivalent or better
functionality specifically tailored to mathematical content (tables, style changes, etc.). However, there are two notable exceptions.

7.1.4.1 Linking

MathML has no element that corresponds to the XHTML anchor element a. In XHTML, anchors are used both to make links, and to provide locations to which a link
can be made. MathML, as an XML application, defines links by the use of the mechanism described in the W3C Working Draft "XML Linking Language" [XLink]. The
reader is cautioned that this is at present still a working draft, and is therefore subject to future revision. Since the MathML linking mechanism is defined in terms of
the XML linking specification, the same proviso holds for it as well.

A MathML element is designated as a link by the presence of the attribute xlink:href. To use the attribute xlink:href, it is also necessary to declare the
appropriate namespace. Thus, a typical MathML link might look like:

217

218

<mrow xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="sample.xml">

...
</mrow>

MathML designates that almost all elements can be used as XML linking elements. The only elements that cannot serve as linking elements are those such as the
sep element, which exist primarily to disambiguate other MathML constructs and in general do not correspond to any part of a typical visual rendering. The full list of
exceptional elements that cannot be used as linking elements is given in the table below.

Table 7.1: MathML elements that cannot be linking elements.

mprescripts none sep
malignmark maligngroup

Note that the XML Linking [XLink] and XML Pointer Language [XPointer] specifications also define how to link into a MathML expressions. Be aware, however, that
such links may or may not be properly interpreted in current software.

7.1.4.2 Images

The IMG element has no MathML equivalent. The decision to omit a general mechanism for image inclusion from MathML was based on several factors. However, the
main reason for not providing an image facility is that MathML takes great pains to make the notational structure and mathematical content it encodes easily available
to processors, whereas information contained in images is only available to a human reader looking at a visual representation. Thus, for example, in the MathML
paradigm, it would be preferable to introduce new glyphs via the mglyph element which at a minimum identifies them as glyphs, rather than simply including them as
images.

Finally, apart from the introduction of new glyphs, many of the situations where one might be inclined to use an image amount to some sort of labeled diagram.
For example, knot diagrams, Venn diagrams, Dynkin diagrams, Feynman diagrams and complicated commutative diagrams all fall into this category. As such, their
content would be better encoded via some combination of structured graphics and MathML markup. Because of the generality of the ‘labeled diagram’ construction,
the definition of a markup language to encode such constructions extends beyond the scope of the current W3C Math activity. (See http://www.w3.org/Graphics for
further W3C activity in this area.)

7.2 Generating, Processing and Rendering MathML

Information is increasingly generated, processed and rendered by software tools. The exponential growth of the Web is fueling the development of advanced systems
for automatically searching, categorizing, and interconnecting information. Thus, although MathML can be written by hand and read by humans, the future of MathML
is also tied to the ability to process it with software tools.

There are many different kinds of MathML editors, translators, processors and renderers. What it means to support MathML varies widely between applications. For
example, the issues that arise with a MathML-compliant validating parser are very different from those for a MathML-compliant equation editor.

In this section, guidelines are given for describing different types of MathML support, and for quantifying the extent of MathML support in a given application.
Developers, users and reviewers are encouraged to use these guidelines in characterizing products. The intention behind these guidelines is to facilitate reuse and
interoperability between MathML applications by accurately characterizing their capabilities in quantifiable terms.

7.2.1 MathML Compliance

A valid MathML expression is an XML construct determined by the MathML DTD together with the additional requirements given in the specifications of the MathML
document.

We define a ‘MathML processor’ to mean any application that can accept, produce, or ‘roundtrip’ a valid MathML expression. An example of an application that might
round-trip a MathML expression might be an editor that writes a new file even though no modifications are made.

218

http://www.w3.org/Graphics

219

We specify three forms of MathML compliance:

1. A MathML-input-compliant processor must accept all valid MathML expressions, and faithfully translate all MathML expressions into application-specific
form allowing native application operations to be performed.

2. A MathML-output-compliant processor must generate valid MathML, faithfully representing all application-specific data.
3. A MathML-roundtrip-compliant processor must preserve MathML equivalence. Two MathML expressions are ‘equivalent’ if and only if both expressions

have the same interpretation (as stated by the MathML DTD and specification) under any circumstances, by any MathML processor. Equivalence on an
element-by-element basis is discussed elsewhere in this document.

Beyond the above definitions, the MathML specification makes no demands of individual processors. In order to guide developers, the MathML specification includes
advisory material; for example, there are suggested rendering rules included in Chapter 3. However, in general, developers are given wide latitude in interpreting
what kind of MathML implementation is meaningful for their own particular application.

To clarify the difference between compliance and interpretation of what is meaningful, consider some examples:

1. In order to be MathML-input-compliant, a validating parser needs only to accept expressions, and return ‘true’ for expressions that are valid MathML. In
particular, it need not render or interpret the MathML expressions at all.

2. A MathML computer-algebra interface based on content markup might choose to ignore all presentation markup. Provided the interface accepts all valid
MathML expressions included those containing presentation markup, it would be technically correct to characterize the application as MathML-input-
compliant.

3. A equation editor might have an internal data representation that makes it easy to export some equations as MathML but not others. If the editor exports
the simple equations as valid MathML, and merely displays an error message to the effect that conversion failed for the others, it is still technically
MathML-output-compliant.

As the previous examples show, to be useful, the concept of MathML compliance frequently involves a judgment about what parts of the language are meaningfully
implemented, as opposed to parts that are merely processed in a technically correct way with respect to the definitions of compliance. This requires some mechanism
for giving a quantitative statement about which parts of MathML are meaningfully implemented by a given application. To this end, the W3C Math working group has
provided a test suite of MathML expressions at http://www.w3.org/Math/testsuite.

The test suite consists of a large number of MathML expressions categorized by markup category and dominant MathML element being tested. The existence of this
test suite makes is possible, for example, to characterize quantitatively the hypothetical computer algebra interface mentioned above by saying that it is a MathML-input
compliant processor which meaningfully implements MathML content markup, including all of the expressions given under http://www.w3.org/Math/testsuite/tests/4.

Developers who choose not to implement parts of the MathML specification in a meaningful way are encouraged to itemize the parts they leave out by referring to
specific categories in the test suite.

For MathML-output-compliant processors, there is also a MathML validator online at http://www.w3.org/Math/validator. Developers of MathML-output-compliant pro-
cessors are encouraged to verify their output using this validator.

Customers of MathML applications who wish to verify claims as to which parts of the MathML specification are implemented by an application are encouraged to use
the test suites as a part of their decision processes.

7.2.1.1 Deprecated MathML 1.x Features

MathML 2.0 contains a number of MathML 1.x constructs which are now deprecated. We now clarify the relation between deprecated features and MathML 2.0
compliance.

1. In order to be MathML-output-compliant, authoring tools may not generate MathML markup containing deprecated features.
2. In order to be MathML-input-compliant, rendering/reading tools must support deprecated features if they are to be MathML 1.x compliant. They do not have

to support deprecated features to be considered MathML 2.0 compliant. However, all tools are encouraged to support the old forms as much as possible.
3. In order to be MathML-roundtrip-compliant, a processor need only preserve MathML equivalence on expressions containing no deprecated features.

219

http://www.w3.org/Math/testsuite
http://www.w3.org/Math/testsuite/test/4
http://www.w3.org/Math/validator

220

7.2.2 Handling of Errors

If a MathML-input-compliant application receives input containing one or more elements with an illegal number or type of attributes or child schemata, it should
nonetheless attempt to render all the input in an intelligible way, i.e. to render normally those parts of the input that were valid, and to render error messages
(rendered as if enclosed in an merror element) in place of invalid expressions.

MathML-output-compliant applications such as editors and translators may choose to generate merror expressions to signal errors in their input. This is usually
preferable to generating valid, but possibly erroneous, MathML.

7.2.3 Attributes for unspecified data

The MathML attributes described in the MathML specification are necessary for presentation and content markup. Ideally, the MathML attributes should be an open-
ended list so that users can add specific attributes for specific renderers. However, this cannot be done within the confines of a single XML DTD. Although it can be
done using extensions of the standard DTD, some authors will wish to use non-standard attributes to take advantage of renderer-specific capabilities while remaining
strictly in compliance with the standard DTD.

To allow this, the MathML 1.0 specification allowed the attribute other on all elements, for use as a hook to pass on renderer-specific information. In particular, it
was intended as a hook for passing information to audio renderers, computer algebra systems, and for pattern matching in future macro/extension mechanisms. The
motivation for this approach to the problem was historical, looking to PostScript, for example, where comments are widely used to pass information that is not part of
PostScript.

In the mean time, however, the development of a general XML namespace mechanism has made the use of the other attribute obsolete. In MathML 2.0, the other
attribute is deprecated in favor of the use of namespace prefixes to identify non-MathML attributes.

For example, in MathML 1.0, it was recommended that if additional information was used in a renderer-specific implementation for the maction element (Sec-
tion 3.6.1), that information should be passed in using the other attribute:

<maction actiontype="highlight" other="color=’#ff0000’"> expression </maction>

In MathML 2.0, a color attribute from another namespace would be used:

<body xmlns:my="http://www.myrenderer.com/MathML/extensions">
...
<maction actiontype="highlight" my:color="#ff0000"> expression </maction>
...
</body>

Note that the intent of allowing non-standard attributes is not to encourage software developers to use this as a loop-hole for circumventing the core conventions for
MathML markup. We trust both authors and applications will use non-standard attributes judiciously.

7.3 Future Extensions

If MathML is to remain useful in the future, it is to be expected that MathML will need to be extended and revised in various ways. Some of these extensions can be
easily foreseen; for example, as work on behavioral extensions to CSS proceeds, MathML will likely need to be extended as well.

Similarly, there are several kinds of functionality that are fairly obvious candidates for future MathML extensions. These include macros, style sheets, and perhaps
a general facility for ‘labeled diagrams’. However, there will no doubt be other desirable extensions to MathML that will only emerge as MathML is widely used. For
these extensions, the W3C Math working group relies on the extensible architecture of XML, and the common sense of the larger Web community.

220

221

7.3.1 Macros and Style Sheets

The development of style-sheet mechanisms for XML is part of the ongoing XML activity of the World Wide Web Consortium. Both XSL and CSS are working to
incorporate greater support for mathematics.

In particular, XSL Transformations [XSLT] are likely to have a large impact on the future development of MathML. Macros has traditionally contributed greatly the
usability and effectiveness of mathematics encodings. Further work developing applications of XSLT tailored specifically to MathML is clearly called for.

Some of the possible uses of macro capabilities for MathML include:

Abbreviation One common use of macros is for abbreviation. Authors needing to repeat some complicated but constant notation can define a macro. This greatly
facilitates hand authoring. Macros that allow for substitution of parameters facilitate such usage even further.

Extension of Content Markup By defining macros for semantic objects, for example a binomial coefficient, or a Bessel function, one can in effect extend the content
markup for MathML. Such a macro could include an explicit semantic binding, or such a binding could be easily added by an external applications. Narrowly
defined disciplines should be able to easily introduce standardized content markup by using standard macro packages. For example, the OpenMath project
could release macro packages for attaching OpenMath content markup.

Rendering and Style Control Another basic way in which macros are often used is to provide a way of controlling style and rendering behavior by replacing high-
level macro definitions. This is especially important for controlling the rendering behavior of MathML content tags in a context sensitive way. Such a macro
capability is also necessary to provide a way of attaching renderings to user-defined XML extensions to the MathML core.

Accessibility Reader-controlled style sheets are important in providing accessibility to MathML. For example, a reader listening to a voice renderer might, by default,
hear a bit of MathML presentation markup read as ‘D sub x sup 2 of f’. Knowing the context to be multi-variable calculus, the reader may wish to use a
style sheet or macro package that instructs the renderer to render this <msubsup> element as ‘second derivative with respect to x of f’.

7.3.2 XML Extensions to MathML

The set of elements and attributes specified in the MathML specification are necessary for rendering common mathematical expressions. It is recognized that not
all mathematical notation is covered by this set of elements, that new notations are continually invented, and that sub-communities within mathematics often have
specialized notations; and furthermore that the explicit extension of a standard is a necessarily slow and conservative process. This implies that the MathML standard
could never explicitly cover all the presentational forms used by every sub-community of authors and readers of mathematics, much less encode all mathematical
content.

In order to facilitate the use of MathML by the widest possible audience, and to enable its smooth evolution to encompass more notational forms and more math-
ematical content (perhaps eventually covered by explicit extensions to the standard), the set of tags and attributes is open-ended, in the sense described in this
section.

MathML is described by an XML DTD, which necessarily limits the elements and attributes to those occurring in the DTD. Renderers desiring to accept non-standard
elements or attributes, and authors desiring to include these in documents, should accept or produce documents that conform to an appropriately extended XML
DTD that has the standard MathML DTD as a subset.

MathML-compliant renderers are allowed, but not required, to accept non-standard elements and attributes, and to render them in any way. If a renderer does not
accept some or all non-standard tags, it is encouraged either to handle them as errors as described above for elements with the wrong number of arguments, or to
render their arguments as if they were arguments to an mrow, in either case rendering all standard parts of the input in the normal way.

221

Chapter 8

Document Object Model for MathML

8.1 Introduction

This document extends the Core API of the DOM Level 1 to describe objects and methods specific to MathML elements in documents. The functionality needed to
manipulate basic hierarchical document structures, elements, and attributes will be found in the core document; functionality that depends on the specific elements
defined in MathML will be found in this document.

The actual DOM specification appears in Appendix E.

The goals of the MathML-specific DOM API are:

• To specialize and add functionality that relates specifically to MathML elements.
• To provide convenience mechanisms, where appropriate, for common and frequent operations on MathML elements.

This document includes the following specializations for MathML:

• A MathMLElement interface derived from the core interface Element. MathMLElement specifies the operations and queries that can be made on any
MathML element. Methods on MathMLElement include those for the retrieval and modification of attributes that apply to all MathML elements.

• Various specializations of MathMLElement to encode syntactical restrictions imposed by MathML.
• Specializations of MathMLElement representing all MathML elements with attributes extending beyond those specified in the MathMLElement interface.

For all such attributes, the derived interface for the element contains explicit methods for setting and getting the values.
• Special methods for insertion and retrieval of children of MathML elements. While the basic methods inherited from the Node and Element interfaces

must clearly remain available, it is felt that in many cases they may be misleading. Thus, for instance, the MathMLFractionElement interface provides
for access to numerator and denominator attributes; a call to setDenominator(newNode) is less ambiguous from a calling application’s perspective
than a call to Node::replaceNode(newNode, Node::childNodes().item(2)).

MathML specifies rules that are invisible to generic XML processors and validators. The fact that MathML DOM objects are required to respect these rules, and to
throw exceptions when those rules are violated, is an important reason for providing a MathML-specific DOM extension.

There are basically two kinds of additional MathML grammar and syntax rules. One kind involves placing additional criteria on attribute values. For example, it is not
possible in pure XML to require that an attribute value be a positive integer. The second kind of rule specifies more detailed restrictions on the child elements (for
example on ordering) than are given in the DTD. For example, it is not possible in XML to specify that the first child be interpreted one way, and the second in another.
The MathML DOM objects are required to provide this interpretation.

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there. Whitespace occurring within the content of token
elements is ‘trimmed’ from the ends (i.e. all whitespace at the beginning and end of the content is removed), and ‘collapsed’ internally (i.e. each sequence of 1 or more
whitespace characters is replaced with one blank character). The MathML DOM elements perform this whitespace trimming as necessary. In MathML, as in XML,
‘whitespace’ means blanks, tabs, newlines, or carriage returns, i.e. characters with hexadecimal Unicode codes U+0020, U+0009, U+000a, or U+000d, respectively.

222

223

8.1.1 MathML DOM Extensions

It is expected that a future version of the MathML DOM may deal with issues which are not resolved here. Some of these are described here.

8.1.1.1 Style Issues and Implied Attribute Values

The interfaces described to represent MathML elements include access to a number of attributes (in the sense of XML) belonging to those elements. The intent of
these methods in the core MathML interfaces (the ‘get’/ ‘set’ pairs) is only to access explicitly specified attributes of the elements, and specifically not to access
implicit values which may be application-specific. Calls to these interfaces to get attributes that have not been explicitly specified should return nothing (an empty
DOMString).

It seems important to belabor this distinction in light of the nature of the MathML elements and their attributes; all of the attributes defined for MathML presentation
elements are declared in the DTD with a default value of #IMPLIED, for instance. This is particularly relevant for the interface of the mo element, where the form
attribute may be inferred from context if not given explicitly, but other attributes are normally collected from an operator dictionary available to a renderer. The variety
of applications which may need to implement the MathML DOM may sometimes be concerned with validation, computation or other aspects of the document to the
exclusion of rendering or editing; such applications do not need to resolve many #IMPLIED attributes, and thus there is no access to such resolution implied in this
version of the MathML DOM.

On the other hand, methods for obtaining the current cascaded and computed values of certain style attributes are considered desirable due to the need to make
frequent calls to discover style information and the current script level and display style. Mathematics is characterized by recursive nesting of objects, frequently
with implications for the calculation of style parameters such as font size. As anyone who’s implemented math rendering knows, there’s a constant need for this
information, and it must be obtained very quickly. Consequently, it might be wise to provide an optional module in the MathML DOM which would allow style values or
implied attributes (e.g., operator dictionary values) known to the processing application to be ‘attached’ to a DOM instance and subsequently queried.

However, we feel that introducing methods now for dealing with these issues would be premature. CSS and XSL support for mathematics is still evolving, and the
mechanisms for handling style issues in MathML documents may well evolve with them. Additionally, these issues also apply to the core XML DOM. Thus far (XML
DOM level 2), issues such as privacy with regard to user-side style sheets have resulted in no core DOM methods being defined for obtaining the cascaded, computed
or actual style values for a specific element, with DOM access being limited to providing the style declarations which are in effect. If a future iteration of the XML DOM
were to expand this access, the methods used there would apply to the MathML DOM as well, and render any specifications we might make now obsolete.

8.1.1.2 Traversal and Range Interfaces

Additionally, it is likely that a need will become obvious for MathML-specific specializations of interfaces belonging to the Traversal and Range Modules of XML DOM
Level 2. The order of traversal of bound variables, conditions, and declarations - or whether they should be omitted from a given traversal altogether - offers an
example of a potential utility for such specializations. Again, however, we feel that it would be premature to specify any such interfaces at this time. Implementation
experience will be necessary in order to discover the appropriate interfaces which should be specified.

223

Appendix A

Parsing MathML

MathML documents should be validated using the XML DTD for MathML, which is also shown below in Section A.1.

Normally. however, a MathML expression does not constitute an entire XML document. MathML is designed to be used as the mathematics fragment of larger markup
languages. In particular it is designed to be used as a module in documents marked up with the XHTML family of markup languages, as defined in [Modularization].
As a convenience, a version of the XHTML DTD, extended with this MathML module, is also provided as a concrete example. This version includes all the necessary
declarations included into one file. (In contrast to the standalone version of the MathML DTD which references several files for entity declarations etc.

In some circumstances, when embedding MathML in documents it is necessary, or convenient, to use the mechanisms described in Chapter 7 which provide
a namespace prefix on MathML element names. The DTD below is designed to allow this usage. If the parameter entity MATHML.prefixed is declared to be
INCLUDE, using a declaration such as

<!ENTITY % MATHML.prefixed "INCLUDE" >

either in the local subset of the DOCTYPE declaration, or in the DTD file that is including the MathML DTD, then all MathML elements should be used with a prefix,
for example <m:mrow>, <m:apply>, etc. The prefix defaults to m: but another prefix may be declared by declaring in addition the parameter entity MathML.prefix.
For example,

<!ENTITY % MATHML.prefix "math" >

would set the prefix for the MathML namespace to math:.

Note that while the [Namespaces] Recommendation provides mechanisms to change the prefix at arbitrary points in the document, this flexibility is not provided in
this DTD (and is probably not possible to specify in any DTD).

If a MathML fragment is parsed without a DTD, in other words as a well-formed XML fragment, it is the responsibility of the processing application to treat the
whitespace whitespace characters occurring outside of token elements as not significant.

An SGML parser, such as nsgmls, can be used to validate MathML. In this case an SGML declaration defining the constraints of XML applicable to an SGML parser
must be used. See the note on SGML and XML.

The entity declarations for characters are referenced at the end of the DTD. These are linked to the character tables in Chapter 6 for each entity set.

Lists of the combined MathML set of character names, ordered by name or by Unicode value are also available.

In order to accommodate XML Namespace prefixes, the DTD does not directly refer to an element name such as mrow but instead always refers to the name via a
parameter entity such as %mrow.qname;. The definitions of these parameter entities are in the file but are not shown here. They are simply declarations such as the
following, one for each MathML element.

<!ENTITY % mrow.qname "%MATHML.pfx;mrow" >

224

file:dtd/mathml2.dtd
file:dtd/xhtml-math11-f.dtd
http://www.w3.org/TR/NOTE-sgml-xml
file:byalpha.html
file:bycodes.html
file:dtd/mathml2-qname-1.mod

225

A.1 The MathML DTD

Here we give the main body of the DTD. The full DTD, as well as the XHTML-Math DTD, is available as a zip archive.

<!-- MathML 2.0 DTD ... -->
<!-- file: mathml2.dtd
-->

<!-- MathML 2.0 DTD

This is the Mathematical Markup Language (MathML) 2.0, an XML
application for describing mathematical notation and capturing
both its structure and content.

Copyright 1998-2000 World Wide Web Consortium
(Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved.

Permission to use, copy, modify and distribute the XHTML 1.1 DTD and
its accompanying documentation for any purpose and without fee is
hereby granted in perpetuity, provided that the above copyright notice
and this paragraph appear in all copies. The copyright holders make
no representation about the suitability of the DTD for any purpose.

It is provided "as is" without expressed or implied warranty.

Revision: $Id: parsing.xml,v 1.22 2000/03/28 09:53:02 davidc Exp $

This entity may be identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//DTD MathML 2.0//EN"
SYSTEM "mathml2.dtd"

Revisions: editor and revision history at EOF
-->

<!-- MathML Qualified Names module -->
<!ENTITY % mathml-qname.module "INCLUDE" >

<![%mathml-qname.module;[
<!ENTITY % mathml-qname.mod

PUBLIC "-//W3C//ENTITIES MathML 2.0 Qualified Names 1.0//EN"
"mathml2-qname-1.mod" >

%mathml-qname.mod;]]>

<!-- if %NS.prefixed; is INCLUDE, include all NS attributes,
otherwise just those associated with MathML

225

file:DTD-MathML-20000328.zip

226

-->
<![%NS.prefixed;[
<!ENTITY % MATHML.NamespaceDecl.attrib

%NamespaceDecl.attrib; >
]]>
<!ENTITY % MATHML.NamespaceDecl.attrib

"%MATHML.xmlns.attrib;"
>

<!-- Attributes shared by all elements -->

<!ENTITY % MATHML.Common.attrib
"%MATHML.NamespaceDecl.attrib;
xlink:href CDATA #IMPLIED
class CDATA #IMPLIED
style CDATA #IMPLIED
id ID #IMPLIED
xref IDREF #IMPLIED
other CDATA #IMPLIED"

>

<!-- Presentation element set -->

<!-- Attribute definitions -->

<!ENTITY % att-fontsize
"fontsize CDATA #IMPLIED" >

<!ENTITY % att-fontweight
"fontweight (normal | bold) #IMPLIED" >

<!ENTITY % att-fontstyle
"fontstyle (normal | italic) #IMPLIED" >

<!ENTITY % att-fontfamily
"fontfamily CDATA #IMPLIED" >

<!ENTITY % att-color
"color CDATA #IMPLIED" >

<!ENTITY % att-fontinfo
"%att-fontsize;
%att-fontweight;
%att-fontstyle;
%att-fontfamily;
%att-color;"

>

<!ENTITY % att-form
"form (prefix | infix | postfix) #IMPLIED" >

<!ENTITY % att-fence

226

227

"fence (true | false) #IMPLIED" >
<!ENTITY % att-separator

"separator (true | false) #IMPLIED" >
<!ENTITY % att-lspace

"lspace CDATA #IMPLIED" >
<!ENTITY % att-rspace

"rspace CDATA #IMPLIED" >
<!ENTITY % att-stretchy

"stretchy (true | false) #IMPLIED" >
<!ENTITY % att-symmetric

"symmetric (true | false) #IMPLIED" >
<!ENTITY % att-maxsize

"maxsize CDATA #IMPLIED" >
<!ENTITY % att-minsize

"minsize CDATA #IMPLIED" >
<!ENTITY % att-largeop

"largeop (true | false) #IMPLIED" >
<!ENTITY % att-movablelimits

"movablelimits (true | false) #IMPLIED" >
<!ENTITY % att-accent

"accent (true | false) #IMPLIED" >

<!ENTITY % att-opinfo
"%att-form;
%att-fence;
%att-separator;
%att-lspace;
%att-rspace;
%att-stretchy;
%att-symmetric;
%att-maxsize;
%att-minsize;
%att-largeop;
%att-movablelimits;
%att-accent;"

>
<!ENTITY % att-width

"width CDATA #IMPLIED" >
<!ENTITY % att-height

"height CDATA #IMPLIED" >
<!ENTITY % att-depth

"depth CDATA #IMPLIED" >
<!ENTITY % att-linebreak

"linebreak CDATA #IMPLIED" >
<!ENTITY % att-sizeinfo

"%att-width;
%att-height;

227

228

%att-depth;"
>
<!ENTITY % att-lquote

"lquote CDATA #IMPLIED" >
<!ENTITY % att-rquote

"rquote CDATA #IMPLIED" >
<!ENTITY % att-linethickness

"linethickness CDATA #IMPLIED" >
<!ENTITY % att-scriptlevel

"scriptlevel CDATA #IMPLIED" >
<!ENTITY % att-displaystyle

"displaystyle (true | false) #IMPLIED" >
<!ENTITY % att-scriptsizemultiplier

"scriptsizemultiplier CDATA #IMPLIED" >
<!ENTITY % att-scriptminsize

"scriptminsize CDATA #IMPLIED" >
<!ENTITY % att-background

"background CDATA #IMPLIED" >
<!ENTITY % att-open

"open CDATA #IMPLIED" >
<!ENTITY % att-close

"close CDATA #IMPLIED" >
<!ENTITY % att-separators

"separators CDATA #IMPLIED" >
<!ENTITY % att-subscriptshift

"subscriptshift CDATA #IMPLIED" >
<!ENTITY % att-superscriptshift

"superscriptshift CDATA #IMPLIED" >
<!ENTITY % att-accentunder

"accentunder (true | false) #IMPLIED" >
<!ENTITY % att-align

"align CDATA #IMPLIED" >
<!ENTITY % att-rowalign

"rowalign CDATA #IMPLIED" >
<!ENTITY % att-columnalign

"columnalign CDATA #IMPLIED" >
<!ENTITY % att-columnwidth

"columnwidth CDATA #IMPLIED" >
<!ENTITY % att-groupalign

"groupalign CDATA #IMPLIED" >
<!ENTITY % att-alignmentscope

"alignmentscope CDATA #IMPLIED" >
<!ENTITY % att-rowspacing

"rowspacing CDATA #IMPLIED" >
<!ENTITY % att-columnspacing

"columnspacing CDATA #IMPLIED" >
<!ENTITY % att-rowlines

228

229

"rowlines CDATA #IMPLIED" >
<!ENTITY % att-columnlines

"columnlines CDATA #IMPLIED" >
<!ENTITY % att-frame

"frame (none | solid | dashed) #IMPLIED" >
<!ENTITY % att-framespacing

"framespacing CDATA #IMPLIED" >
<!ENTITY % att-equalrows

"equalrows CDATA #IMPLIED" >
<!ENTITY % att-equalcolumns

"equalcolumns CDATA #IMPLIED" >

<!ENTITY % att-tableinfo
"%att-align;
%att-rowalign;
%att-columnalign;
%att-columnwidth;
%att-groupalign;
%att-alignmentscope;
%att-rowspacing;
%att-columnspacing;
%att-rowlines;
%att-columnlines;
%att-frame;
%att-framespacing;
%att-equalrows;
%att-equalcolumns;
%att-displaystyle;"

>

<!ENTITY % att-rowspan
"rowspan CDATA #IMPLIED" >

<!ENTITY % att-columnspan
"columnspan CDATA #IMPLIED" >

<!ENTITY % att-edge
"edge (left | right) #IMPLIED" >

<!ENTITY % att-actiontype
"actiontype CDATA #IMPLIED" >

<!ENTITY % att-selection
"selection CDATA #IMPLIED" >

<!ENTITY % att-name
"name CDATA #IMPLIED" >

<!ENTITY % att-alt
"alt CDATA #IMPLIED" >

<!ENTITY % att-index
"index CDATA #IMPLIED" >

229

230

<!ENTITY % att-bevelled
"bevelled CDATA #IMPLIED" >

<!-- Presentation schemata with content -->

<!ENTITY % ptoken
"%mi.qname; | %mn.qname; | %mo.qname;
| %mtext.qname; | %ms.qname;" >

<!ATTLIST %mi.qname;
%MATHML.Common.attrib;
%att-fontinfo;

>

<!ATTLIST %mn.qname;
%MATHML.Common.attrib;
%att-fontinfo;

>

<!ATTLIST %mo.qname;
%MATHML.Common.attrib;
%att-fontinfo;
%att-opinfo;

>

<!ATTLIST %mtext.qname;
%MATHML.Common.attrib;
%att-fontinfo;

>

<!ATTLIST %ms.qname;
%MATHML.Common.attrib;
%att-fontinfo;
%att-lquote;
%att-rquote;

>

<!-- Empty presentation schemata -->

<!ENTITY % petoken
"%mspace.qname;" >

<!ELEMENT %mspace.qname; EMPTY >

<!ATTLIST %mspace.qname;
%att-sizeinfo;
%att-linebreak;

230

231

%MATHML.Common.attrib;
>

<!-- Presentation: general layout schemata -->

<!ENTITY % pgenschema
"%mrow.qname; | %mfrac.qname; | %msqrt.qname; | %mroot.qname;
| %menclose.qname; | %mstyle.qname; | %merror.qname;
| %mpadded.qname; | %mphantom.qname; | %mfenced.qname;" >

<!ATTLIST %mrow.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %mfrac.qname;
%MATHML.Common.attrib;
%att-bevelled;
%att-linethickness;

>

<!ATTLIST %msqrt.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %menclose.qname;
%MATHML.Common.attrib;
notation CDATA ’longdiv’ >

<!ATTLIST %mroot.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %mstyle.qname;
%MATHML.Common.attrib;
%att-fontinfo;
%att-opinfo;
%att-lquote;
%att-rquote;
%att-linethickness;
%att-scriptlevel;
%att-scriptsizemultiplier;
%att-scriptminsize;
%att-background;
%att-open;
%att-close;
%att-separators;
%att-subscriptshift;

231

232

%att-superscriptshift;
%att-accentunder;
%att-tableinfo;
%att-rowspan;
%att-columnspan;
%att-edge;
%att-actiontype;
%att-selection;

>

<!ATTLIST %merror.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %mpadded.qname;
%MATHML.Common.attrib;
%att-sizeinfo;
%att-lspace;

>

<!ATTLIST %mphantom.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %mfenced.qname;
%MATHML.Common.attrib;
%att-open;
%att-close;
%att-separators;

>

<!-- Presentation layout schemata: scripts and limits -->

<!ENTITY % pscrschema
"%msub.qname; | %msup.qname; | %msubsup.qname; | %munder.qname;
| %mover.qname; | %munderover.qname; | %mmultiscripts.qname;" >

<!ATTLIST %msub.qname;
%MATHML.Common.attrib;
%att-subscriptshift;

>

<!ATTLIST %msup.qname;
%MATHML.Common.attrib;
%att-superscriptshift;

>

232

233

<!ATTLIST %msubsup.qname;
%MATHML.Common.attrib;
%att-subscriptshift;
%att-superscriptshift;

>

<!ATTLIST %munder.qname;
%MATHML.Common.attrib;
%att-accentunder;

>

<!ATTLIST %mover.qname;
%MATHML.Common.attrib;
%att-accent;

>

<!ATTLIST %munderover.qname;
%MATHML.Common.attrib;
%att-accent;
%att-accentunder;

>

<!ATTLIST %mmultiscripts.qname;
%MATHML.Common.attrib;
%att-subscriptshift;
%att-superscriptshift;

>

<!-- Presentation layout schemata: empty elements for scripts -->

<!ENTITY % pscreschema
"%mprescripts.qname; | %none.qname;" >

<!ELEMENT %mprescripts.qname; EMPTY >
<!ATTLIST %mprescripts.qname;

%MATHML.xmlns.attrib; >

<!ELEMENT %none.qname; EMPTY >
<!ATTLIST %none.qname;

%MATHML.xmlns.attrib; >

<!-- Presentation layout schemata: tables -->

<!ENTITY % ptabschema
"%mtable.qname; | %mtr.qname; | %mlabeledtr.qname; | %mtd.qname;" >

<!ATTLIST %mtable.qname;

233

234

%MATHML.Common.attrib;
%att-tableinfo;

>

<!ATTLIST %mtr.qname;
%MATHML.Common.attrib;
%att-rowalign;
%att-columnalign;
%att-groupalign;

>

<!ATTLIST %mlabeledtr.qname;
%MATHML.Common.attrib;
%att-rowalign;
%att-columnalign;
%att-groupalign;

>

<!ATTLIST %mtd.qname;
%MATHML.Common.attrib;
%att-rowalign;
%att-columnalign;
%att-groupalign;
%att-rowspan;
%att-columnspan;

>

<!ENTITY % plschema
"%pgenschema; | %pscrschema; | %ptabschema;" >

<!-- Empty presentation layout schemata -->

<!ENTITY % peschema
"%maligngroup.qname; | %malignmark.qname;" >

<!ELEMENT %malignmark.qname; EMPTY >

<!ATTLIST %malignmark.qname;
%att-edge; >

<!ELEMENT %maligngroup.qname; EMPTY >
<!ATTLIST %maligngroup.qname;

%MATHML.Common.attrib;
%att-groupalign;

>

<!ELEMENT %mchar.qname; EMPTY >

234

235

<!ATTLIST %mchar.qname;
%att-name; >

<!ELEMENT %mglyph.qname; EMPTY >
<!ATTLIST %mglyph.qname;

%att-alt;
%att-fontfamily;
%att-index; >

<!-- Presentation action schemata -->

<!ENTITY % pactions
"%maction.qname;" >

<!ATTLIST %maction.qname;
%MATHML.Common.attrib;
%att-actiontype;
%att-selection;

>

<!-- The following entity for substitution into
content constructs excludes elements that
are not valid as expressions.

-->

<!ENTITY % PresInCont
"%ptoken; | %petoken; |
%plschema; | %peschema; | %pactions;" >

<!-- Presentation entity: all presentation constructs -->

<!ENTITY % Presentation
"%ptoken; | %petoken; | %pscreschema; |
%plschema; | %peschema; | %pactions;">

<!-- Content element set .. -->

<!-- Attribute definitions -->

<!ENTITY % att-base
"base CDATA ’10’" >

<!ENTITY % att-closure
"closure CDATA ’closed’" >

<!ENTITY % att-definition
"definitionURL CDATA ’’" >

<!ENTITY % att-encoding
"encoding CDATA ’’" >

<!ENTITY % att-nargs

235

236

"nargs CDATA ’1’" >
<!ENTITY % att-occurrence

"occurrence CDATA ’function-model’" >
<!ENTITY % att-order

"order CDATA ’numeric’" >
<!ENTITY % att-scope

"scope CDATA ’local’" >
<!ENTITY % att-type

"type CDATA #IMPLIED" >

<!-- Content elements: leaf nodes -->

<!ENTITY % ctoken
"%csymbol.qname; | %ci.qname; | %cn.qname;" >

<!ATTLIST %ci.qname;
%MATHML.Common.attrib;
%att-type;
%att-definition;
%att-encoding;

>

<!ATTLIST %csymbol.qname;
%MATHML.Common.attrib;
%att-encoding;
%att-type;
%att-definition;

>

<!ATTLIST %cn.qname;
%MATHML.Common.attrib;
%att-type;
%att-base;
%att-definition;
%att-encoding;

>

<!-- Content elements: specials -->

<!ENTITY % cspecial
"%apply.qname; | %reln.qname; |
%lambda.qname;" >

<!ATTLIST %apply.qname;
%MATHML.Common.attrib;

>

236

237

<!ATTLIST %reln.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %lambda.qname;
%MATHML.Common.attrib;

>

<!-- Content elements: others -->

<!ENTITY % cother
"%condition.qname; | %declare.qname; | %sep.qname;" >

<!ATTLIST %condition.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %declare.qname;
%MATHML.Common.attrib;
%att-type;
%att-scope;
%att-nargs;
%att-occurrence;
%att-definition;
%att-encoding;

>

<!ELEMENT %sep.qname; EMPTY >
<!ATTLIST %sep.qname;

%MATHML.xmlns.attrib; >

<!-- Content elements: semantic mapping -->

<!ENTITY % csemantics
"%semantics.qname; | %annotation.qname; |
%annotation-xml.qname;" >

<!ATTLIST %semantics.qname;
%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ATTLIST %annotation.qname;
%MATHML.Common.attrib;
%att-encoding;

>

237

238

<!ATTLIST %annotation-xml.qname;
%MATHML.Common.attrib;
%att-encoding;

>

<!-- Content elements: constructors -->

<!ENTITY % cconstructor
"%interval.qname; | %list.qname; | %matrix.qname;
| %matrixrow.qname; | %set.qname; | %vector.qname;" >

<!ATTLIST %interval.qname;
%MATHML.Common.attrib;
%att-closure;

>

<!ATTLIST %set.qname;
%MATHML.Common.attrib;
%att-type;

>

<!ATTLIST %list.qname;
%MATHML.Common.attrib;
%att-order;

>

<!ATTLIST %vector.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %matrix.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %matrixrow.qname;
%MATHML.Common.attrib;

>

<!-- Content elements: symbols -->

<!ENTITY % c0ary
"%integers.qname; |
%reals.qname; |
%rationals.qname; |
%naturalnumbers.qname; |
%complexes.qname; |

238

239

%primes.qname; |
%exponentiale.qname; |
%imaginaryi.qname; |
%notanumber.qname; |
%true.qname; |
%false.qname; |
%emptyset.qname; |
%pi.qname; |
%eulergamma.qname; |
%infinity.qname;" >

<!-- Content elements: operators -->

<!ENTITY % cfuncop1ary
"%inverse.qname; | %ident.qname;" >

<!ELEMENT %inverse.qname; EMPTY >
<!ATTLIST %inverse.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % cfuncopnary
"%fn.qname; | %compose.qname;" >

<!ATTLIST %fn.qname;
%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %ident.qname; EMPTY >
<!ATTLIST %ident.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %compose.qname; EMPTY >
<!ATTLIST %compose.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % carithop1ary

239

240

"%abs.qname; | %conjugate.qname; | %exp.qname; | %factorial.qname; |
%arg.qname; | %real.qname; | %imaginary.qname;" >

<!ELEMENT %exp.qname; EMPTY >
<!ATTLIST %exp.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %abs.qname; EMPTY >
<!ATTLIST %abs.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %arg.qname; EMPTY >
<!ATTLIST %arg.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %real.qname; EMPTY >
<!ATTLIST %real.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %imaginary.qname; EMPTY >
<!ATTLIST %imaginary.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %conjugate.qname; EMPTY >
<!ATTLIST %conjugate.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %factorial.qname; EMPTY >
<!ATTLIST %factorial.qname;

240

241

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % carithop1or2ary
"%minus.qname;" >

<!ELEMENT %minus.qname; EMPTY >
<!ATTLIST %minus.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % carithop2ary
"%quotient.qname; | %divide.qname; | %power.qname; | %rem.qname;" >

<!ELEMENT %quotient.qname; EMPTY >
<!ATTLIST %quotient.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %divide.qname; EMPTY >
<!ATTLIST %divide.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %power.qname; EMPTY >
<!ATTLIST %power.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %rem.qname; EMPTY >
<!ATTLIST %rem.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % carithopnary

241

242

"%plus.qname; | %times.qname; | %max.qname;
| %min.qname; | %gcd.qname; | %lcm.qname;" >

<!ELEMENT %plus.qname; EMPTY >
<!ATTLIST %plus.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %max.qname; EMPTY >
<!ATTLIST %max.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %min.qname; EMPTY >
<!ATTLIST %min.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %times.qname; EMPTY >
<!ATTLIST %times.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %gcd.qname; EMPTY >
<!ATTLIST %gcd.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %lcm.qname; EMPTY >
<!ATTLIST %lcm.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % carithoproot
"%root.qname;" >

242

243

<!ELEMENT %root.qname; EMPTY >
<!ATTLIST %root.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clogicopquant
"%exists.qname; | %forall.qname;" >

<!ELEMENT %exists.qname; EMPTY >
<!ATTLIST %exists.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %forall.qname; EMPTY >
<!ATTLIST %forall.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clogicopnary
"%and.qname; | %or.qname; | %xor.qname;" >

<!ELEMENT %and.qname; EMPTY >
<!ATTLIST %and.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %or.qname; EMPTY >
<!ATTLIST %or.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %xor.qname; EMPTY >
<!ATTLIST %xor.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

243

244

>

<!ENTITY % clogicop1ary
"%not.qname;" >

<!ELEMENT %not.qname; EMPTY >
<!ATTLIST %not.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clogicop2ary
"%implies.qname;" >

<!ELEMENT %implies.qname; EMPTY >
<!ATTLIST %implies.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % ccalcop
"%log.qname; | %int.qname; | %diff.qname; | %partialdiff.qname; |
%divergence.qname; | %grad.qname; | %curl.qname; | %laplacian.qname;" >

<!ELEMENT %divergence.qname; EMPTY >
<!ATTLIST %divergence.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %grad.qname; EMPTY >
<!ATTLIST %grad.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %curl.qname; EMPTY >
<!ATTLIST %curl.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

244

245

<!ELEMENT %laplacian.qname; EMPTY >
<!ATTLIST %laplacian.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %log.qname; EMPTY >
<!ATTLIST %log.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %int.qname; EMPTY >
<!ATTLIST %int.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %diff.qname; EMPTY >
<!ATTLIST %diff.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %partialdiff.qname; EMPTY >
<!ATTLIST %partialdiff.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % ccalcop1ary
"%ln.qname;" >

<!ELEMENT %ln.qname; EMPTY >
<!ATTLIST %ln.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % csetop1ary
"%card.qname;" >

245

246

<!ELEMENT %card.qname; EMPTY >
<!ATTLIST %card.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % csetop2ary
"%setdiff.qname;" >

<!ELEMENT %setdiff.qname; EMPTY >
<!ATTLIST %setdiff.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % csetopnary
"%union.qname; | %intersect.qname;" >

<!ELEMENT %union.qname; EMPTY >
<!ATTLIST %union.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %intersect.qname; EMPTY >
<!ATTLIST %intersect.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % cseqop
"%sum.qname; | %product.qname; | %limit.qname;" >

<!ELEMENT %sum.qname; EMPTY >
<!ATTLIST %sum.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %product.qname; EMPTY >
<!ATTLIST %product.qname;

246

247

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %limit.qname; EMPTY >
<!ATTLIST %limit.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % ctrigop
"%sin.qname; | %cos.qname; | %tan.qname;
| %sec.qname; | %csc.qname; | %cot.qname;
| %sinh.qname; | %cosh.qname; | %tanh.qname;
| %sech.qname; | %csch.qname; | %coth.qname;
| %arcsin.qname; | %arccos.qname; | %arctan.qname;" >

<!ELEMENT %sin.qname; EMPTY >
<!ATTLIST %sin.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %cos.qname; EMPTY >
<!ATTLIST %cos.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %tan.qname; EMPTY >
<!ATTLIST %tan.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %sec.qname; EMPTY >
<!ATTLIST %sec.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

247

248

<!ELEMENT %csc.qname; EMPTY >
<!ATTLIST %csc.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %cot.qname; EMPTY >
<!ATTLIST %cot.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %sinh.qname; EMPTY >
<!ATTLIST %sinh.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %cosh.qname; EMPTY >
<!ATTLIST %cosh.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %tanh.qname; EMPTY >
<!ATTLIST %tanh.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %sech.qname; EMPTY >
<!ATTLIST %sech.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %csch.qname; EMPTY >
<!ATTLIST %csch.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

248

249

>

<!ELEMENT %coth.qname; EMPTY >
<!ATTLIST %coth.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %arcsin.qname; EMPTY >
<!ATTLIST %arcsin.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %arccos.qname; EMPTY >
<!ATTLIST %arccos.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %arctan.qname; EMPTY >
<!ATTLIST %arctan.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % cstatopnary
"%mean.qname; | %sdev.qname; |
%variance.qname; | %median.qname; |
%mode.qname;" >

<!ELEMENT %mean.qname; EMPTY >
<!ATTLIST %mean.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %sdev.qname; EMPTY >
<!ATTLIST %sdev.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

249

250

>

<!ELEMENT %variance.qname; EMPTY >
<!ATTLIST %variance.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %median.qname; EMPTY >
<!ATTLIST %median.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %mode.qname; EMPTY >
<!ATTLIST %mode.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % cstatopmoment
"%moment.qname;" >

<!ELEMENT %moment.qname; EMPTY >
<!ATTLIST %moment.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clalgop1ary
"%determinant.qname; |
%transpose.qname;" >

<!ELEMENT %determinant.qname; EMPTY >
<!ATTLIST %determinant.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %transpose.qname; EMPTY >
<!ATTLIST %transpose.qname;

%MATHML.Common.attrib;

250

251

%att-definition;
%att-encoding;

>

<!ENTITY % clalgop2ary
"%vectorproduct.qname;
| %scalarproduct.qname;
| %outerproduct.qname;" >

<!ELEMENT %vectorproduct.qname; EMPTY >
<!ATTLIST %vectorproduct.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %scalarproduct.qname; EMPTY >
<!ATTLIST %scalarproduct.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %outerproduct.qname; EMPTY >
<!ATTLIST %outerproduct.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clalgopnary
"%selector.qname;" >

<!ELEMENT %selector.qname; EMPTY >
<!ATTLIST %selector.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!-- Content elements: relations -->

<!ENTITY % cgenrel2ary
"%neq.qname;" >

<!ELEMENT %neq.qname; EMPTY >
<!ATTLIST %neq.qname;

251

252

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % cgenrelnary
"%eq.qname; | %leq.qname; | %lt.qname; | %geq.qname;
| %gt.qname;| %equivalent.qname; | %approx.qname;" >

<!ELEMENT %eq.qname; EMPTY >
<!ATTLIST %eq.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %equivalent.qname; EMPTY >
<!ATTLIST %equivalent.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %approx.qname; EMPTY >
<!ATTLIST %approx.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %gt.qname; EMPTY >
<!ATTLIST %gt.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %lt.qname; EMPTY >
<!ATTLIST %lt.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %geq.qname; EMPTY >
<!ATTLIST %geq.qname;

%MATHML.Common.attrib;

252

253

%att-definition;
%att-encoding;

>

<!ELEMENT %leq.qname; EMPTY >
<!ATTLIST %leq.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % csetrel2ary
"%in.qname; | %notin.qname; | %notsubset.qname; | %notprsubset.qname;" >

<!ELEMENT %in.qname; EMPTY >
<!ATTLIST %in.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %notin.qname; EMPTY >
<!ATTLIST %notin.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %notsubset.qname; EMPTY >
<!ATTLIST %notsubset.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %notprsubset.qname; EMPTY >
<!ATTLIST %notprsubset.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % csetrelnary
"%subset.qname; | %prsubset.qname;" >

<!ELEMENT %subset.qname; EMPTY >
<!ATTLIST %subset.qname;

253

254

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ELEMENT %prsubset.qname; EMPTY >
<!ATTLIST %prsubset.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % cseqrel2ary
"%tendsto.qname;" >

<!ELEMENT %tendsto.qname; EMPTY >
<!ATTLIST %tendsto.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;
%att-type;

>

<!-- Content elements: quantifiers -->

<!ENTITY % cquantifier
"%lowlimit.qname; | %uplimit.qname; | %bvar.qname;
| %degree.qname; | %logbase.qname;" >

<!ATTLIST %lowlimit.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %uplimit.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %bvar.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %degree.qname;
%MATHML.Common.attrib;

>

<!ATTLIST %logbase.qname;
%MATHML.Common.attrib;

254

255

>

<!-- Operator groups -->

<!ENTITY % cop1ary
"%cfuncop1ary; | %carithop1ary; | %clogicop1ary; |
%ccalcop1ary; | %ctrigop; | %clalgop1ary; |
%csetop1ary;" >

<!ENTITY % cop2ary
"%carithop2ary; | %clogicop2ary;| %clalgop2ary; | %csetop2ary;" >

<!ENTITY % copnary
"%cfuncopnary; | %carithopnary; | %clogicopnary; |
%csetopnary; | %cstatopnary; | %clalgopnary;" >

<!ENTITY % copmisc
"%carithoproot; | %carithop1or2ary; | %ccalcop; |
%cseqop; | %cstatopmoment; | %clogicopquant;" >

<!-- Relation groups -->

<!ENTITY % crel2ary
"%cgenrel2ary; | %csetrel2ary; | %cseqrel2ary;" >

<!ENTITY % crelnary
"%cgenrelnary; | %csetrelnary;" >

<!-- Content constructs: all -->

<!ENTITY % Content
"%ctoken; | %cspecial; | %cother; | %csemantics; | %c0ary;
| %cconstructor; | %cquantifier; | %cop1ary; | %cop2ary;
| %copnary; |%copmisc; | %crel2ary; | %crelnary;" >

<!-- Content constructs for substitution in presentation structures -->

<!ENTITY % ContInPres
"%ci.qname; |%csymbol.qname;| %cn.qname;|
%apply.qname; | %fn.qname; |
%lambda.qname; | %reln.qname; |
%interval.qname; | %list.qname; |
%matrix.qname; | %matrixrow.qname; |
%set.qname; | %vector.qname; |
%semantics.qname; |%declare.qname;" >

<!-- ... -->

255

256

<!-- Recursive definition for content of expressions. Include
presentation constructs at lowest level so presentation
layout schemata hold presentation or content elements.
Include content constructs at lowest level so content
elements hold PCDATA or presentation elements at leaf
level (for permitted substitutable elements in context)

-->

<!ENTITY % ContentExpression
"(%Content; | %PresInCont;)*" >

<!ENTITY % PresExpression
"(%Presentation; | %ContInPres;)*" >

<!ENTITY % MathExpression
"(%PresInCont; | %ContInPres;)*" >

<!-- PCDATA or MathML character elements -->
<!ENTITY % MathMLCharacters

"#PCDATA | %mchar.qname; | %mglyph.qname; " >

<!-- Content elements: tokens -->
<!-- (may contain embedded presentation constructs) -->

<!ELEMENT %ci.qname; (%MathMLCharacters; | %PresInCont;)* >
<!ELEMENT %csymbol.qname; (%MathMLCharacters; | %PresInCont;)* >
<!ELEMENT %cn.qname; (%MathMLCharacters; | %sep.qname; | %PresInCont;)* >

<!-- Content elements: special -->

<!ELEMENT %apply.qname; (%ContentExpression;) >
<!ELEMENT %reln.qname; (%ContentExpression;) >
<!ELEMENT %lambda.qname; (%ContentExpression;) >

<!-- Content elements: other -->

<!ELEMENT %condition.qname; (%ContentExpression;) >
<!ELEMENT %declare.qname; (%ContentExpression;) >

<!-- Content elements: semantics -->

<!ELEMENT %semantics.qname; (%ContentExpression;) >
<!ENTITY % Annotation.content "(#PCDATA)" >
<!ELEMENT %annotation.qname; %Annotation.content; >

<!ENTITY % Annotation-xml.content "ANY" >
<!ELEMENT %annotation-xml.qname; %Annotation-xml.content; >

<!-- Content elements: constructors -->

256

257

<!ELEMENT %interval.qname; (%ContentExpression;) >
<!ELEMENT %set.qname; (%ContentExpression;) >
<!ELEMENT %list.qname; (%ContentExpression;) >
<!ELEMENT %vector.qname; (%ContentExpression;) >
<!ELEMENT %matrix.qname; (%ContentExpression;) >
<!ELEMENT %matrixrow.qname; (%ContentExpression;) >

<!-- Content elements: operator (user-defined) -->

<!ELEMENT %fn.qname; (%ContentExpression;) >

<!-- Content elements: quantifiers -->

<!ELEMENT %lowlimit.qname; (%ContentExpression;) >
<!ELEMENT %uplimit.qname; (%ContentExpression;) >
<!ELEMENT %bvar.qname; (%ContentExpression;) >
<!ELEMENT %degree.qname; (%ContentExpression;) >
<!ELEMENT %logbase.qname; (%ContentExpression;) >

<!-- ... -->
<!-- Presentation layout schemata contain tokens,

layout and content schemata.
-->

<!ELEMENT %mstyle.qname; (%PresExpression;) >
<!ELEMENT %merror.qname; (%PresExpression;) >
<!ELEMENT %mphantom.qname; (%PresExpression;) >
<!ELEMENT %mrow.qname; (%PresExpression;) >
<!ELEMENT %mfrac.qname; (%PresExpression;) >
<!ELEMENT %msqrt.qname; (%PresExpression;) >
<!ELEMENT %menclose.qname; (%PresExpression;) >
<!ELEMENT %mroot.qname; (%PresExpression;) >
<!ELEMENT %msub.qname; (%PresExpression;) >
<!ELEMENT %msup.qname; (%PresExpression;) >
<!ELEMENT %msubsup.qname; (%PresExpression;) >
<!ELEMENT %mmultiscripts.qname; (%PresExpression;) >
<!ELEMENT %munder.qname; (%PresExpression;) >
<!ELEMENT %mover.qname; (%PresExpression;) >
<!ELEMENT %munderover.qname; (%PresExpression;) >
<!ELEMENT %mtable.qname; (%PresExpression;) >
<!ELEMENT %mtr.qname; (%PresExpression;) >
<!ELEMENT %mlabeledtr.qname; (%PresExpression;) >
<!ELEMENT %mtd.qname; (%PresExpression;) >
<!ELEMENT %maction.qname; (%PresExpression;) >
<!ELEMENT %mfenced.qname; (%PresExpression;) >
<!ELEMENT %mpadded.qname; (%PresExpression;) >

257

258

<!-- Presentation elements contain PCDATA or malignmark constructs. -->

<!ELEMENT %mi.qname; (%MathMLCharacters; |
%malignmark.qname;)* >

<!ELEMENT %mn.qname; (%MathMLCharacters; |
%malignmark.qname;)* >

<!ELEMENT %mo.qname; (%MathMLCharacters; |
%malignmark.qname;)* >

<!ELEMENT %mtext.qname; (%MathMLCharacters; |
%malignmark.qname;)* >

<!ELEMENT %ms.qname; (%MathMLCharacters; |
%malignmark.qname;)* >

<!-- Browser interface definition -->

<!-- Attributes for top-level element "math" -->

<!ENTITY % att-macros
"macros CDATA #IMPLIED" >

<!ENTITY % att-mode
"mode CDATA #IMPLIED" >

<!ENTITY % att-topinfo
"%MATHML.Common.attrib;
%att-macros;
%att-mode;" >

<!-- Attributes for browser interface element -->

<!ENTITY % att-baseline
"baseline CDATA #IMPLIED" >

<!ENTITY % att-overflow
"overflow (scroll | elide | truncate | scale) ’scroll’" >

<!ENTITY % att-altimg
"altimg CDATA #IMPLIED" >

<!ENTITY % att-alttext
"alttext CDATA #IMPLIED" >

<!ENTITY % att-browif
"%att-type;
%att-name;
%att-height;
%att-width;
%att-baseline;
%att-overflow;
%att-altimg;

258

259

%att-alttext;" >

<!-- ... -->
<!-- The top-level element "math" contains MathML encoded

mathematics. The "math" element has the browser info
attributes iff it is also the browser interface element.

-->

<!ELEMENT %math.qname; (%MathExpression;) >

<!ATTLIST %math.qname;
%att-topinfo;
%att-browif; >

<!-- MathML Character Entities .. -->
<!ENTITY % mathml-charent.module "INCLUDE" >

<![%mathml-charent.module;[
<!-- Entity sets from ISO Technical Report 9573-13 -->

<!ENTITY % ent-isoamsa
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Arrow Relations for MathML 2.0//EN"

"isoamsa.ent" >
%ent-isoamsa;

<!ENTITY % ent-isoamsb
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Binary Operators for MathML 2.0//EN"

"isoamsb.ent" >
%ent-isoamsb;

<!ENTITY % ent-isoamsc
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Delimiters for MathML 2.0//EN"

"isoamsc.ent" >
%ent-isoamsc;

<!ENTITY % ent-isoamsn
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Negated Relations for MathML 2.0//EN"

"isoamsn.ent" >
%ent-isoamsn;

<!ENTITY % ent-isoamso
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Ordinary for MathML 2.0//EN"

"isoamso.ent" >
%ent-isoamso;

<!ENTITY % ent-isoamsr
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Relations for MathML 2.0//EN"

"isoamsr.ent" >

259

file:isoamsa.html
file:isoamsb.html
file:isoamsc.html
file:isoamsn.html
file:isoamso.html

260

%ent-isoamsr;

<!ENTITY % ent-isogrk3
PUBLIC "-//W3C//ENTITIES Greek Symbols for MathML 2.0//EN"

"isogrk3.ent" >
%ent-isogrk3;

<!ENTITY % ent-isomfrk
PUBLIC "-//W3C//ENTITIES Math Alphabets: Fraktur for MathML 2.0//EN"

"isomfrk.ent" >
%ent-isomfrk;

<!ENTITY % ent-isomopf
PUBLIC "-//W3C//ENTITIES Math Alphabets: Open Face for MathML 2.0//EN"

"isomopf.ent" >
%ent-isomopf;

<!ENTITY % ent-isomscr
PUBLIC "-//W3C//ENTITIES Math Alphabets: Script for MathML 2.0//EN"

"isomscr.ent" >
%ent-isomscr;

<!ENTITY % ent-isotech
PUBLIC "-//W3C//ENTITIES General Technical for MathML 2.0//EN"

"isotech.ent" >
%ent-isotech;

<!-- Entity sets from informative annex to ISO 8879:1986 (SGML) -->

<!ENTITY % ent-isobox
PUBLIC "-//W3C//ENTITIES Box and Line Drawing for MathML 2.0//EN"

"isobox.ent" >
%ent-isobox;

<!ENTITY % ent-isocyr1
PUBLIC "-//W3C//ENTITIES Russian Cyrillic for MathML 2.0//EN"

"isocyr1.ent" >
%ent-isocyr1;

<!ENTITY % ent-isocyr2
PUBLIC "-//W3C//ENTITIES Non-Russian Cyrillic for MathML 2.0//EN"

"isocyr2.ent" >
%ent-isocyr2;

<!ENTITY % ent-isodia
PUBLIC "-//W3C//ENTITIES Diacritical Marks for MathML 2.0//EN"

"isodia.ent" >

260

file:isoamsr.html
file:isogrk3.html
file:isomfrk.html
file:isomopf.html
file:isomscr.html
file:isotech.html
file:isobox.html
file:isocyr1.html
file:isocyr2.html

261

%ent-isodia;

<!ENTITY % ent-isolat1
PUBLIC "-//W3C//ENTITIES Added Latin 1 for MathML 2.0//EN"

"isolat1.ent" >
%ent-isolat1;

<!ENTITY % ent-isolat2
PUBLIC "-//W3C//ENTITIES Added Latin 2 for MathML 2.0//EN"

"isolat2.ent" >
%ent-isolat2;

<!ENTITY % ent-isonum
PUBLIC "-//W3C//ENTITIES Numeric and Special Graphic for MathML 2.0//EN"

"isonum.ent" >
%ent-isonum;

<!ENTITY % ent-isopub
PUBLIC "-//W3C//ENTITIES Publishing for MathML 2.0//EN"

"isopub.ent" >
%ent-isopub;

<!-- MathML aliases for characters defined above -->

<!ENTITY % ent-mmlalias
PUBLIC "-//W3C//ENTITIES Aiases for MathML 2.0//EN"

"mmlalias.ent" >
<!--%ent-mmlalias;-->

<!-- New characters defined by MathML -->

<!ENTITY % ent-mmlextra
PUBLIC "-//W3C//ENTITIES Extra for MathML 2.0//EN"

"mmlextra.ent" >
<!--%ent-mmlextra;-->

<!-- end of MathML Character Entity section -->]]>

<!-- Revision History:

Initial draft (syntax = XML) 1997-05-09
Stephen Buswell

Revised 1997-05-14
Robert Miner

Revised 1997-06-29 and 1997-07-02
Stephen Buswell

Revised 1997-12-15

261

file:isodia.html
file:isolat1.html
file:isolat2.html
file:isonum.html
file:isopub.html

262

Stephen Buswell
Revised 1998-02-08

Stephen Buswell
Revised 1998-04-04

Stephen Buswell
Entities and small revisions 1999-02-21

David Carlisle
Added attribute definitionURL to ci and cn 1999-10-11

Nico Poppelier
Additions for MathML 2 1999-12-16

David Carlisle
Namespace support 2000-01-14

David Carlisle
XHTML Compatibility 2000-02-23

Murray Altheim
New content elements 2000-03-26

David Carlisle

-->

<!-- end of MathML 2.0 DTD .. -->
<!-- ... -->

262

Appendix B

Content Markup Validation Grammar

Informal EBNF grammar for Content Markup structure validation
===
// Notes
//
// This defines the valid expression trees in content markup
//
// ** it does not define attribute validation -
// ** this has to be done on top
//
// Presentation_tags is a placeholder for a valid
// presentation element start tag or end tag
//
// #PCDATA is the XML parsed character data
//
// symbols beginning with ’_’ for example _mmlarg are internal symbols
// (recursive grammar usually required for recognition)
//
// all-lowercase symbols for example ’ci’ are terminal symbols
// representing MathML content elements
//
// symbols beginning with Uppercase are terminals
// representating other tokens
//
// revised sb 3.nov.97, 16.nov.97 and 22.dec.1997
// revised sb 6.jan.98, 6.Feb.1998 and 4.april.1998
// whitespace definitions including presentation_tags
Presentation_tags ::= "presentation" //placeholder
Space ::= #x09 | #xoA | #xoD | #x20 //tab, lf, cr, space characters
S ::= (Space | Presentation_tags)* //treat presentation as space
// only for content validation
// characters
Char ::= Space | [#x21 - #xFFFD]

| [#x00010000 - #x7FFFFFFFF] //valid XML chars

263

264

// start and end tag functions
// start(\%x) returns a valid start tag for the element \%x
// end(\%x) returns a valid end tag for the element \%x
// empty(\%x) returns a valid empty tag for the element \%x
//
// start(ci) ::= "<ci>"
// end(cn) ::= "</cn>"
// empty(plus) ::= "<plus/>"
//
// The reason for doing this is to avoid writing a grammar
// for all the attributes. The model below is not complete
// for all possible attribute values.
_start(\%x) ::= "<\%x" (Char - ’>’)* ">"
// returns a valid start tag for the element \%x
_end(\%x) ::= "<\%x" Space* ">"
// returns a valid end tag for the element \%x
_empty(\%x) ::= "<\%x" (Char - ’>’)* "/>"
// returns a valid empty tag for the element \%x
_sg(\%x) ::= S _start(\%x)
// start tag preceded by optional whitespace
_eg(\%x) ::= _end(\%x) S
// end tag followed by optional whitespace
_ey(\%x) ::= S _empty(\%x) S
// empty tag preceded and followed by optional whitespace
// mathml content constructs
// allow declare within generic argument type so we can insert it anywhere
_mmlall ::= _container | _relation | _operator | _qualifier | _other
_mmlarg ::= declare* _container declare*
_container ::= _token | _special | _constructor
_token ::= ci | cn | csymbol
_special ::= apply | lambda | reln | fn
_constructor ::= interval | list | matrix | matrixrow | set | vector
_other ::= condition | declare | sep
_qualifier ::= lowlimit | uplimit | bvar | degree | logbase
// relations
_relation ::= _genrel | _setrel | _seqrel2ary
_genrel ::= _genrel2ary | _genrelnary
_genrel2ary ::= ne
_genrelnary ::= eq | leq | lt | geq | gt
_setrel ::= _seqrel2ary | _setrelnary
_setrel2ary ::= in | notin | notsubset | notprsubset
_setrelnary ::= subset | prsubset
_seqrel2ary ::= tendsto
//operators
_operator ::= _funcop | _sepop | _arithop | _calcop

| _seqop | _trigop | _statop | _lalgop
| _logicop | _setop

264

265

_funcop ::= _funcop1ary | _funcopnary
_funcop1ary ::= inverse | ident
_funcopnary ::= fn| compose // general user-defined function is n-ary
// arithmetic operators
// (note minus is both 1ary and 2ary)
_arithop ::= _arithop1ary | _arithop2ary | _arithopnary | root
_arithop1ary ::= abs | conjugate | exp | factorial | minus
_arithop2ary ::= quotient | divide | minus | power | rem
_arithopnary ::= plus | times | max | min | gcd
// calculus
_calcop ::= _calcop1ary | log | int | diff | partialdiff
_calcop1ary ::= ln
// sequences and series
_seqop ::= sum | product | limit
// trigonometry
_trigop ::= sin | cos | tan | sec | csc | cot | sinh

| cosh | tanh | sech | csch | coth
| arcsin | arccos | arctan

// statistics operators
_statop ::= _statopnary | moment
_statopnary ::= mean | sdev | variance | median | mode
// linear algebra operators
_lalgop ::= _lalgop1ary | _lalgopnary
_lalgop1ary ::= determinant | transpose
_lalgopnary ::= selector
// logical operators
_logicop ::= _logicop1ary | _logicopnary | _logicop2ary | _logicopquant
_logicop1ary ::= not
_logicop2ary ::= implies
_logicopnary ::= and | or | xor
_logicopquant ::= forall | exists
// set theoretic operators
_setop ::= _setop2ary | _setopnary
_setop2ary ::= setdiff
_setopnary ::= union | intersect
// operator groups
_unaryop ::= _func1ary | _arithop1ary | _trigop | _lalgop1ary

| _calcop1ary | _logicop1ary
_binaryop ::= _arithop2ary | _setop2ary | _logicop2ary
_naryop ::= _arithopnary | _statopnary | _logicopnary

| _lalgopnary | _setopnary | _funcopnary
_ispop ::= int | sum | product
_diffop ::= diff | partialdiff
_binaryrel ::= _genrel2ary | _setrel2ary | _seqrel2ary
_naryrel ::= _genrelnary | _setrelnary
//separator
sep ::= _ey(sep)

265

266

// leaf tokens and data content of leaf elements
// note _mdata includes Presentation constructs here.
_mdatai ::= (#PCDATA | Presentation_tags)*
_mdatan ::= (#PCDATA | sep | Presentation_tags)*
ci ::= _sg(ci) _mdatai _eg(ci)
cn ::= _sg(cn) _mdatan _eg(cn)
// condition - constraints constraints. contains either
// a single reln (relation), or
// an apply holding a logical combination of relations, or
// a set (over which the operator should be applied)
condition ::= _sg(condition) reln | apply | set _eg(condition)
// domains for integral, sum , product
_ispdomain ::= (lowlimit uplimit?)

| uplimit
| interval
| condition

// apply construct
apply ::= _sg(apply) _applybody _eg(apply)
_applybody ::= (_unaryop _mmlarg)
//1-ary ops

| (_binaryop _mmlarg _mmlarg)
//2-ary ops

| (_naryop _mmlarg*)
//n-ary ops, enumerated arguments

| (_naryop bvar* condition _mmlarg)
//n-ary ops, condition defines argument list

| (_ispop bvar? _ispdomain? _mmlarg)
//integral, sum, product

| (_diffop bvar* _mmlarg)
//differential ops

| (log logbase? _mmlarg)
//logs

| (moment degree? _mmlarg*)
//statistical moment

| (root degree? _mmlarg)
//radicals - default is square-root

| (limit bvar* lowlimit? condition? _mmlarg)
//limits

| (_logicopquant bvar+ condition? (reln | apply))
//quantifier with explicit bound variables
// equations and relations - reln uses lisp-like syntax (like apply)
// the bvar and condition are used to construct a "such that" or
// "where" constraint on the relation
reln ::= _sg(reln) _relnbody _eg(reln)
_relnbody ::= (_binaryrel bvar* condition? _mmlarg _mmlarg)

| (_naryrel bvar* condition? _mmlarg*)
// fn construct

266

267

fn ::= _sg(fn) _fnbody _eg(fn)
_fnbody ::= Presentation_tags | container
// lambda construct - note at least 1 bvar must be present
lambda ::= _sg(lambda) _lambdabody _eg(lambda)
_lambdabody ::= bvar+ _container //multivariate lambda calculus
//declare construct
declare ::= _sg(declare) _declarebody _eg(declare)
_declarebody ::= ci (fn | constructor)?
// constructors
interval ::= _sg(interval) _mmlarg _mmlarg _eg(interval)
//start, end define interval
set ::= _sg(set) _lsbody _eg(set)
list ::= _sg(list) _lsbody _eg(list)
_lsbody ::= _mmlarg* //enumerated arguments

| (bvar* condition _mmlarg) //condition constructs arguments
matrix ::= _sg(matrix) matrixrow* _eg(matrix)
matrixrow ::= _sg(matrixrow) _mmlall* _eg(matrixrow)
//allows matrix of operators
vector ::= _sg(vector) _mmlarg* _eg(vector)
//qualifiers - note the contained _mmlarg could be a reln
lowlimit ::= _sg(lowlimit) _mmlarg _eg(lowlimit)
uplimit ::= _sg(uplimit) _mmlarg _eg(uplimit)
bvar ::= _sg(bvar) ci degree? _eg(bvar)
degree ::= _sg(degree) _mmlarg _eg(degree)
logbase ::= _sg(logbase) _mmlarg _eg(logbase)
//relations and operators
// (one declaration for each operator and relation element)
_relation ::= _ey(\%relation) //for example <eq/> <lt/>
_operator ::= _ey(\%operator) //for example <exp/> <times/>
//the top level math element
math ::= _sg(math) mmlall* _eg(math)

267

Appendix C

Content Element Definitions

C.1 About Content Markup Elements

The primary role of MathML content elements is to provide a mechanism for recording the fact that a particular notational structure has a particular mathematical
meaning. To this end, every content element must have a mathematical definition associated with it in some form. The purpose of this appendix is to provide default
definitions. (An index to the definitions is provided later in this document.) The author may adapt the notation to their own particular needs by using the "definitionURL"
to override these default definitions for selected content elements.

The mathematical definitions are not restricted to any one format. There are several reasons for allowing this flexibility, nearly all derived from the fact that if it is
extremely important to allow authors to make use of existing definitions from the mathematical literature.

1. There is no suitable notation in common use. For example, the mathematical libraries of even the most extensive mathematical computation systems in
use today capture only a small fraction of the mathematical liturature and even then, not all of mathematics is computational.

2. In most cases, the translation of a mathematical definition into a new denotational language is an inappropriate use of an author’s energy and time.
3. The task of designing a new machine readable language suitable for recording semantic descriptions is an onerous one that goes substantially beyond the

scope of this particular recommendation. It also overlaps substantially with efforts groups such as the OpenMath Consortium. (See also: North American
OpenMath Initiative, and The European OpenMath Consortium)

The key issues for both archival and computational purposes is that there be a definition and that the author have a mechanism to specify which definition is to be
used for a given instance of a notational construct. This denotational requirement is important without regard to the existence of an implementation of a particular
concept or object in a mathematical computation system. The definition may be as vague as claiming that, say F , is an unknown, but differentiable function from the
real numbers to the real numbers, or as complicated as requiring that F to be an elaborate function or operation as defined in some recent (or classical) research
paper. The important thing is that the reader always have a way of determining how the notation is being used.

C.1.1 The Default Definitions

An author’s decision to use content elements is a decision to used defined objects. In order to make this task less onerous, default definitions are provided. In this
way, an author only needs to provide explicit definitions where their usage differs from the default usage.

Where possible the default definitions have been chosen to reflect common usage in the same way that most well written mathematical communications (in any
format) benefit substantially from the author’s use of widely used and understood terms.

Definitions are overridden in a particular instance by making use of the definitionURL attribute. The format of the content of that URL is unspecified. It may even
be the case that the definitionURL is just a name invented by the author in which case it serves to warn the reader (and computational systems) that the author is
using their own definition. It may be the URL of a mathematical paper whose whole purpose is to define a new operator, or even a reference to a traditional text in
which the construct is defined. If the author’s mathematical operator matches exactly with an operator in a particular computational system, an appropriate definition
might be in terms of a MathML semantics element establishing a correspondence between two encodings. Whatever format is chosen, the only requirement is that
some sort of definition be indicated.

268

269

This rest of this appendix provides detailed descriptions of the default semantics associated with each of the MathML content elements. Since this is exactly the
role intended for the encodings under development by the OpenMath Consortium and one of our goals is to foster international cooperation in such standardization
efforts we have presented the default definitions in a format modeled on OpenMath’s content dictionaries. While the actual details differ somewhat from the OpenMath
specification, the underlying principles are the same.

C.1.2 The Structure of an MMLdefinition.

Each MathML element is described using an XML format. The top element is MMLdefinition. The sub-elements identify the various parts of the description and
include:

name PCDATA providing the name of the MathML element.
description A CDATA description of the object that an element represents. This will often include cross-references to more traditional texts or papers or existing

papers on the Web.
classification Each MathML element must be classified according to its mathematical role.

punctuation Some elements exist simply as an aid to parsing. For example the sep element is used to separate the CDATA defining a rational number
into two parts in a manner that is easily parsed by an XML application. These objects are refered to as punctuation.

descriptor Some elements exist simply to modify the properties of an existing element or mathematical object. For example the declare construct is
used to reset the default attribute values, or to associate a name with a specific instance of an object. These kinds of elements are referred to as
descriptors and the type of the resulting object is the same as that of element being modified, but with the new attribute values. No signature is
provided for descriptors.

constructor The remaining objects that ‘contain’ sub-elements are all object constructors of some sort or another. They combine the sub-elements into
a compound mathematical object such as a constant, set, list, or a function application. For example, the lambda element constructs a function
definition from a list of variables and an expression. while the apply element constructs a function application. By function application we mean
the result of applying the first element of the apply (the function) to the zero or more remaining elements (the arguments). A function application
represents an object in the range of the function. For each given combination of type and order of XML children, the signature of a constructor
indicates the type (and sometimes subtype) of the resulting object.

function (operator) The traditional mathematical functions and operators are represented in MathML by empty XML elements such as plus and sin.
These function definitions are parameterized by their XML attribute values (for example, they may be of type vector) and are either used as is, for
example when discussing the properties of a particular function or operator, or they are applied to arguments using the apply. The latter case is
referred to as function application. Functions are classified according to how they are used. For example the empty sin element represents the
unary mathematical function sine. The plus element is an nary operator. The signature of a function (see below) describes how it is to be used
a mathematical function inside an apply element. Each combination of types of function arguments used inside an apply gives rise to an apply
element of a given type.

MMLattribute Some of the XML attributes of a MathML content element have a direct impact on the mathematical semantics of the object. For example the type
attribute of the cn element is used to determine what type of constant (integer, real, etc.) is being constructed. Only those attributes that affect the
mathematical properties of an object are listed here and typically these also appear explicitly in the signature.

signature The signature is a systematic representation that associates the types of different possible combinations of attributes and function arguments to type
of mathematical object that is constructed. The possible combinations of parameter and argument types (the left-hand side) each result in an object of
some type (the right-hand side). In effect, it describes how to resolve operator overloading. For constructors, the left-hand side of the signature describes
the types of the child elements and the right-hand side describes the type of object that is constructed. For functions, the left-hand side of the signature
indicates the types of the parameters and arguments that would be expected when it is applied, or used to construct a relation, and the right-hand side
represents the mathematical type of the object constructed by the apply. Modifiers modify the attributes of an existing object. For example, a symbol might
become a symbol of type vector. The signature must be able to record specific attribute values and argument types on the left, and parameterized types
on the right.. The syntax used for signatures is of the general form:
[<attribute name>=<attributevalue>](<list of argument types>)
--> <mathematical result type>(<mathematical subtype>)

269

270

The MMLattributes, if any, appear in the form <name>=<value>. They are separated notationally from the rest of the arguments by square braces. The
possible values are usually taken from an enumerated list, and the signature is usually affected by selection of a specific value. For the actual function
arguments and named parameters on the left, the focus is on the mathematical types involved. The function argument types are presented in a syntax
similar to that used for a DTD, with the one main exception. The types of the named parameters appear in the signature as <elementname>=<type>
in a manner analogous for that used for attribute values. For example, if the argument is named (e.g. bvar) then it is represented in the signature by an
equation as in:
[<attribute name>=<attributevalue>](bvar=symbol,<argument list>) -->
<mathematical result type>(<mathematical subtype>)
No mathematical evaluation ever takes place in MathML. Every MathML content element either refers to a defined object such as a mathematical function
or it combines such objects in some way to build a new object. For purposes of the signature, the constructed object represents an object of a certain type
parameterized type. For example the result of applying plus to arguments is an expression that represents a sum. The type of the resulting expression
depends on the types of the operands, and the values of the MathML attributes.

example Examples of the use of this object in MathML are included in these elements.
property This element describes the mathematical properties of such objects. For simple associations of values with specific instances of an object, the first child is

an instance of the object being defined. The second is a value or approx (approximation) element that contains a MathML description of this particular
value. More elaborate conditions on the object are expressed using the MathML syntax.

comment These elements contain only PCDATA and can occur as a child of the MMLDefinition at any point.

C.2 Definitions of MathML Content Elements

C.2.1 Leaf Elements

C.2.1.1 cn

<MMLdefinition>
<name> cn </name>
<description>
A numerical constant. The mathematical type of number
is given as an attribute. The default type is "real".
Numbers such as rational, complex or real, require two
parts for a complete specification. The parts of such
a number are separated by an empty "sep" element.
There are a number of pre-defined constants including:

π &Exponential; &ComplexI &true; &false; &NaN;
the properties of some of which are outlined below.
The &NaN; is IEEE’s "Not a Number", as defined in
IEEE 854 standard for Floating point arithmetic.
</description>
<functorclass> constant </functorclass>
<MMLattribute>

<name> type </name>
<value> integer | rational | complex-cartesian

| complex-polar | real
</value>
<default> real </default>

</MMLattribute>
<MMLattribute>

<name> base </name>

270

271

<value> positive_integer </value>
<default> 10 </default>

</MMLattribute>
<signature> [type=integer](numstring) -> constant(integer) </signature>
<signature> [base=basevalue](numstring) -> constant(integer) </signature>
<signature> [type=rational](numstring,numstring) -> constant(rational) </signature>
<signature> [type=complex-cartesian](numstring,numstring) -> constant(complex) </signature>
<signature> [type=rational](numstring,numstring) -> constant(rational) </signature>
<signature> [type=real](π) -> constant(real) </signature>
<signature> [definition](numstring,numstring) -> constant(userdefined) </signature>
<signature> (γ) -> constant</signature>
<example> <cn> 245 </cn> </example>
<example> <cn type="integer"> 245 </cn> </example>
<example> <cn type="integer" base="16"> A </cn></example>
<example> <cn type="rational"> 245 <sep> 351 </cn> </example>
<example> <cn type="complex-cartesian"> 1 <sep/> 2 </cn> </example>
<example> <cn> 245 </cn> </example>
<property> <approx>
<cn> π </cn>
<cn> 3.141592654 </cn>

</approx></property>
<property> <approx>
<cn> γ </cn>
<cn> .5772156649 </cn>

</approx> </property>
<property> <reln><identity/>
<cn>ⅈ </cn>
<apply><root><cn>-1</cn><cn>2</cn></apply>

</reln>
</property>
<property> <reln><approx>
<cn> ⅇ </cn><cn>2.718281828 </cn>
</reln> </property>
<property> <apply><forall/>
<bvar><ci type=boolean>p</ci></bvar>
apply><and/>

<ci>p</ci><cn>&true;</cn></apply>
<ci>p</ci>

</apply>
</property>
<property> <apply><forall/>
<bvar><ci type=boolean>p</ci></bvar>
<apply><or/>
<ci>p</ci><cn>&true;</cn></apply>
<cn>&true;</cn>

</apply>
</property>

271

272

<bvar><ci type=boolean>p</ci></bvar>
<apply><or/>
<ci>p</ci><cn>&true;</cn></apply>
<cn>&true;</cn>

</apply>
</property>
<property>

<identity>
<apply><not/><cn> &true; </apply>
<cn> &false; </cn>

</identity>
</property>
<property> <reln><identity/>
<cn base="16"> A </cn> <cn> 10 </cn> </reln> </property>

<property> <reln><identity/>
<cn base="16"> B </cn> <cn> 11 </cn> </reln></property>

<property> <reln><identity/>
<cn base="16"> C </cn> <cn> 12 </cn> </reln></property>

<property> <reln><identity/>
<cn base="16"> D </cn> <cn> 13 </cn> </reln></property>

<property> <reln><identity/>
<cn base="16"> E </cn> <cn> 14 </cn> </reln></property>

<property> <reln><identity/>
<cn base="16"> F </cn> <cn> 15 </cn> </reln></property>

</MMLdefinition>

C.2.1.2 ci

<MMLdefinition>
<name> ci </name>
<description>
A symbolic name constructor. The type attribute can
be set to any valid MathML type.
</description>
<functorclass> constructor , unary </functorclass>
<MMLattribute>
<name> type </name>
<value> constant | matrix | set | vector | list | MathMLtype </value>
<default> real </default>

</MMLattribute>
<signature> ({string|mmlpresentation}) -> symbol(constant) </signature>
<signature> [type=MathMLType]({string|mmlpresentation}) -> symbol(MathMLType) </signature>
<example><ci> xyz </ci> </example>
<example><ci> type="vector"> V </ci> </example>
</MMLdefinition>

C.2.2 Basic Content Element

272

273

C.2.2.1 apply

<MMLdefinition>
<name> apply </name>
<description>
This is the MathML constructor for function application.
The first argument is applied to the remaining arguments.
It may be the case that some of the child elements are
named elements. (See the signature.)
</description>
<functorclass> constructor , nary </functorclass>
<signature> (function,anything*) -> application </signature>
<example><apply><plus/><ci>x</ci><cn>1</cn></apply></example>
<example><apply><sin/><ci>x</ci></apply></example>
</MMLdefinition>

C.2.2.2 reln

<MMLdefinition>
<name> reln </name>
<description>
This is the MathML constructor for expressing a relation between
two or more mathematical objects. The first argument indicates
the type of "relation" between the remaining arguments. (See the signature.)
No assumptions are made about the truth value of such a relation.
Typically, the relation is used as a component in the construction
of some logical assertion. Relations may be combined into
sets, etc. just like any other mathematical object.
</description>
<functorclass> constructor </functorclass>
<signature> (function,anything*) -> reln </signature>
<example><reln><and/><ci>P</ci><ci>Q</ci></reln></example>
<example><reln><lt/><ci>x</ci><ci>y</ci></reln></example>
</MMLdefinition>

C.2.2.3 fn

273

274

<MMLdefinition>
<name> fn </name>
<description>
This is the MathML constructor for building new function
names. The "name" can be a general MathML content element.
It identifies that object as "usable" in a function
context.
By setting its definitionURL value, you can
associate it with a particular function definition.
Use the MathML Declare to associate a name with a lambda
construct.
</description>
<MMLattribute>
<name>definitionURL</name>
<value> URL </value>
<default> none </default>

</MMLattribute>
<functorclass> constructor </functorclass>
<signature> (anything) -> function </signature>
<signature> [definitionURL=functiondef](anything) ->
function(definitionURL=functiondef)

</signature>
<example><fn><ci>F</ci></fn></example>
<example><fn definitionURL="http://www.w3c/...">
<lt/><ci>G</ci></fn>

</example>
<!--Declaring Id to be the identity function.-->
<example>
<declare><fn><ci>Id</ci></fn><lambda><ci>x</ci><ci>x</ci></declare>

</example>
</MMLdefinition>

C.2.2.4 interval

274

275

<MMLdefinition>
<name> interval </name>
<description>
This is the MathML constructor element for building an interval
on the real line. While an interval could be expressed by
combining relations appropriately, they occur explicitly because
of their frequence of occurrence in common use.
</description>
<MMLattribute>
<name>type</name>
<value> closed | open | open-closed | closed-open </value>
<default> closed </default>

</MMLattribute>
<functorclass> constructor , binary </functorclass>
<signature> [type=intervaltype](expression,expression) -> interval </signature>
<example><reln><and/><ci>x</ci><cn>1</cn></reln></example>
<example><reln><lt/><ci>x</ci></reln></example>
</MMLdefinition>

C.2.2.5 inverse

<MMLdefinition>
<name> inverse </name>
<description>
This MathML element is applied to a function in order to
construct a new function that is to be interpreted as the
inverse function of the original function. For a particular
function F, inverse(F) composed with F behaves like the
identity map on the domain of F and F composed with inverse(F)
should be an identity function on a suitably restricted
subset of the Range of F.
The MathML definitionURL attribute should be used to resolve
notational ambiguities, or to restrict the inverse to a
particular domain or make it one-sided.
</description>
<MMLattribute>
<name>definitionURL</name>
<value> CDATA </value>
<default> none </default>

<!--none corresponds to using the default MathML definition ...-->
</MMLattribute>
<functorclass> operator, unary </functorclass>
<signature> (function) -> function </signature>
<signature> [definitionURL=URL](function) ->

function(definition) </signature>
<example><apply><inverse/><sin/></apply></example>
<example>

275

276

<apply>
<inverse definitionURL="www.w3c.org/MathML/Content/arcsin"/>
<sin/>
</apply>

</example>
<property><apply><forall/>
<bvar><ci>y</ci></bvar>
<apply><sin/>
<apply>
<apply><inverse/><sin/></apply>
<ci>y</ci>

</apply>
</apply>
<value><ci>y</ci></value>

</apply>
</property>
<property>
<apply>
<apply><inverse/><sin/></apply>
<apply>
<sin/>
<ci>x</ci>

</apply>
</apply>
<value><ci>x</ci></value>
</property>
<property>F(inverse(F)(y))<value>y</value></property>
</MMLdefinition>

C.2.2.6 sep

<MMLdefinition>
<name> sep </name>
<description>
This is the MathML infix constructor used to sub-divide PCDATA into
separate components. for example, this is used in the description of
a multipart number such as a rational or a complex number.
</description>
<functorclass> punctuation </functorclass>
<example><cn type="complex-polar">123<sep/>456</cn></example>
<example><cn>123</cn></example>
</MMLdefinition>

C.2.2.7 condition

276

277

<MMLdefinition>
<name> condition </name>
<description>
This is the MathML constructor for building conditions.
A condition differs from a relation in how it is used.
A relation is simply an expression, while a condition
is used as a predicate to place a conditions on a bound
variables.
For a compound condition use relations or apply
operators such as "and" or "or" or a set of
relations).
</description>
<functorclass> constructor, unary </functorclass>
<signature> ({reln|apply|set}) -> predicate </signature>
<example>
<condition>
<reln><lt/>
<apply><power/>
<ci>x</ci><cn>5</cn>

</apply>
<cn>3</cn>

</reln>
</condition>
</example>
</MMLdefinition>

C.2.2.8 declare

277

278

<MMLdefinition>
<name> declare </name>
<description>
This is the MathML constructor for redefining the properties and
values with mathematical objects. For example V may be a name
delcared to be a vector, or V may be a name that stands for a
particular vector.
The attribute values of the declare statement are assigned as the
corresponding default attribute values of the first object.
</description>
<functorclass> modifier , (unary | binary) </functorclass>
<MMLattribute>
<name>definitionURL</definition>
<value> Any valid URL </value>
</MMLattribute>
<MMLattribute>
<name>type</name><value> MathMLType </value>
</MMLattribute>
<MMLattribute>
<name>nargs</name><value> number of arguments for an object of type fn </value>
</MMLattribute>
<signature> [attributename=attributevalue](anything) -> anything(attributevalue) </signature>
<!-- The two argument form updates the properties of the first
object to be those of the second. The attribute values override the
properties of the "value".
-->
<signature> [attributename=attributevalue](anything,anything) -> anything(attributevalue) </signature>
<example><reln><and/><ci>x</ci><cn>1</cn></reln></example>
<example><reln><lt/><ci>x</ci></reln></example>
</MMLdefinition>

C.2.2.9 lambda

278

279

<MMLdefinition>
<name> lambda </name>
<description> The operation of lambda calculus that makes a
function from an expression and a variable. The definition
at this level uses only one variable. Lambda is a binary
function, where the first argument is the variable and
the second argument is a the expression.
Lambda(x, F) is written as \lambda x [F] in the lambda
calculus literature.
The lambda function can be viewed as the inverse of function
application.
Although the expression F may contain x, the lambda expression
is interpreted to be free of x. That is, the x variable is
a variable local to the environment of the definition of
the function or operator. Formally, lambda(x,F) is free of
x, and any substitutions, evaluations or tests for x in
lambda(x,F) should not happen.
A lambda expression on an arbitrary function applied to a
simple argument is equivalent to the arbitrary function.
E.g. lambda(x, f(x)) == f. This is a common shortcut.
</description>
<functorclass> Nary , Constructor </functorclass>
<property>
<lambda><ci>x</ci>
<apply><fn><ci>F</ci></fn><ci>x</ci></apply>

</lambda>
<value> <fn><ci>F</ci></fn> </value>

</property>
<!-- Constructing a variant of the sine function -->

<example>
<lambda>
<ci> x </ci>
<apply><sin/>
<apply><plus/>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</example>
<!-- the identity operator -->
<example>
<lambda><ci> x </ci> <ci> x </ci> </lambda>

</example>
<property>
<reln><identity/>
<lambda><ci>x</ci>
<apply><fn><ci>F</ci></fn><ci>x</ci></apply>

279

280

</lambda>
<fn><ci>F</ci></fn>

</reln>
</property>

<MMLdefinition>

C.2.2.10 compose

<MMLdefinition>
<name> compose </name>
<description>
This is the MathML constructor for composing functions.
In order for a composition to be meaningful, the range of
the first function must be the domain of the second function,
etc. .
The result is a new function whose domain is the domain of
the first function and whose range is the range of the last
function and whose definition is equivalent to applying
each function to the previous outcome in turn as in:
(f @ g)(x) == f(g(x)).

This function is often denoted by a small circle infix
operator.
</description>
<functorclass> Nary , Operator </functorclass>
<signature> (fn*) -> fn </signature>
<example>
<apply><compose/>

<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply></example>
<property>
<apply><forall>
<bvar><ci>x</ci></bvar>
<reln><eq/>
<apply>
<apply><compose/>
<ci>f</ci>
<ci>g</ci>

</apply>
<ci>x</ci>

</apply>
<apply><ci>f</ci>
<apply><ci>g</ci>
<ci>x</ci>

</apply>
</apply>

</reln>

280

281

</apply>
</property>
</MMLdefinition>

C.2.2.11 ident

<MMLdefinition>
<name> ident </name>
<description>
This is the MathML constructor for the identity function.
This function has the property that

f(x) = x, for all x in its domain.
</description>
<functorclass> Nary , Operator </functorclass>
<signature> (symbol) -> symbol </signature>
<example>
<apply><ident/>

<ci> f </ci>
<ci> x </ci>

</apply>
</example>
<property>
<apply><forall>
<bvar><ci>x</ci></bvar>
<reln><eq/>
<apply><ident/>

<ci>f</ci>
<ci>x</ci>

</apply>
<ci>x</ci>
</reln>

</apply>
</property>
</MMLdefinition>

C.2.3 Arithmetic, Algebra and Logic

C.2.3.1 quotient

281

282

<MMLdefinition>
The binary function used to represent
the quotient of two integers.
division. For arguments a and b, such that
sign of a, its value would be q.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>integer</default>
</MMLattribute>
<signature> (integer, integer) -> integer </signature>
<signature> [type=integer](symbolic, symbolic) -> symbolic </signature>
<property><apply><forall/>
<bvar><ci>a</ci>
</bvar>
<bvar><ci>b</ci>
</bvar>
<reln/>
<eq/>
<ci>a</ci>
<apply><plus/>
<apply><times/>
<ci>b</ci>
<apply><quotient/>
<ci>a</ci>
<ci>b</ci>
</apply>
</apply>
<apply><rem/>
<ci>a</ci>
<ci>b</ci>
</apply>
</apply>
<apply/>
</apply></property>
<property><apply><ident/>
<apply><quotient/>
<ci>5</ci>
<ci>4</ci>

282

283

</apply>
<ci>1</ci>
</apply></property>
=======
<name> quotient </name>

<description> Integer quotient, the result of integer
division. For arguments a and b, it returns q,
where a = b*q+r, |r| < |b| and a*r >= 0 (or
the sign of r is the same as the sign of a).
</description>
<functorclass> Binary, Function </functorclass>
<signature> (integer, integer) -> integer </signature>
<signature> (symbolic, symbolic) -> symbolic -> => → </signature>
<property>
<description>
ForAll(bvar(a,b),identity(a ,b*Quotient(a,b) + Remainder(a,b))
</description>
<apply><forall/>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<reln/><eq/>

<ci>a</ci>
<apply><plus/>
<apply><times/>
<ci>b</ci>
<apply><quotient/><ci>a</ci><ci>b</ci></apply>

</apply>
<apply><rem/><ci>a</ci><ci>b</ci></apply>

</apply>
<reln>

</apply>
</property>
<property>

<description>
1 = quotient(5,4)
</description>
<apply><identity/>
<apply><quotient/>
<ci>5</ci>
<ci>4</ci>

</apply>
<ci>1</ci>

<apply>
</property>

</MMLdefinition>

283

284

C.2.3.2 exp

<MMLdefinition>
The exponential function.
<reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.2]</reference>
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
any MathML Type
</values>
<default>real</default>
</MMLattribute>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property><apply><eq/>
<apply><exp/>
<cn>0</cn>
</apply>
<cn>1</cn>
</apply></property>
<property><apply><ident/>
<apply><exp/>
<ci>x</ci>
</apply>
<apply><power/>
<cn>ExponentialE;</cn>
<ci>x</ci>
</apply>
</apply></property>
<property> exp(x) = limit((1+x/n)^n, n, infinity) </property>
</MMLdefinition>

C.2.3.3 factorial

284

285

<MMLdefinition>
This element is used to construct factorials
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
any MathML Type
</values>
<default>integerl</default>
</MMLattribute>
<signature> (algebraic) -> algebraic </signature>
<signature>(integer)->integer</signature>
<property><apply><forall/>
<bvar><ci>n</ci></bvar>
<condition><apply><gt/>
<ci>n</ci>
<cn>0</cn>
</apply>
</condition>
<apply><eq/>
<apply><factorial/><ci>n</ci></apply>
<apply><times/>
<ci>n</ci>
<apply><factorial/>
<apply><minus/><ci>n</ci><cn>1</cn></apply>

</apply>
</apply>

</apply>
</apply>
</property>
<example><apply><factorial/>
<ci>n</ci>
</apply></example>
</MMLdefinition>

C.2.3.4 divide

285

286

<MMLdefinition>
This is the binary MathML operator that is used to construct
the mathematical expression a "divided by" b. In
general, it constructs the expression that
is equivalent to right multiplication by
the multiplicative inverse of b.
classification=function
<MMLattribute>
<attname> type </attname>
<attvalue> anything <sep/>non-commutative</attvalue>
<attdefault> real </attdefault>
</MMLattribute>
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<signature> (complex, complex) -> complex </signature>
<signature> (real, real) -> real </signature>
<signature> (rational, rational) -> rational </signature>
<signature> (integer, integer) -> rational </signature>
<signature> (symbolic, symbolic) -> symbolic </signature>
<property><apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><divide/>
<ci> a </ci>
<ci> 0 </ci>

</apply>
<apply><ci>Error</ci>
<ci>Division by 0</ci>

</apply>
</apply>

</apply>
</property>
<property>whenever not(a=0) then a/a = 1 </property>
<example><apply><divide/>
<ci> a </ci>
<ci> b </ci>
</apply></example>
</MMLdefinition>

C.2.3.5 max

286

287

<MMLdefinition>
Represent the maximum of a set of elements. The elements
may be listed explicitly or they may be described by a
condition, e.g., the maximum over all x in
the set A.
To be well defined, the elements must all be
comparable.
classification= function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
any MathML Type
</values>
<default>real</default>
</MMLattribute>
<signature> (ordered_set_element *) -> ordered_set_element </signature>
<signature> (bvar,condition,anything) -> ordered_set_element </signature>
<example><apply><max/>
<cn>2</cn>
<cn>3</cn>
<cn>5</cn>
</apply></example>
<example><apply>
<max/>
<bvar><ci>y</ci></bvar>
<condition>
</condition>
<apply>

<power/>
<ci> y</ci>
<cn>x </cn>

</apply>
</apply>
</example>
</MMLdefinition>

C.2.3.6 min

287

288

<MMLdefinition>
Represent the maximum of a set of elements. The elements
may be listed explicitly or they may be described by a
condition, e.g., the maximum over all x in
the set A.
To be well defined, the elements must all be
comparable.
classification= function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
any MathML Type
</values>
<default>real</default>
</MMLattribute>
<signature> (ordered_set_element *) -> ordered_set_element </signature>
<signature> (bvar,condition,anything) -> ordered_set_element </signature>
<example><apply><min/>
<cn>2</cn>
<cn>3</cn>
<cn>5</cn>
</apply></example>
<example><apply>
<min/>
<bvar><ci>x</ci></bvar>
<condition>
</condition>
<apply>

<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
</apply>
</example>
</MMLdefinition>

C.2.3.7 minus

<MMLdefinition>
The subtraction operator for an additive group.

288

289

If one argument is provided this constructs the additive
inverse of that group element.
If two arguments, say a and b, are provided it
constructs the mathematical expression a - b.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
any MathML Type
</values>
<default>real</default>
</MMLattribute>
<signature>[type=typevalue](typevalue,typevaluel) -> typevalue </signature>
<signature>[type=typevalue](typevalue)->typevalue </signature>
<property><apply><eq/>
<bvar><ci>n</ci>
</bvar>
<apply><minus/>
<cn>1</cn>
</apply>
<cn>-1</cn>
</apply></property>
<example><apply><minus/>
<cn>3</cn>
<cn>5</cn>
</apply></example>
<example><apply><minus/>
<cn>3</cn>
</apply></example>
</MMLdefinition>

C.2.3.8 plus

289

290

<MMLdefinition>
The N-ary addition operator of an algebraic structure.
If no operands are provided, the expression represents
the additive identity.
If one operand, a, is provided the expression would
evaluate to "a".
If two or more operands are provided, the expression
represents the group element corresponding to a left
associative binary pairing of the operands.
Issues with regard to the "value" of mixed operands
are left up to the target system. If the author wishes
to refer to specific type coercion rules, then
the definitionURL attribute should be used to refer
to a suitable specification.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>real</default>
</MMLattribute>
<signature>[type=typevalue](typevalue*) -> typevalue </signature>
<property> plus() = 0 </property>
<property> +(a) = a </property>
<property> ForAll(a,Commutative, a + b = b + a)</property>
<example><apply><plus/>
<cn>3</cn>
</apply></example>
<example><apply><plus/>
<cn>3</cn>
<cn>5</cn>
</apply></example>
<example><apply><plus/>
<cn>3</cn>
<cn>5</cn>
<cn>7</cn>
</apply></example>
</MMLdefinition>

C.2.3.9 power

290

291

<MMLdefinition>
The binary powering operator used to construct expressions
such as a "to the power of" b. In particular, it is the
operation for which a "to the power of" 2 is equivalent
to a * a.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>real</default>
</MMLattribute>
<signature> (complex complex) -> complex </signature>
<signature> (real real) -> complex </signature>
<signature> (rational rational) -> complex </signature>
<signature> (rational integer) -> rational </signature>
<signature> (integer integer) -> rational </signature>
<signature> (symbolic symbolic) -> symbolic </signature>
<signature>[type=typevalue](typevalue,typevalue) -> typevalue </signature>
<property> ForAll(a,Condition(a_NE_0),a^0=1) </property>
<property> ForAll(a,a^1=a) </property>
<property> ForAll(a,1^a=1) </property>
<property>ForAll(a,0^0=Undefined)</property>
</MMLdefinition>

C.2.3.10 rem

291

292

<MMLdefinition>
Integer remainder, the result of integer
division. For arguments a and b, such that
the same as the sign of a, its value would be r.
classification= binary, function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>integer</default>
</MMLattribute>
<signature> (integer integer) -> integer </signature>
<signature> (symbolic symbolic) -> symbolic </signature>
<signature>[type=typevalue](typevalue,typevalue)->typevalue</signature>
<property> a = b*rem(a,b) + rem(a,b) </property>
<property>rem(a,0) = Division_by_Zero</property>
</MMLdefinition>

C.2.3.11 times

292

293

<MMLdefinition>
The n-ary multiplication operator of a
ring.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>real</default>
</MMLattribute>
<signature> (complex *) -> complex </signature>
<signature> (real*) -> real </signature>
<signature> (rational*) -> rational </signature>
<signature> (integer*) -> integer </signature>
<signature> (symbolic*) -> symbolic </signature>
<property>ForAll(bvars(a,b),condition(in({a,b},Commutative)),a*b=b*a)</property>
<property>ForAll(bvars(a,b,c),Associative,a*(b*c)=(a*b)*c), associativity </property>
<property> a*1=a </property>
<property> 1*a=a </property>
<property> a*0=0 </property>
<property> 0*a=0 </property>
</MMLdefinition>

C.2.3.12 root

293

294

<MMLdefinition>
Construct the nth root of an object.
The first argument "a" is the object and the
second object "n" denotes the root, as in
(a) ^ (1/n)
classification= binary , function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<attname> type </attname>
<attvalue> real <sep/> complex <sep/> principle_branch </attvalue>
<attdefault> real </attdefault>
</MMLattribute>
<signature> (anything , anything) -> root </signature>
<property> Forall(bvars(a,n),root(a,n) = a^(1/n)) </property>
<example><apply><root/>
<ci> a </ci>
<ci> n </ci>
</apply></example>
</MMLdefinition>

C.2.3.13 gcd

294

295

<MMLdefinition>
This operator is used to construct an expression
which represents the greatest common divisor
of its arguments.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>integer</default>
</MMLattribute>
<signature> [type=typevalue](typevalue*) ->typevalue </signature>
<property>Forall(p,q,(is(p,prime) and is(q,prime)) , gcd(p,q)=1 </property>
<example><apply><gcd/>
<cn>12</cn>
<cn>17</cn>
</apply></example>
</MMLdefinition>

C.2.3.14 and

295

296

<MMLdefinition>
This is the n-ary logical "and" operator. It is used
to construct the logical expression which has
a value of "true" when all of its operands
have a truth value of "true", and "false" otherwise.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<attname> type </attname>
<attvalue> any MathML type</attvalue>
<attdefault> complex </attdefault>
</MMLattribute>
<signature> (boolean*) -> boolean </signature>
<signature> [type="boolean"](symbolic*) -> boolean </signature>
<property> identity(true and p , p) </property>
<property> identity(p and q , q and p) </property>
<example><apply><and/>
<ci>p</ci>
<ci>q</ci>
</apply></example>
</MMLdefinition>

C.2.3.15 or

296

297

<MMLdefinition>
The logical "or" operator. The constructed expression
has a truth value of true if at least one of its arguments is true.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>boolean</default>
</MMLattribute>
<signature> (boolean*) -> boolean </signature>
<signature> [type="boolean"](symbolic*) -> boolean </signature>
<property> ...</property>
</MMLdefinition>

C.2.3.16 xor

<MMLdefinition>
The logical "xor" operator. The constructed expression
has a truth value of true if exactly one of its arguments is true.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>boolean</default>
</MMLattribute>
<signature> (boolean*) -> boolean </signature>
<signature> [type="boolean"](symbolic*) -> symbolic </signature>
</MMLdefinition>

C.2.3.17 not

297

298

<MMLdefinition>
The logical "not" operator negates the truth value
of its single argument. e.g., not P
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>boolean</default>
</MMLattribute>
<signature> (boolean) -> boolean </signature>
<signature> [type="boolean"](symbolic) -> symbolic </signature>
</MMLdefinition>

C.2.3.18 implies

<MMLdefinition>
The implies operator. This represents
the construction of the logical expression
"A implies B".

classification= Binary, relation
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>boolean</default>
</MMLattribute>
<signature> (boolean,boolean) -> boolean </signature>
<property><apply><forall/>
<bvar><ci>A</ci>
</bvar>
<bvar><ci>B</ci>
</bvar>
<apply><eq/>
<apply><implies/>

298

299

<ci>A</ci>
<ci>B</ci>
</apply>
<apply><or/>
<ci>B</ci>
<apply><not/>
<ci> A </ci>
</apply>
</apply>
</apply>
</apply></property>
</MMLdefinition>

C.2.3.19 forall

<MMLdefinition>
The logical "For all" quantifier is applied to arguments
to construct a predicate. The bound variables are
tagged using bvar, and the last argument is the boolean
predicate that is asserted to be true.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>boolean</default>
</MMLattribute>
<signature> (bvar*,condition?,apply) -> boolean </signature>
<signature> (bvar*,condition?,(reln)) -> boolean </signature>
</MMLdefinition>

C.2.3.20 exists

299

300

<MMLdefinition>
This is the MathML operator that is used to
assert existance, as in "There exists an x such
that x is real and x is positive."
It expects three arguments.
The first argument indicates the bound variable,
The second argument places conditions on that
bound variable. The last argument is the expression
that is asserted to be true.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>boolean</default>
</MMLattribute>
<signature> (element,set) ->boolean </signature>
</MMLdefinition>

C.2.3.21 abs

300

301

<MMLdefinition>
A unary operator which represents the absolute value of its argument.
In the complex case this is often referred to as the modulus.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
any MathML Type
</values>
<default>real</default>
</MMLattribute>
<signature>(real)->real</signature>
<signature>(complex)->real</signature>
<property>for all x and y, abs(x) + abs(y) >= abs(x+y)
</property>
<example><apply><abs/><ci>x</ci></apply></example>
</MMLdefinition>

C.2.3.22 conjugate

<MMLdefinition>
The "conjugate" arithmetic operator is
used to represent the complex conjugate of its
argument. In particular, conjugate(ImaginaryI)
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<attname> type </attname>
<attvalue> anything </attvalue>
<attdefault> complex </attdefault>
</MMLattribute>
<signature> (algebraic) -> algebraic </signature>
<signature>(complex)->complex</signature>
</MMLdefinition>

C.2.3.23 arg

301

302

<MMLdefinition>
The "arg" operator is used to construct an
expression which represents the
"argument" of a complex number.
classification=function
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<MMLattribute>
<name>type</name>
<values>
any MathML Type
</values>
<default>real</default>
</MMLattribute>
<signature>(compex)->real</signature>
<property>???</property>
<ci>a</cn>
<ci>&epsilon</cn>
<ci><mrow><msup><mi>a</mi><mi>b</mi><mrow></cn>
<ci>v</ci>
</MMLdefinition>

C.2.3.24 real

302

303

<MMLdefinition>
An operator used to construct an expression
representing the "real" part of a complex number.
classification=unary
<MMLattribute>
<name>type</name>
<values>
Any MathML type
</values>
<default>real</default>
</MMLattribute>
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<signature>(complex)->real</signature>
<ci>a</cn>
<ci>&epsilon</cn>
<ci><mrow><msup><mi>a</mi><mi>b</mi><mrow></cn>
<ci>v</ci>
</MMLdefinition>

C.2.3.25 imaginary

<MMLdefinition>
A name used as a symbolic identifier.
classification=constant
<MMLattribute>
<attname>definitionURL</attname>
<attvalue> CDATA </attvalue>
<attdefault> none </attdefault>
</MMLattribute>
<signature>(complex)->real</signature>
<example><cn type="constant">&Imaginary;</cn></example>
</MMLdefinition>

C.2.4 Relations

C.2.4.1 eq

<MMLdefinition>
<Name> eq </Name>
<description> The equality operator. </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

303

304

C.2.4.2 neq

<MMLdefinition>
<Name> neq </Name>
<description> The notequals operator. </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

C.2.4.3 gt

<MMLdefinition>
<Name> gt </Name>
<description> The equality operator. </description>
<functorclass> binary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

C.2.4.4 lt

<MMLdefinition>
<Name> lt </Name>
<description> The inequality equality operator "<" </description>
<functorclass> binary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic, symbolic*) -> boolean </signature>
</MMLdefinition>

C.2.4.5 geq

<MMLdefinition>
<Name> geq </Name>
<description> The inequality operator. >= </description>
<functorclass> Nary, relation </functorclass>
<signature> (symbolic, symbolic*) -> boolean </signature>
<property> ... Commutative ? ... </property>
</MMLdefinition>

C.2.4.6 leq

<MMLdefinition>
<Name> leq </Name>
<description> The inequality operator </description>
<functorclass> Nary, relation </functorclass>
<property> Commutative </property>
<signature> (symbolic symbolic) -> boolean </signature>
</MMLdefinition>

304

305

C.2.5 Calculus

C.2.5.1 ln

<MMLdefinition>
<name>ln</name>
<description>
The logarithmic function. Also called the natural logarithm. The inverse
of the exponential function.
<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.1]
</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<property>

Error("logarithm has a singularity at 0")
</property>
<signature> Intersect(real,positive) -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> ln(1) = 0 </property>
<property> ln(exp(x)) = x, "for real x" </property>
<property> exp(ln(x)) = x, always </property>
</MMLdefinition>

C.2.5.2 log

<MMLdefinition>
<Name> log </Name>
<description> The logarithmic function (base 10), or any

any other user specified base. Also called
the natural logarithm.
The inverse of the exponential function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.1]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> (real,logbase) -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>

Error("logarithm has a singularity at 0")
</property>

</MMLdefinition>

C.2.5.3 int

305

306

<MMLdefinition>
<Name> int </Name>
<description>

The definite or indefinite integral of a function or algebraic
expression.
There are several forms of calling sequences depending on
the nature of the areguments, and whether or not it is a
definite integral.

</description>
<functorclass> Binary , Function </functorclass>
<signature> (function) -> function </signature>
<signature> (algebraic,bvar) -> algebraic </signature>
<signature> (algebraic,bvar,interval) -> algebraic </signature>
<signature> (algebraic,bvar,condition) -> algebraic </signature>

</MMLdefinition>

C.2.5.4 diff

<MMLdefinition>
<Name> diff </Name>
<description>

For expressions, this represents the derivative of
its first argument evaluated at the second argument.
For Unary functions (only one argument) it represents
f’.

</description>
<functorclass> (Unary | Binary) , Function </functorclass>
<signature> (algebraic,bvar) -> algebraic </signature>
<property>Forall(x,diff(sin(x) , x) = cos(x)) </property>
<property>Forall(x,diff(x , x) = 1) </property>
<property>Forall(x,diff(x^2 , x) = 2x) </property>
<property>identity(diff(sin) , cos) </property>

</MMLdefinition>

C.2.5.5 partialdiff

306

307

<MMLdefinition>
<Name> partialdiff </Name>
<description>

For expressions, this represents the derivative of
its first argument evaluated at the second argument.
For Unary functions (only one argument) it represents
f’.

</description>
<functorclass> (Binary) , Function </functorclass>
<signature> (algebraic,bvar) -> algebraic </signature>
<property>Forall(x,diff(sin(x*y) , x) = cos(x)) </property>
<property>Forall(x,y,diff(x*y , x) = diff(x,x)*y + diff(y,x)*x) </property>
<property>Forall(x,a,b,diff(a + b , x) = diff(a,x) + diff(b,x)) </property>
<property>identity(diff(sin) , cos) </property>

</MMLdefinition>

C.2.5.6 lowlimit

<MMLdefinition>
<Name> lowlimit </Name>
<description> Construct a lower limit. Limits
are used in some integrals as alternative way
of describing the region over which an integral
is computed. (i.e. a connected component of the
real line.)
</description>
<functorclass> Constructor </functorclass>
<signature> (anything*) -> list </signature>

</MMLdefinition>

C.2.5.7 uplimit

<MMLdefinition>
<Name> uplimit </Name>
<description> Construct a an upper limit. Limits
are used in some integrals as alternative way
of describing the region over which an integral
is computed. (i.e. a connected component of the
real line.)
</description>
<functorclass> Constructor </functorclass>
<signature> (anything*) -> list </signature>

</MMLdefinition>

C.2.5.8 bvar

307

308

<MMLdefinition>
<Name> bvar </Name>
<description>

The bvar element is the container element
for the "bound variable" of an operation.
For example, in an integral it specifies the
variable of integration. In a derivative, it
indicates which variable with respect to
which a function is being differentiated.
When the bvar element is used to quantifiy a derivative,
the bvar element may contain a child degree element that
specifies the order of the derivative with respect to that
variable. The bvar element is also used for the internal
variable in sums and products.

</description>
<functorclass> Constructor </functorclass>
<signature> (symbol) -> symbol </signature>
<example> <bvar><ci>x</ci></bvar></example>

</MMLdefinition>

C.2.5.9 degree

<MMLdefinition>
<Name> degree </Name>
<description> A parameter used by some
MathML data-types to specify that, for example,
a bound variable is repeated several times.
</description>
<functorclass> Constructor </functorclass>
<signature> (algebraic) -> algebraic </signature>
<example> <degree><ci>x</ci></degree></example>
<property> ... </property>

</MMLdefinition>

C.2.6 Theory of Sets

C.2.6.1 set

<MMLdefinition>
<Name> set </Name>
<description> Construct a set. </description>
<functorclass> Nary, Constructor </functorclass>
<signature> (anything*) -> set </signature>

</MMLdefinition>

C.2.6.2 list

308

309

<MMLdefinition>
<Name> list </Name>
<description> Construct a list. </description>
<functorclass> Nary, Constructor </functorclass>
<signature> (anything*) -> list </signature>

</MMLdefinition>

C.2.6.3 union

<MMLdefinition>
<Name> union </Name>
<description> The union of two sets. </description>
<functorclass> Binary, Function </functorclass>
<signature> (set*) -> set </signature>

</MMLdefinition>

C.2.6.4 intersect

<MMLdefinition>
<Name> intersection </Name>
<description> The intersection of two sets. </description>
<functorclass> Binary, Function </functorclass>
<signature> (set set) -> set </signature>

</MMLdefinition>

C.2.6.5 in

<MMLdefinition>
<Name> in </Name>
<description>

The membership testing operation (also commonly
called "in" or "including"). Returns true if the first
argument is part of the second argument. The second
argument must be a set.

</description>
<functorclass> Binary, Function </functorclass>
<signature> (anything, set) -> boolean </signature>

</MMLdefinition>

C.2.6.6 notin

309

310

<MMLdefinition>
<Name> notin </Name>
<description>

The membership exclusion operation (also commonly
called "notin" or "including").
It is defined as "not in".

</description>
<functorclass> Binary, Function </functorclass>
<signature> (anything set) -> boolean </signature>

</MMLdefinition>

C.2.6.7 subset

<MMLdefinition>
<Name> subset </Name>
<description>
Boolean function whose value is determined by
whether or not one set is a subset of another.
</description>

<functorclass> Binary, Function </functorclass>
<signature> (set*) -> boolean </signature>

</MMLdefinition>

C.2.6.8 prsubset

<MMLdefinition>
<Name> prsubset </Name>
<description>
Boolean function whose value is determined by
whether or not one set is a proper subset of another.
</description>

<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>

</MMLdefinition>

C.2.6.9 notsubset

<MMLdefinition>
<Name> notsubset </Name>
<description>
Boolean function whose value is the complement
of "subset".
</description>

<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>

</MMLdefinition>

310

311

C.2.6.10 notprsubset

<MMLdefinition>
<Name> notprsubset </Name>
<description>
Boolean function whose value is the complement
of "proper subset".
</description>

<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> boolean </signature>
<property>...</property>

</MMLdefinition>

C.2.6.11 setdiff

<MMLdefinition>
<Name> setdiff </Name>
<description>
Function indicating the difference of two sets.

</description>
<functorclass> Binary, Function </functorclass>
<signature> (set, set) -> set </signature>
<property>...</property>
</MMLdefinition>

C.2.7 Sequences and Series

C.2.7.1 sum

<MMLdefinition>
<Name> sum </Name>
<description>
The sum element denotes the summation operator. Upper and lower
limits for the sum, and more generally a domains for the bound variables
are specified using uplimit, lowlimit or a condition on the bound
variables. The index for the summation is specified by a bvar element.
The sum element takes the attribute definition that can be used to
override the default semantics.
</description>
<functorclass> Unary, Function </functorclass>
<signature> (bvar*,((lowlimit,uplimit)|condition),algebraic) -> sum </signature>
<signature> ... </signature>
</MMLdefinition>

C.2.7.2 product

311

312

<MMLdefinition>
<Name> product </Name>
<description>
The product element denotes the product operator. Upper and lower
limits for the product, and more generally a domains for the bound
variables are specified using uplimit, lowlimit or a condition on the
bound variables. The index for the product is specified by a bvar
element.
The product element takes the attribute definition that can be used
to override the default semantics.
</description>
<functorclass> Unary, Function </functorclass>
<signature> (bvar*,((lowlimit,uplimit)|condition),algebraic) -> product </signature>
<signature> ... </signature>
<signature> ... </signature>
</MMLdefinition>

C.2.7.3 limit

<MMLdefinition>
<Name> limit </Name>
<description>
The sum element denotes the summation operator.
Upper and lower limits for the sum, and more
generally a domains for the bound variables are
specified using uplimit, lowlimit or a condition
on the bound variables. The index for the summation is
specified by a bvar element.
</description>
<functorclass> Nary, Function </functorclass>
<signature> (bvar*,(lowlimit | condition*),algebraic) -> limit </signature>
</MMLdefinition>

C.2.7.4 tendsto

<MMLdefinition>
<Name> tendsto </Name>
<description> tendsto is used to specify how a limit is
computed. It accepts a type attribute that determines the
manner in which it tends to a value.
</description>
<functorclass> binary, Function </functorclass>
<signature> (symbol,anything) -> condition(limit) </signature>
<signature> [type=direction](symbol,anything) -> condition(limit) </signature>
</MMLdefinition>

C.2.8 Trigonometry

312

313

C.2.8.1 sin

<MMLdefinition>
<Name> sin </Name>
<description> The circular trigonometric function sine

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sin(0) = 0 </property>
<property> sin(integer*Pi) = 0 </property>
<property> sin((Z+1/2)*Pi) = (-1)^Z, "for integer Z" </property>
<property> -1 <= sin(real) </property>
<property> sin(real) <= 1 </property>
<property> sin(3*x)=-4*sin(x)^3+3*sin(x), "triple angle formula"

<Reference> ditto, [4.3.27] </Reference>
</property>

</MMLdefinition>

C.2.8.2 cos

<MMLdefinition>
<Name> cos </Name>
<description> The cosine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> cos(0) = 1 </property>
<property> cos(integer*Pi+Pi/2) = 0 </property>
<property> cos(Z*Pi) = (-1)^Z, "for integer Z" </property>
<property> -1 <= cos(real) </property>
<property> cos(real) <= 1 </property>

</MMLdefinition>

C.2.8.3 tan

313

314

<MMLdefinition>
<Name> tan </Name>
<description> The tangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> tan(integer*Pi) = 0 </property>
<property> tan(x) = sin(x)/cos(x) </property>

</MMLdefinition>

C.2.8.4 sec

<MMLdefinition>
<Name> sec </Name>
<description> The secant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sec(x) = 1/cos(x) </property>

</MMLdefinition>

C.2.8.5 csc

<MMLdefinition>
<Name> csc </Name>
<description> The cosecant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> csc(x) = 1/sin(x) </property>

</MMLdefinition>

C.2.8.6 cot

314

315

<MMLdefinition>
<Name> cot </Name>
<description> The cotangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> cot(integer*Pi+Pi/2) = 0 </property>
<property> cot(x) = cos(x)/sin(x) </property>

</MMLdefinition>

C.2.8.7 sinh

<MMLdefinition>
<Name> sinh </Name>
<description> The hyperbolic sine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

C.2.8.8 cosh

<MMLdefinition>
<Name> sinh </Name>
<description> The hyperbolic sine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

C.2.8.9 tanh

315

316

<MMLdefinition>
<Name> tanh </Name>
<description> The hyperbolic tangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

C.2.8.10 sech

<MMLdefinition>
<Name> sech </Name>
<description> The hyperbolic secant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

C.2.8.11 csch

<MMLdefinition>
<Name> csch </Name>
<description> The hyperbolic cosecant function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

C.2.8.12 coth

316

317

<MMLdefinition>
<Name> coth </Name>
<description> The hyperbolic cotangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.3]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property>...</property>

</MMLdefinition>

C.2.8.13 arcsin

<MMLdefinition>
<Name> arcsin </Name>
<description> The inverse of the sine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.4]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> sin(arcsin(x)) = x </property>
<property> arcsin(sin(x)) = x, "for x between -Pi/2 and Pi/2" </property>

</MMLdefinition>

C.2.8.14 arccos

<MMLdefinition>
<Name> arccos </Name>
<description> The inverse of the cosine function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.4]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> cos(arccos(x)) = x </property>
<property> arccos(cos(x)) = x, "for x between 0 and Pi" </property>

</MMLdefinition>

C.2.8.15 arctan

317

318

<MMLdefinition>
<Name> arctan </Name>
<description> The inverse of the tangent function.

<Reference> M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions, [4.4]

</Reference>
</description>
<functorclass> Unary, Function </functorclass>
<signature> real -> real </signature>
<signature> symbolic -> symbolic </signature>
<property> tan(arctan(x)) = x </property>
<property> arctan(tan(x)) = x, "for x between -Pi/2 and Pi/2" </property>

</MMLdefinition>

C.2.9 Statistics

C.2.9.1 mean

<MMLdefinition>
<Name> mean </Name>
<description>
Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the mean is computed as:
mean(a1, a2, ... an) Sum(ai, i=1... n)/ n.

(see section 7.7 in CRC’s Standard Mathematical tables and Formulae).
More generally, if the first argument is a symbol X of type
"discrete_random_variable", this is the 1st moment of the
random variable X and is defined as
E[X] = Sum(x*f(x), x in S)
where the probability that x = x_i is P(x = x_i) = f(x_i) .
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and
k dimenions following the definitions provided in the reference:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]

</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(scalar*) -> scalar</signature>
<signature>(scalar(type=data)*) -> scalar</signature>
<signature>(symbol(type=random_variable)*) -> scalar</signature>
<signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>

318

319

<property> </property>
</MMLdefinition>

C.2.9.2 sdev

<MMLdefinition>
<Name> sdev </Name>
<description>
This represents the standard deviation.
Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the "standard deviation" is
computed as the square root of the second moment about the mean U.
sdev(a1, a2, ... an)^2 = E((X - U)^2).

If the first argument is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the second moment
about the mean is computed as
Sum((x_i - U)^2 * f(x_i) , x_i in S)

as
where the probability that x = x_i is P(x = x_i) = f(x_i) .
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]

</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(scalar*) -> scalar</signature>
<signature>(scalar(type=data)*) -> scalar</signature>
<signature>(symbol(type=discrete_random_variable)*) -> scalar</signature>
<signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>
<property> </property>

</MMLdefinition>

C.2.9.3 variance

319

320

<MMLdefinition>
<Name> variance </Name>
<description>
This computes the second centered moment, also known as the variance.
Given k unspecified scalar arguments they are treated as equiprobable
values of a random variable and the "variance" is
computed as the second moment about the mean U.
variance(a1, a2, ... an) = E((X - U)^2).

If the first argument is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the second moment
about the mean is computed as in section [7.7] (see reference below.)
Sum((x_i - U)^2 * f(x_i) , x_i in S)

as
where the probability that x = x_i is P(x = x_i) = f(x_i) .
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7]

</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(scalar*) -> scalar</signature>
<signature>(scalar(type=data)*) -> scalar</signature>
<signature>(symbol(type=discrete_random_variable)*) -> scalar</signature>
<signature>(symbol(type=continuous_random_variable)*) -> scalar</signature>

</MMLdefinition>

C.2.9.4 median

320

321

<MMLdefinition>
<Name> median </Name>
<description>
This represents the median of n data values.
If n =2k + 1 then the mode is x_k.
If n = 2k then the median is (x_k + x_(k+1)/2).
(Note this discription assumes that the data has been
sorted into ascending order.)
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.7]

</Reference>
</description>
<functorclass>Nary , Operator</functorclass>
<signature>(scalar*) -> scalar</signature>

</MMLdefinition>

C.2.9.5 mode

<MMLdefinition>
<Name> mode </Name>
<description>
This represents the mode of n data values.
The mode is the data value that occurs with the
greatest frequency.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.7]

</Reference>
</description>
<functorclass>Nary , Operator</functorclass>
<signature>(scalar*) -> scalar</signature>

</MMLdefinition>

C.2.9.6 moment

321

322

<MMLdefinition>
<Name> moment </Name>
<description>
This computes the ith moment of a set of data, or a random variable..
Given k scalar arguments of unspecified type, they are treated
as equiprobable values of a random variable. and the "moments" are
computed as the second moment about the mean U.
moment(degree=i, scalar*)= E(X^i).

If the first data argument x1 is a symbol X of type
"discrete_random_variable", then all arguments are treated as
discrete random variables, instead of data and the ith moment
about the mean is computed as
Sum((x)^i * f(x) , x in S)

where the probability that x = x_i is P(x = x_i) = f(x_i) .
The arguments are either all data, all discrete random variables,
or all continuous random variables.
The generalizes to continuous distributions and to
k dimenions following the definitions found in:
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2]

</Reference>
</description>
<MMLattribute>
<name>type</name>
<values> random_variable | continuous_random_variable | data </value>
<default> data </default>

</MMLattribute>
<functorclass>Nary , Operator </functorclass>
<signature>(degree,scalar*) -> scalar</signature>
<signature>(degree,scalar(type=data)*) -> scalar</signature>
<signature>(degree,symbol(type=discrete_random_variable)*) -> scalar</signature>
<signature>(degree, symbol(type=continuous_random_variable)*) -> scalar</signature>

</MMLdefinition>

C.2.10 Lineary Algebra

C.2.10.1 vector

322

323

<MMLdefinition>
<Name> vector </Name>
<description>
A vector is an ordered n-tuple of values
representing an element of an n-dimensional
vector space. The "values" are all from the
same ring, typically real or complex. They may
be numbers, symbols, or general algebraic expressions.
The type attribute can be used to specify the type of
vector that is represented.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4]

</Reference>
</description>
<MMLattribute>
<name> type </name>
<value> real | complex | symbolic | anything </value>
<default> real </default>

</MMLattribute>
<MMLattribute>
<name> other </name>
<value> row | column </value>
<default> row </default>

</MMLattribute>
<functorclass> constructor , N-ary </functorclass>
<signature>
((cn|ci|apply)*) -> vector(type=real)

</signature>
<signature>
[type=vectortype]((cn|ci|apply)*) -> vector(type=vectortype)

</signature>
<!-- Note that there is a notational need for expressing a sequence

v1, v2, ... vn with an in-explicit value of n . Also, in the
following property, it should be clarified that b,v1, and v2 are all
elements of the same ring. -->

<property> <!-- scalar multiplication-->
<apply><forall/>
<bvar><ci>b</ci></bvar>
<bvar><ci>v1</ci></bvar>
<bvar><ci>v2</ci></bvar>
<reln>
<apply><times/>
<ci>ci>b</ci>
<vector><ci>ci>v1</ci><ci>ci>v2</ci></vector>
</apply>
<vector>
<apply><ci>b</ci><ci>v1</ci></apply>

323

324

<apply><ci>b</ci><ci>v2</ci></apply>
</vector>

</reln>
</apply>

</property>
<property> vector addition </property>
<property> distributive over scalars</property>
<property> associativity.</property>
<property> Matrix * column vector </property>
<property> row vector * Matrix </property>
</property>

</MMLdefinition>

C.2.10.2 matrix

<MMLdefinition>
<Name> matrix </Name>
<description>
This is the constructor for a matrix. The matrix is
constructed from matrix rows. The type and properties
spell out the normal interaction with vectors and
scalars.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.1]

</Reference>
</description>
<MMLattribute>
<name>type</name>
<value>real | complex | integer | symbolic | anything </value>
<default> real </default>

</MMLattribute>
<functorclass>constructor , N-ary </functorclass>
<signature>(matrixrow*) -> matrix</signature>
<signature>
[type=matrixtype](matrixrow*) ->

matrix(type=matrixtype)</signature>
<property>scalar multiplication </property>
<property>Matrix*column vector</property>
<property>Addition</property>
<property>Matrix*Matrix</property>

</MMLdefinition>

C.2.10.3 matrixrow

324

325

<MMLdefinition>
<Name> matrixrow </Name>
<description>
This is a constructor for describing the rows of a matrix.
This only occurs inside a matrix. Its "type" is determined
from the containing matrix element.

</description>
<functorclass>constructor , N-ary</functorclass>
<signature>(cn|ci|apply)->matrixrow </signature>

</MMLdefinition>

C.2.10.4 determinant

<MMLdefinition>
<Name>determinant</Name>
<description>The "determinant" of a matrix.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.4]

</Reference>
</description>
<functorclass>Unary, operator</functorclass>
<signature>(matrix)-> scalar </signature>
</MMLdefinition>

C.2.10.5 transpose

<MMLdefinition>
<Name> transpose </Name>
<description>The transpose of a matrix or vector.
<Reference> CRC Standard Mathematical Tables and Formulae,
editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4] and [2.5.1]

</Reference>
</description>
<functorclass>Unary, Operator</functorclass>
<signature>(vector)->vector(other=row)</signature>
<signature>[other=column](vector)->vector(other=row)</signature>
<signature>[other=row](vector)->vector(other=column)</signature>
<signature>(matrix)->matrix</signature>
<property>transpose(transpose(A))= A</property>
<property>transpose(transpose(V))= V</property>

</MMLdefinition>

C.2.10.6 selector

325

326

<MMLdefinition>
<Name> selector </Name>
<description>
The operator used to extract sub-objects from vectors, matrices
matrix rows and lists.
Elements are accessed by providing one index element for each
dimension. For Matrices, sub-matrices are selected by providing
one fewer index items. For a matrix A and a column vector V :
select(i,j , A) is the i,j th element of A.
select(i , A) is the matrixrow formed from the ith row of A.
select(i , V) is the ith element of V.
select(V) is the sequence of all elements of V.
select(A) is the sequence of all elements of A, extracted row
by row.
select(i,L) is the ith element of a list.
select(L) is the sequence of elements of a list.

</description>
<functorclass>N-ary, operator)</functorclass>
<signature>(scalar,scalar,matrix)->scalar</signature>
<signature>(scalar,matrix)->matrixrow</signature>
<signature>(matrix)->scalar* </property>
<signature>(scalar,(vector|list|matrixrow))->scalar</signature>
<signature>(vector|list|matrixrow)->scalar*</signature>
<property>
Forall(

bvar(A(type=matrix)),bvar(V(type=vector)),
select(A) = select(V)

)
</property>
<property>For all vectors V, V = vector(select(V))</property>

</MMLdefinition>

326

Appendix D

Operator Dictionary (Non-Normative)

The following table gives the suggested dictionary of rendering properties for operators, fences, separators, and accents in MathML, all of which are represented by
mo elements. For brevity, all such elements will be called simply ‘operators’ in this Appendix.

D.1 Format of operator dictionary entries

The operators are divided into groups, which are separated by blank lines in the listing below. The grouping, and the order of the groups, is significant for the proper
grouping of sub-expressions using <mrow> (Section 3.3.1); the rule described there is especially relevant to the automatic generation of MathML by conversion from
other formats for displayed mathematics, such as TEX, which do not always specify how sub-expressions nest.

The format of the table entries is: the <mo> element content between double quotes (start and end tags not shown), followed by the attribute list in XML format,
starting with the form attribute, followed by the default rendering attributes which should be used for mo elements with the given content and form attribute.

Any attribute not listed for some entry has its default value, which is given in parentheses in the table of attributes in Section 3.2.4.

Note that the characters & and < are represented in the following table entries by the entity references & and < respectively, as would be necessary if they
appeared in the content of an actual mo element (or any other MathML or XML element).

For example, the first entry,

"(" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

could be expressed as an mo element by:

<mo form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"> (</mo>

(note the lack of double quotes around the content, and the whitespace added around the content for readability, which is optional in MathML).

This entry means that, for MathML renderers which use this suggested operator dictionary, giving the element <mo form="prefix"> (</mo> alone, or simply
<mo> (</mo> in a position for which form="prefix" would be inferred (see below), is equivalent to giving the element with all attributes as shown above.

D.2 Indexing of operator dictionary

Note that the dictionary is indexed not just by the element content, but by the element content and form attribute value, together. Operators with more than one
possible form have more than one entry. The MathML specification describes how the renderer chooses (‘infers’) which form to use when no form attribute is given;
see Section 3.2.4.7.

Having made that choice, or with the form attribute explicitly specified in the <mo> element’s start tag, the MathML renderer uses the remaining attributes from the
dictionary entry for the appropriate single form of that operator, ignoring the entries for the other possible forms.

327

328

D.3 Choice of entity names

Extended characters in MathML (and in the operator dictionary below) are represented by XML-style entity references using the syntax &character-name; the
complete list of characters and character names is given in Chapter 6. Many characters can be referred to by more than one name; often, memorable names
composed of full words have been provided in MathML, as well as one or more names used in other standards, such as Unicode. The characters in the operators in
this dictionary are generally listed under their full-word names when these exist. For example, the integral operator is named below by the one-character sequence
∫, but could equally well be named ∫. The choice of name for a given character in MathML has no effect on its rendering.

It is intended that every entity named below appears somewhere in Chapter 6. If this is not true, it is an error in this specification. If such an error exists, the
abovementioned chapter should be taken as definitive, rather than this appendix.

D.4 Notes on lspace and rspace attributes

The values for lspace and rspace given here range from 0 to verythickmathspace, which has a default value of 6/18 em. For the invisible operators whose
content is ⁢ or ⁡, it is suggested that MathML renderers choose spacing in a context-sensitive way (which is an exception to
the static values given in the following table). For <mo>⁡</mo>, the total spacing (lspace+rspace) in expressions such as ‘sin x’ (where the
right operand doesn’t start with a fence) should be greater than zero; for <mo>⁢</mo>, the total spacing should be greater than zero when both
operands (or the nearest tokens on either side, if on the baseline) are identifiers displayed in a non-slanted font (i.e. under the suggested rules, when both operands
are multi-character identifiers).

Some renderers may wish to use no spacing for most operators appearing in scripts (i.e. when scriptlevel is greater than 0; see Section 3.3.4), as is the case in
TEX.

D.5 Operator dictionary entries

"(" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

")" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"[" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"]" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"{" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"}" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"”" form="postfix" fence="true" lspace="0em" rspace="0em"

"’" form="postfix" fence="true" lspace="0em" rspace="0em"

"⟨" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"&LeftBracketingBar;" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"⌈" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"⟦" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"&LeftDoubleBracketingBar;" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"⌊" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"“" form="prefix" fence="true" lspace="0em" rspace="0em"

"‘" form="prefix" fence="true" lspace="0em" rspace="0em"

"⟩" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"&RightBracketingBar;" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"⌉" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"⟧" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"&RightDoubleBracketingBar;" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"⌋" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"&LeftSkeleton;" form="prefix" fence="true" lspace="0em" rspace="0em"

"&RightSkeleton;" form="postfix" fence="true" lspace="0em" rspace="0em"

"⁣" form="infix" separator="true" lspace="0em" rspace="0em"

328

329

"," form="infix" separator="true" lspace="0em" rspace="verythickmathspace"

"─" form="infix" stretchy="true" minsize="0" lspace="0em" rspace="0em"

"|" form="infix" stretchy="true" minsize="0" lspace="0em" rspace="0em"

";" form="infix" separator="true" lspace="0em" rspace="thickmathspace"

";" form="postfix" separator="true" lspace="0em" rspace="0em"

":=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≔" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∵" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∴" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"❘" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"//" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∷" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"&" form="prefix" lspace="0em" rspace="thickmathspace"

"&" form="postfix" lspace="thickmathspace" rspace="0em"

"*=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"-=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"+=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"/=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"->" form="infix" lspace="thickmathspace" rspace="thickmathspace"

":" form="infix" lspace="thickmathspace" rspace="thickmathspace"

".." form="postfix" lspace="mediummathspace" rspace="0em"

"..." form="postfix" lspace="mediummathspace" rspace="0em"

"∋" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⫤" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊨" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊤" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊣" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊢" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⇒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥰" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"|" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"||" form="infix" lspace="mediummathspace" rspace="mediummathspace"

"⩔" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"&&" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩓" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"&" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"!" form="prefix" lspace="0em" rspace="thickmathspace"

"⫬" form="prefix" lspace="0em" rspace="thickmathspace"

"∃" form="prefix" lspace="0em" rspace="thickmathspace"

"∀" form="prefix" lspace="0em" rspace="thickmathspace"

"∄" form="prefix" lspace="0em" rspace="thickmathspace"

"∈" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∉" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∌" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋢" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊐̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋣" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊂⃒" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊈" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊃⃒" form="infix" lspace="thickmathspace" rspace="thickmathspace"

329

330

"⊉" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∋" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊏" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊑" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊐" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊒" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋐" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊆" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊃" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊇" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⇐" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇔" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥐" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥞" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↽" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥖" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥟" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇁" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥗" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"←" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇤" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇆" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↔" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥎" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↤" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥚" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↼" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↙" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↘" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"→" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇥" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇄" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↦" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥛" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇀" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥓" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"←" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"→" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"↖" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↗" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"<" form="infix" lspace="thickmathspace" rspace="thickmathspace"

">" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"!=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"==" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"<=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

">=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≡" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≍" form="infix" lspace="thickmathspace" rspace="thickmathspace"

330

331

"≐" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∥" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩵" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≂" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⇌" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"≥" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋛" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≧" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪢" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≷" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩾" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≳" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≎" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≏" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊲" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⧏" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊴" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≤" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋚" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≦" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≶" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪡" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩽" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≲" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≫" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≪" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≢" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≭" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∦" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≠" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≂̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≯" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≱" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≧̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≫̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≹" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩾̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≵" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≎̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋪" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⧏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋬" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≮" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≰" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"&NotLessFullEqual;" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≪̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩽̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≴" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪢̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

331

332

"⪡̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊀" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪯̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋠" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"&NotPrecedesTilde;" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋫" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⧐̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋭" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊁" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪰̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋡" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≿̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≁" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≄" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≇" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≉" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∤" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≺" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪯" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≼" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≾" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∷" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∝" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⇋" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⊳" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⧐" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊵" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≻" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪰" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≽" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≿" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∼" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≃" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≅" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≈" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊥" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∣" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊔" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"⋃" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"⊎" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"-" form="infix" lspace="mediummathspace" rspace="mediummathspace"

"+" form="infix" lspace="mediummathspace" rspace="mediummathspace"

"⋂" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"∓" form="infix" lspace="mediummathspace" rspace="mediummathspace"

"±" form="infix" lspace="mediummathspace" rspace="mediummathspace"

"⊓" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"⋁" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"⊖" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"

"⊕" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"

"∑" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"⋃" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

332

333

"⊎" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"lim" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"

"max" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"

"min" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"

"⊖" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⊕" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"∲" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"

"∮" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"

"∳" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"

"∯" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"

"∫" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"

"⋓" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋒" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"≀" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋀" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"⊗" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"

"∐" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"∏" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"⋂" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"∐" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋆" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⊙" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"

"*" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⁢" form="infix" lspace="0em" rspace="0em"

"·" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⊗" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋁" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋀" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋄" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"∖" form="infix" stretchy="true" lspace="thinmathspace" rspace="thinmathspace"

"/" form="infix" stretchy="true" lspace="thinmathspace" rspace="thinmathspace"

"-" form="prefix" lspace="0em" rspace="veryverythinmathspace"

"+" form="prefix" lspace="0em" rspace="veryverythinmathspace"

"∓" form="prefix" lspace="0em" rspace="veryverythinmathspace"

"±" form="prefix" lspace="0em" rspace="veryverythinmathspace"

"." form="infix" lspace="0em" rspace="0em"

"⨯" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"**" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"⊙" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"∘" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"□" form="prefix" lspace="0em" rspace="verythinmathspace"

"∇" form="prefix" lspace="0em" rspace="verythinmathspace"

"∂" form="prefix" lspace="0em" rspace="verythinmathspace"

"ⅅ" form="prefix" lspace="0em" rspace="verythinmathspace"

"ⅆ" form="prefix" lspace="0em" rspace="verythinmathspace"

"√" form="prefix" stretchy="true" lspace="0em" rspace="verythinmathspace"

"⇓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⟸" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⟺" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⟹" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⇑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

333

334

"⇕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⤓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⇵" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↧" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥡" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⇃" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥙" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥠" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↿" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥘" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⟵" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⟷" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⟶" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥯" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥝" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⇂" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥏" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥜" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↾" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥔" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↓" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"↑" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"↑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⤒" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⇅" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥮" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↥" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"^" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"<>" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"’" form="postfix" lspace="verythinmathspace" rspace="0em"

"!" form="postfix" lspace="verythinmathspace" rspace="0em"

"!!" form="postfix" lspace="verythinmathspace" rspace="0em"

"~" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"@" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"--" form="postfix" lspace="verythinmathspace" rspace="0em"

"--" form="prefix" lspace="0em" rspace="verythinmathspace"

"++" form="postfix" lspace="verythinmathspace" rspace="0em"

"++" form="prefix" lspace="0em" rspace="verythinmathspace"

"⁡" form="infix" lspace="0em" rspace="0em"

"?" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"_" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"˘" form="postfix" accent="true" lspace="0em" rspace="0em"

"¸" form="postfix" accent="true" lspace="0em" rspace="0em"

"`" form="postfix" accent="true" lspace="0em" rspace="0em"

"˙" form="postfix" accent="true" lspace="0em" rspace="0em"

"˝" form="postfix" accent="true" lspace="0em" rspace="0em"

"&DiacriticalLeftArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

334

335

"&DiacriticalLeftRightArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"&DiacriticalLeftRightVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"&DiacriticalLeftVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"´" form="postfix" accent="true" lspace="0em" rspace="0em"

"&DiacriticalRightArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"&DiacriticalRightVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"˜" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"¨" form="postfix" accent="true" lspace="0em" rspace="0em"

"̑" form="postfix" accent="true" lspace="0em" rspace="0em"

"ˇ" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"^" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"‾" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⏞" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⎴" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⏜" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⃛" form="postfix" accent="true" lspace="0em" rspace="0em"

"_" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⏟" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⎵" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⏝" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

335

Appendix E

Document Object Model for MathML (Non-Normative)

The following sections describe the interfaces that have been defined in the Document Object Model for MathML. Please refer to Chapter 8 for more information.

E.1 IDL Interfaces

E.1.1 Miscellaneous Object Definitions

Interface MathMLDOMImplementation

Extends: DOMImplementation

This interface extends the DOMImplementation interface by adding a method to create a top level MathMLmathElement.

IDL Definition

interface MathMLDOMImplementation: DOMImplementation {
MathMLmathElement createMathMLmathElement(in Document hostDocument, in Node parent);

};

Methods

createMathMLmathElement
Creates a MathMLmathElement to correspond to a MathML math element. The MathMLmathElement is empty, having no child elements or non-default
attributes.
Parameters
Document hostDocument The Document object containing the math element.
Node parent The Node that is to be the parent node of the math element. This may be null.

Return value
MathMLmathElement The newly created MathMLmathElement.

Exceptions
HIERARCHY_REQUEST_ERR Raised if a math element is not allowed in either hostDocument or the parent node.

336

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#i-Document
http://www.w3.org/TR/DOM-Level-2/core.html

337

Interface MathMLDocumentFragment

Extends: MathMLElement

This interface is provided as a specialization of the DocumentFragment interface. The child Nodes of this MathMLElement must be MathMLElements or Text nodes.
As with the DocumentFragment object, inserting a MathMLDocumentFragment into a MathMLElement which can accept children has the effect of inserting each
of the top-level child Nodes of the fragment rather than the fragment itself. Note that MathMLDocumentFragments are frequently used in the DOM as values of
readonly attributes, encapsulating, for instance, various collections of child elements. When used in this way, these objects are always understood to be live, in
the sense that they changes to the document are immediately reflected in them.

IDL Definition

interface MathMLDocumentFragment: MathMLElement {
};

E.1.2 Generic MathML Elements

Interface MathMLElement

Extends: Element

All MathML element interfaces derive from this object, which derives from the basic DOM interface Element.

Note: At some point it is expected that CSS support for mathematics will be available. At that point, the style attribute of a MathML element should be accessed
through the ElementCSSInlineStyle interface, which is defined in the CSS DOM specification.

IDL Definition

interface MathMLElement: Element {
attribute DOMString className;
attribute DOMString style;
attribute DOMString id;

};

Attributes

className of type DOMString The class attribute of the element. See the discussion elsewhere in this document and the HTML definition of the class attribute.

style of type DOMString A string identifying the element’s style attribute.

id of type DOMString The element’s identifier. See the discussion elsewhere in this document and the HTML definition of the id attribute.

Interface MathMLmathElement

Extends: MathMLElement

This interface represents the top-level MathML math element. It may be useful for interfacing between the Document Object Model objects encoding an enclosing
document and the MathML DOM elements that are its children. It may also be used for some purposes as a MathML DOM surrogate for a Document object. For
instance, MathML-specific factory methods could be placed here, as could methods for creating MathML-specific Iterators or TreeWalkers.

337

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

338

IDL Definition

interface MathMLmathElement: MathMLElement {
readonly attribute MathMLDocumentFragment declarations;
attribute DOMString macros;
attribute DOMString display;
MathMLdeclareElement insertDeclaration(in MathMLdeclareElement newDeclaration, in unsigned long index);
MathMLdeclareElement setDeclaration(in MathMLdeclareElement newDeclaration, in unsigned long index);
MathMLdeclareElement removeDeclaration(in unsigned long index);
MathMLDocumentFragment createMathMLDocumentFragment();
MathMLElement createMathMLElement(in DOMString tagName);

};

Attributes

declarations of type MathMLDocumentFragment, readonly Provides access to the declare elements which are children of this math element, in a MathML-
DocumentFragment. All Nodes of this fragment must be MathMLdeclareElements.

macros of type DOMString Represents the macros attribute of the math element. See Section 7.1.

display of type DOMString Represents the display attribute of the math element. This value is either block or inline. See Section 7.1.

Methods

insertDeclaration
This method inserts newDeclaration before the current index-th child declare element of this MathMLmathElement. If index is 0, newDeclaration
is appended as the last child declare element.
Parameters
MathMLdeclareElement newDeclaration A MathMLdeclareElement to be inserted as the indexth child declare element.
unsigned long index A one-based index into the list of child declare elements of this element giving the position before which newDeclaration is to be inserted.

Return value
MathMLdeclareElement The MathMLdeclareElement child of this MathMLmathElement representing newDeclaration in the DOM.

This method raises no exceptions.
setDeclaration

This method inserts newDeclaration as the index-th child declaration of this MathMLmathElement. If there is already an index-th declare child
element, it is replaced by newDeclaration.
Parameters
MathMLdeclareElement newDeclaration A MathMLdeclareElement to be inserted as the indexth child declare element.
unsigned long index A one-based index into the list of child declare elements of this element giving the position at which newDeclaration is to be inserted.

Return value
MathMLdeclareElement The MathMLdeclareElement being inserted.

This method raises no exceptions.
removeDeclaration

This method removes the MathMLdeclareElement representing the index-th declare child element of this math element, and returns it to the caller.
Note that index is the position in the list of declare element children, as opposed to the position in the list of all child Nodes.
Parameters
unsigned long index The one-based index of the declare element to be removed.

Return value
MathMLdeclareElement The MathMLdeclareElement being removed as a child Node of this element.

This method raises no exceptions.

338

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

339

createMathMLDocumentFragment
Creates a new empty MathMLDocumentFragment element.
Return value
MathMLDocumentFragment The MathMLDocumentFragment created.

This method raises no exceptions.
createMathMLElement

This method creates a MathMLElement to represent a MathML element of type tagName. The returned MathMLElement should be of the correct derived
type to represent the element. In addition, if there are known attributes with default values, Attr nodes representing them are automatically created and
attached to the element. MathMLElements representing required child elements are created as empty elements.
Parameters
DOMString tagName The case-sensitive name of the element type to instantiate.

Return value
MathMLElement The MathMLElement created.

Exceptions
INVALID_CHARACTER_ERR Raised if the specified name contains an illegal character.

Interface MathMLSemanticsElement

Extends: MathMLElement

This interface represents the semantics element in MathML.

IDL Definition

interface MathMLSemanticsElement: MathMLElement {
attribute MathMLElement body;
MathMLElement getAnnotation(in unsigned long index);
MathMLElement insertAnnotation(in MathMLElement newAnnotation, in unsigned long index);
MathMLElement setAnnotation(in MathMLElement newAnnotation, in unsigned long index);

};

Attributes

body of type MathMLElement This attribute represents the first child of the semantics element, i.e. the child giving the ‘primary’ content represented by the
element.

Methods

getAnnotation
This method gives access to the index-th ‘alternate’ content associated with a semantics element.
Parameters
unsigned long index The one-based index of the annotation being retrieved.

Return value
MathMLElement The MathMLAnnotationElement or MathMLXMLAnnotationElement representing the index-th annotation or xml-annotation child of the se-

mantics element. Note that all child elements of a semantics element other than the first are required to be of one of these types.
This method raises no exceptions.

339

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html

340

insertAnnotation
This method inserts newAnnotation before the current index-th ‘alternate’ content associated with a semantics element. If index is 0, newAnnotation
is appended as the last annotation or xml-annotation child of this element.
Parameters
MathMLElement newAnnotation A MathMLAnnotationElement or MathMLXMLAnnotationElement representing the new annotation or xml-annotation to be inserted.
unsigned long index The position in the list of annotation or xml-annotation children before which newAnnotation is to be inserted. The first annotation is numbered 1.

Return value
MathMLElement The MathMLAnnotationElement or MathMLXMLAnnotationElement child of this element that represents the new annotation in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newAnnotation is not a MathMLAnnotationElement or MathMLXMLAnnotationElement.
INDEX_SIZE_ERR Raised if index is greater than the current number of annotation or xml-annotation children of this semantics element.

setAnnotation
This method allows setting or replacement of the index-th ‘alternate’ content associated with a semantics element. If there is already an annotation
or xml-annotation element with this index, it is replaced by newAnnotation.
Parameters
MathMLElement newAnnotation A MathMLAnnotationElement or MathMLXMLAnnotationElement representing the new value of the indexth annotation or xml-annotation

child of this semantics element.
unsigned long index The position in the list of annotation or xml-annotation children of this semantics element that is to be occupied by newAnnotation. The first

annotation element is numbered 1.
Return value
MathMLElement The MathMLAnnotationElement or MathMLXMLAnnotationElement child of this element that represents the new annotation in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newAnnotation is not a MathMLAnnotationElement or MathMLXMLAnnotationElement.
INDEX_SIZE_ERR Raised if index is greater than one more than the current number of annotation or xml-annotation children of this semantics

element.

Interface MathMLAnnotationElement

Extends: MathMLElement

This interface represents the annotation element of MathML.

IDL Definition

interface MathMLAnnotationElement: MathMLElement {
attribute DOMString body;
attribute DOMString encoding;

};

Attributes

body of type DOMString Provides access to the content of an annotation element.

encoding of type DOMString Provides access to the encoding attribute of an annotation element.

Interface MathMLXMLAnnotationElement

Extends: MathMLElement

This interface represents the xml-annotation element of MathML.

340

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

341

IDL Definition

interface MathMLXMLAnnotationElement: MathMLElement {
readonly attribute NodeList contents;
attribute DOMString encoding;

};

Attributes

contents of type NodeList, readonly Provides access to the content of an annotation element, represented by XML DOM Nodes.

encoding of type DOMString Provides access to the encoding attriubte of an annotation element.

E.1.3 Presentation Elements

Interface MathMLPresentationElement

Extends: MathMLElement

This interface is provided to serve as a base interface for various MathML Presentation interfaces. It contains no new attributes or methods at this time; however, it is
felt that the distinction between Presentation and Content MathML entities should be indicated in the MathMLElement heirarchy. In particular, future versions of the
MathML DOM may add functionality on this interface; it may also serve as an aid to implementors.

IDL Definition

interface MathMLPresentationElement: MathMLElement {
};

E.1.3.1 Leaf Presentation Element Interfaces

Interface MathMLCharacterElement

Extends: MathMLPresentationElement

This interface supports the mchar element Section 3.2.8.

IDL Definition

interface MathMLCharacterElement: MathMLPresentationElement {
attribute DOMString name;

};

Attributes

name of type DOMString The name of a non-ASCII character, taken from Chapter 6.

Interface MathMLGlyphElement

Extends: MathMLPresentationElement

This interface supports the mglyph element Section 3.2.9.

341

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

342

IDL Definition

interface MathMLGlyphElement: MathMLPresentationElement {
attribute DOMString alt;
attribute DOMString fontfamily;
attribute unsigned long index;

};

Attributes

alt of type DOMString A string giving an alternate name for the character. Represents the mglyph’s alt attribute.

fontfamily of type DOMString A string representing the font family.

index of type unsigned long An unsigned integer giving the glyph’s position within the font.

Interface MathMLSpaceElement

Extends: MathMLPresentationElement

This interface extends the MathMLPresentationElement interface for the MathML space element mspace. Note that this is not derived from MathMLPresenta-
tionToken, despite the fact that mspace is classified as a token element, since it does not carry the attributes declared for MathMLPresentationToken.

IDL Definition

interface MathMLSpaceElement: MathMLPresentationElement {
attribute DOMString width;
attribute DOMString height;
attribute DOMString depth;

};

Attributes

width of type DOMString A string of the form ‘number h-unit ’; represents the width attribute for the mspace element, if specified.

height of type DOMString A string of the form ‘number v-unit ’; represents the height attribute for the mspace element, if specified.

depth of type DOMString A string of the form ‘number v-unit ’; represents the depth attribute for the mspace element, if specified.

E.1.3.2 Presentation Token Element Interfaces

Interfaces representing the MathML Presentation token elements that may have content are described here.

Interface MathMLPresentationToken

Extends: MathMLPresentationElement

This interface extends the MathMLElement interface to include access for attributes specific to text presentation. It serves as the base class for all MathML presen-
tation token elements. Access to the body of the element is via the nodeValue attribute inherited from Node. Elements that expose only the core presentation token
attributes are directly supported by this object. These elements are:

mi identifier element
mn number element
mtext text element

342

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

343

IDL Definition

interface MathMLPresentationToken: MathMLPresentationElement {
attribute DOMString fontsize;
attribute DOMString fontweight;
attribute DOMString fontstyle;
attribute DOMString fontfamily;
attribute DOMString color;
readonly attribute MathMLDocumentFragment contents;

};

Attributes

fontsize of type DOMString The font size attribute for the element, if specified.

fontweight of type DOMString The font weight attribute for the element, if specified.

fontstyle of type DOMString The font style attribute for the element, if specified.

fontfamily of type DOMString The font family attribute for the element, if specified.

color of type DOMString The color attribute for the element, if specified.

contents of type MathMLDocumentFragment, readonly Returns the child Nodes of the element. These should consist only of Text nodes and possibly MathML-
GlyphElements or MathMLCharacterElements. Should behave the same as the base class’s Node::children attribute; however, it is provided here
for clarity.

Interface MathMLOperatorElement

Extends: MathMLPresentationToken

This interface extends the MathMLPresentationToken interface for the MathML operator element mo.

IDL Definition

interface MathMLOperatorElement: MathMLPresentationToken {
attribute DOMString form;
attribute DOMString fence;
attribute DOMString separator;
attribute DOMString lspace;
attribute DOMString rspace;
attribute DOMString stretchy;
attribute DOMString symmetric;
attribute DOMString maxsize;
attribute DOMString minsize;
attribute DOMString largeop;
attribute DOMString moveablelimits;
attribute DOMString accent;

};

343

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

344

Attributes

form of type DOMString The form attribute (prefix, infix or postfix) for the mo element, if specified.

fence of type DOMString The fence attribute (true or false) for the mo element, if specified.

separator of type DOMString The separator attribute (true or false) for the mo element, if specified.

lspace of type DOMString The lspace attribute (spacing to left) of the mo element, if specified.

rspace of type DOMString The rspace attribute (spacing to right) of the mo element, if specified.

stretchy of type DOMString The stretchy attribute (true or false) for the mo element, if specified.

symmetric of type DOMString The symmetric attribute (true or false) for the mo element, if specified.

maxsize of type DOMString The maxsize attribute for the mo element, if specified.

minsize of type DOMString The minsize attribute for the mo element, if specified.

largeop of type DOMString The largeop attribute for the mo element, if specified.

moveablelimits of type DOMString The moveablelimits (true or false) attribute for the mo element, if specified.

accent of type DOMString The accent attribute (true or false) for the mo element, if specified.

Interface MathMLStringLitElement

Extends: MathMLPresentationToken

This interface extends the MathMLPresentationToken interface for the MathML string literal element ms.

IDL Definition

interface MathMLStringLitElement: MathMLPresentationToken {
attribute DOMString lquote;
attribute DOMString rquote;

};

Attributes

lquote of type DOMString A string giving the opening delimiter for the string literal; represents the lquote attribute for the ms element, if specified.

rquote of type DOMString A string giving the closing delimiter for the string literal; represents the rquote attribute for the ms element, if specified.

E.1.3.3 Presentation Container Interfaces

We include under the heading of Presentation Container Elements interfaces designed to represent MathML Presentation elements that can contain arbitrary numbers
of child MathMLElements.

Interface MathMLPresentationContainer

Extends: MathMLPresentationElement

This interface represents MathML Presentation elements that may contain arbitarily many child elements.

344

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

345

IDL Definition

interface MathMLPresentationContainer: MathMLPresentationElement {
readonly attribute MathMLDocumentFragment arguments;
MathMLElement getArgument(in unsigned long index);
MathMLElement insertArgument(in MathMLElement newArgument, in unsigned long index);
MathMLElement setArgument(in MathMLElement newArgument, in unsigned long index);
void deleteArgument(in unsigned long index);
MathMLElement removeArgument(in unsigned long index);

};

Attributes

arguments of type MathMLDocumentFragment, readonly This attribute accesses the child MathMLElements of this element, as a MathMLDocumentFragment.

Methods

getArgument
This method returns the index-th child element of this element.
Parameters
unsigned long index The one-based index of the argument to be retrieved.

Return value
MathMLElement A MathMLElement representing the element being retrieved.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the number of child elements.

insertArgument
This method inserts newArgument before the current index-th child argument of this element. If index is 0, newArgument is appended as the last
argument.
Parameters
MathMLElement newArgument A MathMLElement representing the element that is to be inserted as a child argument of this element.
unsigned long index The index of the position in the list of arguments before which newArgument is to be inserted. The first argument is numbered 1.

Return value
MathMLElement The MathMLElement child of this element that represents the new argument in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newArgument represents an element that cannot be an argument of this element.
INDEX_SIZE_ERR Raised if index is greater than the number of child arguments.

setArgument
This method sets newArgument as the index-th child element of this element. If there is already an element at position index, it is replaced by newAr-
gument.
Parameters
MathMLElement newArgument A MathMLElement representing the element that is to be set as the index-th argument of this element.
unsigned long index The index of the argument that is to be set to newArgument.

Return value
MathMLElement The MathMLElement child of this element that represents the new argument in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newArgument represents an element that cannot be an argument of this element.
INDEX_SIZE_ERR Raised if index is greater than one more than the number of child elements.

345

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

346

deleteArgument
This method deletes the index-th child MathMLElement of this element.
Parameters
unsigned long index The one-based index of the argument to be deleted.

Return value
void None.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the number of child elements.

removeArgument
This method removes the indexth child element of this element and returns it to the caller.
Parameters
unsigned long index The one-based index of the argument to be removed.

Return value
MathMLElement A MathMLElement representing the child element being removed.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the number of child elements.

Interface MathMLStyleElement

Extends: MathMLPresentationContainer

This interface extends the MathMLElement interface for the MathML style element mstyle. While the mstyle element may contain any attributes allowable on
any MathML presentation element, only attributes specific to the mstyle element are included in the interface below. Other attributes should be accessed using
the methods on the base Element class, particularly the Element::getAttribute and Element::setAttribute methods, or even the Node::attributes
attribute to access all of them at once. Not only does this obviate a lengthy list below, but it seems likely that most implementations will find this a considerably more
useful interface to a MathMLStyleElement.

IDL Definition

interface MathMLStyleElement: MathMLPresentationContainer {
attribute DOMString scriptlevel;
attribute DOMString displaystyle;
attribute DOMString scriptsizemultiplier;
attribute DOMString scriptminsize;
attribute DOMString color;
attribute DOMString background;

};

Attributes

scriptlevel of type DOMString A string of the form ‘+/- unsigned integer ’; represents the scriptlevel attribute for the mstyle element, if specified. See also
the discussion of this attribute.

displaystyle of type DOMString Either true or false; a string representing the displaystyle attribute for the mstyle element, if specified. See also the
discussion of this attribute.

scriptsizemultiplier of type DOMString A string of the form ‘number ’; represents the scriptsizemultiplier attribute for the mstyle element, if specified.
See also the discussion of this attribute.

scriptminsize of type DOMString A string of the form ‘number v-unit ’; represents the scriptminsize attribute for the mstyle element, if specified. See also
the discussion of this attribute.

346

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

347

color of type DOMString A string representation of a color; represents the color attribute for the mstyle element, if specified. See also the discussion of this
attribute.

background of type DOMString A string representation of a color or the string transparent; represents the background attribute for the mstyle element, if
specified. See also the discussion of this attribute.

Interface MathMLPaddedElement

Extends: MathMLPresentationContainer

This interface extends the MathMLElement interface for the MathML spacing adjustment element mpadded.

IDL Definition

interface MathMLPaddedElement: MathMLPresentationContainer {
attribute DOMString width;
attribute DOMString lspace;
attribute DOMString height;
attribute DOMString depth;

};

Attributes

width of type DOMString A string representing the total width of the mpadded element, if specified. See also the discussion of this attribute.

lspace of type DOMString A string representing the lspace attribute - the additional space to the left - of the mpadded element, if specified. See also the
discussion of this attribute.

height of type DOMString A string representing the height above the baseline of the mpadded element, if specified. See also the discussion of this attribute.

depth of type DOMString A string representing the depth beneath the baseline of the mpadded element, if specified. See also the discussion of this attribute.

Interface MathMLFencedElement

Extends: MathMLPresentationContainer

This interface extends the MathMLPresentationContainer interface for the MathML fenced content element mfenced.

IDL Definition

interface MathMLFencedElement: MathMLPresentationContainer {
attribute DOMString open;
attribute DOMString close;
attribute DOMString separators;

};

Attributes

open of type DOMString A string representing the opening-fence for the mfenced element, if specified; this is the element’s open attribute.

close of type DOMString A string representing the opening-fence for the mfenced element, if specified; this is the element’s close attribute.

separators of type DOMString A string representing any separating characters inside the mfenced element, if specified; this is the element’s separators
attribute.

347

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

348

Interface MathMLEncloseElement

Extends: MathMLPresentationContainer

This interface supports the menclose element Section 3.3.9.

IDL Definition

interface MathMLEncloseElement: MathMLPresentationContainer {
attribute DOMString notation;

};

Attributes

notation of type DOMString A string giving a name for the notation enclosing the element’s contents. Represents the notation attribute of the menclose.
Allowed values are longdiv, actuarial, radical.

Interface MathMLActionElement

Extends: MathMLPresentationContainer

This interface extends the MathMLPresentationContainer interface for the MathML enlivening expression element maction.

IDL Definition

interface MathMLActionElement: MathMLPresentationContainer {
attribute DOMString actiontype;
attribute DOMString selection;

};

Attributes

actiontype of type DOMString A string specifying the action. Possible values include toggle, statusline, tooltip, highlight, and menu.

selection of type DOMString A string specifying an integer that selects the current subject of the action.

E.1.3.4 Presentation Schemata Interfaces

Interface MathMLFractionElement

Extends: MathMLPresentationElement

This interface extends the MathMLPresentationElement interface for the MathML fraction element mfrac.

IDL Definition

interface MathMLFractionElement: MathMLPresentationElement {
attribute DOMString linethickness;
attribute MathMLElement numerator;
attribute MathMLElement denominator;

};

348

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

349

Attributes

linethickness of type DOMString A string representing the linethickness attribute of the mfrac, if specified.

numerator of type MathMLElement The first child MathMLElement of the MathMLFractionElement; represents the numerator of the represented fraction.

denominator of type MathMLElement The second child MathMLElement of the MathMLFractionElement; represents the denominator of the represented
fraction.

Interface MathMLRadicalElement

Extends: MathMLPresentationElement

This interface extends the MathMLPresentationElement interface for the MathML radical and square root elements mroot and msqrt.

IDL Definition

interface MathMLRadicalElement: MathMLPresentationElement {
attribute MathMLElement radicand;
attribute MathMLElement index;

};

Attributes

radicand of type MathMLElement The first child MathMLElement of the MathMLRadicalElement; represents the base of the represented radical.

index of type MathMLElement The second child MathMLElement of the MathMLRadicalElement; represents the index of the represented radical. This must
be null for msqrt elements.

Interface MathMLScriptElement

Extends: MathMLPresentationElement

This interface extends the MathMLPresentationElement interface for the MathML subscript, superscript and subscript-superscript pair elements msub, msup, and
msubsup.

IDL Definition

interface MathMLScriptElement: MathMLPresentationElement {
attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;
attribute MathMLElement subscript;
attribute MathMLElement superscript;

};

Attributes

subscriptshift of type DOMString A string representing the minimum amount to shift the baseline of the subscript down, if specified; this is the element’s sub-
scriptshift attribute. This must return null for an msup.

superscriptshift of type DOMString A string representing the minimum amount to shift the baseline of the superscript up, if specified; this is the element’s
superscriptshift attribute. This must return null for a msub.

349

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

350

base of type MathMLElement A MathMLElement representing the base of the script. This is the first child of the element.

subscript of type MathMLElement A MathMLElement representing the subscript of the script. This is the second child of a msub or msubsup; retrieval must
return null for an msup.
HIERARCHY_REQUEST_ERR Raised when the element is a msup.

superscript of type MathMLElement A MathMLElement representing the superscript of the script. This is the second child of a msup or the third child of a
msubsup; retrieval must return null for an msub.
HIERARCHY_REQUEST_ERR Raised when the element is a msub.

Interface MathMLUnderOverElement

Extends: MathMLPresentationElement

This interface extends the MathMLPresentationElement interface for the MathML underscript, overscript and overscript-underscript pair elements munder, mover
and munderover.

IDL Definition

interface MathMLUnderOverElement: MathMLPresentationElement {
attribute DOMString accentunder;
attribute DOMString accent;
attribute MathMLElement base;
attribute MathMLElement underscript;
attribute MathMLElement overscript;

};

Attributes

accentunder of type DOMString Either true or false if present; a string controlling whether underscript is drawn as an ‘accent’ or as a ‘limit’, if specified; this is
the element’s accentunder attribute. This must return null for an mover.

accent of type DOMString Either true or false if present; a string controlling whether overscript is drawn as an ‘accent’ or as a ‘limit’, if specified; this is the
element’s accent attribute. This must return null for an munder.

base of type MathMLElement A MathMLElement representing the base of the script. This is the first child of the element.

underscript of type MathMLElement A MathMLElement representing the underscript of the script. This is the second child of a munder or munderover; retrieval
must return null for an mover.
HIERARCHY_REQUEST_ERR Raised when the element is a mover.

overscript of type MathMLElement A MathMLElement representing the overscript of the script. This is the second child of a mover or the third child of a
munderover; retrieval must return null for an munder.
HIERARCHY_REQUEST_ERR Raised when the element is a munder.

Interface MathMLMultiScriptsElement

Extends: MathMLPresentationElement

This interface extends the MathMLPresentationElement interface for the MathML multiscripts (including prescripts or tensors) element mmultiscripts.

350

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

351

IDL Definition

interface MathMLMultiScriptsElement: MathMLPresentationElement {
attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;
readonly attribute MathMLDocumentFragment prescripts;
readonly attribute MathMLDocumentFragment scripts;
readonly attribute unsigned long numprescriptcolumns;
readonly attribute unsigned long numscriptcolumns;
MathMLElement getPreSubScript(in unsigned long colIndex);
MathMLElement getSubScript(in unsigned long colIndex);
MathMLElement getPreSuperScript(in unsigned long colIndex);
MathMLElement getSuperScript(in unsigned long colIndex);
MathMLElement insertPreSubScriptBefore(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement setPreSubScriptAt(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement insertSubScriptBefore(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement setSubScriptAt(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement insertPreSuperScriptBefore(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement setPreSuperScriptAt(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement insertSuperScriptBefore(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement setSuperScriptAt(in unsigned long colIndex, in MathMLElement newScript);

};

Attributes

subscriptshift of type DOMString A string representing the minimum amount to shift the baseline of the subscripts down, if specified; this is the element’s
subscriptshift attribute.

superscriptshift of type DOMString A string representing the minimum amount to shift the baseline of the superscripts up, if specified; this is the element’s
superscriptshift attribute.

base of type MathMLElement A MathMLElement representing the base of the script. This is the first child of the element.

prescripts of type MathMLDocumentFragment, readonly A NodeList representing the prescripts of the script, which appear in the order described by the
expression (prescript presuperscript)*. This is the same as traversing the contents of the NodeList returned by Node::childNodes() from the Node
following the <mprescripts/> (if present) to the end of the list.

scripts of type MathMLDocumentFragment, readonly A MathMLDocumentFragment representing the scripts of the script, which appear in the order described
by the expression (script superscript)*. This is the same as traversing the contents of the NodeList returned by Node::childNodes() from the first
Node up to and including the Node preceding the <mprescripts/> (if present).

numprescriptcolumns of type unsigned long, readonly The number of script/subscript columns preceding (to the left of) the base. Should always be half of
getprescripts().length()

numscriptcolumns of type unsigned long, readonly The number of script/subscript columns following (to the right of) the base. Should always be half of
getscripts().length()

Methods

getPreSubScript
A convenience method to retrieve pre-subscript children of the element, referenced by column index .
Parameters
unsigned long colIndex Column index of prescript (where 1 represents the leftmost prescript column).

351

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

352

Return value
MathMLElement Returns the MathMLElement representing the colIndex-th presubscript (to the left of the base, counting from 1 at the far left). Note that this may be the

MathMLElement corresponding to the special element <none/> in the case of a ‘missing’ presubscript (see the discussion of mmultiscripts), or it may
be null if colIndex is out of range for the element.

This method raises no exceptions.
getSubScript

A convenience method to retrieve subscript children of the element, referenced by column index.
Parameters
unsigned long colIndex Column index of script (where 1 represents the leftmost script column, the first to the right of the base).

Return value
MathMLElement Returns the MathMLElement representing the colIndex-th subscript to the right of the base. Note that this may be the MathMLElement corresponding to

the special element <none/> in the case of a ‘missing’ subscript (see the discussion of mmultiscripts), or it may be null if colIndex is out of range
for the element.

This method raises no exceptions.
getPreSuperScript

A convenience method to retrieve pre-superscript children of the element, referenced by column index .
Parameters
unsigned long colIndex Column index of pre-superscript (where 1 represents the leftmost prescript column).

Return value
MathMLElement Returns the MathMLElement representing the colIndex-th presuperscript (to the left of the base, counting from 1 at the far left). Note that this may be the

MathMLElement corresponding to the special element <none/> in the case of a ‘missing’ presuperscript (see the discussion of mmultiscripts), or it
may be null if colIndex is out of range for the element.

This method raises no exceptions.
getSuperScript

A convenience method to retrieve superscript children of the element, referenced by column index .
Parameters
unsigned long colIndex Column index of script (where 1 represents the leftmost script column, the first to the right of the base)

Return value
MathMLElement Returns the MathMLElement representing the colIndex-th superscript to the right of the base. Note that this may be the MathMLElement corresponding

to the special element <none/> in the case of a ‘missing’ superscript (see the discussion of mmultiscripts), or it may be null if colIndex is out of
range for the element.

This method raises no exceptions.
insertPreSubScriptBefore

A convenience method to insert a pre-subscript before the position referenced by column index. If colIndex is 0, the new pre-subscript is appended
as the last pre-subscript of the mmultiscripts element; if colIndex is 1, a new pre-subscript is prepended at the far left. Note that inserting a new
pre-subscript will cause the insertion of an empty pre-superscript in the same column.
Parameters
unsigned long colIndex Column index of pre-subscript (where 1 represents the leftmost prescript column).
MathMLElement newScript A MathMLElement representing the element to be inserted as a pre-subscript.

Return value
MathMLElement The MathMLElement child of this MathMLMultiScriptsElement representing the new script in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newScript represents an element that cannot be a pre-subscript.
INDEX_SIZE_ERR Raised if colIndex is greater than the number of pre-scripts of the element.

setPreSubScriptAt
A convenience method to set the pre-subscript child at the position referenced by colIndex. If there is currently a pre-subscript at this position, it is
replaced by newScript.
Parameters

352

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

353

unsigned long colIndex Column index of pre-subscript (where 1 represents the leftmost prescript column).
MathMLElement newScript MathMLElement representing the element that is to be set as the colIndexth pre-subscript child of this element.

Return value
MathMLElement The MathMLElement child of this MathMLMultiScriptsElement representing the new pre-subscript in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newScript represents an element that cannot be a pre-subscript.
INDEX_SIZE_ERR Raised if colIndex is greater than one more than the number of pre-scripts of the element.

insertSubScriptBefore
A convenience method to insert a subscript before the position referenced by column index. If colIndex is 0, the new subscript is appended as the last
subscript of the mmultiscripts element; if colIndex is 1, a new subscript is prepended at the far left. Note that inserting a new subscript will cause the
insertion of an empty superscript in the same column.
Parameters
unsigned long colIndex Column index of subscript, where 1 represents the leftmost script column (the first to the right of the base).
MathMLElement newScript A MathMLElement representing the element to be inserted as a subscript.

Return value
MathMLElement The MathMLElement child of this MathMLMultiScriptsElement that represents the new subscript in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newScript represents an element that cannot be a subscript.
INDEX_SIZE_ERR Raised if colIndex is greater than the number of scripts of the element.

setSubScriptAt
A convenience method to set the subscript child at the position referenced by colIndex. If there is currently a subscript at this position, it is replaced by
newScript.
Parameters
unsigned long colIndex Column index of subscript, where 1 represents the leftmost script column (the first to the right of the base).
MathMLElement newScript MathMLElement representing the element that is to be set as the colIndexth subscript child of this element.

Return value
MathMLElement The MathMLElement chlid of this element representing the new subscript in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newScript represents an element that cannot be a subscript.
INDEX_SIZE_ERR Raised if colIndex is greater than one more than the number of scripts of the element.

insertPreSuperScriptBefore
A convenience method to insert a pre-superscript before the position referenced by column index. If colIndex is 0, the new pre-superscript is appended
as the last pre-superscript of the mmultiscripts element; if colIndex is 1, a new pre-superscript is prepended at the far left. Note that inserting a new
pre-superscript will cause the insertion of an empty pre-subscript in the same column.
Parameters
unsigned long colIndex Column index of pre-superscript (where 1 represents the leftmost prescript column).
MathMLElement newScript A MathMLElement representing the element to be inserted as a pre-superscript.

Return value
MathMLElement The MathMLElement child of this element that represents the new pre-superscript in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newScript represents an element that cannot be a pre-superscript.
INDEX_SIZE_ERR Raised if colIndex is greater than the number of pre-scripts of the element.

setPreSuperScriptAt
A convenience method to set the pre-superscript child at the position referenced by colIndex. If there is currently a pre-superscript at this position, it is
replaced by newScript.
Parameters
unsigned long colIndex Column index of pre-superscript (where 1 represents the leftmost prescript column).
MathMLElement newScript MathMLElement representing the element that is to be set as the colIndexth pre-superscript child of this element.

353

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

354

Return value
MathMLElement The MathMLElement child of this element that represents the new pre-superscript in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newScript represents an element that cannot be a pre-superscript.
INDEX_SIZE_ERR Raised if colIndex is greater than one more than the number of pre-scripts of the element.

insertSuperScriptBefore
A convenience method to insert a superscript before the position referenced by column index. If colIndex is 0, the new superscript is appended as the
last superscript of the mmultiscripts element; if colIndex is 1, a new superscript is prepended at the far left. Note that inserting a new superscript will
cause the insertion of an empty subscript in the same column.
Parameters
unsigned long colIndex Column index of superscript, where 1 represents the leftmost script column (the first to the right of the base).
MathMLElement newScript A MathMLElement representing the element to be inserted as a superscript.

Return value
MathMLElement The MathMLElement chld of this element that represents the new superscript in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newScript represents an element that cannot be a superscript.
INDEX_SIZE_ERR Raised if colIndex is greater than the number of scripts of the element.

setSuperScriptAt
A convenience method to set the superscript child at the position referenced by colIndex. If there is currently a superscript at this position, it is replaced
by newScript.
Parameters
unsigned long colIndex Column index of superscript, where 1 represents the leftmost script column (the first to the right of the base).
MathMLElement newScript MathMLElement representing the element that is to be set as the colIndexth superscript child of this element.

Return value
MathMLElement The MathMLElement child of this element that represents the new superscript in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newScript represents an element that cannot be a superscript.
INDEX_SIZE_ERR Raised if colIndex is greater than one more than the number of scripts of the element.

Interface MathMLTableElement

Extends: MathMLPresentationElement

This interface extends the MathMLPresentationElement interface for the MathML table or matrix element mtable.

354

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

355

IDL Definition

interface MathMLTableElement: MathMLPresentationElement {
attribute DOMString align;
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
attribute DOMString alignmentscope;
attribute DOMString columnwidth;
attribute DOMString width;
attribute DOMString rowspacing;
attribute DOMString columnspacing;
attribute DOMString rowlines;
attribute DOMString columnlines;
attribute DOMString frame;
attribute DOMString framespacing;
attribute DOMString equalrows;
attribute DOMString equalcolumns;
attribute DOMString displaystyle;
attribute DOMString side;
attribute DOMString minlabelspacing;
readonly attribute MathMLDocumentFragment rows;
MathMLTableRowElement insertEmptyRow(in long index);
MathMLLabeledRowElement insertEmptyLabeledRow(in long index);
MathMLTableRowElement getRow(in unsigned long index);
MathMLTableRowElement insertRow(in long index, in MathMLTableRowElement newRow);
MathMLTableRowElement setRow(in long index, in MathMLTableRowElement newRow);
void deleteRow(in unsigned long index);
MathMLTableRowElement removeRow(in long index);

};

Attributes

align of type DOMString A string representing the vertical alignment of the table with the adjacent text. Allowed values are (top | bottom | center | baseline |
axis)[rownumber], where rownumber is between 1 and n (for a table with n rows) or -1 and -n.

rowalign of type DOMString A string representing the alignment of entries in each row, consisting of a space-separated sequence of alignment specifiers, each
of which can have the following values: top, bottom, center, baseline, or axis.

columnalign of type DOMString A string representing the alignment of entries in each column, consisting of a space-separated sequence of alignment specifiers,
each of which can have the following values: left, center, or right.

groupalign of type DOMString A string specifying how the alignment groups within the cells of each row are to be aligned with the corresponding items above
or below them in the same column. The string consists of a sequence of braced group alignment lists. Each group alignment list is a space-separated
sequence, each of which can have the following values: left, right, center, or decimalpoint.

alignmentscope of type DOMString A string consisting of the values true or false indicating, for each column, whether it can be used as an alignment scope.

columnwidth of type DOMString A string consisting of a space-separated sequence of specifiers, each of which can have one of the following forms: auto,
number h-unit, namedspace, or fit. (A value of the form namedspace is one of veryverythinmathspace, verythinmathspace, thinmathspace,
mediummathspace, thickmathspace, verythickmathspace, or veryverythickmathspace. This represents the element’s columnwidth attribute.

width of type DOMString A string that is either of the form number h-unit or is the string auto. This represents the element’s width attribute.

355

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

356

rowspacing of type DOMString A string consisting of a space-separated sequence of specifiers of the form number v-unit representing the space to be added
between rows.

columnspacing of type DOMString A string consisting of a space-separated sequence of specifiers of the form number h-unit representing the space to be
added between columns.

rowlines of type DOMString A string specifying whether and what kind of lines should be added between each row. The string consists of a space-separated
sequence of specifiers, each of which can have the following values: none, solid, or dashed.

columnlines of type DOMString A string specifying whether and what kind of lines should be added between each column. The string consists of a space-
separated sequence of specifiers, each of which can have the following values: none, solid, or dashed.

frame of type DOMString A string specifying a frame around the table. Allowed values are (none | solid | dashed).

framespacing of type DOMString A string of the form number h-unit number v-unit specifying the spacing between table and its frame.

equalrows of type DOMString A string with the values true or false.

equalcolumns of type DOMString A string with the values true or false.

displaystyle of type DOMString A string with the values true or false.

side of type DOMString A string with the values left, right, leftoverlap, or rightoverlap.

minlabelspacing of type DOMString A string of the form number h-unit, specifying the minimum space between a label and the adjacent entry in the labeled
row.

rows of type MathMLDocumentFragment, readonly A MathMLDocumentFragment consisting of MathMLTableRowElements and MathMLLabeledRowEle-
ments representing the rows of the table. This is a live object.

Methods

insertEmptyRow
A convenience method to insert a new (empty) row (mtr) in the table before the current indexth row. If index is less than 0, the new row is inserted before
the -indexth row counting up from the current last row; if index is equal to the current number of rows, the new row is appended as the last row.
Parameters
long index Position before which to insert the new row, where 0 represents the first row. Negative numbers are used to count backwards from the last row.

Return value
MathMLTableRowElement Returns the MathMLTableRowElement child of this MathMLTableElement that represents the new mtr element being inserted.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the current number of rows of this mtable element or less than minus this number.

insertEmptyLabeledRow
A convenience method to insert a new (empty) labeled row (mlabeledtr) in the table before the current indexth row. If index is less than 0, the new row
is inserted before the -indexth row counting up from the current last row; if index is equal to the current number of rows, the new row is appended as
the last row.
Parameters
long index Position before which to insert the new row, where 0 represents the first row. Negative numbers are used to count backwards from the last row.

Return value
MathMLLabeledRowElement Returns the MathMLLabeledRowElement child of this MathMLTableElement representing the mtr element being inserted.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the current number of rows of this mtable element or less than minus this number.

getRow
A convenience method to retrieve the indexth row from the table. If index is less than 0, the -indexth row from the bottom of the table is retrieved. (So,
for instance, if index is -2, the next-to-last row is retrieved.) If index is not a valid value (i.e. is greater than or equal to the number of rows, or is less than
minus the number of rows), a null MathMLTableRowElement is returned.
Parameters
unsigned long index Index of the row to be returned, where 0 represents the first row. Negative numbers are used to count backwards from the last row.

356

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

357

Return value
MathMLTableRowElement Returns the MathMLTableRowElement representing the indexth row of the table.

This method raises no exceptions.
insertRow

A convenience method to insert the new row or labeled row (mtr or mlabeledtr) represented by newRow in the table before the current indexth row. If
index is equal to the current number of rows, newRow is appended as the last row in the table. If index is less than 0, the new row is inserted before the
-indexth row from the bottom of the table. (So, for instance, if index is -2, the new row is inserted before the next-to-last current row.)
Parameters
long index Index before which to insert newRow, where 0 represents the first row. Negative numbers are used to count backwards from the current last row.
MathMLTableRowElement newRow A MathMLTableRowElement or MathMLLabeledRowElement representing the row to be inserted.

Return value
MathMLTableRowElement The MathMLTableRowElement or MathMLLabeledRowElement child of this MathMLTableElement representing the mtr element being inserted.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newRow is not a MathMLTableRowElement or MathMLLabeledRowElement.
INDEX_SIZE_ERR Raised if index is greater than the current number of rows or less than minus the current number of rows of this mtable element.

setRow
A method to set the value of the row in the table at the specified index to the mtr or mlabeledtr represented by newRow. If index is less than 0, the
-indexth row counting up from the last is replaced by newRow; if index is one more than the current number of rows, the new row is appended as the last
row in the table.
Parameters
long index Index of the row to be set to newRow, where 0 represents the first row. Negative numbers are used to count backwards from the last row.
MathMLTableRowElement newRow A MathMLTableRowElement representing the row that is to be the new indexth row.

Return value
MathMLTableRowElement Returns the MathMLTableRowElement or MathMLLabeledRowElement child of this element that represents the new row in the DOM.

Exceptions
HIERARCHY_REQUEST_ERR Raised if newRow is not a MathMLTableRowElement or MathMLLabeledRowElement.
INDEX_SIZE_ERR Raised if index is greater than the current number of rows of this mtable element or less than minus this number.

deleteRow
A convenience method to delete the row of the table at the specified index. If index is less than 0, the -indexth row from the bottom of the table is deleted.
(So, for instance, if index is -2, the next-to-last row is deleted.)
Parameters
unsigned long index Index of row to be deleted, where 0 represents the first row.

Return value
void None.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than or equal to the current number of rows of this mtable element or less than minus this number.

removeRow
A convenience method to delete the row of the table at the specified index and return it to the caller. If index is less than 0, the -indexth row from the
bottom of the table is deleted. (So, for instance, if index is -2, the next-to-last row is deleted.)
Parameters
long index Index of row to be removed, where 0 represents the first row.

Return value
MathMLTableRowElement A MathMLTableRowElement representing the row being deleted.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than or equal to the number of rows of this mtable element or less than minus this number.

357

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

358

Interface MathMLTableRowElement

Extends: MathMLPresentationElement

This interface extends the MathMLPresentationElement interface for the MathML table or matrix row element mtr.

IDL Definition

interface MathMLTableRowElement: MathMLPresentationElement {
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
readonly attribute MathMLDocumentFragment cells;
MathMLTableCellElement insertEmptyCell(in unsigned long index);
MathMLTableCellElement insertCell(in MathMLTableCellElement newCell, in unsigned long index);
MathMLTableCellElement setCell(in MathMLTableCellElement newCell, in unsigned long index);
void deleteCell(in unsigned long index);

};

Attributes

rowalign of type DOMString A string representing an override of the row alignment specified in the containing mtable. Allowed values are top, bottom, center,
baseline, and axis.

columnalign of type DOMString A string representing an override of the column alignment specified in the containing mtable. Allowed values are left, center,
and right.

groupalign of type DOMString [To be changed?]

cells of type MathMLDocumentFragment, readonly A MathMLDocumentFragment consisting of the cells of the row. Note that this does not include the label if
this is a MathMLLabeledRowElement!

Methods

insertEmptyCell
A convenience method to insert a new (empty) cell in the row.
Parameters
unsigned long index Index of the cell before which the new cell is to be inserted, where the first cell is numbered 0. If index is equal to the current number of cells, the

new cell is appended as the last cell of the row. Note that the index will differ from the index of the corresponding Node in the collection returned by
Node::childNodes if this is a MathMLLabeledRowElement!

Return value
MathMLTableCellElement Returns the MathMLTableCellElement representing the mtd element being inserted.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the current number of cells of this mtr element.

insertCell
A convenience method to insert a new cell in the row.
Parameters
MathMLTableCellElement newCell A MathMLTableCellElement representing the new cell (mtd element) to be inserted.
unsigned long index Index of the cell before which the new cell is to be inserted, where the first cell is numbered 0. If index equals the current number of cells, the new

cell is appended as the last cell of the row. Note that the index will differ from the index of the corresponding Node in Node::childNodes if this is a
MathMLLabeledRowElement!

Return value

358

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

359

MathMLTableCellElement The MathMLTableCellElement representing the mtd element being inserted.
Exceptions
INDEX_SIZE_ERR Raised if index is greater than the current number of cells of this mtr element.

setCell
A convenience method to set the value of a cell in the row to newCell. If index is equal to the current number of cells, newCell is appended as the last
cell in the row.
Parameters
MathMLTableCellElement newCell A MathMLTableCellElement representing the cell (mtd element) that is to be inserted.
unsigned long index Index of the cell that is to be replaced by the new cell, where the first cell is numbered 0. Note that the index will differ from the index of the corresponding

Node in the collection returned by Node::childNodes if this is a MathMLLabeledRowElement!
Return value
MathMLTableCellElement The MathMLTableCellElement child of this MathMLTableRowElement representing the new mtd element.

This method raises no exceptions.
deleteCell

A convenience method to delete a cell in the row.
Parameters
unsigned long index Index of cell to be deleted. Note that the count will differ from the indexth child node if this is a MathMLLabeledRowElement!

Return value
void None.

This method raises no exceptions.

Interface MathMLLabeledRowElement

Extends: MathMLTableRowElement

This interface extends the MathMLTableRowElement interface to represent the mlabeledtr element Section 3.5.3. Note that the presence of a label causes the
indexth child node to differ from the indexth cell!

IDL Definition

interface MathMLLabeledRowElement: MathMLTableRowElement {
attribute MathMLElement label;

};

Attributes

label of type MathMLElement A MathMLElement representing the label of this row. Note that retrieving this should have the same effect as a call to Node::getfirstChild(),
while setting it should have the same effect as Node::replaceChild(Node::getfirstChild()).
NO_MODIFICATION_ALLOWED_ERR Raised if this MathMLElement or the new MathMLElement is read-only.

Interface MathMLTableCellElement

Extends: MathMLPresentationContainer

This interface extends the MathMLPresentationContainer interface for the MathML table or matrix cell element mtd.

359

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

360

IDL Definition

interface MathMLTableCellElement: MathMLPresentationContainer {
attribute DOMString rowspan;
attribute DOMString columnspan;
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
readonly attribute boolean hasaligngroups;
readonly attribute DOMString cellindex;

};

Attributes

rowspan of type DOMString A string representing a positive integer that specifies the number of rows spanned by this cell. The default is 1.

columnspan of type DOMString A string representing a positive integer that specifies the number of columns spanned by this cell. The default is 1.

rowalign of type DOMString A string specifying an override of the inherited vertical alignment of this cell within the table row. Allowed values are top, bottom,
center, baseline, and axis.

columnalign of type DOMString A string specifying an override of the inherited horizontal alignment of this cell within the table column. Allowed values are left,
center, and right.

groupalign of type DOMString A string specifying how the alignment groups within the cell are to be aligned with those in cells above or below this cell. The string
consists of a space-separated sequence of specifiers, each of which can have the following values: left, right, center, or decimalpoint.

hasaligngroups of type boolean, readonly A string with the values true or false indicating whether the cell contains align groups.

cellindex of type DOMString, readonly A string representing the integer index (1-based?) of the cell in its containing row. [What about spanning cells? How do
these affect this value?]

Interface MathMLAlignGroupElement

Extends: MathMLPresentationElement

This interface extends the MathMLPresentationElement interface for the MathML group -alignment element <maligngroup/>.

IDL Definition

interface MathMLAlignGroupElement: MathMLPresentationElement {
attribute DOMString groupalign;

};

Attributes

groupalign of type DOMString A string specifying how the alignment group is to be aligned with other alignment groups above or below it. Allowed values are
left, right, center, or decimalpoint.

Interface MathMLAlignMarkElement

Extends: MathMLPresentationElement

This interface extends the MathMLPresentationElement interface for the MathML alignment mark element <malignmark/>.

360

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

361

IDL Definition

interface MathMLAlignMarkElement: MathMLPresentationElement {
attribute DOMString edge;

};

Attributes

edge of type DOMString A string specifying alignment on the right edge of the preceding element or the left edge of the following element. Allowed values are
left and right.

E.1.4 Content Elements

Interface MathMLContentElement

Extends: MathMLElement

This interface is provided to serve as a base interface for various MathML Content interfaces. It contains no new attributes or methods at this time; however, it is
felt that the distinction between Presentation and Content MathML entities should be indicated in the MathMLElement heirarchy. In particular, future versions of the
MathML DOM may add functionality on this interface; it may also serve as an aid to implementors.

IDL Definition

interface MathMLContentElement: MathMLElement {
};

E.1.4.1 Content Token Interfaces

Interface MathMLContentToken

Extends: MathMLContentElement

This interface represents the MathML Content token elements: ci, cn and csymbol. These elements may contain MathML Presentation elements, Text nodes, or
a combination of both. Thus the getArgument and insertArgument methods have been provided to deal with this distinction between these elements and other
MathML Content elements.

IDL Definition

interface MathMLContentToken: MathMLContentElement {
readonly attribute MathMLDocumentFragment arguments;
Node getArgument(in unsigned long index);
Node insertArgument(in unsigned long index, in Node newArgument);
Node setArgument(in unsigned long index, in Node newArgument);
void deleteArgument(in unsigned long index);
Node removeArgument(in unsigned long index);

};

Attributes

arguments of type MathMLDocumentFragment, readonly The arguments of this element, returned as a MathMLDocumentFragment. Note that this is not nec-
essarily the same as Node::childNodes, particularly in the case of the cn element. The reason is that the sep elements that are used to separate the
arguments of a cn are not returned.

361

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

362

Methods

getArgument
A convenience method to retrieve the child argument at the position referenced by index. Note that this is not necessarily the same as the indexth child
Node of this Element; in particular, sep elements will not be counted.
Parameters
unsigned long index Position of desired argument in the list of arguments. The first argument is numbered 1.

Return value
Node The Node retrieved.

This method raises no exceptions.
insertArgument

A convenience method to insert newArgument before the current indexth argument child of this element. If index is 0, newArgument is appended as
the last argument.
Parameters
unsigned long index Position before which newArgument is to be inserted. The first argument is numbered 1.Note that this is not necessarily the index of the Node in the list of

child nodes, as nodes representing such elements as sep are not counted as arguments.
Node newArgument Node to be inserted as the indexth argument. This will either be a MathMLElement or a Text node.

Return value
Node The Node inserted. This is the element within the DOM.

This method raises no exceptions.
setArgument

A convenience method to set an argument child at the position referenced by index. If there is currently an argument at this position, it is replaced by
newArgument.
Parameters
unsigned long index Position of the argument that is to be set to newArgument in the list of arguments. The first argument is numbered 1. Note that this is not necessarily the

index of the Node in the list of child nodes, as nodes representing such elements as sep are not counted as arguments.
Node newArgument Node to be inserted as the argument. This will either be a MathMLElement or a Text node.

Return value
Node The Node inserted. This is the element within the DOM.

This method raises no exceptions.
deleteArgument

A convenience method to delete the argument child located at the position referenced by index.
Parameters
unsigned long index Position of the argument to be deleted from the list of arguments. The first argument is numbered 1.

Return value
void None.

This method raises no exceptions.
removeArgument

A convenience method to delete the argument child located at the position referenced by index, and to return it to the caller.
Parameters
unsigned long index Position of the argument to be deleted from the list of arguments. The first argument is numbered 1.

Return value
Node A Node representing the deleted argument.

This method raises no exceptions.

Interface MathMLcnElement

Extends: MathMLContentToken

362

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

363

The cn element is used to specify actual numeric constants.

IDL Definition

interface MathMLcnElement: MathMLContentToken {
attribute DOMString type;
attribute DOMString base;
readonly attribute unsigned long nargs;
attribute DOMString definitionURL;
attribute DOMString encoding;

};

Attributes

type of type DOMString Values include, but are not restricted to, center, real, integer, rational, complex-cartesian, complex-polar, and constant.

base of type DOMString A string representing an integer between 2 and 36; the base of the numerical representation.
nargs of type unsigned long, readonly The number of sep-separated arguments.

definitionURL of type DOMString A URL pointing to an alternative definition

encoding of type DOMString A description of the syntax used in definitionURL.

Interface MathMLciElement

Extends: MathMLContentToken

The ci element is used to specify a symbolic name.

IDL Definition

interface MathMLciElement: MathMLContentToken {
attribute DOMString type;

};

Attributes

type of type DOMString Values include integer, rational, real, float, complex, complex-polar, complex-cartesian, constant, any of the MathML
content container types (vector, matrix, set, list etc.) or their types.

Interface MathMLcsymbolElement

Extends: MathMLContentToken

This interface represents the csymbol element.

IDL Definition

interface MathMLcsymbolElement: MathMLContentToken {
attribute DOMString definitionURL;
attribute DOMString encoding;

};

363

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

364

Attributes

definitionURL of type DOMString A URI pointing to a definition for this symbol element.

encoding of type DOMString A string describing the syntax in which the definition located at definitionURL is given.

E.1.4.2 Content Container Interfaces

We have added interfaces for content elements that are containers, i.e. elements that may contain child elements corresponding to arguments, bound variables,
conditions, or lower or upper limits.

Interface MathMLContentContainer

Extends: MathMLContentElement

This interface supports the MathML Content elements that may contain child Content elements. They include: apply, reln (deprecated), fn, lambda, condition,
declare, semantics, annotation, annotation-xml, interval, set, list, vector, matrix, matrixrow, lowlimit, uplimit, bvar, degree, set, list,
and logbase.

IDL Definition

interface MathMLContentContainer: MathMLContentElement {
readonly attribute unsigned long nBoundVariables;
readonly attribute MathMLDocumentFragment nArguments;
attribute MathMLconditionElement condition;
attribute MathMLElement lowLimit;
attribute MathMLElement upLimit;
attribute MathMLElement opDegree;
MathMLElement getArgument(in unsigned long index);
MathMLElement insertArgument(in MathMLElement newArgument, in unsigned long index);
MathMLElement setArgument(in MathMLElement newArgument, in unsigned long index);
void deleteArgument(in unsigned long index);
MathMLElement removeArgument(in unsigned long index);
MathMLbvarElement getBoundVariable(in unsigned long index);
MathMLbvarElement insertBoundVariable(in MathMLbvarElement newBVar, in unsigned long index);
MathMLbvarElement setBoundVariable(in MathMLbvarElement newBVar, in unsigned long index);
void deleteBoundVariable(in unsigned long index);
MathMLbvarElement removeBoundVariable(in unsigned long index);

};

Attributes

nBoundVariables of type unsigned long, readonly The number of bvar child elements of this element.

nArguments of type MathMLDocumentFragment, readonly The number of child elements of this element which represent arguments of the element, as opposed
to qualifiers. Thus it does not contain elements representing bound variables, conditions, separators, degrees, or upper or lower limits (bvar, condition,
sep, degree, lowlimit, or uplimit).

condition of type MathMLconditionElement This attribute represents the condition child element of this node. See Section 4.2.3.2.
HIERARCHY_REQUEST_ERR Raised if this element does not permit a child condition element. In particular, raised if this element is not a apply,

set, or list.

364

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html

365

lowLimit of type MathMLElement This attribute represents the lowlimit child element of this node (if any). This expresses, for instance, the lower limit of
integration if this is an apply element whose first child is a int. See Section 4.2.3.2.
HIERARCHY_REQUEST_ERR Raised if this element does not permit a child lowlimit element. In particular, raised if this element is not an apply

element whose first child is an int, sum, product, or limit element.
upLimit of type MathMLElement This attribute represents the uplimit child element of this node (if any). This expresses, for instance, the upper limit of integra-

tion if this is an apply element whose first child is a int. See Section 4.2.3.2.
HIERARCHY_REQUEST_ERR Raised if this element does not permit a child uplimit element. In particular, raised if this element is not an apply

element whose first child is an int, sum, or product element.
opDegree of type MathMLElement This attribute represents the degree child element of this node. This expresses, for instance, the degree of differentiation if

this element is a bvar child of an apply element whose first child is a diff or partialdiff. See Section 4.2.3.2.
HIERARCHY_REQUEST_ERR Raised if this element does not permit a child degree element. In particular, raised if this element is not a bvar or apply.

Methods

getArgument
This method returns only the child elements that are arguments of this element. This frequently differs from the value of Node::childNodes().item(index),
as elements representing bound variables, conditions, separators, degrees, and upper or lower limits are not returned (bvar, condition, sep, degree,
lowlimit, uplimit).
Parameters
unsigned long index The one-based index of the argument to be retrieved.

Return value
MathMLElement A MathMLElement representing the index-thargument of this element.

This method raises no exceptions.
insertArgument

This method inserts newArgument before the current indexth argument of this element. If index is 0, newArgument is appended as the last argument.
This frequently differs from setting the node at Node::childNodes().item(index), as elements representing bound variables, conditions, separators,
degrees, and upper or lower limits are not counted (bvar, condition, sep, degree, lowlimit, uplimit).
Parameters
MathMLElement newArgument The MathMLElement to be inserted as the indexth argument of this element.
unsigned long index The one-based index of the position before which newArgument is to be inserted.

Return value
MathMLElement The MathMLElement being inserted as the indexth argument of this element.

Exceptions
HIERARCHY_REQUEST_ERR Raised if this element does not permit a child degree element. In particular, raised if this element is not a bvar or apply.

setArgument
This method sets newArgument as the indexth argument of this element. If there is currently an indexth argument, it is replaced by newArgument.
This frequently differs from setting the node at Node::childNodes().item(index), as elements representing bound variables, conditions, separators,
degrees, and upper or lower limits are not counted (bvar, condition, sep, degree, lowlimit, uplimit).
Parameters
MathMLElement newArgument The MathMLElement that is to be the indexth argument of this element.
unsigned long index The one-based index of the position in the argument list into which newArgument is to be inserted.

Return value
MathMLElement The new MathMLElement being inserted as the indexth argument of this element.

Exceptions
HIERARCHY_REQUEST_ERR Raised if this element does not permit a child degree element. In particular, raised if this element is not a bvar or apply.

deleteArgument
This method deletes the indexth child element that is an argument of this element. Note that child elements which are qualifier elements are not counted
in determining the indexth argument.

365

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

366

Parameters
unsigned long index The one-based index of the argument to be deleted.

Return value
void None.

This method raises no exceptions.
removeArgument

This method deletes the indexth child element that is an argument of this element, and returns it to the caller. Note that child elements that are qualifier
elements are not counted in determining the indexth argument.
Parameters
unsigned long index The one-based index of the argument to be removed.

Return value
MathMLElement A MathMLElement representing the argument being removed.

This method raises no exceptions.
getBoundVariable

This method retrieves the indexth MathMLbvarElement child of the MathMLElement. Note that only bvar child elements are counted in determining
the indexth bound variable.
Parameters
unsigned long index The one-based index into the bound variable children of this element of the MathMLbvarElement to be retrieved.

Return value
MathMLbvarElement The MathMLbvarElement representing the indexth bvar child of this element.

This method raises no exceptions.
insertBoundVariable

This method inserts a MathMLbvarElement as a child node before the current indexth bound variable child of this MathMLElement. If index is 0,
newBVar is appended as the last bound variable child. This has the effect of adding a bound variable to the expression this element represents. Note that
the new bound variable is inserted as the index-th bvar child node, not necessarily as the indexth child node. The point of the method is to allow
insertion of bound variables without requiring the caller to calculate the exact order of child qualifier elements.
Parameters
MathMLbvarElement newBVar A MathMLbvarElement representing the bvar element being added.
unsigned long index The one-based index into the bound variable children of this element before which newBVar is to be inserted.

Return value
MathMLbvarElement The MathMLbvarElement being added.

Exceptions
HIERARCHY_REQUEST_ERR Raised if this element does not permit child bvar elements.

setBoundVariable
This method sets the indexth bound variable child of this MathMLElement to newBVar. This has the effect of setting a bound variable in the expression
this element represents. Note that the new bound variable is inserted as the index-th bvar child node, not necessarily as the indexth child node. The
point of the method is to allow insertion of bound variables without requiring the caller to calculate the exact order of child qualifier elements. If there is
already a bvar at the index-th position, it is replaced by newBVar.
Parameters
MathMLbvarElement newBVar The new MathMLbvarElement child of this element being set.
unsigned long index The one-based index into the bound variable children of this element at which newBVar is to be inserted.

Return value
MathMLbvarElement The MathMLbvarElement being added.

Exceptions
HIERARCHY_REQUEST_ERR Raised if this element does not permit child bvar elements.

366

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

367

deleteBoundVariable
This method deletes the index-th MathMLbvarElement child of the MathMLElement. This has the effect of removing this bound variable from the list of
qualifiers affecting the element this represents.
Parameters
unsigned long index The one-based index into the bound variable children of this element of the MathMLbvarElement to be removed.

Return value
void None.

This method raises no exceptions.
removeBoundVariable

This method removes the index-th MathMLbvarElement child of the MathMLElement and returns it to the caller. This has the effect of removing this
bound variable from the list of qualifiers affecting the element this represents.
Parameters
unsigned long index The one-based index into the bound variable children of this element of the MathMLbvarElement to be removed.

Return value
MathMLbvarElement The MathMLbvarElement being removed.

This method raises no exceptions.

Interface MathMLapplyElement

Extends: MathMLContentContainer

The apply element allows a function or operator to be applied to its arguments.

IDL Definition

interface MathMLapplyElement: MathMLContentContainer {
attribute MathMLElement operator;

};

Attributes

operator of type MathMLElement The MathML element representing the function or operator that is applied to the list of arguments.

Interface MathMLfnElement

Extends: MathMLContentContainer

The fn element makes explicit the fact that a more general MathML object is intended to be used in the same manner as if it were a pre-defined function such as
sin or plus.

IDL Definition

interface MathMLfnElement: MathMLContentContainer {
attribute DOMString definitionURL;
attribute DOMString encoding;

};

367

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

368

Attributes

definitionURL of type DOMString A URL pointing to a definition for this function-type element. Note that there is no stipulation about the form this definition may
take!

encoding of type DOMString A string describing the syntax in which the definition located at definitionURL is given.

Interface MathMLlambdaElement

Extends: MathMLContentContainer

The lambda element is used to construct a user-defined function from an expression and one or more free variables.

IDL Definition

interface MathMLlambdaElement: MathMLContentContainer {
attribute MathMLElement expression;

};

Attributes

expression of type MathMLElement The MathMLElement representing the expression. This is included only as a convenience; getting it should give the same
result as MathMLContentContainer::getArgument(1).

Interface MathMLsetElement

Extends: MathMLContentContainer

The set element is the container element that represents a set of elements. The elements of a set can be defined either by explicitly listing the elements, or by using
the bvar and condition elements.

IDL Definition

interface MathMLsetElement: MathMLContentContainer {
readonly attribute boolean isExplicit;
attribute DOMString type;

};

Attributes

isExplicit of type boolean, readonly This is true if the set is specified by giving the list of its elements explicitly.

type of type DOMString The type attribute of the represented element. Predefined values are norml and multiset. See Section 4.4.6 and Section 4.3.

Interface MathMLlistElement

Extends: MathMLContentContainer

The list element is the container element which represents a list of elements. Elements can be defined either by explicitly listing the elements, or by using the bvar
and condition elements.

368

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

369

IDL Definition

interface MathMLlistElement: MathMLContentContainer {
readonly attribute boolean isExplicit;
attribute DOMString ordering;

};

Attributes

isExplicit of type boolean, readonly This is true if the list is specified by giving its elements explicitly.

ordering of type DOMString The order attribute of the represented element. Predefined values are numeric and lexicographic. See Section 4.4.6 and
Section 4.3.

Interface MathMLbvarElement

Extends: MathMLContentContainer

This interface represents the MathML bound variable element bvar. The interface currently provides no functionality beyond that of MathMLContentContainer, but
is useful for defining the type of bound variable access functions.

IDL Definition

interface MathMLbvarElement: MathMLContentContainer {
};

E.1.4.3 Content Leaf Element Interfaces

Interface MathMLpredefinedSymbol

Extends: MathMLContentElement

This interface supports all of the empty built-in operator, relation, function, and constant and symbol elements that have the definitionURL and encoding attributes
in addition to the standard set of attributes. The elements supported in order of their appearance in Section 4.4 are: inverse, compose, ident, quotient, exp,
factorial, divide, max, min, minus, plus, power, rem, times, root, gcd, and, or, xor, not, implies, forall, exists, abs, conjugate, eq, neq, gt,
lt, geq, leq, ln, log, int, diff, partialdiff, union, intersect, in, notin, subset, prsubset, notsubset, notprsubset, setdiff, sum, product,
limit, tendsto, sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan, mean, sdev, variance, median, mode, moment,
determinant, transpose, integers, reals, rationals, naturalnumbers, complexes, primes, exponentiale, imaginaryi, notanumber, true, false,
emptyset, pi, eulergamma, and infinity.

IDL Definition

interface MathMLpredefinedSymbol: MathMLContentElement {
attribute DOMString definitionURL;
attribute DOMString encoding;
attribute DOMString arity;
readonly attribute DOMString symbolName;

};

369

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

370

Attributes

definitionURL of type DOMString A string that provides an override to the default semantics, or provides a more specific definition

encoding of type DOMString A string describing the syntax in which the definition located at definitionURL is given.

arity of type DOMString A string representing the number of arguments. Values include 0, 1, ... and variable.

symbolName of type DOMString, readonly A string giving the name of the MathML element represented. This is a convenience attribute only; accessing it should
be synonymous with accessing the Element::tagName attribute.

E.1.4.4 Other Content Element Interfaces

Interface MathMLintervalElement

Extends: MathMLContentElement

The interval element is used to represent simple mathematical intervals on the real number line. It contains either two child elements that evaluate to real numbers
or one child element that is a condition for defining membership in the interval.

IDL Definition

interface MathMLintervalElement: MathMLContentElement {
attribute DOMString closure;
attribute MathMLcnElement start;
attribute MathMLcnElement end;

};

Attributes

closure of type DOMString A string with value open, closed, open-closed or closed-open. The default value is closed.

start of type MathMLcnElement A MathMLcnElement representing the real number defining the start of the interval. If end has not already been set, it becomes
the same as start until set otherwise.

end of type MathMLcnElement A MathMLcnElement representing the real number defining the end of the interval. If start has not already been set, it becomes
the same as end until set otherwise.

Interface MathMLconditionElement

Extends: MathMLContentElement

The condition element is used to place a condition on one or more free variables or identifiers.

IDL Definition

interface MathMLconditionElement: MathMLContentElement {
attribute MathMLapplyElement condition;

};

Attributes

condition of type MathMLapplyElement A MathMLapplyElement that represents the condition.

370

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

371

Interface MathMLdeclareElement

Extends: MathMLContentElement

The declare construct has two primary roles. The first is to change or set the default attribute values for a specific mathematical object. The second is to establish
an association between a ‘name’ and an object.

IDL Definition

interface MathMLdeclareElement: MathMLContentElement {
attribute DOMString type;
attribute unsigned long nargs;
attribute DOMString occurrence;
attribute DOMString definitionURL;
attribute DOMString encoding;
attribute MathMLciElement identifier;
attribute MathMLElement constructor;

};

Attributes

type of type DOMString A string indicating the type of the identifier. It must be compatible with the type of the constructor, if a constructor is present. The
type is inferred from the constructor if present, otherwise it must be specified.

nargs of type unsigned long If the identifier is a function, this attribute specifies the number of arguments the function takes. This represents the declare
element’s nargs attribute; see Section 4.4.2.8.

occurrence of type DOMString A string with the values prefix, infix, postfix, or function-model.

definitionURL of type DOMString A URL specifying the detailed semantics of the element.

encoding of type DOMString A description of the syntax used in definitionURL.

identifier of type MathMLciElement A MathMLciElement representing the name being declared.

constructor of type MathMLElement An optional MathMLElement providing an initial value for the object being declared.

Interface MathMLvectorElement

Extends: MathMLContentElement

vector is the container element for a vector.

IDL Definition

interface MathMLvectorElement: MathMLContentElement {
readonly attribute unsigned long ncomponents;
MathMLContentElement getComponent(in unsigned long index);
MathMLContentElement insertComponent(in MathMLContentElement newComponent, in unsigned long index);
MathMLContentElement setComponent(in MathMLContentElement newComponent, in unsigned long index);
deleteComponent(in unsigned long index);
MathMLContentElement removeComponent(in unsigned long index);

};

371

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

372

Attributes

ncomponents of type unsigned long, readonly The number of components in the vector.

Methods

getComponent
A convenience method to retrieve a component.
Parameters
unsigned long index Position of the component in the list of components. The first element is numbered 1.

Return value
MathMLContentElement The MathMLContentElement component at the position specified by index. If index is not a valid index (i.e. is greater than the number of components

of the vector or less than 1), a null MathMLContentElement is returned.
This method raises no exceptions.

insertComponent
A convenience method to insert a new component in the vector before the current indexth component. If index is 0 or is one more than the number of
components currently in the vector, newComponent is appended as the last component of the vector.
Parameters
MathMLContentElement newComponent A MathMLContentElement representing the component that is to be added.
unsigned long index Position of the component in the list of components. The first component is numbered 1.

Return value
MathMLContentElement The MathMLContentElement child of this MathMLvectorElement representing the new component in the DOM.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than one more than the current number of components of this vector element.

setComponent
A convenience method to set the indexth component of the vector to newComponent. If index is one more than the current number of components,
newComponent is appended as the last component.
Parameters
MathMLContentElement newComponent A MathMLContentElement representing the element that is to be the index-th component of the vector.
unsigned long index Position of the component in the list of components. The first element is numbered 1.

Return value
MathMLContentElement The MathMLContentElement child of this MathMLvectorElement that represents the new component in the DOM.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than one more than the current number of components of this vector element.

deleteComponent
A convenience method to delete an element. The deletion changes the indices of the following components.
Parameters
unsigned long index Position of the component in the vector. The position of the first component is 1

Return value
None

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the current number of components of this vector element.

removeComponent
A convenience method to remove a component from a vector and return it to the caller. If index is greater than the number of components or is 0, a null
MathMLContentElement is returned.
Parameters
unsigned long index Position of the component in the list of components. The first element is numbered 1.

Return value

372

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

373

MathMLContentElement The MathMLContentElement component being removed.
This method raises no exceptions.

Interface MathMLmatrixElement

Extends: MathMLContentElement

The matrix element is the container element for matrixrow elements.

IDL Definition

interface MathMLmatrixElement: MathMLContentElement {
readonly attribute unsigned long nrows;
readonly attribute unsigned long ncols;
readonly attribute MathMLDocumentFragment rows;
MathMLmatrixrowElement getRow(in unsigned long index);
MathMLmatrixrowElement insertRow(in MathMLmatrixrowElement newRow, in unsigned long index);
MathMLmatrixrowElement setRow(in MathMLmatrixrowElement newRow, in unsigned long index);
deleteRow(in unsigned long index);
removeRow(in unsigned long index);

};

Attributes

nrows of type unsigned long, readonly The number of rows in the represented matrix.

ncols of type unsigned long, readonly The number of columns in the represented matrix.
rows of type MathMLDocumentFragment, readonly The rows of the matrix, returned as a MathMLDocumentFragment consisting of MathMLmatrixrowEle-

ments.

Methods

getRow
A convenience method to retrieve a specified row.
Parameters
unsigned long index Position of the row in the list of rows. The first row is numbered 1.

Return value
MathMLmatrixrowElement The MathMLmatrixrowElement representing the index-th row.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the number of rows in the matrix.

insertRow
A convenience method to insert a row before the row that is currently the indexth row of this matrix. If index is 0, newRow is appended as the last row
of the matrix.
Parameters
MathMLmatrixrowElement newRow MathMLmatrixrowElement to be inserted into the matrix.
unsigned long index Unsigned integer giving the row position before which newRow is to be inserted. The first row is numbered 1.

Return value
MathMLmatrixrowElement The MathMLmatrixrowElement added. This is the new element within the DOM.

Exceptions

373

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

374

INDEX_SIZE_ERR Raised if index is greater than one more than the number of rows in the matrix.
HIERARCHY_REQUEST_ERR Raised if the number of cells in newRow doesn’t match the number of columns in the matrix.

setRow
A convenience method to set the value of the indexth child matrixrow element of this element. If there is already a row at the specified index, it is
replaced by newRow.
Parameters
MathMLmatrixrowElement newRow MathMLmatrixrowElement representing the matrixrow which is to become the indexth row of the matrix.
unsigned long index Unsigned integer giving the row which is to be set to newRow. The first row is numbered 1.

Return value
MathMLmatrixrowElement The MathMLmatrixrowElement child of this MathMLmatrixrowElement representing newRow within the DOM.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the number of rows in the matrix.
HIERARCHY_REQUEST_ERR Raised if the number of cells in newRow doesn’t match the number of columns in the matrix.

deleteRow
A convenience method to delete a row. The deletion changes the indices of the following rows.
Parameters
unsigned long index Position of the row to be deleted in the list of rows

Return value
None

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the number of rows in the matrix.

removeRow
A convenience method to remove a row and return it to the caller. The deletion changes the indices of the following rows.
Parameters
unsigned long index Position of the row to be removed in the list of rows. The first row is numbered 1.

Return value
The MathMLmatrixrowElement being removed.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the number of rows in the matrix.

Interface MathMLmatrixrowElement

Extends: MathMLContentElement

The matrixrow element is the container element for the elements of a matrix.

IDL Definition

interface MathMLmatrixrowElement: MathMLContentElement {
readonly attribute unsigned long nEntries;
MathMLContentElement getEntry(in unsigned long index);
MathMLContentElement insertEntry(in MathMLContentElement newEntry, in unsigned long index);
MathMLContentElement setEntry(in MathMLContentElement newEntry, in unsigned long index);
deleteEntry(in unsigned long index);
MathMLContentElement removeEntry(in unsigned long index);

};

374

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

375

Attributes

nEntries of type unsigned long, readonly The number of entries in the row.

Methods

getEntry
A convenience method to retrieve the contents of an entry by index.
Parameters
unsigned long index Position of the entry in the row. The first entry is numbered 1.

Return value
MathMLContentElement The MathMLContentElement element representing the indexth entry in the row.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the number of entries in the row.

insertEntry
A convenience method to insert an entry before the current indexth entry of the row. If index is 0, newEntry is appended as the last entry. Note that this
method increases the size of the matrixrow.
Parameters
MathMLContentElement newEntry The MathMLContentElement to be representing the new entry to be inserted into the row.
unsigned long index The index before which newEntry is to be inserted in the row. The first entry is numbered 1.

Return value
MathMLContentElement The MathMLContentElement child of this MathMLmatrixrowElement representing newEntry in the DOM.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the number of entries in the row.

setEntry
A convenience method to set the contents of the entry at position index in the row to newEntry. If there is already a entry at the specified index, it is
replaced by the new entry.
Parameters
MathMLContentElement newEntry The MathMLContentElement representing the element that is to be the indexth entry.
unsigned long index The index of the entry that is to be set equal to newEntry. The first entry is numbered 1.

Return value
MathMLContentElement The MathMLContentElement child of this MathMLmatrixRowElement representing newEntry in the DOM.

Exceptions
INDEX_SIZE_ERR Raised if index is greater than one more than the number of elements in the row.

deleteEntry
A convenience method to delete an entry. The deletion changes the indices of the following entries.
Parameters
unsigned long index Position of the entry to be deleted in the row. The first entry is numbered 1.

Return value
None

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the number of entries in the row.

removeEntry
A convenience method to remove an entry from the row and return the removed entry to the caller.
Parameters
unsigned long index Position of the entry to be removed from the row. The first entry is numbered 1.

Return value
MathMLContentElement The MathMLContentElement being removed from the row.

375

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

376

Exceptions
INDEX_SIZE_ERR Raised if index is greater than the number of entries in the row.

376

Appendix F

Glossary (Non-Normative)

Several of the following definitions of terms have been borrowed or modified from similar definitions in documents originating from W3C or standards organisations.
See the individual definitions for more information.

Argument A child of a presentation layout schema. That is, ‘A is an argument of B’ means ‘A is a child of B and B is a presentation layout schema’. Thus, token
elements have no arguments, even if they have children (which can only be malignmark).

Attribute A parameter used to specify some property of an SGML or XML element type. It is defined in terms of an attribute name, attribute type, and a default value.
A value may be specified for it on a start-tag for that element type.

Axis The axis is an imaginary alignment line upon which a fraction line is centered. Often, operators as well as characters that can stretch, such as parentheses,
brackets, braces, summation signs etcetera, are centered on the axis, and are symmetric with respect to it.

Baseline The baseline is an imaginary alignment line upon which a glyph without a descender rests. The baseline is an intrinsic property of the glyph (namely a
horizontal line). Often baselines are aligned (joined) during typesetting.

Black box The bounding box of the actual size taken up by the viewable portion (ink) of a glyph or expression.
Bounding box The rectangular box of smallest size, taking into account the constraints on boxes allowed in a particular context, which contains some specific part

of a rendered display.
Box A rectangular plane area considered to contain a character or further sub-boxes, used in discussions of rendering for display. It is usually considered to have a

baseline, height, depth and width.
Cascading Style Sheets (CSS) A mechanism that allows authors and readers to attach style (e.g. fonts, colors and spacing) to HTML and XML documents.
Character A member of a set of identifiers used for the organization, control or representation of text. ISO/IEC Standard 10646-1:1993 uses the word ‘data’ here

instead of ‘text’.
Character data (CDATA) A data type in SGML and XML for raw data that does not include markup or entity references. Attributes of type CDATA may contain entity

references. These are expanded by an XML processor before the attribute value is processed as CDATA.
Character or expression depth Distance between the baseline and bottom edge of the character glyph or expression. Also known as the descent.
Character or expression height Distance between the baseline and top edge of the character glyph or expression. Also know as the ascent.
Character or expression width Horizontal distance taken by the character glyph as indicated in the font metrics, or the total width of an expression.
Condition A MathML content element used to place a mathematical condition on one or more variables.
Contained (element A is contained in element B) A is part of B’s content.
Container (Constructor) A non-empty MathML Content element that is used to construct a mathematical object such as a number, set, or list.
Content elements MathML elements that explicitly specify the mathematical meaning of a portion of a MathML expression (defined in Chapter 4).
Content token element Content element having only PCDATA, sep and presentation expressions as content. Represents either an identifier (ci) or a number (cn).
Context (of a given MathML expression) Information provided during the rendering of some MathML data to the rendering process for the given MathML expres-

sion; especially information about the MathML markup surrounding the expression.
Declaration An instance of the declare element.
Depth (of a box) The distance from the baseline of the box to the bottom edge of the box.
Direct sub-expression (of a MathML expression ‘E’) A sub-expression directly contained in E.

377

378

Directly contained (element A in element B) A is a child of B (as defined in XML), in other words A is contained in B, but not in any element that is itself contained
in B.

Document Object Model A model in which the document or Web page is treated as an object repository. This model is developed by the DOM Working Group
(DOM) of the W3C.

Document Style Semantics and Specification Language (DSSSL) A method of specify the formatting and transformation of SGML documents. ISO International
Standard 10179:1996.

Document Type Definition (DTD) In SGML or XML, a DTD is a formal definition of the elements and the relationship among the data elements (the structure) for a
particular type of document.

Em A font-relative measure encoded by the font. Before electronic typesetting, an em was the width of an ‘M’ in the font. In modern usage, an em is either specified
by the designer of the font or is taken to be the height (point size) of the font. Em’s are typically used for font-relative horizontal sizes.

Ex A font-relative measure that is the height of an ‘x’ in the font. exs are typically used for font-relative vertical sizes.
Height (of a box) The distance from the baseline of the box to the top edge of the box.
Inferred mrow An mrow element that is ‘inferred’ around the contents of certain layout schemata when they have other than exactly one argument. Defined precisely

in Section 3.1.5
Embedded object Embedded objects such as Java applets, Microsoft Component Object Model (COM) objects (e.g. ActiveX Controls and ActiveX Document

embeddings), and plug-ins that reside in an HTML document.
Embellished operator An operator, including any ‘embellishment’ it may have, such as superscripts or style information. The ‘embellishment’ is represented by a

layout schema that contains the operator itself. Defined precisely in Section 3.2.4.
Entity reference A sequence of ASCII characters of the form &name; representing some other data, typically a non-ASCII character, a sequence of characters, or

an external source of data, e.g. a file containing a set of standard entity definitions such as ISO Latin 1.
Extensible Markup Language (XML) A simple dialect of SGML intended to enable generic SGML to be served, received, and processed on the Web.
Fences In typesetting, bracketing tokens like parentheses, braces, and brackets, which usually appear in matched pairs.
Font A particular collection of glyphs of a typeface of a given size, weight and style, for example ‘Times Roman Bold 12 point’.
Glyph The actual shape (bit pattern, outline) of a character. ISO/IEC Standard 9541-1:1991 defines a glyph as a recognizable abstract graphic symbol that is

independent of any specific design.
Indirectly contained A is contained in B, but not directly contained in B.
Instance of MathML A single instance of the toplevel element of MathML, and/or a single instance of embedded MathML in some other data format.
Inverse function A mathematical function that, when composed with the original function acts like an identity function.
Lambda expression A mathematical expression used to define a function in terms of variables and an expression in those variables.
Layout schema (plural: schemata) A presentation element defined in chapter 3, other than the token elements and empty elements defined there (i.e. not the

elements defined in Section 3.2 and Section 3.5.5, or the empty elements none and mprescripts defined in Section 3.4.7). The layout schemata are
never empty elements (though their content may contain nothing in some cases), are always expressions, and all allow any MathML expressions as
arguments (except for requirements on argument count, and the requirement for a certain empty element in mmultiscripts).

Mathematical Markup Language (MathML) The markup language specified in this document for describing the structure of mathematical expressions, together
with a mathematical context.

MathML element An XML element that forms part of the logical structure of a MathML document.
MathML expression (within some valid MathML data) A single instance of a presentation element, except for the empty elements none or mprescripts, or an

instance of malignmark within a token element (defined below); or a single instance of certain of the content elements (see Chapter 4 for a precise
definition of which ones).

Multi-purpose Internet Mail Extensions (MIME) A set of specifications that offers a way to interchange text in languages with different character sets, and multi-
media content among many different computer systems that use Internet mail standards.

Operator, content element A mathematical object that is applied to arguments using the apply element.
Operator, an mo element Used to represent ordinary operators, fences, separators in MathML presentation. (The token elementmo is defined in Section 3.2.4).
OpenMath A general representation language for communicating mathematical objects between application programs.
Parsed character data (PCDATA) An SGML/XML data type for raw data occurring in a context where text is parsed and markup (for instance entity references and

element start/end tags) is recognised.
Point Point is often abbreviated ‘pt’. The value of 1 pt is approximately 1/72 inch. Points are typically used to specify absolute sizes for font-related objects.

378

379

Pre-defined function One of the empty elements defined in Section 4.2.3 and used with the apply construct to build function applications.
Presentation elements MathML tags and entities intended to express the syntactic structure of mathematical notation (defined in Chapter 3).
Presentation layout schema A presentation element that can have other MathML elements as content.
Presentation token element A presentation element that can contain only parsed character data or the malignmark element.
Qualifier A MathML content element that is used to specify the value of a specific named parameter in the application of selected pre-defined functions.
Relation A MathML content element used to construct expressions such as a < b.
Render Faithfully translate into application-specific form allowing native application operations to be performed.
Schema Schema (plural: schemata). See ‘presentation layout schema’.
Scope of a declaration The portion of a MathML document in which a particular definition is active.
Selected sub-expression (of an maction element) The argument of an maction element (a layout schema defined in Section 3.6) that is (at any given time)

‘selected’ within the viewing state of a MathML renderer, or by the selection attribute when the element exists only in MathML data. Defined precisely in
the abovementioned section.

Space-like (MathML expression) A MathML expression that is ignored by the suggested rendering rules for MathML presentation elements when they determine
operator forms and effective operator rendering attributes based on operator positions in mrow elements. Defined precisely in Section 3.2.6.

Standard Generalized Markup Language (SGML) An ISO standard (ISO 8879:1986) that provides a formal mechanism for the definition of document structure via
DTDs (Document Type Definitions), and a notation for the markup of document instances conforming to a DTD.

Sub-expression (of a MathML expression ‘E’) A MathML expression contained (directly or indirectly) in the content of E.
Suggested rendering rules for MathML presentation elements Defined throughout Chapter 3; the ones that use other terms defined here occur mainly in Sec-

tion 3.2.4 and in Section 3.6.
TEX A software system developed by Professor Donald Knuth for typesetting documents.
Token element Presentation token element or a Content token element. (See above.)
Top-level element (of MathML) math (defined in Chapter 7).
Typeface A typeface is a specific design of a set of letters, numbers and symbols, such as ‘Times Roman’ or ‘Chicago’.
Valid MathML data MathML data that (1) conforms to the MathML DTD, (2) obeys the additional rules defined in the MathML standard for the legal contents and

attribute values of each MathML element, and (3) satisfies the EBNF grammar for content elements.
Width (of a box) The distance from the left edge of the box to the right edge of the box.
Extensible Style Language (XSL) A style language for XML developed by W3C. See XSL FO and XSLT.
XSL Formatting Objects (XSL FO) An XML vocabulary to express formatting, which is a part of XSL.
XSL Transformation (XSLT) A language to express the transformation of XML documents into other XML documents.

379

Appendix G

Working Group Membership (Non-Normative)

The W3C Math Working Group is presently co-chaired by Patrick Ion of the AMS, and Angel Diaz of IBM. Contact the co-chairs if you are interested in joining the
group. For the present membership see its working group home page.

Members of the Working Group responsible for MathML 2.0 are:

• Ron Ausbrooks, Mackichan Software, Las Cruces NM, USA
• Laurent Bernardin, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Buswell, Stilo Technologies, Cardiff, UK
• David Carlisle, NAG Ltd., Oxford, UK
• Stéphane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Radical Flow Inc., Waterloo ON, CAN
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Ben Hinkle, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Hunt, MATH.EDU Inc., Champaign IL, USA
• Douglas Lovell, IBM Hawthorn Research, Yorktown Heights NY, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Robert Miner, Geometry Technologies Inc., Minneapolis MN, USA
• Ivor Philips, Boeing, Seattle WA, USA
• Nico Poppelier, Penta Scope, Amersfoort, NL
• Dave Raggett, W3C (Hewlett Packard), Bristol, UK
• T.V. Raman, IBM Almaden, Palo Alto CA, USA
• Murray Sargent III, Microsoft, Redmond WA, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Irene Schena, Universitá di Bologna, Bologna, IT
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN

Earlier active members of this second W3C Math Working Group have included:

• Sam Dooley, IBM Research, Yortown Heights NY, USA
• Robert Sutor, IBM Research, Yortown Heights NY, USA
• Barry MacKichan, MacKichan Software, Las Cruces NM, USA

At the time of release of MathML 1.0 the Math Working Group was co-chaired by Patrick Ion and Robert Miner, then of the Geometry Center. Since that time several
changes in membership have taken place. In the course of the update to MathML 1.01, in addition to people listed in the original membership below, corrections were
offered by David Carlisle, Don Gignac, Kostya Serebriany, Ben Hinkle, Sebastian Rahtz, Sam Dooley and others.

Members of the Math Working Group responsible for the finished MathML 1.0 Specification were:

380

http://www.w3.org/Math/

381

• Stephen Buswell, Stilo Technologies, Cardiff, UK
• Stéphane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Maplesoft Inc., Waterloo ON, CAN
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Brenda Hunt, Wolfram Research Inc., Champaign IL, USA
• Stephen Hunt, Wolfram Research Inc., Champaign IL, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Robert Miner, Geometry Center, University of Minnesota, Minneapolis MN, USA
• Nico Poppelier, Elsevier Science, Amsterdam, NL
• Dave Raggett, W3C (Hewlett Packard), Bristol, UK
• T.V. Raman, Adobe Inc., Mountain View CA, USA
• Bruce Smith, Wolfram Research Inc., Champaign IL, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Robert Sutor, IBM Research, Yorktown Heights NY, USA
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN
• Ralph Youngen, American Mathematical Society, Providence RI, USA

Others who had been members of the W3C Math WG for periods at earlier stages were:

• Stephen Glim, Mathsoft Inc., Cambridge MA, USA
• Arnaud Le Hors, W3C, Cambridge MA, USA
• Ron Whitney, Texterity Inc., Boston MA, USA
• Lauren Wood, Softquad, Surrey BC, CAN
• Ka-Ping Yee, University of Waterloo, Waterloo ON, CAN

381

Appendix H

Changes (Non-Normative)

This appendix summarises the changes with respect to the preceding version (1.01) of the MathML Specification.

• changes to Chapter 1 (upto revision 1.20)
– rewritten to reflect developments since publication of the MathML 1.0 Recommendation, for example XML, XSL, CSS and schemas

• changes to Chapter 2 (upto revision 1.23)
– rewritten to reflect developments since publication of the MathML 1.0 Recommendation, for example XML, XSL, CSS and schemas
– added reference to XML recommendation
– removed error in description of allowed character in attribute values

• changes to Chapter 3 (upto revision 1.39)
– the attribute definitionURL can have a URL or a URI as value
– added sections about menclose and meqno
– added attributes beveled, numalign and denomalign to mfrac, and updated text accordingly
– made sure examples are correct, and fixed several typos
– added sections on mchar and mglyph
– adjusted description of mstyle and mglyph
– added description of mlabeledtr
– added examples for actuarial notation and long division
– added width attribute to mtable
– describe deprecated features
– make use of encoding attribute more uniform
– removed inferred mtr and mtd

• changes to Chapter 4 (upto revision 1.39)
– discuss changed use of apply, and deprecation of reln
– introduce csymbol and discuss the relation with fn
– introduce the new category of elementary classifical functions
– introduce new content elements arg, real, imaginary, equivalent, approx, divergence, grad, curl, laplacian, size, vectorproduct,

scalarproduct and outerproduct
– made sure examples are correct, and fixed several typos
– the attribute definitionURL can have a URL or a URI as value
– revised some of the default renderings
– described the use of presentation markup inside cn
– modified the example for root to indicate that the rendering with a radical sign is for integer degrees only
– default rendering of not made to match example markup
– added minus to the row for unary arithmetic in the table in section 4.2.3

382

383

– make use of encoding attribute more uniform
– changed description of the use of bvar in combination with min and max
– describe deprecated features
– make use of encoding attribute more uniform

• changes to Chapter 5 (upto revision 1.21)
– added description of content-faithful transformation
– updated to use csymbol and not fn in examples
– define list of content that can appear in presentation
– add attribute xref for cross-referencing purposes
– added brief description of the elements OMA, OMS and OMV
– added examples using XLink and namespaces
– make use of encoding attribute more uniform
– miscellaneous typographical corrections

• changes to Chapter 6 (upto revision 1.9) chap6 modifications, linking to tables
– none

• changes to Chapter 7 (upto revision 1.25)
– rewrote introductory text in section 7.2 and all text of section 7.2.1
– rewrote many statements in future tense to present or past tense
– reworked the text in acknowledgement of the fact that the top-level and interface elements for MathML are now in practice the same
– rewrote the text about linking in accordance with the new XLink draft
– revisited the material about interactions with embedded renderers to reflect the current state of DOM implementation
– made sure examples are correct, and fixed several typos
– describe deprecated features
– make use of encoding attribute more uniform
– rewrote text extensively to describe namespaces and CSS behaviors

• changes to Chapter 8 (upto revision 1.5)
– this is a completely new chapter
– moved IDL definitions to a new, non-normative appendix

• changes to Appendix A (upto revision 1.15)
– renamed attribute occurence to occurrence
– added global attribute xref
– add links to tables for each entity set

• changes to Appendix B (upto revision 1.7)
– none

• changes to Appendix C (upto revision 1.15)
– completely rewritten

• changes to Appendix D (upto revision 1.14)
– entries in operator dictionary are parametrized
– operator dictionary has become non-normative part of the specification
– new entries were added to operator dictionary

• changes to Appendix E (upto revision 1.19)
– this is a completely new appendix, containing the IDL definitions that used to be in chapter 8
– several interfaces were changed
– add xmlns attribute declarations to none, sep and mprescripts
– added various attributes and methods to reflect changes in the spec
– replaced interface MathMLCollection with MathMLDOMImplementation
– extended list of elements supported by interface MathMLpredefinedSymbol

383

384

– reconcile various inconsistent uses of methods
• changes to Appendix F (upto revision 1.14)

– added entries for XSL, XSLT and XSL FO
• changes to Appendix G (upto revision 1.11)

– all members of first and second Math working group are listed
– new addresses for Maple
– removed ‘Publishers’ from affiliation of NP

• changes to Appendix H (upto revision 1.14)
– completely new appendix, based on the logs obtained from CVS

• changes to Appendix I (upto revision 1.11)
– added entry for XML Recommendation
– added documents about XML Schemas
– added entry for other W3C documents
– changed first author of reference 5 to ‘Chaundy’
– added revised edition of Ellen Swanson’s book

• general changes
– text of specification now in XML form, with HTML and XHTML rendering by means of XSLT, and PDF rendering by means of XSLT and TEX
– fixed errors in spelling and notation
– normative examples of formulae are images, with a LaTEX equivalent
– non-normative examples of formulae are HTML constructions wherever possible
– improved cross-referencing

384

Appendix I

References (Non-Normative)

[Bray1998] Bray, Tim, Jean Paoli and C.M. Sperberg-Mcqueen; Extensible Markup Language 1.0, 10 February 1998, http://www.w3.org/TR/1998/REC-xml-19980210.
[Buswell1996] Buswell, S., Healey, E.R. Pike, and M. Pike; SGML and the Semantic Representation of Mathematics, UIUC Digital Library Initiative SGML Mathematics

Workshop, May 1996 and SGML Europe 96 Conference, Munich 1996.
[Cajori1928] Cajori, Florian; A History of Mathematical Notations, vol. I & II. Open Court Publishing Co., La Salle Illinois, 1928 & 1929 republished Dover Publications

Inc., New York, 1993, xxviii+820 pp. ISBN 0-486-67766-4 (paperback).
[Carroll1871] Carroll, Lewis [Rev. C.L. Dodgson]; Through the Looking Glass and What Alice Found There, Macmillian & Co., 1871.
[Chaundy1954] Chaundy, T.W., P.R. Barrett, and C. Batey; The Printing of Mathematics. Aids for authors and editors and rules for compositors and readers at the

University Press, Oxford, Oxford University Press, London, 1954, ix+105 pp.
[Drucker1997] Drucker, Peter; Forbes, 10 Mar 1997 [quoted by Gene Klotz].
[Higham1993] Higham, Nicholas J., Handbook of writing for the mathematical sciences. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,

1993. xii+241 pp. ISBN: 0-89871-314-5.
[Knuth1986] Knuth, Donald E., The TEXbook. American Mathematical Society, Providence, RI and Addison-Wesley Publ. Co., Reading, MA, 1986, ix+483 pp. ISBN:

0-201-13448-9.
[LieBos1996] Lie, Håkon Wium and Bert Bos; Cascading Style Sheets, level 1, W3C Recommendation, 17 Dec 1996, http://www.w3.org/pub/WWW/TR/REC-CSS1.
[OpenMath1996] OpenMath Release 1, December 1996; www.openmath.org.
[Pierce1961] Pierce, John R.; An Introduction to Information Theory. Symbols, Signals and Noise., Revised edition of Symbols, Signals and Noise: the Nature and

Process of Communication (1961). Dover Publications Inc., New York, 1980, xii+305 pp. ISBN 0-486-24061-4.
[Poppelier1992] Poppelier, N.A.F.M., E. van Herwijnen, and C.A. Rowley; Standard DTD’s and Scientific Publishing, EPSIG News 5 (1992) #3, September 1992,

10-19.
[HTML4.0] Raggett, Dave, Arnaud Le Hors and Ian Jacobs; HTML 4.0 Specification, 18 Dec 1997, http://www.w3.org/TR/REC-html40/; section on data types.
[Spivak1986] Spivak, M. D. The Joy of TEX A gourmet guide to typesetting with the AMS-TEX macro package. American Mathematical Society, Providence, RI, MA

1986, xviii+290 pp. ISBN: 0-8218-2999-8.
[Swanson1979] Swanson, Ellen, Mathematics into type. Copy editing and proofreading of mathematics for editorial assistants and authors. Revised edition. American

Mathematical Society, Providence, R.I., 1979. x+90 pp. ISBN: 0-8218-0053-1.
[Swanson1999] Swanson, Ellen, Mathematics into type: Updated Edition. American Mathematical Society, Providence, R.I., 1999. 102 pp. ISBN: 0-8218-1961-5.
[XLink] DeRose, Steve, David Orchard and Ben Trafford (editors), XML Linking Language (XLink). World-Wide Web Consortium working draft, July 1999.

(http://www.w3.org/TR/xlink)
[XPointer] Steve DeRose, Ron Daniel, Eve Maler (editors), XML Pointer Language (XPointer). World-Wide Web Consortium working draft, Decemeber 1999.

(http://www.w3.org/TR/xptr)
[XSLT] Clark, James (editor) XSL Transformations (XSLT), version 1.0. World-Wide Web Consortium, October 1999. (http://www.w3.org/TR/xslt)
[Namespaces] Tim Bray, Dave Hollander, Andrew Layman (editors) Namespaces in XML World-Wide Web Consortium, January 1999. (http://www.w3.org/TR/REC-

xml-names/)

385

http://www.w3.org/TR/xlink
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xslt
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

386

[Behaviors] Vidur Apparao, Daniel Glazman, Chris Wilson (editors) Behavioral Extensions to CSS World-Wide Web Consortium, September 1999.
(http://www.w3.org/TR/becss)

[DOM] Lauren Wood, Arnaud Le Hors, Vidur Apparao, Laurence Cable, Mike Champion, Joe Kesselman, Philippe Le H?ret, Tom Pixley, Jonathan Ro-
bie, Peter Sharpe, Chris Wilson (editors) Document Object Model (DOM) Level 2 Specification World-Wide Web Consortium, December 1999.
(http://www.w3.org/TR/DOM-Level-2/)

[XHTML1.0] Steve Pemberton et al. (authors) XHTML[tm] 1.0: The Extensible HyperText Markup Language World-Wide Web Consortium, January 2000.
(http://www.w3.org/TR/xhtml1/)

[XHTML1.1] Murray Altheim, Shane McCarron (editors) XHTML[tm] 1.1: Module-based XHTML World-Wide Web Consortium, January 2000.
(http://www.w3.org/TR/xhtml11/)

[Modularization] Murray Altheim, Frank Boumphrey, Sam Dooley, Shane McCarron, Ted Wugofski (editors) Modularization of XHTML World-Wide Web Consortium,
January 2000. (http://www.w3.org/TR/xhtml-modularization/)

[Building] Murray Altheim, Shane McCarron (editors) Building XHTML Modules World-Wide Web Consortium, January 2000. (http://www.w3.org/TR/xhtml-building/)
[XMLSchemas] Ashok Malhotra and Murray Maloney(authors) XML Schema Requirements, W3C Note 15 February 1999 World-Wide Web Consortium, February

1999. (http://www.w3.org/TR/NOTE-xml-schema-req/)

386

http://www.w3.org/TR/becss
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/xhtml-modularization/
http://www.w3.org/TR/xhtml-building/
http://www.w3.org/TR/xhtml1/

	Mathematical Markup Language Specification
	Introduction
	Mathematics and its Notation
	Origins and Goals
	The History of MathML
	Acknowledgments
	Limitations of HTML
	Requirements for Mathematics Markup
	Design Goals of MathML

	The Role of MathML on the Web
	Layered Design of Mathematical Web Services
	Relation to Other Web Technology
	Existing Mathematical Markup Languages
	HTML Extension Mechanisms
	Browser Extension Mechanisms

	MathML Fundamentals
	MathML Overview
	Taxonomy of MathML Elements
	Presentation Markup
	Content Markup
	Mixing Presentation and Content

	Some MathML Examples
	Presentation Examples
	Content Examples
	Mixed Markup Examples

	MathML Syntax and Grammar
	MathML Syntax and Grammar
	An XML Syntax Primer
	Children versus Arguments
	MathML Attribute Values
	Syntax notations used in the MathML specification
	Attributes with units
	CSS-compatible attributes
	Default values of attributes
	Attribute values in the MathML DTD

	Attributes Shared by all MathML Elements
	Collapsing Whitespace in Input

	Presentation Markup
	Introduction
	What Presentation Elements Represent
	Terminology Used In This Chapter
	Types of presentation elements
	Terminology for other classes of elements and their relationships

	Required Arguments
	Inferred mrows
	Table of argument requirements

	Elements with Special Behaviors
	Summary of Presentation Elements
	Token Elements
	General Layout Schemata
	Script and Limit Schemata
	Tables and Matrices
	Enlivening Expressions

	Token Elements
	Attributes common to token elements
	Identifier (mi)
	Description
	Attributes
	Examples

	Number (mn)
	Description
	Attributes
	Examples
	Numbers that should not be written using mn alone

	Operator, Fence, Separator or Accent (mo)
	Description
	Attributes
	Examples with ordinary operators
	Examples with fences and separators
	Invisible operators
	Names for other special operators
	Detailed rendering rules for mo elements
	Stretching of operators, fences and accents
	Other attributes of mo

	Text (mtext)
	Description
	Attributes
	Examples
	Mixing text and mathematics

	Space (mspace)
	Description
	Attributes
	Definition of space-like elements
	Legal grouping of space-like elements

	String Literal (ms)
	Description
	Attributes

	Referring to non-ASCII characters (mchar)
	Description
	Attributes of mchar
	Examples

	Adding new character glyphs to MathML (mglyph)
	Description
	Attributes
	Example

	General Layout Schemata
	Horizontally Group Sub-Expressions (mrow)
	Description
	Attributes
	Proper grouping of sub-expressions using mrow
	Examples

	Fractions (mfrac)
	Description
	Attributes of mfrac
	Examples

	Radicals (msqrt, mroot)
	Description
	Attributes

	Style Change (mstyle)
	Description
	Attributes
	Examples

	Error Message (merror)
	Description
	Attributes
	Example

	Adjust Space Around Content (mpadded)
	Description
	Attributes
	Meanings of dimension attributes
	Warning: nonportability of `tweaking'
	Warning: spacing should not be used to convey meaning

	Making Content Invisible (mphantom)
	Description
	Attributes
	Examples

	Content Inside Pair of Fences (mfenced)
	Description
	Attributes
	Examples

	Enclose Content Inside Notation (menclose)
	Description
	Attributes
	Examples

	Script and Limit Schemata
	Subscript (msub)
	Description
	Attributes

	Superscript (msup)
	Description
	Attributes

	Subscript-superscript Pair (msubsup)
	Description
	Attributes
	Examples

	Underscript (munder)
	Description
	Attributes
	Examples

	Overscript (mover)
	Description
	Attributes
	Examples

	Underscript-overscript Pair (munderover)
	Description
	Attributes
	Examples

	Prescripts and Tensor Indices (mmultiscripts)
	Description
	Attributes
	Examples

	Tables and Matrices
	Table or Matrix (mtable)
	Description
	Attributes
	Examples

	Row in Table or Matrix (mtr)
	Description
	Attributes

	Labeled Row in Table or Matrix (mlabeledtr)
	Description
	Attributes
	Equation Numbering

	Entry in Table or Matrix (mtd)
	Description
	Attributes

	Alignment Markers
	Description
	Specifying alignment groups
	Table cells that are not divided into alignment groups
	Specifying alignment points using malignmark
	Attributes
	Attributes
	Inheritance of groupalign values
	MathML representation of an alignment example
	Further details of alignment elements
	A simple alignment algorithm

	Enlivening Expressions
	Bind Action to Sub-Expression (maction)

	Content Markup
	Introduction
	The Intent of Content Markup
	The Scope of Content Markup
	Basic Concepts of Content Markup

	Content Element Usage Guide
	Overview of Syntax and Usage
	Constructing Mathematical Objects
	Constructing General Expressions
	The apply construct
	Explicitly defined functions and operators
	The inverse construct
	The declare construct
	The lambda construct
	The use of qualifier elements and the condition construct
	Rendering of Content elements

	Containers
	Tokens
	Constructors
	Special Constructs

	Functions, Operators and Qualifiers
	Predefined functions and operators
	Operators taking Qualifiers

	Relations
	Conditions
	Examples

	Syntax and Semantics
	Semantic Mappings
	Constants and Symbols
	MathML element types

	Content Element Attributes
	Content Element Attribute Values
	Attributes Modifying Content Markup Semantics
	 base
	 closure
	 definitionURL
	 encoding
	 nargs
	 occurrence
	 order
	 scope
	 type

	Attributes Modifying Content Markup Rendering
	 type
	General Attributes

	The Content Markup Elements
	Token Elements
	Number (cn)
	Identifier (ci)
	Externally defined symbol (csymbol)

	Basic Content Elements
	Apply (apply)
	Relation (reln)
	Function (fn)
	Interval (interval)
	Inverse (inverse)
	Separator (sep)
	Condition (condition)
	Declare (declare)
	Lambda (lambda)
	Function composition (compose)
	Identity function (ident)

	Arithmetic, Algebra and Logic
	Quotient (quotient)
	Factorial (factorial)
	Division (divide)
	Maximum and minimum (max, min)
	Subtraction (minus)
	Addition (plus)
	Exponentiation (power)
	Remainder (rem)
	Multiplication (times)
	Root (root)
	Greatest common divisor (gcd)
	And (and)
	Or (or)
	Exclusive Or (xor)
	Not (not)
	Implies (implies)
	Universal quantifier (forall)
	Existential quantifier (exists)
	Absolute Value (abs)
	Complex conjugate (conjugate)
	Argument (arg)
	Real part (real)
	Imaginary part (imaginary)
	Lowest common multiple (lcm)

	Relations
	Equals (eq)
	Not Equals (neq)
	Greater than (gt)
	Less Than (lt)
	Greater Than or Equal (geq)
	Less Than or Equal (leq)
	Equivalent (equivalent)
	Approximately (approx)

	Calculus and Vector Calculus
	Integral (int)
	Differentiation (diff)
	Partial Differentiation (partialdiff)
	Lower limit (lowlimit)
	Upper limit (uplimit)
	Bound variable (bvar)
	Degree (degree)
	Divergence (divergence)
	Gradient (grad)
	Curl (curl)
	Laplacian (laplacian)

	Theory of Sets
	Set (set)
	List (list)
	Union (union)
	Intersect (intersect)
	Set inclusion (in)
	Set exclusion (notin)
	Subset (subset)
	Proper Subset (prsubset)
	Not Subset (notsubset)
	Not Proper Subset (notprsubset)
	Set Difference (setdiff)
	Cardinality (card)

	Sequences and Series
	Sum (sum)
	Product (product)
	Limit (limit)
	Tends To (tendsto)

	Elementary classical functions
	Discussion
	Examples
	Default Rendering
	Exponential (exp)
	Natural Logarithm (ln)
	Logarithm (log)

	Statistics
	Mean (mean)
	Standard Deviation (sdev)
	Variance (variance)
	Median (median)
	Mode (mode)
	Moment (moment)

	Linear Algebra
	Vector (vector)
	Matrix (matrix)
	Matrix row (matrixrow)
	Determinant (determinant)
	Transpose (transpose)
	Selector (selector)
	Vector product (vectorproduct)
	Scalar product (scalarproduct)
	Outer product (outerproduct)

	Semantic Mapping Elements
	Annotation (annotation)
	Semantics (semantics)
	XML-based annotation (annotation-xml)

	Constant and Symbol Elements
	integers (integers)
	reals (reals)
	rationals (reals)
	naturalnumbers (naturalnumbers)
	complexes (complexes)
	primes (primes)
	exponentiale (exponentiale)
	imaginaryi (imaginaryi)
	notanumber (notanumber)
	true (true)
	false (false)
	emptyset (emptyset)
	pi (pi)
	eulergamma (eulergamma)
	infinity (infinity)

	Combining Presentation and Content Markup
	Why Two Different Kinds of Markup?
	Mixed Markup
	Reasons to Mix Markup
	Combinations that are prohibited
	Presentation Markup Contained in Content Markup
	Content Markup Contained in Presentation Markup

	Parallel Markup
	Top-level Parallel Markup
	Fine-grained Parallel Markup
	Parallel Markup via Cross-References: id and xref
	Annotation Cross-References using XLink: id and href

	Tools, Style Sheets and Macros for Combined Markup
	Notational Style Sheets
	Content-Faithful Transformations
	Style Sheets for Extensions

	Characters, Entities and Fonts
	Introduction
	The Intent of Character Names
	The STIX Project
	Character Listings
	Non-Marking Characters
	Printing Character Symbol Listings
	Special Constants
	Alphabetical Lists
	ISO Character Set Groupings
	ISO Symbol Sets
	ISO Character Sets for Mathematics Alphabets

	The MathML Interface
	Embedding MathML in other Documents
	MathML and Namespaces
	Document Validation Issues
	Compatibility Suggestions

	The Top-Level math Element
	Invoking MathML Processors
	Mixing and Linking MathML and HTML
	Linking
	Images

	Generating, Processing and Rendering MathML
	MathML Compliance
	Deprecated MathML 1.x Features

	Handling of Errors
	Attributes for unspecified data

	Future Extensions
	Macros and Style Sheets
	XML Extensions to MathML

	Document Object Model for MathML
	Introduction
	MathML DOM Extensions
	Style Issues and Implied Attribute Values
	Traversal and Range Interfaces

	Parsing MathML
	The MathML DTD

	Content Markup Validation Grammar
	Content Element Definitions
	About Content Markup Elements
	The Default Definitions
	The Structure of an MMLdefinition.

	Definitions of MathML Content Elements
	Leaf Elements
	cn
	ci

	Basic Content Element
	apply
	reln
	fn
	interval
	inverse
	sep
	condition
	declare
	lambda
	compose
	ident

	Arithmetic, Algebra and Logic
	quotient
	exp
	factorial
	divide
	max
	min
	minus
	plus
	power
	rem
	times
	root
	gcd
	and
	or
	xor
	not
	implies
	forall
	exists
	abs
	conjugate
	arg
	real
	imaginary

	Relations
	eq
	neq
	gt
	lt
	geq
	leq

	Calculus
	ln
	log
	int
	diff
	partialdiff
	lowlimit
	uplimit
	bvar
	degree

	Theory of Sets
	set
	list
	union
	intersect
	in
	notin
	subset
	prsubset
	notsubset
	notprsubset
	setdiff

	Sequences and Series
	sum
	product
	limit
	tendsto

	Trigonometry
	sin
	cos
	tan
	sec
	csc
	cot
	sinh
	cosh
	tanh
	sech
	csch
	coth
	arcsin
	arccos
	arctan

	Statistics
	mean
	sdev
	variance
	median
	mode
	moment

	Lineary Algebra
	vector
	matrix
	matrixrow
	determinant
	transpose
	selector

	Operator Dictionary (Non-Normative)
	Format of operator dictionary entries
	Indexing of operator dictionary
	Choice of entity names
	Notes on lspace and rspace attributes
	Operator dictionary entries

	Document Object Model for MathML (Non-Normative)
	IDL Interfaces
	Miscellaneous Object Definitions
	Generic MathML Elements
	Presentation Elements
	Leaf Presentation Element Interfaces
	Presentation Token Element Interfaces
	Presentation Container Interfaces
	Presentation Schemata Interfaces

	Content Elements
	Content Token Interfaces
	Content Container Interfaces
	Content Leaf Element Interfaces
	Other Content Element Interfaces

	Glossary (Non-Normative)
	Working Group Membership (Non-Normative)
	Changes (Non-Normative)
	References (Non-Normative)

