
Mathematical Markup Language (MathML) Version 2.0

W3C Proposed Recommendation 08 January 2001

This version: http://www.w3.org/TR/2001/PR-MathML2-20010108
Also available as:HTML zip archive, XHTML zip archive, XML zip archive, PDF (screen), PDF (paper)

Latest version: http://www.w3.org/TR/MathML2
Previous version:

http://www.w3.org/TR/2000/CR-MathML2-20001113
Editors: David Carlisle (NAG)

Patrick Ion (Mathematical Reviews, American Mathematical Society)
Robert Miner (Design Science, Inc.)
Nico Poppelier (Penta Scope)

Principal Authors: Ron Ausbrooks, Stephen Buswell, Stéphane Dalmas, Stan Devitt, Angel Diaz, Roger Hunter,
Bruce Smith, Neil Soiffer, Robert Sutor, Stephen Watt

Copyright c© 1998-2001 W3CR© (MIT, INRIA, Keio), All Rights Reserved.W3C liability, trademark, document useand
software licensingrules apply.

Abstract

This specification defines the Mathematical Markup Language, or MathML. MathML is an XML application for de-
scribing mathematical notation and capturing both its structure and content. The goal of MathML is to enable mathe-
matics to be served, received, and processed on the World Wide Web, just as HTML has enabled this functionality for
text.

This specification of the markup language MathML is intended primarily for a readership consisting of those who will
be developing or implementing renderers or editors using it, or software that will communicate using MathML as a
protocol for input or output. It isnot a User’s Guide but rather a reference document.

This document begins with background information on mathematical notation, the problems it poses, and the philosophy
underlying the solutions MathML proposes. MathML can be used to encode both mathematical notation and mathemat-
ical content. About thirty of the MathML tags describe abstract notational structures, while another about one hundred
and fifty provide a way of unambiguously specifying the intended meaning of an expression. Additional chapters dis-
cuss how the MathML content and presentation elements interact, and how MathML renderers might be implemented
and should interact with browsers. Finally, this document addresses the issue of MathML characters and their relation
to fonts.

While MathML is human-readable, it is anticipated that, in all but the simplest cases, authors will use equation edi-
tors, conversion programs, and other specialized software tools to generate MathML. Several early versions of such
MathML tools already exist, and a number of others, both freely available software and commercial products, are under
development.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. The latest status of this document series is maintained at the W3C.

On 8 January 2001, this document enters a Proposed Recommendation review period. From that date until 5 February
2001, W3C Advisory Committee representatives are encouraged to review this specification and return comments to
w3t-math@w3.org, which is visible to the W3C Team only.

http://www.w3.org/TR/2001/PR-MathML2-20010108/
file:PR-MathML2-20010108.zip
file:XHTML-MathML-20010108.zip
file:XML-MathML-20010108.zip
http://www.w3.org/TR/MathML2
http://www.w3.org/TR/2000/CR-MathML2-20001113/
http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-software.html
mailto:w3t-math@w3.org

After the review, the W3C Director will announce the document’s disposition: it may become a W3C Recommendation
(possibly with minor changes), it may revert to Working Draft status, or it may be dropped as a W3C work item. This
announcement should not be expected sooner than 14 days after the end of the review.

The MathML 2 specification was a W3C Candidate Recommendation for a review period which ended on 14 December
2000. During that period the W3C Math Working Group members encouraged implementation using the specification
and comment on it; the Working Group continues to do so. A report onImplementation and Interoperabilityexperiences
and issues was made public shortly after the end of the Candidate Recommendation review period. It is intended that this
will be updated from time to time by the follow-on activity that oversees the MathML Recommendation, whatever that
may be. The W3C Math Working Group has maintained a public Web pagehttp://www.w3.org/Math/which contains
further background information.

Public discussion of MathML and issues of support through the W3C for mathematics on the Web takes place onthe pub-
lic mailing list of the Math Working Group(list archives). To subscribe send an email towww-math-request@w3.org
with the wordsubscribe in the subject line.

The experience with early implementations of the MathML 2.0 specification encouraged the Working Group to ask the
W3C Director to advance this document to Proposed Recommendation status.

Publication as a Proposed Recommendation does not imply endorsement by the W3C membership. This is still a draft
document and may be updated, replaced or made obsolete by other documents at any time. It is inappropriate to cite
W3C Proposed Recommendations as other than "work in progress."

This document has been produced by theW3C Math Working Groupas part of the activity of theW3C User Interface
Domain. The goals of the W3C Math Working Group are discussed in theW3C Math WG Charter(revised February
2000 from original of 11 June 1998). A list ofparticipants in the W3C Math Working Groupis available.

A list of current W3C Technical Reports can be found athttp://www.w3.org/TR.

MathML 2.0 is a revision of the earlier correctedW3C Recommendation MathML 1.01. It differs from it in that all
chapters have been updated and two new ones and some appendices added.

Chapters 1 and 2, which are introductory material, have been revised to reflect the changes elsewhere in the document,
and in the rapidly evolving Web environment. Chapters 3 and 4 have been extended to describe new functionalities added
as well as smaller improvements of material already proposed. Chapter 5 has been newly written to reflect changes in
the technology available. The major tables in Chapter 6 have been regenerated and reorganized to reflect an improved
list of characters useful for mathematics, and the text revised to reflect the new situation in regard to Unicode. Chapter
7 has been completely revised since Web technology has changed. A new Chapter 8 on the DOM for MathML has been
added; the latter points to new appendices D and E for detailed listings.

The appendices have been reorganized into normative and non-normative groups. Appendices D, E and G are completely
new.

2

http://www.w3.org/Math/iandi/
http://www.w3.org/Math/
mailto:www-math@w3.org
mailto:www-math@w3.org
http://lists.w3.org/Archives/Public/www-math/
http://www.w3.org/Math/
http://www.w3.org/UI/
http://www.w3.org/UI/
http://www.w3.org/Math/W3CDocs/mathcharter.html
http://www.w3.org/TR/
http://www.w3.org/1999/07/REC-MathML-19990707/

Contents

1 Introduction 10
1.1 Mathematics and its Notation 10
1.2 Origins and Goals 11
1.2.1 The History of MathML 11
1.2.2 Limitations of HTML 11
1.2.3 Requirements for Mathematics Markup12
1.2.4 Design Goals of MathML 13
1.3 The Role of MathML on the Web 14
1.3.1 Layered Design of Mathematical Web Services14
1.3.2 Relation to Other Web Technology15
2 MathML Fundamentals 18
2.1 MathML Overview 18
2.1.1 Taxonomy of MathML Elements18
2.1.2 Presentation Markup20
2.1.3 Content Markup 21
2.1.4 Mixing Presentation and Content21
2.2 MathML in a Document 22
2.3 Some MathML Examples 23
2.3.1 Presentation Examples23
2.3.2 Content Examples25
2.3.3 Mixed Markup Examples27
2.4 MathML Syntax and Grammar 29
2.4.1 MathML Syntax and Grammar29
2.4.2 An XML Syntax Primer 30
2.4.3 Children versus Arguments30
2.4.4 MathML Attribute Values 31
2.4.5 Attributes Shared by all MathML Elements36
2.4.6 Collapsing Whitespace in Input37
3 Presentation Markup 38
3.1 Introduction 38
3.1.1 What Presentation Elements Represent38
3.1.2 Terminology Used In This Chapter39
3.1.3 Required Arguments40
3.1.4 Elements with Special Behaviors41
3.1.5 Bidirectional Layout 42
3.1.6 Summary of Presentation Elements43
3.2 Token Elements 43
3.2.1 MathML characters in token elements44
3.2.2 Mathematics style attributes common to token elements45
3.2.3 Identifier (mi) 48

3

3.2.4 Number (mn) 49
3.2.5 Operator, Fence, Separator or Accent (mo) 50
3.2.6 Text (mtext) 60
3.2.7 Space (mspace) 61
3.2.8 String Literal (ms) 63
3.2.9 Adding new character glyphs to MathML (mglyph) 64
3.3 General Layout Schemata 65
3.3.1 Horizontally Group Sub-Expressions (mrow) 65
3.3.2 Fractions (mfrac) 67
3.3.3 Radicals (msqrt, mroot) 69
3.3.4 Style Change (mstyle) 70
3.3.5 Error Message (merror) 75
3.3.6 Adjust Space Around Content (mpadded) 76
3.3.7 Making Sub-Expressions Invisible (mphantom) 79
3.3.8 Expression Inside Pair of Fences (mfenced) 81
3.3.9 Enclose Expression Inside Notation (menclose) 84
3.4 Script and Limit Schemata 85
3.4.1 Subscript (msub) 86
3.4.2 Superscript (msup) 87
3.4.3 Subscript-superscript Pair (msubsup) 87
3.4.4 Underscript (munder) 88
3.4.5 Overscript (mover) 89
3.4.6 Underscript-overscript Pair (munderover) 91
3.4.7 Prescripts and Tensor Indices (mmultiscripts) 92
3.5 Tables and Matrices 94
3.5.1 Table or Matrix (mtable) 94
3.5.2 Row in Table or Matrix (mtr) 97
3.5.3 Labeled Row in Table or Matrix (mlabeledtr) 98
3.5.4 Entry in Table or Matrix (mtd) 99
3.5.5 Alignment Markers 100
3.6 Enlivening Expressions 108
3.6.1 Bind Action to Sub-Expression (maction) 108
4 Content Markup 110
4.1 Introduction 110
4.1.1 The Intent of Content Markup110
4.1.2 The Scope of Content Markup110
4.1.3 Basic Concepts of Content Markup111
4.2 Content Element Usage Guide 112
4.2.1 Overview of Syntax and Usage112
4.2.2 Containers 121
4.2.3 Functions, Operators and Qualifiers125
4.2.4 Relations 130
4.2.5 Conditions 130
4.2.6 Syntax and Semantics132
4.2.7 Semantic Mappings134
4.2.8 Constants and Symbols134
4.2.9 MathML element types134
4.3 Content Element Attributes 135
4.3.1 Content Element Attribute Values135

4

4.3.2 Attributes Modifying Content Markup Semantics135
4.3.3 Attributes Modifying Content Markup Rendering137
4.4 The Content Markup Elements 138
4.4.1 Token Elements142
4.4.2 Basic Content Elements145
4.4.3 Arithmetic, Algebra and Logic158
4.4.4 Relations 175
4.4.5 Calculus and Vector Calculus179
4.4.6 Theory of Sets 188
4.4.7 Sequences and Series195
4.4.8 Elementary classical functions199
4.4.9 Statistics 202
4.4.10 Linear Algebra 205
4.4.11 Semantic Mapping Elements211
4.4.12 Constant and Symbol Elements213
5 Combining Presentation and Content Markup 220
5.1 Why Two Different Kinds of Markup? 220
5.2 Mixed Markup 221
5.2.1 Reasons to Mix Markup221
5.2.2 Combinations that are prohibited223
5.2.3 Presentation Markup Contained in Content Markup224
5.2.4 Content Markup Contained in Presentation Markup224
5.3 Parallel Markup 225
5.3.1 Top-level Parallel Markup225
5.3.2 Fine-grained Parallel Markup226
5.3.3 Parallel Markup via Cross-References:id andxref 227
5.3.4 Annotation Cross-References using XLink:id andhref 228
5.4 Tools, Style Sheets and Macros for Combined Markup 230
5.4.1 Notational Style Sheets230
5.4.2 Content-Faithful Transformations231
5.4.3 Style Sheets for Extensions232
6 Characters, Entities and Fonts 235
6.1 Introduction 235
6.2 MathML Characters 235
6.2.1 Unicode Character Data236
6.2.2 Special Characters Not in Unicode236
6.2.3 Mathematical Alphabetic Symbol Characters.236
6.2.4 Non-Marking Characters237
6.3 Character Symbol Listings 238
6.3.1 Special Constants239
6.3.2 Character Tables (ASCII format)239
6.3.3 Tables arranged by Unicode block239
6.3.4 Negated Mathematical Characters240
6.3.5 Variant Mathematical Characters240
6.3.6 Mathematical Alphabetic Characters241
6.3.7 MathML Character Names241
6.4 Differences from Characters in MathML 1 242
6.4.1 Coverage 242
6.4.2 Fewer Non-marking Characters242

5

6.4.3 ISO Tables 242
6.4.4 Status of Character Encodings242
7 The MathML Interface 244
7.1 Embedding MathML in other Documents 244
7.1.1 MathML and Namespaces245
7.1.2 The Top-Levelmath Element 247
7.1.3 Invoking MathML Processors248
7.1.4 Mixing and Linking MathML and HTML 249
7.1.5 Using CSS with MathML 250
7.2 Generating, Processing and Rendering MathML 251
7.2.1 MathML Compliance 252
7.2.2 Handling of Errors 253
7.2.3 Attributes for unspecified data253
7.3 Future Extensions 254
7.3.1 Macros and Style Sheets254
7.3.2 XML Extensions to MathML 255
8 Document Object Model for MathML 256
8.1 Introduction 256
8.1.1 hasFeature String257
8.1.2 MathML DOM Extensions 257
A Parsing MathML 258
A.1 DOCTYPE Declaration for MathML 258
A.2 MathML as a DTD Module 258
A.3 Namespace prefix declarations 259
A.4 Use of MathML without a DTD 259
A.5 SGML 259
A.6 The MathML DTD 259
B Content Markup Validation Grammar 303
C Content Element Definitions 309
C.1 About Content Markup Elements 309
C.1.1 The Default Definitions 309
C.1.2 The Structure of an MMLdefinition.310
C.2 Definitions of MathML Content Elements 312
C.2.1 Token Elements312
C.2.2 Basic Content Elements313
C.2.3 Arithmetic Algebra and Logic 322
C.2.4 Relations 340
C.2.5 Calculus and Vector Calculus344
C.2.6 Theory of Sets 351
C.2.7 Sequences and Series356
C.2.8 Elementary Classical Functions358
C.2.9 Statistics 367
C.2.10 Linear Algebra 371
C.2.11 Constants and Symbol Elements376
D Document Object Model for MathML 385
D.1 IDL Interfaces 385
D.1.1 Miscellaneous Object Definitions385
D.1.2 Generic MathML Elements386
D.1.3 Presentation Elements393

6

D.1.4 Content Elements414
D.2 MathML DOM Tables 432
D.2.1 Chart of MathML DOM Inheritance 432
D.2.2 Table of Elements and MathML DOM Representations433
E MathML Document Object Model Bindings (Non-Normative) 438
E.1 MathML Document Object Model IDL Binding 438
E.2 MathML Document Object Model Java Binding 450
E.2.1 org/w3c/mathmldom/MathMLDOMImplementation.java450
E.2.2 org/w3c/mathmldom/MathMLDocument.java450
E.2.3 org/w3c/mathmldom/MathMLNodeList.java450
E.2.4 org/w3c/mathmldom/MathMLElement.java450
E.2.5 org/w3c/mathmldom/MathMLContainer.java451
E.2.6 org/w3c/mathmldom/MathMLMathElement.java452
E.2.7 org/w3c/mathmldom/MathMLSemanticsElement.java452
E.2.8 org/w3c/mathmldom/MathMLAnnotationElement.java452
E.2.9 org/w3c/mathmldom/MathMLXMLAnnotationElement.java453
E.2.10 org/w3c/mathmldom/MathMLPresentationElement.java453
E.2.11 org/w3c/mathmldom/MathMLGlyphElement.java453
E.2.12 org/w3c/mathmldom/MathMLSpaceElement.java453
E.2.13 org/w3c/mathmldom/MathMLPresentationToken.java454
E.2.14 org/w3c/mathmldom/MathMLOperatorElement.java454
E.2.15 org/w3c/mathmldom/MathMLStringLitElement.java455
E.2.16 org/w3c/mathmldom/MathMLPresentationContainer.java455
E.2.17 org/w3c/mathmldom/MathMLStyleElement.java455
E.2.18 org/w3c/mathmldom/MathMLPaddedElement.java456
E.2.19 org/w3c/mathmldom/MathMLFencedElement.java456
E.2.20 org/w3c/mathmldom/MathMLEncloseElement.java456
E.2.21 org/w3c/mathmldom/MathMLActionElement.java457
E.2.22 org/w3c/mathmldom/MathMLFractionElement.java457
E.2.23 org/w3c/mathmldom/MathMLRadicalElement.java457
E.2.24 org/w3c/mathmldom/MathMLScriptElement.java458
E.2.25 org/w3c/mathmldom/MathMLUnderOverElement.java458
E.2.26 org/w3c/mathmldom/MathMLMultiScriptsElement.java459
E.2.27 org/w3c/mathmldom/MathMLTableElement.java460
E.2.28 org/w3c/mathmldom/MathMLTableRowElement.java461
E.2.29 org/w3c/mathmldom/MathMLLabeledRowElement.java461
E.2.30 org/w3c/mathmldom/MathMLTableCellElement.java462
E.2.31 org/w3c/mathmldom/MathMLAlignGroupElement.java462
E.2.32 org/w3c/mathmldom/MathMLAlignMarkElement.java462
E.2.33 org/w3c/mathmldom/MathMLContentElement.java463
E.2.34 org/w3c/mathmldom/MathMLContentToken.java463
E.2.35 org/w3c/mathmldom/MathMLCnElement.java463
E.2.36 org/w3c/mathmldom/MathMLCiElement.java463
E.2.37 org/w3c/mathmldom/MathMLCsymbolElement.java464
E.2.38 org/w3c/mathmldom/MathMLContentContainer.java464
E.2.39 org/w3c/mathmldom/MathMLApplyElement.java465
E.2.40 org/w3c/mathmldom/MathMLFnElement.java465
E.2.41 org/w3c/mathmldom/MathMLLambdaElement.java465
E.2.42 org/w3c/mathmldom/MathMLSetElement.java466

7

E.2.43 org/w3c/mathmldom/MathMLListElement.java466
E.2.44 org/w3c/mathmldom/MathMLBvarElement.java466
E.2.45 org/w3c/mathmldom/MathMLPredefinedSymbol.java466
E.2.46 org/w3c/mathmldom/MathMLIntervalElement.java467
E.2.47 org/w3c/mathmldom/MathMLConditionElement.java467
E.2.48 org/w3c/mathmldom/MathMLDeclareElement.java467
E.2.49 org/w3c/mathmldom/MathMLVectorElement.java468
E.2.50 org/w3c/mathmldom/MathMLMatrixElement.java468
E.2.51 org/w3c/mathmldom/MathMLMatrixrowElement.java469
E.2.52 org/w3c/mathmldom/MathMLPiecewiseElement.java469
E.2.53 org/w3c/mathmldom/MathMLCaseElement.java470
E.3 MathML Document Object Model ECMAScript Binding 470
E.3.1 Object MathMLDOMImplementation470
E.3.2 Object MathMLDocument 470
E.3.3 Object MathMLNodeList 471
E.3.4 Object MathMLElement 471
E.3.5 Object MathMLContainer 471
E.3.6 Object MathMLMathElement471
E.3.7 Object MathMLSemanticsElement472
E.3.8 Object MathMLAnnotationElement472
E.3.9 Object MathMLXMLAnnotationElement472
E.3.10 Object MathMLPresentationElement472
E.3.11 Object MathMLGlyphElement472
E.3.12 Object MathMLSpaceElement473
E.3.13 Object MathMLPresentationToken473
E.3.14 Object MathMLOperatorElement473
E.3.15 Object MathMLStringLitElement473
E.3.16 Object MathMLPresentationContainer474
E.3.17 Object MathMLStyleElement474
E.3.18 Object MathMLPaddedElement474
E.3.19 Object MathMLFencedElement474
E.3.20 Object MathMLEncloseElement474
E.3.21 Object MathMLActionElement474
E.3.22 Object MathMLFractionElement475
E.3.23 Object MathMLRadicalElement475
E.3.24 Object MathMLScriptElement475
E.3.25 Object MathMLUnderOverElement475
E.3.26 Object MathMLMultiScriptsElement475
E.3.27 Object MathMLTableElement476
E.3.28 Object MathMLTableRowElement477
E.3.29 Object MathMLLabeledRowElement477
E.3.30 Object MathMLTableCellElement477
E.3.31 Object MathMLAlignGroupElement478
E.3.32 Object MathMLAlignMarkElement 478
E.3.33 Object MathMLContentElement478
E.3.34 Object MathMLContentToken478
E.3.35 Object MathMLCnElement479
E.3.36 Object MathMLCiElement 479
E.3.37 Object MathMLCsymbolElement479

8

E.3.38 Object MathMLContentContainer479
E.3.39 Object MathMLApplyElement 479
E.3.40 Object MathMLFnElement480
E.3.41 Object MathMLLambdaElement480
E.3.42 Object MathMLSetElement480
E.3.43 Object MathMLListElement 480
E.3.44 Object MathMLBvarElement480
E.3.45 Object MathMLPredefinedSymbol480
E.3.46 Object MathMLIntervalElement481
E.3.47 Object MathMLConditionElement481
E.3.48 Object MathMLDeclareElement481
E.3.49 Object MathMLVectorElement481
E.3.50 Object MathMLMatrixElement 482
E.3.51 Object MathMLMatrixrowElement482
E.3.52 Object MathMLPiecewiseElement482
E.3.53 Object MathMLCaseElement483
F Operator Dictionary (Non-Normative) 484
F.1 Format of operator dictionary entries 484
F.2 Indexing of operator dictionary 485
F.3 Choice of entity names 485
F.4 Notes on lspace and rspace attributes 485
F.5 Operator dictionary entries 485
G Sample CSS Style Sheet for MathML (Non-Normative) 491
H Glossary (Non-Normative) 498
I Working Group Membership and Acknowledgments (Non-Normative) 502
I.1 The Math Working Group Memberships 502
I.2 Acknowledgments 503
J Changes (Non-Normative) 504
K References (Non-Normative) 507

9

Chapter 1

Introduction

1.1 Mathematics and its Notation

A distinguishing feature of mathematics is the use of a complex and highly evolved system of two-dimensional symbolic
notations. As J.R. Pierce has written in his book on communication theory, mathematics and its notations should not be
viewed as one and the same thing [Pierce1961]. Mathematical ideas exist independently of the notations that represent
them. However, the relation between meaning and notation is subtle, and part of the power of mathematics to describe
and analyze derives from its ability to represent and manipulate ideas in symbolic form. The challenge in putting
mathematics on the World Wide Web is to capture both notation and content (that is, meaning) in such a way that
documents can utilize the highly-evolved notational forms of written and printed mathematics, and the potential for
interconnectivity in electronic media.

Mathematical notations are constantly evolving as people continue to make innovations in ways of approaching and
expressing ideas. Even the commonplace notations of arithmetic have gone through an amazing variety of styles, in-
cluding many defunct ones advocated by leading mathematical figures of their day [Cajori1928]. Modern mathematical
notation is the product of centuries of refinement, and the notational conventions for high-quality typesetting are quite
complicated. For example, variables and letters which stand for numbers are usually typeset today in a special mathe-
matical italic font subtly distinct from the usual text italic. Spacing around symbols for operations such as +, -,× and /
is slightly different from that of text, to reflect conventions about operator precedence. Entire books have been devoted
to the conventions of mathematical typesetting, from the alignment of superscripts and subscripts, to rules for choosing
parenthesis sizes, and on to specialized notational practices for subfields of mathematics (for instance, [Chaundy1954],
[Swanson1979],[Swanson1999], [Higham1993], or in the TEX literature [Knuth1986] and [Spivak1986]).

Notational conventions in mathematics, and in printed text in general, guide the eye and make printed expressions much
easier to read and understand. Though we usually take them for granted, we rely on hundreds of conventions such as
paragraphs, capital letters, font families and cases, and even the device of decimal-like numbering of sections such as
we are using in this document (an invention due to G. Peano, who is probably better known for his axioms for the natural
numbers). Such notational conventions are perhaps even more important for electronic media, where one must contend
with the difficulties of on-screen reading.

However, there is more to putting mathematics on the Web than merely finding ways of displaying traditional mathe-
matical notation in a Web browser. The Web represents a fundamental change in the underlying metaphor for knowledge
storage, a change in whichinterconnectivity plays a central role. It is becoming increasingly important to find ways of
communicating mathematics which facilitate automatic processing, searching and indexing, and reuse in other mathe-
matical applications and contexts. With this advance in communication technology, there is an opportunity to expand
our ability to represent, encode, and ultimately to communicate our mathematical insights and understanding with each
other. We believe that MathML is an important step in developing mathematics on the Web.

10

1.2 Origins and Goals

1.2.1 The History of MathML

The problem of encoding mathematics for computer processing or electronic communication is much older than the
Web. The common practice among scientists before the Web was to write papers in some encoded form based on
the ASCII character set, and e-mail them to each other. Several markup methods for mathematics, in particular TEX
[Knuth1986], were already in wide use in 1992 just before the Web rose to prominence, [Poppelier1992].

Since its inception, the Web has demonstrated itself to be a very effective method of making information available
to widely separated groups of individuals. However, even though the World Wide Web was initially conceived and
implemented by scientists for scientists, the possibilities for including mathematical expressions in HTML has been
very limited. At present, most mathematics on the Web consists of text with images of scientific notation (in GIF or
JPEG format), which are difficult to read and to author, or of entire documents in PDF form.

The World Wide Web Consortium (W3C) recognized that lack of support for scientific communication was a serious
problem. Dave Raggett included a proposal for HTML Math in the HTML 3.0 working draft in 1994. A panel dis-
cussion on mathematical markup was held at the WWW Conference in Darmstadt in April 1995. In November 1995,
representatives from Wolfram Research presented a proposal for doing mathematics in HTML to the W3C team. In
May 1996, the Digital Library Initiative meeting in Champaign-Urbana played an important role in bringing together
many interested parties. Following the meeting, an HTML Math Editorial Review Board was formed. In the intervening
years, this group has grown, and was formally reconstituted as the first W3C Math Working Group in March 1997. The
second W3C Math Working Group was chartered in July 1998 with a term which was later extended to run to the end
of the year 2000.

The MathML proposal reflects the interests and expertise of a very diverse group. Many contributions to the devel-
opment of MathML deserve special mention, some of which we touch on here. One such contribution concerns the
question of accessibility, especially for the visually handicapped. T. V. Raman is particularly notable in this regard.
Neil Soiffer and Bruce Smith from Wolfram Research shared their experience with the problems of representing math-
ematics in connection with the design of Mathematica 3.0; this expertise was an important influence in the design of
the presentation elements. Paul Topping from Design Science also contributed his expertise in mathematical formatting
and editing. MathML has benefited from the participation of a number of working group members involved in other
mathematical encoding efforts in the SGML and computer-algebra communities, including Stephen Buswell from Stilo
Technologies, Nico Poppelier at first with Elsevier Science, Stéphane Dalmas from INRIA (Sophia Antipolis), Stan De-
vitt at first with Waterloo Maple, Angel Diaz and Robert S. Sutor from IBM, and Stephen M. Watt from the University
of Western Ontario. In particular, MathML has been influenced by the OpenMath project, the work of the ISO 12083
working group, and Stilo Technologies’ work on a ‘semantic’ mathematics DTD fragment. The American Mathematical
Society has played a key role in the development of MathML. Among other things, it has provided two working group
chairs: Ron Whitney led the group from May 1996 to March 1997, and Patrick Ion, who has co-chaired the group with
Robert Miner from The Geometry Center from March 1997 to June 1998, and since July 1998 with Angel Diaz of IBM.

1.2.2 Limitations of HTML

The demand for effective means of electronic scientific communication remains high. Ever increasingly, researchers,
scientists, engineers, educators, students and technicians find themselves working at dispersed locations and relying
on electronic communication. At the same time, the image-based methods that are currently the predominant means
of transmitting scientific notation over the Web are primitive and inadequate. Document quality is poor, authoring is
difficult, and mathematical information contained in images is not available for searching, indexing, or reuse in other
applications.

The most obvious problems with HTML for mathematical communication are of two types.

11

Display Problems. Consider the equation 22x
= 10. This equation is sized to match the surrounding line in 14pt type

on the system where it was authored. Of course, on other systems, or for other font sizes, the equation is too small or
too large. A second point to observe is that the equation image was generated against a white background. Thus, if a
reader or browser resets the page background to another color, the anti-aliasing in the image results in white ‘halos’.
Next, consider the equationx = −b±

√
b2−4ac

2a , which is an example with the equation’s horizontal alignment axis above
the tops of the lower-case letters in the surrounding text.

This equation has a descender which places the baseline for the equation at a point about a third of the way from
the bottom of the image. One can pad the image like this:x = −b±

√
b2−4ac

2a , so that the centerline of the image and
the baseline of the equation coincide, but this causes problems with the inter-line spacing, resulting in the equation
becoming difficult to read. Moreover, center alignment of images is handled in slightly different ways by different
browsers, making it impossible to guarantee proper alignment for different clients.

Image-based equations are generally harder to see, read and comprehend than the surrounding text in the browser
window. Moreover, these problems become worse when the document is printed. The resolution of the equations as
images will be around 70 dots per inch, while the surrounding text will typically be 300, 600 or more dots per inch. The
disparity in quality is judged to be unacceptable by most people.

Encoding Problems. Consider trying to search this document for part of an equation, for example, the ‘=10’ from the
first equation above. In a similar vein, consider trying to cut and paste an equation into another application; even more
demanding is to cut and paste a sub-expression. Using image-based methods, neither of these common needs can be
adequately addressed. Although the use of thealt attribute in the document source can help, it is clear that highly
interactive Web documents must provide a more sophisticated interface between browsers and mathematical notation.

Another problem with encoding mathematics as images is that it requires more bandwidth. Markup describing an equa-
tion is typically smaller and more compressible than an image of the equation. In addition, by using markup-based
encoding, more of the rendering process is moved to the client machine.

1.2.3 Requirements for Mathematics Markup

Some display problems associated with including mathematical notation in HTML documents as images could be
addressed by improving image handling by browsers. However, even if image handling were improved, the problem of
making the information contained in mathematical expressions available to other applications would remain. Therefore,
in planning for the future, it is not sufficient merely to upgrade image-based methods. To integrate mathematical material
fully into Web documents, a markup-based encoding of mathematical notation and content is required.

In designing any markup language, it is essential to consider carefully the needs of its potential users. In the case of
MathML, the needs of potential users cover a broad spectrum, from education to research, and on to commerce.

The education community is a large and important group that must be able to put scientific curriculum materials on the
Web. At the same time, educators often have limited time and equipment, and are severely hampered by the difficulty of
authoring technical Web documents. Students and teachers need to be able to create mathematical content quickly and
easily, using intuitive, easy-to-learn, low-cost tools.

Electronic textbooks are another way of using the Web which will potentially be very important in education. Manage-
ment consultant Peter Drucker has prophesied the end of big-campus residential higher education and its distribution
over the Web. Electronic textbooks will need to be interactive, allowing intercommunication between the text and sci-
entific software and graphics.

The academic and commercial research communities generate large volume of dense scientific material. Increasingly,
research publications are being stored in databases, such as the highly successfulphysics and mathematics preprint
server and archiveat Los Alamos National Laboratory. This is especially true in some areas of physics and mathematics
where academic journal prices have been increasing at an unsustainable rate. In addition, databases of information on

12

http://xxx.lanl.gov
http://xxx.lanl.gov

mathematical research, such asMathematical ReviewsandZentralblatt für Mathematik, offer millions of records on the
Web containing mathematics.

To accommodate the research community, a design for mathematical markup must facilitate the maintenance and op-
eration of large document collections, for which automatic searching and indexing are important. Because of the large
collection of legacy documents containing mathematics, especially in TEX, the ability to convert between existing for-
mats and any new one is also very important to the research community. Finally, the ability to maintain information for
archival purposes is vital to academic research.

Corporate and academic scientists and engineers also use technical documents in their work to collaborate, to record
results of experiments and computer simulations, and to verify calculations. For such uses, mathematics on the Web
must provide a standard way of sharing information that can be easily read, processed and generated using commonly
available, easy-to-use tools.

Another general design requirement is the ability to render mathematical material in other media such as speech or
braille, which is extremely important for the visually impaired.

Commercial publishers are also involved with mathematics on the Web at all levels from electronic versions of print
books to interactive textbooks and academic journals. Publishers require a method of putting mathematics on the Web
that is capable of high-quality output, robust enough for large-scale commercial use, and preferably compatible with
their previous, often SGML-based, production systems.

1.2.4 Design Goals of MathML

In order to meet the diverse needs of the scientific community, MathML has been designed with the following ultimate
goals in mind.

MathML should:

• Encode mathematical material suitable for teaching and scientific communication at all levels.
• Encode both mathematical notation and mathematical meaning.
• Facilitate conversion to and from other mathematical formats, both presentational and semantic. Output

formats should include:
– graphical displays
– speech synthesizers
– input for computer algebra systems
– other mathematics typesetting languages, such as TEX
– plain text displays, e.g. VT100 emulators
– print media, including braille
It is recognized that conversion to and from other notational systems or media may entail loss of information
in the process.

• Allow the passing of information intended for specific renderers and applications.
• Support efficient browsing of lengthy expressions.
• Provide for extensibility.
• Be well suited to template and other mathematics editing techniques.
• Be human legible, and simple for software to generate and process.

No matter how successfully MathML may achieve its goals as a markup language, it is clear that MathML will only
be useful if it is implemented well. To this end, the W3C Math Working Group has identified a short list of additional
implementation goals. These goals attempt to describe concisely the minimal functionality MathML rendering and
processing software should try to provide.

• MathML expressions in HTML (and XHTML) pages should render properly in popular Web browsers, in
accordance with reader and author viewing preferences, and at the highest quality possible given the capa-
bilities of the platform.

13

http://www.ams.org/mathscinet
http://www.zblmath.fiz-karlsruhe.de

• HTML (and XHTML) documents containing MathML expressions should print properly and at high-quality
printer resolutions.

• MathML expressions in Web pages should be able to react to user gestures, such those as with a mouse, and
to coordinate communication with other applications through the browser.

• Mathematical expression editors and converters should be developed to facilitate the creation of Web pages
containing MathML expressions.

These goals have begun to be addressed for the near term by using embedded elements such as Java applets, plug-
ins and ActiveX controls to render MathML. However, the extent to which these goals are ultimately met depends on
the cooperation and support of browser vendors, and other software developers. The W3C Math Working Group has
continued to work with the working groups for the Document Object Model (DOM) and the Extensible Style Language
(XSL) to ensure that the needs of the scientific community will be met in the future, and feels that MathML 2.0 shows
considerable progress in this area over the situation that obtained at the time of the MathML 1.0 Recommendation (April
1998).

1.3 The Role of MathML on the Web

1.3.1 Layered Design of Mathematical Web Services

The design goals of MathML require a system for encoding mathematical material for the Web which is flexible and
extensible, suitable for interaction with external software, and capable of producing high-quality rendering in several
media. Any markup language that encodes enough information to do all these tasks well will of necessity involve some
complexity.

At the same time, it is important for many groups, such as students, to have simple ways to include mathematics in Web
pages by hand. Similarly, other groups, such as the TEX community, would be best served by a system which allowed
the direct entry of markup languages like TEX into Web pages. In general, specific user groups are better served by
specialized kinds of input and output tailored to their needs. Therefore, the ideal system for communicating mathematics
on the Web should provide both specialized services for input and output, and general services for interchange of
information and rendering to multiple media.

In practical terms, the observation that mathematics on the Web should provide for both specialized and general needs
naturally leads to the idea of a layered architecture. One layer consists of powerful, general software tools exchanging,
processing and rendering suitably encoded mathematical data. A second layer consists of specialized software tools,
aimed at specific user groups, which are capable of easily generating encoded mathematical data that can then be shared
with a particular audience.

MathML is designed to provide the encoding of mathematical information for the bottom, more general layer in a
two-layer architecture. It is intended to encode complex notational and semantic structure in an explicit, regular, and
easy-to-process way for renderers, searching and indexing software, and other mathematical applications.

As a consequence, raw MathML markup isnot primarily intended for direct use by authors. While MathML is human-
readable, which helps a lot in debugging it, in all but the simplest cases it is too verbose and error-prone for hand
generation. Instead, it is anticipated that authors will use equation editors, conversion programs, and other specialized
software tools to generate MathML. Alternatively, some renderers and systems supporting mathematics may convert
other kinds of input directly included in Web pages into MathML on the fly, in response to a cut-and-paste operation,
for example.

In some ways, MathML is analogous to other low-level, communication formats such as Adobe’s PostScript language.
You can create PostScript files in a variety of ways, depending on your needs; experts write and modify them by
hand, authors create them with word processors, graphic artists with illustration programs, and so on. Once you have

14

a PostScript file, however, you can share it with a very large audience, since devices which render PostScript, such as
printers and screen previewers, are widely available.

Part of the reason for designing MathML as a markup language for a low-level, general, communication layer is to
stimulate mathematical Web software development in the layer above. MathML provides a way of coordinating the
development of modular authoring tools and rendering software. By making it easier to develop a functional piece of a
larger system, MathML can stimulate a ‘critical mass’ of software development, greatly to the benefit of potential users
of mathematics on the Web.

One can envision a similar situation for mathematical data. Authors are free to create MathML documents using the
tools best suited to their needs. For example, a student might prefer to use a menu-driven equation editor that can
write out MathML to an XHTML file. A researcher might use a computer algebra package that automatically encodes
the mathematical content of an expression, so that it can be cut from a Web page and evaluated by a colleague. An
academic journal publisher might use a program that converts TEX markup to HTML and MathML. Regardless of the
method used to create a Web page containing MathML, once it exists, all the advantages of a powerful and general
communication layer become available. A variety of MathML software could all be used with the same document to
render it in speech or print, to send it to a computer algebra system, or to manage it as part of a large Web document
collection. To render high-quality printed mathematics the MathML encoding will often be converted back to standard
typesetting and composition languages, including TEX which is widely appreciated for the job it does in this regard.
Finally, one may expect that eventually MathML will be integrated into other arenas where mathematical formulas
occur, such as spreadsheets, statistical packages and engineering tools.

The W3C Math Working Group has been working with vendors to ensure that a variety of MathML software will soon
be available, including both rendering and authoring tools. A current list of MathML software is maintained on the
public Math page at the World Wide Web Consortium.

1.3.2 Relation to Other Web Technology

The original conception of an HTML Math was a simple, straightforward extension to HTML that would be natively
implemented in browsers. However, very early on, the explosive growth of the Web made it clear that a general extension
mechanism was required, and that mathematics was only one of many kinds of structured data which would have to be
integrated into the Web using such a mechanism.

Given that MathML must integrate into the Web as an extension, it is extremely important that MathML, and MathML
software, can interact well with the existing Web environment. In particular, MathML has been designed with three kinds
of interaction in mind. First, in order to create mathematical Web content, it is important that existing mathematical
markup languages can be converted to MathML, and that existing authoring tools can be modified to generate MathML.
Second, it must be possible to embed MathML markup seamlessly in HTML markup, as it evolves, in such a way that
it will be accessible to future browsers, search engines, and all the kinds of Web applications which now manipulate
HTML. Finally, it must be possible to render MathML embedded in HTML in today’s Web browsers in some fashion,
even if it is less than ideal. As HTML evolves into XHTML, all the preceding requirements become increasingly needed.

The World Wide Web is a fully international and collaborative movement. Mathematics is a language used all over the
world. The mathematical notation in science and engineering is embedded in a matrix of local natural languages. The
W3C strives to be a constructive force in the spread of possibilities for communication throughout the world. Therefore
MathML will encounter problems of internationalization. This version of MathML is not knowingly incompatible with
the needs of languages which are written from left to right. However the default orientation of MathML 2 is left-to-right,
and it is clear that the needs for the writing of mathematical formulas embedded in some natural languages may not yet
be met. So-called bi-directional technology is still in development, and better support for formulas in that context must
be a matter for future developers.

15

http://www.w3.org/Math

1.3.2.1 Existing Mathematical Markup Languages

Perhaps the most important influence on mathematical markup languages of the last two decades is the TEX typesetting
system developed by Donald Knuth [Knuth1986]. TEX is a de facto standard in the mathematical research community,
and it is pervasive in the scientific community at large. TEX sets a standard for quality of visual rendering, and a great
deal of effort has gone into ensuring MathML can provide the same visual rendering quality. Moreover, because of the
many legacy documents in TEX, and because of the large authoring community versed in TEX, a priority in the design
of MathML was the ability to convert TEX mathematics input into MathML format. The feasibility of such conversion
has been demonstrated by prototype software.

Extensive work on encoding mathematics has also been done in the SGML community, and SGML-based encoding
schemes are widely used by commercial publishers. ISO 12083 is an important markup language which contains a
DTD fragment primarily intended for describing the visual presentation of mathematical notation. Because ISO 12083
mathematical notation and its derivatives share many presentational aspects with TEX, and because SGML enforces
structure and regularity more than TEX, much of the work in ensuring MathML is compatible with TEX also applies well
to ISO 12083.

MathML also pays particular attention to compatibility with other mathematical software, and in particular, with com-
puter algebra systems. Many of the presentation elements of MathML are derived in part from the mechanism of
typesetting boxes. The MathML content elements are heavily indebted to the OpenMath project and the work by Stilo
Technologies on a mathematical DTD fragment. The OpenMath project has close ties to both the SGML and com-
puter algebra communities, and has laid a foundation for an SGML- and XML-based means of communication between
mathematical software packages, amongst other things. The feasibility of both generating and interpreting MathML in
computer algebra systems has been demonstrated by prototype software.

1.3.2.2 HTML Extension Mechanisms

As noted above, the success of HTML has led to enormous pressure to incorporate a wide variety of data types and
software applications into the Web. Each new format or application potentially places new demands on HTML and on
browser vendors. For some time, it has been clear that a general extension mechanism is necessary to accommodate new
extensions to HTML. At the very beginning, the working group began its work thinking of a plain extension to HTML
in the spirit of the first mathematics support suggested for HTML 3.2. But for a good number of reasons, once we got
into the details, this proved to be not so good an idea. Since work first began on MathML, XML [XML], has emerged
as the dominant such general extension mechanism.

XML stands for Extensible Markup Language. It is designed as a simplified version of SGML, the meta-language used
to define the grammar and syntax of HTML. One of the goals of XML is to be suitable for use on the Web, and in
the context of this discussion it can be viewed as the general mechanism for extending HTML. As its name implies,
extensibility is a key feature of XML; authors are free to declare and use new elements and attributes. At the same
time, XML grammar and syntax rules carefully enforce regular document structure to facilitate automatic processing
and maintenance of large document collections. Mathematically speaking XML is essentially a notation for decorated
rooted planar trees, and thus of great generality as an encoding tool.

Since the setting up of the first W3C Math Working Group, XML has garnered broad industry support, including that of
major browser vendors. The migration of HTML to an XML form has been important to the W3C, and has resulted in
the XHTML Recommendation which delivers a new modularized form of HTML. MathML can be viewed as another
module which fits very well with the new XHTML. Indeed in SectionA.2 there is a new DTD for mathematics which
is the result of collaboration with the W3C HTML Working Group.

Furthermore, other applications of XML for all kinds of document publishing and processing promise to become in-
creasingly important. Consequently, both on theoretical and pragmatic grounds, it has made a great deal of sense to
specify MathML as an XML application.

16

1.3.2.3 Browser Extension Mechanisms

By now, as opposed to the situation when theMathML 1.0 Recommendationwas adopted, the details of a general
model for rendering and processing XML extensions to HTML are largely clear. Formatting Properties, developed
by the Cascading Style Sheets and Formatting Properties Working Group for CSS and made available through the
Document Object Model (DOM), will be applied to MathML elements to obtain stylistic control over the presentation
of MathML. Further development of these Formatting Properties falls within the charters of both the CSS&FP and the
XSL working groups. For an introduction to this topic see the discussion in Chapter7. For detailed commentary on how
to render MathML with current systems consult theW3C Math WG Home Page.

Until style sheet mechanisms are capable of delivering native browser rendering of MathML, however, it is necessary to
extend browser capabilities by using embedded elements to render MathML. It is already possible to instruct a browser
to use a particular embedded renderer to process embedded XML markup such as MathML, and to coordinate the
resulting output with the surrounding Web page, however the results are not yet entirely as one wishes. See Chapter7.

For specialized processing, such as connecting to a computer algebra system, the capability of calling out to other
programs is likely to remain highly desirable. However, for such an interaction to be really satisfactory, it is necessary
to define a document object model rich enough to facilitate complicated interactions between browsers and embedded
elements. For this reason, the W3C Math Working Group has coordinated its efforts closely with the Document Object
Model (DOM) Working Group. The results are described in Chapter8.

For processing by embedded elements, and for inter-communication between scientific software generally, a style sheet-
based layout model is in some ways less than ideal. It can impose an additional implementation burden in a setting
where it may offer few advantages, and it imposes implementation requirements for coordination between browsers and
embedded renderers that will likely be unavailable in the immediate future.

For these reasons, the MathML specification defines an attribute-based layout model, which has proven very effective
for high-quality rendering of complicated mathematical expressions in several independent implementations. MathML
presentation attributes utilize W3C Formatting Properties where possible. Also, MathML elements acceptclass, style
andid attributes to facilitate their use with CSS style sheets. However, at present, there are few settings where CSS
machinery is currently available to MathML renderers.

The use of CSS style sheet mechanisms has been mentioned above. The mechanisms of XSL have also recently become
available for the transformation of XML documents to effect their rendering. Indeed the alternative forms of this present
recommendation, including the definitive public HTML version, have been prepared from an underlying XML source
using XSL transformation language tools. As further developments in this direction become available to MathML, it
is anticipated their use will become the dominant method of stylistic control of MathML presentation meant for use in
rendering environments which support those mechanisms.

17

http://www.w3.org/TR/1998/REC-MathML-19980407/
http://www.w3.org/Math

Chapter 2

MathML Fundamentals

2.1 MathML Overview

This chapter introduces the basic ideas of MathML. The first section describes the overall design of MathML. The
second section presents a number of motivating examples, to give the reader something concrete to refer to while
reading subsequent chapters of the MathML specification. The final section describes basic features of the MathML
syntax and grammar, which apply to all MathML markup. In particular, Section2.4 should be readbefore Chapter3,
Chapter4 and Chapter5.

A fundamental challenge in defining a markup language for mathematics on the Web is reconciling the need to encode
both the presentation of a mathematical notation and the content of the mathematical idea or object which it represents.

The relationship between a mathematical notation and a mathematical idea is subtle and deep. On a formal level, the
results of mathematical logic raise unsettling questions about the correspondence between systems of symbolic logic
and the phenomena they model. At a more intuitive level, anyone who uses mathematical notation knows the difference
that a good choice of notation can make; the symbolic structure of the notation suggests the logical structure. For
example, the Leibniz notation for derivatives ‘suggests’ the chain rule of calculus through the symbolic cancellation of
fractions:d f

dx
dx
dt = d f

dt .

Mathematicians and teachers intuitively understand this very well; part of their expertise lies in choosing notation that
emphasizes key aspects of a problem while hiding or diminishing extraneous aspects. It is commonplace in mathematics
and science to write one thing when strictly technically something else is meant, because long experience shows this
actually communicates the idea better at some higher level than rigorous detail.

In many other settings, though, mathematical notation is used to encode the full, precise meaning of a mathematical
object. Mathematical notation is capable of prodigious rigor, and when used carefully, it can be virtually free of ambi-
guity. Moreover, it is precisely this lack of ambiguity which makes it possible to describe mathematical objects so that
they can be used by software applications such as computer algebra systems and voice renderers. In situations where
such inter-application communication is of paramount importance, the nuances of visual presentation generally play a
minimal role.

MathML allows authors to encode both the notation which represents a mathematical object and the mathematical
structure of the object itself. Moreover, authors can mix both kinds of encoding in order to specify both the presentation
and content of a mathematical idea. The remainder of this section gives a basic overview of how MathML can be used
in each of these ways.

2.1.1 Taxonomy of MathML Elements

All MathML elements fall into one of three categories: presentation elements, content elements and interface elements.
Each of these categories is described in detail in Chapter3, Chapter4 and Chapter7, respectively.

18

Presentation elements describe mathematical notation’s visually oriented two-dimensional structure. Typical examples
are themrow element, which is usually employed to indicate a horizontal row of pieces of expressions, and themsup
element, which is used to mark up a base expression and a superscript to it. As a general rule, each presentation element
corresponds to a single kind of notational ‘schema’ such as a row, a superscript, a subscript, an underscript and so on.
Any formula is made by putting together parts which ultimately can be analyzed down to the simplest items such as
digits, letters, or other symbol characters.

Although the previous paragraph was concerned with the display aspect of mathematical notation, and hence with
presentation markup, the same observation about decomposition applies equally well to abstract mathematical objects,
and hence to content markup. For example, in the context of content markup a superscript would typically be denoted by
an exponentiation operation that would require two operands: a ‘base’ and an ‘exponent’. This is no coincidence, since
as a general rule, mathematical notation’s layout closely follows the logical structure of the underlying mathematical
objects.

The recursive nature of mathematical objects and notation is strongly reflected in MathML markup. In use, most pre-
sentation or content elements contain some number of other MathML elements corresponding to the constituent pieces
out of which the original object is recursively built. The original schema is commonly called theparent schema, and
the constituent pieces are calledchild schemata. More generally, MathML expressions can be regarded as trees, where
each node corresponds to a MathML element, the branches under a ‘parent’ node correspond to its ‘children’, and the
leaves in the tree correspond to atomic notation or content units such as numbers, characters, etc.

Most leaf nodes in a MathML expression tree are eithercanonically empty elements with no bodies, ortoken elements.
Canonically empty elements represent symbols directly in MathML, for example, the content element<plus/> does
this. MathML token elements are the only MathML elements permitted to contain MathML character data. MathML
character data consists of Unicode characters with the infrequent addition of special character constructions done with
themglyph element. A third kind of leaf node permitted in MathML is theannotation element, which is used to hold
data which is not in MathML format.

The most important presentation token elements aremi, mn andmo for representing identifiers, numbers and operators
respectively. Typically a renderer will employ slightly different typesetting styles for each of these kinds of character
data: numbers are usually in upright font, identifiers in italics, and operators have extra space around them. In content
markup, there are only three tokens,ci, cn andcsymbol, for identifiers, numbers and new symbols introduced in
the document itself, respectively. In content markup, separate elements are provided for commonly used functions and
operators. Theapply element is provided for user-defined extensions to the base set.

In terms of markup, most MathML elements are denoted by astart tag and anend tag, which enclose the markup for
their contents. In the case of tokens, the content is character data, and in most other cases, the content is the markup for
child elements. Elements in a third category, called canonically empty elements, do not require any contents, and are
denoted by a single tag of the form<name/>. An example of this kind of markup is<plus/> in content markup.

Let us take the very simple example of (a + b)2, and we can now see how the principles discussed above play out in
practice. One form of presentation markup for this example is:

<mrow>
<msup>
<mfenced>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>

</mrow>
</mfenced>

19

<mn>2</mn>
</msup>

</mrow>

This example demonstrates a number of presentation elements. The first element, one that is used a great deal ismrow.
This element is used to denote a row of horizontally aligned material. The material contained between the<mrow>
and</mrow> tags is considered to be an argument to themrow element. Thus the whole expression here is contained
in anmrow element. As previously noted, almost all mathematical expressions decompose into subexpressions. These
subexpressions can, in turn, also be contained in anmrow element. For example, a + b is also contained in anmrow.

Themfenced element is used to provide fences (braces, brackets, and parentheses) around formula material. It defaults
to using parentheses.

Note the use of themi element for displaying the variables a and b and themo element for marking the + operator.

Themsup element is for expressions involving superscripts and takes two arguments, in order, the base expression (here,
(a+b)) and the exponent expression (here, 2).

The content markup for the same example is:

<mrow>
<apply>
<power/>
<apply>
<plus/>
<ci>a</ci>
<ci>b</ci>

</apply>
<cn>2</cn>

</apply>
</mrow>

Here, theapply content element means apply an operation to an expression. In this example, thepower element (for
exponentiation), which requires no body, and the similarplus element (for addition) are bothapplied. Observe that both
operators take two arguments, the order being particularly significant in the case of the power operator. But the order
of the children is crucial in the use of theapply since the first child, the operator, takes as argument list the remaining
ones.

Note the use of theci element to mark up the variables a and b, and thecn element to mark up the number 2.

2.1.2 Presentation Markup

MathML presentation markup consists of about 30 elements which accept over 50 attributes. Most of the elements
correspond tolayout schemata, which contain other presentation elements. Each layout schema corresponds to a two-
dimensional notational device, such as a superscript or subscript, fraction or table. In addition, there are the presentation
token elementsmi, mo andmn introduced above, as well as several other less commonly used token elements. The
remaining few presentation elements are empty elements, and are used mostly in connection with alignment.

The layout schemata fall into several classes. One group of elements is concerned with scripts, and contains ele-
ments such asmsub, munder, andmmultiscripts. Another group focuses on more general layout and includesmrow,
mstyle, andmfrac. A third group deals with tables. Themaction element is in a category by itself, and allows coding
of various kinds of actions on notation, such as occur in an expression which toggles between two pieces of notation.

An important feature of many layout schemata is that the order of child schemata is significant. For example, the first
child of anmfrac element is the numerator and the second child is the denominator. Since the order of child schemata is

20

not enforced at the XML level by the MathML DTD, the information added by ordering is only available to a MathML
processor, as opposed to a generic XML processor. When we want to emphasize that a MathML element such asmfrac
requires children in a specific order, we will refer to them asarguments, and think of themfrac element as a notational
‘constructor’.

2.1.3 Content Markup

Content markup consists of about 120 elements accepting roughly a dozen attributes. The majority of these elements
are empty elements corresponding to a wide variety of operators, relations and named functions. Examples of this sort
includepartialdiff, leq andtan. Others such asmatrix andset are used to encode various mathematical data
types, and a third, important category of content elements such asapply are used to apply operations to expressions
and also to make new mathematical objects from others.

Theapply element is perhaps the single most important content element. It is used to apply a function or operation
to a collection of arguments. The positions of the child schemata are again significant, with the first child denoting the
function to be applied, and the remaining children denoting the arguments of the function in order. Note that theapply
construct always uses prefix notation, like the programming language LISP. In particular, even binary operations such
as subtraction are marked up by applying a prefix subtraction operator to two arguments. For example,a - b would be
marked up as

<mrow>
<apply>

<minus/>
<ci>a</ci>
<ci>b</ci>

</apply>
</mrow>

A number of functions and operations require one or more quantifiers to be well-defined. For example, in addition to
an integrand, a definite integral must specify the limits of integration and the bound variable. For this reason, there are
severalqualifier schemata such asbvar andlowlimit. They are used with operators such asdiff andint.

The declare construct is especially important for content markup that might be evaluated by a computer algebra
system. Thedeclare element provides a basic assignment mechanism, where a variable can be declared to be of a
certain type, with a certain value.

In both the presentation and content markup examples, mathematical expressions are recursively decomposed into
nested, simpler MathML elements specifying each stage of the decomposition. The examples in the following sections
illustrate this with more complex expressions.

2.1.4 Mixing Presentation and Content

Different kinds of markup will be found most appropriate for different kinds of tasks. Documents written before the
World Wide Web became important were most often intended only for visual communication of information, so that
legacy data is probably best translated into pure presentation markup, since semantic information about what the author
meant can only be guessed at heuristically. By contrast, some mathematical applications and pedagogically-oriented
authoring tools will likely choose to be entirely content-based. The majority of applications fall somewhere in between
these extremes. For these applications, the most appropriate markup is a mixture of both presentation and content
markup.

The rules for mixing presentation and content markup derive from the general principle that mixed content should
only be allowed in places where it makes sense. For content markup embedded in presentation markup this basically

21

means that any content fragments should be semantically meaningful, and should not require additional arguments
or quantifiers to be fully specified. For presentation markup embedded in content markup, this usually means that
presentation markup must be contained in a content token element, so that it will be treated as an indivisible notational
unit used as a variable or function name.

Another option is to use asemantics element. Thesemantics element is used to bind MathML expressions to various
kinds of annotations. One common use for thesemantics element is to bind a piece of content markup to some
presentation markup as a semantic annotation. In this way, an author can specify a non-standard notation to be used
when displaying a particular content expression. Another use of thesemantics element is to bind some other kind of
semantic specification, such as an OpenMath expression, to a MathML expression. In this way, thesemantics element
can be used to extend the scope of MathML content markup.

2.2 MathML in a Document

The discussion above has actually been of fragmentary formulas outside the context of any document. To be more
specific let us look at what corresponds to a programming language’s "Hello World!" example. We shall provide more
complete code for an XHTML 1.0 document containing the square of a sum of two variables mentioned above. It would
be

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>
<title>MathML’s Hello Square</title>
</head>

<body>

<p> This is a perfect square:</p>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<msup>
<mfenced>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>

</mrow>
</mfenced>
<mn>2</mn>

</msup>
</mrow>
</math>

</body>
</html>

Here we have the normal structure of an XHTML document. It begins with the start tag<html> embellished with an
XML namespace declaration and language assertions. Ahead element contains a title as is customary. Then the<body>

22

beginning also has a namespace declaration of an abbreviative prefix letterm to be used for the standard MathML
namespace. Next comes a simple paragraph. Finally we get themath element which also has a namespace association
declared. Inside themath element is MathML markup as we are beginning to be used to it. The reasons why one
might have to do a more complex namespace declaration for MathML are explained in Chapter7; they have to do with
present-day limitations in some XML handling, that may be expected to go away.

For the next level of technical detail concerning such matters as!DOCTYPE statements and the like, see the discussion
in Chapter7.

2.3 Some MathML Examples

We continue below to display examples in the form of fragments of MathML markup such as would appear insidemath
elements in real documents. For the sake of clearer exposition of principles, the examples in Chapters 3, 4, 5 and 6
follow this form of giving examples as MathML fragments.

2.3.1 Presentation Examples

Notation:x2 + 4x + 4 = 0.

Markup:

<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>

</msup>
<mo>+</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>x</mi>

</mrow>
<mo>+</mo>
<mn>4</mn>

</mrow>
<mo>=</mo>
<mn>0</mn>

</mrow>

Note the use of nestedmrow elements to denote terms, for example, the left-hand side of the equation functioning as an
operand of ‘=’. Marking terms greatly facilitates spacing for visual rendering, voice rendering, and line breaking. The
InvisibleTimes MathML character entity is used here to indicate to a renderer that there are special spacing rules
between the 4 and the x, and that the 4 and the x should not be broken onto separate lines. In fact, this use of an entity
which was introduced in MathML 1.0 is no longer the way that is preferred. Ultimately all ordinary character data is
given by Unicode values. However, although a character for⁢ is expected in Unicode 3.2, and there
is a suggested code point for under consideration in a Unicode amendment, there is no Unicode 3.0 character to be used
at present. We could use the expected numerical character reference ࠎ but for clarity we will continue to use
entity references in these examples. The situation is explicitly discussed in Section3.2and in Chapter6.

23

Notation:x = −b±
√

b2−4ac
2a .

Markup:

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mo>-</mo>
<mi>b</mi>

</mrow>
<mo>±</mo>
<msqrt>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>

</msup>
<mo>-</mo>
<mrow>
<mn>4</mn>
<mo>⁢</mo>
<mi>a</mi>
<mo>⁢</mo>
<mi>c</mi>

</mrow>
</mrow>

</msqrt>
</mrow>
<mrow>
<mn>2</mn>
<mo>⁢</mo>
<mi>a</mi>

</mrow>
</mfrac>

</mrow>

Themfrac andmsqrt elements are used for generating fractions and square roots, respectively.

Notice that the ‘plus or minus’ sign is given by a special entity name±, though in this case there already
is a Unicode character �B1;. MathML provides a very comprehensive list of character names for mathematical
symbols. In addition to the mathematical symbols needed for screen and print rendering, MathML provides symbols to
facilitate audio rendering. For audio rendering, it is important to be able to automatically determine whether

<mrow>
<mi>z</mi>
<mfenced>
<mrow>
<mi>x</mi>

24

<mo>+</mo>
<mi>y</mi>

</mrow>
</mfenced>

</mrow>

should be read as ‘z times the quantityx plusy’ or ‘ z of x plusy’. The characters⁢ (U+2062) and
⁡ (U+2061) provide a way for authors to directly encode the distinction for audio renderers. For
instance, in the first case⁢ (U+2062) should be inserted after the line containing thez. MathML also
introduces entities likeⅆ (U+2146) representing a ‘differential d’, which renders with slightly different spacing in
print and can be rendered as ‘d’ or ‘with respect to’ in speech. Unless content tags, or some other mechanism, are used
to eliminate the ambiguity, authors should always use these characters here referred to as entities, in order to make their
documents more accessible.

Notation:A =
[

x y
z w

]
.

Markup:

<mrow>
<mi>A</mi>
<mo>=</mo>
<mfenced open="[" close="]">
<mtable>
<mtr>

<mtd><mi>x</mi></mtd>
<mtd><mi>y</mi></mtd>

</mtr>
<mtr>

<mtd><mi>z</mi></mtd>
<mtd><mi>w</mi></mtd>

</mtr>
</mtable>

</mfenced>
</mrow>

Themtable element denotes that a MathML table is being created. Themtr specifies a row of the table and themtd
element holds the data for an element of a row. Most elements have a number of attributes that control the details of
their screen and print rendering. For example, there are several attributes for themfenced element that controls what
delimiters should be used at the beginning and the end of the grouped expression above. The attributes for operator
elements given using<mo> are set to default values determined by a dictionary. For the suggested MathML operator
dictionary, see AppendixF.

2.3.2 Content Examples

Notation:x2 + 4x + 4 = 0.

Markup:

<mrow>
<apply>
<eq/>

25

<apply>
<plus/>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
<apply>
<times/>
<cn>4</cn>
<ci>x</ci>

</apply>
<cn>4</cn>

</apply>
<cn>0</cn>

</apply>
</mrow>

Note that theapply element is used for relations, operators and functions.

Notation:x = −b±
√

b2−4ac
2a .

Markup:

<mrow>
<apply>
<eq/>
<ci>x</ci>
<apply>
<divide/>
<apply>
<mo>±</mo>
<apply>
<minus/>
<ci>b</ci>

</apply>
<apply>
<root/>
<apply>
<minus/>
<apply>
<power/>
<ci>b</ci>
<cn>2</cn>

</apply>
<apply>
<times/>
<cn>4</cn>
<ci>a</ci>
<ci>c</ci>

</apply>

26

</apply>
<cn>2</cn>

</apply>
</apply>
<apply>
<times/>
<cn>2</cn>
<ci>a</ci>

</apply>
</apply>

</apply>
</mrow>

MathML content markup does not directly contain an element for the ‘plus or minus’ operation. Therefore, we use the
mo element to declare that we want the presentation markup for this operator to act as a content operator. This is a simple
example of how presentation and content markup can be mixed to extend content markup.

Notation:A =
(

x y
z w

)
.

Markup:

<mrow>
<apply>
<eq/>
<ci>A</ci>
<matrix>
<matrixrow>
<ci>x</ci>
<ci>y</ci>

</matrixrow>
<matrixrow>
<ci>z</ci>
<ci>w</ci>

</matrixrow>
</matrix>

</apply>
</mrow>

Here we have used thematrix element, and thematrixrow element to wrap the entries in a row of the matrix. Note
that, by default, the rendering of the content elementmatrix includes enclosing parentheses, so we need not directly
encode them. This is quite different from the presentation elementmtable which may or may not refer to a matrix, and
hence requires explicit encoding of parentheses if they are desired.

2.3.3 Mixed Markup Examples

Notation:

t∫
1

dx
x

.

Markup:

27

<mrow>
<semantics>
<mrow>
<msubsup>
<mo>∫</mo>
<mn>1</mn>
<mi>t</mi>

</msubsup>
<mfrac>
<mrow>
<mo>ⅆ</mo>
<mi>x</mi>

</mrow>
<mi>x</mi>

</mfrac>
</mrow>
<annotation-xml encoding="MathML-Content">
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>1</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>
<apply>
<divide/>
<cn>1</cn>
<ci>x</ci>

</apply>
</apply>

</annotation-xml>
</semantics>
</mrow>

In this example, we use thesemantics element to provide a MathML content expression to serve as a ‘semantic
annotation’ for a presentation expression. In the display markup, we have used themsubsup element to attach a subscript
and a superscript to an expression, in this case the integral sign. We also used entities∫ andⅆ to specify the
integral and differential symbols.

The semantics element has as its first child the expression being annotated, and the subsequent children are the
annotations. There is no restriction on the kind of annotation that can be attached using thesemantics element. For
example, one might give a TEX encoding, or computer algebra input in an annotation. The type of annotation is specified
by theencoding attribute and theannotation andannotation-xml elements.

Another common use of thesemantics element arises when one wants to use a content coding, and provide a sugges-
tion for its presentation. In such a case, applied to the formula above we would have the markup:

<semantics>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>1</cn></lowlimit>
<uplimit><ci>t</ci></uplimit>

28

<apply>
<divide/>
<cn>1</cn>
<ci>x</ci>

</apply>
</apply>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<msubsup>
<mo>∫</mo>
<mn>1</mn>
<mi>t</mi>

</msubsup>
<mfrac>
<mrow>
<mo>ⅆ</mo>
<mi>x</mi>

</mrow>
<mi>x</mi>

</mfrac>
</mrow>

</annotation-xml>
</semantics>

This kind of annotation is useful when something other than the default rendering of the content encoding is desired. For
example, by default, some renderers might layout the integrand something like ‘(1/x) dx’. Specifying that the integrand
should by preference render as ‘dx/x’ instead can be accomplished with the use of a MathML Presentation annotation
as shown. Be aware, however, that renderers are not required to take into account information contained in annotations,
and what use is made of them, if any, will depend on the renderer.

2.4 MathML Syntax and Grammar

2.4.1 MathML Syntax and Grammar

MathML is an application of [XML], or Extensible Markup Language, and as such its syntax is governed by the rules of
XML syntax, and its grammar is in part specified by a DTD, or Document Type Definition. In other words, the details
of using tags, attributes, entity references and so on are defined in the XML language specification, and the details about
MathML element and attribute names, which elements can be nested inside each other, and so on are specified in the
MathML DTD. This is in AppendixA.

The W3C in seeking to increase the flexibility of the use of XML for the Web, and to encourage modularization of appli-
cations built with XML, has found that the basic form of a DTD is not sufficiently flexible. Therefore, a W3C Working
Group was created to develop a specification for XML Schemas [XMLSchemas], which are specification documents
that will eventually supersede DTDs. MathML 2.0 is consciously designed so that mathematics may take advantage
of the latest in the evolving Web technology. Thus, there is to be a schema for MathML. For further information on a
MathML schema see AppendixA and theMathML Home Page.

However, MathML also specifies some syntax and grammar rules in addition to the general rules it inherits as an XML
application. These rules allow MathML to encode a great deal more information than would ordinarily be possible
with pure XML, without introducing many more elements, and using a substantially more complex DTD or schema. A

29

http://www.w3.org/Math

grammar for content markup expressions is given in AppendixB. Of course, one drawback to using MathML specific
rules is that they are invisible to generic XML processors and validators.

There are basically two kinds of additional MathML grammar and syntax rules. One kind involves placing additional
criteria on attribute values. For example, it is not possible in pure XML to require that an attribute value be a positive
integer. The second kind of rule specifies more detailed restrictions on the child elements (for example on ordering)
than are given in the DTD or even a schema. For example, it is not possible in XML to specify that the first child be
interpreted one way, and the second in another.

The following sections discuss features both of XML syntax and grammar in general, and of MathML in particular.
Throughout the remainder of the MathML specification, we will usually take care to distinguish between usage required
by XML syntax and the MathML DTD (and schema) and usage required by MathML specific rules. However, we will
frequently allude to ‘MathML errors’ without identifying which part of the specification is being violated.

2.4.2 An XML Syntax Primer

Since MathML is an application of XML, the MathML specification uses the terminology of XML to describe it.
Briefly, XML data is composed of Unicode characters (which include ordinary ASCII characters), ‘entity references’
(informally called ‘entities’) such as< which usually represent ‘extended characters’, and ‘elements’ such as<mi
fontstyle="normal"> x </mi>.

An element quite often encloses other XML data called its ‘content’, or ‘body’, between a ‘start tag’ (sometimes called
a ‘begin tag’) and an ‘end tag’, much as in HTML. There are also ‘empty elements’ such as<plus/>, whose start
tag ends with/> to indicate that the element has no content or end tag. The start tag can contain named parameters
called ‘attributes’, such asfontstyle="normal" in the example above. For further details on XML, consult the XML
specification [XML].

As XML is case-sensitive, MathML element and attribute names are case-sensitive. For reasons of legibility, the
MathML specification defines them almost all in lowercase.

In formal discussions of XML markup, a distinction is maintained between an element, such as anmrow element, and
the tags<mrow> and</mrow> marking it. What is between the<mrow> start tag and the</mrow> end tag is the content,
or body, of themrow element. An ‘empty element’ such asnone is defined to have no body, and so has a single tag of
the form<none/>. Usually, the distinction between elements and tags will not be so finely drawn in this specification.
For instance, we will sometimes refer to the<mrow> and<none/> elements, really meaning the elements whose tags
these are, in order that references to elements are visually distinguishable from references to attributes. However, the
words ‘element’ and ‘tag’ themselves will be used strictly in accordance with XML terminology.

2.4.3 Children versus Arguments

Many MathML elements require a specific number of child elements or attach additional meanings to children in certain
positions. As noted above, these kinds of requirements are MathML specific, and cannot be given entirely using XML
syntax and grammar. When the children of a given MathML element are subject to these kinds of additional conditions,
we will often refer to them asarguments instead of merely as children, in order to emphasize their MathML specific
usage. Note that, especially in Chapter3, the term ‘argument’ is usually used in this technical sense, unless otherwise
noted, and therefore refers to a child element.

In the detailed discussions of element syntax given with each element throughout the MathML specification, the number
of required arguments and their order is implicitly indicated by giving names for the arguments at various positions.
This information is also given for presentation elements in the table of argument requirements in Section3.1.3, and for
content elements in AppendixB.

A few elements have other requirements on the number or type of arguments. These additional requirements are de-
scribed together with the individual elements.

30

2.4.4 MathML Attribute Values

According to the XML language specification, attributes given to elements must have one of the forms

attribute-name = "value"

or

attribute-name = ’value’

where whitespace around the ’=’ is optional.

Attribute names are generally shown in amonospaced font within descriptive text in this specification, just as the
monospaced font is used for examples.

An attribute’s value, which in general in MathML can be a string of arbitrary characters, must be surrounded by a pair
of either double quotes (") or single quotes (’). The kind of quotes not used to surround the value may be included
within it.

MathML uses a more complicated syntax for attribute values than the generic XML syntax required by the MathML
DTD. These additional rules are intended for use by MathML applications, and it is a MathML error to violate them,
though they cannot be enforced by XML processing. The MathML syntax of each attribute value is specified in the
table of attributes provided with the description of each element, using a notation described below. When MathML
applications process attribute values, whitespace is ignored except to separate letter and digit sequences into individual
words or numbers. Attribute values may contain any MathML characters listed in Section6.2 permitted by the syntax
restrictions for an attribute. Character data can be included directly in attribute values, or by using entity references as
described in Section6.2.1.

In particular, the characters", ’, & and< can be included in MathML attribute values (when permitted by the attribute
value syntax) using the entity references", ', & and<, respectively.

The MathML DTD provided in AppendixA declares most attribute value types asCDATA strings. This permits increased
interoperability with existing SGML and XML software and allows extension to the lists of predefined values. Similar
sorts of considerations apply with XML schemas.

2.4.4.1 Syntax notations used in the MathML specification

To describe the MathML-specific syntax of permissible attribute values, the following conventions and notations are
used for most attributes in the present document.

31

Notation What it matches
number decimal integer or rational number (a string of digits with one decimal point), optionally starting

with ’-’
unsigned-number decimal integer or real number, no sign
integer decimal integer, optionally starting with ’-’
positive-integer decimal integer, unsigned, not 0
string arbitrary string (always the entire attribute value)
character single non-whitespace character, or MathML entity reference; whitespace separation is optional
#rrggbb RGB color value; the three pairs of hexadecimal digits in the example #5599dd define propor-

tions of red, green and blue on a scale of x00 through xFF, which gives a strong sky blue.
h-unit unit of horizontal length (allowable units are listed below)
v-unit unit of vertical length (allowable units are listed below)
css-fontfamily explained in the CSS subsection below
css-color-name explained in the CSS subsection below
other italicized words explained in the text for each attribute
form + one or more instances of ’form’
form * zero or more instances of ’form’
f1 f2 ... fn one instance of each form, in sequence, perhaps separated by whitespace
f1 | f2 | ... | fn any one of the specified forms
[form] an optional instance of ’form’
(form) same as form
word in plain text that word, literally present in the attribute value (unless it is obviously part of an explanatory

phrase)
quoted symbol that symbol, literally present in attribute value (e.g. "+" or ’+’)

The order of precedence of the syntax notation operators is, from highest to lowest precedence:

• form + or form *
• f1 f2 ... fn (sequence of forms)
• f1 | f2 | ... | fn (alternative forms)

A string can contain arbitrary characters which are specifiable within XMLCDATA attribute values. See Chapter6 for a
dicussion and complete listing of MathML characters. No syntax rule in MathML includes astring as only part of an
attribute value, only as the entire value.

Adjacent keywords and numbers must be separated by whitespace in the actual attribute values, except for unit identi-
fiers (denoted byh-unit or v-unit syntax symbols) following numbers. Whitespace is not otherwise required, but is
permitted between any of the tokens listed above, except (for compatibility with CSS) immediately before unit identi-
fiers, between the ’-’ signs and digits of negative numbers, or between# or rrggbb andrgb

Numerical attribute values for dimensions that should depend upon the current font can be given in font-related units,
or in named absolute units (described in a separate subsection below). Horizontal dimensions are conventionally given
in em’s, and vertical dimensions inex’s, by immediately following a number by one of the unit identifiersem or ex. For
example, the horizontal spacing around an operator such as ‘+’ is conventionally given inems, though other units can be
used. Using font-related units is usually preferable to using absolute units, since it allows renderings to grow or shrink
in proportion to the current font size.

For most numerical attributes, only those in a subset of the expressible values are sensible; values outside this subset
are not errors, unless otherwise specified, but rather are rounded up or down (at the discretion of the renderer) to the
closest value within the allowed subset. The set of allowed values may depend on the renderer, and is not specified by
MathML.

If a numerical value within an attribute value syntax description is declared to allow a minus sign (’-’), e.g.number or
integer, it is not a syntax error when one is provided in cases where a negative value is not sensible. Instead, the value

32

should be handled by the processing application as described in the preceding paragraph. An explicit plus sign (’+’) is
not allowed as part of a numerical value except when it is specifically listed in the syntax (as a quoted ’+’ or "+"), and
its presence can change the meaning of the attribute value (as documented with each attribute which permits it).

The symbolsh-unit, v-unit, css-fontfamily, andcss-color-name are explained in the following subsections.

2.4.4.2 Attributes with units

Some attributes accept horizontal or vertical lengths as numbers followed by a ‘unit identifier’ (often just called a ‘unit’).
The syntax symbolsh-unit andv-unit refer to a unit for horizontal or vertical length, respectively. The possible units
and the lengths they refer to are shown in the table below; they are the same for horizontal and vertical lengths, but the
syntax symbols are distinguished in attribute syntaxes as a reminder of the direction each is used in.

The unit identifiers and meanings are taken from CSS. However, the syntax of numbers followed by unit identifiers in
MathML is not identical to the syntax of length values with units in CSS style sheets, since numbers in CSS cannot end
with decimal points, and are allowed to start with ’+’ signs.

The possible horizontal or vertical units in MathML are:

Unit identifier Unit description
em em (font-relative unit traditionally used for horizontal lengths)
ex ex (font-relative unit traditionally used for vertical lengths)
px pixels, or pixel size of the current display
in inches (1 inch = 2.54 centimeters)
cm centimeters
mm millimeters
pt points (1 point = 1/72 inch)
pc picas (1 pica = 12 points)
% percentage of default value

The typesetting unitsem andex are defined in AppendixH, and discussed further under ‘Additional notes’ below.

% is a ‘relative unit’; when an attribute value is given asn% (for any numerical valuen), the value being specified is the
default value for the property being controlled multiplied byn divided by 100. The default value (or the way in which
it is obtained, when it is not constant) is listed in the table of attributes for each element, and its meaning is described in
the subsequent documentation about that attribute. (Thempadded element has its own syntax for% and does not allow
it as a unit identifier.)

For consistency with CSS, length units in MathML are rarely optional. When they are, the unit symbol is enclosed
in square brackets in the attribute syntax, following the number to which it applies, e.g.number [h-unit]. The
meaning of specifying no unit is given in the documentation for each attribute; in general it is that the number given is a
multiplier for the default value of the attribute. (In such cases, specifying the numbernnn without a unit is equivalent to
specifying the numbernnn times 100 followed by%. For example,<mo maxsize="2"> (</mo> is equivalent to<mo
maxsize="200%"> (</mo>.)

As a special exception (also consistent with CSS), a numerical value equal to 0 need not be followed by a unit identifier
even if the syntax specified here requires one. In such cases, the unit identifier (or lack of one) would not matter, since
0 times any unit is 0.

For most attributes, the typical unit which would be used to describe them in typesetting is chosen as the one used in
that attribute’s default value in this specification; when a specific default value is not given, the typical unit is usually
mentioned in the syntax table or in the documentation for that attribute. The most common units areem or ex. However,
any unit can be used, unless otherwise specified for a specific attribute.

33

Additional notes about units

Note that some attributes, e.g.framespacing on a<mtable>, can contain more than one numerical value, each fol-
lowed by its own unit.

It is conventional to use the font-relative unitex mainly for vertical lengths, andem mainly for horizontal lengths, but
this is not required. These units are relative to the font and font size which would be used for rendering the element in
whose attribute value they are specified, which means they should be interpretedafter attributes such asfontfamily
andfontsize are processed, if those occur on the same element, since changing the current font or font size can change
the length of one of these units.

The definition of the length of each unit, but not the MathML syntax for length values, is as specified in CSS, except
that if a font provides specific values forem andex which differ from the values defined by CSS (the font size and
‘x’-height respectively), those values should be used.

2.4.4.3 CSS-compatible attributes

Several MathML attributes, listed below, correspond closely to text rendering properties defined originally in [CSS1].
In MathML 1.01, the names and values of these attributes were aligned with the CSS Recommendation where possible.
This was done so that renderers in CSS environments could query the environment for the corresponding property when
determining the default values for the attributes.

Allowing style properties to be set both via MathML attributes and CSS stylesheets has drawbacks. At a minimum,
its confusing, and at worst, it leads to the meaning of equations being inadvertently changed by document-wide CSS
changes. For these reasons, these attributes have beendeprecated. In their place, MathML 2.0 introduces four new
mathematical style attributes. These attributes use logical values to better capture the abstract categories of letter-like
symbols used in math, and afford a much cleaner separation between MathML and CSS. See Section3.2.2for more
details.

For reference, a table showing the correspondence of the deprecated MathML 1.01 style attribute with the CSS coun-
terparts is given below:

MathML attribute CSS property syntax symbol MathML elements refer to
fontsize font-size - presentation tokens;mstyle Section3.2.2
fontweight font-weight - presentation tokens;mstyle Section3.2.2
fontstyle font-style - presentation tokens;mstyle Section3.2.2
fontfamily font-family css-fontfamily presentation tokens;mstyle Section3.2.2
color color css-color-name presentation tokens;mstyle Section3.3.4
background background css-color-name mstyle Section3.3.4

See also Section2.4.5below for a discussion of theclass, style andid attributes for use with style sheets.

Order of processing attributes versus style sheets

CSS or analogous style sheets can specify changes to rendering properties of selected MathML elements. Since render-
ing properties can also changed by attributes on an element, or changed automatically by the renderer, it is necessary to
specify the order in which changes from various sources occur. An example of automatic adjustment is what happens
for fontsize, as explained in the discussion onscriptlevel in Section3.3.4. In the case of ‘absolute’ changes, i.e.,
setting a new property value independent of the old value (as opposed to ‘relative’ changes, such as increments or mul-
tiplications by a factor), the absolute change performed last will be the only absolute change which is effective, so the
sources of changes which should have the highest priority must be processed last.

In the case of CSS, the order of processing of changes from various sources which affect one MathML element’s
rendering properties should be as follows:

34

(first changes; lowest priority)

• Automatic changes to properties or attributes based on the type of the parent element, and this element’s
position in the parent, as for the changes tofontsize in relation toscriptlevel mentioned above; such
changes will usually be implemented by the parent element itself before it passes a set of rendering properties
to this element

• From a style sheet from the reader: styles which arenot declared ‘important’
• Explicit attribute settings on this MathML element
• From a style sheet from the author: styles which arenot declared ‘important’
• From a style sheet from the author: styles whichare declared ‘important’
• From a style sheet from the reader: styles whichare declared ‘important’

(last changes; highest priority)

Note that the order of the changes derived from CSS style sheets is specified by CSS itself (this is the order specified
by CSS2). The following rationale is related only to the issue of where in this pre-existing order the changes caused by
explicit MathML attribute settings should be inserted.

Rationale: MathML rendering attributes are analogous to HTML rendering attributes such asalign, which the CSS
section on cascading order specifies should be processed with the same priority. Furthermore, this choice of priority
permits readers, by declaring certain CSS styles as ‘important’, to decide which of their style preferences should override
explicit attribute settings in MathML. Since MathML expressions, whether composed of ‘presentation’ or ‘content’
elements, are primarily intended to convey meaning, with their ‘graphic design’ (if any) intended mainly to aid in that
purpose but not to be essential in it, it is likely that readers will often want their own style preferences to have priority;
the main exception will be when a rendering attribute is intended to alter the meaning conveyed by an expression, which
is generally discouraged in the presentation attributes of MathML.

2.4.4.4 Default values of attributes

Default values for MathML attributes are in general given along with the detailed descriptions of specific elements in
the text. Default values shown in plain text in the tables of attributes for an element are literal (unless they are obviously
explanatory phrases), but when italicized are descriptions of how default values can be computed.

Default values described asinherited are taken from the rendering environment, as described undermstyle, or in some
cases (described individually) from the values of other attributes of surrounding elements, or from certain parts of those
values. The value used will always be one which could have been specified explicitly, had it been known; it will never
depend on the content or attributes of the same element, only on its environment. (What it means when used may,
however, depend on those attributes or the content.)

Default values described asautomatic should be computed by a MathML renderer in a way which will produce a high-
quality rendering; how to do this is not usually specified by the MathML specification. The value computed will always
be one which could have been specified explicitly, had it been known, but it will usually depend on the element content
and possibly on the rendering environment.

Other italicized descriptions of default values which appear in the tables of attributes are explained for each attribute
individually.

The single or double quotes which are required around attribute values in an XML start tag are not shown in the tables
of attribute value syntax for each element, but are shown around example attribute values in the text.

Note that, in general, there is no value which can be given explicitly for a MathML attribute which will simulate the
effect of not specifying the attribute at all for attributes which areinherited or automatic. Giving the words ‘inherited’
or ‘automatic’ explicitly will not work, and is not generally allowed. Furthermore, even for presentation attributes for
which a specific default value is documented here, themstyle element (Section3.3.4) can be used to change this for

35

the elements it contains. Therefore, the MathML DTD declares most presentation attribute default values as#IMPLIED,
which prevents XML preprocessors from adding them with any specific default value. This point of view is carried
through to the MathML schema.

2.4.4.5 Attribute values in the MathML DTD

In an XML DTD, allowed attribute values can be declared as general strings, or they can be constrained in various ways,
either by enumerating the possible values, or by declaring them to be certain special data types. The choice of an XML
attribute type affects the extent to which validity checks can be performed using a DTD.

The MathML DTD specifies formal XML attribute types for all MathML attributes, including enumerations of legiti-
mate values in some cases. In general, however, the MathML DTD is relatively permissive, frequently declaring attribute
values as strings; this is done to provide for interoperability with SGML parsers while allowing multiple attributes on
one MathML element to accept the same values (such astrue andfalse), and also to allow extension to the lists of
predefined values.

At the same time, even though an attribute value may be declared as a string in the DTD, only certain values are
legitimate in MathML, as described above and in the rest of this specification. For example, many attributes expect
numerical values. In the sections which follow, the allowed attribute values are described for each element. To determine
when these constraints are actually enforced in the MathML DTD, consult AppendixA. However, lack of enforcement
of a requirement in the DTD doesnot imply that the requirement is not part of the MathML language itself, or that it
will not be enforced by a particular MathML renderer. (See Section7.2.2for a description of how MathML renderers
should respond to MathML errors.)

Furthermore, the MathML DTD is provided for convenience; although it is intended to be fully compatible with the
text of the specification, the text should be taken as definitive if there is a contradiction. (Any contradictions which may
exist between various chapters of the text should be resolved by favoring Chapter6 first, then Chapter3, Chapter4,
then Section2.4, and then other parts of the text.) For the MathML schema the situation will be the same: the published
Recommendation text takes precedence. Though this is what is intended to happen, there is a practical difficulty. If the
system processing the MathML uses a validating parser, whether it be based on a DTD or on a schema, the process will
probably simply stop when it hits something held to be incorrect syntax, whether or not further MathML processing in
full harmony with the specification would have processed the piece correctly.

2.4.5 Attributes Shared by all MathML Elements

In order to facilitate use with style sheet mechanisms such as [XSLT] and [CSS2] all MathML elements acceptclass,
style, andid attributes in addition to the attributes described specifically for each element. MathML renderers not
supporting CSS may ignore these attributes. MathML specifies these attribute values as general strings, even if style
sheet mechanisms have more restrictive syntaxes for them. That is, any value for them is valid in MathML.

In order to facilitate compatibility with linking mechanisms, all MathML elements accept thexlink:href attribute.

All MathML elements also accept thexref attribute for use in parallel markup (Section5.3). Theid is also used in this
context.

Every MathML element, because of a legacy from MathML 1.0, also accepts thedeprecatedattributeother (Sec-
tion 7.2.3) which was conceived for passing non-standard attributes without violating the MathML DTD. MathML
renderers are only required to process this attribute if they respond to any attributes which are not standard in MathML.
However, the use ofother is strongly deprecated when there are already other ways within MathML of passing specific
information.

See also Section3.2.2for a list of MathML attributes which can be used on most presentation token elements.

36

2.4.6 Collapsing Whitespace in Input

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there. Whites-
pace occurring within the content of token elements is ‘trimmed’ from the ends, i.e., all whitespace at the beginning and
end of the content is removed. Whitespace internal to content of MathML elements is ‘collapsed’ canonically, i.e., each
sequence of 1 or more whitespace characters is replaced with one space character (sometimes called a blank character).

In MathML, as in XML, ‘whitespace’ means simple spaces, tabs, newlines, or carriage returns, i.e., characters with
hexadecimal Unicode codesU+0020, U+0009, U+000A, or U+000D, respectively.

For example,<mo> (</mo> is equivalent to<mo>(</mo>, and

<mtext>
Theorem
1:

</mtext>

is equivalent to<mtext>Theorem 1:</mtext>.

Authors wishing to encode whitespace characters at the start or end of the content of a token, or in sequences other than
a single space, without having them ignored, must use or other ‘whitespace’ non-marking entities as described
in Section6.2.4. For example, compare

<mtext>
Theorem
1:

</mtext>

with

<mtext>
 Theorem 1:
</mtext>

When the first example is rendered, there is no whitespace before ‘Theorem’, one space between ‘Theorem’ and ‘1:’, and
no whitespace after ‘1:’. In the second example, a single space is rendered before ‘Theorem’, two spaces are rendered
before ‘1:’, and there is no whitespace after the ‘1:’.

Note that thexml:space attribute does not apply in this situation since XML processors pass whitespace in tokens to a
MathML processor; it is the MathML processing rules which specify that whitespace is trimmed and collapsed.

For whitespace occurring outside the content of the token elementsmi, mn, mo, ms, mtext, ci, cn andannotation, an
mspace element should be used, as opposed to anmtext element containing only ‘whitespace’ entities.

37

Chapter 3

Presentation Markup

3.1 Introduction

This chapter specifies the ‘presentation’ elements of MathML, which can be used to describe the layout structure of
mathematical notation.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the ‘constructors’ of traditional mathematical notation - that is, to the basic kinds
of symbols and expression-building structures out of which any particular piece of traditional mathematical notation is
built. Because of the importance of traditional visual notation, the descriptions of the notational constructs the elements
represent are usually given here in visual terms. However, the elements are medium-independent in the sense that
they have been designed to contain enough information for good spoken renderings as well. Some attributes of these
elements may make sense only for visual media, but most attributes can be treated in an analogous way in audio as well
(for example, by a correspondence between time duration and horizontal extent).

MathML presentation elements only suggest (i.e. do not require) specific ways of rendering in order to allow for
medium-dependent rendering and for individual preferences of style. This specification describes suggested visual ren-
dering rules in some detail, but a particular MathML renderer is free to use its own rules as long as its renderings are
intelligible.

The presentation elements are meant to express the syntactic structure of mathematical notation in much the same way
as titles, sections, and paragraphs capture the higher-level syntactic structure of a textual document. Because of this, for
example, a single row of identifiers and operators, such as ‘x + a / b’, will often be represented not just by onemrow
element (which renders as a horizontal row of its arguments), but by multiple nestedmrow elements corresponding to
the nested sub-expressions of which one mathematical expression is composed - in this case,

<mrow>
<mi> x </mi>
<mo> + </mo>
<mrow>
<mi> a </mi>
<mo> / </mo>
<mi> b </mi>

</mrow>
</mrow>

Similarly, superscripts are attached not just to the preceding character, but to the full expression constituting their base.
This structure allows for better-quality rendering of mathematics, especially when details of the rendering environment

38

such as display widths are not known to the document author; it also greatly eases automatic interpretation of the
mathematical structures being represented.

Certain MathML characters are used to name operators or identifiers that in traditional notation render the same as other
symbols, such asⅆ, ⅇ, or ⅈ, or operators that usually render invisibly,
such as⁢, ⁡, or ⁣. These are distinct notational symbols or
objects, as evidenced by their distinct spoken renderings and in some cases by their effects on linebreaking and spacing
in visual rendering, and as such should be represented by the appropriate specific entity references. For example, the
expression represented visually as ‘f (x)’ would usually be spoken in English as ‘f of x’ rather than just ‘f x’; this is
expressible in MathML by the use of the⁡ operator after the ‘f ’, which (in this case) can be aurally
rendered as ‘of’.

The complete list of MathML entities is described in Chapter6.

3.1.2 Terminology Used In This Chapter

It is strongly recommended that, before reading the present chapter, one read Section2.4 on MathML syntax and
grammar, which contains important information on MathML notations and conventions. In particular, in this chapter it
is assumed that the reader has an understanding of basic XML terminology described in Section2.4.2, and the attribute
value notations and conventions described in Section2.4.4.

The remainder of this section introduces MathML-specific terminology and conventions used in this chapter.

3.1.2.1 Types of presentation elements

The presentation elements are divided into two classes.Token elements represent individual symbols, names, numbers,
labels, etc. In general, tokens can have only characters as content. The only exceptions are the vertical alignment
elementmalignmark, mglyph, and entity references.Layout schemata build expressions out of parts, and can have
only elements as content (except for whitespace, which they ignore). There are also a few empty elements used only in
conjunction with certain layout schemata.

All individual ‘symbols’ in a mathematical expression should be represented by MathML token elements. The primary
MathML token element types are identifiers (e.g. variables or function names), numbers, and operators (including
fences, such as parentheses, and separators, such as commas). There are also token elements for representing text or
whitespace that has more aesthetic than mathematical significance, and for representing ‘string literals’ for compatibility
with computer algebra systems. Note that although a token element represents a single meaningful ‘symbol’ (name,
number, label, mathematical symbol, etc.), such symbols may be comprised of more than one character. For example
sin and24 are represented by the single tokens<mi>sin</mi> and<mn>24</mn> respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller expressions, and ultimately
out of single symbols, with the parts grouped and positioned using one of a small set of notational structures, which can
be thought of as ‘expression constructors’. In MathML, expressions are constructed in the same way, with the layout
schemata playing the role of the expression constructors. The layout schemata specify the way in which sub-expressions
are built into larger expressions. The terminology derives from the fact that each layout schema corresponds to a different
way of ‘laying out’ its sub-expressions to form a larger expression in traditional mathematical typesetting.

3.1.2.2 Terminology for other classes of elements and their relationships

The terminology used in this chapter for special classes of elements, and for relationships between elements, is as
follows: The presentation elements are the MathML elements defined in this chapter. These elements are listed in
Section3.1.6. Thecontent elements are the MathML elements defined in Chapter4. The content elements are listed in
Section4.4.

39

A MathML expression is a single instance of any of the presentation elements with the exception of the empty elements
none ormprescripts, or is a single instance of any of the content elements which are allowed as content of presentation
elements (described in Section5.2.4). A sub-expression of an expressionE is any MathML expression that is part of
the content ofE, whetherdirectly or indirectly, i.e. whether it is a ‘child’ ofE or not.

Since layout schemata attach special meaning to the number and/or positions of their children, a child of a layout schema
is also called anargument of that element. As a consequence of the above definitions, the content of a layout schema
consists exactly of a sequence of zero or more elements that are its arguments.

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1, 2, or 3). In the detailed de-
scriptions of element syntax given below, the number of required arguments is implicitly indicated by giving names
for the arguments at various positions. A few elements have additional requirements on the number or type of argu-
ments, which are described with the individual element. For example, some elements accept sequences of zero or more
arguments - that is, they are allowed to occur with no arguments at all.

Note that MathML elements encoding rendered spacedo count as arguments of the elements in which they appear. See
Section3.2.7for a discussion of the proper use of such space-like elements.

3.1.3.1 Inferred mrows

The elements listed in the following table as requiring 1* argument (msqrt, mstyle, merror, menclose, mpadded,
mphantom, mtd, andmath) actually accept any number of arguments. However, if the number of arguments is 0, or is
more than 1, they treat their contents as a singleinferred mrow formed from all their arguments. Although themath
element is not a presentation element, it is listed below for completeness.

For example,

<mtd>
</mtd>

is treated as if it were

<mtd>
<mrow>
</mrow>

</mtd>

and

<msqrt>
<mo> - </mo>
<mn> 1 </mn>

</msqrt>

is treated as if it were

<msqrt>
<mrow>
<mo> - </mo>
<mn> 1 </mn>

40

</mrow>
</msqrt>

This feature allows MathML data not to contain (and its authors to leave out) manymrow elements that would otherwise
be necessary.

In the descriptions in this chapter of the above-listed elements’ rendering behaviors, their content can be assumed to
consist of exactly one expression, which may be anmrow element formed from their arguments in this manner. However,
their argument counts are shown in the following table as 1*, since they are most naturally understood as acting on a
single expression.

3.1.3.2 Table of argument requirements

For convenience, here is a table of each element’s argument count requirements, and the roles of individual arguments
when these are distinguished. An argument count of 1* indicates an inferredmrow as described above.

Element Required argument count Argument roles (when these differ by position)
mrow 0 or more
mfrac 2 numerator denominator
msqrt 1*
mroot 2 base index
mstyle 1*
merror 1*
mpadded 1*
mphantom 1*
mfenced 0 or more
menclose 1*
msub 2 base subscript
msup 2 base superscript
msubsup 3 base subscript superscript
munder 2 base underscript
mover 2 base overscript
munderover 3 base underscript overscript
mmultiscripts 1 or more base (subscript superscript)* [<mprescripts/> (presubscript presuperscript)*]
mtable 0 or more rows 0 or moremtr or mlabeledtr elements
mlabeledtr 1 or more a label and 0 or moremtd elements
mtr 0 or more 0 or moremtd elements
mtd 1*
maction 1 or more depend onactiontype attribute
math 1*

3.1.4 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such special behaviors are dis-
cussed in the detailed element descriptions below. However, for convenience, some of the most important classes of
special behavior are listed here.

Certain elements are considered space-like; these are defined in Section3.2.7. This definition affects some of the sug-
gested rendering rules formo elements (Section3.2.5).

Certain elements, e.g.msup, are able to embellish operators that are their first argument. These elements are listed in
Section3.2.5, which precisely defines an ‘embellished operator’ and explains how this affects the suggested rendering
rules for stretchy operators.

41

Certain elements treat their arguments as the arguments of an ‘inferredmrow’ if they are not given exactly one argument,
as explained in Section3.1.3.

In MathML 1.x, themtable element could infermtr elements around its arguments, and themtr element could infer
mtd elements. In MathML 2.0,mtr andmtd elements must be explicit. However, for backward compatibility renderers
may wish to continue supporting inferredmtr andmtd elements.

3.1.5 Bidirectional Layout

The term ’bidirectional layout’ refers to the fact that letters from certain scripts, in particular Arabic and Hebrew, are
written from right to left, and that mixing these with numbers or letters from scripts written left- to-right results in text
runs of two differing directions within the same line or paragraph.

For ordinary text, Unicode defines a bidirectional algorithm [Bidi]. This algorithm assumes that the order of characters
in a ’backing store’ is in logical order (i.e. in the order it would be pronounced or typed in), and defines how the
characters get reordered for display based on character properties and other directives. HTML, CSS, XSL, and SVG
adopt this algorithm and provide ways to control it via markup or styling.

In mathematical expressions, bidirectional layout is more difficult than it is in text. In part, this is due to the 2-
dimensional nature of mathematical layout, and the fact that spatial relationships are often used to convey meaning
in mathematics notation. Another factor is the lack of established conventions for bidirectional mathematics layout,
since this is relatively uncommon, even in right-to-left contexts.

For these reasons, MathML 2.0 only adopts a restricted version of the Unicode Bidirectional algorithm, as described in
the remainder of this section.

3.1.5.1 Bidirectional Layout in Token Elements

For MathML token elements that can contain text (mtext, mo, mi, mn andms), theimplicit part of the Unicode bidirec-
tional algorithm [Bidi] is applied when its content is rendered visually (i.e. characters are reordered based on character
properties). The base directionality is left-to-right.

The implicit part of the Unicode bidirectional algorithm is identical to straightforward left-to-right layout if there is only
one character, or if there are no strong right-to-left characters (i.e. no characters from the Arabic, Hebrew, or similar
scripts).

Applications are not required to apply the Unicode bidirectional algorithm if they do not render strong right-to-left
characters.

Please note that for the transfinite cardinals represented by Hebrew characters, the codepoints U+2135-U+2138 (ALEF
SYMBOL, BET SYMBOL, GIMEL SYMBOL, DALET SYMBOL) should be used. These are strong left-to-right.

3.1.5.2 Bidirectional Layout of Mathematics Formulas

MathML 2.0 does not address right-to-left or bidirectional layout in mathematics formulas. Only left-to-right layout is
supported. Right-to-left layout of mathematical formulas may be addressed in a future version of MathML.

42

3.1.6 Summary of Presentation Elements

3.1.6.1 Token Elements

mi identifier
mn number
mo operator, fence, or separator
mtext text
mspace space
ms string literal
mglyph adding new character glyphs to MathML

3.1.6.2 General Layout Schemata

mrow group any number of sub-expressions horizontally
mfrac form a fraction from two sub-expressions
msqrt form a square root (radical without an index)
mroot form a radical with specified index
mstyle style change
merror enclose a syntax error message from a preprocessor
mpadded adjust space around content
mphantom make content invisible but preserve its size
mfenced surround content with a pair of fences
menclose enclose content with a stretching symbol such as a long division sign.

3.1.6.3 Script and Limit Schemata

msub attach a subscript to a base
msup attach a superscript to a base
msubsup attach a subscript-superscript pair to a base
munder attach an underscript to a base
mover attach an overscript to a base
munderover attach an underscript-overscript pair to a base
mmultiscripts attach prescripts and tensor indices to a base

3.1.6.4 Tables and Matrices

mtable table or matrix
mlabeledtr row in a table or matrix with a label or equation number
mtr row in a table or matrix
mtd one entry in a table or matrix
maligngroup andmalignmark alignment markers

3.1.6.5 Enlivening Expressions

maction bind actions to a sub-expression

3.2 Token Elements

Token elements in presentation markup are broadly intended to represent the smallest units of mathematical notation
which carry meaning. Tokens are roughly analogous to words in text. However, because of the precise, symbolic na-

43

ture of mathematical notation, the various categories and properties of token elements figure prominently in MathML
markup. By contrast, in textual data, individual words rarely need to be marked up or styled specially.

Frequently tokens consist of a single character denoting a mathematical symbol. Other cases, e.g. function names,
involve multi-character tokens. Further, because traditional mathematical notation makes wide use of symbols distin-
guished by their typographical properties (e.g. a Fraktur ’g’ for a Lie algebra, or a bold ’x’ for a vector), care must be
taken to insure that styling mechanisms respect typographical properties which carry meaning. Consequently, charac-
ters, tokens, and typographical properties of symbols are closely related to one another in MathML.

3.2.1 MathML characters in token elements

Character data in MathML markup is only allowed to occur as part of the content of token elements. The only exception
is whitespace between elements, which is ignored. Token elements can contain any sequence of zero or more Unicode
characters. In particular, tokens with empty content are allowed, and should typically render invisibly, with no width
except for the normal extra spacing for that kind of token element. The exceptions to this are the empty elements
mspace andmglyph. The mspace element’s width depends upon its attribute values. Themglyph element renders
using the character described by its attributes.

While all Unicode character data is valid in token element content, MathML 2.0 distinguishes a special subset of named
Unicode 3.2 characters, called MathML characters in this document. The complete list of MathML characters is defined
in Chapter6. MathML characters can be either represented directly as Unicode character data, or indirectly via numeric
or character entity references. See Chapter6 for a discussion of the advantages and disadvantages of numeric character
references versus entity references. New mathematics characters that arise, or non-standard glyphs for existing MathML
characters, may be represented by means of themglyph element.

Apart from themglyph element, themalignmark element is the only other element allowed in the content of tokens.
See Section3.5.5for details.

Token elements (other thanmspace andmglyph) should be rendered as their content (i.e. in the visual case, as a closely-
spaced horizontal row of standard glyphs for the characters in their content). Rendering algorithms should also take into
account the mathematics style attributes as described below, and modify surrounding spacing by rules or attributes
specific to each type of token element.

3.2.1.1 Letter-like symbol characters

A large class of mathematical symbols are single letter identifiers typically used as variable names in formulas. Different
font variants of a letter are treated as separate symbols. For example, a Fraktur ’g’ might denote a Lie algebra, while
a Roman ’g’ denotes the corresponding Lie group. These letter-like symbols are traditionally typeset differently than
the same characters appearing in text, using different spacing and ligature conventions. These characters must also be
treated specially by style mechanisms, since arbitrary style transformations can change meaning in an expression.

For these reasons, Unicode 3.1 will be adding more than nine hundred Math Alphabet characters corresponding to letter-
like symbols. These characters are in the Secondary Multilingual Plane (SMP). See Chapter6 for more information.
As valid Unicode data, these characters are permitted in MathML 2.0, and as tools and fonts for them become widely
available, we anticipate they will be the predominant way of denoting letter-like symbols.

Until support for SMP characters is widely available, however, it is still necessary to provide an alternative encoding
using only Basic Multilingual Plane (BMP) characters together with markup. MathML 2.0 defines a correspondence
between token elements with certain combinations of BMP character data and themathvariant attribute and tokens
containing SMP Math Alphabet characters. Processing applications that accept SMP characters are required to treat the
corresponding BMP and attribute combinations identically. The next section discusses themathvariant attribute in
more detail, and a complete technical description of the corresponding characters is given in Section6.2.3.

44

3.2.2 Mathematics style attributes common to token elements

MathML 2.0 introduces four newmathematics style attributes. These attributes are valid on all presentation token
elements exceptmspace andmglyph, and on no other elements exceptmstyle. The attributes are:

Name values default
mathvariant normal | bold | italic | bold-italic | double-struck | bold-fraktur | script |

bold-script | fraktur | sans-serif | bold-sans-serif | sans-serif-italic | sans-
serif-bold-italic | monospace

normal (except on <mi>)

mathsize small | normal | big | number v-unit inherited
mathcolor #rgb | #rrggbb | html-color-name inherited
mathbackground #rgb | #rrggbb | html-color-name inherited

(See Section2.4.4for terminology and notation used in attribute value descriptions.)

The mathematics style attributes define logical classes of token elements. Each class is intended to correspond to a
collection of typographically-related symbolic tokens that have a meaning within a given math expression, and therefore
need to be visually distinguished and protected from inadvertent document-wide style changes which might change their
meanings.

When MathML rendering takes place in an environment where CSS is available, the mathematics style attributes can
be viewed as predefined selectors for CSS style rules. See Section7.1.5and AppendixG for further discussion and a
sample CSS style sheet. When CSS is not available, it is up to the internal style mechanism of the rendering application
to visually distinguish the different logical classes.

At a theoretical level, renderers have a complete freedom in mapping mathematics style attributes to specific render-
ing properties. However, in practice, the mathematics style attribute names and values suggest obvious typographical
properties, and renderers should attempt to respect these natural interpretations as far as possible. For example, it is rea-
sonable to render a token with themathvariant attribute set tosans-serif in Helvetica or Arial. However, rendering
the token in a Times Roman font could be seriously misleading and should be avoided.

A issue arises in that the natural interpretations of themathvariant attribute values only make sense for certain char-
acters. For example, there is no clear cut rendering for a ’fraktur’ alpha, or a ’bold italic’ Kanji character. In general, the
only cases that have a clear interpretation are exactly the ones that correspond to SMP Math Alphabet characters.

Consequently, style sheet authors and application developers are encouraged in the strongest possible terms to respect
the obvious typographical interpretation of themathvariant attribute when applied to characters that have SMP Math
Alphabet counterparts. In all other cases, it is up to the renderer to determine what effect, if any, themathvariant
attribute will have. For example, a renderer might sensibly choose to display a token with the contents∑ (a character
with no SMP counterpart) in bold face font if it has themathvariant attribute set tobold or to bold-fraktur,
and to display it in a default Roman font if themathvariant attribute is set tofraktur. As this example indicates,
authors should refrain from using themathvariant attribute with characters that do not have SMP counterparts, since
renderings may not be useful or predictable.

Finally, there is a redundancy problem with themathvariant attribute that must be dealt with as a special case. When
the mathvariant attribute is used on anmi element containing a single character from the specific ranges of BMP
character data detailed in Section6.2.3, the resulting rendering will be visually indistinguishable from anmi element
with no attributes containing the corresponding SMP character. Therefore MathML 2.0 mandates that processing appli-
cations treat these two representations as equivalent. This is primarily an issue for applications that support searching
and/or equality testing.

Tokens elements also permitid, xref, class andstyle attributes for compatibility with style sheet mechanisms, as
described in Section2.4.5. However, some care must be taken when using CSS generally. Using CSS to produce visual
effects that alter the meaning of an equation should be especially avoided, since MathML is used in many non-CSS

45

environments. Similarly, care should be taken to insure arbitrary document-wide style transformations do not affect
mathematics expressions in such a way that meaning is altered.

Since MathML expressions are often embedded in a textual data format such as XHTML, the surrounding text and
the MathML must share rendering attributes such as font size, so that the renderings will be compatible in style. For
this reason, most attribute values affecting text rendering are inherited from the rendering environment, as shown in
the ‘default’ column in the table above. (In cases where the surrounding text and the MathML are being rendered by
separate software, e.g. a browser and a plug-in, it is also important for the rendering environment to provide the MathML
renderer with additional information, such as the baseline position of surrounding text, which is not specified by any
MathML attributes.) Note, however, that MathML 2.0 doesn’t specify the mechanism by which style information is
inherited from the rendering environment. For example, one browser plug-in might choose to rely completely on the
CSS inheritance mechanism and use the fully resolved CSS properties for rendering, while another application might
only consult a style environment at the root node, and then use its own internal style inheritance rules.

Most MathML renderers will probably want to rely on some degree to additional, internal style processing algorithms. In
particular, inheritance of themathvariant attribute does not follow the CSS model. The default value for this attribute
is normal (non-slanted) for all tokens exceptmi. For mi tokens, the default depends on the number of characters in
tokens’ content. (Thedeprecatedfontslant attribute also behaves this way.) See Section3.2.3for details.

3.2.2.1 Deprecated style attributes on token elements

The MathML 1.01 style attributes listed below have beendeprecatedin MathML 2.0. In rendering environments that
support CSS, it is preferable to use CSS to control the rendering properties corresponding to these attributes. However
as explained above, direct manipulation of these rendering properties by whatever means should usually be avoided.

If both a new mathematics style attribute and conflicting deprecated attributes are given, the new math style attribute
value should be used. For example

<mi fontweight=’bold’ mathvariant=’normal’> a </mi>

should render in a normal weight font, and

<mi fontweight=’bold’ mathvariant=’sans-serif’> a </mi>

should render in a normal weight sans serif font. In the example

<mi fontweight=’bold’ mathvariant=’fraktur’> a1 </mi>

themathvariant attribute still overridesfontweight attribute, even thoughfraktur generally shouldn’t be applied
to a ’1’ since there is no corresponding SMP letter-like Math Alphabetic character. In the absence of fonts containing
Fraktur digits, this would probably render as a Fraktur ’a’ followed by a Roman ’1’ in most renderers.

At the same time, the MathML 1.01 attributes still serve a purpose. Since they correspond directly to rendering properties
needed for mathematics layout, they are very useful for describing MathML layout rules and algorithms. For this reason,
and for backward compatibility, the MathML rendering rules suggested in this chapter continue to be described in terms
of the rendering properties described by these MathML 1.01 style attributes.

The deprecated attributes are:

Name values default
fontsize number v-unit inherited
fontweight normal | bold inherited
fontstyle normal | italic normal (except on <mi>)
fontfamily string | css-fontfamily inherited
color #rgb | #rrggbb | html-color-name inherited

46

Thefontsize attribute specifies the desired font size.v-unit represents a unit of vertical length (see Section2.4.4.3).
The most common unit for specifying font sizes in typesetting ispt (points).

If the requested size of the current font is not available, the renderer should approximate it in the manner likely to lead
to the most intelligible, highest quality rendering.

Many MathML elements automatically changefontsize in some of their children; see the discussion ofscriptlevel
in the section onmstyle, Section3.3.4.

The value of thefontfamily attribute should be the name of a font that may be available to a MathML renderer,
or information that permits the renderer to select a font in some manner; acceptable values and their meanings are
dependent on the specific renderer and rendering environment in use, and are not specified by MathML (but see the note
aboutcss-fontfamily below). (Note that the renderer’s mechanism for finding fonts by name may be case-sensitive.)

If the value offontfamily is not recognized by a particular MathML renderer, this should never be interpreted as a
MathML error; rather, the renderer should either use a font that it considers to be a suitable substitute for the requested
font, or ignore the attribute and act as if no value had been given.

Note that any use of thefontfamily attribute is unlikely to be portable across all MathML renderers. In particular, it
should never be used to try to achieve the effect of a reference to a non-ASCII MathML character (for example, by using
a reference to a character in some symbol font that maps ordinary characters to glyphs for non-ASCII characters). As a
corollary to this principle, MathML renderers should attempt to always produce intelligible renderings for the MathML
characters listed in Chapter6, even when these characters are not available in the font family indicated. Such a rendering
is always possible - as a last resort, a character can be rendered to appear as an XML-style entity reference using one of
the entity names given for the same character in Chapter6.

The symbolcss-fontfamily refers to a legal value for thefont-family property in CSS, which is a comma-
separated list of alternative font family names or generic font types in order of preference, as documented in more
detail in CSS[CSS2]. MathML renderers are encouraged to make use of the CSS syntax for specifying fonts when
this is practical in their rendering environment, even if they do not otherwise support CSS. (See also the subsection
CSS-compatible attributes within Section2.4.4.3).

3.2.2.2 Color-related attributes

Themathcolor (and depreciatedcolor) attribute controls the color in which the content of tokens is rendered. Addi-
tionally, when inherited frommstyle or from a MathML expression’s rendering environment, it controls the color of
all other drawing by MathML elements, including the lines or radical signs that can be drawn bymfrac, mtable, or
msqrt.

The values ofmathcolor, color, mathbackground, andbackground can be specified as a string consisting of ’#’
followed without intervening whitespace by either 1-digit or 2-digit hexadecimal values for the red, green, and blue
components, respectively, of the desired color, with the same number of digits used for each component (or as the
keyword ‘transparent’ forbackground). The hexadecimal digits are not case-sensitive. The possible 1-digit values
range from 0 (component not present) to F (component fully present), and the possible 2-digit values range from 00
(component not present) to FF (component fully present), with the 1-digit valuex being equivalent to the 2-digit value
xx (rather thanx0). % x0 would be a more strictly correct notation, but renders terribly in some browsers.

These attributes can also be specified as anhtml-color-name, which is defined below.

The color syntax described above is a subset of the syntax of thecolor andbackground-color properties of CSS.
Thebackground-color syntax is in turn a subset of the full CSSbackground property syntax, which also permits
specification of (for example) background images with optional repeats. The more general attribute namebackground
is used in MathML to facilitate possible extensions to the attribute’s scope in future versions of MathML.

47

Color values on either attribute can also be specified as anhtml-color-name, that is, as one of the color-name keywords
defined in [HTML4] (aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver,
teal, white, andyellow). Note that the color name keywords are not case-sensitive, unlike most keywords in MathML
attribute values for compatibility with CSS and HTML.

The suggested MathML visual rendering rules do not define the precise extent of the region whose background is
affected by using thebackground attribute onmstyle, except that, whenmstyle’s content does not have negative
dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this region
should lie behind all the drawing done to render the content of themstyle, but should not lie behind any of the drawing
done to render surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on the
extent of the region affected by thebackground attribute is not defined by these rules.

3.2.3 Identifier (mi)

3.2.3.1 Description

An mi element represents a symbolic name or arbitrary text that should be rendered as an identifier. Identifiers can
include variables, function names, and symbolic constants.

Not all ‘mathematical identifiers’ are represented bymi elements - for example, subscripted or primed variables should
be represented usingmsub ormsup respectively. Conversely, arbitrary text playing the role of a ‘term’ (such as an ellipsis
in a summed series) can be represented using anmi element, as shown in an example in Section3.2.6.4.

It should be stressed thatmi is a presentation element, and as such, it only indicates that its content should be rendered
as an identifier. In the majority of cases, the contents of anmi will actually represent a mathematical identifier such as
a variable or function name. However, as the preceding paragraph indicates, the correspondence between notations that
should render like identifiers and notations that are actually intended to represent mathematical identifiers is not perfect.
For an element whose semantics is guaranteed to be that of an identifier, see the description ofci in Chapter4.

3.2.3.2 Attributes

mi elements accept the attributes listed in Section3.2.2, but in one case with a different default value:

Name values default
mathvariant normal | bold | italic | bold-italic | double-struck |

bold-fraktur | script | bold-script | fraktur | sans-serif
| bold-sans-serif | sans-serif-italic | sans-serif-bold-
italic | monospace

(depends on content; described below)

fontstyle (deprecated) normal | italic (depends on content; described below)

A typical graphical renderer would render anmi element as the characters in its content, with no extra spacing around
the characters (except spacing associated with neighboring elements). The defaultmathvariant andfontstylewould
(typically) benormal (non-slanted) unless the content is a single character, in which case it would beitalic. Note that
this rule formathvariant andfontstyle attributes is specific tomi elements; the default value for themathvariant
andfontstyle attributes on other MathML token elements isnormal.

Note that for purposes of determining equivalences of Math Alphabet characters (See Section6.2.3and Section3.2.1.1)
the value of themathvariant attribute should be resolved first, including the special defaulting behavior described
above.

3.2.3.3 Examples

48

<mi> x </mi>
<mi> D </mi>
<mi> sin </mi>
<mi mathvariant=’script’> L </mi>
<mi></mi>

An mi element with no content is allowed;<mi></mi>might, for example, be used by an ‘expression editor’ to represent
a location in a MathML expression which requires a ‘term’ (according to conventional syntax for mathematics) but does
not yet contain one.

Identifiers include function names such as ‘sin’. Expressions such as ‘sinx’ should be written using the&ApplyFunc-
tion; operator (which also has the short name⁡) as shown below; see also the discussion of invisible operators in
Section3.2.5.

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

Miscellaneous text that should be treated as a ‘term’ can also be represented by anmi element, as in:

<mrow>
<mn> 1 </mn>
<mo> + </mo>
<mi> ... </mi>
<mo> + </mo>
<mi> n </mi>

</mrow>

When anmi is used in such exceptional situations, explicitly setting thefontstyle attribute may give better results
than the default behavior of some renderers.

The names of symbolic constants should be represented asmi elements:

<mi> π </mi>
<mi> ⅈ </mi>
<mi> ⅇ </mi>

Use of special entity references for such constants can simplify the interpretation of MathML presentation elements.
See Chapter6 for a complete list of character entity references in MathML.

3.2.4 Number (mn)

3.2.4.1 Description

An mn element represents a ‘numeric literal’ or other data that should be rendered as a numeric literal. Generally
speaking, a numeric literal is a sequence of digits, perhaps including a decimal point, representing an unsigned integer
or real number.

The mathematical concept of a ‘number’ can be quite subtle and involved, depending on the context. As a consequence,
not all mathematical numbers should be represented usingmn; examples of mathematical numbers that should be repre-
sented differently are shown below, and include complex numbers, ratios of numbers shown as fractions, and names of
numeric constants.

49

Conversely, sincemn is a presentation element, there are a few situations where it may desirable to include arbitrary
text in the content of anmn that should merely render as a numeric literal, even though that content may not be unam-
biguously interpretable as a number according to any particular standard encoding of numbers as character sequences.
As a general rule, however, themn element should be reserved for situations where its content is actually intended to
represent a numeric quantity in some fashion. For an element whose semantics are guaranteed to be that of a particular
kind of mathematical number, see the description ofcn in Chapter4.

3.2.4.2 Attributes

mn elements accept the attributes listed in Section3.2.2.

A typical graphical renderer would render anmn element as the characters of its content, with no extra spacing around
them (except spacing from neighboring elements such asmo). Unlike mi, mn elements are (typically) rendered in an
unslanted font by default, regardless of their content.

3.2.4.3 Examples

<mn> 2 </mn>
<mn> 0.123 </mn>
<mn> 1,000,000 </mn>
<mn> 2.1e10 </mn>
<mn> 0xFFEF </mn>
<mn> MCMLXIX </mn>
<mn> twenty one </mn>

3.2.4.4 Numbers that should not be written using mn alone

Many mathematical numbers should be represented using presentation elements other thanmn alone; this includes
complex numbers, ratios of numbers shown as fractions, and names of numeric constants. Examples of MathML repre-
sentations of such numbers include:

<mrow>
<mn> 2 </mn>
<mo> + </mo>
<mrow>
<mn> 3 </mn>
<mo> ⁢ </mo>
<mi> ⅈ </mi>

</mrow>
</mrow>
<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
<mi> π </mi>
<mi> ⅇ </mi>

3.2.5 Operator, Fence, Separator or Accent (mo)

3.2.5.1 Description

An mo element represents an operator or anything that should be rendered as an operator. In general, the notational
conventions for mathematical operators are quite complicated, and therefore MathML provides a relatively sophisticated

50

mechanism for specifying the rendering behavior of anmo element. As a consequence, in MathML the list of things
that should ‘render as an operator’ includes a number of notations that are not mathematical operators in the ordinary
sense. Besides ordinary operators with infix, prefix, or postfix forms, these include fence characters such as braces,
parentheses, and ‘absolute value’ bars, separators such as comma and semicolon, and mathematical accents such as a
bar or tilde over a symbol.

The term ‘operator’ as used in the present chapter means any symbol or notation that should render as an operator,
and that is therefore representable by anmo element. That is, the term ‘operator’ includes any ordinary operator, fence,
separator, or accent unless otherwise specified or clear from the context.

All such symbols are represented in MathML withmo elements since they are subject to essentially the same rendering
attributes and rules; subtle distinctions in the rendering of these classes of symbols, when they exist, are supported using
the boolean attributesfence, separator andaccent, which can be used to distinguish these cases.

A key feature of themo element is that its default attribute values are set on a case-by-case basis from an ‘operator
dictionary’ as explained below. In particular, default values forfence, separator andaccent can usually be found in
the operator dictionary and therefore need not be specified on eachmo element.

Note that some mathematical operators are represented not bymo elements alone, but bymo elements ‘embellished’
with (for example) surrounding superscripts; this is further described below. Conversely, as presentation elements,mo
elements can contain arbitrary text, even when that text has no standard interpretation as an operator; for an example, see
the discussion ‘Mixing text and mathematics’ in Section3.2.6. See also Chapter4 for definitions of MathML content
elements that are guaranteed to have the semantics of specific mathematical operators.

3.2.5.2 Attributes

mo elements accept the attributes listed in Section3.2.2, and the additional attributes listed here. Most attributes get their
default values from the Section3.2.5.7, as described later in this section. When a dictionary entry is not found for a
givenmo element, the default value shown here in parentheses is used.

Name values default
form prefix | infix | postfix set by position of operator in anmrow (rule given

below); used withmo content to index operator dic-
tionary

fence true | false set by dictionary (false)
separator true | false set by dictionary (false)
lspace number h-unit | namedspace set by dictionary (thickmathspace)
rspace number h-unit | namedspace set by dictionary (thickmathspace)
stretchy true | false set by dictionary (false)
symmetric true | false set by dictionary (true)
maxsize number [v-unit | h-unit] | namedspace | infinity set by dictionary (infinity)
minsize number [v-unit | h-unit] | namedspace set by dictionary (1)
largeop true | false set by dictionary (false)
movablelimits true | false set by dictionary (false)
accent true | false set by dictionary (false)

h-unit represents a unit of horizontal length, andv-unit represents a unit of vertical length (see Section2.4.4.2).
namedspace is one ofveryverythinmathspace, verythinmathspace, thinmathspace, mediummathspace, thick-
mathspace, verythickmathspace, orveryverythickmathspace. These values are settable by themstyle element
which is discussed in Section3.3.4. The default values ofveryverythinmathspace... veryverythickmathspace
are 1/18em...7/18em, respectively.

If no unit is given withmaxsize or minsize, the number is a multiplier of the normal size of the operator in the
direction (or directions) in which it stretches. These attributes are further explained below.

51

Typical graphical renderers show allmo elements as the characters of their content, with additional spacing around the
element determined from the attributes listed above. Detailed rules for determining operator spacing in visual renderings
are described in a subsection below. As always, MathML does not require a specific rendering, and these rules are
provided as suggestions for the convenience of implementors.

Renderers without access to complete fonts for the MathML character set may choose not to render anmo element as
precisely the characters in its content in some cases. For example,<mo> ≤ </mo> might be rendered as<= to a
terminal. However, as a general rule, renderers should attempt to render the content of anmo element as literally as
possible. That is,<mo> ≤ </mo> and<mo> <= </mo> should render differently. (The first one should render
as a single character representing a less-than-or-equal-to sign, and the second one as the two-character sequence<=.)

3.2.5.3 Examples with ordinary operators

<mo> + </mo>
<mo> < </mo>
<mo> ≤ </mo>
<mo> <= </mo>
<mo> ++ </mo>
<mo> ∑ </mo>
<mo> .NOT. </mo>
<mo> and </mo>
<mo> ⁢ </mo>
<mo mathvariant=’bold’> + </mo>

3.2.5.4 Examples with fences and separators

Note that themo elements in these examples don’t need explicitfence orseparator attributes, since these can be found
using the operator dictionary as described below. Some of these examples could also be encoded using themfenced
element described in Section3.3.8.

(a+b)

<mrow>
<mo> (</mo>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
<mo>) </mo>

</mrow>

[0,1)

<mrow>
<mo> [</mo>
<mrow>
<mn> 0 </mn>
<mo> , </mo>
<mn> 1 </mn>

52

</mrow>
<mo>) </mo>

</mrow>

f (x,y)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

3.2.5.5 Invisible operators

Certain operators that are ‘invisible’ in traditional mathematical notation should be represented using specific entity
references withinmo elements, rather than simply by nothing. The entity references used for these ‘invisible operators’
are:

Full name Short name Examples of use
⁢ ⁢ xy
⁡ ⁡ f (x) sinx
⁣ ⁣ m12

The MathML representations of the examples in the above table are:

<mrow>
<mi> x </mi>
<mo> ⁢ </mo>
<mi> y </mi>

</mrow>

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>

<mrow>
<mi> sin </mi>

53

<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

<msub>
<mi> m </mi>
<mrow>
<mn> 1 </mn>
<mo> ⁣ </mo>
<mn> 2 </mn>

</mrow>
</msub>

The reasons for using specificmo elements for invisible operators include:

• such operators should often have specific effects on visual rendering (particularly spacing and linebreaking
rules) that are not the same as either the lack of any operator, or spacing represented bymspace or mtext
elements;

• these operators should often have specific audio renderings different than that of the lack of any operator;
• automatic semantic interpretation of MathML presentation elements is made easier by the explicit specifica-

tion of such operators.

For example, an audio renderer might renderf (x) (represented as in the above examples) by speaking ‘f of x’, but
use the word ‘times’ in its rendering ofxy. Although its rendering must still be different depending on the structure
of neighboring elements (sometimes leaving out ‘of’ or ‘times’ entirely), its task is made much easier by the use of a
differentmo element for each invisible operator.

3.2.5.6 Names for other special operators

MathML also includesⅆ for use in anmo element representing the differential operator symbol usually
denoted by ‘d’. The reasons for explicitly using this special entity are similar to those for using the special entities for
invisible operators described in the preceding section.

3.2.5.7 Detailed rendering rules for mo elements

Typical visual rendering behaviors formo elements are more complex than for the other MathML token elements, so the
rules for rendering them are described in this separate subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than requirements. Furthermore, no
attempt is made to specify the rendering completely; rather, enough information is given to make the intended effect of
the various rendering attributes as clear as possible.

The operator dictionary

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have a well-established, predictable,
traditional notational usage. Typically, this usage amounts to certain default attribute values formo elements with specific
contents and a specificform attribute. Since these defaults vary from symbol to symbol, MathML anticipates that
renderers will have an ‘operator dictionary’ of default attributes formo elements (see AppendixF) indexed by each
mo element’s content andform attribute. If anmo element is not listed in the dictionary, the default values shown in
parentheses in the table of attributes formo should be used, since these values are typically acceptable for a generic
operator.

54

Some operators are ‘overloaded’, in the sense that they can occur in more than one form (prefix, infix, or postfix),
with possibly different rendering properties for each form. For example, ‘+’ can be either a prefix or an infix operator.
Typically, a visual renderer would add space around both sides of an infix operator, while only on the left of a prefix
operator. Theform attribute allows specification of which form to use, in case more than one form is possible according
to the operator dictionary and the default value described below is not suitable.

Default value of the form attribute

Theform attribute does not usually have to be specified explicitly, since there are effective heuristic rules for inferring
the value of theform attribute from the context. If it is not specified, and there is more than one possible form in the
dictionary for anmo element with given content, the renderer should choose which form to use as follows (but see the
exception for embellished operators, described later):

• If the operator is the first argument in anmrow of length (i.e. number of arguments) greater than one (ignoring
all space-like arguments (see Section3.2.7) in the determination of both the length and the first argument),
the prefix form is used;

• if it is the last argument in anmrow of length greater than one (ignoring all space-like arguments), the postfix
form is used;

• in all other cases, including when the operator is not part of anmrow, the infix form is used.

Note that these rules make reference to themrow in which themo element lies. In some situations, thismrow might be
an inferredmrow implicitly present around the arguments of an element such asmsqrt or mtd.

Opening (left) fences should haveform="prefix", and closing (right) fences should haveform="postfix"; separators are
usually ‘infix’, but not always, depending on their surroundings. As with ordinary operators, these values do not usually
need to be specified explicitly.

If the operator does not occur in the dictionary with the specified form, the renderer should use one of the forms that
is available there, in the order of preference: infix, postfix, prefix; if no forms are available for the givenmo element
content, the renderer should use the defaults given in parentheses in the table of attributes formo.

Exception for embellished operators

There is one exception to the above rules for choosing anmo element’s defaultform attribute. Anmo element that is
‘embellished’ by one or more nested subscripts, superscripts, surrounding text or whitespace, or style changes behaves
differently. It is the embellished operator as a whole (this is defined precisely, below) whose position in anmrow is
examined by the above rules and whose surrounding spacing is affected by its form, not themo element at its core;
however, the attributes influencing this surrounding spacing are taken from themo element at the core (or from that
element’s dictionary entry).

For example, the ‘+4’ in a+4b should be considered an infix operator as a whole, due to its position in the middle of
anmrow, but its rendering attributes should be taken from themo element representing the ‘+’, or when those are not
specified explicitly, from the operator dictionary entry for<mo form="infix"> + </mo>. The precise definition of an
‘embellished operator’ is:

• anmo element;
• or one of the elementsmsub, msup, msubsup, munder, mover, munderover, mmultiscripts, mfrac, or

semantics (Section4.2.6), whose first argument exists and is an embellished operator;
• or one of the elementsmstyle, mphantom, or mpadded, such that anmrow containing the same arguments

would be an embellished operator;
• or anmaction element whose selected sub-expression exists and is an embellished operator;
• or anmrow whose arguments consist (in any order) of one embellished operator and zero or more space-like

elements.

55

Note that this definition permits nested embellishment only when there are no intervening enclosing elements not in the
above list.

The above rules for choosing operator forms and defining embellished operators are chosen so that in all ordinary cases
it will not be necessary for the author to specify aform attribute.

Rationale for definition of embellished operators

The following notes are included as a rationale for certain aspects of the above definitions, but should not be important
for most users of MathML.

An mfrac is included as an ‘embellisher’ because of the common notation for a differential operator:

<mfrac>
<mo> ⅆ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>

</mrow>
</mfrac>

Since the definition of embellished operator affects the use of the attributes related to stretching, it is important that it
includes embellished fences as well as ordinary operators; thus it applies to anymo element.

Note that anmrow containing a single argument is an embellished operator if and only if its argument is an embellished
operator. This is because anmrow with a single argument must be equivalent in all respects to that argument alone (as
discussed in Section3.3.1). This means that anmo element that is the sole argument of anmrow will determine its default
form attribute based on thatmrow’s position in a surrounding, perhaps inferred,mrow (if there is one), rather than based
on its own position in themrow in which it is the sole argument.

Note that the above definition defines everymo element to be ‘embellished’ - that is, ‘embellished operator’ can be
considered (and implemented in renderers) as a special class of MathML expressions, of whichmo is a specific case.

Spacing around an operator

The amount of space added around an operator (or embellished operator), when it occurs in anmrow, can be directly
specified by thelspace andrspace attributes. These values are in ems if no units are given. By convention, operators
that tend to bind tightly to their arguments have smaller values for spacing than operators that tend to bind less tightly.
This convention should be followed in the operator dictionary included with a MathML renderer. In TEX, these values
can only be one of three values; typically they are 3/18em, 4/18em, and 5/18em. MathML does not impose this limit.

Some renderers may choose to use no space around most operators appearing within subscripts or superscripts, as is
done in TEX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes described here, in analogous ways
for their rendering medium. For example, more space might translate into a longer pause in an audio rendering.

3.2.5.8 Stretching of operators, fences and accents

Four attributes govern whether and how an operator (perhaps embellished) stretches so that it matches the size of other
elements:stretchy, symmetric, maxsize, andminsize. If an operator has the attributestretchy=true, then it
(that is, each character in its content) obeys the stretching rules listed below, given the constraints imposed by the fonts

56

and font rendering system. In practice, typical renderers will only be able to stretch a small set of characters, and quite
possibly will only be able to generate a discrete set of character sizes.

There is no provision in MathML for specifying in which direction (horizontal or vertical) to stretch a specific character
or operator; rather, whenstretchy=true it should be stretched in each direction for which stretching is possible. It is
up to the renderer to know in which directions it is able to stretch each character. (Most characters can be stretched in at
most one direction by typical renderers, but some renderers may be able to stretch certain characters, such as diagonal
arrows, in both directions independently.)

Theminsize andmaxsize attributes limit the amount of stretching (in either direction). These two attributes are given
as multipliers of the operator’s normal size in the direction or directions of stretching, or as absolute sizes using units.
For example, if a character hasmaxsize="3", then it can grow to be no more than three times its normal (unstretched)
size.

Thesymmetric attribute governs whether the height and depth above and below theaxisof the character are forced to
be equal (by forcing both height and depth to become the maximum of the two). An example of a situation where one
might setsymmetric=false arises with parentheses around a matrix not aligned on the axis, which frequently occurs
when multiplying non-square matrices. In this case, one wants the parentheses to stretch to cover the matrix, whereas
stretching the parentheses symmetrically would cause them to protrude beyond one edge of the matrix. Thesymmetric
attribute only applies to characters that stretch vertically (otherwise it is ignored).

If a stretchymo element is embellished (as defined earlier in this section), themo element at its core is stretched to a
size based on the context of the embellished operator as a whole, i.e. to the same size as if the embellishments were
not present. For example, the parentheses in the following example (which would typically be set to be stretchy by the
operator dictionary) will be stretched to the same size as each other, and the same size they would have if they were not
underlined and overlined, and furthermore will cover the same vertical interval:

<mrow>
<munder>
<mo> (</mo>
<mo> _ </mo>

</munder>
<mfrac>
<mi> a </mi>
<mi> b </mi>

</mfrac>
<mover>
<mo>) </mo>
<mo> ‾ </mo>

</mover>
</mrow>

Note that this means that the stretching rules given below must refer to the context of the embellished operator as a
whole, not just to themo element itself.

Example of stretchy attributes

This shows one way to set the maximum size of a parenthesis so that it does not grow, even though its default value is
stretchy=true.

<mrow>
<mo maxsize="1"> (</mo>

57

<mfrac>
<mi> a </mi> <mi> b </mi>

</mfrac>
<mo maxsize="1">) </mo>

</mrow>

The above should render as(a
b) as opposed to the default rendering

(
a
b

)
.

Note that each parenthesis is sized independently; if only one of them hadmaxsize="1", they would render with
different sizes.

Vertical Stretching Rules

• If a stretchy operator is a direct sub-expression of anmrow element, or is the sole direct sub-expression of an
mtd element in some row of a table, then it should stretch to cover the height and depth (above and below
theaxis) of the non-stretchy direct sub-expressions in themrow element or table row, unless stretching is
constrained byminsize or maxsize attributes.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its core.
• If symmetric=true, then the maximum of the height and depth is used to determine the size, before appli-

cation of theminsize or maxsize attributes.
• The preceding rules also apply in situations where themrow element is inferred.

Most common opening and closing fences are defined in the operator dictionary to stretch by default; and they stretch
vertically. Also, operators such as∑, ∫, /, and vertical arrows stretch vertically by default.

In the case of a stretchy operator in a table cell (i.e. within anmtd element), the above rules assume each cell of the
table row containing the stretchy operator covers exactly one row. (Equivalently, the value of therowspan attribute is
assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) When this is not the
case, the operator should only be stretched vertically to cover those table cells that are entirely within the set of table
rows that the operator’s cell covers. Table cells that extend into rows not covered by the stretchy operator’s table cell
should be ignored. See Section3.5.4.2for details about therowspan attribute.

Horizontal Stretching Rules

• If a stretchy operator, or an embellished stretchy operator, is a direct sub-expression of anmunder, mover,
or munderover element, or if it is the sole direct sub-expression of anmtd element in some column of a
table (seemtable), then it, or themo element at its core, should stretch to cover the width of the other direct
sub-expressions in the given element (or in the same table column), given the constraints mentioned above.

• If a stretchy operator is a direct sub-expression of anmunder, mover, or munderover element, or if it is
the sole direct sub-expression of anmtd element in some column of a table, then it should stretch to cover
the width of the other direct sub-expressions in the given element (or in the same table column), given the
constraints mentioned above.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its core.

By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. within anmtd element), the above rules assume each cell of the
table column containing the stretchy operator covers exactly one column. (Equivalently, the value of thecolumnspan
attribute is assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) When
this is not the case, the operator should only be stretched horizontally to cover those table cells that are entirely within
the set of table columns that the operator’s cell covers. Table cells that extend into columns not covered by the stretchy
operator’s table cell should be ignored. See Section3.5.4.2for details about therowspan attribute.

58

The rules for horizontal stretching includemtd elements to allow arrows to stretch for use in commutative diagrams
laid out usingmtable. The rules for the horizontal stretchiness include scripts to make examples such as the following
work:

<mrow>
<mi> x </mi>
<munder>
<mo> → </mo>
<mtext> maps to </mtext>

</munder>
<mi> y </mi>

</mrow>

This displays asx−−−−→
maps to

y.

Rules Common to both Vertical and Horizontal Stretching

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations mentioned above, or if there are no
other expressions whose size it should stretch to match), then it has the standard (unstretched) size determined by the
font and current fontsize.

If a stretchy operator is required to stretch, but all other expressions in the containing element (as described above) are
also stretchy, all elements that can stretch should grow to the maximum of the normal unstretched sizes of all elements
in the containing object, if they can grow that large. If the value ofminsize or maxsize prevents this then that (min or
max) size is used.

For example, in anmrow containing nothing but vertically stretchy operators, each of the operators should stretch to the
maximum of all of their normal unstretched sizes, provided no other attributes are set that override this behavior. Of
course, limitations in fonts or font rendering may result in the final, stretched sizes being only approximately the same.

3.2.5.9 Other attributes of mo

Thelargeop attribute specifies whether the operator should be drawn larger than normal ifdisplaystyle=true in
the current rendering environment. This roughly corresponds to TEX’s \displaystyle style setting. MathML uses
two attributes,displaystyle andscriptlevel, to control orthogonal presentation features that TEX encodes into
one ‘style’ attribute with values\displaystyle, \textstyle, \scriptstyle, and\scriptscriptstyle. These
attributes are discussed further in Section3.3.4describing themstyle element. Note that these attributes can be specified
directly on anmstyle element’s start tag, but not on most other elements. Examples of large operators include∫
and∏.

The movablelimits attribute specifies whether underscripts and overscripts attached to thismo element should be
drawn as subscripts and superscripts whendisplaystyle=false. movablelimits=false means that underscripts
and overscripts should never be drawn as subscripts and superscripts. In general,displaystyle is true for displayed
mathematics andfalse for inline mathematics. Also,displaystyle is false by default within tables, scripts and
fractions, and a few other exceptional situations detailed in Section3.3.4. Thus, operators withmovablelimits=true
will display with limits (i.e. underscripts and overscripts) in displayed mathematics, and with subscripts and superscripts
in inline mathematics, tables, scripts and so on. Examples of operators that typically havemovablelimits=true are
sum, prod, andlim.

The accent attribute determines whether this operator should be treated by default as an accent (diacritical mark)
when used as an underscript or overscript; seemunder, mover, andmunderover (Section3.4.4, Section3.4.5 and
Section3.4.6).

59

The separator attribute may affect automatic linebreaking in renderers that position ordinary infix operators at the
beginnings of broken lines rather than at the ends (that is, which avoid linebreaking just after such operators), since
linebreaking should be avoided just before separators, but is acceptable just after them.

The fence attribute has no effect in the suggested visual rendering rules given here; it is not needed for properly
rendering traditional notation using these rules. It is provided so that specific MathML renderers, especially non-visual
renderers, have the option of using this information.

3.2.6 Text (mtext)

3.2.6.1 Description

An mtext element is used to represent arbitrary text that should be rendered as itself. In general, themtext element is
intended to denote commentary text.

Note that some text with a clearly defined notational role might be more appropriately marked up usingmi or mo; this
is discussed further below.

An mtext element can be used to contain ‘renderable whitespace’, i.e. invisible characters that are intended to alter the
positioning of surrounding elements. In non-graphical media, such characters are intended to have an analogous effect,
such as introducing positive or negative time delays or affecting rhythm in an audio renderer. This is not related to any
whitespace in the source MathML consisting of blanks, newlines, tabs, or carriage returns; whitespace present directly
in the source is trimmed and collapsed, as described in Section2.4.6. Whitespace that is intended to be rendered as part
of an element’s content must be represented by entity references ormspace elements (unless it consists only of single
blanks between non-whitespace characters).

Renderable whitespace can have a positive or negative width, as in  and​, or zero
width, as in​. The complete list of such characters is given in Chapter6. Note that there is no formal
distinction in MathML between renderable whitespace characters and any other class of characters, inmtext or in any
other element.

Renderable whitespace can also include characters that affect alignment or linebreaking. Some of these characters are:

Entity name Purpose (rough description)

 start a new line and do not indent
&IndentingNewLine; start a new line and do indent
⁠ do not allow a linebreak here
&GoodBreak; if a linebreak is needed on the line, here is a good spot
&BadBreak; if a linebreak is needed on the line, try to avoid breaking here

For the complete list of MathML entities, consult Chapter6.

3.2.6.2 Attributes

mtext elements accept the attributes listed in Section3.2.2.

See also the warnings about the legal grouping of ‘space-like elements’ in Section3.2.7, and about the use of such
elements for ‘tweaking’ or conveying meaning in Section3.3.6.

3.2.6.3 Examples

<mtext> Theorem 1: </mtext>
<mtext>   </mtext>
<mtext>      </mtext>
<mtext> /* a comment */ </mtext>

60

3.2.6.4 Mixing text and mathematics

In some cases, text embedded in mathematics could be more appropriately represented usingmo or mi elements. For
example, the expression ‘there existsδ> 0 such thatf (x) <1’ is equivalent to∃δ> 03 f (x)< 1 and could be represented
as:

<mrow>
<mo> there exists </mo>
<mrow>
<mrow>
<mi> δ </mi>
<mo> > </mo>
<mn> 0 </mn>

</mrow>
<mo> such that </mo>
<mrow>
<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>
<mo> < </mo>
<mn> 1 </mn>

</mrow>
</mrow>

</mrow>

An example involving anmi element is:x+x2+···+xn. In this example, ellipsis should be represented using anmi element,
since it takes the place of a term in the sum (see Section3.2.3, mi).

On the other hand, expository text within MathML is best represented with anmtext element. An example of this is:

Theorem 1: ifx > 1, thenx2 > x.

However, when MathML is embedded in HTML, or another document markup language, the example is probably best
rendered with only the two inequalities represented as MathML at all, letting the text be part of the surrounding HTML.

Another factor to consider in deciding how to mark up text is the effect on rendering. Text enclosed in anmo element is
unlikely to be found in a renderer’s operator dictionary, so it will be rendered with the format and spacing appropriate
for an ‘unrecognized operator’, which may or may not be better than the format and spacing for ‘text’ obtained by using
anmtext element. An ellipsis entity in anmi element is apt to be spaced more appropriately for taking the place of a
term within a series than if it appeared in anmtext element.

3.2.7 Space (mspace)

3.2.7.1 Description

An mspace empty element represents a blank space of any desired size, as set by its attributes. It can also be used to
make linebreaking suggestions to a visual renderer. Note that the default values for attributes have been chosen so that

61

they typically will have no effect on rendering. Thus, themspace element is generally used with one or more attribute
values explicitly specified.

3.2.7.2 Attributes

In addition to the attributes listed below,mspace permitsid, xref, class andstyle attributes, as described in Sec-
tion 2.4.5.

Name values default
width number h-unit | namedspace 0em
height number v-unit 0ex
depth number v-unit 0ex
linebreak auto | newline | indentingnewline | nobreak | goodbreak | badbreak auto

h-unit andv-unit represent units of horizontal or vertical length, respectively (see Section2.4.4.2).

The linebreak attribute is used to give a linebreaking hint to a visual renderer. The default value isauto, which
indicates that a renderer should use whatever default linebreaking algorithm it would normally use. The meaning of the
other possible values for thelinebreak attribute are described above in the discussion on renderable whitespace in the
mtext element. See Section3.2.6for details.

In the case when both dimensional attributes and a linebreaking attribute are set, the linebreaking attribute is ignored.

Note the warning about the legal grouping of ‘space-like elements’ given below, and the warning about the use of
such elements for ‘tweaking’ or conveying meaning in Section3.3.6. See also the other elements that can render as
whitespace, namelymtext, mphantom, andmaligngroup.

3.2.7.3 Definition of space-like elements

A number of MathML presentation elements are ‘space-like’ in the sense that they typically render as whitespace, and
do not affect the mathematical meaning of the expressions in which they appear. As a consequence, these elements often
function in somewhat exceptional ways in other MathML expressions. For example, space-like elements are handled
specially in the suggested rendering rules formo given in Section3.2.5. The following MathML elements are defined to
be ‘space-like’:

• anmtext, mspace, maligngroup, or malignmark element;
• anmstyle, mphantom, or mpadded element, all of whose direct sub-expressions are space-like;
• anmaction element whose selected sub-expression exists and is space-like;
• anmrow all of whose direct sub-expressions are space-like.

Note that anmphantom is not automatically defined to be space-like, unless its content is space-like. This is because
operator spacing is affected by whether adjacent elements are space-like. Since themphantom element is primarily
intended as an aid in aligning expressions, operators adjacent to anmphantom should behave as if they were adjacent to
thecontents of themphantom, rather than to an equivalently sized area of whitespace.

3.2.7.4 Legal grouping of space-like elements

Authors who insert space-like elements ormphantom elements into an existing MathML expression should note that
such elementsare counted as arguments, in elements that require a specific number of arguments, or that interpret
different argument positions differently.

Therefore, space-like elements inserted into such a MathML element should be grouped with a neighboring argument
of that element by introducing anmrow for that purpose. For example, to allow for vertical alignment on the right edge
of the base of a superscript, the expression

62

<msup>
<mi> x </mi>
<malignmark edge="right"/>
<mn> 2 </mn>

</msup>

is illegal, becausemsup must have exactly 2 arguments; the correct expression would be:

<msup>
<mrow>
<mi> x </mi>
<malignmark edge="right"/>

</mrow>
<mn> 2 </mn>

</msup>

See also the warning about ‘tweaking’ in Section3.3.6.

3.2.8 String Literal (ms)

3.2.8.1 Description

Thems element is used to represent ‘string literals’ in expressions meant to be interpreted by computer algebra systems
or other systems containing ‘programming languages’. By default, string literals are displayed surrounded by double
quotes. As explained in Section3.2.6, ordinary text embedded in a mathematical expression should be marked up with
mtext, or in some casesmo or mi, but never withms.

Note that the string literals encoded byms are ‘Unicode strings’ rather than ‘ASCII strings’. In practice, non-ASCII
characters will typically be represented by entity references. For example,<ms>&</ms> represents a string literal
containing a single character,&, and<ms>&amp;</ms> represents a string literal containing 5 characters, the first
one of which is&.

Like all token elements,ms does trim and collapse whitespace in its content according to the rules of Section2.4.6, so
whitespace intended to remain in the content should be encoded as described in that section.

3.2.8.2 Attributes

ms elements accept the attributes listed in Section3.2.2, and additionally:

Name values default
lquote string "
rquote string "

In visual renderers, the content of anms element is typically rendered with no extra spacing added around the string,
and a quote character at the beginning and the end of the string. By default, the left and right quote characters are both
the standard double quote character". However, these characters can be changed with thelquote andrquote
attributes respectively.

The content ofms elements should be rendered with visible ‘escaping’ of certain characters in the content, including
at least ‘double quote’ itself, and preferably whitespace other than individual space characters. The intent is for the
viewer to see that the expression is a string literal, and to see exactly which characters form its content. For example,
<ms>double quote is "</ms> might be rendered as "double quote is \"".

63

3.2.9 Adding new character glyphs to MathML (mglyph)

3.2.9.1 Description

Unicode defines a large number of characters used in mathematics, and in most cases, glyphs representing these char-
acters are widely available in a variety of fonts. Although these characters should meet almost all users needs, MathML
recognizes that mathematics is not static and that new characters are added when convenient. Characters that become
well accepted will likely be eventually incorporated by the Unicode Consortium or other standards bodies, but that
is often a lengthy process. In the meantime, a mechanism is necessary for accessing glyphs from non-standard fonts
representing these characters.

The mglyph element is the means by which users can directly access glyphs for characters that are not defined by
Unicode, or not known to the renderer. Similarly, themglyph element can also be used to select glyph variants for
existing Unicode characters, as might be desirable when a glyph variant has begun to differentiate itself as a new
character by taking on a distinguished mathematical meaning.

The mglyph element names a specific character glyph, and is valid inside any MathML leaf content listed in Sec-
tion 3.1.6(mi, etc.) or Section4.2.2(ci, etc.) unless otherwise restricted by an attribute (e.g.base=2 to<cn>). In order
for a visually-oriented renderer to render the character, the renderer must be told what font to use and what index within
that font to use.

3.2.9.2 Attributes

mglyph elements accept the attributes listed in Section3.2.2, and the additional attributes listed here.

Name values default
alt string required
fontfamily string | css-fontfamily required
index integer required

Thealt attribute provides an alternate name for the glyph. If the specified font can’t be found, the renderer may use
this name in a warning message or some unknown glyph notation. The name might also be used by an audio renderer or
symbol processing system and should be chosen to be descriptive. Thefontfamily andindex uniquely identify the
mglyph; two mglyphs with the same values forfontfamily andindex should be considered identical by applications
that must determine whether two characters/glyphs are identical. Thealt attribute should not be part of the identity
test.

Thefontfamily andindex attributes name a font and position within that font. All font properties apart fromfont-
family are inherited. Variants of the font (e.g., bold) that may be inherited may be ignored if the variant of the font is
not present.

Authors should be aware that rendering requires the fonts referenced bymglyph, which the MathML renderer may not
have access to or may be not be supported by the system on which the renderer runs. For these reasons, authors are
encouraged to usemglyph only when absolutely necessary, and not for stylistic purposes.

3.2.9.3 Example

The following example illustrates how a researcher might use themglyph construct with an experimental font to work
with braid group notation.

<mrow>
<mi><mglyph fontfamily="my-braid-font" index="2" alt="23braid"/></mi>
<mo>+</mo>

64

<mi><mglyph fontfamily="my-braid-font" index="5" alt="132braid"/></mi>
<mo>=</mo>
<mi><mglyph fontfamily="my-braid-font" index="3" alt="13braid"/></mi>

</mrow>

This might render as:

3.3 General Layout Schemata

Besides tokens there are several families of MathML presentation elements. One family of elements deals with various
‘scripting’ notations, such as subscript and superscript. Another family is concerned with matrices and tables. The
remainder of the elements, discussed in this section, describe other basic notations such as fractions and radicals, or
deal with general functions such as setting style properties and error handling.

3.3.1 Horizontally Group Sub-Expressions (mrow)

3.3.1.1 Description

An mrow element is used to group together any number of sub-expressions, usually consisting of one or moremo
elements acting as ‘operators’ on one or more other expressions that are their ‘operands’.

Several elements automatically treat their arguments as if they were contained in anmrow element. See the discussion
of inferredmrows in Section3.1.3. See alsomfenced (Section3.3.8), which can effectively form anmrow containing its
arguments separated by commas.

3.3.1.2 Attributes

This element only permitsid, xref, class andstyle attributes, as described in Section2.4.5.

mrow elements are typically rendered visually as a horizontal row of their arguments, left to right in the order in which
the arguments occur, or audibly as a sequence of renderings of the arguments. The description in Section3.2.5 of
suggested rendering rules formo elements assumes that all horizontal spacing between operators and their operands is
added by the rendering ofmo elements (or, more generally, embellished operators), not by the rendering of themrows
they are contained in.

MathML is designed to allow renderers to automaticallylinebreak expressions (that is, to break excessively long ex-
pressions into several lines), without requiring authors to specify explicitly how this should be done. This is because
linebreaking positions can’t be chosen well without knowing the width of the display device and the current font size,
which for many uses of MathML will not be known except by the renderer at the time of each rendering.

Determining good positions for linebreaks is complex, and rules for this are not described here; whether and how it
is done is up to each MathML renderer. Typically, linebreaking will involve selection of ‘good’ points for insertion of
linebreaks between successive arguments ofmrow elements.

Although MathML does not require linebreaking or specify a particular linebreaking algorithm, it has several features
designed to allow such algorithms to produce good results. These include the use of special entities for certain operators,
including invisible operators (see Section3.2.5), or for providing hints related to linebreaking when necessary (see
Section3.2.6), and the ability to use nestedmrows to describe sub-expression structure (see below).

65

mrow of one argument

MathML renderers are required to treat anmrow element containing exactly one argument as equivalent in all ways to the
single argument occurring alone, provided there are no attributes on themrow element’s start tag. If there are attributes
on themrow element’s start tag, no requirement of equivalence is imposed. This equivalence condition is intended to
simplify the implementation of MathML-generating software such as template-based authoring tools. It directly affects
the definitions of embellished operator and space-like element and the rules for determining the default value of the
form attribute of anmo element; see Section3.2.5and Section3.2.7. See also the discussion of equivalence of MathML
expressions in Chapter7.

3.3.1.3 Proper grouping of sub-expressions using mrow

Sub-expressions should be grouped by the document author in the same way as they are grouped in the mathematical
interpretation of the expression; that is, according to the underlying ‘syntax tree’ of the expression. Specifically, opera-
tors and their mathematical arguments should occur in a singlemrow; more than one operator should occur directly in
onemrow only when they can be considered (in a syntactic sense) to act together on the interleaved arguments, e.g. for
a single parenthesized term and its parentheses, for chains of relational operators, or for sequences of terms separated
by + and-. A precise rule is given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it allows for more intelligent
linebreaking and indentation; and it simplifies possible semantic interpretation of presentation elements by computer
algebra systems, and audio renderers.

Although improper grouping will sometimes result in suboptimal renderings, and will often make interpretation other
than pure visual rendering difficult or impossible, any grouping of expressions usingmrow is allowed in MathML syntax;
that is, renderers should not assume the rules for proper grouping will be followed.

Precise rule for proper grouping

A precise rule for when and how to nest sub-expressions usingmrow is especially desirable when generating MathML
automatically by conversion from other formats for displayed mathematics, such as TEX, which don’t always specify
how sub-expressions nest. When a precise rule for grouping is desired, the following rule should be used:

Two adjacent operators (i.e.mo elements, possibly embellished), possibly separated by operands (i.e. anything other than
operators), should occur in the samemrow only when the left operator has an infix or prefix form (perhaps inferred),
the right operator has an infix or postfix form, and the operators are listed in the same group of entries in the operator
dictionary provided in AppendixF. In all other cases, nestedmrows should be used.

When forming a nestedmrow (during generation of MathML) that includes just one of two successive operators with the
forms mentioned above (which mean that either operator could in principle act on the intervening operand or operands),
it is necessary to decide which operator acts on those operands directly (or would do so, if they were present). Ideally,
this should be determined from the original expression; for example, in conversion from an operator-precedence-based
format, it would be the operator with the higher precedence. If this cannot be determined directly from the original
expression, the operator that occurs later in the suggested operator dictionary (AppendixF) can be assumed to have a
higher precedence for this purpose.

Note that the above rule has no effect on whether any MathML expression is valid, only on the recommended way of
generating MathML from other formats for displayed mathematics or directly from written notation.

(Some of the terminology used in stating the above rule in defined in Section3.2.5.)

66

3.3.1.4 Examples

As an example, 2x+y-z should be written as:

<mrow>
<mrow>
<mn> 2 </mn>
<mo> ⁢ </mo>
<mi> x </mi>

</mrow>
<mo> + </mo>
<mi> y </mi>
<mo> - </mo>
<mi> z </mi>

</mrow>

The proper encoding of (x, y) furnishes a less obvious example of nestingmrows:

<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>

In this case, a nestedmrow is required inside the parentheses, since parentheses and commas, thought of as fence and
separator ‘operators’, do not act together on their arguments.

3.3.2 Fractions (mfrac)

3.3.2.1 Description

Themfrac element is used for fractions. It can also be used to mark up fraction-like objects such as binomial coefficients
and Legendre symbols. The syntax formfrac is

<mfrac> numerator denominator </mfrac>

3.3.2.2 Attributes of mfrac

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

Name values default
linethickness number [v-unit] | thin | medium | thick 1 (rule thickness)
numalign left | center | right center
denomalign left | center | right center
bevelled true | false false

67

Thelinethickness attribute indicates the thickness of the horizontal ‘fraction bar’, or ‘rule’, typically used to render
fractions. A fraction withlinethickness="0" renders without the bar, and might be used within binomial coefficients.
A linethickness greater than one might be used with nested fractions. These cases are shown below:(a

b

)
a
b

c
d

In general, the value oflinethickness can be a number, as a multiplier of the default thickness of the fraction bar
(the default thickness is not specified by MathML), or a number with a unit of vertical length (see Section2.4.4.2), or
one of the keywordsmedium (same as 1),thin (thinner than 1, otherwise up to the renderer), orthick (thicker than 1,
otherwise up to the renderer).

The numalign and denomalign attributes control the horizontal alignment of the numerator and denominator re-
spectively. Typically, numerators and denominators are centered, but a very long numerator or denominator might be
displayed on several lines and a left alignment might be more appropriate for displaying them.

Thebevelled attribute determines whether the fraction is displayed with the numerator above the denominator sep-
arated by a horizontal line or whether a diagonal line is used to separate a slightly raised numerator from a slightly
lowered denominator. The latter form corresponds to the attribute value beingtrue and provides for a more compact
form for simple numerator and denominators. An example illustrating the bevelled form is show below:

1
x3 + x

3

= 1
/

x3 + x
3

The mfrac element setsdisplaystyle to false, or if it was already false incrementsscriptlevel by 1, within
numerator anddenominator. These attributes are inherited by every element from its rendering environment, but can be
set explicitly only on themstyle element. (See Section3.3.4.)

3.3.2.3 Examples

The examples shown above can be represented in MathML as:

<mrow>
<mo> (</mo>
<mfrac linethickness="0">

<mi> a </mi>
<mi> b </mi>

</mfrac>
<mo>) </mo>

</mrow>
<mfrac linethickness="2">

<mfrac>
<mi> a </mi>
<mi> b </mi>

</mfrac>
<mfrac>

<mi> c </mi>
<mi> d </mi>

</mfrac>
</mfrac>

<mfrac>
<mn> 1 </mn>

68

<mrow>
<msup>

<mi> x </mi>
<mn> 3 </mn>

</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>

</mfrac>
</mrow>

</mfrac>
<mo> = </mo>
<mfrac bevelled="true">

<mn> 1 </mn>
<mrow>

<msup>
<mi> x </mi>
<mn> 3 </mn>

</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>

</mfrac>
</mrow>

</mfrac>

A more generic example is:

<mfrac>
<mrow>

<mn> 1 </mn>
<mo> + </mo>
<msqrt>

<mn> 5 </mn>
</msqrt>

</mrow>
<mn> 2 </mn>

</mfrac>

3.3.3 Radicals (msqrt, mroot)

3.3.3.1 Description

These elements construct radicals. Themsqrt element is used for square roots, while themroot element is used to draw
radicals with indices, e.g. a cube root. The syntax for these elements is:

<msqrt> base </msqrt>
<mroot> base index </mroot>

69

Themroot element requires exactly 2 arguments. However,msqrt accepts any number of arguments; if this number is
not 1, its contents are treated as a single ‘inferredmrow’ containing its arguments, as described in Section3.1.3.

3.3.3.2 Attributes

This element only permitsid, xref, class andstyle attributes, as described in Section2.4.5.

Themroot element incrementsscriptlevel by 2, and setsdisplaystyle to false, within index, but leaves both
attributes unchanged withinbase. Themsqrt element leaves both attributes unchanged within all its arguments. These
attributes are inherited by every element from its rendering environment, but can be set explicitly only onmstyle. (See
Section3.3.4.)

3.3.4 Style Change (mstyle)

3.3.4.1 Description

Themstyle element is used to make style changes that affect the rendering of its contents.mstyle can be given any
attribute accepted by any MathML presentation element provided that the attribute value is inherited, computed or has
a default value; presentation element attributes whose values are required are not accepted by themstyle element. In
additionmstyle can also be given certain special attributes listed below.

The mstyle element accepts any number of arguments. If this number is not 1, its contents are treated as a single
‘inferredmrow’ formed from all its arguments, as described in Section3.1.3.

Loosely speaking, the effect of themstyle element is to change the default value of an attribute for the elements it
contains. Style changes work in one of several ways, depending on the way in which default values are specified for an
attribute. The cases are:

• Some attributes, such asdisplaystyle or scriptlevel (explained below), are inherited from the sur-
rounding context when they are not explicitly set. Specifying such an attribute on anmstyle element sets
the value that will be inherited by its child elements. Unless a child element overrides this inherited value, it
will pass it on to its children, and they will pass it to their children, and so on. But if a child element does
override it, either by an explicit attribute setting or automatically (as is common forscriptlevel), the new
(overriding) value will be passed on to that element’s children, and then to their children, etc, until it is again
overridden.

• Other attributes, such aslinethickness on mfrac, have default values that are not normally inherited.
That is, if thelinethickness attribute is not set on the start tag of anmfrac element, it will normally use
the default value of1, even if it was contained in a largermfrac element that set this attribute to a different
value. For attributes like this, specifying a value with anmstyle element has the effect of changing the
default value for all elements within its scope. The net effect is that setting the attribute value withmstyle
propagates the change to all the elements it contains directly or indirectly, except for the individual elements
on which the value is overridden. Unlike in the case of inherited attributes, elements that explicitly override
this attribute have no effect on this attribute’s value in their children.

• Another group of attributes, such asstretchy andform, are computed from operator dictionary informa-
tion, position in the enclosingmrow, and other similar data. For these attributes, a value specified by an
enclosingmstyle overrides the value that would normally be computed.

Note that attribute values inherited from anmstyle in any manner affect a given element in themstyle’s content only
if that attribute is not given a value in that element’s start tag. On any element for which the attribute is set explicitly,
the value specified on the start tag overrides the inherited value. The only exception to this rule is when the value given
on the start tag is documented as specifying an incremental change to the value inherited from that element’s context or
rendering environment.

70

Note also that the difference between inherited and non-inherited attributes set bymstyle, explained above, only matters
when the attribute is set on some element within themstyle’s contents that has children also setting it. Thus it never
matters for attributes, such ascolor, which can only be set on token elements (or onmstyle itself).

There is one exceptional element,mpadded, whose attributes cannot be set withmstyle. Thempadded element shares
several attribute names with themspace andmo elements. Thus, when the attributeswidth, height anddepth are spec-
ified on anmstyle element, they apply only to themspace element, and not the corresponding attributes ofmpadded.
Similarly, whenlspace is set withmstyle, it applies only to themo element.

3.3.4.2 Attributes

As stated above,mstyle accepts all attributes of all MathML presentation elements which do not have required values.
That is, all attributes which have an explicit default value or a default value which is inherited or computed are accepted
by themstyle element.

This element also acceptsid, xref, class andstyle attributes, as described in Section2.4.5.

Additionally, mstyle can be given the following special attributes that are implicitly inherited by every MathML ele-
ment as part of its rendering environment:

Name values default
scriptlevel [’+’ | ’-’] unsigned-integer inherited
displaystyle true | false inherited
scriptsizemultiplier number 0.71
scriptminsize number v-unit 8pt
color #rgb | #rrggbb | html-color-name inherited
background #rgb | #rrggbb | transparent | html-color-name transparent
veryverythinmathspace number h-unit 0.0555556em
verythinmathspace number h-unit 0.111111em
thinmathspace number h-unit 0.166667em
mediummathspace number h-unit 0.222222em
thickmathspace number h-unit 0.277778em
verythickmathspace number h-unit 0.333333em
veryverythickmathspace number h-unit 0.388889em

scriptlevel and displaystyle

MathML uses two attributes,displaystyle andscriptlevel, to control orthogonal presentation features that TEX
encodes into onestyle attribute with values \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle. The correspond-
ing values ofdisplaystyle andscriptlevel for those TEX styles would betrue and0, false and0, false and1,
andfalse and2, respectively.

The main effect of thedisplaystyle attribute is that it determines the effect of other attributes such as thelargeop and
movablescripts attributes ofmo. The main effect of thescriptlevel attribute is to control the font size. Typically,
the higher thescriptlevel, the smaller the font size. (Non-visual renderers can respond to the font size in an analogous
way for their medium.) More sophisticated renderers may also choose to use these attributes in other ways, such as
rendering expressions withdisplaystyle=false in a more vertically compressed manner.

These attributes are given initial values for the outermost expression of an instance of MathML based on its rendering
environment. A short list of layout schemata described below modify these values for some of their sub-expressions.
Otherwise, values are determined by inheritance whenever they are not directly specified on a given element’s start tag.

For an instance of MathML embedded in a textual data format (such as HTML) in ‘display’ mode, i.e. in place of a
paragraph,displaystyle = true andscriptlevel = 0 for the outermost expression of the embedded MathML; if

71

the MathML is embedded in ‘inline’ mode, i.e. in place of a character,displaystyle = false andscriptlevel =
0 for the outermost expression. See Chapter7 for further discussion of the distinction between ‘display’ and ‘inline’
embedding of MathML and how this can be specified in particular instances. In general, a MathML renderer may
determine these initial values in whatever manner is appropriate for the location and context of the specific instance of
MathML it is rendering, or if it has no way to determine this, based on the way it is most likely to be used; as a last
resort it is suggested that it use the most generic valuesdisplaystyle = "true" andscriptlevel = "0".

The MathML layout schemata that typically display some of their arguments in smaller type or with less vertical spacing,
namely the elements for scripts, fractions, radicals, and tables or matrices, setdisplaystyle to false, and in some
cases increasescriptlevel, for those arguments. The new values are inherited by all sub-expressions within those
arguments, unless they are overridden.

The specific rules by which each element modifiesdisplaystyle and/orscriptlevel are given in the specifica-
tion for each element that does so; the complete list of elements that modify either attribute are: the ‘scripting’ ele-
mentsmsub, msup, msubsup, munder, mover, munderover, andmmultiscripts; and the elementsmfrac, mroot,
andmtable.

Whenmstyle is given ascriptlevel attribute with no sign, it sets the value ofscriptlevel within its contents to the
value given, which must be a nonnegative integer. When the attribute value consists of a sign followed by an integer, the
value ofscriptlevel is incremented (for ’+’) or decremented (for ’-’) by the amount given. The incremental syntax
for this attribute is an exception to the general rules for setting inherited attributes usingmstyle, and is not allowed by
any other attribute onmstyle.

Whenever thescriptlevel is changed, either automatically or by being explicitly incremented, decremented, or set,
the current font size is multiplied by the value ofscriptsizemultiplier to the power of the change inscriptlevel.
For example, ifscriptlevel is increased by 2, the font size is multiplied byscriptsizemultiplier twice in suc-
cession; ifscriptlevel is explicitly set to 2 when it had been 3, the font size is divided byscriptsizemultiplier.
References tofontsize in this section should be interpreted to mean either thefontsize attribute or themathsize
attribute.

The default value ofscriptsizemultiplier is less than one (in fact, it is approximately the square root of 1/2),
resulting in a smaller font size with increasingscriptlevel. To prevent scripts from becoming unreadably small, the
font size is never allowed to go below the value ofscriptminsize as a result of a change toscriptlevel, though it
can be set to a lower value using thefontsize attribute (Section3.2.2) onmstyle or on token elements. If a change to
scriptlevel would cause the font size to become lower thanscriptminsize using the above formula, the font size
is instead set equal toscriptminsize within the sub-expression for whichscriptlevel was changed.

In the syntax forscriptminsize, v-unit represents a unit of vertical length (as described in Section2.4.4.2). The
most common unit for specifying font sizes in typesetting ispt (points).

Explicit changes to thefontsize attribute have no effect on the value ofscriptlevel.

Further details on scriptlevel for renderers

For MathML renderers that support CSS style sheets, or some other analogous style sheet mechanism, absolute or
relative changes tofontsize (or other attributes) may occur implicitly on any element in response to a style sheet.
Changes tofontsize of this kind also have no effect onscriptlevel. A style sheet-induced change tofontsize
overridesscriptminsize in the same way as for an explicit change tofontsize in the element’s start tag (dis-
cussed above), whether it is specified in the style sheet as an absolute or a relative change. (However, any subsequent
scriptlevel-induced change tofontsize will still be affected by it.) As is required for inherited attributes in CSS,
the style sheet-modifiedfontsize is inherited by child elements.

If the same element is subject to both a style sheet-induced and an automatic (scriptlevel-related) change to its
ownfontsize, thescriptlevel-related change is done first - in fact, in the simplest implementation of the element-

72

specific rules forscriptlevel, this change would be done by the element’s parent as part of producing the rendering
properties it passes to the given element, since it is the parent element that knows whetherscriptlevel should be
changed for each of its child elements.

If the element’s ownfontsize is changed by a style sheet and it also changesscriptlevel (and thusfontsize) for
one of its children, the style sheet-induced change is done first, followed by the change inherited by that child. If more
than one child’sscriptlevel is changed, the change inherited by each child has no effect on the other children. (As
a mnemonic rule that applies to a ‘parse tree’ of elements and their children, style sheet-induced changes tofontsize
can be associated to nodes of the tree, i.e. to MathML elements, andscriptlevel-related changes can be associated
to the edges between parent and child elements; then the order of the associated changes corresponds to the order of
nodes and edges in each path down the tree.) For general information on the relative order of processing of properties
set by style sheets versus by attributes, see the appropriate subsection of CSS-compatible attributes in Section2.4.4.3.

If scriptlevel is changed incrementally by anmstyle element that also sets certain other attributes, the overall effect
of the changes may depend on the order in which they are processed. In such cases, the attributes in the following list
should be processed in the following order, regardless of the order in which they occur in the XML-format attribute list
of themstyle start tag:scriptsizemultiplier, scriptminsize, scriptlevel, fontsize.

Note thatscriptlevel can, in principle, attain any integral value by being decremented sufficiently, even though it can
only be explicitly set to nonnegative values. Negative values ofscriptlevel generated in this way are legal and should
work as described, generating font sizes larger than those of the surrounding expression. Sincescriptlevel is initially
0 and never decreases automatically, it will always be nonnegative unless it is decremented past 0 usingmstyle.

Explicit decrements ofscriptlevel after the font size has been limited byscriptminsize as described above would
produce undesirable results. This might occur, for example, in a representation of a continued fraction, in which the
scriptlevel was decremented for part of the denominator back to its value for the fraction as a whole, if the continued
fraction itself was located in a place that had a highscriptlevel. To prevent this problem, MathML renderers should,
when decrementingscriptlevel, use as the initial font size the value the font size would have had if it had never
been limited byscriptminsize. They should not, however, ignore the effects of explicit settings offontsize, even
to values belowscriptminsize.

Since MathML renderers may be unable to make use of arbitrary font sizes with good results, they may wish to modify
the mapping from scriptlevel to fontsize to produce better renderings in their judgment. In particular, if fontsizes have
to be rounded to available values, or limited to values within a range, the details of how this is done are up to the
renderer. Renderers should, however, ensure that a series of incremental changes toscriptlevel resulting in its return
to the same value for some sub-expression that it had in a surrounding expression results in the same fontsize for that
sub-expression as for the surrounding expression.

Color and background attributes

Thecolor attribute controls the color in which the content of tokens is rendered. Additionally, when inherited from
mstyle or from a MathML expression’s rendering environment, it controls the color of all other drawing by MathML
elements, including the lines or radical signs that can be drawn bymfrac, mtable, or msqrt.

Note that thebackground attribute, though not inherited, has the default value ‘transparent’ (as in CSS2), which
effectively allows an element’s parent to control its background.

The values ofcolor andbackground can be specified as a string consisting of ’#’ followed without intervening whites-
pace by either 1-digit or 2-digit hexadecimal values for the red, green, and blue components, respectively, of the desired
color, with the same number of digits used for each component (or as the keyword ‘transparent’ forbackground).
The hexadecimal digits are not case-sensitive. The possible 1-digit values range from 0 (component not present) to F
(component fully present), and the possible 2-digit values range from 00 (component not present) to FF (component

73

fully present), with the 1-digit valuex being equivalent to the 2-digit valuexx (rather thanx0). % x0 would be a more
strictly correct notation, but renders terribly in some browsers.

These attributes can also be specified as anhtml-color-name, which is defined in the following subsection.

CSS compatibility of color attributes

The color syntax described above is a subset of the syntax of thecolor andbackground-color properties of CSS2.
(Thebackground-color syntax is in turn a subset of the full CSS2background property syntax, which also permits
specification of (for example) background images with optional repeats. The more general attribute namebackground
is used in MathML to facilitate possible extensions to the attribute’s scope in future versions of MathML.)

Color values on either attribute can also be specified as anhtml-color-name, that is, as one of the color-name keywords
defined in [HTML4] (aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white,
and yellow). Note that the color name keywords are not case-sensitive, unlike most keywords in MathML attribute
values for compatibility with CSS and HTML.

Precise background region not specified

The suggested MathML visual rendering rules do not define the precise extent of the region whose background is
affected by using thebackground attribute onmstyle, except that, whenmstyle’s content does not have negative
dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this region
should lie behind all the drawing done to render the content of themstyle, but should not lie behind any of the drawing
done to render surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on the
extent of the region affected by thebackground attribute is not defined by these rules.

Meaning of named mathspaces

The spacing between operators is often one of a small number of potential values. MathML names these values and
allows their values to be changed. Because the default values for spacing around operators that are given in the operator
dictionary AppendixF are defined using these named spaces, changing their values will produce tighter or looser
spacing. These values can be used anywhere ah-unit or v-unit unit is allowed. See Section2.4.4.2.

The predefinednamedspaces are:veryverythinmathspace, verythinmathspace, thinmathspace, mediummath-
space, thickmathspace, verythickmathspace, or veryverythickmathspace. The default values ofveryvery-
thinmathspace... veryverythickmathspace are 1/18em...7/18em, respectively.

3.3.4.3 Examples

The example of limiting the stretchiness of a parenthesis shown in the section on <mo>,

<mrow>
<mo maxsize="1"> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo maxsize="1">) </mo>

</mrow>

can be rewritten usingmstyle as:

<mstyle maxsize="1">
<mrow>

74

<mo> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo>) </mo>

</mrow>
</mstyle>

3.3.5 Error Message (merror)

3.3.5.1 Description

Themerror element displays its contents as an ‘error message’. This might be done, for example, by displaying the con-
tents in red, flashing the contents, or changing the background color. The contents can be any expression or expression
sequence.

merror accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferredmrow’ as
described in Section3.1.3.

The intent of this element is to provide a standard way for programs thatgenerate MathML from other input to report
syntax errors in their input. Since it is anticipated that preprocessors that parse input syntaxes designed for easy hand
entry will be developed to generate MathML, it is important that they have the ability to indicate that a syntax error
occurred at a certain point. See Section7.2.2.

The suggested use ofmerror for reporting syntax errors is for a preprocessor to replace the erroneous part of its input
with anmerror element containing a description of the error, while processing the surrounding expressions normally
as far as possible. By this means, the error message will be rendered where the erroneous input would have appeared,
had it been correct; this makes it easier for an author to determine from the rendered output what portion of the input
was in error.

No specific error message format is suggested here, but as with error messages from any program, the format should be
designed to make as clear as possible (to a human viewer of the rendered error message) what was wrong with the input
and how it can be fixed. If the erroneous input contains correctly formatted subsections, it may be useful for these to be
preprocessed normally and included in the error message (within the contents of themerror element), taking advantage
of the ability ofmerror to contain arbitrary MathML expressions rather than only text.

3.3.5.2 Attributes

This element only permitsid, xref, class andstyle attributes, as described in Section2.4.5.

3.3.5.3 Example

If a MathML syntax-checking preprocessor received the input

<mfraction>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mn> 2 </mn>

</mfraction>

which contains the non-MathML elementmfraction (presumably in place of the MathML elementmfrac), it might
generate the error message

<merror>
<mtext> Unrecognized element: mfraction;

75

arguments were: </mtext>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mtext> and </mtext>
<mn> 2 </mn>

</merror>

Note that the preprocessor’s input is not, in this case, valid MathML, but the error message it outputs is valid MathML.

3.3.6 Adjust Space Around Content (mpadded)

3.3.6.1 Description

An mpadded element renders the same as its content, but with its overall size and other dimensions (such as baseline
position) modified according to its attributes. Thempadded element does not rescale (stretch or shrink) its content; its
only effect is to modify the apparent size and position of the ‘bounding box’ around its content, so as to affect the
relative position of the content with respect to the surrounding elements. The name of the element reflects the use of
mpadded to effectively add ‘padding’, or extra space, around its content. If the ‘padding’ is negative, it is possible for
the content ofmpadded to be rendered outside thempadded element’s bounding box; see below for warnings about
several potential pitfalls of this effect.

The mpadded element accepts any number of arguments; if this number is not 1, its contents are treated as a single
‘inferredmrow’ as described in Section3.1.3.

It is suggested that audio renderers add (or shorten) time delays based on the attributes representing horizontal space
(width andlspace).

3.3.6.2 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

Name values default
width [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | h-unit | namedspace) same as content
lspace [+ | -]unsigned-number (% [pseudo-unit] | pseudo-unit | h-unit) 0
height [+ | -]unsigned-number (% [pseudo-unit] | pseudo-unit | v-unit) same as content
depth [+ | -]unsigned-number (% [pseudo-unit] | pseudo-unit | v-unit) same as content

(Thepseudo-unit syntax symbol is described below.)

These attributes modify the dimensions of the ‘bounding box’ of thempadded element. The dimensions (which have
the same names as the attributes) are defined in the next subsection. Depending on the format of the attribute value,
a dimension may be set to a new value, or to an incremented or decremented version of the content’s corresponding
dimension. Values may be specified as multiples or percentages of any of the dimensions of the normal rendering of the
element’s content (using so-called ‘pseudo-units’), or they can be set directly using standard units Section2.4.4.2.

If an attribute value begins with a+ or - sign, it specifies an increment or decrement of the corresponding dimension
by the following length value (interpreted as explained below). Otherwise, the corresponding dimension is set directly
to the following length value. Note that the+ and- do not mean that the following value is positive or negative, even
when an explicit length unit (h-unit or v-unit) is given. In particular, these attributes cannot directly set a dimension to
a negative value.

Length values (after the optional sign, which is not part of the length value) can be specified in several formats. Each
format begins with anunsigned-number, which may be followed by a% sign and an optional ‘pseudo-unit’ (denoted by
pseudo-unit in the attribute syntaxes above), by a pseudo-unit alone, or by one of the length units (denoted byh-unit

76

or v-unit) specified in Section2.4.4.2, not including%. The possible pseudo-units are the keywordswidth, lspace,
height, anddepth; they each represent the length of the same-named dimension of thempadded element’s content
(not of thempadded element itself). The lengths represented byh-unit or v-unit are described in Section2.4.4.2.

In any of these formats, the length value specified is the product of the specified number and the length represented by
the unit or pseudo-unit. The result is multiplied by 0.01 if% is given. If no pseudo-unit is given after%, the one with the
same name as the attribute being specified is assumed.

Some examples of attribute formats using pseudo-units (explicit or default) are as follows:depth="100% height"
anddepth="1.0 height" both set the depth of thempadded element to the height of its content.depth="105%" sets
the depth to 1.05 times the content’s depth, and eitherdepth="+100%" or depth="200%" sets the depth to twice the
content’s depth.

Dimensions that would be positive if the content was rendered normally cannot be made negative usingmpadded;
a positive dimension is set to 0 if it would otherwise become negative. Dimensions that are initially 0 can be made
negative, but this should generally be avoided. See the warnings below on the use of negative spacing for ‘tweaking’ or
conveying meaning.

The rules given above imply that all of the following attribute settings have the same effect, which is to leave the
content’s dimensions unchanged:

<mpadded width="+0em"> ... </mpadded>
<mpadded width="+0%"> ... </mpadded>
<mpadded width="-0em"> ... </mpadded>
<mpadded width="- 0 height"> ... </mpadded>
<mpadded width="100%"> ... </mpadded>
<mpadded width="100% width"> ... </mpadded>
<mpadded width="1 width"> ... </mpadded>
<mpadded width="1.0 width"> ... </mpadded>
<mpadded> ... </mpadded>

3.3.6.3 Meanings of dimension attributes

See AppendixH for further information about some of the typesetting terms used here.

The width attribute refers to the overall horizontal width of a bounding box. By default (i.e. whenlspace is not
modified), the bounding box of the content of anmpadded element should be rendered flush with the left edge of the
mpadded element’s bounding box. Thus, increasingwidth alone effectively adds space on the right edge of the box.

Thelspace attribute refers to the amount of space between the left edge of a bounding box and the start of the rendering
of its contents’ bounding box. Unlike the other dimensions,lspace does not correspond to a real property of a bounding
box, but exists only transiently during the computations done by each instance ofmpadded. It is provided so that there
is a way to add space on the left edge of a bounding box.

The rationale behind usingwidth andlspace to control horizontal padding instead of more symmetric attributes, such
as a hypotheticalrspace andlspace, is that it is desirable to have a ‘width’ pseudo unit, in part because ‘width’ is an
actual property of a bounding box.

The height attribute refers to the amount of vertical space between the baseline (the line along the bottom of most
letter glyphs in normal text rendering) and the top of the bounding box.

Thedepth attribute refers to the amount of vertical space between the bottom of the bounding box and the baseline.

MathML renderers should ensure that, except for the effects of the attributes, relative spacing between the contents of
mpadded and surrounding MathML elements is not modified by replacing anmpadded element with anmrow element

77

with the same content. This holds even if linebreaking occurs within thempadded element. However, if anmpadded
element with non-default attribute values is subjected to linebreaking, MathML does not define how its attributes or
rendering interact with the linebreaking algorithm.

3.3.6.4 Warning: nonportability of ‘tweaking’

A likely temptation for the use of thempadded andmspace elements (and perhaps alsomphantom andmtext) will be
for an author to improve the spacing generated by a specific renderer by slightly modifying it in specific expressions,
i.e. to ‘tweak’ the rendering.

Authors are strongly warned thatdifferent MathML renderers may use different spacing rules for computing the relative
positions of rendered symbols in expressions that have no explicit modifications to their spacing; if renderer B improves
upon renderer A’s spacing rules, explicit spacing added to improve the output quality of renderer A may produce very
poor results in renderer B, very likely worse than without any ‘tweaking’ at all.

Even when a specific choice of renderer can be assumed, its spacing rules may be improved in successive versions, so
that the effect of tweaking in a given MathML document may grow worse with time. Also, when style sheet mechanisms
are extended to MathML, even one version of a renderer may use different spacing rules for users with different style
sheets.

Therefore, it is suggested that MathML markup never usempadded or mspace elements to tweak the rendering of
specific expressions, unless the MathML is generated solely to be viewed using one specific version of one MathML
renderer, using one specific style sheet (if style sheets are available in that renderer).

In cases where the temptation to improve spacing proves too strong, careful use ofmpadded, mphantom, or the alignment
elements (Section3.5.5) may give more portable results than the direct insertion of extra space usingmspace or mtext.
Advice given to the implementors of MathML renderers might be still more productive, in the long run.

3.3.6.5 Warning: spacing should not be used to convey meaning

MathML elements that permit ‘negative spacing’, namelymspace, mpadded, andmtext, could in theory be used to
simulate new notations or ‘overstruck’ characters by the visual overlap of the renderings of more than one MathML
sub-expression.

This practice isstrongly discouraged in all situations, for the following reasons:

• it will give different results in different MathML renderers (so the warning about ‘tweaking’ applies);
• it is likely to appear much worse than a more standard construct supported by good renderers;
• such expressions are almost certain to be uninterpretable by audio renderers, computer algebra systems, text

searches for standard symbols, or other processors of MathML input.

More generally, any construct that uses spacing to convey mathematical meaning, rather than simply as an aid to viewing
expression structure, is discouraged. That is, the constructs that are discouraged are those that would be interpreted
differently by a human viewer of rendered MathML if all explicit spacing was removed.

If such constructs are used in spite of this warning, they should be enclosed in asemantics element that also provides
an additional MathML expression that can be interpreted in a standard way.

For example, the MathML expression

<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>

78

forms an overstruck symbol in violation of the policy stated above; it might be intended to represent the set of complex
numbers for a MathML renderer that lacks support for the standard symbol used for this purpose. This kind of construct
should always be avoided in MathML, for the reasons stated above; indeed, it should never be necessary for standard
symbols, since a MathML renderer with no better method of rendering them is free to use overstriking internally, so that
it can still support general MathML input.

However, if for whatever reason such a construct is used in MathML, it should always be enclosed in asemantics
element such as

<semantics>
<mrow>
<mpadded width="0"> <mi> C </mi> </mpadded>
<mspace width="0.3em"/>
<mtext> | </mtext>

</mrow>
<annotation-xml encoding="MathML-Presentation">
<mi> ℂ </mi>

</annotation-xml>
</semantics>

which provides an alternative, standard encoding for the desired symbol, which is much more easily interpreted than
the construct using negative spacing. (The alternative encoding in this example uses MathML presentation elements;
the content elements described in Chapter4 should also be considered.)

(The above warning also applies to most uses of rendering attributes to alter the meaning conveyed by an expression,
with the exception of attributes onmi (such asfontweight) used to distinguish one variable from another.)

3.3.7 Making Sub-Expressions Invisible (mphantom)

3.3.7.1 Description

The mphantom element renders invisibly, but with the same size and other dimensions, including baseline position,
that its contents would have if they were rendered normally.mphantom can be used to align parts of an expression by
invisibly duplicating sub-expressions.

Themphantom element accepts any number of arguments; if this number is not 1, its contents are treated as a single
‘inferredmrow’ formed from all its arguments, as described in Section3.1.3.

3.3.7.2 Attributes

This element only permitsid, xref, class andstyle attributes, as described in Section2.4.5.

Note that it is possible to wrap both anmphantom and anmpadded element around one MathML expression, as in
<mphantom><mpadded attribute-settings> ... </mpadded></mphantom>, to change its size and make it in-
visible at the same time.

MathML renderers should ensure that the relative spacing between the contents of anmphantom element and the sur-
rounding MathML elements is the same as it would be if themphantom element were replaced by anmrow element with
the same content. This holds even if linebreaking occurs within themphantom element.

For the above reason,mphantom is not considered space-like (Section3.2.7) unless its content is space-like, since the
suggested rendering rules for operators are affected by whether nearby elements are space-like. Even so, the warning
about the legal grouping of space-like elements may apply to uses ofmphantom.

79

There is one situation where the preceding rule for rendering anmphantom may not give the desired effect. When
an mphantom is wrapped around a subsequence of the arguments of anmrow, the default determination of theform
attribute for anmo element within the subsequence can change. (See the default value of theform attribute described in
Section3.2.5.) It may be necessary to add an explicitform attribute to such anmo in these cases. This is illustrated in
the following example.

3.3.7.3 Examples

In this example,mphantom is used to ensure alignment of corresponding parts of the numerator and denominator of a
fraction:

<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo form="infix"> + </mo>
<mi> y </mi>

</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

This would render as something like
x+y+z
x +z

rather than as
x+y+z

x+z
The explicit attribute settingform="infix" on the mo element inside themphantom sets theform attribute to what it
would have been in the absence of the surroundingmphantom. This is necessary since otherwise, the+ sign would be
interpreted as a prefix operator, which might have slightly different spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by wrapping each of the arguments
<mo>+</mo> and<mi>y</mi> in its ownmphantom element, i.e.

<mfrac>
<mrow>

<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

80

</mrow>
<mrow>

<mi> x </mi>
<mphantom>

<mo> + </mo>
</mphantom>
<mphantom>

<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

3.3.8 Expression Inside Pair of Fences (mfenced)

3.3.8.1 Description

Themfenced element provides a convenient form in which to express common constructs involving fences (i.e. braces,
brackets, and parentheses), possibly including separators (such as comma) between the arguments.

For example,<mfenced> <mi>x</mi> </mfenced> renders as ‘(x)’ and is equivalent to

<mrow> <mo> (</mo> <mi>x</mi> <mo>) </mo> </mrow>

and<mfenced> <mi>x</mi> <mi>y</mi> </mfenced> renders as ‘(x, y)’ and is equivalent to

<mrow>
<mo> (</mo>
<mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
<mo>) </mo>

</mrow>

Individual fences or separators are represented usingmo elements, as described in Section3.2.5. Thus, anymfenced
element is completely equivalent to an expanded form described below; either form can be used in MathML, at the
convenience of an author or of a MathML-generating program. A MathML renderer is required to render either of these
forms in exactly the same way.

In general, anmfenced element can contain zero or more arguments, and will enclose them between fences in anmrow;
if there is more than one argument, it will insert separators between adjacent arguments, using an additional nestedmrow
around the arguments and separators for proper grouping (Section3.3.1). The general expanded form is shown below.
The fences and separators will be parentheses and comma by default, but can be changed using attributes, as shown in
the following table.

3.3.8.2 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

Name values default
open string (
close string)
separators character * ,

81

A genericmfenced element, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"
close="closing-fence"
separators="sep#1 sep#2 ... sep#(n-1)" >

arg#1
...
arg#n

</mfenced>

Theopening-fence andclosing-fence are arbitrary strings. (Since they are used as the content ofmo elements, any
whitespace they contain will be trimmed and collapsed as described in Section2.4.6.)

The value ofseparators is a sequence of zero or more separator characters (or entity references), optionally separated
by whitespace. Eachsep#i consists of exactly one character or entity reference. Thus,separators=",;" is equivalent
to separators=" , ; ".

The generalmfenced element shown above is equivalent to the following expanded form:

<mrow>
<mo fence="true"> opening-fence </mo>
<mrow>

arg#1
<mo separator="true"> sep#1 </mo>
...
<mo separator="true"> sep#(n-1) </mo>
arg#n

</mrow>
<mo fence="true"> closing-fence </mo>

</mrow>

Each argument except the last is followed by a separator. The innermrow is added for proper grouping, as described in
Section3.3.1.

When there is only one argument, the above form has no separators; since<mrow> arg#1 </mrow> is equivalent to
arg#1 (as described in Section3.3.1), this case is also equivalent to:

<mrow>
<mo fence="true"> opening-fence </mo>
arg#1
<mo fence="true"> closing-fence </mo>

</mrow>

If there are too many separator characters, the extra ones are ignored. If separator characters are given, but there are too
few, the last one is repeated as necessary. Thus, the default value ofseparators="," is equivalent toseparators="„",
separators="„,", etc. If there are no separator characters provided but some are needed, for example ifseparators="
" or "" and there is more than one argument, then no separator elements are inserted at all - that is, the elements<mo
separator="true"> sep#i </mo> are left out entirely. Note that this is different from inserting separators consisting
of mo elements with empty content.

Finally, for the case with no arguments, i.e.

82

<mfenced open="opening-fence"
close="closing-fence"
separators="anything" >

</mfenced>

the equivalent expanded form is defined to include just the fences within anmrow:

<mrow>
<mo fence="true"> opening-fence </mo>
<mo fence="true"> closing-fence </mo>

</mrow>

Note that not all ‘fenced expressions’ can be encoded by anmfenced element. Such exceptional expressions include
those with an ‘embellished’ separator or fence or one enclosed in anmstyle element, a missing or extra separator or
fence, or a separator with multiple content characters. In these cases, it is necessary to encode the expression using an
appropriately modified version of an expanded form. As discussed above, it is always permissible to use the expanded
form directly, even when it is not necessary. In particular, authors cannot be guaranteed that MathML preprocessors
won’t replace occurrences ofmfenced with equivalent expanded forms.

Note that the equivalent expanded forms shown above include attributes on themo elements that identify them as
fences or separators. Since the most common choices of fences and separators already occur in the operator dictionary
with those attributes, authors would not normally need to specify those attributes explicitly when using the expanded
form directly. Also, the rules for the defaultform attribute (Section3.2.5) cause the opening and closing fences to be
effectively given the valuesform="prefix" andform="postfix" respectively, and the separators to be given the value
form="infix".

Note that it would be incorrect to usemfenced with a separator of, for instance, ‘+’, as an abbreviation for an expression
using ‘+’ as an ordinary operator, e.g.

<mrow>
<mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>

</mrow>

This is because the+ signs would be treated as separators, not infix operators. That is, it would render as if they were
marked up as<mo separator="true">+</mo>, which might therefore render inappropriately.

3.3.8.3 Examples

(a+b)

<mfenced>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
</mfenced>

Note that the abovemrow is necessary so that themfenced has just one argument. Without it, this would render incor-
rectly as ‘(a, +, b)’.

[0,1)

<mfenced open="[">

83

<mn> 0 </mn>
<mn> 1 </mn>

</mfenced>

f (x,y)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mfenced>
<mi> x </mi>
<mi> y </mi>

</mfenced>
</mrow>

3.3.9 Enclose Expression Inside Notation (menclose)

3.3.9.1 Description

Themenclose element renders its content inside the enclosing notation specified by itsnotation attribute.menclose
accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferredmrow’ containing
its arguments, as described in Section3.1.3.

3.3.9.2 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

Name values default
notation longdiv | actuarial | radical longdiv

Whennotation has the valuelongdiv, the contents are drawn enclosed by a long division symbol. A complete exam-
ple of long division is accomplished by also usingmtable andmalign. Whennotation is specified asactuarial,
the contents are drawn enclosed by an actuarial symbol. The case ofnotation=radical is equivalent to themsqrt
schema.

3.3.9.3 Examples

The following markup might be used to encode an elementary US-style long division problem.

<mtable columnspacing=’0’ rowspacing=’0’>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>10</mn></mtd>

</mtr>
<mtr>
<mtd columnalign=’right’><mn>131</mn></mtd>
<mtd columnalign=’right’>
<menclose notation=’longdiv’><mn>1413</mn></menclose>

</mtd>
</mtr>

84

<mtr>
<mtd></mtd>
<mtd columnalign=’right’>
<mrow>
<munder>
<mn>131</mn>
<mo> _ </mo>

</munder>
<mphantom><mn>3</mn></mphantom>
</mrow>

</mtd>
</mtr>
<mtr>
<mtd></mtd>
<mtd columnalign=’right’><mn>103</mn></mtd>

</mtr>
</mtable>

This might be rendered roughly as:

10
131)1413

131
103

An example of usingmenclose for actuarial notation is

<msub>
<mi>a</mi>
<mrow>
<menclose notation=’actuarial’>
<mi>n</mi>

</menclose>
<mo>⁢</mo>
<mi>i</mi>

</mrow>
</msub>

which renders roughly as

a
n |i

3.4 Script and Limit Schemata

The elements described in this section position one or more scripts around a base. Attaching various kinds of scripts
and embellishments to symbols is a very common notational device in mathematics. For purely visual layout, a single
general-purpose element could suffice for positioning scripts and embellishments in any of the traditional script locations
around a given base. However, in order to capture the abstract structure of common notation better, MathML provides
several more specialized scripting elements.

In addition to sub/superscript elements, MathML has overscript and underscript elements that place scripts above and
below the base. These elements can be used to place limits on large operators, or for placing accents and lines above or

85

below the base. The rules for rendering accents differ from those for overscripts and underscripts, and this difference
can be controlled with theaccent andaccentunder attributes, as described in the appropriate sections below.

Rendering of scripts is affected by thescriptlevel anddisplaystyle attributes, which are part of the environment
inherited by the rendering process of every MathML expression, and are described undermstyle (Section3.3.4). These
attributes cannot be given explicitly on a scripting element, but can be specified on the start tag of a surroundingmstyle
element if desired.

MathML also provides an element for attachment of tensor indices. Tensor indices are distinct from ordinary subscripts
and superscripts in that they must align in vertical columns. Tensor indices can also occur in prescript positions.

Because presentation elements should be used to describe the abstract notational structure of expressions, it is important
that the base expression in all ‘scripting’ elements (i.e. the first argument expression) should be the entire expression
that is being scripted, not just the rightmost character. For example, (x+y)2 should be written as:

<msup>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
<mn> 2 </mn>

</msup>

3.4.1 Subscript (msub)

3.4.1.1 Description

The syntax for themsub element is:

<msub> base subscript </msub>

3.4.1.2 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

Name values default
subscriptshift number v-unit automatic (typical unit is ex)

Thesubscriptshift attribute specifies the minimum amount to shift the baseline ofsubscript down.

v-unit represents a unit of vertical length (see Section2.4.4.2).

Themsub element incrementsscriptlevel by 1, and setsdisplaystyle to false, within subscript, but leaves both
attributes unchanged withinbase. (These attributes are inherited by every element through its rendering environment,
but can be set explicitly only onmstyle; see Section3.3.4.)

86

3.4.2 Superscript (msup)

3.4.2.1 Description

The syntax for themsup element is:

<msup> base superscript </msup>

3.4.2.2 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

Name values default
superscriptshift number v-unit automatic (typical unit is ex)

Thesuperscriptshift attribute specifies the minimum amount to shift the baseline ofsuperscript up.

v-unit represents a unit of vertical length (see Section2.4.4.2).

Themsup element incrementsscriptlevel by 1, and setsdisplaystyle tofalse, within superscript, but leaves both
attributes unchanged withinbase. (These attributes are inherited by every element through its rendering environment,
but can be set explicitly only onmstyle; see Section3.3.4.)

3.4.3 Subscript-superscript Pair (msubsup)

3.4.3.1 Description

Themsubsup element is used to attach both a subscript and superscript to a base expression. Note that both scripts are
positioned tight against the base:x1

2 versusx2
1.

The syntax for themsubsup element is:

<msubsup> base subscript superscript </msubsup>

3.4.3.2 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

Name values default
subscriptshift number v-unit automatic (typical unit is ex)
superscriptshift number v-unit automatic (typical unit is ex)

The subscriptshift attribute specifies the minimum amount to shift the baseline ofsubscript down. Thesuper-
scriptshift attribute specifies the minimum amount to shift the baseline ofsuperscript up.

v-unit represents a unit of vertical length (see Section2.4.4.2).

Themsubsup element incrementsscriptlevel by 1, and setsdisplaystyle to false, within subscript andsuper-
script, but leaves both attributes unchanged withinbase. (These attributes are inherited by every element through its
rendering environment, but can be set explicitly only onmstyle; see Section3.3.4.)

87

3.4.3.3 Examples

The msubsup is most commonly used for adding sub/superscript pairs to identifiers as illustrated above. However,
another important use is placing limits on certain large operators whose limits are traditionally displayed in the script
positions even when rendered in display style. The most common of these is the integral. For example,∫ 1

0
exdx

would be represented as

<mrow>
<msubsup>
<mo> ∫ </mo>
<mn> 0 </mn>
<mn> 1 </mn>

</msubsup>
<mrow>
<msup>
<mi> ⅇ </mi>
<mi> x </mi>

</msup>
<mo> ⁢ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>

</mrow>
</mrow>

</mrow>

3.4.4 Underscript (munder)

3.4.4.1 Description

The syntax for themunder element is:

<munder> base underscript </munder>

3.4.4.2 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

Name values default
accentunder true | false automatic

The accentunder attribute controls whetherunderscript is drawn as an ‘accent’ or as a limit. The main difference
between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as the base. A second
difference is that the accent is drawn closer to the base.

The default value ofaccentunder is false, unlessunderscript is anmo element or an embellished operator (see Sec-
tion 3.2.5). If underscript is anmo element, the value of itsaccent attribute is used as the default value ofaccentunder.
If underscript is an embellished operator, theaccent attribute of themo element at its core is used as the default value.
As with all attributes, an explicitly given value overrides the default.

88

Here is an example (accent versus underscript):x+y+z︸ ︷︷ ︸ versusx+y+z︸ ︷︷ ︸. The MathML representation for this example

is shown below.

If the base is an operator withmovablelimits=true (or an embellished operator whosemo element core hasmov-
ablelimits=true), anddisplaystyle=false, thenunderscript is drawn in a subscript position. In this case, the
accentunder attribute is ignored. This is often used for limits on symbols such as∑.

Within underscript, munder always setsdisplaystyle to false, but incrementsscriptlevel by 1 only whenac-
centunder is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited by every
element through its rendering environment, but can be set explicitly only onmstyle; see Section3.3.4.)

3.4.4.3 Examples

The MathML representation for the example shown above is:

<mrow>
<munder accentunder="true">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
<mtext> versus </mtext>
<munder accentunder="false">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
</mrow>

3.4.5 Overscript (mover)

3.4.5.1 Description

The syntax for themover element is:

<mover> base overscript </mover>

3.4.5.2 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

89

Name values default
accent true | false automatic

The accent attribute controls whetheroverscript is drawn as an ‘accent’ (diacritical mark) or as a limit. The main
difference between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as the
base. A second difference is that the accent is drawn closer to the base. This is shown below (accent versus limit): ˆx
versuŝx.

These differences also apply to ‘mathematical accents’ such as bars over expressions:
︷ ︸︸ ︷
x+y+z versus

︷ ︸︸ ︷
x+y+z. The

MathML representation for each of these examples is shown below.

The default value ofaccent is false, unlessoverscript is anmo element or an embellished operator (see Section3.2.5).
If overscript is anmo element, the value of itsaccent attribute is used as the default value ofaccent for mover. If
overscript is an embellished operator, theaccent attribute of themo element at its core is used as the default value.

If the base is an operator withmovablelimits=true (or an embellished operator whosemo element core hasmov-
ablelimits=true), anddisplaystyle=false, thenoverscript is drawn in a superscript position. In this case, the
accent attribute is ignored. This is often used for limits on symbols such as∑.

Within overscript, mover always setsdisplaystyle to false, but incrementsscriptlevel by 1 only whenaccent
is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited by every element
through its rendering environment, but can be set explicitly only onmstyle; see Section3.3.4.)

3.4.5.3 Examples

The MathML representation for the examples shown above is:

<mrow>
<mover accent="true">
<mi> x </mi>
<mo> ^ </mo>

</mover>
<mtext> versus </mtext>
<mover accent="false">
<mi> x </mi>
<mo> ^ </mo>

</mover>
</mrow>

<mrow>
<mover accent="true">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ‾ </mo>

</mover>
<mtext> versus </mtext>

90

<mover accent="false">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ‾ </mo>

</mover>
</mrow>

3.4.6 Underscript-overscript Pair (munderover)

3.4.6.1 Description

The syntax for themunderover element is:

<munderover> base underscript overscript </munderover>

3.4.6.2 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

Name values default
accent true | false automatic
accentunder true | false automatic

Themunderover element is used so that the underscript and overscript are vertically spaced equally in relation to the
base and so that they follow the slant of the base as in the second expression shown below:

∞∫
0

versus
∞∫

0

The MathML representation for this example is shown below.

The difference in the vertical spacing is too small to be noticed on a low resolution display at a normal font size, but
is noticeable on a higher resolution device such as a printer and when using large font sizes. In addition to the visual
differences, attaching both the underscript and overscript to the same base more accurately reflects the semantics of the
expression.

Theaccent andaccentunder attributes have the same effect as the attributes with the same names onmover (Sec-
tion 3.4.5) andmunder (Section3.4.4), respectively. Their default values are also computed in the same manner as
described for those elements, with the default value ofaccent depending onoverscript and the default value ofac-
centunder depending onunderscript.

If the base is an operator withmovablelimits=true (or an embellished operator whosemo element core hasmovable-
limits=true), anddisplaystyle=false, thenunderscript andoverscript are drawn in a subscript and superscript

91

position, respectively. In this case, theaccent andaccentunder attributes are ignored. This is often used for limits on
symbols such as∑.

Within underscript, munderover always setsdisplaystyle to false, but incrementsscriptlevel by 1 only when
accentunder isfalse. Within overscript, munderover always setsdisplaystyle tofalse, but incrementsscriptlevel
by 1 only whenaccent isfalse. Within base, it always leaves both attributes unchanged. (These attributes are inherited
by every element through its rendering environment, but can be set explicitly only onmstyle; see Section3.3.4).

3.4.6.3 Examples

The MathML representation for the example shown above with the first expression made using separatemunder and
mover elements, and the second one using anmunderover element, is:

<mrow>
<mover>
<munder>
<mo> ∫ </mo>
<mn> 0 </mn>

</munder>
<mi> ∞ </mi>

</mover>
<mtext> versus </mtext>
<munderover>
<mo> ∫ </mo>
<mn> 0 </mn>
<mi> ∞ </mi>

</munderover>
</mrow>

3.4.7 Prescripts and Tensor Indices (mmultiscripts)

3.4.7.1 Description

The syntax for themmultiscripts element is:

<mmultiscripts>
base

(subscript superscript)*
[<mprescripts/> (presubscript presuperscript)*]

</mmultiscripts>

Presubscripts and tensor notations are represented by a single element,mmultiscripts. This element allows the rep-
resentation of any number of vertically-aligned pairs of subscripts and superscripts, attached to one base expression.
It supports both postscripts (to the right of the base in visual notation) and prescripts (to the left of the base in visual
notation). Missing scripts can be represented by the empty elementnone.

The prescripts are optional, and when present are givenafter the postscripts, because prescripts are relatively rare
compared to tensor notation.

The argument sequence consists of the base followed by zero or more pairs of vertically-aligned subscripts and super-
scripts (in that order) that represent all of the postscripts. This list is optionally followed by an empty elementmpre-
scripts and a list of zero or more pairs of vertically-aligned presubscripts and presuperscripts that represent all of the

92

prescripts. The pair lists for postscripts and prescripts are given in a left-to-right order. If no subscript or superscript
should be rendered in a given position, then the empty elementnone should be used in that position.

The base, subscripts, superscripts, the optional separator elementmprescripts, the presubscripts, and the presuper-
scripts, are all direct sub-expressions of themmultiscripts element, i.e. they are all at the same level of the expression
tree. Whether a script argument is a subscript or a superscript, or whether it is a presubscript or a presuperscript is deter-
mined by whether it occurs in an even-numbered or odd-numbered argument position, respectively, ignoring the empty
elementmprescripts itself when determining the position. The first argument, the base, is considered to be in position
1. The total number of arguments must be odd, ifmprescripts is not given, or even, if it is.

The empty elementsmprescripts andnone are only allowed as direct sub-expressions ofmmultiscripts.

3.4.7.2 Attributes

Same as the attributes ofmsubsup.

The mmultiscripts element incrementsscriptlevel by 1, and setsdisplaystyle to false, within each of its
arguments exceptbase, but leaves both attributes unchanged withinbase. (These attributes are inherited by every element
through its rendering environment, but can be set explicitly only onmstyle; see Section3.3.4.)

3.4.7.3 Examples

Two examples of the use ofmmultiscripts are:

0F1(;a;z).

<mrow>
<mmultiscripts>
<mi> F </mi>
<mn> 1 </mn>
<none/>
<mprescripts/>
<mn> 0 </mn>
<none/>

</mmultiscripts>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mo> ; </mo>
<mi> a </mi>
<mo> ; </mo>
<mi> z </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

Ri
j
kl (wherek andl are different indices)

<mmultiscripts>

93

<mi> R </mi>
<mi> i </mi>
<none/>
<none/>
<mi> j </mi>
<mi> k </mi>
<none/>
<mi> l </mi>
<none/>

</mmultiscripts>

3.5 Tables and Matrices

Matrices, arrays and other table-like mathematical notation are marked up usingmtable, mtr, mlabeledtr andmtd
elements. These elements are similar to theTABLE, TR andTD elements of HTML, except that they provide specialized
attributes for the fine layout control necessary for commutative diagrams, block matrices and so on.

Themlabeledtr element represents a labeled row of a table and can be used for numbered equations. The first child
of mlabeledtr is the label. A label is somewhat special in that it is not considered an expression in the matrix and is
not counted when determining the number of columns in that row.

3.5.1 Table or Matrix (mtable)

3.5.1.1 Description

A matrix or table is specified using themtable element. Inside of themtable element, onlymtr or mlabeledtr
elements may appear.

In MathML 1.x, themtable element could infermtr elements around its arguments, and themtr element could infer
mtd elements. In other words, if some argument to anmtable was not anmtr element, a MathML application was to
assume a row with a single column (i.e. the argument was effectively wrapped with an inferredmtr). Similarly, if some
argument to a (possibly inferred)mtr element was not anmtd element, that argument was to be treated as a table entry
by wrapping it with an inferredmtd element. MathML 2.0deprecatesthe inference ofmtr andmtd elements;mtr and
mtd elements must be used inside ofmtable andmtr respectively.

Table rows that have fewer columns than other rows of the same table (whether the other rows precede or follow them)
are effectively padded on the right with emptymtd elements so that the number of columns in each row equals the
maximum number of columns in any row of the table. Note that the use ofmtd elements with non-default values of
therowspan or columnspan attributes may affect the number ofmtd elements that should be given in subsequentmtr
elements to cover a given number of columns. Note also that the label in anmlabeledtr element is not considered a
column in the table.

3.5.1.2 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

94

Name values default
align (top | bottom | center | baseline | axis) [rownumber] axis
rowalign (top | bottom | center | baseline | axis) + baseline
columnalign (left | center | right) + center
groupalign group-alignment-list-list left
alignmentscope (true | false) + true
columnwidth (auto | number h-unit | namedspace | fit) + auto
width auto | number h-unit auto
rowspacing (number v-unit) + 1.0ex
columnspacing (number h-unit | namedspace) + 0.8em
rowlines (none | solid | dashed) + none
columnlines (none | solid | dashed) + none
frame none | solid | dashed none
framespacing (number h-unit | namedspace) (number v-unit | namedspace) 0.4em 0.5ex
equalrows true | false false
equalcolumns true | false false
displaystyle true | false false
side left | right | leftoverlap | rightoverlap right
minlabelspacing number h-unit 0.8em

Note that the default value for each ofrowlines, columnlines andframe is the literal string ‘none’, meaning that the
default is to render no lines, rather than that there is no default.

As described in Section2.4.4, the notation(x | y)+ means one or more occurrences of eitherx or y, separated by
whitespace. For example, possible values forcolumnalign areleft, left left, andleft right center center.
If there are more entries than are necessary (e.g. more entries than columns forcolumnalign), then only the first
entries will be used. If there are fewer entries, then the last entry is repeated as often as necessary. For example, if
columnalign="right center" and the table has three columns, the first column will be right aligned and the second and
third columns will be centered. The label in amlabeledtr is not considered as a column in the table and the attribute
values that apply to columns do not apply to labels.

Thealign attribute specifies where to align the table with respect to its environment.axis means to align the center
of the table on the environment’s axis. (The axis of an equation is an alignment line used by typesetters. It is the line
on which a minus sign typically lies. The center of the table is the midpoint of the table’s vertical extent.)center and
baseline both mean to align the center of the table on the environment’s baseline.top or bottom aligns the top or
bottom of the table on the environment’s baseline.

If the align attribute value ends with arownumber between 1 andn (for a table withn rows), the specified row is
aligned in the way described above, rather than the table as a whole; the top (first) row is numbered 1, and the bottom
(last) row is numberedn. The same is true if the row number is negative, between -1 and -n, except that the bottom row
is referred to as -1 and the top row as -n. Other values ofrownumber are illegal.

Therowalign attribute specifies how the entries in each row should be aligned. For example,top means that the tops
of each entry in each row should be aligned with the tops of the other entries in that row. Thecolumnalign attribute
specifies how the entries in each column should be aligned.

Thegroupalign andalignmentscope attributes are described with the alignment elements,maligngroup andma-
lignmark, in Section3.5.5.

Thecolumnwidth attribute specifies how wide a column should be. Theauto value means that the column should be as
wide as needed, which is the default. If an explicit value is given, then the column is exactly that wide and the contents
of that column are made to fit in that width. The contents are linewrapped or clipped at the discretion of the renderer.
If fit is given as a value, the remaining page width after subtracting the widths for columns specified asauto and/or

95

specific widths is divided equally among thefit columns and this value is used for the column width. If insufficient
room remains to hold the contents of thefit columns, renderers may linewrap or clip the contents of thefit columns.
When thecolumnwidth is specified as a percentage, the value is relative to the width of the table. That is, a renderer
should try to adjust the width of the column so that it covers the specified percentage of the entire table width.

Thewidth attribute specifies the desired width of the entire table and is intended for visual user agents. When the value
is a percentage value, the value is relative to the horizontal space a MathML renderer has available for the table element.
When the value isauto, the MathML renderer should calculate the table width from its contents using whatever layout
algorithm it chooses.

MathML 2.0 does not specify a table layout algorithm. In particular, it is the responsibility of a MathML renderer to
resolve conflicts between thewidth attribute and other constraints on the width of a table, such as explicit values for
columnwidth attributes, and minimum sizes for table cell contents. For a discussion of table layout algorithms, see
Cascading Style Sheets, level 2.

The rowspacing andcolumnspacing attributes specify how much space should be added between each row and
column. However, spacing before the first row and after the last row (i.e. at the top and bottom of the table) is given by
the second number in the value of theframespacing attribute, and spacing before the first column and after the last
column (i.e. on the left and on the right of the table) is given by the first number in the value of theframespacing
attribute.

In those attributes’ syntaxes,h-unit or v-unit represents a unit of horizontal or vertical length, respectively (see Sec-
tion 2.4.4.2). The units shown in the attributes’ default values (em or ex) are typically used.

Therowlines andcolumnlines attributes specify whether and what kind of lines should be added between each row
and column. Lines before the first row or column and after the last row or column are given using theframe attribute.

If a frame is desired around the table, theframe attribute is used. If the attribute value is not ‘none’, thenframes-
pacing is used to add spacing between the lines of the frame and the first and last rows and columns of the table. If
frame="none", then theframespacing attribute is ignored. Theframe andframespacing attributes are not part of
therowlines/columnlines, rowspacing/columnspacing options because having them be so would often require
thatrowlines andcolumnlines would need to be fully specified instead of just giving a single value. For example,
if a table had five columns and it was desired to have no frame around the table but to have lines between the columns,
thencolumnlines="none solid solid solid solid none" would be necessary. If the frame is separated from
the internal lines, onlycolumnlines="solid" is needed.

Theequalrows attribute forces the rows all to be the same total height when set totrue. Theequalcolumns attribute
forces the columns all to be the same width when set totrue.

Thedisplaystyle attribute specifies the value ofdisplaystyle (described undermstyle in Section3.3.4) within
each cell (mtd element) of the table. Settingdisplaystyle=true can be useful for tables whose elements are whole
mathematical expressions; the default value offalse is appropriate when the table is part of an expression, for example,
when it represents a matrix. In either case,scriptlevel (Section3.3.4) is not changed for the table cells.

Theside attribute specifies what side of a table a label for a table row should should be placed. This attribute is intended
to be used for labeled expressions. Ifleft or right is specified, the label is placed on the left or right side of the table
row respectively. The other two attribute values are variations onleft andright: if the labeled row fits within the
width allowed for the table without the label, but does not fit within the width if the label is included, then the label
overlaps the row and is displayed above the row ifrowalign for that row istop; otherwise the label is displayed below
the row.

If there are multiple labels in a table, the alignment of the labels within the virtual column that they form is left-aligned
for labels on the left side of the table, and right-aligned for labels on the right side of the table. The alignment can be
overridden by specifyingcolumnalignment for amlabeledtr element.

96

http://www.w3.org/TR/CSS2/tables.html#width-layout

Theminlabelspacing attribute specifies the minimum space allowed between a label and the adjacent entry in the
row.

3.5.1.3 Examples

A 3 by 3 identity matrix could be represented as follows:

<mrow>
<mo> (</mo>
<mtable>
<mtr>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>

</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>

</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>

</mtr>
</mtable>
<mo>) </mo>

</mrow>

This might be rendered as: 1 0 0
0 1 0
0 0 1

Note that the parentheses must be represented explicitly; they are not part of themtable element’s rendering. This
allows use of other surrounding fences, such as brackets, or none at all.

3.5.2 Row in Table or Matrix (mtr)

3.5.2.1 Description

An mtr element represents one row in a table or matrix. Anmtr element is only allowed as a direct sub-expression of
anmtable element, and specifies that its contents should form one row of the table. Each argument ofmtr is placed in
a different column of the table, starting at the leftmost column.

As described in Section3.5.1, mtr elements are effectively padded on the right withmtd elements when they are shorter
than other rows in a table.

3.5.2.2 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

97

Name values default
rowalign top | bottom | center | baseline | axis inherited
columnalign (left | center | right) + inherited
groupalign group-alignment-list-list inherited

Therowalign andcolumnalign attributes allow a specific row to override the alignment specified by the same at-
tributes in the surroundingmtable element.

As with mtable, if there are more entries than necessary in the value ofcolumnalign (i.e. more entries than columns
in the row), then the extra entries will be ignored. If there are fewer entries than columns, then the last entry will be
repeated as many times as needed.

Thegroupalign attribute is described with the alignment elements,maligngroup andmalignmark, in Section3.5.5.

3.5.3 Labeled Row in Table or Matrix (mlabeledtr)

3.5.3.1 Description

An mlabeledtr element represents one row in a table that has a label on either the left or right side, as determined by
theside attribute. The label is the first child ofmlabeledtr. The rest of the children represent the contents of the row
and are identical to those used formtr; all of the children except the first must bemtd elements.

An mlabeledtr element is only allowed as a direct sub-expression of anmtable element. Each argument ofmla-
beledtr except for the first argument (the label) is placed in a different column of the table, starting at the leftmost
column.

Note that the label element is not considered to be a cell in the table row. In particular, the label element is not taken
into consideration in the table layout for purposes of width and alignment calculations. For example, in the case of an
mlabeledtr with a label and a single centeredmtd child, the child is first centered in the enclosingmtable, and then
the label is placed. Specifically, the child isnot centered in the space that remains in the table after placing the label.

While MathML 2.0 does not specify an algorithm for placing labels, implementors of visual renderers may find the
following formatting model useful. To place a label, an implementor might think in terms of creating a larger table, with
an extra column on both ends. Thecolumnwidth attributes of both these border columns would be set tofit so that
they expand to fill whatever space remains after the inner columns have been laid out. Finally, depending on the values
of side andminlabelspacing, the label is placed in whatever border column is appropriate, possibly shifted down if
necessary.

3.5.3.2 Attributes

The attributes formlabeledtr are the same as formtr. Unlike the attributes for themtable element, attributes of
mlabeledtr that apply to column elements also apply to the label. For example, in a one column table,

<mlabeledtr rowalign=’top’>

means that the label and other entries in the row are vertically aligned along their top. To force a particular alignment
on the label, the appropriate attribute would normally be set on themtd start tag that surrounds the label content.

3.5.3.3 Equation Numbering

One of the important uses ofmlabeledtr is for numbered equations. In amlabeledtr, the label represents the equation
number and the elements in the row are the equation being numbered. Theside andminlabelspacing attributes of
mtable determine the placement of the equation number.

98

In larger documents with many numbered equations, automatic numbering becomes important. While automatic equa-
tion numbering and automatically resolving references to equation numbers is outside the scope of MathML, these
problems can be addressed by the use of style sheets or other means. The mlabeledtr construction provides support for
both of these functions in a way that is intended to facilitate XSLT processing. Themlabeledtr element can be used to
indicate the presence of a numbered equation, and the first child can be changed to the current equation number, along
with incrementing the global equation number. For cross references, an id on either the mlabeledtr element or on the
first element itself could be used as a target of any link.

<mtable>
<mlabeledtr id=’e-is-m-c-square’>
<mtd>
<mtext> (2.1) </mtext>

</mtd>
<mtd>
<mrow>
<mi>E</mi>
<mo>=</mo>
<mrow>
<mi>m</mi>
<mo>⁢</mo>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>

</mrow>
</mtd>

</mlabeledtr>
</mtable>

This should be rendered as:

E = mc2 (2.1)

3.5.4 Entry in Table or Matrix (mtd)

3.5.4.1 Description

An mtd element represents one entry, or cell, in a table or matrix. Anmtd element is only allowed as a direct sub-
expression of anmtr or anmlabeledtr element.

Themtd element accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferred
mrow’ formed from all its arguments, as described in Section3.1.3.

3.5.4.2 Attributes

Name values default
rowspan number 1
columnspan number 1
rowalign top | bottom | center | baseline | axis inherited
columnalign left | center | right inherited
groupalign group-alignment-list inherited

99

The rowspan andcolumnspan attributes allow a specific matrix element to be treated as if it occupied the number
of rows or columns specified. The interpretation of how this larger element affects specifying subsequent rows and
columns is meant to correspond with the similar attributes for HTML 4.01 tables.

Therowspan andcolumnspan attributes can be used around anmtd element that represents the label in amlabeledtr
element. Also, the label of amlabeledtr element is not considered to be part of a previousrowspan andcolumnspan.

Therowalign andcolumnalign attributes allow a specific matrix element to override the alignment specified by a
surroundingmtable or mtr element.

Thegroupalign attribute is described with the alignment elements,maligngroup andmalignmark, in Section3.5.5.

3.5.5 Alignment Markers

3.5.5.1 Description

Alignment markers are space-like elements (see Section3.2.7) that can be used to vertically align specified points within
a column of MathML expressions by the automatic insertion of the necessary amount of horizontal space between
specified sub-expressions.

The discussion that follows will use the example of a set of simultaneous equations that should be rendered with vertical
alignment of the coefficients and variables of each term, by inserting spacing somewhat like that shown here:

8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

If the example expressions shown above were arranged in a column but not aligned, they would appear as:

8.44x + 55y = 0
3.1x - 0.7y = -1.1

(For audio renderers, it is suggested that the alignment elements produce the analogous behavior of altering the rhythm
of pronunciation so that it is the same for several sub-expressions in a column, by the insertion of the appropriate time
delays in place of the extra horizontal spacing described here.)

The expressions whose parts are to be aligned (each equation, in the example above) must be given as the table elements
(i.e. as themtd elements) of one column of anmtable. To avoid confusion, the term ‘table cell’ rather than ‘table
element’ will be used in the remainder of this section.

All interactions between alignment elements are limited to themtable column they arise in. That is, every column of
a table specified by anmtable element acts as an ‘alignment scope’ that contains within it all alignment effects arising
from its contents. It also excludes any interaction between its own alignment elements and the alignment elements inside
any nested alignment scopes it might contain.

The reasonmtable columns are used as alignment scopes is that they are the only general way in MathML to arrange
expressions into vertical columns. Future versions of MathML may provide anmalignscope element that allows an
alignment scope to be created around any MathML element, but even then, table columns would still sometimes need
to act as alignment scopes, and since they are not elements themselves, but rather are made from corresponding parts of
the content of severalmtr elements, they could not individually be the content of an alignment scope element.

An mtable element can be given the attributealignmentscope=false to cause its columns not to act as alignment
scopes. This is discussed further at the end of this section. Otherwise, the discussion in this section assumes that this
attribute has its default value oftrue.

3.5.5.2 Specifying alignment groups

To cause alignment, it is necessary to specify, within each expression to be aligned, the points to be aligned with
corresponding points in other expressions, and the beginning of eachalignment group of sub-expressions that can be

100

horizontally shifted as a unit to effect the alignment. Each alignment group must contain one alignment point. It is also
necessary to specify which expressions in the column have no alignment groups at all, but are affected only by the
ordinary column alignment for that column of the table, i.e. by thecolumnalign attribute, described elsewhere.

The alignment groups start at the locations of invisiblemaligngroup elements, which are rendered with zero width
when they occur outside of an alignment scope, but within an alignment scope are rendered with just enough horizontal
space to cause the desired alignment of the alignment group that follows them. A simple algorithm by which a MathML
application can achieve this is given later. In the example above, each equation would have onemaligngroup element
before each coefficient, variable, and operator on the left-hand side, one before the= sign, and one before the constant
on the right-hand side.

In general, a table cell containingn maligngroup elements containsn alignment groups, with theith group consisting
of the elements entirely after theith maligngroup element and before the (i+1)-th; no element within the table cell’s
content should occur entirely before its firstmaligngroup element.

Note that the division into alignment groups doesnot necessarily fit the nested expression structure of the MathML
expression containing the groups - that is, it is permissible for one alignment group to consist of the end of onemrow, all
of another one, and the beginning of a third one, for example. This can be seen in the MathML markup for the present
example, given at the end of this section.

The nested expression structure formed bymrows and other layout schemata should reflect the mathematical structure of
the expression, not the alignment-group structure, to make possible optimal renderings and better automatic interpreta-
tions; see the discussion of proper grouping in section Section3.3.1. Insertion of alignment elements (or other space-like
elements) should not alter the correspondence between the structure of a MathML expression and the structure of the
mathematical expression it represents.

Although alignment groups need to coincide with the nested expression structure of layout schemata, there are nonethe-
less restrictions on where anmaligngroup element is allowed within a table cell. Themaligngroup element may only
be contained within elements of the following types (which are themselves contained in the table cell):

• anmrow element, including an inferredmrow such as the one formed by a multi-argumentmtd element;
• anmstyle element;
• anmphantom element;
• anmfenced element;
• anmaction element, though only its selected sub-expression is checked;
• asemantics element.

These restrictions are intended to ensure that alignment can be unambiguously specified, while avoiding complexities
involving things like overscripts, radical signs and fraction bars. They also ensure that a simple algorithm suffices to
accomplish the desired alignment.

Note that some positions for anmaligngroup element, although legal, are not useful, such as for anmaligngroup
element to be an argument of anmfenced element. When inserting anmaligngroup element before a given element
in pre-existing MathML, it will often be necessary, and always acceptable, to form a newmrow element to contain
just themaligngroup element and the element it is inserted before. In general, this will be necessary except when
themaligngroup element is inserted directly into anmrow or into an element that can form an inferredmrow from its
contents. See the warning about the legal grouping of ‘space-like elements’ in Section3.2.7.

For the table cells that are divided into alignment groups, every element in their content must be part of exactly one
alignment group, except the elements from the above list that containmaligngroup elements inside them, and thema-
ligngroup elements themselves. This means that, within any table cell containing alignment groups, the first complete
element must be anmaligngroup element, though this may be preceded by the start tags of other elements.

This requirement removes a potential confusion about how to align elements before the firstmaligngroup element,
and makes it easy to identify table cells that are left out of their column’s alignment process entirely.

101

Note that it is not required that the table cells in a column that are divided into alignment groups each contain the same
number of groups. If they don’t, zero-width alignment groups are effectively added on the right side of each table cell
that has fewer groups than other table cells in the same column.

3.5.5.3 Table cells that are not divided into alignment groups

Expressions in a column that are to have no alignment groups should contain nomaligngroup elements. Expressions
with no alignment groups are aligned using only thecolumnalign attribute that applies to the table column as a whole,
and are not affected by thegroupalign attribute described below. If such an expression is wider than the column width
needed for the table cells containing alignment groups, all the table cells containing alignment groups will be shifted as
a unit within the column as described by thecolumnalign attribute for that column. For example, a column heading
with no internal alignment could be added to the column of two equations given above by preceding them with another
table row containing anmtext element for the heading, and using the defaultcolumnalign="center" for the table, to
produce:

equations with aligned variables
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

or, with a shorter heading,

some equations
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

3.5.5.4 Specifying alignment points using malignmark

Each alignment group’s alignment point can either be specified by anmalignmark element anywhere within the align-
ment group (except within another alignment scope wholly contained inside it), or it is determined automatically from
thegroupalign attribute. Thegroupalign attribute can be specified on the group’s precedingmaligngroup element
or on its surroundingmtd, mtr, or mtable elements. In typical cases, using thegroupalign attribute is sufficient to
describe the desired alignment points, so nomalignmark elements need to be provided.

Themalignmark element indicates that the alignment point should occur on the right edge of the preceding element,
or the left edge of the following element or character, depending on theedge attribute ofmalignmark. Note that it may
be necessary to introduce anmrow to group anmalignmark element with a neighboring element, in order not to alter
the argument count of the containing element. (See the warning about the legal grouping of ‘space-like elements’ in
Section3.2.7).

When anmalignmark element is provided within an alignment group, it can occur in an arbitrarily deeply nested
element within the group, as long as it is not within a nested alignment scope. It is not subject to the same restrictions
on location asmaligngroup elements. However, its immediate surroundings need to be such that the element to its
immediate right or left (depending on itsedge attribute) can be unambiguously identified. If no such element is present,
renderers should behave as if a zero-width element had been inserted there.

For the purposes of alignment, an element X is considered to be to the immediate left of an element Y, and Y to
the immediate right of X, whenever X and Y are successive arguments of one (possibly inferred)mrow element, with X
coming before Y. In the case ofmfenced elements, MathML applications should evaluate this relation as if themfenced
element had been replaced by the equivalent expanded form involvingmrow. Similarly, anmaction element should be
treated as if it were replaced by its currently selected sub-expression. In all other cases, no relation of ‘to the immediate
left or right’ is defined for two elements X and Y. However, in the case of content elements interspersed in presentation

102

markup, MathML applications should attempt to evaluate this relation in a sensible way. For example, if a renderer
maintains an internal presentation structure for rendering content elements, the relation could be evaluated with respect
to that. (See Chapter4 and Chapter5 for further details about mixing presentation and content markup.)

Unlike all other elements in MathML,malignmark elements are allowed to occur within the content of token elements,
such asmn, mi, or mtext. When this occurs, the character immediately before or after themalignmark element will
carry the alignment point; in all other cases, the element to its immediate left or right will carry the alignment point.
The rationale for this is that it is sometimes desirable to align on the edges of specific characters within multi-character
token elements.

If there is more than onemalignmark element in an alignment group, all but the first one will be ignored. MathML
applications may wish to provide a mode in which they will warn about this situation, but it is not an error, and should
trigger no warnings by default. (Rationale: it would be inconvenient to have to remove all unnecessarymalignmark
elements from automatically generated data, in certain cases, such as when they are used to specify alignment on
‘decimal points’ other than the ’.’ character.)

3.5.5.5 Attributes

In addition to the attributes listed below, themalignmark element permitsid, xref, class andstyle attributes, as
described in Section2.4.5.

Name values default
edge left | right left

malignmark has one attribute,edge, which specifies whether the alignment point will be found on the left or right
edge of some element or character. The precise location meant by ‘left edge’ or ‘right edge’ is discussed below. If
edge="right", the alignment point is the right edge of the element or character to the immediate left of themalignmark
element. Ifedge="left", the alignment point is the left edge of the element or character to the immediate right of the
malignmark element. Note that the attribute refers to the choice of edge rather than to the direction in which to look
for the element whose edge will be used.

Formalignmark elements that occur within the content of MathML token elements, the preceding or following charac-
ter in the token element’s content is used; if there is no such character, a zero-width character is effectively inserted for
the purpose of carrying the alignment point on its edge. For all othermalignmark elements, the preceding or following
element is used; if there is no such element, a zero-width element is effectively inserted to carry the alignment point.

The precise definition of the ‘left edge’ or ‘right edge’ of a character or glyph (e.g. whether it should coincide with an
edge of the character’s bounding box) is not specified by MathML, but is at the discretion of the renderer; the renderer
is allowed to let the edge position depend on the character’s context as well as on the character itself.

For proper alignment of columns of numbers (usinggroupalign values ofleft, right, ordecimalpoint), it is likely
to be desirable for the effective width (i.e. the distance between the left and right edges) of decimal digits to be constant,
even if their bounding box widths are not constant (e.g. if ‘1’ is narrower than other digits). For other characters, such
as letters and operators, it may be desirable for the aligned edges to coincide with the bounding box.

The ‘left edge’ of a MathML element or alignment group refers to the left edge of the leftmost glyph drawn to render
the element or group, except that explicit space represented bymspace or mtext elements should also count as ‘glyphs’
in this context, as should glyphs that would be drawn if not formphantom elements around them. The ‘right edge’ of an
element or alignment group is defined similarly.

3.5.5.6 Attributes

In addition to the attributes listed below, themalignmark element permitsid, xref, class andstyle attributes, as
described in Section2.4.5.

103

Name values default
groupalign left | center | right | decimalpoint inherited

maligngroup has one attribute,groupalign, which is used to determine the position of its group’s alignment point
when nomalignmark element is present. The following discussion assumes that nomalignmark element is found
within a group.

In the example given at the beginning of this section, there is one column of 2 table cells, with 7 alignment groups in
each table cell; thus there are 7 columns of alignment groups, with 2 groups, one above the other, in each column. These
columns of alignment groups should be given the 7groupalign values ‘decimalpoint left left decimalpoint left left
decimalpoint’, in that order. How to specify this list of values for a table cell or table column as a whole, using attributes
on elements surrounding themaligngroup element is described later.

If groupalign is ‘left’, ‘right’, or ‘center’, the alignment point is defined to be at the group’s left edge, at its right edge,
or halfway between these edges, respectively. The meanings of ‘left edge’ and ‘right edge’ are as discussed above in
relation tomalignmark.

If groupalign is ‘decimalpoint’, the alignment point is the right edge of the last character before the decimal point.
The decimal point is the first ‘.’ character (ASCII 0x2e) in the firstmn element found along the alignment group’s base-
line. More precisely, the alignment group is scanned recursively, depth-first, for the firstmn element, descending into all
arguments of each element of the typesmrow (including inferredmrows), mstyle, mpadded, mphantom, mfenced, or
msqrt, descending into only the first argument of each ‘scripting’ element (msub, msup, msubsup, munder, mover,
munderover, mmultiscripts) or of eachmroot or semantics element, descending into only the selected sub-
expression of eachmaction element, and skipping the content of all other elements. The firstmn so found always
contains the alignment point, which is the right edge of the last character before the first decimal point in the content of
themn element. If there is no decimal point in themn element, the alignment point is the right edge of the last character
in the content. If the decimal point is the first character of themn element’s content, the right edge of a zero-width
character inserted before the decimal point is used. If nomn element is found, the right edge of the entire alignment
group is used (as forgroupalign="right").

In order to permit alignment on decimal points incn elements, a MathML application can convert a content expression
into a presentation expression that renders the same way before searching for decimal points as described above.

If characters other than ‘.’ should be used as ‘decimal points’ for alignment, they should be preceded bymalignmark
elements within themn token’s content itself.

For any of thegroupalign values, if an explicitmalignmark element is present anywhere within the group, the position
it specifies (described earlier) overrides the automatic determination of alignment point from thegroupalign value.

3.5.5.7 Inheritance of groupalign values

It is not usually necessary to put agroupalign attribute on everymaligngroup element. Since this attribute is usually
the same for every group in a column of alignment groups to be aligned, it can be inherited from an attribute on the
mtable that was used to set up the alignment scope as a whole, or from themtr or mtd elements surrounding the
alignment group. It is inherited via an ‘inheritance path’ that proceeds frommtable through successively contained
mtr, mtd, andmaligngroup elements. There is exactly one element of each of these kinds in this path from anmtable
to any alignment group inside it. In general, the value ofgroupalign will be inherited by any given alignment group
from the innermost element that surrounds the alignment group and provides an explicit setting for this attribute.

Note, however, that eachmtd element needs, in general, a list ofgroupalign values, one for eachmaligngroup
element inside it, rather than just a single value. Furthermore, anmtr or mtable element needs, in general, a list of lists
of groupalign values, since it spans multiplemtable columns, each potentially acting as an alignment scope. Such
lists of group-alignment values are specified using the following syntax rules:

104

group-alignment := left | right | center | decimalpoint
group-alignment-list := group-alignment +
group-alignment-list-list := (’{’ group-alignment-list ’}’) +

As described in Section2.4.4, | separates alternatives;+ represents optional repetition (i.e. 1 or more copies of what
precedes it), with extra values ignored and the last value repeated if necessary to cover additional table columns or
alignment group columns;’’ and ’’ represent literal braces; and(and) are used for grouping, but do not literally
appear in the attribute value.

The permissible values of thegroupalign attribute of the elements that have this attribute are specified using the above
syntax definitions as follows:

Element type groupalign attribute syntax default value
mtable group-alignment-list-list left
mtr group-alignment-list-list inherited frommtable attribute
mtd group-alignment-list inherited from withinmtr attribute
maligngroup group-alignment inherited from withinmtd attribute

In the example near the beginning of this section, the group alignment values could be specified on everymtd ele-
ment usinggroupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or on everymtr element using
groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or (most conveniently) on themtable as a
whole usinggroupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, which provides a single braced
list of group-alignment values for the single column of expressions to be aligned.

3.5.5.8 MathML representation of an alignment example

The above rules are sufficient to explain the MathML representation of the example given near the start of this section.
To repeat the example, the desired rendering is:

8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

One way to represent that in MathML is:

<mtable groupalign="decimalpoint left left decimalpoint left left decimalpoint">
<mtr>
<mtd>
<mrow>
<mrow>
<mrow>
<maligngroup/>
<mn> 8.44 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>
<maligngroup/>
<mo> + </mo>
<mrow>
<maligngroup/>
<mn> 55 </mn>

105

<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>

<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mn> 0 </mn>

</mrow>
</mtd>
<mtd>
<mrow>
<mrow>
<mrow>
<maligngroup/>
<mn> 3.1 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>
<maligngroup/>
<mo> - </mo>
<mrow>
<maligngroup/>
<mn> 0.7 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>
<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mrow>
<mo> - </mo>
<mn> 1.1 </mn>

</mrow>
</mrow>

</mtd>
</mtr>

</mtable>

3.5.5.9 Further details of alignment elements

The alignment elementsmaligngroup andmalignmark can occur outside of alignment scopes, where they are ignored.
The rationale behind this is that in situations in which MathML is generated, or copied from another document, without
knowing whether it will be placed inside an alignment scope, it would be inconvenient for this to be an error.

An mtable element can be given the attributealignmentscope=false to cause its columns not to act as alignment

106

scopes. In general, this attribute has the syntax(true | false) +; if its value is a list of boolean values, each boolean
value applies to one column, with the last value repeated if necessary to cover additional columns, or with extra values
ignored. Columns that are not alignment scopes are part of the alignment scope surrounding themtable element, if
there is one. Use ofalignmentscope=false allows nested tables to containmalignmark elements for aligning the
inner table in the surrounding alignment scope.

As discussed above, processing of alignment for content elements is not well-defined, since MathML does not specify
how content elements should be rendered. However, many MathML applications are likely to find it convenient to
internally convert content elements to presentation elements that render the same way. Thus, as a general rule, even
if a renderer does not perform such conversions internally, it is recommended that the alignment elements should be
processed as if it did perform them.

A particularly important case for renderers to handle gracefully is the interaction of alignment elements with thema-
trix content element, since this element may or may not be internally converted to an expression containing anmtable
element for rendering. To partially resolve this ambiguity, it is suggested, but not required, that if thematrix element
is converted to an expression involving anmtable element, that themtable element be given the attributealign-
mentscope=false, which will make the interaction of thematrix element with the alignment elements no different
than that of a generic presentation element (in particular, it will allow it to containmalignmark elements that operate
within the alignment scopes created by the columns of anmtable that contains thematrix element in one of its table
cells).

The effect of alignment elements within table cells that have non-default values of thecolumnspan or rowspan at-
tributes is not specified, except that such use of alignment elements is not an error. Future versions of MathML may
specify the behavior of alignment elements in such table cells.

The effect of possible linebreaking of anmtable element on the alignment elements is not specified.

3.5.5.10 A simple alignment algorithm

A simple algorithm by which a MathML applications can perform the alignment specified in this section is given here.
Since the alignment specification is deterministic (except for the definition of the left and right edges of a character),
any correct MathML alignment algorithm will have the same behavior as this one. Eachmtable column (alignment
scope) can be treated independently; the algorithm given here applies to onemtable column, and takes into account
the alignment elements, thegroupalign attribute described in this section, and thecolumnalign attribute described
undermtable (Section3.5.1).

First, a rendering is computed for the contents of each table cell in the column, using zero width for allmaligngroup
andmalignmark elements. The final rendering will be identical except for horizontal shifts applied to each alignment
group and/or table cell. The positions of alignment points specified by anymalignmark elements are noted, and the
remaining alignment points are determined usinggroupalign values.

For each alignment group, the horizontal positions of the left edge, alignment point, and right edge are noted, allowing
the width of the group on each side of the alignment point (left and right) to be determined. The sum of these two
‘side-widths’, i.e. the sum of the widths to the left and right of the alignment point, will equal the width of the alignment
group.

Second, each column of alignment groups, from left to right, is scanned. Theith scan covers theith alignment group in
each table cell containing any alignment groups. Table cells with no alignment groups, or with fewer thani alignment
groups, are ignored. Each scan computes two maximums over the alignment groups scanned: the maximum width to the
left of the alignment point, and the maximum width to the right of the alignment point, of any alignment group scanned.

The sum of all the maximum widths computed (two for each column of alignment groups) gives one total width, which
will be the width of each table cell containing alignment groups. Call the maximum number of alignment groups in one

107

cell n; each such cell’s width is divided into 2n adjacent sections, called L(i) and R(i) for i from 1 to n, using the 2n
maximum side-widths computed above; for eachi, the width of all sections called L(i) is the maximum width of any
cell’s ith alignment group to the left of its alignment point, and the width of all sections called R(i) is the maximum
width of any cell’sith alignment group to the right of its alignment point.

The alignment groups are then positioned in the unique way that places the part of eachith group to the left of its
alignment point in a section called L(i), and places the part of eachith group to the right of its alignment point in
a section called R(i). This results in the alignment point of eachith group being on the boundary between adjacent
sections L(i) and R(i), so that all alignment points ofith groups have the same horizontal position.

The widths of the table cells that contain no alignment groups were computed as part of the initial rendering, and may
be different for each cell, and different from the single width used for cells containing alignment groups. The maximum
of all the cell widths (for both kinds of cells) gives the width of the table column as a whole.

The position of each cell in the column is determined by the applicable part of the value of thecolumnalign attribute
of the innermost surroundingmtable, mtr, or mtd element that has an explicit value for it, as described in the sections
on those elements. This may mean that the cells containing alignment groups will be shifted within their column, in
addition to their alignment groups having been shifted within the cells as described above, but since each such cell has
the same width, it will be shifted the same amount within the column, thus maintaining the vertical alignment of the
alignment points of the corresponding alignment groups in each cell.

3.6 Enlivening Expressions

3.6.1 Bind Action to Sub-Expression (maction)

There are many ways in which it might be desirable to make mathematical content active. Adding a link to a MathML
sub-expression is one basic kind of interactivity. See Section7.1.4. However, many other kinds of interactivity cannot
be easily accommodated by generic linking mechanisms. For example, in lengthy mathematical expressions, the ability
to ‘fold’ expressions might be provided, i.e. a renderer might allow a reader to toggle between an ellipsis and a much
longer expression that it represents.

To provide a mechanism for binding actions to expressions, MathML provides themaction element. This element
accepts any number of sub-expressions as arguments.

3.6.1.1 Attributes

In addition to the attributes listed below, this element permitsid, xref, class andstyle attributes, as described in
Section2.4.5.

Name values default
actiontype (described below) (required attribute, no default value)
selection positive-integer 1

By default, MathML applications that do not recognize the specifiedactiontype should render the selected sub-
expression as defined below. If no selected sub-expression exists, it is a MathML error; the appropriate rendering in that
case is as described in Section7.2.2on the treatment of MathML errors.

Since a MathML-compliant application is not required to recognize any particularactiontypes, an application can be
fully MathML compliant just by implementing the above-described default behavior.

Theselection attribute is provided for thoseactiontypes that permit someone viewing a document to select one
of several sub-expressions for viewing. Its value should be a positive integer that indicates one of the sub-expressions

108

of themaction element, numbered from 1 to the number of children of the element. When this is the case, the sub-
expression so indicated is defined to be the ‘selected sub-expression’ of themaction element; otherwise the ‘selected
sub-expression’ does not exist, which is an error. When theselection attribute is not specified (including for action-
types for which it makes no sense), its default value is 1, so the selected sub-expression will be the first sub-expression.

Furthermore, as described in Chapter7, if a MathML application responds to a user command to copy a MathML sub-
expression to the environment’s ‘clipboard’, anymaction elements present in what is copied should be given selection
attributes that correspond to their selection state in the MathML rendering at the time of the copy command.

A suggested list ofactiontypes and their associated actions is given below. Keep in mind, however, that this list is
mainly for illustration, and recognized values and behaviors will vary from application to application.

<maction actiontype="toggle" selection="positive-integer" > (first expression) (second expression)... </maction>
For this action type, a renderer would alternately display the given expressions, cycling through them when
a reader clicked on the active expression, starting with the selected expression and updating theselection
attribute value as described above. Typical uses would be for exercises in education, ellipses in long com-
puter algebra output, or to illustrate alternate notations. Note that the expressions may be of significantly
different size, so that size negotiation with the browser may be desirable. If size negotiation is not available,
scrolling, elision, panning, or some other method may be necessary to allow full viewing.

<maction actiontype="statusline"> (expression) (message) </maction>
In this case, the renderer would display the expression in context on the screen. When a reader clicked on the
expression or moved the mouse over it, the renderer would send a rendering of the message to the browser
statusline. Since most browsers in the foreseeable future are likely to be limited to displaying text on their
statusline, authors would presumably use plain text in anmtext element for the message in most circum-
stances. For non-mtext messages, renderers might provide a natural language translation of the markup, but
this is not required.

<maction actiontype="tooltip"> (expression) (message) </maction>
Here the renderer would also display the expression in context on the screen. When the mouse pauses over
the expression for a long enough delay time, the renderer displays a rendering of the message in a pop-
up ‘tooltip’ box near the expression. These message boxes are also sometimes called ‘balloon help’ boxes.
Presumably authors would use plain text in anmtext element for the message in most circumstances. For
non-mtext messages, renderers may provide a natural language translation of the markup if full MathML
rendering is not practical, but this is not required.

<maction actiontype="highlight" my:color="red" my:background="yellow"> expression </maction>
In this case, a renderer might highlight the enclosed expression on a ‘mouse-over’ event. In the example given
above, non-standard attributes from another namespace are being used to pass additional information to ren-
derers that support them, without violating the MathML DTD (see Section7.2.3). Themy:color attribute
changes the color of the characters in the presentation, while themy:background attribute changes the color
of the background behind the characters.

<maction actiontype="menu" selection="1" > (menu item 1) (menu item 2) ... </maction>
This action type instructs a renderer to provide a pop up menu. This allows a one-to-many linking capability.
Note that the menu items may be other <maction actiontype="menu">...</maction> expressions, thereby
allowing nested menus. It is assumed that the user choosing a menu item would invoke some kind of action
associated with that item. Such action might be completely handled by the renderer itself or it might trigger
some kind of event within the browser that could be linked to other programming logic.

109

Chapter 4

Content Markup

4.1 Introduction

4.1.1 The Intent of Content Markup

As has been noted in the introductory section of this Recommendation, mathematics can be distinguished by its use of
a (relatively) formal language, mathematical notation. However, mathematics and its presentation should not be viewed
as one and the same thing. Mathematical sums or products exist and are meaningful to many applications completely
without regard to how they are rendered aurally or visually. The intent of the content markup in the Mathematical
Markup Language is to provide an explicit encoding of theunderlying mathematical structure of an expression, rather
than any particular rendering for the expression.

There are many reasons for providing a specific encoding for content. Even a disciplined and systematic use of pre-
sentation tags cannot properly capture this semantic information. This is because without additional information it is
impossible to decide whether a particular presentation was chosen deliberately to encode the mathematical structure or
simply to achieve a particular visual or aural effect. Furthermore, an author using the same encoding to deal with both
the presentation and mathematical structure might find a particular presentation encoding unavailable simply because
convention had reserved it for a different semantic meaning.

The difficulties stem from the fact that there are many to one mappings from presentation to semantics and vice versa.
For example the mathematical construct ‘H multiplied bye’ is often encoded using an explicit operator as inH × e.
In different presentational contexts, the multiplication operator might be invisible ‘H e’, or rendered as the spoken
word ‘times’. Generally, many different presentations are possible depending on the context and style preferences of the
author or reader. Thus, given ‘H e’ out of context it may be impossible to decide if this is the name of a chemical or a
mathematical product of two variablesH ande.

Mathematical presentation also changes with culture and time: some expressions in combinatorial mathematics today
have one meaning to a Russian mathematician, and quite another to a French mathematician; see Section5.4.1for an
example. Notations may lose currency, for example the use of musical sharp and flat symbols to denote maxima and
minima [Chaundy1954]. A notation in use in 1644 for the multiplication mentioned above was� H e [Cajori1928].

When we encode the underlying mathematical structure explicitly, without regard to how it is presented aurally or
visually, we are able to interchange information more precisely with those systems that are able to manipulate the
mathematics. In the trivial example above, such a system could substitute values for the variablesH ande and evaluate
the result. Further interesting application areas include interactive textbooks and other teaching aids.

4.1.2 The Scope of Content Markup

The semantics of general mathematical notation is not a matter of consensus. It would be an enormous job to systemati-
cally codify most of mathematics - a task that can never be complete. Instead, MathML makes explicit a relatively small
number of commonplace mathematical constructs, chosen carefully to be sufficient in a large number of applications. In

110

addition, it provides a mechanism for associating semantics with new notational constructs. In this way, mathematical
concepts that are not in the base collection of elements can still be encoded (Section4.2.6).

The base set of content elements is chosen to be adequate for simple coding of most of the formulas used from kinder-
garten to the end of high school in the United States, and probably beyond through the first two years of college, that is
up to A-Level or Baccalaureate level in Europe. Subject areas covered to some extent in MathML are:

• arithmetic, algebra, logic and relations
• calculus and vector calculus
• set theory
• sequences and series
• elementary classical functions
• statistics
• linear algebra

It is not claimed, or even suggested, that the proposed set of elements is complete for these areas, but the provision for
author extensibility greatly alleviates any problem omissions from this finite list might cause.

4.1.3 Basic Concepts of Content Markup

The design of the MathML content elements are driven by the following principles:

• The expression tree structure of a mathematical expression should be directly encoded by the MathML
content elements.

• The encoding of an expression tree should be explicit, and not dependent on the special parsing ofPCDATA
or on additional processing such as operator precedence parsing.

• The basic set of mathematical content constructs that are provided should have default mathematical seman-
tics.

• There should be a mechanism for associating specific mathematical semantics with the constructs.

The primary goal of the content encoding is to establish explicit connections between mathematical structures and their
mathematical meanings. The content elements correspond directly to parts of the underlying mathematical expression
tree. Each structure has an associated default semantics and there is a mechanism for associating new mathematical
definitions with new constructs.

Significant advantages to the introduction of content-specific tags include:

• Usage of presentation elements is less constrained. When mathematical semantics are inferred from presenta-
tion markup, processing agents must either be quite sophisticated, or they run the risk of inferring incomplete
or incorrect semantics when irregular constructions are used to achieve a particular aural or visual effect.

• It is immediately clear which kind of information is being encoded simply by the kind of elements that are
used.

• Combinations of semantic and presentation elements can be used to convey both the appearance and its
mathematical meaning much more effectively than simply trying to infer one from the other.

Expressions described in terms of content elements must still be rendered. For common expressions, default visual
presentations are usually clear. ‘Take care of the sense and the sounds will take care of themselves’ wrote Lewis Carroll
[Carroll1871]. Default presentations are included in the detailed description of each element occurring in Section4.4.

To accomplish these goals, the MathML content encoding is based on the concept of an expression tree. A content
expression tree is constructed from a collection of more primitive objects, referred to herein ascontainers andoperators.
MathML possesses a rich set of predefined container and operator objects, as well as constructs for combining containers
and operators in mathematically meaningful ways. The syntax and usage of these content elements and constructions is
described in the next section.

111

4.2 Content Element Usage Guide

Since the intent of MathML content markup is to encode mathematical expressions in such a way that the mathematical
structure of the expression is clear, the syntax and usage of content markup must be consistent enough to facilitate
automated semantic interpretation. There must be no doubt when, for example, an actual sum, product or function
application is intended and if specific numbers are present, there must be enough information present to reconstruct
the correct number for purposes of computation. Of course, it is still up to a MathML-compliant processor to decide
what is to be done with such a content-based expression, and computation is only one of many options. A renderer
or a structured editor might simply use the data and its own built-in knowledge of mathematical structure to render
the object. Alternatively, it might manipulate the object to build a new mathematical object. A more computationally
oriented system might attempt to carry out the indicated operation or function evaluation.

The purpose of this section is to describe the intended, consistent usage. The requirements involve more than just
satisfying the syntactic structure specified by an XML DTD. Failure to conform to the usage as described below will
result in a MathML error, even though the expression may be syntactically valid according to the DTD.

In addition to the usage information contained in this section, Section4.4 gives a complete listing of each content
element, providing reference information about their attributes, syntax, examples and suggested default semantics and
renderings. The rules for using presentation markup within content markup are explained in Section5.2.3. An informal
EBNF grammar describing the syntax for the content markup is given in AppendixB.

4.2.1 Overview of Syntax and Usage

MathML content encoding is based on the concept of an expression tree. As a general rule, the terminal nodes in the
tree represent basic mathematical objects, such as numbers, variables, arithmetic operations and so on. The internal
nodes in the tree generally represent some kind of function application or other mathematical construction that builds
up a compound object. Function application provides the most important example; an internal node might represent the
application of a function to several arguments, which are themselves represented by the terminal nodes underneath the
internal node.

The MathML content elements can be grouped into the following categories based on their usage:

• containers
• operators and functions
• qualifiers
• relations
• conditions
• semantic mappings
• constants and symbols

These are the building blocks out of which MathML content expressions are constructed. Each category is discussed in
a separate section below. In the remainder of this section, we will briefly introduce some of the most common elements
of each type, and consider the general constructions for combining them in mathematically meaningful ways.

4.2.1.1 Constructing Mathematical Objects

Content expression trees are built up from basic mathematical objects. At the lowest level,leaf nodes are encapsulated
in non-empty elements that define their type. Numbers and symbols are marked by thetoken elementscn andci. More
elaborate constructs such as sets, vectors and matrices are also marked using elements to denote their types, but rather
than containing data directly, thesecontainer elements are constructed out of other elements. Elements are used in order
to clearly identify the underlying objects. In this way, standard XML parsing can be used and attributes can be used to
specify global properties of the objects.

112

The containers such as<cn>12345<cn/> , <ci>x</ci> and<csymbol definitionURL="mySymbol.htm" encod-
ing="text">S</csymbol>represent mathematical numbers , identifiers and externally defined symbols. Below, we
will look at operator elements such asplus or sin, which provide access to the basic mathematical operations and
functions applicable to those objects. Additional containers such asset for sets, andmatrix for matrices are provided
for representing a variety of common compound objects.

For example, the number 12345 is encoded as

<cn>12345</cn>

The attributes andPCDATA content together provide the data necessary for an application to parse the number. For
example, a default base of 10 is assumed, but to communicate that the underlying data was actually written in base 8,
simply set thebase attribute to 8 as in

<cn base="8">12345</cn>

while the complex number 3 + 4i can be encoded as

<cn type="complex-cartesian">3<sep/>4</cn>

Such information makes it possible for another application to easily parse this into the correct number.

As another example, the scalar symbolv is encoded as

<ci>v</ci>

By default,ci elements represent elements from a commutative field (see AppendixC). If a vector is intended then this
fact can be encoded as

<ci type="vector">v</ci>

This invokes default semantics associated with thevector element, namely an arbitrary element of a finite-dimensional
vector space.

By using theci andcsymbol elements we have made clear that we are referring to a mathematical identifier or symbol
but this does not say anything about how it should be rendered. By default a symbol is rendered as if theci or csymbol
element were actually the presentation elementmi (see Section3.2.3). The actual rendering of a mathematical symbol
can be made as elaborate as necessary simply by using the more elaborate presentational constructs (as described in
Chapter3) in the body of theci or csymbol element.

The default rendering of a simplecn-tagged object is the same as for the presentation elementmn with some provision
for overriding the presentation of thePCDATA by providing explicitmn tags. This is described in detail in Section4.4.

The issues for compound objects such as sets, vectors and matrices are all similar to those outlined above for numbers
and symbols. Each such object has global properties as a mathematical object that impact how it is to be parsed. This may
affect everything from the interpretation of operations that are applied to it to how to render the symbols representing
it. These mathematical properties are captured by setting attribute values.

4.2.1.2 Constructing General Expressions

The notion of constructing a general expression tree is essentially that of applying an operator to sub-objects. For
example, the suma + b can be thought of as an application of the addition operator to two argumentsa and b. In
MathML, elements are used for operators for much the same reason that elements are used to contain objects. They are
recognized at the level of XML parsing, and their attributes can be used to record or modify the intended semantics. For
example, with the MathMLplus element, setting thedefinitionURL andencoding attributes as in

113

<plus definitionURL="www.example.com/VectorCalculus.htm"
encoding="text"/>

can communicate that the intended operation is vector-based.

There is also another reason for using elements to denote operators. There is a crucial semantic distinction between
the function itself and the expression resulting from applying that function to zero or more arguments which must be
captured. This is addressed by making the functions self-contained objects with their own properties and providing
an explicitapply construct corresponding to function application. We will consider theapply construct in the next
section.

MathML contains many pre-defined operator elements, covering a range of mathematical subjects. However, an im-
portant class of expressions involve unknown or user-defined functions and symbols. For these situations, MathML
provides a generalcsymbol element, which is discussed below.

4.2.1.3 The apply construct

The most fundamental way of building up a mathematical expression in MathML content markup is theapply construct.
An apply element typically applies an operator to its arguments. It corresponds to a complete mathematical expression.
Roughly speaking, this means a piece of mathematics that could be surrounded by parentheses or ‘logical brackets’
without changing its meaning.

For example, (x + y) might be encoded as

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>

The opening and closing tags ofapply specify exactly the scope of any operator or function. The most typical way of
usingapply is simple and recursive. Symbolically, the content model can be described as:

<apply>
op

a

b </apply>

where theoperands a and b are containers or other content-based elements themselves, andop is an operator or function.
Note that sinceapply is a container, this allowsapply constructs to be nested to arbitrary depth.

An apply may in principle have any number of operands:

<apply> op a b [c...] <apply>

For example, (x + y + z) can be encoded as

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</apply>

114

Mathematical expressions involving a mixture of operations result in nested occurrences ofapply. For example,a x +
b would be encoded as

<apply>
<plus/>
<apply>
<times/>
<ci> a </ci>
<ci> x </ci>

</apply>
<ci> b </ci>

</apply>

There is no need to introduce parentheses or to resort to operator precedence in order to parse the expression correctly.
Theapply tags provide the proper grouping for the re-use of the expressions within other constructs. Any expression
enclosed by anapply element is viewed as a single coherent object.

An expression such as (F + G)(x) might be a product, as in

<apply>
<times/>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>

</apply>
<ci> x </ci>

</apply>

or it might indicate the application of the functionF + G to the argumentx. This is indicated by constructing the sum

<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>

</apply>

and applying it to the argumentx as in

<apply>
<apply>
<plus/>
<ci> F </ci>
<ci> G </ci>
</apply>

<ci> x </ci>
</apply>

Both the function and the arguments may be simple identifiers or more complicated expressions.

In MathML 1.0 , another construction closely related to the use of theapply element with operators and arguments was
thereln element. Thereln element was used to denote that a mathematical relation holds between its arguments, as
opposed to applying an operator. Thus, the MathML markup for the expressionx < y was given in MathML 1.0 by:

115

<reln>
<lt/>
<ci> x </ci>
<ci> y </ci>

</reln>

In MathML 2.0, theapply construct is used with all operators, including logical operators. The expression above
becomes

<apply>
<lt/>
<ci> x </ci>
<ci> y </ci>

</apply>

in MathML 2.0. The use ofreln with relational operators is supported for reasons of backwards compatibility, but
deprecated. Authors creating new content are encouraged to useapply in all cases.

4.2.1.4 Explicitly defined functions and operators

The most common operations and functions such asplus andsin have been predefined explicitly as empty elements
(see Section4.4). They havetype anddefinitionURL attributes, and by changing these attributes, the author can
record that a different sort of algebraic operation is intended. This allows essentially the same notation to be re-used for
a discussion taking place in a different algebraic domain.

Due to the nature of mathematics the notation must be extensible. The key to extensibility is the ability of the user to
define new functions and other symbols to expand the terrain of mathematical discourse.

It is always possible to create arbitrary expressions, and then to use them as symbols in the language. Their properties
can then be inferred directly from that usage as was done in the previous section. However, such an approach would
preclude being able to encode the fact that the construct was a known symbol, or to record its mathematical properties
except by actually using it. Thecsymbol element is used as a container to construct a new symbol in much the same way
thatci is used to construct an identifier. (Note that ‘symbol’ is used here in the abstract sense and has no connection
with any presentation of the construct on screen or paper). The difference in usage is thatcsymbol should refer to
some mathematically defined concept with an external definition referenced via thedefinitionURL attribute, whereas
ci is used for identifiers that are essentially ‘local’ to the MathML expression and do not use any external definition
mechanism. The target of thedefinitionURL attribute on thecsymbol element may encode the definition in any
format; the particular encoding in use is given by theencoding attribute.

To usecsymbol to describe a completely new function, we write for example

<csymbol definitionURL="www.example.com/VectorCalculus.htm"
encoding="text">

Christoffel
</csymbol>

The definitionURL attribute specifies a URI that provides a written definition for theChristoffel symbol. Sug-
gested default definitions for the content elements of MathML appear in AppendixC in a format based on OpenMath,
although there is no requirement that a particular format be used. The role of thedefinitionURL attribute is very
similar to the role of definitions included at the beginning of many mathematical papers, and which often just refer to a
definition used by a particular book.

116

MathML 1.0 supported the use of thefn to encode the fact that a construct is explicitly being used as a function or
operator. To record the fact thatF+ G is being used semantically as if it were a function, it was encoded as:

<fn>
<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>

</apply>
</fn>

This usage, although allowed in MathML 2.0 for reasons of backwards compatibility, is nowdeprecated. The fact that
a construct is being used as an operator is clear from the position of the construct as the first child of theapply. If it is
required to add additional information to the construct, it should be wrapped in asemantics element, for example:

<semantics definitionURL="www.example.com/vectorfuncs/plus.htm"
encoding="Mathematica">

<apply>
<plus/>
<ci>F</ci>
<ci>G</ci>

</apply>
</semantics>

MathML 1.0 supported the use ofdefinitionURL with fn to refer to external definitions for user-defined functions.
This usage, although allowed for reasons of backwards compatibility, isdeprecatedin MathML 2.0 in favor of using
csymbol to define the function, and thenapply to link the function to its arguments. For example:

<apply>
<csymbol definitionURL="http://www.example.org/function_spaces.html#my_def"

encoding="text">
BigK

</csymbol>
<ci>x</ci>
<ci>y</ci>

</apply>

4.2.1.5 The inverse construct

Given functions, it is natural to have functional inverses. This is handled by theinverse element.

Functional inverses can be problematic from a mathematical point of view in that they implicitly involve the definition
of an inverse for an arbitrary functionF . Even at the K-through-12 level the concept of an inverseF −1 of many common
functionsF is not used in a uniform way. For example, the definitions used for the inverse trigonometric functions may
differ slightly depending on the choice of domain and/or branch cuts.

MathML adopts the view: ifF is a function from a domainD to D’, then the inverseG of F is a function overD’ such
thatG(F(x)) = x for x in D. This definition does not assert that such an inverse exists for all or indeed anyx in D, or that
it is single-valued anywhere. Also, depending on the functions involved, additional properties such asF(G(y)) = y for y
in D’ may hold.

117

Theinverse element is applied to a function whenever an inverse is required. For example, application of the inverse
sine function tox, i.e. sin−1 (x), is encoded as:

<apply>
<apply> <inverse/> <sin/> </apply>
<ci> x </ci>

</apply>

While arcsin is one of the predefined MathML functions, an explicit reference to sin−1(x) might occur in a document
discussing possible definitions ofarcsin.

4.2.1.6 The declare construct

Consider a document discussing the vectorsA = (a, b, c) andB = (d, e, f), and later including the expressionV = A + B.
It is important to be able to communicate the fact that whereverA andB are used they represent a particular vector. The
properties of that vector may determine aspects of operators such asplus.

The simple fact thatA is a vector can be communicated by using the markup

<ci type="vector">A</ci>

but this still does not communicate, for example, which vector is involved or its dimensions.

Thedeclare construct is used to associate specific properties or meanings with an object. The actual declaration itself
is not rendered visually (or in any other form). However, it indirectly impacts the semantics of all affected uses of the
declared object.

Declarations must occur at the beginning of amath element. The scope of a declaration is the entiremath element
in which the declaration is made. Thescope attribute of adeclare may be included but has no effect since the
two possible values oflocal or global now have the same meaning. Theglobal attribute value is still allowed for
backwards compatibility with MathML 1.0., but isdeprecatedin MathML 2.0.

The uses of thedeclare element range from resetting default attribute values to associating an expression with a
particular instance of a more elaborate structure. Subsequent uses of the original expression (within the scope of the
declare) play the same semantic role as would the paired object.

For example, the declaration

<declare>
<ci> A </ci>
<vector>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</vector>
</declare>

specifies thatA stands for the particular vector (a, b, c) so that subsequent uses ofA as inV = A + B can take this into
account. Whendeclare is used in this way, the actual encoding

<apply>
<eq/>
<ci> V </ci>
<apply>

118

<plus/>
<ci> A </ci>
<ci> B </ci>

</apply>
</apply>

remains unchanged but the expression can be interpreted properly as vector addition.

There is no requirement to declare an expression to stand for a specific object. For example, the declaration

<declare type="vector">
<ci> A </ci>

</declare>

specifies thatA is a vector without indicating the number of components or the values of specific components. The
possible values for thetype attribute include all the predefined container element names such asvector, matrix or
set (see Section4.3.2.9).

4.2.1.7 The lambda construct

The lambda calculus allows a user to construct a function from a variable and an expression. For example, the lambda
construct underlies the common mathematical idiom illustrated here:

Let f be the function takingx to x2 + 2

There are various notations for this concept in mathematical literature, such asλ(x, F(x)) = F or λ(x, [F]) =F , wherex
is a free variable inF .

This concept is implemented in MathML with thelambda element. A lambda construct withn internal variables is
encoded by alambda element withn+1 children. All but the last child must bebvar elements containing the identifiers
of the internal variables. The last child is an expression defining the function. This is typically anapply, but can also
be any container element.

The following constructsλ (x, sin(x+1)):

<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</apply>

</lambda>

To usedeclare andlambda to construct the functionf for which f (x) = x2 + x + 3 use:

<declare type="fn">
<ci> f </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<plus/>

119

<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</lambda>

</declare>

The following markup declares and constructs the functionJ such thatJ(x, y) is the integral fromx to y of t4 with respect
to t.

<declare type="fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<apply> <int/>
<bvar>
<ci> t </ci>

</bvar>
<lowlimit>
<ci> x </ci>

</lowlimit>
<uplimit>
<ci> y </ci>

</uplimit>
<apply> <power/>
<ci>t</ci>
<cn>4</cn>

</apply>
</apply>

</lambda>
</declare>

The functionJ can then in turn be applied to an argument pair.

4.2.1.8 The use of qualifier elements and the condition construct

The last example of the preceding section illustrates the use ofqualifier elementslowlimit, uplimit, andbvar used
in conjunction with theint element. A number of common mathematical constructions involve additional data that is
either implicit in conventional notation, such as a bound variable, or thought of as part of the operator rather than an
argument, as is the case with the limits of a definite integral.

Content markup uses qualifier elements in conjunction with a number of operators, including integrals, sums, series,
and certain differential operators. Qualifier elements appear in the sameapply element with one of these operators. In
general, they must appear in a certain order, and their precise meaning depends on the operators being used. For details,
see Section4.2.3.2.

120

The qualifier elementbvar is also used in another important MathML construction. Thecondition element is used
to place conditions on bound variables in other expressions. This allows MathML to define sets by rule, rather than
enumeration, for example. The following markup, for instance, encodes the setx | x < 1:

<set>
<bvar><ci> x </ci></bvar>
<condition>
<apply>
<lt/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</condition>

</set>

4.2.1.9 Rendering of Content elements

While the primary role of the MathML content element set is to directly encode the mathematical structure of ex-
pressions independent of the notation used to present the objects, rendering issues cannot be ignored. Each content
element has a default rendering, given in Section4.4, and several mechanisms (including Section4.3.3.2) are provided
for associating a particular rendering with an object.

4.2.2 Containers

Containers provide a means for the construction of mathematical objects of a given type.

Tokens ci, cn, csymbol
Constructors interval, list, matrix, matrixrow, set, vector, apply, reln, fn, lambda, piecewise, piece, otherwise
Specials declare

4.2.2.1 Tokens

Token elements are typically the leaves of the MathML expression tree. Token elements are used to indicate mathemat-
ical identifiers, numbers and symbols.

It is also possible for the canonically empty operator elements such asexp, sin andcos to be leaves in an expression
tree. The usage of operator elements is described in Section4.2.3.

cn Thecn element is the MathML token element used to represent numbers. The supported types of numbers include:
real, integer, rational, complex-cartesian, andcomplex-polar, with real being the default type.
An attributebase (with default value10) is used to help specify how the content is to be parsed. The content
itself is essentiallyPCDATA, separated by<sep/> when two parts are needed in order to fully describe a
number. For example, the real number 3 is constructed by<cn type="real"> 3 </cn>, while the ratio-
nal number 3/4 is constructed as<cn type="rational"> 3<sep/>4 </cn>. The detailed structure and
specifications are provided in Section4.4.1.1.

ci Theci element, or ‘content identifier’ is used to construct a variable, or an identifier. Atype attribute indicates the
type of object the symbol represents. Typically,ci represents a real scalar, but no default is specified. The
content is eitherPCDATA or a general presentation construct (see Section3.1.6). For example,

<ci>
<msub>

121

<mi>c</mi>
<mn>1</mn>

</msub>
</ci>
encodes an atomic symbol that displays visually asc1 which, for purposes of content, is treated as a single
symbol representing a real number. The detailed structure and specifications are provided in Section4.4.1.2.

csymbol Thecsymbol element, or ‘content symbol’ is used to construct a symbol whose semantics are not part of the
core content elements provided by MathML, but defined externally.csymbol does not make any attempt
to describe how to map the arguments occurring in any application of the function into a new MathML
expression. Instead, it depends on itsdefinitionURL attribute to point to a particular meaning, and the
encoding attribute to give the syntax of this definition. The content of acsymbol is eitherPCDATA or a
general presentation construct (see Section3.1.6). For example,

<csymbol definitionURL="www.example.com/ContDiffFuncs.htm"
encoding="text">

<msup>
<mi>C</mi>
<mn>2</mn>

</msup>
</csymbol>
encodes an atomic symbol that displays visually asC2 and that, for purposes of content, is treated as a
single symbol representing the space of twice-differentiable continuous functions. The detailed structure and
specifications are provided in Section4.4.1.3.

4.2.2.2 Constructors

MathML provides a number of elements for combining elements into familiar compound objects. The compound objects
include things like lists and sets. Each constructor produces a new type of object.

interval Theinterval element is described in detail in Section4.4.2.4. It denotes an interval on the real line with the
values represented by its children as end points. Theclosure attribute is used to qualify the type of interval
being represented. For example,

<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>

</interval>
represents the open-closed interval often written (a, b].

set and list Theset andlist elements are described in detail in Section4.4.6.1and Section4.4.6.2. Typically, the
child elements of a possibly emptylist element are the actual components of an orderedlist. For example,
an ordered list of the three symbolsa, b, andc is encoded as
<list> <ci> a </ci> <ci> b </ci> <ci> c </ci> </list>
Alternatively, bvar andcondition elements can be used to define lists where membership depends on
satisfying certain conditions. Anorder attribute can be used to specify what ordering is to be used. When
the nature of the child elements permits, the ordering defaults to a numeric or lexicographic ordering. Sets
are structured much the same as lists except that there is no implied ordering and thetype of set may be
normal or multiset with multiset indicating that repetitions are allowed. For both sets and lists, the
child elements must be valid MathML content elements. The type of the child elements is not restricted. For
example, one might construct a list of equations, or of inequalities.

matrix and matrixrow The matrix element is used to represent mathematical matrices. It is described in detail in
Section4.4.10.2. It has zero or more child elements, all of which arematrixrow elements. These in turn

122

expect zero or more child elements that evaluate to algebraic expressions or numbers. These sub-elements
are often real numbers, or symbols as in

<matrix>
<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>
<matrixrow> <cn> 3 </cn> <cn> 4 </cn> </matrixrow>

</matrix>
Thematrixrow elements must always be contained inside of a matrix, and all rows in a given matrix must
have the same number of elements. Note that the behavior of thematrix andmatrixrow elements is sub-
stantially different from themtable andmtr presentation elements.

vector Thevector element is described in detail in Section4.4.10.1. It constructs vectors from ann-dimensional vector
space so that itsn child elements typically represent real or complex valued scalars as in the three-element
vector

<vector>
<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>
<cn> 3 </cn>
<cn> 7 </cn>

</vector>

apply Theapply element is described in detail in Section4.4.2.1. Its purpose is to apply a function or operator to its
arguments to produce an expression representing an element of the codomain of the function. It is involved
in everything from forming sums such asa + b as in

<apply>
<plus/>
<ci> a </ci>
<ci> b </ci>

</apply>
through to using the sine function to construct sin(a) as in

<apply>
<sin/>
<ci> a </ci>

</apply>
or constructing integrals. Its usage in any particular setting is determined largely by the properties of the
function (the first child element) and as such its detailed usage is covered together with the functions and
operators in Section4.2.3.

reln Thereln element is described in detail in Section4.4.2.2. It was used in MathML 1.0 to construct an expression
such asa = b, as in

<reln><eq/>
<ci> a </ci>
<ci> b </ci>

</reln>
indicating an intended comparison between two mathematical values. MathML 2.0 takes the view that this
should be regarded as the application of a boolean function, and as such could be constructed usingapply.

123

The use ofreln with logical operators is supported for reasons of backwards compatibility, butdeprecated
in favor ofapply.

fn Thefn element was used in MathML 1.0 to make explicit the fact that an expression is being used as a function
or operator. This is allowed in MathML 2.0 for backwards compatibility, but isdeprecated, as the use of an
expression as a function or operator is clear from its position as the first child of anapply. fn is discussed
in detail in Section4.4.2.3.

lambda The lambda element is used to construct a user-defined function from an expression and one or more free
variables. The lambda construct withn internal variables takesn+1 children. The first (second, up ton) is a
bvar containing the identifiers of the internal variables. The last is an expression defining the function. This
is typically anapply, but can also be any container element. The following constructsλ (x, sinx)
<lambda>
<bvar><ci> x </ci></bvar>
<apply>
<sin/>
<ci> x </ci>

</apply>
</lambda>
The following constructs the constant functionλ (x, 3)
<lambda>
<bvar><ci> x </ci></bvar>
<cn> 3 </cn>

</lambda>
piecewise, piece, otherwiseThe piecewise, piece, otherwise elements are used to support ‘piecewise’ declara-

tions of the form ‘H(x) = 0 if x less than 0,H(x) = 1 otherwise’.

<piecewise>
<piece>

<cn> 0 </cn>
<apply><lt/><ci> x </ci> <cn> 0 </cn></apply>

</piece>
<otherwise>
<ci> x </ci>

</otherwise>
</piecewise>
Thepiecewise elements are discussed in detail in Section4.4.2.16.

4.2.2.3 Special Constructs

Thedeclare construct is described in detail in Section4.4.2.8. It is special in that its entire purpose is to modify the
semantics of other objects. It is not rendered visually or aurally.

The need for declarations arises any time a symbol (including more general presentations) is being used to represent an
instance of an object of a particular type. For example, you may wish to declare that the symbolic identifierV represents
a vector. The single argument form can be used to set properties of objects by setting the default values of implied
attribute values to specific values.

The declaration

<declare type="vector"><ci>V</ci></declare>

resets the default type attribute of<ci>V</ci> to vector for all affected occurrences of<ci>V</ci>. This avoids
having to write<ci type="vector">V</ci> every time you use the symbol.

124

More generally,declare can be used to associate expressions with specific content. For example, the declaration

<declare>
<ci>F</ci>
<lambda>
<bvar><ci> U </ci></bvar>
<apply>
<int/>
<bvar><ci> x </ci></bvar>
<lowlimit><cn> 0 </cn></lowlimit>
<uplimit><ci> a </ci></uplimit>
<ci> U </ci>

</apply>
</lambda>

</declare>

associates the symbolF with a new function defined by thelambda construct. Within the scope where the declaration
is in effect, the expression

<apply>
<ci>F</ci>
<ci> U </ci>

</apply>

stands for the integral ofU from 0 toa.

The declare element can also be used to change the definition of a function or operator. For example, if the URL
http://.../MathML:noncommutplus described a non-commutative plus operation encoded in Maple syntax, then
the declaration

<declare definitionURL="http://.../MathML:noncommutplus"
encoding="Maple">

<plus/>
</declare>

would indicate that all affected uses ofplus are to be interpreted as having that definition ofplus.

4.2.3 Functions, Operators and Qualifiers

The operators and functions defined by MathML can be divided into categories as shown in the table below.

125

unary arithmetic factorial, minus, abs, conjugate, arg, real, imaginary, floor, ceiling
unary logical not
unary functional inverse, ident, domain, codomain, image
unary elementary classical functionssin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arc-

sin, arccos, arctan, arccosh, arccot, arccoth, arccsc, arccsch, arc-
sec, arcsech, arcsinh, arctanh, exp, ln, log

unary linear algebra determinant, transpose
unary calculus and vector calculus divergence, grad, curl, laplacian
unary set-theoretic card
binary arithmetic quotient, divide, minus, power, rem
binary logical implies, equivalent, approx
binary set operators setdiff
binary linear algebra vectorproduct, scalarproduct, outerproduct
n-ary arithmetic plus, times, max, min, gcd, lcm
n-ary statistical mean, sdev, variance, median, mode
n-ary logical and, or, xor
n-ary linear algebra selector
n-ary set operator union, intersect, cartesianproduct
n-ary functional fn, compose
integral, sum, product operators int, sum, product
differential operator diff, partialdiff
quantifier forall, exists

From the point of view of usage, MathML regards functions (for examplesin andcos) and operators (for example
plus andtimes) in the same way. MathML predefined functions and operators are all canonically empty elements.

Note that thecsymbol element can be used to construct a user-defined symbol that can be used as a function or operator.

4.2.3.1 Predefined functions and operators

MathML functions can be used in two ways. They can be used as the operator within anapply element, in which case
they refer to a function evaluated at a specific value. For example,

<apply>
<sin/>
<cn>5</cn>

</apply>

denotes a real number, namely sin(5).

MathML functions can also be used as arguments to other operators, for example

<apply>
<plus/><sin/><cos/>

</apply>

denotes a function, namely the result of adding the sine and cosine functions in some function space. (The default
semantic definition ofplus is such that it infers what kind of operation is intended from the type of its arguments.)

The number of child elements in theapply is defined by the element in the first (i.e. operator) position.

Unary operators are followed by exactly one other child element within theapply.

Binary operators are followed by exactly two child elements.

126

N-ary operators are followed by two or more child elements.

The one exception to these rules is thatdeclare elements may be inserted in any position except the first.declare
elements are not counted when satisfying the child element count for anapply containing a unary or binary operator
element.

Integral, sum, product and differential operators are discussed below in Section4.2.3.2.

4.2.3.2 Operators taking Qualifiers

The table below contains the qualifiers and the operators defined as taking qualifiers in MathML.

qualifiers lowlimit, uplimit, bvar, degree, logbase, interval, condition, domainofapplication, momentabout
operators int, sum, product, root, diff, partialdiff, limit, log, moment, min, max, forall, exists

Operators taking qualifiers are canonically empty functions that differ from ordinary empty functions only in that they
support the use of specialqualifier elements to specify their meaning more fully. They are used in exactly the same way
as ordinary operators, except that when they are used as operators, certain qualifier elements are also permitted to be in
the enclosingapply. Qualifiers always follow the operator and precede the argument if it is present. If more than one
qualifier is present, they appear in the orderbvar, lowlimit, uplimit, interval, condition, domainofapplica-
tion, degree, momentabout, logbase. A typical example is:

<apply>
<int/>
<bvar><ci>x</ci></bvar>
<interval><cn>0</cn><cn>1</cn></interval>
<apply>

<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
</apply>

It is also valid to use qualifier schema with a function not applied to an argument. For example, a function acting on
integrable functions on the interval [0,1] might be denoted:

<fn>
<apply>
<int/>
<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>1</cn></uplimit>

</apply>
</fn>

In addition to the defined usage in MathML, qualifier schema may be used with any user-defined symbol (e.g. using
csymbol) or construct. The meaning of such a usage is not defined by MathML; it would normally be user-defined
using thedefinitionURL attribute.

The meaning and usage of qualifier schema varies from function to function. The following list summarizes the usage
of qualifier schema with the MathML functions taking qualifiers.

int The int function accepts thelowlimit, uplimit, bvar, interval, condition anddomainofapplication
schemata. If bothlowlimit anduplimit schema are present, they denote the limits of a definite integral.
The domain of integration may alternatively be specified usinginterval, condition or domainofappli-
cation. Thebvar schema signifies the variable of integration. When used withint, each qualifier schema
is expected to contain a single child schema; otherwise an error is generated.

127

diff Thediff function accepts thebvar schema. Thebvar schema specifies with respect to which variable the deriva-
tive is being taken. Thebvar may itself contain adegree schema that is used to specify the order of the
derivative, i.e. a first derivative, a second derivative, etc. For example, the second derivative off with respect
to x is:

<apply>
<diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>

</degree>
</bvar>
<apply><fn><ci>f</ci></fn>
<ci> x </ci>

</apply>
</apply>

partialdiff Thepartialdiff operator accepts zero or morebvar schemata, and an optionaldegree qualifier schema.
Thebvar schema specify, in order, the variables with respect to which the derivative is being taken. Each
bvar element may contain adegree schema which is used to specify the order of the derivative being
taken with respect to that variable. The optionaldegree schema qualifier associated with thepartiald-
iff element itself (that is, appearing as a child of the enclosingapply element rather than of one of the
bvar qualifiers) is used to represent the total degree of the differentiation. Eachdegree schema used with
partialdiff is expected to contain a single child schema. For example,

<apply>
<partialdiff/>
<bvar>
<degree><cn>2</cn></degree>
<ci>x</ci>

</bvar>
<bvar><ci>y</ci></bvar>
<bvar><ci>x</ci></bvar>
<degree><cn>4</cn></degree>
<ci type="fn">f</ci>

</apply>
denotes the mixed partial derivative (d4 / d2x dy dx) f .

sum, product The sum andproduct functions accept thebvar, lowlimit, uplimit, interval, condition and
domainofapplication schemata. If bothlowlimit anduplimit schemata are present, they denote the
limits of the sum or product. The limits may alternatively be specified using theinterval, condition or
domainofapplication schema. Thebvar schema signifies the internal variable in the sum or product. A
typical example might be:

<apply>
<sum/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>
<apply>

128

<power/>
<ci>x</ci>
<ci>i</ci>

</apply>
</apply>
When used withsum or product, each qualifier schema is expected to contain a single child schema; other-
wise an error is generated.

limit The limit function accepts zero or morebvar schemata, and optionalcondition andlowlimit schemata.
A condition may be used to place constraints on thebvar. Thebvar schema denotes the variable with
respect to which the limit is being taken. Thelowlimit schema denotes the limit point. When used with
limit, thebvar andlowlimit schemata are expected to contain a single child schema; otherwise an error
is generated.

log Thelog function accepts only thelogbase schema. If present, thelogbase schema denotes the base with respect
to which the logarithm is being taken. Otherwise, the log is assumed to be base 10. When used withlog, the
logbase schema is expected to contain a single child schema; otherwise an error is generated.

moment Themoment function accepts thedegree andmomentabout schema. If present, thedegree schema denotes
the order of the moment. Otherwise, the moment is assumed to be the first order moment. When used with
moment, thedegree schema is expected to contain a single child schema; otherwise an error is generated.
If present, themomentabout schema denotes the point about which the moment is taken. Otherwise, the
moment is assumed to be the moment about zero.

min, max Themin andmax functions accept abvar schema in cases where the maximum or minimum is being taken
over a set of values specified by acondition schema together with an expression to be evaluated on that set.
In MathML1.0, thebvar element was optional when using acondition; if a condition element containing
a single variable was given by itself following amin or max operator, the variable was implicitly assumed to
be bound, and the expression to be maximized or minimized (if absent) was assumed to be the single bound
variable. This usage isdeprecatedin MathML 2.0 in favor of explicitly stating the bound variable(s) and the
expression to be maximized or minimized in all cases. Themin andmax elements may also be applied to a list
of values in which case no qualifier schemata are used. For examples of all three usages, see Section4.4.3.4.

forall, exists The universal and existential quantifier operatorsforall andexists are used in conjuction with one or
morebvar schemata to represent simple logical assertions. There are two ways of using the logical quantifier
operators. The first usage is for representing a simple, quantified assertion. For example, the statement ‘there
existsx< 9’ would be represented as:

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<apply><lt/>
<ci> x </ci><cn> 9 </cn>

</apply>
</apply>
The second usage is for representing implications. Hypotheses are given by acondition element following
the bound variables. For example the statement ‘for allx < 9, x < 10’ would be represented as:

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<ci> x </ci><cn> 9 </cn>

129

</apply>
</condition>
<apply><lt/>
<ci> x </ci><cn> 10 </cn>

</apply>
</apply>
Note that in both usages one or morebvar qualifiers are mandatory.

4.2.4 Relations

binary relation neq, equivalent, approx, factorof
binary logical relation implies
binary set relation in, notin, notsubset, notprsubset
binary series relation tendsto
n-ary relation eq, leq, lt, geq, gt
n-ary set relation subset, prsubset

The MathML content tags include a number of canonically empty elements which denote arithmetic and logical rela-
tions. Relations are characterized by the fact that, if an external application were to evaluate them (MathML does not
specify how to evaluate expressions), they would typically return a truth value. By contrast, operators generally return
a value of the same type as the operands. For example, the result of evaluatinga < b is either true or false (by contrast,
1 + 2 is again a number).

Relations are bracketed with their arguments using theapply element in the same way as other functions. In MathML
1.0, relational operators were bracketed usingreln. This usage, although still supported, is nowdeprecatedin favor
of apply. The element for the relational operator is the first child element of theapply. Thus, the example from the
preceding paragraph is properly marked up as:

<apply>
<lt/>
<ci>a</ci>
<ci>b</ci>

</apply>

It is an error to enclose a relation in an element other thanapply or reln.

The number of child elements in theapply is defined by the element in the first (i.e. relation) position.

Unary relations are followed by exactly one other child element within theapply.

Binary relations are followed by exactly two child elements.

N-ary relations are followed by zero or more child elements.

The one exception to these rules is thatdeclare elements may be inserted in any position except the first.declare
elements are not counted when satisfying the child element count for anapply containing a unary or binary relation
element.

4.2.5 Conditions

condition condition

Thecondition element is used to define the ‘such that’ construct in mathematical expressions. Condition elements
are used in a number of contexts in MathML. They are used to construct objects like sets and lists by rule instead of by
enumeration. They can be used with theforall andexists operators to form logical expressions. And finally, they

130

can be used in various ways in conjunction with certain operators. For example, they can be used with anint element
to specify domains of integration, or to specify argument lists for operators likemin andmax.

Thecondition element is always used together with one or morebvar elements.

The exact interpretation depends on the context, but generally speaking, thecondition element is used to restrict the
permissible values of a bound variable appearing in another expression to those that satisfy the relations contained in
thecondition. Similarly, when thecondition element contains aset, the values of the bound variables are restricted
to that set.

A condition element contains a single child that is either anapply, or areln element (deprecated). Compound condi-
tions are indicated by applying relations such asand inside the child of the condition.

4.2.5.1 Examples

The following encodes ‘there existsx such thatx5 < 3’.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<apply>
<power/>
<ci>x</ci>
<cn>5</cn>

</apply>
<cn>3</cn>

</apply>
</condition>

</apply>

The next example encodes ‘for allx in N there exist prime numbersp,q such thatp+q = 2x’.

<apply>
<forall/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><in/>

<ci>x</ci>
<csymbol encoding="OpenMath"
definitionURL="http://www.openmath.org/cd/setname1.ocd">
N

</csymbol>
</apply>

</condition>

<apply><exists/>
<bvar><ci>p</ci></bvar>
<bvar><ci>q</ci></bvar>
<condition>

131

<apply><and/>
<apply><in/><ci>p</ci>
<csymbol encoding="OpenMath"
definitionURL="http://www.openmath.org/cd/setname1.ocd">
P
</csymbol>

</apply>
<apply><in/><ci>q</ci>
<csymbol encoding="OpenMath"
definitionURL="http://www.openmath.org/cd/setname1.ocd">
P

</csymbol>
</apply>
<apply><eq/>

<apply><plus/><ci>p</ci><ci>q</ci></apply>
<apply><times/><cn>2</cn><ci>x</ci></apply>

</apply>
</apply>

</condition>
</apply>

</apply>

A third example shows the use of quantifiers withcondition. The following markup encodes ‘there existsx < 3 such
thatx2 = 4’.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/><ci>x</ci><cn>3</cn></apply>

</condition>
<apply>
<eq/>
<apply>
<power/><ci>x</ci><cn>2</cn>

</apply>
<cn>4</cn>

</apply>
</apply>

4.2.6 Syntax and Semantics

mappings semantics, annotation, annotation-xml

The use of content markup rather than presentation markup for mathematics is sometimes referred to assemantic tagging
[Buswell1996]. The parse-tree of a valid element structure using MathML content elements corresponds directly to the
expression tree of the underlying mathematical expression. We therefore regard the content tagging itself as encoding the
syntax of the mathematical expression. This is, in general, sufficient to obtain some rendering and even some symbolic
manipulation (e.g. polynomial factorization).

However, even in such apparently simple expressions asX + Y, some additional information may be required for
applications such as computer algebra. AreX andY integers, or functions, etc.? ‘Plus’ represents addition over which

132

field? This additional information is referred to assemantic mapping. In MathML, this mapping is provided by the
semantics, annotation andannotation-xml elements.

The semantics element is the container element for the MathML expression together with its semantic mappings.
semantics expects a variable number of child elements. The first is the element (which may itself be a complex
element structure) for which this additional semantic information is being defined. The second and subsequent children,
if any, are instances of the elementsannotation and/orannotation-xml.

Thesemantics element also accepts thedefinitionURL andencoding attributes for use by external processing ap-
plications. One use might be a URI for a semantic content dictionary, for example. Since the semantic mapping informa-
tion might in some cases be provided entirely by thedefinitionURL attribute, theannotation or annotation-xml
elements are optional.

The annotation element is a container for arbitrary data. This data may be in the form of text, computer algebra
encodings, C programs, or whatever a processing application expects.annotation has an attributeencoding defining
the form in use. Note that the content model ofannotation is PCDATA, so care must be taken that the particular
encoding does not conflict with XML parsing rules.

Theannotation-xml element is a container for semantic information in well-formed XML. For example, an XML
form of the OpenMath semantics could be given. Another possible use here is to embed, for example, the presentation
tag form of a construct given in content tag form in the first child element ofsemantics (or vice versa).annotation-
xml has an attributeencoding defining the form in use.

For example:

<semantics>
<apply>
<divide/>
<cn>123</cn>
<cn>456</cn>

</apply>
<annotation encoding="Mathematica">
N[123/456, 39]

</annotation>
<annotation encoding="TeX">
$0.269736842105263157894736842105263157894\ldots$

</annotation>
<annotation encoding="Maple">
evalf(123/456, 39);

</annotation>
<annotation-xml encoding="MathML-Presentation">
<mrow>
<mn> 0.269736842105263157894 </mn>
<mover accent=’true’>
<mn> 736842105263157894 </mn>
<mo> ‾ </mo>

</mover>
</mrow>

</annotation-xml>
<annotation-xml encoding="OpenMath">
<OMA xmlns="http://www.openmath.org/OpenMath">

<OMS cd="arith1" name="divide"/>

133

<OMI>123</OMI>
<OMI>456</OMI>
</OMA>

</annotation-xml>
</semantics>

whereOMA is the element defining the additional semantic information.

Of course, providing an explicit semantic mapping at all is optional, and in general would only be provided where there
is some requirement to process or manipulate the underlying mathematics.

4.2.7 Semantic Mappings

Although semantic mappings can easily be provided by various proprietary, or highly specialized encodings, there are
no widely available, non-proprietary standard schemes for semantic mapping. In part to address this need, the goal of
the OpenMath effort is to provide a platform-independent, vendor-neutral standard for the exchange of mathematical
objects between applications. Such mathematical objects include semantic mapping information. The OpenMath group
has defined an XML syntax for the encoding of this information [OpenMath2000]. This element set could provide the
basis of oneannotation-xml element set.

An attractive side of this mechanism is that the OpenMath syntax is specified in XML, so that a MathML expression
together with its semantic annotations can be validated using XML parsers.

4.2.8 Constants and Symbols

MathML provides a collection of predefined constants and symbols which represent frequently-encountered concepts
in K-12 mathematics. These include symbols for well-known sets, such asintegers andrationals, and also some
widely known constant symbols such asfalse, true, exponentiale.

4.2.9 MathML element types

MathML functions, operators and relations can all be thought of as mathematical functions if viewed in a sufficiently
abstract way. For example, the standard addition operator can be regarded as a function mapping pairs of real numbers
to real numbers. Similarly, a relation can be thought of as a function from some space of ordered pairs into the set of
values true, false. To be mathematically meaningful, the domain and codomain of a function must be precisely specified.
In practical terms, this means that functions only make sense when applied to certain kinds of operands. For example,
thinking of the standard addition operator, it makes no sense to speak of ‘adding’ a set to a function. Since MathML
content markup seeks to encode mathematical expressions in a way that can be unambiguously evaluated, it is no
surprise that the types of operands is an issue.

MathML specifies the types of arguments in two ways. The first way is by providing precise instructions for processing
applications about the kinds of arguments expected by the MathML content elements denoting functions, operators and
relations. These operand types are defined in a dictionary of default semantic bindings for content elements, which is
given in AppendixC. For example, the MathML content dictionary specifies that for real scalar arguments the plus
operator is the standard commutative addition operator over a field. The elementscn has atype attribute with a default
value ofreal. Thus some processors will be able to use this information to verify the validity of the indicated operations.

Although MathML specifies the types of arguments for functions, operators and relations, and provides a mechanism for
typing arguments, a MathML-compliant processor is not required to do any type checking. In other words, a MathML
processor will not generate errors if argument types are incorrect. If the processor is a computer algebra system, it may
be unable to evaluate an expression, but no MathML error is generated.

134

4.3 Content Element Attributes

4.3.1 Content Element Attribute Values

Content element attributes are all of the typeCDATA, that is, any character string will be accepted as valid. In addition,
each attribute has a list of predefined values, which a content processor is expected to recognize and process. The reason
that the attribute values are not formally restricted to the list of predefined values is to allow for extension. A processor
encountering a value (not in the predefined list) which it does not recognize may validly process it as the default value
for that attribute.

4.3.2 Attributes Modifying Content Markup Semantics

Each attribute is followed by the elements to which it can be applied.

4.3.2.1 base

cn indicates numerical base of the number. Predefined values: any numeric string. The default value is10

4.3.2.2 closure

interval indicates closure of the interval. Predefined values:open, closed, open-closed, closed-open. The default
value isclosed

4.3.2.3 definitionURL

csymbol, declare, semantics, any operator elementpoints to an external definition of the semantics of the symbol
or construct being declared. The value is a URL or URI that should point to some kind of definition. This
definition overrides the MathML default semantics. At present, MathML does not specify the format in which
external semantic definitions should be given. In particular,there is no requirement that the target of the URI
be loadable and parsable. An external definition could, for example, define the semantics in human-readable
form. Ideally, in most situations the definition pointed to by thedefinitionURL attribute would be some
standard, machine-readable format. However, there are reasons why MathML does not require such a format.
• No such format currently exists. There are several projects underway to develop and implement stan-

dard semantic encoding formats, most notably the OpenMath effort. By nature, the development of a
comprehensive system of semantic encoding is a very large enterprise, and while much work has been
done, much additional work remains. Even though thedefinitionURL is designed and intended for
use with a formal semantic encoding language such as OpenMath, it is premature to require any one
particular format.

• There will always be situations where some non-standard format is preferable. This is particularly true
in situations where authors are describing new ideas. It is anticipated that in the near term, there will
be a variety of renderer-dependent implementations of thedefinitionURL attribute.
– A translation tool might simply prompt the user with the specified definition in situations where

the proper semantics have been overridden, and in this case, human-readable definitions will be
most useful.

– Other software may utilize OpenMath encodings.
– Still other software may use proprietary encodings, or look for definitions in any of several for-

mats.
As a consequence, authors need to be aware that there is no guarantee a generic renderer will be able
to take advantage of information pointed to by thedefinitionURL attribute. Of course, when widely-
accepted standardized semantic encodings are available, the definitions pointed to can be replaced
without modifying the original document. However, this is likely to be labor intensive.

135

There is no default value for thedefinitionURL attribute, i.e. the semantics are defined within the MathML
fragment, and/or by the MathML default semantics.

4.3.2.4 encoding

annotation, annotation-xml, csymbol, semantics, all operator elementsindicates the encoding of the annotation, or
in the case ofcsymbol , semantics and operator elements, the syntax of the target referred to bydefi-
nitionURL. Predefined values areMathML-Presentation, MathML-Content. Other typical values:TeX,
OpenMath. The default value is "", i.e. unspecified.

4.3.2.5 nargs

declare indicates number of arguments for function declarations. Pre-defined values:nary, or any numeric string. The
default value is1.

4.3.2.6 occurrence

declare indicates occurrence for operator declarations. Pre-defined values:prefix, infix, function-model. The
default value isfunction-model.

4.3.2.7 order

list indicates ordering on the list. Predefined values:lexicographic, numeric. The default value isnumeric.

4.3.2.8 scope

declare indicates scope of applicability of the declaration. Pre-defined values:local, global (deprecated).
• local means the containing MathML element.
• global means the containingmath element.
In MathML 2.0, a declare has been restricted to occur only at the beginning of amath element. Thus, there
is no difference between the two possiblescope values and the scope attribute may be safely ionored. The
global attribute value has beendeprecatedfor this role aslocal better represents the concept. Ideally, one
would like to make document-wide declarations by setting the value of thescope attribute to beglobal-
document. However, the proper mechanism for document-wide declarations very much depends on details
of the way in which XML will be embedded in HTML, future XML style sheet mechanisms, and the under-
lying Document Object Model. Since these supporting technologies are still in flux at present, the MathML
specification does not includeglobal-document as a pre-defined value of thescope attribute. It is antic-
ipated, however, that this issue will be revisited in future revisions of MathML as supporting technologies
stabilize. In the near term, MathML implementors that wish to simulate the effect of a document-wide dec-
laration are encouraged to pre-process documents in order to distribute document-wide declarations to each
individualmath element in the document.

4.3.2.9 type

cn indicates type of the number. Predefined values:e-notation, integer, rational, real, float, complex-
polar, complex-cartesian, constant. The default value isreal. Notes. Each data type implies that the
data adheres to certain formatting conventions, detailed below. If the data fails to conform to the expected
format, an error is generated. Details of the individual formats are:

136

real A real number is presented in decimal notation. Decimal notation consists of an optional sign (‘+’ or
‘-’) followed by a string of digits possibly separated into an integer and a fractional part by a ‘deci-
mal point’. Some examples are 0.3, 1, and -31.56. If a differentbase is specified, then the digits are
interpreted as being digits computed to that base.

e-notation A real number may also be presented in scientific notation. Such numbers have two parts (a
mantissa and an exponent) separated by ‘e’ or ‘E’. The first part is a real number, while the second part
is an integer exponent indicating a power of the base. For example, 12.3e5 represents 12.3 times 105

integer An integer is represented by an optional sign followed by a string of 1 or more ‘digits’. What a
‘digit’ is depends on thebase attribute. Ifbase is present, it specifies the base for the digit encoding,
and it specifies it base 10. Thusbase=’16’ specifies a hex encoding. Whenbase > 10, letters are added
in alphabetical order as digits. The legitimate values forbase are therefore between 2 and 36.

rational A rational number is two integers separated by<sep/>. If base is present, it specifies the base
used for the digit encoding of both integers.

complex-cartesian A complex number is of the form two real point numbers separated by<sep/>.
complex-polar A complex number is specified in the form of a magnitude and an angle (in radians). The

raw data is in the form of two real numbers separated by<sep/>.
constant Theconstant type is used to denote named constants. For example, an instance of<cn type=

"constant">π</cn>should be interpreted as having the semantics of the mathematical constant
Pi. The data for a constantcn tag may be one of the following common constants:
Symbol Value
π The usualπ of trigonometry: approximately 3.141592653...
ⅇ (or ⅇ) The base for natural logarithms: approximately 2.718281828 ...
ⅈ (or ⅈ) Square root of -1
γ Euler’s constant: approximately 0.5772156649...
∞ (or &infty;) Infinity. Proper interpretation varies with context
&true; the logical constanttrue
&false; the logical constantfalse
&NotANumber; (or &NaN;) represents the result of an ill-defined floating point division

ci indicates type of the identifier. Predefined values:integer, rational, real, float, complex, complex-polar,
complex-cartesian, constant, or the name of any content element. The meanings of the attribute values
shared withcn are the same as those listed for thecn element. The attribute valuecomplex is intended
for use when an identifier represents a complex number but the particular representation (such as polar or
cartesian) is either not known or is irrelevant. The default value is "", i.e. unspecified.

declare indicates type of the identifier being declared. Predefined values: any content element name. The default value
is ci , i.e. a generic identifier

set indicates type of the set. Predefined values:normal, multiset. multiset indicates that repetitions are allowed.
The default value isnormal.

tendsto is used to capture the notion of one quantity approaching another. It occurs as a container so that it can more
easily be used in the construction of a limit expression. Predefined values:above, below, two-sided. The
default value isabove.

4.3.3 Attributes Modifying Content Markup Rendering

4.3.3.1 type

Thetype attribute, in addition to conveying semantic information, can be interpreted to provide rendering information.
For example in

<ci type="vector">V</ci>

a renderer could display a boldV for the vector.

137

4.3.3.2 General Attributes

All content elements support the following general attributes that can be used to modify the rendering of the markup.

• class
• style
• id
• other

Theclass, style andid attributes are intended for compatibility with Cascading Style Sheets (CSS), as described in
Section2.4.5.

Content or semantic tagging goes along with the (frequently implicit) premise that, if you know the semantics, you can
always work out a presentation form. When an author’s main goal is to mark up re-usable, evaluatable mathematical
expressions, the exact rendering of the expression is probably not critical, provided that it is easily understandable.
However, when an author’s goal is more along the lines of providing enough additional semantic information to make a
document more accessible by facilitating better visual rendering, voice rendering, or specialized processing, controlling
the exact notation used becomes more of an issue.

MathML elements accept an attributeother (see Section7.2.3), which can be used to specify things not specifically
documented in MathML. On content tags, this attribute can be used by an author to express apreference between
equivalent forms for a particular content element construct, where the selection of the presentation has nothing to do
with the semantics. Examples might be

• inline or displayed equations
• script-style fractions
• use ofx with a dot for a derivative over dx/d t

Thus, if a particular renderer recognized a display attribute to select between script-style and display-style fractions, an
author might write

<apply other=’display="scriptstyle"’>
<divide/>
<mn> 1 </mn>
<mi> x </mi>

</apply>

to indicate that the rendering 1/x is preferred.

The information provided in theother attribute is intended for use by specific renderers or processors, and therefore,
the permitted values are determined by the renderer being used. It is legal for a renderer to ignore this information.
This might be intentional, as in the case of a publisher imposing a house style, or simply because the renderer does not
understand them, or is unable to carry them out.

4.4 The Content Markup Elements

This section provides detailed descriptions of the MathML content tags. They are grouped in categories that broadly
reflect the area of mathematics from which they come, and also the grouping in the MathML DTD. There is no linguistic
difference in MathML between operators and functions. Their separation here and in the DTD is for reasons of historical
usage.

When working with the content elements, it can be useful to keep in mind the following.

• The role of the content elements is analogous to data entry in a mathematical system. The information that
is provided is there to facilitate the successful parsing of an expression as the intended mathematical object
by a receiving application.

138

• MathML content elements do not by themselves ‘perform’ any mathematical evaluations or operations. They
do not ‘evaluate’ in a browser and any ‘action’ that is ultimately taken on those objects is determined en-
tirely by the receiving mathematical application. For example, editing programs and applications geared to
computation for the lower grades would typically leave 3 + 4 as is, whereas computational systems targeting
a more advanced audience might evaluate this as 7. Similarly, some computational systems might evaluate
sin(0) to 0, whereas others would leave it unevaluated. Yet other computational systems might be unable to
deal with pure symbolic expressions like sin(x) and may even regard them as data entry errors. None of this
has any bearing on the correctness of the original MathML representation. Where evaluation is mentioned at
all in the descriptions below, it is merely to help clarify the meaning of the underlying operation.

• Apart from the instances where there is an explicit interaction with presentation tagging, there is no required
rendering (visual or aural) - only a suggested default. As such, the presentations that are included in this
section are merely to help communicate to the reader the intended mathematical meaning by association
with the same expression written in a more traditional notation.

The available content elements are:

• token elements
– cn
– ci
– csymbol (MathML 2.0)

• basic content elements
– apply
– reln (deprecated)
– fn (deprecated for externally defined functions)
– interval
– inverse
– sep
– condition
– declare
– lambda
– compose
– ident
– domain (MathML 2.0)
– codomain (MathML 2.0)
– image (MathML 2.0)
– domainofapplication (MathML 2.0)
– piecewise (MathML 2.0)
– piece (MathML 2.0)
– otherwise (MathML 2.0)

• arithmetic, algebra and logic
– quotient
– exp
– factorial
– divide
– max andmin
– minus
– plus
– power
– rem
– times

139

– root
– gcd
– and
– or
– xor
– not
– implies
– forall
– exists
– abs
– conjugate
– arg (MathML 2.0)
– real (MathML 2.0)
– imaginary (MathML 2.0)
– lcm (MathML 2.0)
– floor (MathML 2.0)
– ceiling (MathML 2.0)

• relations
– eq
– neq
– gt
– lt
– geq
– leq
– equivalent (MathML 2.0)
– approx (MathML 2.0)
– factorof (MathML 2.0)

• calculus and vector calculus
– int
– diff
– partialdiff
– lowlimit
– uplimit
– bvar
– degree
– divergence (MathML 2.0)
– grad (MathML 2.0)
– curl (MathML 2.0)
– laplacian (MathML 2.0)

• theory of sets
– set
– list
– union
– intersect
– in
– notin
– subset
– prsubset
– notsubset

140

– notprsubset
– setdiff
– card (MathML 2.0)
– cartesianproduct (MathML 2.0)

• sequences and series
– sum
– product
– limit
– tendsto

• elementary classical functions
– exp
– ln
– log
– sin
– cos
– tan
– sec
– csc
– cot
– sinh
– cosh
– tanh
– sech
– csch
– coth
– arcsin
– arccos
– arctan
– arccosh
– arccot
– arccoth
– arccsc
– arccsch
– arcsec
– arcsech
– arcsinh
– arctanh

• statistics
– mean
– sdev
– variance
– median
– mode
– moment
– momentabout (MathML 2.0)

• linear algebra
– vector
– matrix
– matrixrow

141

– determinant

– transpose

– selector

– vectorproduct (MathML 2.0)
– scalarproduct (MathML 2.0)
– outerproduct (MathML 2.0)

• semantic mapping elements
– annotation

– semantics

– annotation-xml

• constant and symbol elements
– integers (MathML2.0)
– reals (MathML2.0)
– rationals (MathML2.0)
– naturalnumbers (MathML2.0)
– complexes (MathML2.0)
– primes (MathML2.0)
– exponentiale (MathML2.0)
– imaginaryi (MathML2.0)
– notanumber (MathML2.0)
– true (MathML2.0)
– false (MathML2.0)
– emptyset (MathML2.0)
– pi (MathML2.0)
– eulergamma (MathML2.0)
– infinity (MathML2.0)

4.4.1 Token Elements

4.4.1.1 Number (cn)

Discussion

Thecn element is used to specify actual numerical constants. The content model must provide sufficient information
that a number may be entered as data into a computational system. By default, it represents a signed real number in base
10. Thus, the content normally consists ofPCDATA restricted to a sign, a string of decimal digits and possibly a decimal
point, or alternatively one of the predefined symbolic constants such asπ.

Thecn element uses the attributetype to represent other types of numbers such as, for example, integer, rational, real
or complex, and uses the attributebase to specify the numerical base.

In addition to simplePCDATA, cn accepts as contentPCDATA separated by the (empty) elementsep. This determines the
different parts needed to construct a rational or complex-cartesian number.

Thecn element may also contain arbitrary presentation markup in its content (see Chapter3) so that its presentation
can be very elaborate.

Alternative input notations for numbers are possible, but must be explicitly defined by using thedefinitionURL and
encoding attributes, to refer to a written specification of how a sequence of real numbers separated by<sep/> should
be interpreted.

142

Attributes

All attributes areCDATA:

type Allowed values arereal, integer, rational, complex-cartesian, complex-polar, constant
base Number (CDATA for XML DTD) between 2 and 36.
definitionURL URL or URI pointing to an alternative definition.
encoding Syntax of the alternative definition.

Examples

<cn type="real"> 12345.7 </cn>
<cn type="integer"> 12345 </cn>
<cn type="integer" base="16"> AB3 </cn>
<cn type="rational"> 12342 <sep/> 2342342 </cn>
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>
<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>
<cn type="constant"> π </cn>

Default Rendering

By default, a contiguous block ofPCDATA contained in acn element should render as if it were wrapped in anmn
presentation element.

If an application supports bidirectional text rendering, then the rendering within acn element follows the Unicode
bidirectional rendering rules just as if it were wrapped in anmn presentation element.

Similarly, presentation markup contained in acn element should render as it normally would. A mixture ofPCDATA
and presentation markup should render as if it were wrapped in anmrow element, with contiguous blocks ofPCDATA
wrapped inmn elements.

However, not all mathematical systems that encounter content based tagging do visual or aural rendering. The receiving
applications are free to make use of a number in the manner in which they normally handle numerical data. Some
systems might simplify the rational number 12342/2342342 to 6171/1171171 while pure floating point based systems
might approximate this as 0.5269085385e-2. All numbers might be re-expressed in base 10. The role of MathML is
simply to record enough information about the mathematical object and its structure so that it may be properly parsed.

The following renderings of the above MathML expressions are included both to help clarify the meaning of the cor-
responding MathML encoding and as suggestions for authors of rendering applications. In each case, no mathematical
evaluation is intended or implied.

• 12345.7
• 12345
• AB316

• 12342 / 2342342
• 12.3 + 5 i
• Polar(2 , 3.1415)
• π

143

4.4.1.2 Identifier (ci)

Discussion

Theci element is used to name an identifier in a MathML expression (for example a variable). Such names are used to
identify mathematical objects. By default they are assumed to represent complex scalars. Theci element may contain
arbitrary presentation markup in its content (see Chapter3) so that its presentation as a symbol can be very elaborate.

Theci element uses thetype attribute to specify the type of object that it represents. Valid types includeinteger,
rational, real, float, complex, complex-polar, complex-cartesian, constant, and more generally, any of
the names of the MathML container elements (e.g.vector) or their type values. ThedefinitionURL andencoding
attributes can be used to extend the definition ofci to include other types. For example, a more advanced use might
require avector(complex).

Examples

<ci> x </ci>

<ci type="vector"> V </ci>

<ci>
<msub>
<mi>x</mi>
<mi>a</mi>

</msub>
</ci>

Default Rendering

If the content of aci element is tagged using presentation tags, that presentation is used. If no such tagging is supplied
then thePCDATA content would typically be rendered as if it were the content of anmi element.

If an application supports bidirectional text rendering, then the rendering within aci element follows the Unicode
bidirectional rendering rules just as if it were wrapped in anmi presentation element.

A renderer may wish to make use of the value of the type attribute to improve on this. For example, a symbol of type
vector might be rendered using a bold face. Typical renderings of the above symbols are:

• x
• V
• xi

4.4.1.3 Externally defined symbol (csymbol)

Discussion

Thecsymbol element allows a writer to create an element in MathML whose semantics are externally defined (i.e. not
in the core MathML content). The element can then be used in a MathML expression as for example an operator or
constant. Attributes are used to give the syntax and location of the external definition of the symbol semantics.

Use ofcsymbol for referencing external semantics can be contrasted with use of thesemantics to attach additional
information in-line (ie. within the MathML fragment) to a MathML construct. See Section4.2.6.

144

Attributes

All attributes areCDATA:

definitionURL Pointer to external definition of the semantics of the symbol. MathML does not specify a particular
syntax in which this definition should be written.

encoding Gives the syntax of the definition pointed to by definitionURL. An application can then test the value of this
attribute to determine whether it is able to process the target of thedefinitionURL. This syntax might be
text, or a formal syntax such as OpenMath.

Examples

<!- reference to OpenMath formal syntax definition of Bessel function ->
<apply>
<csymbol encoding="OpenMath"

definitionURL="http://www.openmath.org/cd/BesselFunctions.ocd">
<msub><mi>J</mi><mn>0</mn></msub>

</csymbol>
<ci>y</ci>

</apply>

<!- reference to human readable text description of Boltzmann’s constant ->
<csymbol encoding="text"

definitionURL="www.example.org/universalconstants/Boltzmann.htm">
k

</csymbol>

Default Rendering

By default, a contiguous block ofPCDATA contained in acsymbol element should render as if it were wrapped in anmo
presentation element.

If an application supports bidirectional text rendering, then the rendering within acsymbol element follows the Unicode
bidirectional rendering rules just as if it were wrapped in anmo presentation element.

Similarly, presentation markup contained in acsymbol element should render as it normally would. A mixture of
PCDATA and presentation markup should render as if it were contained wrapped in anmrow element, with contiguous
blocks ofPCDATA wrapped inmo elements. The examples above would render by default as

• J0(y)
• k

Ascsymbol is used to support reference to externally defined semantics, it is a MathML error to have embedded content
MathML elements within thecsymbol element.

4.4.2 Basic Content Elements

4.4.2.1 Apply (apply)

Discussion

Theapply element allows a function or operator to be applied to its arguments. Nearly all expression construction in
MathML content markup is carried out by applying operators or functions to arguments. The first child ofapply is the
operator to be applied, with the other child elements as arguments or qualifiers.

145

Theapply element is conceptually necessary in order to distinguish between a function or operator, and an instance
of its use. The expression constructed by applying a function to 0 or more arguments is always an element from the
codomain of the function.

Proper usage depends on the operator that is being applied. For example, theplus operator may have zero or more
arguments, while theminus operator requires one or two arguments to be properly formed.

If the object being applied as a function is not already one of the elements known to be a function (such asfn, sin or
plus) then it is treated as if it were the content of anfn element.

Some operators such asdiff andint make use of ‘named’ arguments. These special arguments are elements that
appear as children of theapply element and identify ‘parameters’ such as the variable of differentiation or the domain
of integration. These elements are discussed further in Section4.2.3.2.

Examples

<apply>
<factorial/>
<cn>3</cn>

</apply>

<apply>
<plus/>
<cn>3</cn>
<cn>4</cn>

</apply>

<apply>
<sin/>
<ci>x</ci>

</apply>

Default Rendering

A mathematical system that has been passed anapply element is free to do with it whatever it normally does with such
mathematical data. It may be that no rendering is involved (e.g. a syntax validator), or that the ‘function application’ is
evaluated and that only the result is rendered (e.g. sin(0)→ 0).

When an unevaluated ‘function application’ is rendered there are a wide variety of appropriate renderings. The choice
often depends on the function or operator being applied. Applications of basic operations such asplus are generally
presented using an infix notation while applications ofsin would use a more traditional functional notation such as
sin(x). Consult the default rendering for the operator being applied.

Applications of user-defined functions (seecsymbol, fn) that are not evaluated by the receiving or rendering application
would typically render using a traditional functional notation unless an alternative presentation is specified using the
semantics tag.

146

4.4.2.2 Relation (reln)

Discussion

Thereln element was used in MathML 1.0 to construct an equation or relation. Relations were constructed in a manner
exactly analogous to the use ofapply. This usage isdeprecatedin MathML 2.0 in favor of the more generally usable
apply.

The first child ofreln is the relational operator to be applied, with the other child elements acting as arguments. See
Section4.2.4for further details.

Examples

<reln>
<eq/>
<ci> a </ci>
<ci> b </ci>

</reln>

<reln>
<lt/>
<ci> a </ci>
<ci> b </ci>

</reln>

Default Rendering

• a = b
• a< b

4.4.2.3 Function (fn)

Discussion

Thefn element makes explicit the fact that a more general (possibly constructed) MathML object is being used in the
same manner as if it were a pre-defined function such assin or plus.

fn has exactly one child element, used to give the name (or presentation form) of the function. Whenfn is used as the
first child of an apply, the number of following arguments is determined by the contents of thefn.

In MathML 1.0,fn was also the primary mechanism used to extend the collection of ‘known’ mathematical functions.
This usage is nowdeprecatedin favor of the more generally applicablecsymbol element. (New functions may also be
introduced by usingdeclare in conjunction with alambda expression.)

Examples

<fn><ci> L </ci> </fn>

<apply>
<fn>

147

<apply>
<plus/>
<ci> f </ci>
<ci> g </ci>

</apply>
</fn>
<ci>z</ci>

</apply>

Default Rendering

An fn object is rendered in the same way as its content. A rendering application may add additional adornments such
as parentheses to clarify the meaning.

• L
• (f +g)z

4.4.2.4 Interval (interval)

Discussion

Theinterval element is used to represent simple mathematical intervals of the real number line. It takes an attribute
closure, which can take on any of the valuesopen, closed, open-closed, or closed-open, with a default value of
closed.

More general domains are constructed by using thecondition andbvar elements to bind free variables to constraints.

Theinterval element expectseither two child elements that evaluate to real numbersor one child element that is a
condition defining theinterval.

Examples

<interval>
<ci> a </ci>
<ci> b </ci>

</interval>

<interval closure="open-closed">
<ci> a </ci>
<ci> b </ci>

</interval>

Default Rendering

• [a,b]
• (a,b]

4.4.2.5 Inverse (inverse)

Discussion

Theinverse element is applied to a function in order to construct a generic expression for the functional inverse of
that function. (See also the discussion ofinverse in Section4.2.1.5). As with other MathML functions,inverse may

148

either be applied to arguments, or it may appear alone, in which case it represents an abstract inversion operator acting
on other functions.

A typical use of theinverse element is in an HTML document discussing a number of alternative definitions for a
particular function so that there is a need to write and definef (−1)(x). To associate a particular definition withf (−1),
use thedefinitionURL andencoding attributes.

Examples

<apply>
<inverse/>
<ci> f </ci>

</apply>

<apply>
<inverse definitionURL="../MyDefinition.htm" encoding="text"/>
<ci> f </ci>

</apply>

<apply>
<apply><inverse/>
<ci type="matrix"> a </ci>

</apply>
<ci> A </ci>

</apply>

Default Rendering

The default rendering for a functional inverse makes use of a parenthesized exponent as inf (−1)(x).

4.4.2.6 Separator (sep)

Discussion

The sep element is used to separatePCDATA into separate tokens for parsing the contents of the various specialized
forms of thecn elements. For example,sep is used when specifying the real and imaginary parts of a complex number
(see Section4.4.1). If it occurs between MathML elements, it is a MathML error.

Examples

<cn type="complex-cartesian"> 3 <sep/> 4 </cn>

Default Rendering

Thesep element is not directly rendered (see Section4.4.1).

149

4.4.2.7 Condition (condition)

Discussion

Thecondition element is used to place a condition on one or more free variables or identifiers. The conditions may
be specified in terms of relations that are to be satisfied by the variables, including general relationships such as set
membership.

It is used to define general sets and lists in situations where the elements cannot be explicitly enumerated. Condition
contains either a singleapply or reln element; theapply element is used to construct compound conditions. For
example, it is used below to describe the set of allx such thatx < 5. See the discussion on sets in Section4.4.6. See
Section4.2.5for further details.

Examples

<condition>
<apply><in/><ci> x </ci><ci type="set"> R </ci></apply>

</condition>

<condition>
<apply>
<and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><lt/><ci> x </ci><cn> 1 </cn></apply>

</apply>
</condition>

<apply>
<max/>
<bvar><ci> x </ci></bvar>
<condition>
<apply> <and/>
<apply><gt/><ci> x </ci><cn> 0 </cn></apply>
<apply><lt/><ci> x </ci><cn> 1 </cn></apply>

</apply>
</condition>
<apply>
<minus/>
<ci> x </ci>
<apply>
<sin/>
<ci> x </ci>

</apply>
</apply>

</apply>

Default Rendering

• x∈ R

150

• x> 0∧x< 1
• maxx{x−sinx | 0< x< 1}

4.4.2.8 Declare (declare)

Discussion

The declare construct has two primary roles. The first is to change or set the default attribute values for a specific
mathematical object. The second is to establish an association between a ‘name’ and an object. Once a declaration is in
effect, the ‘name’ object acquires the new attribute settings, and (if the second object is present) all the properties of the
associated object.

The various attributes of thedeclare element assign properties to the object being declared or determine where the
declaration is in effect.

The scope of a declaration is ‘local’ to the surrounding container element. Thescope attribute can only be assigned
to local, but is intended to support future extensions. As discussed in Section4.3.2.8, MathML contains no provision
for making document-wide declarations at present, though it is anticipated that this capability will be added in future
revisions of MathML, when supporting technologies become available.

declare takes one or two children. The first child, which is mandatory, is a the object affected by the declaration. This
is usually aci element providing the identifier that is being declared as in:

<declare type="vector"> <ci> V </ci> </declare>

The second child, which is optional, is a constructor initializing the variable:

<declare type="vector">
<ci> V </ci>
<vector>
<cn> 1 </cn><cn> 2 </cn><cn> 3 </cn>

</vector>
</declare>

The constructor type and the type of the element declared must agree. For example, if the type attribute of the declaration
is fn, the second child (constructor) must be an element equivalent to anfn element. (This would include actualfn
elements,lambda elements and any of the defined functions in the basic set of content tags.) If no type is specified in
the declaration then the type attribute of the declared name is set to the type of the constructor (second child) of the
declaration. The type attribute of the declaration can be especially useful in the special case of the second element being
a semantic tag.

Attributes

All attributes areCDATA:

type defines the MathML element type of the identifier declared.
scope defines the scope of application of the declaration.
nargs number of arguments for function declarations.
occurrence describes operator usage asprefix, infix or function-model indications.
definitionURL URI pointing to detailed semantics of the function.
encoding syntax of the detailed semantics of the function.

151

Examples

The declaration

<declare type="fn" nargs="2">
<ci> f </ci>
<apply>
<plus/>
<ci> F </ci><ci> G </ci>

</apply>
</declare>

declaresf to be a two-variable function with the property thatf (x, y) = (F+ G)(x, y).

The declaration

<declare type="fn">
<ci> J </ci>
<lambda>
<bvar><ci> x </ci></bvar>
<apply><ln/>
<ci> x </ci>

</apply>
</lambda>

</declare>

associates the nameJ with a one-variable function defined so thatJ(y) = ln y. (Note that because of the type attribute of
thedeclare element, the second argument must be something of function type , namely a known function likesin, or
alambda construct.)

The type attribute on the declaration is only necessary if the type cannot be inferred from the type of the second
argument.

Even when a declaration is in effect it is still possible to override attributes values selectively as in<ci type="set">
S </ci>. This capability is needed in order to write statements of the form ‘Lets be a member ofS’.

Default Rendering

Since thedeclare construct is not directly rendered, most declarations are likely to be invisible to a reader. However,
declarations can produce quite different effects in an application which evaluates or manipulates MathML content.
While the declaration

<declare>
<ci> v </ci>
<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>

</vector>
</declare>

is active the symbolv acquires all the properties of the vector, and even its dimension and components have meaningful
values. This may affect howv is rendered by some applications, as well as how it is treated mathematically.

152

4.4.2.9 Lambda (lambda)

Discussion

Thelambda element is used to construct a user-defined function from an expression and one or more free variables. The
lambda construct withn internal variables takesn+1 children. The firstn children identify the variables that are used as
placeholders in the last child for actual parameter values. See Section4.2.2.2for further details.

Examples

The first example presents a simple lambda construct.

<lambda>
<bvar><ci> x </ci></bvar>
<apply><sin/>
<apply>
<plus/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</apply>

</lambda>

The next example constructs a one-argument function in which the argumentb specifies the upper bound of a specific
definite integral.

<lambda>
<bvar><ci> b </ci></bvar>
<apply>
<int/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><fn><ci> f </ci></fn>

<ci> x </ci>
</apply>

</apply>
</lambda>

Such constructs are often used in conjunction withdeclare to construct new functions.

Default Rendering

• λ(x,sinx+1)
• λ(b,

∫ b
a f (x)dx)

153

4.4.2.10 Function composition (compose)

Discussion

Thecompose element represents the function composition operator. Note that MathML makes no assumption about the
domain and codomain of the constituent functions in a composition; the domain of the resulting composition may be
empty.

To override the default semantics for thecompose element, or to associate a more specific definition for function
composition, use thedefinitionURL andencoding attributes. See Section4.2.3for further details.

Examples

<apply>
<compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply>

<apply>
<compose/>
<ci type="fn"> f </ci>
<ci type="fn"> g </ci>
<ci type="fn"> h </ci>

</apply>

<apply>
<apply><compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply>
<ci> x </ci>

</apply>

<apply>
<fn><ci> f </ci></fn>
<apply>
<fn><ci> g </ci></fn>
<ci> x </ci>

</apply>
</apply>

Default Rendering

• f ◦g
• f ◦g◦h
• (f ◦g)(x)
• f (g(x))

154

4.4.2.11 Identity function (ident)

Discussion

Theident element represents the identity function. MathML makes no assumption about the function space in which
the identity function resides. That is, proper interpretation of the domain (and hence codomain) of the identity function
depends on the context in which it is used.

To override the default semantics for theident element, or to associate a more specific definition, use thedefini-
tionURL andencoding attributes (see Section4.2.3).

Examples

<apply>
<eq/>
<apply><compose/>
<fn><ci> f </ci></fn>
<apply><inverse/>
<fn><ci> f </ci></fn>

</apply>
</apply>
<ident/>

</apply>

Default Rendering

f ◦ f−1 = id

4.4.2.12 Domain (domain)

Discussion

Thedomain element denotes the domain of a given function, which is the set of values over which it is defined.

To override the default semantics for thedomain element, or to associate a more specific definition, use thedefini-
tionURL andencoding attributes (see Section4.2.3).

Examples

If f is a function from the reals to the rationals, then:

<apply>
<eq/>
<apply><domain/>
<fn><ci> f </ci></fn>

</apply>
<reals/>

</apply>

Default Rendering

domain(f) = R

155

4.4.2.13 codomain (codomain)

Discussion

The codomain element denotes the codomain of a given function, which is a set containing all values taken by the
function. It is not necessarily the case that every point in the codomain is generated by the function applied to some
point of the domain. (For example I may know that a function is integer-valued, so its codomain is the integers, without
knowing (or stating) which subset of the integers is mapped to by the function.)

Codomain is sometimes also called Range.

To override the default semantics for thecodomain element, or to associate a more specific definition, use thedefini-
tionURL andencoding attributes (see Section4.2.3).

Examples

If f is a function from the reals to the rationals, then:

<apply>
<eq/>
<apply><codomain/>
<fn><ci> f </ci></fn>

</apply>
<rationals/>

</apply>

Default Rendering

codomain(f) =Q

4.4.2.14 Image (image)

Discussion

Theimage element denotes the image of a given function, which is the set of values taken by the function. Every point
in the image is generated by the function applied to some point of the domain.

To override the default semantics for theimage element, or to associate a more specific definition, use thedefini-
tionURL andencoding attributes (see Section4.2.3).

Examples

The realsin function is a function from the reals to the reals, taking values between -1 and 1.

<apply>
<eq/>
<apply><image/>
<sin/>

</apply>
<interval>
<cn>-1</cn>

<cn> 1</cn>
</interval>

</apply>

156

Default Rendering

image(sin) = [−1,1]

4.4.2.15 Domain of Application (domainofapplication)

Discussion

Thedomainofapplication element denotes the domain over which a given function is being applied. It is intended
to be a more general alternative to specification of this domain using such qualifier elements asbvar, lowlimit or
condition.

To override the default semantics for thedomainofapplication element, or to associate a more specific definition,
use thedefinitionURL andencoding attributes (see Section4.2.3).

Examples

The integral of a functionf over an arbitrary domainC .

<apply>
<int/>
<domainofapplication>
<ci> C </ci>

</domainofapplication>
<ci> f </ci>

</apply>

Default Rendering

The default rendering depends on the particular function being applied.∫
C f

4.4.2.16 Piecewise declaration (piecewise, piece, otherwise)

Discussion

Thepiecewise, piece, andotherwise elements are used to support ‘piecewise’ declarations of the form ‘H(x) = 0
if x less than 0,H(x) = 1 otherwise’.

The declaration is constructed using thepiecewise element. This contains one or morepiece elements, and optionally
oneotherwise element. Eachpiece element contains exactly two children. The first child defines the value taken by
thepiecewise expression when the condition specified in the associated second child of thepiece is true.

otherwise allows the specification of a value to ba taken by thepiecewise function when none of the conditions
(second child elements of thepiece elements) is true, i.e. a default value.

It should be noted that no ‘order of execution’ is implied by the ordering of thepiece child elements withinpiecewise.
It is the responsibility of the author to ensure that the subsets of the function domain defined by the second children of
thepiece elements are disjoint, or that, where they overlap, the values of the corresponding first children of thepiece
elements coincide. If this is not the case, the meaning of the expression is undefined.

Thepiecewise elements areconstructors (see Section4.2.2.2).

157

Examples

<piecewise>
<piece>

<cn> 0 </cn>
<apply><lt/><ci> x </ci> <cn> 0 </cn></apply>

</piece>
<otherwise>

<ci> x </ci>
</otherwise>

</piecewise>

The following might be a definition of abs (x)

<apply>
<eq/>
<apply>
<abs/>
<ci> x </ci>

</apply>
<piecewise>
<piece>

<apply><minus/><ci> x </ci></apply>
<apply><lt/><ci> x </ci> <cn> 0 </cn></apply>

</piece>
<piece>

<cn> 0 </cn>
<apply><eq/><ci> x </ci> <cn> 0 </cn></apply>

</piece>
<piece>

<ci> x </ci>
<apply><gt/><ci> x </ci> <cn> 0 </cn></apply>

</piece>
</piecewise>
</apply>

Default Rendering

|x|=

−x if x< 0
0 if x = 0
x if x> 0

4.4.3 Arithmetic, Algebra and Logic

4.4.3.1 Quotient (quotient)

Discussion

The quotient element is the operator used for division modulo a particular base. When thequotient operator is
applied to integer argumentsa andb, the result is the ‘quotient ofa divided byb’. That is,quotient returns the unique
integerq such thata = q b+ r. (In common usage,q is called the quotient andr is the remainder.)

158

Thequotient element takes the attributedefinitionURL andencoding attributes, which can be used to override the
default semantics.

Thequotient element is abinary arithmetic operator (see Section4.2.3).

Example

<apply>
<quotient/>
<ci> a </ci>
<ci> b </ci>

</apply>

Various mathematical applications will use this data in different ways. Editing applications might choose an image such
as shown below, while a computationally based application would evaluate it to 2 whena=13 andb=5.

Default Rendering

There is no commonly used notation for this concept. Some possible renderings are

• quotient ofa divided byb
• integer part ofa / b
• ba/bc

4.4.3.2 Factorial (factorial)

Discussion

Thefactorial element is used to construct factorials.

Thefactorial element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thefactorial element is aunary arithmetic operator (see Section4.2.3).

Example

<apply>
<factorial/>
<ci> n </ci>

</apply>

If this were evaluated atn = 5 it would evaluate to 120.

Default Rendering

n!

159

4.4.3.3 Division (divide)

Discussion

Thedivide element is the division operator.

The divide element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thedivide element is abinary arithmetic operator (see Section4.2.3).

Example

<apply>
<divide/>
<ci> a </ci>
<ci> b </ci>

</apply>

As a MathML expression, this does not evaluate. However, on receiving such an expression, some applications may
attempt to evaluate and simplify the value. For example, whena=5 andb=2 some mathematical applications may
evaluate this to 2.5 while others will treat is as a rational number.

Default Rendering

a/b

4.4.3.4 Maximum and minimum (max, min)

Discussion

The elementsmax andmin are used to compare the values of their arguments. They return the maximum and minimum
of these values respectively.

Themax andmin elements take thedefinitionURL andencoding attributes that can be used to override the default
semantics.

Themax andmin elements aren-ary arithmetic operators (see Section4.2.3).

Examples

When the objects are to be compared explicitly they are listed as arguments to the function as in:

<apply>
<max/>
<ci> a </ci>
<ci> b </ci>

</apply>

The elements to be compared may also be described using bound variables with acondition element and an expression
to be maximized (or minimized), as in:

160

<apply>
<min/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><notin/><ci> x </ci><ci type="set"> B </ci></apply>

</condition>
<apply>

<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
</apply>

Note that the bound variable must be stated even if it might be implicit in conventional notation. In MathML1.0, the
bound variable and expression to be evaluated (x) could be omitted in the example below: this usage isdeprecatedin
MathML2.0 in favor of explicitly stating the bound variable and expression in all cases:

<apply>
<max/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci>x</ci><ci type="set">B</ci></apply>
<apply><notin/><ci>x</ci><ci type="set">C</ci></apply>

</apply>
</condition>
<ci>x</ci>

</apply>

Default Rendering

• max{a,b}
• minx{x2 | x /∈ B}
• max{x∈ B∧x /∈C}

4.4.3.5 Subtraction (minus)

Discussion

Theminus element is the subtraction operator.

The minus element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theminus element can be used as aunary arithmetic operator (e.g. to represent -x), or as abinary arithmetic operator
(e.g. to representx- y).

Example

161

<apply> <minus/>
<ci> x </ci>
<ci> y </ci>

</apply>

If this were evaluated atx=5 andy=2 it would yield 3.

Default Rendering

x−y

4.4.3.6 Addition (plus)

Discussion

Theplus element is the addition operator.

The plus element takes thedefinitionURL and encoding attributes, which can be used to override the default
semantics.

Theplus element is ann-ary arithemtic operator (see Section4.2.3).

Example

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>
<ci> z </ci>

</apply>

If this were evaluated atx = 5, y = 2 andz = 1 it would yield 8.

Default Rendering

x+y+z

4.4.3.7 Exponentiation (power)

Discussion

Thepower element is a generic exponentiation operator. That is, when applied to argumentsa andb, it returns the value
of ‘a to the power ofb’.

The power element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thepower element is abinary arithmetic operator (see Section4.2.3).

162

Example

<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>

If this were evaluated atx= 5 it would yield 125.

Default Rendering

x3

4.4.3.8 Remainder (rem)

Discussion

The rem element is the operator that returns the ‘remainder’ of a division modulo a particular base. When therem
operator is applied to integer argumentsa andb, the result is the ‘remainder ofa divided byb’. That is,rem returns the
unique integer,r such thata = q b+ r, wherer < q. (In common usage,q is called the quotient andr is the remainder.)

Therem element takes thedefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Therem element is abinary arithmetic operator (see Section4.2.3).

Example

<apply>
<rem/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated ata = 15 andb = 8 it would yield 7.

Default Rendering

amodb

4.4.3.9 Multiplication (times)

Discussion

Thetimes element is the multiplication operator.

times takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

163

Example

<apply>
<times/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated ata = 5.5 andb = 3 it would yield 16.5.

Default Rendering

ab

4.4.3.10 Root (root)

Discussion

The root element is used to construct roots. The kind of root to be taken is specified by adegree element, which
should be given as the second child of theapply element enclosing theroot element. Thus, square roots correspond
to the case wheredegree contains the value 2, cube roots correspond to 3, and so on. If nodegree is present, a default
value of 2 is used.

The root element takes thedefinitionURL and encoding attributes, which can be used to override the default
semantics.

Theroot element is anoperator taking qualifiers (see Section4.2.3.2).

Example

Thenth root ofa is is given by

<apply>
<root/>
<degree><ci type=’integer’> n </ci></degree>
<ci> a </ci>

</apply>

Default Rendering

n
√

a

4.4.3.11 Greatest common divisor (gcd)

Discussion

Thegcd element is used to denote the greatest common divisor of its arguments.

Thegcd takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Thegcd element is ann-ary operator (see Section4.2.3).

164

Example

<apply> <gcd/>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</apply>

If this were evaluated ata = 15,b = 21,c = 48, it would yield 3.

Default Rendering

gcd(a,b,c)

This default rendering is English-language locale specific: other locales may have different default renderings.

4.4.3.12 And (and)

Discussion

Theand element is the boolean ‘and’ operator.

Theand element takes thedefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Theand element is ann-ary logical operator (see Section4.2.3).

Example

<apply>
<and/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were evaluated and botha andb had truth values oftrue, then the result would betrue.

Default Rendering

a∧b

4.4.3.13 Or (or)

Discussion

Theor element is the boolean ‘or’ operator.

Theor element takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Theor element is ann-ary logical operator (see Section4.2.3).

165

Example

<apply>
<or/>
<ci> a </ci>
<ci> b </ci>

</apply>

Default Rendering

a∨b

4.4.3.14 Exclusive Or (xor)

Discussion

Thexor element is the boolean ‘exclusive or’ operator.

xor takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Thexor element is ann-ary logical operator (see Section4.2.3).

Example

<apply>
<xor/>
<ci> a </ci>
<ci> b </ci>

</apply>

Default Rendering

axorb

4.4.3.15 Not (not)

Thenot operator is the boolean ‘not’ operator.

Thenot element takes the attributedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thenot element is aunary logical operator (see Section4.2.3).

Example

<apply>
<not/>
<ci> a </ci>

</apply>

166

Default Rendering

¬a

4.4.3.16 Implies (implies)

Discussion

Theimplies element is the boolean relational operator ‘implies’.

Theimplies element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theimplies element is abinary logical operator (see Section4.2.4).

Example

<apply>
<implies/>
<ci> A </ci>
<ci> B </ci>

</apply>

Mathematical applications designed for the evaluation of such expressions would evaluate this totrue whena = false
andb = true.

Default Rendering

A⇒ B

4.4.3.17 Universal quantifier (forall)

Discussion

The forall element represents the universal quantifier of logic. It must be used in conjunction with one or more
bound variables, an optionalcondition element, and an assertion, which should take the form of anapply element.
In MathML 1.0, thereln element was also permitted here: this usage is now deprecated.

The forall element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theforall element is aquantifier (see Section4.2.3.2).

Examples

The first example encodes a simple identity.

<apply>
<forall/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>

167

<minus/><ci> x </ci><ci> x </ci>
</apply>
<cn>0</cn>

</apply>
</apply>

The next example is more involved, and makes use of an optionalcondition element.

<apply>
<forall/>
<bvar><ci> p </ci></bvar>
<bvar><ci> q </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> p </ci><rationals/></apply>
<apply><in/><ci> q </ci><rationals/></apply>
<apply><lt/><ci> p </ci><ci> q </ci></apply>

</apply>
</condition>
<apply><lt/>

<ci> p </ci>
<apply>

<power/>
<ci> q </ci>
<cn> 2 </cn>

</apply>
</apply>

</apply>

The final example uses both theforall andexists quantifiers.

<apply>
<forall/>
<bvar><ci> n </ci></bvar>
<condition>
<apply><and/>
<apply><gt/><ci> n </ci><cn> 0 </cn></apply>
<apply><in/><ci> n </ci><integers/></apply>

</apply>
</condition>
<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<bvar><ci> z </ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci> x </ci><integers/></apply>
<apply><in/><ci> y </ci><integers/></apply>
<apply><in/><ci> z </ci><integers/></apply>

168

</apply>
</condition>
<apply>
<eq/>
<apply>
<plus/>
<apply><power/><ci> x </ci><ci> n </ci></apply>
<apply><power/><ci> y </ci><ci> n </ci></apply>

</apply>
<apply><power/><ci> z </ci><ci> n </ci></apply>

</apply>
</apply>

</apply>

Default Rendering

• ∀x : x−x = 0
• ∀p∈Q,q∈Q, p< q : p< q2

• ∀n> 0,n∈ Z : ∃x∈ Z,y∈ Z,z∈ Z : xn +yn = zn

4.4.3.18 Existential quantifier (exists)

Discussion

Theexists element represents the existential quantifier of logic. It must be used in conjuction with one or more bound
variables, an optionalcondition element, and an assertion, which may take the form of either anapply or reln
element.

The exists element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theexists element is aquantifier (see Section4.2.3.2).

Example

The following example encodes the sense of the expression ‘there exists anx such thatf (x) = 0’.

<apply>
<exists/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<fn><ci> f </ci></fn>
<ci> x </ci>

</apply>
<cn>0</cn>

</apply>
</apply>

Default Rendering

∃x : f (x) = 0

169

4.4.3.19 Absolute Value (abs)

Discussion

Theabs element represents the absolute value of a real quantity or the modulus of a complex quantity.

Theabs element takes thedefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Theabs element is aunary arithmetic operator (see Section4.2.3).

Example

The following example encodes the absolute value ofx.

<apply>
<abs/>
<ci> x </ci>

</apply>

Default Rendering

|x|

4.4.3.20 Complex conjugate (conjugate)

Discussion

Theconjugate element represents the complex conjugate of a complex quantity.

Theconjugate element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theconjugate element is aunary arithmetic operator (see Section4.2.3).

Example

The following example encodes the conjugate ofx + i y.

<apply>
<conjugate/>
<apply>
<plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

170

Default Rendering

x+ iy

4.4.3.21 Argument (arg)

Discussion

Thearg operator (introduced in MathML 2.0) gives the ‘argument’ of a complex number, which is the angle (in radians)
it makes with the positive real axis. Real negative numbers have argument equal to +π.

Thearg element takes thedefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Thearg element is aunary arithmetic operator (see Section4.2.3).

Example

The following example encodes the argument operation onx + i y.

<apply>
<arg/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

Default Rendering

arg(x+ iy)

4.4.3.22 Real part (real)

Discussion

Thereal operator (introduced in MathML 2.0) gives the real part of a complex number, that is the x component inx +
i y

Thereal element takes the attributesencoding anddefinitionURL that can be used to override the default semantics.

Thereal element is aunary arithmetic operator (see Section4.2.3).

Example

The following example encodes the real operation onx + i y.

171

<apply>
<real/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

A MathML-aware evaluation system would return thex component, suitably encoded.

Default Rendering

ℜ(x+ iy)

4.4.3.23 Imaginary part (imaginary)

Discussion

The imaginary operator (introduced in MathML 2.0) gives the imaginary part of a complex number, that is, the y
component inx + i y.

Theimaginary element takes the attributesencoding anddefinitionURL that can be used to override the default
semantics.

Theimaginary element is aunary arithmetic operator (see Section4.2.3).

Example

The following example encodes the imaginary operation onx + i y.

<apply>
<imaginary/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<cn> ⅈ </cn>
<ci> y </ci>

</apply>
</apply>

</apply>

A MathML-aware evaluation system would return they component, suitably encoded.

Default Rendering

ℑ(x+ iy)

172

4.4.3.24 Lowest common multiple (lcm)

Discussion

Thelcm element (introduced in MathML 2.0) is used to denote the lowest common multiple of its arguments.

Thelcm takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Thelcm element is ann-ary operator (see Section4.2.3).

Example

<apply> <lcm/>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</apply>

If this were evaluated ata = 2, b = 4, c = 6 it would yield 12.

Default Rendering

lcm(a,b,c)

This default rendering is English-language locale specific: other locales may have different default renderings.

4.4.3.25 Floor (floor)

Discussion

Thefloor element (introduced in MathML 2.0) is used to denote the round-down (towards -infinity) operator.

Thefloor takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Thefloor element is aunary operator (see Section4.2.3).

Example

<apply> <floor/>
<ci> a </ci>

</apply>

If this were evaluated ata = 15.015, it would yield 15.

<apply> <forall/>
<bvar><ci> a </ci></bvar>
<apply><and/>
<apply><leq/>

<apply><floor/>
<ci>a</ci>
</apply>
<ci>a</ci>

173

</apply>
<apply><lt/>
<ci>a</ci>

<apply><plus/>
<apply><floor/>

<ci>a</ci>
</apply>
<cn>1</cn>
</apply>

</apply>
</apply>

</apply>

Default Rendering

bac

4.4.3.26 Ceiling (ceiling)

Discussion

Theceiling element (introduced in MathML 2.0) is used to denote the round-up (towards +infinity) operator.

Theceiling takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Theceiling element is aunary operator (see Section4.2.3).

Example

<apply> <ceiling/>
<ci> a </ci>

</apply>

If this were evaluated ata = 15.015, it would yield 16.

<apply> <forall/>
<bvar><ci> a </ci></bvar>
<apply><and/>
<apply><lt/>

<apply><minus/>
<apply><ceiling/>

<ci>a</ci>
</apply>
<cn>1</cn>
</apply>

<ci>a</ci>
</apply>

<apply><leq/>
<ci>a</ci>
<apply><ceiling/>

174

<ci>a</ci>
</apply>

</apply>
</apply>

</apply>

Default Rendering

dae

4.4.4 Relations

4.4.4.1 Equals (eq)

Discussion

Theeq element is the relational operator ‘equals’.

Theeq element takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Theequals element is ann-ary relation (see Section4.2.3.2).

Example

<apply>
<eq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested ata = 5.5 andb = 6 it would yield the truth valuefalse.

Default Rendering

a = b

4.4.4.2 Not Equals (neq)

Discussion

Theneq element is the ‘not equal to’ relational operator.

neq takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Theneq element is abinary relation (see Section4.2.4).

Example

<apply>
<neq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested ata = 5.5 andb = 6 it would yield the truth valuetrue.

175

Default Rendering

a 6= b

4.4.4.3 Greater than (gt)

Discussion

Thegt element is the ‘greater than’ relational operator.

Thegt element takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Thegt element is ann-ary relation (see Section4.2.4).

Example

<apply>
<gt/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested ata = 5.5 andb = 6 it would yield the truth valuefalse.

Default Rendering

a> b

4.4.4.4 Less Than (lt)

Discussion

Thelt element is the ‘less than’ relational operator.

Thelt element takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Thelt element is ann-ary relation (see Section4.2.4).

Example

<apply>
<lt/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested ata = 5.5 andb = 6 it would yield the truth value ‘true’.

Default Rendering

a< b

176

4.4.4.5 Greater Than or Equal (geq)

Discussion

Thegeq element is the relational operator ‘greater than or equal’.

Thegeq element takes thedefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Thegeq element is ann-ary relation (see Section4.2.4).

Example

<apply>
<geq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If this were tested fora = 5.5 andb = 5.5 it would yield the truth valuetrue.

Default Rendering

a≥ b

4.4.4.6 Less Than or Equal (leq)

Discussion

Theleq element is the relational operator ‘less than or equal’.

Theleq element takes thedefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Theleq element is ann-ary relation (see Section4.2.4).

Example

<apply>
<leq/>
<ci> a </ci>
<ci> b </ci>

</apply>

If a = 5.4 andb = 5.5 this will yield the truth valuetrue.

Default Rendering

a≤ b

177

4.4.4.7 Equivalent (equivalent)

Discussion

Theequivalent element is the ‘equivalence’ relational operator.

Theequivalent element takes the attributesencoding anddefinitionURL that can be used to override the default
semantics.

Theequivalent element is ann-ary relation (see Section4.2.3.2).

Example

<apply>
<equivalent/>
<ci> a </ci>
<apply>
<not/>
<apply> <not/> <ci> a </ci> </apply>

</apply>
</apply>

This yields the truth valuetrue for all values ofa.

Default Rendering

a≡ ¬(¬a)

4.4.4.8 Approximately (approx)

Discussion

Theapprox element is the relational operator ‘approximately equal’. This is a generic relational operator and no specific
arithmetic precision is implied

Theapprox element takes the attributesencoding anddefinitionURL that can be used to override the default se-
mantics.

Theapprox element is abinary relation (see Section4.2.3.2).

Example

<apply>
<approx/>
<cn type="rational"> 22 <sep/> 7 </cn>
<cn type="constant"> π </cn>

</apply>

Default Rendering

a≈ b

178

4.4.4.9 Factor Of (factorof)

Discussion

Thefactorof element is the relational operator element on two integersa andb specifying whether one is an integer
factor of the other.

Thefactorof element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thefactorof element is anbinary relational operator (see Section4.2.4).

Example

<apply>
<factorof/>
<ci> a </ci>
<ci> b </ci>

</apply>

Default Rendering

a|b

4.4.5 Calculus and Vector Calculus

4.4.5.1 Integral (int)

Discussion

Theint element is the operator element for an integral. The lower limit, upper limit and bound variable are given by
(optional) child elementslowlimit, uplimit andbvar in the enclosingapply element. The integrand is also specified
as a child element of the enclosingapply element.

The domain of integration may be specified by using either aninterval element or acondition element. In such
cases, if a bound variable of integration is intended, it must be specified explicitly. (The condition may involve more
than one symbol.)

Theint element takes thedefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Theint element is anoperator taking qualifiers (see Section4.2.3.2).

Examples

This example specifies alowlimit, uplimit, andbvar.

<apply>
<int/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>

179

<cn> 0 </cn>
</lowlimit>
<uplimit>
<ci> a </ci>

</uplimit>
<apply>
<ci> f </ci>
<ci> x </ci>

</apply>
</apply>

This example specifies the domain of integration with aninterval element.

<apply>
<int/>
<bvar>
<ci> x </ci>

</bvar>
<interval>
<ci> a </ci>
<ci> b </ci>

</interval>
<apply><cos/>
<ci> x </ci>

</apply>
</apply>

The final example specifies the domain of integration with acondition element.

<apply>
<int/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply><in/>
<ci> x </ci>
<ci type="set"> D </ci>

</apply>
</condition>
<apply><ci type="fn"> f </ci>
<ci> x </ci>

</apply>
</apply>

Default Rendering

a∫
0

f (x)dx

180

b∫
a

cosxdx

∫
x∈D

f (x)dx

4.4.5.2 Differentiation (diff)

Discussion

Thediff element is the differentiation operator element for functions of a single variable. It may be applied directly
to an actual function such as sine or cosine, thereby denoting a function which is the derivative of the original function,
or it can be applied to an expression involving a single variable such as sin(x), or cos(x). or a polynomial inx. For the
expression case the actual variable is designated by abvar element that is a child of the containingapply element. The
bvar element may also contain adegree element, which specifies the order of the derivative to be taken.

The diff element takes thedefinitionURL and encoding attributes, which can be used to override the default
semantics.

Thediff element is anoperator taking qualifiers (see Section4.2.3.2).

Examples

The derivative of a functionf (often displayed asf’) can be written as:

<apply>
<diff/>
<ci> f </ci>

</apply>

The derivative with respect tox of an expression inx such asf (x) can be written as:

<apply>
<diff/>
<bvar>
<ci> x </ci>

</bvar>
<apply><ci type="fn"> f </ci>
<ci> x </ci>

</apply>
</apply>

Default Rendering

f ′

d f (x)
dx

181

4.4.5.3 Partial Differentiation (partialdiff)

Discussion

The partialdiff element is the partial differentiation operator element for functions or algebraic expressions in
several variables.

In the case of algebraic expressions, the bound variables are given bybvar elements, which are children of the con-
tainingapply element. Thebvar elements may also containdegree element, which specify the order of the partial
derivative to be taken in that variable.

For the expression case the actual variable is designated by abvar element that is a child of the containingapply
element. Thebvar elements may also contain adegree element, which specifies the order of the derivative to be taken.

Where a total degree of differentiation must be specified, this is indicated by use of adegree element at the top level,
i.e. without any associatedbvar, as a child of the contaioningapply element.

For the case of partial differentation of a function, the containingapply takes two child elements: firstly a list of indices
indicating by position which coordinates are involved in constructing the partial derivatives, and secondly the actual
function to be partially differentiated. The coordinates may be repeated.

The partialdiff element takes thedefinitionURL andencoding attributes, which can be used to override the
default semantics.

Thepartialdiff element is anoperator taking qualifiers (see Section4.2.3.2).

Examples

<apply><partialdiff/>
<bvar><ci> x </ci><degree><ci> m </ci></degree></bvar>
<bvar><ci> y </ci><degree><ci> n </ci></degree></bvar>
<degree><ci> k </ci></degree>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>

<apply><partialdiff/>
<bvar><ci> x </ci></bvar>
<bvar><ci> y </ci></bvar>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>

<apply><partialdiff/>
<list><cn>1</cn><cn>1</cn><cn>3</cn></list>
<ci type="fn">f</ci>
</apply>

182

Default Rendering(
∂k

∂xm∂yn

)
f (x,y)

∂2

∂x∂y
f (x,y)

D1,1,3(f)

4.4.5.4 Lower limit (lowlimit)

Discussion

Thelowlimit element is the container element used to indicate the ‘lower limit’ of an operator using qualifiers. For
example, in an integral, it can be used to specify the lower limit of integration. Similarly, it can be used to specify the
lower limit of an index for a sum or product.

The meaning of thelowlimit element depends on the context it is being used in. For further details about howqualifiers
are used in conjunction with operators taking qualifiers, consult Section4.2.3.2.

Example

<apply>
<int/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<ci> a </ci>

</lowlimit>
<uplimit>
<ci> b </ci>

</uplimit>
<apply><ci type="fn"> f </ci>

<ci> x </ci>
</apply>

</apply>

Default Rendering

The default rendering of thelowlimit element and its contents depends on the context. In the preceding example, it
should be rendered as a subscript to the integral sign:

b∫
a

f (x)dx

Consult the descriptions of individual operators that make use of thelowlimit construct for default renderings.

183

4.4.5.5 Upper limit (uplimit)

Discussion

The uplimit element is the container element used to indicate the ‘upper limit’ of an operator using qualifiers. For
example, in an integral, it can be used to specify the upper limit of integration. Similarly, it can be used to specify the
upper limit of an index for a sum or product.

The meaning of theuplimit element depends on the context it is being used in. For further details about howqualifiers
are used in conjunction with operators taking qualifiers, consult Section4.2.3.2.

Example

<apply>
<int/>
<bvar>

<ci> x </ci>
</bvar>
<lowlimit>

<ci> a </ci>
</lowlimit>
<uplimit>

<ci> b </ci>
</uplimit>
<apply><ci type="fn"> f </ci>

<ci> x </ci>
</apply>

</apply>

Default Rendering

The default rendering of theuplimit element and its contents depends on the context. In the preceding example, it
should be rendered as a superscript to the integral sign:

b∫
a

f (x)dx

Consult the descriptions of individual operators that make use of theuplimit construct for default renderings.

4.4.5.6 Bound variable (bvar)

Discussion

The bvar element is the container element for the ‘bound variable’ of an operation. For example, in an integral it
specifies the variable of integration. In a derivative, it indicates the variable with respect to which a function is being
differentiated. When thebvar element is used to qualify a derivative, thebvar element may contain a childdegree
element that specifies the order of the derivative with respect to that variable. Thebvar element is also used for the
internal variable in sums and products and for the bound variable used with the universal and existential quantifiers
forall andexists.

The meaning of thebvar element depends on the context it is being used in. For further details about howqualifiers are
used in conjunction with operators taking qualifiers, consult Section4.2.3.2.

184

Examples

<apply>
<diff/>
<bvar>
<ci> x </ci>
<degree>
<cn> 2 </cn>

</degree>
</bvar>
<apply>
<power/>
<ci> x </ci>
<cn> 4 </cn>

</apply>
</apply>

<apply>
<int/>
<bvar><ci> x </ci></bvar>
<condition>
<apply><in/><ci> x </ci><ci> D </ci></apply>

</condition>
<apply><ci type="fn"> f </ci>
<ci> x </ci>

</apply>
</apply>

Default Rendering

The default rendering of thebvar element and its contents depends on the context. In the preceding examples, it should
be rendered as thex in the dx of the integral, and as thex in the denominator of the derivative symbol, respectively:

dx4

dx2∫
x∈D

f (x)dx

Note that in the case of the derivative, the default rendering of thedegree child of thebvar element is as an exponent.

Consult the descriptions of individual operators that make use of thebvar construct for default renderings.

4.4.5.7 Degree (degree)

Discussion

Thedegree element is the container element for the ‘degree’ or ‘order’ of an operation. There are a number of basic
mathematical constructs that come in families, such as derivatives and moments. Rather than introduce special elements
for each of these families, MathML uses a single general construct, thedegree element for this concept of ‘order’.

The meaning of thedegree element depends on the context it is being used in. For further details about howqualifiers
are used in conjunction with operators taking qualifiers, consult Section4.2.3.2.

185

Example

<apply>
<partialdiff/>
<bvar>
<ci> x </ci>
<degree>
<ci> n </ci>

</degree>
</bvar>
<bvar>
<ci> y </ci>
<degree>
<ci> m </ci>

</degree>
</bvar>
<apply><sin/>
<apply> <times/>
<ci> x </ci>
<ci> y </ci>

</apply>
</apply>

</apply>

Default Rendering

The default rendering of thedegree element and its contents depends on the context. In the preceding example, the
degree elements would be rendered as the exponents in the differentiation symbols:

∂n+m

∂xn∂ym sin(xy)

Consult the descriptions of individual operators that make use of thedegree construct for default renderings.

4.4.5.8 Divergence (divergence)

Discussion

Thedivergence element is the vector calculus divergence operator, often called div.

Thedivergence element takes the attributesencoding anddefinitionURL that can be used to override the default
semantics.

Thedivergence element is aunary calculus operator (see Section4.2.3).

Example

<apply>
<divergence/>
<ci> a </ci>

</apply>

186

Default Rendering

diva

4.4.5.9 Gradient (grad)

Discussion

Thegrad element is the vector calculus gradient operator, often called grad.

Thegrad element takes the attributesencoding anddefinitionURL that can be used to override the default semantics.

Thegrad element is aunary calculus operator (see Section4.2.3).

Example

<apply>
<grad/>
<ci> f</ci>

</apply>

Where for examplef is a scalar function of three real variables.

Default Rendering

gradf

4.4.5.10 Curl (curl)

Discussion

Thecurl element is the vector calculus curl operator.

Thecurl element takes the attributesencoding anddefinitionURL that can be used to override the default semantics.

Thecurl element is aunary calculus operator (see Section4.2.3).

Example

<apply>
<curl/>
<ci> a </ci>

</apply>

Where for examplea is a vector field.

Default Rendering

curla

187

4.4.5.11 Laplacian (laplacian)

Discussion

Thelaplacian element is the vector calculus laplacian operator.

Thelaplacian element takes the attributesencoding anddefinitionURL that can be used to override the default
semantics.

Thelaplacian element is anunary calculus operator (see Section4.2.3).

Example

<apply>
<eq/>
<apply><laplacian/>
<ci> f </ci>

</apply>
<apply>
<divergence/>
<apply><grad/>
<ci> f </ci>

</apply>
</apply>

</apply>

Where for examplef is a scalar function of three real variables.

Default Rendering

∇2 f

4.4.6 Theory of Sets

4.4.6.1 Set (set)

Discussion

Theset element is the container element that constructs a set of elements. The elements of a set can be defined either
by explicitly listing the elements, or by using thebvar andcondition elements.

Theset element is aconstructor element (see Section4.2.2.2).

Examples

<set>
<ci> b </ci>
<ci> a </ci>
<ci> c </ci>

</set>

This constructs the set b, a, c

188

<set>
<bvar><ci> x </ci></bvar>
<condition>
<apply><and/>
<apply><lt/>
<ci> x </ci>
<cn> 5 </cn>

</apply>
<apply><in/>
<ci> x </ci>
<naturalnumbers/>

</apply>
</apply>

</condition>
<ci> x </ci>

</set>

This constructs the set of all natural numbers less than 5, ie. the set 0, 1, 2, 3, 4

Default Rendering

• {a,b,c}
• {x | x< 5∧x∈ N}

4.4.6.2 List (list)

Discussion

Thelist element is the container element that constructs a list of elements. Elements can be defined either by explicitly
listing the elements, or by using thebvar andcondition elements.

Lists differ from sets in that there is an explicit order to the elements. Two orders are supported: lexicographic and
numeric. The kind of ordering that should be used is specified by theorder attribute.

Thelist element is aconstructor element (see Section4.2.2.2).

Examples

<list>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</list>

<list order="numeric">
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<ci> x </ci>

189

<cn> 5 </cn>
</apply>

</condition>
<ci> x </ci>

</list>

Default Rendering

• [a,b,c]
• [x | x< 5]

4.4.6.3 Union (union)

Discussion

Theunion element is the operator for a set-theoretic union or join of two (or more) sets.

The union attribute takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theunion element is ann-ary set operator (see Section4.2.3).

Example

<apply>
<union/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A∪B

4.4.6.4 Intersect (intersect)

Discussion

Theintersect element is the operator for the set-theoretic intersection or meet of two (or more) sets.

Theintersect element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theintersect element is ann-ary set operator (see Section4.2.3).

Example

<apply>
<intersect/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>

</apply>

190

Default Rendering

A∩B

4.4.6.5 Set inclusion (in)

Discussion

Thein element is the relational operator used for a set-theoretic inclusion (‘is in’ or ‘is a member of’).

Thein element takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Thein element is abinary set relation (see Section4.2.4).

Example

<apply>
<in/>
<ci> a </ci>
<ci type="set"> A </ci>

</apply>

Default Rendering

a∈ A

4.4.6.6 Set exclusion (notin)

Discussion

Thenotin element is the relational operator element used for set-theoretic exclusion (‘is not in’ or ‘is not a member
of’).

The notin element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thenotin element is abinary set relation (see Section4.2.4).

Example

<apply>
<notin/>
<ci> a </ci>
<ci> A </ci>

</apply>

Default Rendering

a /∈ A

191

4.4.6.7 Subset (subset)

Discussion

Thesubset element is the relational operator element for a set-theoretic containment (‘is a subset of’).

The subset element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thesubset element is ann-ary set relation (see Section4.2.4).

Example

<apply>
<subset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A⊆ B

4.4.6.8 Proper Subset (prsubset)

Discussion

Theprsubset element is the relational operator element for set-theoretic proper containment (‘is a proper subset of’).

Theprsubset element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thesubset element is ann-ary set relation (see Section4.2.4).

Example

<apply>
<prsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A⊂ B

192

4.4.6.9 Not Subset (notsubset)

Discussion

Thenotsubset element is the relational operator element for the set-theoretic relation ‘is not a subset of’.

Thenotsubset element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thenotsubset element is abinary set relation (see Section4.2.4).

Example

<apply>
<notsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A 6⊂ B

4.4.6.10 Not Proper Subset (notprsubset)

Discussion

Thenotprsubset element is the operator element for the set-theoretic relation ‘is not a proper subset of’.

The notprsubset takes thedefinitionURL and encoding attributes, which can be used to override the default
semantics.

Thenotprsubset element is abinary set relation (see Section4.2.4).

Example

<apply>
<notprsubset/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A* B

193

4.4.6.11 Set Difference (setdiff)

Discussion

Thesetdiff element is the operator element for a set-theoretic difference of two sets.

Thesetdiff element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Thesetdiff element is abinary set operator (see Section4.2.3).

Example

<apply>
<setdiff/>
<ci> A </ci>
<ci> B </ci>

</apply>

Default Rendering

A\B

4.4.6.12 Cardinality (card)

Discussion

Thecard element is the operator element for the size or cardinality of a set.

Thecard element takes the attributesdefinitionURL andencoding that can be used to override the default semantics.

Thecard element is aunary set operator (see Section4.2.3).

Example

<apply>
<eq/>
<apply><card/>
<ci> A </ci>

</apply>
<ci> 5 </ci>

</apply>

where A is a set with 5 elements.

Default Rendering

|A|= 5

194

4.4.6.13 Cartesian product (cartesianproduct)

Discussion

Thecartesianproduct element is the operator element for the Cartesian product of two or more sets. IfA andB are
two sets, then the Cartesian product ofA andB is the set of all pairs(a,b) with a in A andb in B.

Thecartesianproduct element takes the attributesdefinitionURL andencoding that can be used to override the
default semantics.

Thecartesianproduct element is an-ary set operator (see Section4.2.3).

Example

<apply><cartesianproduct/>
<ci> A </ci>
<ci> B </ci>

</apply>

<apply><cartesianproduct/>
<reals/>
<reals/>
<reals/>

</apply>

Default Rendering

A×B

R×R×R
R

3

4.4.7 Sequences and Series

4.4.7.1 Sum (sum)

Discussion

Thesum element denotes the summation operator. Upper and lower limits for the index of a sum can be specified using
uplimit andlowlimit. More general domains for the indices can be specified using acondition involving the bound
variables. The index for the summation is specified by abvar element.

Thesum element takes thedefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Thesum element is anoperator taking qualifiers (see Section4.2.3.2).

Examples

<apply>
<sum/>

195

<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<ci> a </ci>

</lowlimit>
<uplimit>
<ci> b </ci>

</uplimit>
<apply><ci type="fn"> f </ci>
<ci> x </ci>

</apply>
</apply>

<apply>
<sum/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>

</apply>
</condition>
<apply><ci type="fn"> f </ci>
<ci> x </ci>

</apply>
</apply>

Default Rendering

b

∑
x=a

f (x)

∑
x∈B

f (x)

4.4.7.2 Product (product)

Discussion

Theproduct element denotes the product operator. Upper and lower limits for the index of a product can be specified
usinguplimit andlowlimit. More general domains for the indices can be specified using acondition involving the
bound variables. The index for the product is specified by abvar element.

Theproduct element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

Theproduct element is anoperator taking qualifiers (see Section4.2.3.2).

196

Examples

<apply>
<product/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<ci> a </ci>

</lowlimit>
<uplimit>
<ci> b </ci>

</uplimit>
<apply><ci type="fn"> f </ci>
<ci> x </ci>

</apply>
</apply>

<apply>
<product/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply> <in/>
<ci> x </ci>
<ci type="set"> B </ci>

</apply>
</condition>
<apply><ci type="fn"> f </ci>
<ci> x </ci>

</apply>
</apply>

Default Rendering

b

∏
x=a

f (x)

∏
x∈B

f (x)

4.4.7.3 Limit (limit)

Discussion

Thelimit element represents the operation of taking a limit of a sequence. The limit point is expressed by specifying
alowlimit and abvar, or by specifying acondition on one or more bound variables.

The limit element takes thedefinitionURL andencoding attributes, which can be used to override the default
semantics.

197

Thelimit element is anoperator taking qualifiers (see Section4.2.3.2).

Examples

<apply>
<limit/>
<bvar>
<ci> x </ci>

</bvar>
<lowlimit>
<cn> 0 </cn>

</lowlimit>
<apply><sin/>
<ci> x </ci>

</apply>
</apply>

<apply>
<limit/>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply>
<tendsto type="above"/>
<ci> x </ci>
<ci> a </ci>

</apply>
</condition>
<apply><sin/>

<ci> x </ci>
</apply>

</apply>

Default Rendering

lim
x→0

sinx

lim
x↘a

sinx

4.4.7.4 Tends To (tendsto)

Discussion

Thetendsto element is used to express the relation that a quantity is tending to a specified value.

Thetendsto element takes the attributestype to set the direction from which the limiting value is approached.

Thetendsto element is abinary relational operator (see Section4.2.4).

198

Examples

<apply>
<tendsto type="above"/>
<apply>
<power/>
<ci> x </ci>
<cn> 2 </cn>

</apply>
<apply>
<power/>
<ci> a </ci>
<cn> 2 </cn>

</apply>
</apply>

To express (x, y)→(f (x, y), g(x, y)), one might use vectors, as in:

<apply>
<tendsto/>
<vector>

<ci> x </ci>
<ci> y </ci>

</vector>
<vector>
<apply><ci type="fn"> f </ci>
<ci> x </ci>
<ci> y </ci>

</apply>
<apply><ci type="fn"> g </ci>
<ci> x </ci>
<ci> y </ci>

</apply>
</vector>

</apply>

Default Rendering

x2↘ a2

(x,y)→ (f (x,y),g(x,y))

4.4.8 Elementary classical functions

4.4.8.1 common trigonometric functions

The names of the common trigonometric functions supported by MathML are listed below. Since their standard inter-
pretations are widely known, they are discussed as a group.

199

sin cos tan
sec csc cot
sinh cosh tanh
sech csch coth
arcsin arccos arctan
arccosh arccot arccoth
arccsc arccsch arcsec
arcsech arcsinh arctanh

Discussion

These operator elements denote the standard trigonometrical functions.

These elements all take thedefinitionURL andencoding attributes, which can be used to override the default se-
mantics.

They are allunary trigonometric operators. (see Section4.2.3).

Examples

<apply>
<sin/>
<ci> x </ci>

</apply>

<apply>
<sin/>
<apply>
<plus/>
<apply><cos/>
<ci> x </ci>

</apply>
<apply>
<power/>
<ci> x </ci>
<cn> 3 </cn>

</apply>
</apply>

</apply>

Default Rendering

• sinx
• sin(cosx+x3)

4.4.8.2 Exponential (exp)

Discussion

Theexp element represents the exponential function associated with the inverse of theln function. In particular, exp(1)
is approximately 2.718281828.

200

Theexp element takes thedefinitionURL andencoding attributes, which may be used to override the default se-
mantics.

Theexp element is aunary arithmetic operator (see Section4.2.3).

Example

<apply>
<exp/>
<ci> x </ci>

</apply>

Default Rendering

ex

4.4.8.3 Natural Logarithm (ln)

Discussion

Theln element represents the natural logarithm function.

Theln element takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Theln element is aunary calculus operator (see Section4.2.3).

Example

<apply>
<ln/>
<ci> a </ci>

</apply>

If a = e, (wheree is the base of the natural logarithms) this will yield the value 1.

Default Rendering

lna

4.4.8.4 Logarithm (log)

Discussion

Thelog element is the operator that returns a logarithm to a given base. The base may be specified using alogbase
element, which should be the first element followinglog, i.e. the second child of the containingapply element. If the
logbase element is not present, a default base of 10 is assumed.

Thelog element takes thedefinitionURL andencoding attributes, which can be used to override the default seman-
tics.

Thelog element can be used as either anoperator taking qualifiers or aunary calculus operator (see Section4.2.3.2).

201

Example

<apply>
<log/>
<logbase>
<cn> 3 </cn>

</logbase>
<ci> x </ci>

</apply>

This markup represents ‘the base 3 logarithm of x’. For natural logarithms base e, theln element should be used instead.

Default Rendering

log3x

4.4.9 Statistics

4.4.9.1 Mean (mean)

Discussion

mean is the operator element representing amean or average.

mean takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

mean is ann-ary operator (see Section4.2.3).

<apply>
<mean/>
<ci> X </ci>

</apply>

Default Rendering

X̄ or 〈X〉

4.4.9.2 Standard Deviation (sdev)

Discussion

sdev is the operator element representing the statisticalstandard deviation operator.

sdev takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

202

Example

sdev is ann-ary operator (see Section4.2.3).

<apply>
<sdev/>
<ci> X </ci>

</apply>

Default Rendering

σ(X)

4.4.9.3 Variance (variance)

Discussion

variance is the operator element representing the statisticalvariance operator.

variance takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

variance is ann-ary operator (see Section4.2.3).

<apply>
<variance/>
<ci> X </ci>

</apply>

Default Rendering

σ(X)2

4.4.9.4 Median (median)

Discussion

median is the operator element representing the statisticalmedian operator.

median takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

median is ann-ary operator (see Section4.2.3).

<apply>
<median/>
<ci> X </ci>

</apply>

203

Default Rendering

median(X)

4.4.9.5 Mode (mode)

Discussion

mode is the operator element representing the statisticalmode operator.

mode takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

mode is ann-ary operator (see Section4.2.3).

<apply>
<mode/>
<ci> X </ci>

</apply>

Default Rendering

mode(X)

4.4.9.6 Moment (moment)

Discussion

Themoment element represents the statisticalmoment operator. Use the qualifierdegree for then in ‘ n-th moment’.
Use the qualifiermomentabout for the p in ‘moment aboutp’.

moment takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

moment is anoperator taking qualifiers (see Section4.2.3.2). The third moment of the distributionX about the pointp
is written:

<apply>
<moment/>
<degree>
<cn> 3 </cn>

</degree>
<momentabout>
<ci> p </ci>

</momentabout>
<ci> X </ci>

</apply>

204

Default Rendering

〈X3〉

4.4.9.7 Point of Moment (momentabout)

Discussion

Themomentabout element is aqualifier element used with themoment element to represent statistical moments. Use
the qualifiermomentabout for the p in ‘moment aboutp’.

momentabout takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

The third moment of the distributionX about the pointp is written:

<apply>
<moment/>
<degree>
<cn> 3 </cn>

</degree>
<momentabout>
<ci> p </ci>

</momentabout>
<ci> X </ci>

</apply>

Default Rendering

〈X3〉

4.4.10 Linear Algebra

4.4.10.1 Vector (vector)

Discussion

vector is the container element for a vector. The child elements form the components of the vector.

For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent to a matrix
consisting of a single column, and the transpose of a vector behaves the same as a matrix consisting of a single row.

Example

vector is aconstructor element (see Section4.2.2.2).

<vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>
<ci> x </ci>

</vector>

205

Default Rendering
1
2
3
x

(1, 2, 3,x)

4.4.10.2 Matrix (matrix)

Discussion

Thematrix element is the container element for matrix rows, which are represented bymatrixrow. Thematrixrows
contain the elements of a matrix.

Example

matrix is aconstructor element (see Section4.2.2.2).

<matrix>
<matrixrow>
<cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>

</matrixrow>
<matrixrow>
<cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>

</matrixrow>
<matrixrow>
<cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>

</matrixrow>
</matrix>

Default Rendering

A =

 0 1 0
0 0 1
1 0 0

4.4.10.3 Matrix row (matrixrow)

Discussion

Thematrixrow element is thecontainer element for the rows of a matrix.

Example

matrixrow is a constructor element (see Section4.2.2.2).

<matrixrow>
<cn> 1 </cn>
<cn> 2 </cn>

206

</matrixrow>
<matrixrow>
<cn> 3 </cn>
<ci> x </ci>

</matrixrow>

Default Rendering

Matrix rows are not directly rendered by themselves outside of the context of a matrix.

4.4.10.4 Determinant (determinant)

Discussion

Thedeterminant element is the operator for constructing the determinant of a matrix.

determinant takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

determinant is aunary operator (see Section4.2.3).

<apply>
<determinant/>
<ci type="matrix"> A </ci>

</apply>

Default Rendering

detA

4.4.10.5 Transpose (transpose)

Discussion

Thetranspose element is the operator for constructing the transpose of a matrix.

transpose takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

Example

transpose is aunary operator (see Section4.2.3).

<apply>
<transpose/>
<ci type="matrix"> A </ci>

</apply>

Default Rendering

AT

207

4.4.10.6 Selector (selector)

Discussion

Theselector element is the operator for indexing into vectors matrices and lists. It accepts one or more arguments.
The first argument identifies the vector, matrix or list from which the selection is taking place, and the second and
subsequent arguments, if any, indicate the kind of selection taking place.

Whenselector is used with a single argument, it should be interpreted as giving the sequence of all elements in the
list, vector or matrix given. The ordering of elements in the sequence for a matrix is understood to be first by column,
then by row. That is, for a matrix (ai, j), where the indices denote row and column, the ordering would bea 1,1, a 1,2, ...
a 2,1, a2,2 ... etc.

When three arguments are given, the last one is ignored for a list or vector, and in the case of a matrix, the second and
third arguments specify the row and column of the selected element.

When two arguments are given, and the first is a vector or list, the second argument specifies an element in the list or
vector. When a matrix and only one indexi is specified as in

<apply>
<selector/>
<matrix>
<matrixrow>
<cn> 1 </cn> <cn> 2 </cn>

</matrixrow>
<matrixrow>
<cn> 3 </cn> <cn> 4 </cn>

</matrixrow>
</matrix>
<cn> 1 </cn>

</apply>

it refers to thei-th matrixrow. Thus, the preceding example selects the following row:

<matrixrow> <cn> 1 </cn> <cn> 2 </cn> </matrixrow>

selector takes thedefinitionURL andencoding attributes, which can be used to override the default semantics.

selector is classified as an n-ary linear algebra operator even though it can take only one, two, or three arguments.

Example

<apply>
<selector/>
<ci type="matrix"> A </ci>
<cn> 3 </cn>
<cn> 2 </cn>

</apply>

Default Rendering

Theselector construct renders in a manner that indicates which sub-element of the parent object is selected. For vec-
tors and matrices this is normally done by specifying the parent object together with subscripted indices. For example,
the selection

208

<apply>
<selector/>
<ci type="vector">V</ci>
<cn> 1 </cn>

</apply>

would have a default rendering of

V1

Selecting the (1,2) element of a 2 by 2 matrix would have a default rendering as[
1 2
3 4

]
1,2

4.4.10.7 Vector product (vectorproduct)

Discussion

Thevectorproduct is the operator element for deriving the vector product of two vectors.

The vectorproduct element takes the attributesdefinitionURL andencoding that can be used to override the
default semantics.

Thevectorproduct element is abinary vector operator (see Section4.2.3).

Example

<apply>
<eq/>
<apply><vectorproduct/>
<ci type="vector"> A </ci>
<ci type="vector"> B </ci>

</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><sin/>
<ci> θ </ci>

</apply>
<ci type="vector"> N </ci>

</apply>
</apply>

whereA andB are vectors,N is a unit vector orthogonal toA andB, a, b are the magnitudes of A, B andθis the angle
between A and B.

Default Rendering

A×B = absinθN

209

4.4.10.8 Scalar product (scalarproduct)

Discussion

Thescalarproduct is the operator element for deriving the scalar product of two vectors.

The scalarproduct element takes the attributesdefinitionURL andencoding that can be used to override the
default semantics.

Thescalarproduct element is abinary vector operator (see Section4.2.3).

Example

<apply>
<eq/>
<apply><scalarproduct/>
<ci type="vector"> A </ci>
<ci type="vector">B </ci>

</apply>
<apply><times/>
<ci> a </ci>
<ci> b </ci>
<apply><cos/>
<ci> θ </ci>

</apply>
</apply>

</apply>

where A and B are vectors,a, b are the magnitudes of A, B andθis the angle between A and B.

Default Rendering

A.B

4.4.10.9 Outer product (outerproduct)

Discussion

Theouterproduct is the operator element for deriving the outer product of two vectors.

Theouterproduct element takes the attributesdefinitionURL andencoding that can be used to override the default
semantics.

Theouterproduct element is abinary vector operator (see Section4.2.3).

Example

<apply>
<outerproduct/>
<ci type="vector">A</ci>
<ci type="vector">B</ci>

</apply>

where A and B are vectors.

210

Default Rendering

A.B

4.4.11 Semantic Mapping Elements

This section explains the use of the semantic mapping elementssemantics, annotation andannotation-xml.

4.4.11.1 Annotation (annotation)

Discussion

Theannotation element is the container element for a semantic annotation in a non-XML format.

Theannotation element takes the attributeencoding to define the encoding being used.

Example

Theannotation element is a semantic mapping element. It is always used withsemantics.

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>

</apply>
<cn> 5 </cn>

</apply>
<annotation encoding="TeX">
\sin x + 5

</annotation>
</semantics>

Default Rendering

None. The information contained in annotations may optionally be used by a renderer able to process the kind of
annotation given.

4.4.11.2 Semantics (semantics)

Discussion

Thesemantics element is the container element that associates additional representations with a given MathML con-
struct. Thesemantics element has as its first child the expression being annotated, and the subsequent children are
the annotations. There is no restriction on the kind of annotation that can be attached using the semantics element. For
example, one might give a TEX encoding, or computer algebra input in an annotation.

The representations that are XML based are enclosed in anannotation-xml element while those representations that
are to be parsed asPCDATA are enclosed in anannotation element.

Thesemantics element takes thedefinitionURL andencoding attributes, which can be used to reference an external
source for some or all of the semantic information.

211

An important purpose of thesemantics construct is to associate specific semantics with a particular presentation,
or additional presentation information with a content construct. The default rendering of asemantics element is the
default rendering of its first child. When a MathML-presentation annotation is provided, a MathML renderer may
optionally use this information to render the MathML construct. This would typically be the case when the first child is
a MathML content construct and the annotation is provided to give a preferred rendering differing from the default for
the content elements.

Use ofsemantics to attach additional information in-line to a MathML construct can be contrasted with use of the
csymbol for referencing external semantics. See Section4.4.1.3

Examples

Thesemantics element is a semantic mapping element.

<semantics>
<apply>
<plus/>
<apply>
<sin/>
<ci> x </ci>

</apply>
<cn> 5 </cn>

</apply>
<annotation encoding="Maple">
sin(x) + 5

</annotation>
<annotation-xml encoding="MathML-Presentation">
...
...

</annotation-xml>
<annotation encoding="Mathematica">
Sin[x] + 5

</annotation>
<annotation encoding="TeX">
\sin x + 5

</annotation>
<annotation-xml encoding="OpenMath">
<OMA xmlns="http://www.openmath.org/OpenMath">

<OMS cd="transc1" name="sin"/>
<OMI>5</OMI>
</OMA>

</annotation-xml>
</semantics>

Default Rendering

The default rendering of asemantics element is the default rendering of its first child.

212

4.4.11.3 XML-based annotation (annotation-xml)

Discussion

The annotation-xml container element is used to contain representations that are XML based. It is always used
together with thesemantics element, and takes the attributeencoding to define the encoding being used.

annotation-xml is a semantic mapping element.

Example

<semantics>
<apply>
<plus/>
<apply><sin/>
<ci> x </ci>

</apply>
<cn> 5 </cn>

</apply>
<annotation-xml encoding="OpenMath">
<OMA><OMS name="plus" cd="arith1"/>
<OMA><OMS name="sin" cd="transc1"/>
<OMV name="x"/>

</OMA>
<OMI>5</OMI>

</OMA>
</annotation-xml>

</semantics>

See also the discussion ofsemantics above.

Default Rendering

None. The information may optionally be used by a renderer able to process the kind of annotation given.

4.4.12 Constant and Symbol Elements

This section explains the use of the Constant and Symbol elements.

4.4.12.1 integers (integers)

Discussion

integers represents the set of all integers.

Example

<apply>
<in/>
<cn type="integer"> 42 </cn>
<integers/>

</apply>

213

Default Rendering

42∈ Z

4.4.12.2 reals (reals)

Discussion

reals represents the set of all real numbers.

Example

<apply>
<in/>
<cn type="real"> 44.997 </cn>
<reals/>

</apply>

Default Rendering

44.997∈ R

4.4.12.3 Rational Numbers (rationals)

Discussion

rationals represents the set of all rational numbers.

Example

<apply>
<in/>
<cn type="rational"> 22 <sep/>7</cn>
<rationals/>

</apply>

Default Rendering

22/7∈Q

4.4.12.4 Natural Numbers (naturalnumbers)

Discussion

naturalnumbers represents the set of all natural numbers, ie. non-negative integers.

214

Example

<apply>
<in/>
<cn type="integer">1729</cn>
<naturalnumbers/>

</apply>

Default Rendering

1729∈ N

4.4.12.5 complexes (complexes)

Discussion

complexes represents the set of all complex numbers, i.e. numbers which may have a real and an imaginary part.

Example

complexes represents the set of all complex numbers, i.e. numbers which may have a real and an imaginary part.

Example

<apply>
<in/>
<cn type="complex-cartesian">17<sep/>29</cn>
<complexes/>

</apply>

Default Rendering

17+29i∈ C

4.4.12.6 primes (primes)

Discussion

primes represents the set of all natural prime numbers, i.e. integers greater than 1 which have no positive integer factor
other than themselves and 1.

Example

<apply>
<in/>
<cn type="integer">17</cn>
<primes/>

</apply>

215

Default Rendering

17∈ P

4.4.12.7 Exponential e (exponentiale)

Discussion

exponentiale represents the mathematical constant which is the exponential base of the natural logarithms, commonly
written e. It is approximately 2.718281828..

Example

<apply> <eq/>
<apply>
<ln/>
<exponentiale/>

</apply>
<cn>1</cn>

</apply>

Default Rendering

lne= 1

4.4.12.8 Imaginary i (imaginaryi)

Discussion

imaginaryi represents the mathematical constant which is the square root of -1, commonly writteni.

Example

<apply> <eq/>
<apply>
<power/>
<imaginaryi/>
<cn>2</cn>

</apply>
<cn>-1</cn>

</apply>

Default Rendering

i2 =−1

4.4.12.9 Not A Number (notanumber)

Discussion

notanumber represents the result of an ill-defined floating point operation, sometimes also calledNaN.

216

Example

<apply> <eq/>
<apply>
<divide/>
<cn>0</cn>
<cn>0</cn>

</apply>
<notanumber/>

</apply>

Default Rendering

0/0 = NaN

4.4.12.10 True (true)

Discussion

true represents the logical constant for truth.

Example

<apply> <eq/>
<apply>
<or/>
<true/>
<ci type = "logical">P</ci>

</apply>
<true/>

</apply>

Default Rendering

true∨ P = true

4.4.12.11 False (false)

Discussion

false represents the logical constant for falsehood.

Example

<apply> <eq/>
<apply>
<and/>
<false/>
<ci type = "logical">P</ci>

217

</apply>
<false/>

</apply>

Default Rendering

false∧ P = false

4.4.12.12 Empty Set (emptyset)

Discussion

emptyset represents the empty set.

Example

<apply>
<neq/>
<integers/>
<emptyset/>

</apply>

Default Rendering

Z 6= /0

4.4.12.13 pi (pi)

Discussion

pi represents the mathematical constant which is the ratio of a circle’s circumference to its diameter, approximately
3.141592653.

Example

<apply>
<approx/>
<pi/>
<cn type = "rational">22<sep/>7</cn>

</apply>

Default Rendering

π≈ 22/7

218

4.4.12.14 Euler gamma (eulergamma)

Discussion

eulergamma represents Euler’s constant, approximately 0.5772156649

Example

<eulergamma/>

Default Rendering

γ

4.4.12.15 infinity (infinity)

Discussion

infinity represents the concept of infinity. Proper interpretation depends on context.

Example

<infinity/>

Default Rendering

∞

219

Chapter 5

Combining Presentation and Content Markup

Presentation markup and content markup can be combined in two ways. The first manner is to intersperse content and
presentation elements in what is essentially a single tree. This is calledmixed markup. The second manner is to provide
both an explicit presentation and an explicit content in a pair of trees. This is calledparallel markup. This chapter
describes both mixed and parallel markup, and how they may used in conjunction with style sheets and other tools.

5.1 Why Two Different Kinds of Markup?

Chapters 3 and 4 describe two kinds of markup for encoding mathematical material in documents.

Presentation markup capturesnotational structure. It encodes the notational structure of an expression in a sufficiently
abstract way to facilitate rendering to various media. Thus, the same presentation markup can be rendered with relative
ease on screen in either wide and narrow windows, in ASCII or graphics, in print, or it can be enunciated in a sensible
way when spoken. It does this by providing information such as structured grouping of expression parts, classification
of symbols, etc.

Presentation markup doesnot directly concern itself with the mathematical structure or meaning of an expression. In
many situations, notational structure and mathematical structure are closely related, so a sophisticated processing appli-
cation may be able to heuristically infer mathematical meaning from notational structure, provided sufficient context is
known. However, in practice, the inference of mathematical meaning from mathematical notation must often be left to
the reader.

Employing presentation tags alone may limit the ability to re-use a MathML object in another context, especially
evaluation by external applications.

Content markup capturesmathematical structure. It encodes mathematical structure in a sufficiently regular way in order
to facilitate the assignment of mathematical meaning to an expression by application programs. Though the details of
mapping from mathematical expression structure to mathematical meaning can be extremely complex, in practice, there
is wide agreement about the conventional meaning of many basic mathematical constructions. Consequently, much of
the meaning of a content expression is easily accessible to a processing application, independently of where or how it is
displayed to the reader. In many cases, content markup could be cut from a Web browser and pasted into a mathematical
software tool with confidence that sensible values will be computed.

Since content markup isnot directly concerned with how an expression is displayed, a renderer must infer how an ex-
pression should be presented to a reader. While a sufficiently sophisticated renderer and style-sheet mechanism could in
principle allow a user to read mathematical documents using personalized notational preferences, in practice, rendering
content expressions with notational nuances may still require intervention of some sort.

Employing content tags alone may limit the ability of the author to precisely control how an expression is rendered.

220

Both content and presentation tags are necessary in order to provide the full expressive capability one would expect in a
mathematical markup language. Often the same mathematical notation is used to represent several completely different
concepts. For example, the notationxi may be intended (in polynomial algebra) as thei-th power of the variablex, or as
the i-th component of a vectorx (in tensor calculus). In other cases, the same mathematical concept may be displayed
in one of various notations. For instance, the factorial of a number might be expressed with an exclamation mark, a
Gamma function, or a Pochhammer symbol.

Thus the same notation may represent several mathematical ideas, and, conversely, the same mathematical idea often
has several notations. In order to provide authors with the ability to precisely control notation while at the same time
encoding meanings in a machine-readable way, both content and presentation markup are needed.

In general, if it is important to control exactly how an expression is rendered, presentation markup will generally be
more satisfactory. If it is important that the meaning of an expression can be interpreted dependably and automatically,
then content markup will generally be more satisfactory.

5.2 Mixed Markup

MathML offers authors elements for both content and presentation markup. Whether to use one or the other, or a
combination of both, depends on what aspects of rendering and interpretation an author wishes to control, and what
kinds of re-use he or she wishes to facilitate.

5.2.1 Reasons to Mix Markup

In many common situations, an author or authoring tool may choose to generate either presentation or content markup
exclusively. For example, a program for translating legacy documents would most likely generate pure presentation
markup. Similarly, an educational software package might very well generate only content markup for evaluation in
a computer algebra system. However, in many other situations, there are advantages to mixing both presentation and
content markup within a single expression.

If an author is primarily presentation-oriented, interspersing some content markup will often produce more accessible,
more re-usable results. For example, an author writing about linear algebra might write:

<mrow>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
<mo>+</mo>
<msup>
<mi>v</mi>
<mn>2</mn>

</msup>
</mrow>

wherev is a vector and the superscript denotes a vector component, andx is a real variable. On account of the linear
algebra context, a visually impaired reader may have directed his or her voice synthesis software to render superscripts
as vector components. By explicitly encoding the power, the content markup yields a much better voice rendering than
would likely happen by default.

221

If an author is primarily content-oriented, there are two reasons to intersperse presentation markup. First, using presen-
tation markup provides a way of modifying or refining how a content expression is rendered. For example, one might
write:

<apply>
<in/>
<ci><mi mathvariant="bold">v</mi></ci>
<ci>S</ci>

</apply>

In this case, the use of embedded presentation markup allows the author to specify thatv should be rendered in boldface.
In the same way, it is somtimes the case that a completely different notation is desired for a content expression. For
example, here we express a fact about factorials,n = n!/(n-1)!, using the ascending factorial notation:

<apply>
<equivalent/>
<ci>n</ci>
<apply>

<divide/>
<semantics>

<apply>
<factorial/>
<ci>n</ci>

</apply>
<annotation-xml encoding="MathML-Presentation">

<msup>
<mn>1</mn>
<mover accent="true">

<mi>n</mi>
<mo>‾</mo>

</mover>
</msup>

</annotation-xml>
</semantics>
<semantics>

<apply>
<factorial/>
<apply><minus/><ci>n</ci><cn>1</cn></apply>

</apply>
<annotation-xml encoding="MathML-Presentation">

<msup>
<mn>1</mn>
<mover accent="true">

<mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow>
<mo>‾</mo>

</mover>
</msup>

</annotation-xml>
</semantics>

222

</apply>
</apply>

This content expression would render using the given notation as:1n̄

1n−1

A second reason to use presentation within content markup is that there is a continually growing list of areas of discourse
that do not have pre-defined content elements for encoding their objects and operators. As a consequence, any system
of content markup inevitably requires an extension mechanism that combines notation with semantics in some way.
MathML content markup specifies several ways of attaching an external semantic definitions to content objects. It is
necessary, however, to use MathML presentation markup to specify how such user-defined semantic extensions should
be rendered.

For example, the ‘rank’ operator from linear algebra is not included as a pre-defined MathML content element. Thus,
to express the statement rank(uTv)=1 we use asemantics element to bind a semantic definition to the symbolrank.

<apply>
<eq/>
<apply>
<semantics>
<mi>rank</mi>
<annotation-xml encoding="OpenMath">
<OMS name="rank" cd="linalg3" xmlns="http://www.openmath.org/OpenMath"/>

</annotation-xml>
</semantics>
<apply>
<times/>
<apply> <transpose/> <ci>u</ci> </apply>
<ci>v</ci>

</apply>
</apply>
<cn>1</cn>

</apply>

Here, the semantics of rank have been given using a symbol from an OpenMath content dictionary (CD).

5.2.2 Combinations that are prohibited

The main consideration when presentation markup and content markup are mixed together in a single expression is that
the result should still make sense. When both kinds of markup are contained in a presentation expression, this means
it should be possible to render the resulting mixed expressions simply and sensibly. Conversely, when mixed markup
appears in a content expression, it should be possible to simply and sensibly assign a semantic interpretation to the
expression as whole. These requirements place a few natural constraints on how presentation and content markup can
be mixed in a single expression, in order to avoid ambiguous or otherwise problematic expressions.

Two examples illustrate the kinds of problems that must be avoided in mixed markup. Consider:

<mrow>
<bvar> x </bvar> <mo> + </mo> <bvar> y </bvar>

</mrow>

In this example, the content elementbvar has been indiscriminately embedded in a presentation expression. Sincebvar
requires an enclosing context for its meaning, this expression is unclear.

Similarly, consider:

223

<apply>
<ci> x </ci> <mo> + </mo> <ci> y </ci>

</apply>

Here, themo element is problematic. Should a renderer infer that the usual arithmetic operator is intended, and act as if
the prefix content elementplus had been used? Or should this be literally interpreted as the operatorx applied to two
arguments,<mo>+</mo> and<mi>y</mi> ? Even if we were to decide that<mo>+</mo> was the operator, then what
should its meaning be? These questions do not have particularly compelling answers, so this kind of mixing of content
and presentation markup is also prohibited.

5.2.3 Presentation Markup Contained in Content Markup

The use of presentation markup within content markup is limited to situations that do not effect the ability of content
markup to unambiguously encode mathematical meaning. Specifically, presentation markup may only appear in content
markup in three ways:

1. within ci andcn token elements
2. within thecsymbol element
3. within thesemantics element

Any other presentation markup occurring within a content markup is a MathML error. More detailed discussion of these
three cases follows:

Presentation markup within token elements.The token elementsci andcn are permitted to contain any sequence
of MathML characters (defined in Chapter6), presentation elements, andsep empty elements. Contiguous
blocks of MathML characters inci andcn elements are rendered as if they were wrapped inmi andmn
elements respectively. If a token element contains both MathML characters and presentation elements, con-
tiguous blocks of MathML characters (if any) are treated as if wrapped inmi or mn elements as appropriate,
and the resulting collection of presentation elements are rendered as if wrapped in anmrow element.

Presentation markup within the csymbol element. The csymbol element may contain either MathML characters
interspersed with presentation markup, or content elements of the container type. It is a MathML error for a
csymbol element to contain both presentation and content elements. When thecsymbol element contains
both raw data and presentation markup, the same rendering rules that apply to content elements of the token
type should be used.

Presentation markup within the semantics element. One of the main purposes of thesemantics element is to
provide a mechanism for incorporating arbitrary MathML expressions into content markup in a semantically
meaningful way. In particular, any valid presentation expression can be embedded in a content expression
by placing it as the first child of asemantics element. The meaning of this wrapped expression should be
indicated by one or more annotation elements also contained in thesemantics element. Suggested rendering
for asemantics element is discussed in Section4.2.6.

5.2.4 Content Markup Contained in Presentation Markup

The guiding principle for embedding content markup within presentation expressions is that the resulting expression
should still have an unambiguous rendering. In general, this means that embedded content expressions must be seman-
tically meaningful, since rendering of content markup depends on its meaning.

Certain content elements derive part of their semantic meaning from the surrounding context, such as whether abvar
element is qualifying an integral, logical quantifier or lambda expression. Another example would be whether adegree
element occurs in aroot or partialdiff element. Thus, in a presentation context, elements such as these do not have
a clearly defined meaning, and hence there is no obvious choice for a rendering. Consequently, they are not allowed.

224

Using the terminology of Section4.2.1, we see that operator, relation, container, constant and symbol elements make
sense on their own, while elements of the qualifier and condition type do not. (Note thatinterval may be used either
as a general container, or as a qualifier.)

Outside these categories, certain elements deserve specific comment: the elementsdeclare, sep, annotation and
annotation-xml can only appear in very specific contexts and consequently are not permitted as direct sub-expressions
of any presentation element. Finally, the elementsemantics carries with it sufficient information to be permitted in
presentation.

The complete list of content elements thatcannot appear as a child in a presentation element is:annotation, annotation-
xml, sep, declare, bvar, condition, degree, logbase, lowlimit, uplimit.

Note that within presentation markup, content expressions may only appear in locations where it is valid for any
MathML expression to appear. In particular, content expressions may not appear within presentation token elements. In
this regard mixing presentation and content are asymmetrical.

Note that embedding content markup in presentation will often require applications to render operators outside of anap-
ply context. E.g., it may be necessary to renderabs, plus, root or sin outside of an application. Content/presentation
mixing does not introduce any new requirements, however, since unapplied operators are already permitted in content
expressions, for example:

<apply>
<compose/>
<sin/>
<apply>

<inverse/>
<root/>

</apply>
</apply>

5.3 Parallel Markup

Some applications are able to make use ofboth presentation and content information. For these applications it is desir-
able to provide both forms of markup for the same mathematical expression. This is calledparallel markup.

Parallel markup is achieved with thesemantics element. Parallel markup for an expression can be used on its own, or
can be incorporated as part of a larger content or presentation tree.

5.3.1 Top-level Parallel Markup

In many cases what is desired is to provide presentation markup and content markup for a mathematical expression as
a whole. To achieve this, a singlesemantics element is used pairing two markup trees, with the first branch being the
MathML presentation markup, and the second branch being the MathML content markup.

The following example encodes the boolean arithmetic expression (a+b)(c+d) in this way.

<semantics>
<mrow>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<mo>⁢</mo>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>

225

</mrow>
<annotation-xml encoding="MathML-Content">
<apply><and/>
<apply><xor/><ci>a</ci> <ci>b</ci></apply>
<apply><xor/><ci>c</ci> <ci>d</ci></apply>

</apply>
</annotation-xml>

</semantics>

This example is non-trivial in the sense that the content markup could not be easily derived from the presentation markup
alone.

5.3.2 Fine-grained Parallel Markup

Top-level pairing of independent presentation and content markup is sufficient for many, but not all, situations. Appli-
cations that allow treatment ofsub-expressions of mathematical objects require the ability to associate presentation,
content or information with theparts of an object with mathematical markup. Top-level pairing with asemantics
element is insufficient in this type of situation; identification of a sub-expression in one branch ofsemantics element
gives no indication of the corresponding parts in other branches.

The ability to identify corresponding sub-expressions is required in applications such as mathematical expression edi-
tors. In this situation, selecting a sub-expression on a visual display can identify a particular portion of a presentation
markup tree. The application then needs to determine the corresponding annotations of the sub-expressions; in particu-
lar, the application requires the sub-expressions of theannotation-xml tree in MathML content notation.

It is, in principle, possible to provide annotations for each presentation node by incorporatingsemantics elements
recursively.

<semantics>
<mrow>
<semantics>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">
<apply><plus/><ci>a</ci> <ci>b</ci></apply>

</annotation-xml>
</semantics>
<mo>⁢</mo>
<semantics>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>
<annotation-xml encoding="MathML-Content">
<apply><plus/><ci>c</ci> <ci>d</ci></apply>

</annotation-xml>
</semantics>

</mrow>

<annotation-xml encoding="MathML-Content">
<apply><times/>
<apply><plus/><ci>a</ci> <ci>b</ci></apply>
<apply><plus/><ci>c</ci> <ci>d</ci></apply>

</apply>
</annotation-xml>

226

</semantics>

To be complete this example would be much more verbose, wrapping each of the individual leavesmi, mo andmn in a
further sevensemantics elements.

This approach is very general and works for all kinds of annotations (including non-MathML annotations and multiple
annotations). It leads, however, to O(n2) increase in size of the document. This is therefore not a suitable approach for
fine-grained parallel markup of large objects.

5.3.3 Parallel Markup via Cross-References:id and xref

To better accomodate applications that must deal with sub-expressions of large objects, MathML uses cross-references
between the branches of asemantics element to identify corresponding sub-structures.

Cross-referencing is achieved usingid andxref attributes within the branches of a containingsemantics element.
These attributes may optionally be placed on MathML elements of any type.

The following example shows this cross-referencing for the boolean arithmetic expression (a+b)(c+d).

<semantics>
<mrow id="E">
<mrow id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>

</mrow>
<mo id="E.2">⁢</mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>

</mrow>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply xref="E">
<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>

</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>

</apply>
</apply>

</annotation-xml>
</semantics>

227

An id attribute and a correspondingxref appearing within the samesemantics element create a correspondence
between sub-expressions.

In creating these correspondences by cross-reference,all of theid attributes referenced by anyxref must be in the
same branch of an enclosingsemantics element. This constraint guarantees that these correspondences do not create
unintentional cycles. (Note that this restriction doesnot exclude the use ofid attributes within the other branches of the
enclosingsemantics element. It does, however, exclude references to these otherid attributes originating in the same
semantics element.)

There is no restriction on which branch of thesemantics element may contain the destinationid attributes. It is up to
the application to determine which branch to use.

In general, there will not be a one-to-one correspondence between nodes in parallel branches. For example, a presenta-
tion tree may contain elements, such as parentheses, that have no correspondents in the content tree. It is therefore often
useful to put theid attributes on the branch with the finest-grained node structure. Then all of the other branches will
havexref attributes to some subset of theid attributes.

In absence of other criteria, the first branch of thesemantics element is a sensible choice to contain theid attributes.
Applications that add or remove annotations will then not have to re-assign attributes to thesemantics trees.

In general, the use ofid andxref attributes allows a full correspondence between sub-expressions to be given in text
that is at most a constant factor larger than the original. The direction of the references should not be taken to imply that
sub-expression selection is intended to be permitted only on one child of thesemantics element. It is equally feasible
to select a subtree in any branch and to recover the corresponding subtrees of the other branches.

5.3.4 Annotation Cross-References using XLink:id and href

It is possible to give cross-references between a MathML expression and a non-MathML XML annotation using the
XLink protocol [XLink]. As an example, the boolean expression of the previous section can be annotated with Open-
Math, and cross-linked as follows:

<semantics>
<mrow id="E">
<mrow id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>

</mrow>
<mo id="E.2">⁢</mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>

</mrow>
</mrow>

<annotation-xml encoding="MathML-Content">
<apply xref="E">

228

<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>

</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>

</apply>
</apply>

</annotation-xml>

<annotation-xml encoding="OpenMath"
xmlns:om="http://www.openmath.org/OpenMath"
xmlns:xlink="http://www.w3.org/1999/xlink">

<om:OMA xlink:href="#xpointer(id(’E’))" xlink:type="simple">
<om:OMS name="and" cd="logic1"

xlink:href="#xpointer(id(’E’))" xlink:type="simple"/>

<om:OMA xlink:href="#xpointer(id(’E.1’))" xlink:type="simple">
<om:OMS name="xor" cd="logic1"

xlink:href="#xpointer(id(’E.1.3’))" xlink:type="simple"/>
<om:OMV name="a"

xlink:href="#xpointer(id(’E.1.2’))" xlink:type="simple"/>
<om:OMV name="b"

xlink:href="#xpointer(id(’E.1.4’))" xlink:type="simple"/>
</om:OMA>

<om:OMA xlink:href="#xpointer(id(’E.3’))" xlink:type="simple">
<om:OMS name="xor" cd="logic1"

xlink:href="#xpointer(id(’E.3.3’))" xlink:type="simple"/>
<om:OMV name="c"

xlink:href="#xpointer(id(’E.3.2’))" xlink:type="simple"/>
<om:OMV name="d"

xlink:href="#xpointer(id(’E.3.4’))" xlink:type="simple"/>
</om:OMA>

</om:OMA>
</annotation-xml>

</semantics>

HereOMA, OMS andOMV are elements defined in the OpenMath standard for representing application, symbol and vari-
able, respectively. The references from the OpenMath annotation are given by thexlink:href attributes which in this
case use XPointer [XPointer] to refer to anids within the current document.

Note that the application might or might not have a mechanism for extending DTDs. It will be the case, therefore that
some applications will give well-formed, but not "valid," XML withinannotation-xml elements. Consequently, some
MathML applications usingannotation-xml will not be validated. More flexibility is offered by the use of XML
Schemas.

229

5.4 Tools, Style Sheets and Macros for Combined Markup

The interaction of presentation and content markup can be greatly enhanced through the use of various tools. While the
set of tools and standards for working with XML applications is rapidly evolving at the present, we can already outline
some specific techniques.

In general, the interaction of content and presentation is handled via transformation rules on MathML trees. These
transformation rules are sometimes called ‘macros’. In principle, these rules can be expressed using any one of a number
of mechanisms, including DSSSL, Java programs operating on a DOM, etc. We anticipate, however, that the principal
mechanism for these transformations in most applications shall be XSLT.

In this section we discuss transformation rules for two specific purposes: for notational style sheets, and to simplify
parallel markup.

5.4.1 Notational Style Sheets

Authors who make use of content markup may be required to deploy their documents in locales with notational con-
ventions different than the default content rendering. It is therefore expected that transformation tools will be used to
determine notations for content elements in different settings. Certain elements, e.g.lambda, mean andtranspose,
have widely varying common notations and will often require notational selection. Some examples of notational varia-
tions are given below.

• V versus~V
• tanx versus tgx
•

(n
m

)
versusnCm versusCn

m versusCm
n

• a0 + 1 |
| a1

+ . . .+ 1 |
| ak

versus[a0,a1, . . . ,ak]

Other elements, for exampleplus andsin, are less likely to require these features.

Selection of notational style is sometimes necessary for correct understanding of documents by locale. For instance, the
binomial coefficientCn

m in French notation is equivalent toCm
n in Russian notation.

A natural way for a MathML application to bind a particular notation to the set of content tags is with an XSLT style
sheet [XSLT]. The examples of this section shall assume this is the mechanism to express style choices. (Other choices
are equally possible, for example an application program may provide menus offering a number of rendering choices
for all content tags.)

When writing XSLT style sheets for mathematical notation, some transformation rules can be purely local, while others
will require multi-node context to determine the correct output notation. The following example gives a local transfor-
mation rule that could be included in a notational style sheet displaying open intervals as]a,b[rather than as (a,b).

<xsl:template match="m:interval">
<m:mrow>
<xsl:choose>
<xsl:when test="@closure=’closed’">
<m:mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>

</m:mfenced>
</xsl:when>
<xsl:when test="@closure=’open’">
<m:mfenced open="]" close="[" separators=",">
<xsl:apply-templates/>

</m:mfenced>
</xsl:when>

230

<xsl:when test="@closure=’open-closed’">
<m:mfenced open="]" close="]" separators=",">
<xsl:apply-templates/>

</m:mfenced>
</xsl:when>
<xsl:when test="@closure=’closed-open’">
<m:mfenced open="[" close="[" separators=",">
<xsl:apply-templates/>

</m:mfenced>
</xsl:when>
<xsl:otherwise>
<m:mfenced open="[" close="]" separators=",">
<xsl:apply-templates/>

</m:mfenced>
</xsl:otherwise>

</xsl:choose>
</m:mrow>

</xsl:template>

Herem is established as the MathML namespace.

An example of a rule requiring context information would be:

<xsl:template match="m:apply[m:factorial]">
<m:mrow>
<xsl:choose>
<xsl:when test="not(*[2]=m:ci) and not(*[2]=m:cn)">
<m:mrow>
<m:mo>(</m:mo>
<xsl:apply-templates select="*[2]" />
<m:mo>)</m:mo>

</m:mrow>
</xsl:when>
<xsl:otherwise>
<xsl:apply-templates select="*[2]" />

</xsl:otherwise>
</xsl:choose>
<m:mo>!</m:mo>

</m:mrow>
</xsl:template>

Other examples of context-dependent transformations would be, e.g. for theapply of a plus to rendera-b+c, rather
thana+ -b+c, or for theapply of apower to render sin2x, rather than sinx2.

Notational variation will occur both for built-in content elements as well as extensions. Notational style for extensions
can be handled as described above, with rules matching the names of any extension tags, and with the content handling
(in a content-faithful style sheet) proceeding as described in Section5.4.3.

5.4.2 Content-Faithful Transformations

There may be a temptation to view notational style sheets as a transformation from content markup to equivalent presen-
tation markup. This viewpoint is explicitly discouraged, since information will be lost and content-oriented applications

231

will not function properly.

We define a ‘content-faithful’ transformation to be a transformation that retains the original content in parallel markup
(Section5.3).

Tools that support MathML should be ‘content-faithful’, and not gratuitously convert content elements to presentation
elements in their processing. Notational style sheets should be content-faithful whenever they may be used in interactive
applications.

It is possible to write content-faithful style sheets in a number of ways. Top-level parallel markup can be achieved by
incorporating the following rules in an XSLT style sheet:

<xsl:template match="m:math">
<m:semantics>

<xsl:apply-templates/>

<m:annotation-xml m:encoding="MathML-Content">
<xsl:copy-of select="."/>

</m:annotation-xml>
</m:semantics>

</xsl:template>

The notation would be generated by additional rules for producing presentation from content, such as those in Sec-
tion 5.4.1. Fine-grained parallel markup can be achieved with additional rules treatingid attributes. A detailed example
is given in [RodWatt2000].

5.4.3 Style Sheets for Extensions

The presentation tags of MathML form a closed vocabulary of notational structures, but are quite rich and can be used
to express a rendering of most mathematical notations. Complex notations can be composed from the basic elements
provided for presentation markup. In this sense, the presentation ability of MathML is open-ended. It is often useful,
however, to give a name to new notational schemas if they are going to be used often. For example, we can shorten and
clarify the ascending factorial example of Section5.2.1, with a rule which replaces

<mx:a-factorial>X</mx:a-factorial>

with

<semantics>
<apply> <factorial/> <mi>X</mi> </apply>
<annotation-xml encoding="MathML-Presentation">

<msup>
<mn>1</mn>
<mover accent="true">

<mi>X</mi>
<mo>‾</mo>

</mover>
</msup>

</annotation-xml>
</semantics>

Then the example would be more clearly written as:

<apply>
<equivalent/>

232

<ci>n</ci>
<apply>

<divide/>
<mx:a-factorial><ci>n</ci></mx:a-factorial>
<mx:a-factorial>

<apply><minus/><ci>n</ci><cn>1</cn></apply>
</mx:a-factorial>

</apply>
</apply>

Likewise, the content tags form a fixed vocabulary of concepts covering the types of mathematics seen in most common
applications. It is not reasonable to expect users to compose existing MathML content tags to construct new content
concepts. (This approach is frought with technical difficulties even for professional mathematicians.) Instead, it is an-
ticipated that applications whose mathematical content concepts extend beyond what is offered by MathML will use
annotations and attributes withinsemantics andcsymbol elements, and that these annotations will use content de-
scription languages outside of MathML.

Often the naming of a notation and the identification of a new semantic concept are related. This allows a single
transformation rule to capture both a presentation and a content markup for an expression. This is one of the areas of
MathML that benefits most strongly from the use of macro processing.

<mx:rank/>

and

<mx:tr>X</mx:tr>

and respectively transform them to

<semantics>
<ci><mo>rank</mo></ci>
<annotation-xml encoding="OpenMath">

<OMS name="rank" cd="linalg3" xmlns="http://www.openmath.org/OpenMath"/>
</annotation-xml>

</semantics>

and

<apply>
<transpose/>
<ci>X</ci>
</apply>

The lengthy sample encoding of rank(uTv)=1, from Section5.2.1could then be condensed to

<apply>
<eq/>
<apply>
<mx:rank/>
<apply> <times/> <mx:tr>u</mx:tr> <ci>v</ci> </apply>
</apply>
<cn>1</cn>

</apply>

233

From this example we see how the combination of presentation and content markup could become much simpler and
effective to generate as standard style-sheet libraries become available.

234

Chapter 6

Characters, Entities and Fonts

6.1 Introduction

Notation and symbols have proved very important for mathematics. Mathematics has grown in part because of the suc-
cinctness and suggestiveness of its evolving notation. There have been many new signs evolved for use in mathematical
notation, and mathematicians have not held back from making use of many symbols originally developed elsewhere.
The result is that mathematics makes use of a very large collection of symbols. It is difficult to write mathematics flu-
ently if these characters are not available for use in coding. It is difficult to read mathematics if corresponding glyphs
are not available for presentation on specific display devices.

This situation posed a problem for the first W3C Math Working Group when it was brought into existence. It did not fall
naturally within the purview of developing a specification enabling mathematics to be used with HTML and producing
a DTD for this to worry about more than the entities allowed in the DTD. However, as experience has shown, a long list
of entities with no means to display them is of little use, and a cause of frequent frustrations in trying to use a standard.
On the other hand, a large collection of glyphs and fonts representing characters without a standard way to refer to them
is not of much use either.

The W3C Math Working Group therefore took on directly the task of specifying part of the full mechanism needed to
proceed from notation to final presentation, and started collaboration with organizations undertaking specification of
the rest.

This chapter of the MathML Specification contains a listing of character names for use in MathML, recommendations
for their use, and warnings to pay attention to the correct form of the corresponding code points given in the UCS (Uni-
versal Character Set) as codified in Unicode and ISO 10646 [see [Unicode] and theUnicode Web site]. For simplicity
we shall refer to this character set by the short name Unicode. Though Unicode changes from time to time so that it
is specified exactly by using version numbers, unless this brings clarity on some point we shall not use them. This
specification of MathML makes use of some characters that are not part of Unicode 3.0 but which have been proposed
to the Unicode Technical Committee (UTC), and thus for inclusion in ISO 10646. They are presently expected to be in
the revisions Unicode 3.1 and 3.2. (For more detail about this see Section6.4.4.)

While the process of review and adoption by UTC and ISO/IEC of the characters of special interest to mathematics and
MathML is largely complete (Unicode Work in Progress) there remains the possibility of some further modification of
the lists of characters accepted, of the code assignments for those adopted, or of the names given them by Unicode. To
make sure any possible corrections to relevant standards are taken into account, and for the latest character tables and
font information, see theW3C Math Working Group home pageand theUnicode site.

6.2 MathML Characters

A MathML token element Section3.2, and Section4.4.1takes as content a sequence ofMathML Characters. MathML
Characters are defined to be either Unicode characters legal in XML documents ormglyph elements. The latter are used

235

http://www.unicode.org/
http://www.unicode.org/unicode/alloc/Pipeline.html
http://www.w3.org/Math/
http://www.unicode.org/

to represent characters that do not have a Unicode encoding, as described in Section3.2.9. Because the Unicode UCS
provides approximately one thousand special alphabetic characters for the use of mathematics (Unicode 3.1), and will
provide over 900 special symbols in Unicode 3.2, the need formglyph should be rare.

6.2.1 Unicode Character Data

As always in XML, any character allowed by XML may be used in MathML in an XML document. The legal characters
have the hexadecimal code numbers 09 (tab = U+0009), 0A (line feed = U+000A), 0D (carriage return = U+000D), 20-
D7FF (U+0020..U+D7FF), E000-FFFD (U+E000..U+FFFD), and 10000-10FFFF (U+010000..U+10FFFF). The paren-
thetical notation beginning with U+ is one recommended by Unicode for referring to Unicode characters [see [Unicode],
page xxviii]. The exclusions above code number D7FF are of the blocks used in surrogate pairs, and the two characters
guaranteed not to be Unicode characters at all. U+FFFE is excluded to allow determination of byte order in certain
encodings.

There are essentially three different ways of encoding character data.

• Using characters directly: For example, an A may be entered as ‘A’ from a keyboard (character U+0061). This
option is only available if the character encoding specified for the XML document includes the character.
Most commonly used encodings will have ‘A’ in the ASCII position. In many encodings, characters may
need more than one byte. Note that if the document is, for example, encoded in Latin-1 (ISO-8859-1) then
only the characters in that encoding are available directly. Unfortunately, most mathematical symbols may
not be encoded as character data in this way.

• Using Numeric XML character references: Using this notation, ‘A’ may be represented as = (decimal)
or A (hex). Note that the numbers always refer to the Unicode encoding (and not to the character
encoding used in the XML file). By using Character references it is always possible to access the entire
Unicode range. For a general XML vocabulary, there is a disadvantage to this approach: character references
may not be used in XML element or attribute names. However, this is not an issue for MathML, as all element
names in MathML are restricted to ASCII characters.

• Using entity references: The MathML DTD defines internal entities that expand to character data. Thus for
example the entity reference é may be used rather than the character reference "é or, if, for
example, the document is encoded in ISO-8859-1, the character é. An XML fragment that uses an entity
reference which is not defined in a DTD is not well formed; therefore it will be rejected by an XML parser.
For this reasonevery fragment using entity referencesmust use a DOCTYPE declaration which specifies the
MathML DTD, or a DTD that at least declares any entity reference used in the MathML instance. The need
to use a DOCTYPE complicates inclusion of MathML in some documents. However, entity references are
very useful for small illustrative examples, and are used in most examples in this document. For this reason
entity references are perhaps not optimal for use in generated MathML, however they are very useful for
small illustrative examples, as used in this document.

6.2.2 Special Characters Not in Unicode

For special purposes, one may need to use a character which is not in Unicode, even with the expected additions. In
these cases one may use themglyph element for direct access to a glyph from some font and creation of a MathML
character corresponding. All MathML token elements that accept character data also accept anmglyph in their content.

Beware, however, that the font chosen may not be available to all MathML processors.

6.2.3 Mathematical Alphabetic Symbol Characters.

A noticeable feature of mathematical and scientific writing is the use of single letters to denote variables and constants in
a given context. The increasing complexity of science has led to the use of certain common alphabet and font variations

236

to provide enough special symbols of this letter-like type. These denotations are in factnot letters that may be used
to make up words with recognized meanings, but individual carriers of semantics themselves. Writing a string of such
symbols is usually interpreted in terms of some composition law, for instance, multiplication. Many letter-like symbols
may be quickly interpreted by specialists in a given area as of a certain mathematical type: for instance, bold symbols,
whether based on Latin or Greek letters, as vectors in physics or engineering, or fraktur symbols as Lie algebras in
part of pure mathematics. Again, in given areas of science, some constants are recognizable letter forms. When you
look carefully at the range of letter-like mathematical symbols in common use today, as the STIX project supported
by major scientific and technical publishers did, you come up with perhaps surprisingly many. A proposal to facilitate
mathematical publishing by inclusion of mathematical alphabetic symbols in the UCS was made, and has been favorably
handled.

The new Mathematical Alphabetic characters expected Unicode 3.1 have provisional code points inPlane 1, that is,
in the first plane with Unicode values higher than 216. This plane of characters is also known as the Supplemental
Multilingual Plane (SMP), in contrast to the Basic Multilingual Plane (BMP) which has been used by Unicode so far.
Support for Plane 1 characters in currently deployed software is not always reliable, and in particular support for these
Mathematical Alphabetic characters is not likely to be widespread until after final positions in Unicode 3.1 have been
confirmed in the standard ISO 10646.

As discussed in Section3.2.2, MathML offers an alternative mechanism to specify mathematical alphabetic characters,
which will help bridge the time of transition to Unicode revisions and the associated deployment of implementing
software and fonts therefore required. Namely, one uses themathvariant attribute on the surrounding token element,
which will most commonly bemi. In this section we detail the correspondence that a MathML processor should apply
between certain characters inPlane 0 (BMP) of Unicode, modified by themathvariant attribute, and the Plane 1
Mathematical Alphabetic Symbol characters.

The basic idea of the correspondence is fairly simple. For example, a Mathematical Fraktur alphabet is being added, and
the code point for Mathematical Fraktur A is U1D504. Thus using these proposed characters, a typical example might
be

<mi>𝔄</mi>

However, an alternative, equivalent markup would be to use the standard A and modify the identifier using themath-
variant attribute, as follows:

<mi mathvariant="fraktur">A</mi>

The exact correspondence between a mathematical alphabetic character and an unstyled character is complicated by the
fact that certain characters that were already present in Unicode are not in the ‘expected’ sequence.

The detailed correspondence is shown in the tables given in Section6.3.6.

Mathematical Alphabetic Symbol characters should not be used for styled text. For example, Mathematical Fraktur A
must not be used to just select a blackletter font for an uppercase A. Doing this sort of thing would create problems for
searching, restyling (e.g. for acessibility), and many other kinds of processing.

6.2.4 Non-Marking Characters

Some characters, although important for the quality of print or alternative rendering, do not have glyph marks that
correspond directly. They are called here non-marking characters. Below we have a table of those adopted for the
purposes of MathML. Their roles are discussed in Chapter3 and Chapter4, respectively. The values of the spaces
given are recommendations. Some of these characters are among those with new Unicode values, and some are given
as combinations of Unicode characters employing the new special mathematics modifier character (U0FE00). The

237

correspondence between the spacing amounts mentioned below and those in the Unicode descriptions is not exact, but
the matches are good.

In MathML 2 control of page composition, such as line-breaking, is effected by the use of the proper attributes on the
mspace element.

The last two characters below, with mnemonic entity names⁢ and ⁡, are not
simple spacers. They are especially important new additions to the UCS because they provide textual clues which can
increase the quality of print rendering, permit correct audio rendering, and allow the unique recovery of mathematical
semantics from text which is visually ambiguous.

Character name Unicode Description
	 00009 tabulator stop; horizontal tabulation

 0000A force a line break; line feed
&Space; 00020 one em of space in the current font
 000A0 space that is not a legal breakpoint
​ 0200B space of no width at all
  0200A space of width 1/18 em
  02009 space of width 3/18 em
  02005 space of width 4/18 em
   02005-0200A space of width 5/18 em
​ 0200A-0FE00 space of width -1/18 em
​ 02009-0FE00 space of width -3/18 em
​ 0205F-0FE00 space of width -4/18 em
​ 02005-0FE00 space of width -5/18 em
⁢ 02062 marks multiplication when it is understood without a mark (Sec-

tion 3.2.5
⁡ 02061 character showing function application in presentation tagging (Sec-

tion 3.2.5

6.3 Character Symbol Listings

The Universal Character Set (UCS) of Unicode and ISO 10646 continues to evolve Section6.4.4. A small number of the
changes recently introduced, relative to those resulting from the needs of Asian languages, are those designed exactly
to facilitate the use of Unicode by the ‘equation-writing’ community. This specification is written on the assumption
that the code assignments suggested to ISO/IEC JTC1/SC2/WG2 by the UTC will be confirmed as they are in public
draft forms of Unicode 3.1 and 3.2. As before, we can only reiterate that for latest developments on details of character
standards as far as they influence mathematical formalism the Home Page of the W3C Math WG should be consulted.

The characters are given with entity names as well as Unicode numbers. To facilitate comprehension of a fairly large list
of names, which totals over 2000 in this case, we offer more than one way to find to a given character. A corresponding
full set of entity declarations is in the DTD in AppendixA. For discussion of entity declarations see that appendix.

The characters are listed by name, and sample glyphs provided for all of them. Each character name is accompanied
by a code for a character grouping chosen from a list given below, a short verbal description, and a Unicode hex code
drawn from ISO 10646, now extended in accordance with the proposal forwarded by the UTC to ISO/IEC WG2 in
March 2000.

The character listings by alphabetical and Unicode order in Section6.3.7are in harmony with the ISO character sets
given, in that if some part of a set is included then the entire set is included.

238

6.3.1 Special Constants

To begin we list separately a few of the special characters which MathML has introduced. These have been accorded
new Unicode values. Rather like the non-marking⁢ and⁡ above, they provide
very useful capabilities in the context of machinable mathematics. It might be imagined there could also be entries
below for &true;, &false; and&NotANumber;, but these do not yet have Unicode points assigned. They can be
introduced by the character extension mechanisms provided by themglyph andcsymbol elements.

Entity name Unicode Description
ⅅ 02145 D for use in differentials, e.g. within integrals
ⅆ 02146 d for use in differentials, e.g. within integrals
ⅇ 02147 e for use for the exponential base of the natural logarithms
ⅈ 02148 i for use as a square root of -1

6.3.2 Character Tables (ASCII format)

The first table offered is a very large ASCII listing of characters considered particularly relevant to Mathematics. This
is given inUnicode (or proposed Unicode) order. Most, but not all, of these characters have MathML names defined via
entity declarations in the DTD. Those that do not are usually symbols which seem mathematically peripheral, such as
dingbats, machine graphics or technical symbols.

A second table lists those characters that do have MathML entity names,ordered alphabetically, with a lower-case letter
preceding its upper-case counterpart.

6.3.3 Tables arranged by Unicode block

The tables in this section detail Unicode code points (displayed with 256 code points per table) that have mathematically
significant characters. The sample glyph images link to thetable of characters ordered by Unicodegiven in the previous
section. As shown in the key for each table, the status of each character (for example in Unicode 3.0 or in the proposed
additions) is indicated by a CSS class on the table cell (which by default is indicated by varying the background color).
The names of the blocks are those of the Unicode blocks included in the numerical range given; bracketing indicates
characters of that type are not shown in these tables.

239

file:bycodes.html
file:byalpha.html
file:bycodes.html

Block Range Description
00000 - 000FF Controls and Basic Latin, and Latin-1 Supplement
00100 - 001FF Latin Extended-A, Latin Extended-B
00200 - 002FF IPA Extensions, Spacing Modifier Letters
00300 - 003FF Combining Diacritical Marks, Greek [and Coptic]
00400 - 004FF Cyrillic
02000 - 020FF General Punctuation, Superscripts and Subscripts, Currency Symbols, Combining Diacritical Marks

for Symbols
02100 - 021FF Letter-like Symbols, Number Forms, Arrows
02200 - 022FF Mathematical Operators
02300 - 023FF Miscellaneous Technical
02400 - 024FF Control Pictures, Optical Character Recognition, Enclosed Alphanumerics
02500 - 025FF Box Drawing, Block Elements, Geometric Shapes
02600 - 026FF Miscellaneous Symbols
02700 - 027FF Dingbats
02900 - 029FF Supplemental Arrows, Miscellaneous Mathematical Symbols
02A00 - 02AFF Supplemental Mathematical Operators
03000 - 030FF CJK Symbols and Punctuation, [Hiragana, Katakana]
0FB00 - 0FBFF Alphabetic Presentation Forms
0FE00 - 0FEFF [Combining Half Marks, CJK Compatibility Forms, Small Form Variants, Arabic Presentation

Forms-B]
1D400 - 1D4FF Mathematical Styled Latin (Bold, Italic, Bold Italic, Script, Bold Script begins)
1D500 - 1D5FF Mathematical Styled Latin (Bold Script ends, Fraktur, Double-struck, Bold Fraktur, Sans-serif, Sans-

serif Bold begins)
1D600 - 1D6FF Mathematical Styled Latin (Sans-serif Bold ends, Sans-serif Italic, Sans-serif Bold Italic, Monospace,

Bold), Mathematical Styled Greek (Bold, Italic begins)
1D700 - 1D7FF Mathematical Styled Greek (Italic continued, Bold Italic, Sans-serif Bold), Mathematical Styled Dig-

its

6.3.4 Negated Mathematical Characters

In addition to the Unicode Characters so far listed, one may use the combining characters U0338 (/), U20D2 (|) and
U20E5 (\) to produce negated or canceled forms of characters. A combining character should be placed immediately
after its ‘base’ character, with no intervening markup or space, just as is the case for combining accents.

In principle, the negation characters may be applied to any Unicode character, although fonts designed for mathematics
typically have some negated glyphs ready composed. A MathML renderer should be able to use these pre-composed
glyphs in these cases. A compound character code either represents a UCS character that is already available, as in the
case of U0003D+00038 which amounts to U02260, or it does not as is the case for U02202+00338. The common cases
of negations, of both types, that have been identified are listed in the table

Note that it is the policy of the W3C and of Unicode that if a single character is already defined for what can be achieved
with a combining character, that character must be used instead of the decomposed form. It is also intended that no new
single characters representing what can be done by with existing compositions will be introduced.

• cancellations

6.3.5 Variant Mathematical Characters

Unicode attempts to avoid having several character codes for simple font variants. For a code point to be assigned
there should be more than a nuance in glyphs to be recorded. To record variants worth noting there is a special char-
acter proposed for Unicode 3.2, U+FE00 (VARIATION SELECTOR-1), which acts as a postfix modifier. However the

240

file:000.html
file:001.html
file:002.html
file:003.html
file:004.html
file:020.html
file:021.html
file:022.html
file:023.html
file:024.html
file:025.html
file:026.html
file:027.html
file:029.html
file:02A.html
file:030.html
file:0FB.html
file:0FE.html
file:1D4.html
file:1D5.html
file:1D6.html
file:1D7.html
file:cancellations.html

legally allowed combinations with this variation selector are restricted to a list recorded as part of Unicode. The VARI-
ATION SELECTOR-1 character may only be applied to the characters listed here. The resulting combination is not
regarded by Unicode as a separate character, but a variation on the base character. Unicode aware systems may render
the combination as the base if the available fonts do not support the variant glyph shape.

• variants

6.3.6 Mathematical Alphabetic Characters

Here we list the special mathematical alphabets. Note that the names for these alphabetic runs should be regarded as
conventions resulting from recent tradition in the typesetting of mathematical formulas, rather than as fixing exactly and
forever the styles which are to be used. Of course, they do correspond to the styles presently most common. But, for
instance, there may be font variations in the glyphs from double-struck, open-face or blackboard bold fonts, all of which
would naturally be used for the characters in the range here labelled Double-struck. Similar considerations would apply
to appellations such as fraktur and gothic, or script and calligraphic.

As discussed above, the use of these characters is formally equivalent to the use of characters in Plane 0, together with
a suitable value for themathvariant attribute. The correspondence is given in the character tables. Most of these
characters come from the proposed additions to Plane 1, however a few characters (such as the double-struck letters
N, P, Z, Q, R, C, H representing common number sets) were already present in Unicode 3.0 and retain their original
positions. These characters are highlighted in the tables.

• Bold

• Italic

• Bold Italic

• Double-struck

• Script

• Bold Script

• Fraktur

• Bold Fraktur

• Sans-serif

• Bold Sans-serif

• Sans-serif Italic

• Sans-serif Bold Italic

• Monospace

6.3.7 MathML Character Names

This section corresponds closely with the entity definitions in the DTD described in AppendixA. All of the entity sets
except the last correspond to entity sets defined by ISO 8879 or ISO 9573-13.

241

file:variants.html
file:bold.html
file:italic.html
file:bold-italic.html
file:double-struck.html
file:script.html
file:bold-script.html
file:fraktur.html
file:bold-fraktur.html
file:sans-serif.html
file:bold-sans-serif.html
file:sans-serif-italic.html
file:sans-serif-bold-italic.html
file:monospace.html

ISO Handle Description
ISOAMSA Added Mathematical Symbols: Arrows
ISOAMSB Added Mathematical Symbols: Binary Operators
ISOAMSC Added Mathematical Symbols: Delimiters
ISOAMSN Added Mathematical Symbols: Negated Relations
ISOAMSO Added Mathematical Symbols: Ordinary
ISOAMSR Added Mathematical Symbols: Relations
ISOBOX Box and Line Drawing
ISOCYR1 Cyrillic-1
ISOCYR2 Cyrillic-2
ISODIA Diacritical Marks
ISOGRK3 Greek-3
ISOLAT1 Latin-1
ISOLAT2 Latin-2
ISOMFRK Mathematical Fraktur
ISOMOPF Mathematical Openface (Double-struck)
ISOMSCR Mathematical Script
ISONUM Numeric and Special Graphic
ISOPUB Publishing
ISOTECH General Technical
MMLEXTRA Extra Names added by MathML

6.4 Differences from Characters in MathML 1

6.4.1 Coverage

We have excluded a very few other characters that may have appeared in the corresponding lists in MathML 1. Those
characters thuslost will be found to be used very infrequently in the experience of mathematical publishers, or simply
to be completely unacceptable for inclusion in Unicode. However MathML 2 does provide themglyph element to
accommodate new characters that authors may wish to introduce.

6.4.2 Fewer Non-marking Characters

It used to be in MathML 1.0 that there were a number more non-marking character entities listed. These were concerned
with composition control, such as line-breaking. In MathML 2 such control is effected by the use of the proper attributes
on themspace element.

6.4.3 ISO Tables

The character listings by alphabetical and Unicode order in Section6.3.7have now been brought more into line with
the corresponding ISO character sets than was the case in MathML 1.0, in that if some part of a set is included then the
entire set is included. In addition, the group ISOCHEM has been dropped as more properly the concern of chemists.
All the ISO mathematical alphabets are listed, since there are now Unicode characters to point to, in particular the bold
Greek of ISOGRK3. These changes have also been reflected in the entity declarations in the DTD in AppendixA.

6.4.4 Status of Character Encodings

A significant change since MathML 1.0 is the movement toward adoption of more characters for mathematics in the
UCS (Universal Character Set) and availability of public fonts for mathematics. The encoding of characters in the UCS

242

file:isoamsa.html
file:isoamsb.html
file:isoamsc.html
file:isoamsn.html
file:isoamso.html
file:isoamsr.html
file:isobox.html
file:isocyr1.html
file:isocyr2.html
file:isodia.html
file:isogrk3.html
file:isolat1.html
file:isolat2.html
file:isomfrk.html
file:isomopf.html
file:isomscr.html
file:isonum.html
file:isopub.html
file:isotech.html
file:mmlextra.html

(Universal Character Set) is done jointly by the Unicode Technical Committee and by ISO/IEC JTC1/SC2/WG2. The
process of encoding takes quite some time from the deliberation of first proposals to the final approval. The characters
mentioned in this chapter and listed in the associated tables are at various stages of this approval process. This section
gives detailed information about the stages relevant to this specification and gives an overview of the characters affected.
The lists, as well as other places that discuss characters, mention when characters are not fully approved or show this
graphically. Updates on the status of the characters will be provided by updates to this specification, by errata to this
specification, and by notices on theW3C Math home page. The final word on all Unicode matters is naturally to be
found atthe Unicode Consortium.

The characters relevant for MathML fall at present into three categories: Fully accepted characters, characters in final
(JTC1) ISO/IEC ballot, and characters before the final ISO/IEC ballot.

• Fully accepted characters include a large number of Latin, Greek, and Cyrillic letters, a large number of
Mathematical Operators and symbols, including arrows, and so on. Fully accepted characters currently ex-
actly those that are part of both [Unicode 3.0] and [ISO/IEC 10646-1:2000], which are identical code point
by code point. Fully accepted characters are not specially marked or mentioned in this specification; they do
not pose any unusual implementation problems other than possibly finding fonts to display them. Those of
obvious special interest to mathematics number over 1,500, depending on how you count.

• The characters presently in final ballot are the Mathematical Alphanumeric Symbols with a large number of
ideographs and other characters not directly relevant for mathematics. There are just about 1,000 of these.
The due date of the ballot is early in 2001. If accepted, the additions will still take some time to be formally
published. At this stage, there can be only acceptance or rejection of the full proposal without technical
changes. The additions are expected to be published as ISO/IEC 10646-2, and to become part of Unicode
3.1, which is tentatively scheduled for March 2001. While acceptance of this ballot seems more likely than
rejection, implementers and users of MathML have to be aware that until the final acceptance, they are
using the code points of characters in final ballot at their own risk. Entities (see Section6.3.7) and the
mathvariant attribute (see Section3.2.2) can be used to avoid that risk.

• Characters before final ballot relevant to MathML make up a long list of operators and symbols, including
some special constants and non-marking characters (see Section6.2.4and Section6.3.1). There are about 590
of these. The proposal going to ballot is the result of repeated refinements by the UTC; several, possibly final,
changes (5) were made at a WG2 meeting in Athens in September. This document reflects these changes. The
majority of these characters have proved completely uncontroversial. ISO balloting processes, which involve
a PDAM and an FPDAM during which technical changes are possible, and an FDAM with no changes
allowed, may be expected to end in November 2001. The additions accepted are expected to be published as
an amendment to [ISO/IEC 10646-1], and to become part of Unicode 3.2. It can therefore be expected that
almost all of the characters in this category will finally be accepted, and encoded at the current code points.
It is possible that a small number of characters may be renamed, moved, or less likely, ultimately rejected.
Until final acceptance, implementers and users of MathML are using these characters and code points at their
own risk. Entities and themathvariant attribute are used to avoid that risk.

243

http://www.w3.org/Math/
http://www.unicode.org/

Chapter 7

The MathML Interface

To be effective, MathML must work well with a wide variety of renderers, processors, translators and editors. This
chapter addresses some of the interface issues involved in generating and rendering MathML. Since MathML exists pri-
marily to encode mathematics in Web documents, perhaps the most important interface issues are related to embedding
MathML in [HTML4] and [XHTML].

There are three kinds of interface issues that arise in embedding MathML in other XML documents. First, MathML
must be semantically integrated. MathML markup must be recognized as valid embedded XML content, and not as an
error. This is primarily a question of managing namespaces in XML [Namespaces].

Second, in the case of HTML/XHTML, MathML rendering must be integrated into browser software. Some browsers
already implement MathML rendering natively, and one can expect more browsers will do so in the future. At the same
time, other browsers have developed infrastructure to facilitate the rendering of MathML and other embedded XML
content by third-party software. Using these browser specific mechanisms generally requires some additional interface
markup of some sort to activate them.

Third, other tools for generating and processing MathML must be able to intercommunicate. A number of MathML
tools have been or are being developed, including editors, translators, computer algebra systems, and other scientific
software. However, since MathML expressions tend to be lengthy, and prone to error when entered by hand, special
emphasis must be given to insuring that MathML can be easily generated by user-friendly conversion and authoring
tools, and that these tools work together in a dependable, platform and vendor independent way.

The W3C Math Working Group is committed to providing support to software vendors developing any kind of MathML
tool. The working group monitors the public mailing listwww-math@w3.org, and will attempt to answer questions
about the MathML specification. The working group works with MathML developer and user groups. For current
information about MathML tools, applications and user support activities, consult thehome page of the W3C Math
Working Group.

7.1 Embedding MathML in other Documents

While MathML can be used in isolation as a language for exchanging mathematical expressions between MathML-
aware applications, the primary anticipated use of MathML is to encode mathematical expression within larger docu-
ments. MathML is ideal for embedding math expressions in other applications of XML.

In particular, the focus here is on the mechanics of embedding MathML in [XHTML]. XHTML is a W3C Recommen-
dation formulating a family of current and future XML-based document types and modules that reproduce, subset, and
extend HTML. While [HTML4] is the dominant language of the Web at the time of this writing, one may anticipate a
shift from HTML to XHTML. Indeed, XHTML can already be made to render properly in most HTML user agents.

Since MathML and XHTML share a common XML framework, namespaces provide a standard mechanism for em-
bedding MathML in XHTML. While some popular user agents also support inclusion of MathML directly in HTML

244

mailto:www-math@w3.org
http://www.w3.org/Math/
http://www.w3.org/Math/

as "XML data islands," this is a transitional strategy. Consult user agent documentation for specific information on its
support for embedding XML in HTML.

7.1.1 MathML and Namespaces

Embedding MathML in XML-based documents in general, and XHTML in particular, is a matter of managing names-
paces. See the W3C Recommendation "Namespaces in XML" [Namespaces] for full details.

An XML namespace is a collection of names identified by a URI. The URI for the MathML namespace is:

http://www.w3.org/1998/Math/MathML

Using namespaces, embedding a MathML expression in a larger XML document is merely a matter of identifying the
MathML markup as residing in the MathML namespace. This can be accomplished by either explicitly identifying each
MathML element name by attaching a namespace prefix, or by declaring a default namespace on an enclosing element.

To declare a namespace, one uses anxmlns attribute, or an attribute with anxmlns prefix. When thexmlns attribute is
used alone, it sets the default namespace for the element on which it appears, and for any children elements.

Example:

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...</mrow>
</math>

When thexmlns attribute is used as a prefix, it declares a prefix which can then be used to explicitly associate other
elements and attributes with a particular namespace.

Example:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
...
<m:math><m:mrow>...</m:mrow></m:math>
...
</body>

These two methods of namespace declaration can be used together. For example, by using both an explicit document-
wide namespace prefix, and default namespace declarations on individual mathematical elements, it is possible to lo-
calize namespace related markup to the top-levelmath element. This is also important for implementation with some
user agents, since attaching rendering behaviors to an element currently requires an explicit namespace prefix in these
browsers. At the same time, a number of MathML authoring tools are not yet namespace-aware, and thus the ability to
use markup without prefixes is also desirable in the short term.

Example:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
...
<m:math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...<mrow>
</m:math>
...
</body>

245

7.1.1.1 Document Validation Issues

The use of namespace prefixes creates an issue for DTD validation of documents embedding MathML. DTD validation
requires knowing the literal (possibly prefixed) element names used in the document. However, the Namespaces in XML
Recommendation [Namespaces] allows the prefix to be changed at arbitrary points in the document, since namespace
prefixes may be declared on any element.

The ‘historical’ method of bridging this gap was to write a DTD with a fixed prefix, or in the case of XHTML and
MathML, with no prefix, and mandate that the specified form must be used throughout the document. However, this is
somewhat restricting for a modular DTD that is intended for use in conjunction with another DTD, which is exactly the
situation with MathML in XHTML. In essence, the MathML DTD would have to allocate a prefix for itself and hope
no other module uses the same prefix to avoid name clashes, thus losing one of the main benefits of XML namespaces.

One strategy for addressing this problem is to make every element name in the DTD be accessed by an entity reference.
This means that by declaring a couple of entities to specify the prefix before the DTD is loaded, the prefix can be chosen
by a document author, and compound DTDs that include several modules can, without changing the module DTDs,
specify unique prefixes for each module to avoid clashes. The MathML DTD has been designed in this fashion. See
SectionA.6 and [Modularization] for details.

An extra issue arises in the case where explicit prefixes are used on the top-levelmath element, but a default namespace
is used for other MathML elements. In this case, one wants the MathML module to be included into XHTML with
the prefix set to empty. However, the ‘driver’ DTD file that sets up the inclusion of the MathML module would then
need to define a new element called m:math. This would allow the top-levelmath element to use an explicit prefix,
for attaching rendering behaviors in current browsers, while the contents would not need an explicit prefix, for ease of
interoperability between authoring tools, etc.

7.1.1.2 Compatibility Suggestions

While the use of namespaces to embed MathML in other XML applications is completely described by the relevant
W3C Recommendations, a certain degree of pragmatism is still called for at present. Support for XML, namespaces
and rendering behaviors in popular user agents is not always fully in alignment with W3C Recommendations. In some
cases, the software predates the relevant standards, and in other cases, the relevant standards are not yet complete.

During the transitional period, in which some software may not be fully namespace-aware, a few conventional practices
will ease compatibility problems:

1. When using namespace prefixes with MathML markup, use m: as a conventional prefix for the MathML
namespace. Using an explicit prefix is probably safer for compatibility in current user agents.

2. When using namespace prefixes, pick one and use it consistently within a document.
3. Explicitly declare the MathML namespace on allmath elements.

Examples.

<body>
...
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>...<m:mrow>
</m:math>
...
</body>

Or

246

<body>
...
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...<mrow>
</math>
...
</body>

Note that these suggestions alone may not be sufficient for creating functional Web pages containing MathML markup.
It will generally be the case that some additional document-wide markup will be required. Additional work may also be
required to make all MathML instances in a document compatible with document-wide declarations. This is particularly
true when documents are created by cutting and pasting MathML expressions, since current tools will probably not be
able to query global namespace information.

Consult theW3C Math Working Grouphome page for compatibility and implementation suggestions for current
browsers and other MathML-aware tools.

7.1.2 The Top-Levelmath Element

MathML specifies a single top-level or rootmath element, which encapsulates each instance of MathML markup within
a document. All other MathML content must be contained in amath element; equivalently, every valid, complete
MathML expression must be contained in<math> tags. Themath element must always be the outermost element in a
MathML expression; it is an error for onemath element to contain another.

Applications that return sub-expressions of other MathML expressions, for example, as the result of a cut-and-paste
operation, should always wrap them in<math> tags. Ideally, the presence of enclosing<math> tags should be a very
good heuristic test for MathML material. Similarly, applications which insert MathML expressions in other MathML
expressions must take care to remove the<math> tags from the inner expressions.

Themath element can contain an arbitrary number of children schemata. The children schemata render by default as if
they were contained in anmrow element.

The attributes of themath element are:

class, id, styleProvided for use with stylesheets.
xref Provided along withid for use with XSL processing (See Section5.4)
macros This attribute provides a way of pointing to external macro definition files. Macros are not part of the MathML

specification, and much of the functionality provided by macros in MathML can be accommodated by XSL
transformations [XSLT]. However, themacros attribute is provided to make possible future development of
more streamlined, MathML-specific macro mechanisms. The value of this attribute is a sequence of URLs
or URIs, separated by whitespace

mode Themode attribute specifies whether the enclosed MathML expression should be rendered in a display style or
an in-line style. Allowed values aredisplay andinline (default). This attribute isdeprecatedin favor of
the newdisplay attribute, or theCSS2 ‘display’ propertywith the analogousblock andinline values.

display Thedisplay attribute replaces the deprecatedmode element. It specifies whether the enclosed MathML ex-
pression should be rendered in a display style or an in-line style. Allowed values areblock andinline
(default).

The attributes of themath element affect the entire enclosed expression. They are, in a sense, ‘inward looking’. However,
to render MathML properly in a browser, and to integrate it properly into an XHTML document, a second collection of
‘outward looking’ attributes are also useful.

While general mechanisms for attaching rendering behaviors to elements in XML documents are under development,
wide variations in strategy and level of implementation remain between various existing user agents. Consequently, the

247

http://www.w3.org/Math
http://www.w3.org/TR/CSS2/visuren.html#propdef-display

remainder of this section describes attributes and functionality that are desirable for integrating third-party rendering
modules with user agents:

overflow In cases where size negotiation is not possible or fails (for example in the case of an extremely long equation),
this attribute is provided to suggest an alternative processing method to the renderer. Allowed values are
scroll The window provides a viewport into the larger complete display of the mathematical expression.

Horizontal or vertical scrollbars are added to the window as necessary to allow the viewport to be
moved to a different position.

elide The display is abbreviated by removing enough of it so that the remainder fits into the window. For
example, a large polynomial might have the first and last terms displayed with ‘+ ... +’ between them.
Advanced renderers may provide a facility to zoom in on elided areas.

truncate The display is abbreviated by simply truncating it at the right and bottom borders. It is recom-
mended that some indication of truncation is made to the viewer.

scale The fonts used to display the mathematical expression are chosen so that the full expression fits in the
window. Note that this only happens if the expression is too large. In the case of a window larger than
necessary, the expression is shown at its normal size within the larger window.

altimg This attribute provides a graceful fall-back for browsers that do not support embedded elements. The value of
the attribute is an URL.

alttext This attribute provides a graceful fall-back for browsers that do not support embedded elements or images. The
value of the attribute is a text string.

7.1.3 Invoking MathML Processors

In browsers where MathML is not natively supported, it is anticipated that MathML rendering will be carried out via
embedded objects such as plug-ins, applets, or helper applications. The direction which has begun emerging for invoking
third-party rendering and processing software is elucidated in the W3C Working Draft "Behavioral Extensions to CSS"
[Behaviors].

Behavioral extensions use the linking mechanism of CSS to attach executable components to elements. Typically, the
executable components involve script code which manipulate the DOM to instantiate other MathML processing com-
ponents. Using experimental implementations of behavior extensions in current user agents, it is possible to attach
processing components tomath elements which then carry out the rendering of MathML markup in an XHTML page.

Work on on Behavior Extensions to CSS is ongoing at W3C, and existing implementations must be regarded as non-
standard at this time. However, it offers a very promising direction for powerful and flexible invocation of third-party
MathML processors.

MIME types [RFC2045], [RFC2046] offer an alternative strategy that can also be used in current user agents to invoke a
MathML renderer. This is primarily useful when referencing separate files containing MathML markup from anEMBED
or OBJECT element. The W3C Math Working Group suggests that MathML be assigned the MIME typeapplication/
mathml+xml, and for browser registry, the standard file extension.mml should be used. In MathML 1.0,text/mathml
was given as the suggested MIME type. The new suggestion is intended to be more compatible with current proposals
for XML Media Types. However, the reader is cautioned that designations for XML Media Types are very much under
debate, and the MathML MIME type is subject to change in the future.

Although rendering MathML expressions typically occurs in place in a Web browser, other MathML processing func-
tions take place more naturally in other applications. Particularly common tasks include opening a MathML expression
in an equation editor or computer algebra system.

At present, there is no standard way of selecting between various applications which might be used to render or process
embedded MathML. As work progresses on coordination between browsers and embedded elements and the Document
Object Model [DOM], providing this kind of functionality should be a priority. Both authors and readers should be able

248

to indicate a preference about what MathML application to use in a given context. For example, one might imagine that
some mouse gesture over a MathML expression causes a browser to present the reader with a pop-up menu, showing the
various kinds of MathML processing available on the system, and the MathML processors recommended by the author.

Since MathML is most often generated by authoring tools, it is particularly important that opening a MathML expression
in an editor should be easy to do and to implement. In many cases, it will be desirable for an authoring tool to record
some information about its internal state along with a MathML expression, so that an author can pick up editing where
he or she left off. The MathML specification does not explicitly contain provisions for recording information about
the authoring tool. In some circumstances, it may be possible to include authoring tool information that applies to an
entire document in the form of meta-data; interested readers are encouraged to consult theW3C Metadata Activityfor
current information about metadata and resource definition. For encoding authoring tool state information that applies
to a particular MathML instance, readers are referred to the possible use of thesemantics element for this purpose
Section4.4.11.2.

In the short term, regardless of the methodology, implementors of embedded MathML processing applications are
encouraged to try to allow for the following kinds of functionality:

• An author wishing to reach an audience as wide as possible might want MathML to be rendered by any
available processor.

• An author targeting a specific audience might want to indicate that a particular MathML processor be used.
• A reader might wish to specify which of several available processors installed locally should be used.

7.1.4 Mixing and Linking MathML and HTML

In order to fully integrate MathML into XHTML, it should be possible not only to embed MathML in XHTML, but also
to embed XHTML in MathML. However, the problem of supporting XHTML in MathML presents many difficulties.
Therefore, at present, the MathML specification does not permit any XHTML elements within a MathML expression,
although this may be subject to change in a future revision of MathML.

In most cases, XHTML elements (headings, paragraphs, lists, etc.) either do not apply in mathematical contexts, or
MathML already provides equivalent or better functionality specifically tailored to mathematical content (tables, math-
ematics style changes, etc.). However, there are two notable exceptions, the XHTML anchor and image elements. For
this functionality, MathML relies on the general XML linking and graphics mechanisms being developed by other W3C
Activities.

7.1.4.1 Linking

MathML has no element that corresponds to the XHTML anchor elementa. In XHTML, anchors are used both to make
links, and to provide locations to which a link can be made. MathML, as an XML application, defines links by the use
of the mechanism described in the W3C Candidate Recommendation "XML Linking Language" [XLink]. The reader is
cautioned that at the time of this writing, XLink is not yet a Recommendation, and is therefore subject to future revision.
Since the MathML linking mechanism is defined in terms of the XML linking specification, the same proviso holds for
it as well.

A MathML element is designated as a link by the presence of the attributexlink:href. To use the attributexlink:href,
it is also necessary to declare the appropriate namespace. Thus, a typical MathML link might look like:

<mrow xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="sample.xml">

...
</mrow>

249

http://www.w3.org/Metadata

MathML designates that almost all elements can be used as XML linking elements. The only elements that cannot serve
as linking elements are those such as thesep element, which exist primarily to disambiguate other MathML constructs
and in general do not correspond to any part of a typical visual rendering. The full list of exceptional elements that
cannot be used as linking elements is given in the table below.

MathML elements that cannot be linking elements.
mprescripts none sep
malignmark maligngroup

Note that the XML Linking [XLink] and XML Pointer Language [XPointer] specifications also define how to linkinto
a MathML expressions. Be aware, however, that such links may or may not be properly interpreted in current software.

7.1.4.2 Images

The IMG element has no MathML equivalent. The decision to omit a general mechanism for image inclusion from
MathML was based on several factors. However, the main reason for not providing an image facility is that MathML
takes great pains to make the notational structure and mathematical content it encodes easily available to processors,
whereas information contained in images is only available to a human reader looking at a visual representation. Thus,
for example, in the MathML paradigm, it would be preferable to introduce new glyphs via themglyph element which
at a minimum identifies them as glyphs, rather than simply including them as images.

Finally, apart from the introduction of new glyphs, many of the situations where one might be inclined to use an image
amount to some sort of labeled diagram. For example, knot diagrams, Venn diagrams, Dynkin diagrams, Feynman
diagrams and complicated commutative diagrams all fall into this category. As such, their content would be better
encoded via some combination of structured graphics and MathML markup. Because of the generality of the ‘labeled
diagram’ construction, the definition of a markup language to encode such constructions extends beyond the scope of
the current W3C Math activity. (Seehttp://www.w3.org/Graphicsfor further W3C activity in this area.)

7.1.5 Using CSS with MathML

When MathML is rendered in an environment that supports CSS, controlling mathematics style properties with a CSS
stylesheet is obviously desirable. MathML 2.0 has significantly redesigned the way presentation element style properties
are organized to facilitate better interaction between MathML renderers and CSS style mechanisms. It introduces four
new mathematics style attributes with logical values. Roughly speaking, these attributes can be viewed as the proper
selectors for CSS rules that affect MathML.

Controlling mathematics styling is not as simple as it might first appear because mathematics styling and text styling
are quite different in character. In text, meaning is primarily carried by the relative positioning of characters next to
one another to form words. Thus, although the font used to render text may impart nuances to the meaning, transform-
ing the typographic properties of the individual characters leaves the meaning of text basically intact. By contrast, in
mathematical expressions, individual characters in specific typefaces tend to function as atomic symbols. Thus, in the
same equation, a bold italic ’x’ and a normal italic ’x’ are almost always intended to be two distinct symbols that mean
different things. In traditional usage, there are eight basic typographical categories of symbols. These categories are
described by mathematics style attributes, primarily themathvariant attribute.

Text and mathematics layout also obviously differ in that mathematics uses 2-dimensional layout. As a result, many of
the style parameters that affect mathematics layout have no textual analogs. Even in cases where there are analogous
properties, the sensible values for these properties may not correspond. For example, traditional mathematical typog-
raphy usually uses italic fonts for single character identifiers, and upright fonts for multicharacter identifier. In text,
italicization does not usually depend on the number of letters in a word. Thus although a font-slant property makes
sense for both mathematics and text, the natural default values are quite different.

250

http://www.w3.org/Graphics

Because of the difference between text and mathematics styling, only some aspects of MathML layout are good candi-
dates for CSS control. MathML 2.0 captures the most important properties with the new mathematics style attributes,
and users should try to use them whenever possible over more direct, but less robust, approaches. A sample CSS
stylesheet illustrating the use of the mathematical style attributes is available in AppendixG

Generally speaking, the model for CSS interaction with the math style attributes runs as follows. A CSS style sheet
might provide a style rule such as:

math *.[mathsize="small"] {
font-size: 80%

}

This rule sets the CSS font-size properties for all children of themath element that have themathsize attribute set to
small. A MathML renderer would then query the style engine for the CSS environment, and use the values returned as
input to its own layout algorithms. MathML does not specify the mechanism by which style information is inherited
from the environment. However, some suggested rendering rules for the interaction between properties of the ambient
style environment and MathML-specific rendering rules are discussed in Section3.2.2, and more generally throughout
Chapter3.

It should be stressed, however, that some caution is required in writing CSS stylesheets for MathML. Because changing
typographic properties of mathematics symbols can change the meaning of an equation, stylesheet should be written in
a way such that changes to document-wide typographic styles do not affect embedded MathML expressions. By using
the MathML 2.0 mathematics style attributes as selectors for CSS rules, this danger is minimized.

Another pitfall to be avoided is using CSS to provide typographic style information necessary to the proper understand-
ing of an expression. Expressions dependent on CSS for meaning will not be portable to non-CSS environments such as
computer algebra systems. By using the logical values of the new MathML 2.0 mathematics style attributes as selectors
for CSS rules, it can be assured that style information necessary to the sense of an expression is encoded directly in the
MathML.

MathML 2.0 does not specify how a user agent should process style information, because there are many non-CSS
MathML environments, and because different users agents and renderers have widely varying degrees of access to CSS
information. In general, however, developers are urged to provide as much CSS support for MathML as possible.

7.2 Generating, Processing and Rendering MathML

Information is increasingly generated, processed and rendered by software tools. The exponential growth of the Web is
fueling the development of advanced systems for automatically searching, categorizing, and interconnecting informa-
tion. Thus, although MathML can be written by hand and read by humans, the future of MathML is largely tied to the
ability to process it with software tools.

There are many different kinds of MathML editors, translators, processors and renderers. What it means to support
MathML varies widely between applications. For example, the issues that arise with a MathML-compliant validating
parser are very different from those for a MathML-compliant equation editor.

In this section, guidelines are given for describing different types of MathML support, and for quantifying the extent
of MathML support in a given application. Developers, users and reviewers are encouraged to use these guidelines
in characterizing products. The intention behind these guidelines is to facilitate reuse and interoperability between
MathML applications by accurately characterizing their capabilities in quantifiable terms.

251

7.2.1 MathML Compliance

A valid MathML expression is an XML construct determined by the MathML DTD together with the additional re-
quirements given in this specification.

Define a ‘MathML processor’ to mean any application that can accept, produce, or ‘roundtrip’ a valid MathML expres-
sion. An example of an application that might round-trip a MathML expression might be an editor that writes a new file
even though no modifications are made.

Three forms of MathML compliance are specified:

1. A MathML-input-compliant processor must accept all valid MathML expressions, and faithfully translate all
MathML expressions into application-specific form allowing native application operations to be performed.

2. A MathML-output-compliant processor must generate valid MathML, faithfully representing all application-
specific data.

3. A MathML-roundtrip-compliant processor must preserve MathML equivalence. Two MathML expressions
are ‘equivalent’ if and only if both expressions have the same interpretation (as stated by the MathML
DTD and specification) under any circumstances, by any MathML processor. Equivalence on an element-by-
element basis is discussed elsewhere in this document.

Beyond the above definitions, the MathML specification makes no demands of individual processors. In order to guide
developers, the MathML specification includes advisory material; for example, there are many suggested rendering rules
throughout Chapter3. However, in general, developers are given wide latitude in interpreting what kind of MathML
implementation is meaningful for their own particular application.

To clarify the difference between compliance and interpretation of what is meaningful, consider some examples:

1. In order to be MathML-input-compliant, a validating parser needs only to accept expressions, and return
‘true’ for expressions that are valid MathML. In particular, it need not render or interpret the MathML
expressions at all.

2. A MathML computer-algebra interface based on content markup might choose to ignore all presentation
markup. Provided the interface accepts all valid MathML expressions including those containing presentation
markup, it would be technically correct to characterize the application as MathML-input-compliant.

3. An equation editor might have an internal data representation that makes it easy to export some equations
as MathML but not others. If the editor exports the simple equations as valid MathML, and merely displays
an error message to the effect that conversion failed for the others, it is still technically MathML-output-
compliant.

7.2.1.1 MathML Test Suite and Validator

As the previous examples show, to be useful, the concept of MathML compliance frequently involves a judgment about
what parts of the language are meaningfully implemented, as opposed to parts that are merely processed in a technically
correct way with respect to the definitions of compliance. This requires some mechanism for giving a quantitative
statement about which parts of MathML are meaningfully implemented by a given application. To this end, the W3C
Math Working Group has provided atest suite.

The test suite consists of a large number of MathML expressions categorized by markup category and dominant
MathML element being tested. The existence of this test suite makes it possible, for example, to characterize quan-
titatively the hypothetical computer algebra interface mentioned above by saying that it is a MathML-input compliant
processor which meaningfully implements MathML content markup, including all of the expressions in the content
markup section of the test suite.

Developers who choose not to implement parts of the MathML specification in a meaningful way are encouraged to
itemize the parts they leave out by referring to specific categories in the test suite.

252

http://www.w3.org/Math/testsuite

For MathML-output-compliant processors, there is also aMathML validatoraccessible over the Web. Developers of
MathML-output-compliant processors are encouraged to verify their output using this validator.

Customers of MathML applications who wish to verify claims as to which parts of the MathML specification are
implemented by an application are encouraged to use the test suites as a part of their decision processes.

7.2.1.2 Deprecated MathML 1.x Features

MathML 2.0 contains a number of MathML 1.x features which are now deprecated. The following points define what it
means for a feature to be deprecated, and clarify the relation between deprecated features and MathML 2.0 compliance.

1. In order to be MathML-output-compliant, authoring tools may not generate MathML markup containing
deprecated features.

2. In order to be MathML-input-compliant, rendering/reading tools must support deprecated features if they are
to be MathML 1.x compliant. They do not have to support deprecated features to be considered MathML 2.0
compliant. However, all tools are encouraged to support the old forms as much as possible.

3. In order to be MathML-roundtrip-compliant, a processor need only preserve MathML equivalence on ex-
pressions containing no deprecated features.

7.2.2 Handling of Errors

If a MathML-input-compliant application receives input containing one or more elements with an illegal number or type
of attributes or child schemata, it should nonetheless attempt to render all the input in an intelligible way, i.e. to render
normally those parts of the input that were valid, and to render error messages (rendered as if enclosed in anmerror
element) in place of invalid expressions.

MathML-output-compliant applications such as editors and translators may choose to generatemerror expressions to
signal errors in their input. This is usually preferable to generating valid, but possibly erroneous, MathML.

7.2.3 Attributes for unspecified data

The MathML attributes described in the MathML specification are necessary for presentation and content markup. Ide-
ally, the MathML attributes should be an open-ended list so that users can add specific attributes for specific renderers.
However, this cannot be done within the confines of a single XML DTD. Although it can be done using extensions of the
standard DTD, some authors will wish to use non-standard attributes to take advantage of renderer-specific capabilities
while remaining strictly in compliance with the standard DTD.

To allow this, the MathML 1.0 specification allowed the attributeother on all elements, for use as a hook to pass
on renderer-specific information. In particular, it was intended as a hook for passing information to audio renderers,
computer algebra systems, and for pattern matching in future macro/extension mechanisms. The motivation for this
approach to the problem was historical, looking to PostScript, for example, where comments are widely used to pass
information that is not part of PostScript.

In the meantime, however, the development of a general XML namespace mechanism has made the use of theother
attribute obsolete. In MathML 2.0, theother attribute isdeprecatedin favor of the use of namespace prefixes to identify
non-MathML attributes.

For example, in MathML 1.0, it was recommended that if additional information was used in a renderer-specific imple-
mentation for themaction element (Section3.6.1), that information should be passed in using theother attribute:

<maction actiontype="highlight" other="color=’#ff0000’"> expression </maction>

In MathML 2.0, acolor attribute from another namespace would be used:

253

http://www.w3.org/Math/validator

<body xmlns:my="http://www.example.com/MathML/extensions">
...
<maction actiontype="highlight" my:color="#ff0000"> expression </maction>
...
</body>

Note that the intent of allowing non-standard attributes isnot to encourage software developers to use this as a loop-
hole for circumventing the core conventions for MathML markup. Authors and applications should use non-standard
attributes judiciously.

7.3 Future Extensions

If MathML is to remain useful in the future, it is to be expected that MathML will need to be extended and revised in
various ways. Some of these extensions can be easily foreseen; for example, as work on behavioral extensions to CSS
proceeds, MathML will likely need to be extended as well.

Similarly, there are several kinds of functionality that are fairly obvious candidates for future MathML extensions. These
include macros, style sheets, and perhaps a general facility for ‘labeled diagrams’. However, there will no doubt be other
desirable extensions to MathML that will only emerge as MathML is widely used. For these extensions, the W3C Math
Working Group relies on the extensible architecture of XML, and the common sense of the larger Web community.

7.3.1 Macros and Style Sheets

The development of style-sheet mechanisms for XML is part of the ongoing XML activity of the World Wide Web
Consortium. Both XSL and CSS are working to incorporate greater support for mathematics.

In particular, XSL Transformations [XSLT] are likely to have a large impact on the future development of MathML.
Macros have traditionally contributed greatly the usability and effectiveness of mathematics encodings. Further work
developing applications of XSLT tailored specifically to MathML is clearly called for.

Some of the possible uses of macro capabilities for MathML include:

Abbreviation One common use of macros is for abbreviation. Authors needing to repeat some complicated but constant
notation can define a macro. This greatly facilitates hand authoring. Macros that allow for substitution of
parameters facilitate such usage even further.

Extension of Content Markup By defining macros for semantic objects, for example a binomial coefficient, or a
Bessel function, one can in effect extend the content markup for MathML. Such a macro could include
an explicit semantic binding, or such a binding could be easily added by an external application. Narrowly
defined disciplines should be able to easily introduce standardized content markup by using standard macro
packages. For example, the OpenMath project could release macro packages for attaching OpenMath content
markup.

Rendering and Style Control Another basic way in which macros are often used is to provide a way of controlling
style and rendering behavior by replacing high-level macro definitions. This is especially important for con-
trolling the rendering behavior of MathML content tags in a context sensitive way. Such a macro capability
is also necessary to provide a way of attaching renderings to user-defined XML extensions to the MathML
core.

Accessibility Reader-controlled style sheets are important in providing accessibility to MathML. For example, a reader
listening to a voice renderer might, by default, hear a bit of MathML presentation markup read as ‘D sub
x sup 2 of f’. Knowing the context to be multi-variable calculus, the reader may wish to use a style sheet
or macro package that instructs the renderer to render this<msubsup> element as ‘second derivative with
respect to x of f’.

254

7.3.2 XML Extensions to MathML

The set of elements and attributes specified in the MathML specification are necessary for rendering common math-
ematical expressions. It is recognized that not all mathematical notation is covered by this set of elements, that new
notations are continually invented, and that sub-communities within mathematics often have specialized notations; and
furthermore that the explicit extension of a standard is a necessarily slow and conservative process. This implies that
the MathML standard could never explicitly cover all the presentational forms used by every sub-community of authors
and readers of mathematics, much less encode all mathematical content.

In order to facilitate the use of MathML by the widest possible audience, and to enable its smooth evolution to encom-
pass more notational forms and more mathematical content (perhaps eventually covered by explicit extensions to the
standard), the set of tags and attributes is open-ended, in the sense described in this section.

MathML is described by an XML DTD, which necessarily limits the elements and attributes to those occurring in
the DTD. Renderers desiring to accept non-standard elements or attributes, and authors desiring to include these in
documents, should accept or produce documents that conform to an appropriately extended XML DTD that has the
standard MathML DTD as a subset.

MathML-compliant renderers are allowed, but not required, to accept non-standard elements and attributes, and to
render them in any way. If a renderer does not accept some or all non-standard tags, it is encouraged either to handle
them as errors as described above for elements with the wrong number of arguments, or to render their arguments as if
they were arguments to anmrow, in either case rendering all standard parts of the input in the normal way.

255

Chapter 8

Document Object Model for MathML

8.1 Introduction

This document extends the Core API of the DOM Level 2 to describe objects and methods specific to MathML elements
in documents. The functionality needed to manipulate basic hierarchical document structures, elements, and attributes
will be found in the core document; functionality that depends on the specific elements defined in MathML will be
found in this document.

The actual DOM specification appears in AppendixD.

The goals of the MathML-specific DOM API are:

• To specialize and add functionality that relates specifically to MathML elements.
• To provide convenience mechanisms, where appropriate, for common and frequent operations on MathML

elements.

This document includes the following specializations for MathML:

• A MathMLElement interface derived from the core interfaceElement. MathMLElement specifies the oper-
ations and queries that can be made on any MathML element. Methods onMathMLElement include those
for the retrieval and modification of attributes that apply to all MathML elements.

• Various specializations ofMathMLElement to encode syntactical restrictions imposed by MathML.
• Specializations ofMathMLElement representing all MathML elements with attributes extending beyond

those specified in theMathMLElement interface. For all such attributes, the derived interface for the element
contains explicit methods for setting and getting the values.

• Special methods for insertion and retrieval of children of MathML elements. While the basic methods inher-
ited from theNode andElement interfaces must clearly remain available, it is felt that in many cases they
may be misleading. Thus, for instance, theMathMLFractionElement interface provides for access tonu-
merator anddenominator attributes; a call tosetDenominator(newNode) is less ambiguous from a call-
ing application’s perspective than a call toNode::replaceNode(newNode, Node::childNodes().item(2)).

Where no special convenience methods are provided for retrieving attributes or child Nodes, the basic functionality of
the Core DOM should be used to retrieve them.

MathML specifies rules that are invisible to generic XML processors and validators. The fact that MathML DOM
objects are required to respect these rules, and to throw exceptions when those rules are violated, is an important reason
for providing a MathML-specific DOM extension.

There are basically two kinds of additional MathML grammar and syntax rules. One kind involves placing additional
criteria on attribute values. For example, it is not possible in pure XML to require that an attribute value be a positive
integer. The second kind of rule specifies more detailed restrictions on the child elements (for example on ordering)
than are given in the DTD. For example, it is not possible in XML to specify that the first child be interpreted one way,
and the second in another. The MathML DOM objects are required to provide this interpretation.

256

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there. Whites-
pace occurring within the content of token elements is ‘trimmed’ from the ends (i.e. all whitespace at the beginning and
end of the content is removed), and ‘collapsed’ internally (i.e. each sequence of 1 or more whitespace characters is
replaced with one blank character). The MathML DOM elements perform this whitespace trimming as necessary. In
MathML, as in XML, ‘whitespace’ means blanks, tabs, newlines, or carriage returns, i.e. characters with hexadecimal
Unicode codes U+0020, U+0009, U+000a, or U+000d, respectively.

8.1.1 hasFeature String

Support for the MathML Document Object Model may be queried by calling theDOMImplementation::hasFeature
method with the test string "org.w3c.dom.mathml".

8.1.2 MathML DOM Extensions

It is expected that a future version of the MathML DOM may deal with issues which are not resolved here. Some of
these are described here.

8.1.2.1 Traversal and Range Interfaces

It is likely that a need will become obvious for MathML-specific specializations of interfaces belonging to the Traversal
and Range Modules of the Document Object Model Level 2. The order of traversal of bound variables, conditions, and
declarations - or whether they should be omitted from a given traversal altogether - offers an example of a potential utility
for such specializations. However, it would be premature to specify any such interfaces at this time. Implementation
experience will be necessary in order to discover the appropriate interfaces which should be specified.

8.1.2.2 Embedding Issues

The interaction between the Document Object Model representing specialized XML markup (such as MathML) embed-
ded inside other types of XML markup (such as XHTML) and that representing the host document is as yet undefined. If
and when such interactions are specified, we hope that implementors will be able to use them to enhance the usefullness
of the MathML Document Object Model.

It may be necessary, however, to add some interface definitions to the MathML Document Object Model in order to
make this possible. If so, we hope to be able to do this at some future time.

257

Appendix A

Parsing MathML

A.1 DOCTYPE Declaration for MathML

MathML documents should be validated using theXML DTD for MathML , which is also shown below in SectionA.6.

Documents using this DTD should contain a doctype declaration of the form:

<!DOCTYPE math
PUBLIC "-//W3C//DTD MathML 2.0//EN"

"http://www.w3.org/TR/MathML2/dtd/mathml2.dtd"
>

The URI may be changed to that of a local copy of the DTD if required.

If a namespace prefix is being used, so that for example the document element is:

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
...
</mml:math>

then the prefix must be declared in the local subset of the DTD, as follows:

<!DOCTYPE mml:math
PUBLIC "-//W3C//DTD MathML 2.0//EN"

"http://www.w3.org/TR/MathML2/dtd/mathml2.dtd" [
<!ENTITY % MATHML.prefixed "INCLUDE">
<!ENTITY % MATHML.prefix "mml">

]>

This use of parameter entities to control namespace prefixes follows the conventions specified in [Modularization].

A.2 MathML as a DTD Module

Normally, however, a MathML expression does not constitute an entire XML document. MathML is designed to be
used as the mathematics fragment of larger markup languages. In particular it is designed to be used as amodule in
documents marked up with the XHTML family of markup languages, as defined in [Modularization]. As a convenience,
a version of theXHTML DTD, extended with this MathML module, is also provided as a concrete example. This version
includes all the necessary declarations included into one file (in contrast to the standalone version of the MathML DTD
which references several files for entity declarations etc.). To use this DTD, a document should contain the doctype
declaration

258

file:dtd/mathml2.dtd
file:dtd/xhtml-math11-f.dtd

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"

"http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd"
>

as above, the URI may be altered to that of a local copy of the DTD, and the namespace prefixes used for XHTML and
MathML may be controlled by the use of parameter entities.

A.3 Namespace prefix declarations

As mentioned above, it is sometimes necessary, or convenient, to use the mechanisms described in [Modularization]
which provide a namespace prefix on MathML element names. The DTD below is designed to allow this usage. If the
parameter entityMATHML.prefixed is declared to be INCLUDE, using a declaration such as

<!ENTITY % MATHML.prefixed "INCLUDE" >

either in the local subset of the DOCTYPE declaration, or in the DTD file that is including the MathML DTD, then all
MathML elements should be used with a prefix, for example<m:mrow>, <m:apply>, etc. The prefix defaults tom: but
another prefix may be declared by declaring in addition the parameter entityMathML.prefix. For example,

<!ENTITY % MATHML.prefix "math" >

would set the prefix for the MathML namespace tomath:.

Note that while the [Namespaces] Recommendation provides mechanisms to change the prefix at arbitrary points in the
document, this flexibility isnot provided in this DTD (and is probably not possible to specify in any DTD).

A.4 Use of MathML without a DTD

If a MathML fragment is parsed without a DTD, in other words as a well-formed XML fragment, it is the responsibility
of the processing application to treat the white space characters occurring outside of token elements as not significant.

Note also that if no DTD is specified with a DOCTYPE declaration, that entity references (for example to refer to
MathML characters by name) may not be used.

A.5 SGML

If required, one may validate MathML documents using an SGML parser such asnsgmls, rather than a validating XML
parser. In this case an SGML declaration defining the constraints of XML applicable to an SGML parser must be used.
See thenote on SGML and XML.

Some older SGML systems may not be able to process files referring to plane 1 characters (those with Unicode values
above hex FFFF).

A.6 The MathML DTD

The entity declarations for characters are referenced at the end of the DTD. These are linked to the character tables in
Chapter6 for each entity set.

Lists of the combined MathML set of character names, ordered bynameor byUnicode valueare also available.

259

http://www.w3.org/TR/NOTE-sgml-xml
file:byalpha.html
file:bycodes.html

In order to accommodate XML namespace prefixes, the DTD does not directly refer to an element name such asmrow
but instead always refers to the name via a parameter entity such as%mrow.qname;. The definitions of these parameter
entities are in the filebut are not shown here. They are simply declarations such as the following, one for each MathML
element.

<!ENTITY % mrow.qname "%MATHML.pfx;mrow" >

Here we give the main body of the DTD. The full DTD, as well as the XHTML-Math DTD, is available as azip archive.

<!- MathML 2.0 DTD ... ->
<!- file: mathml2.dtd
->

<!- MathML 2.0 DTD

This is the Mathematical Markup Language (MathML) 2.0, an XML
application for describing mathematical notation and capturing
both its structure and content.

Copyright 1998-2000 World Wide Web Consortium
(Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved.

Permission to use, copy, modify and distribute the XHTML 1.1 DTD and
its accompanying documentation for any purpose and without fee is
hereby granted in perpetuity, provided that the above copyright notice
and this paragraph appear in all copies. The copyright holders make
no representation about the suitability of the DTD for any purpose.

It is provided "as is" without expressed or implied warranty.

Revision: $Id: parsing.xml,v 1.34 2000/12/14 13:08:43 davidc Exp $

This entity may be identified by the PUBLIC and SYSTEM identifiers:

PUBLIC "-//W3C//DTD MathML 2.0//EN"
SYSTEM "mathml2.dtd"

Revisions: editor and revision history at EOF
->

<!- MathML Qualified Names module ->
<!ENTITY % mathml-qname.module "INCLUDE" >
<![%mathml-qname.module;[
<!ENTITY % mathml-qname.mod

PUBLIC "-//W3C//ENTITIES MathML 2.0 Qualified Names 1.0//EN"
"mathml2-qname-1.mod" >

%mathml-qname.mod;]]>

260

file:dtd/mathml2-qname-1.mod
file:DTD-MathML-20010108.zip

<!- if %NS.prefixed; is INCLUDE, include all NS attributes,
otherwise just those associated with MathML

->
<![%NS.prefixed;[
<!ENTITY % MATHML.NamespaceDecl.attrib

"%NamespaceDecl.attrib;"
>
]]>
<!ENTITY % MATHML.NamespaceDecl.attrib

"%MATHML.xmlns.attrib;"
>

<!- Attributes shared by all elements ->

<!ENTITY % MATHML.Common.attrib
"%MATHML.NamespaceDecl.attrib;
xlink:href CDATA #IMPLIED
class CDATA #IMPLIED
style CDATA #IMPLIED
id ID #IMPLIED
xref IDREF #IMPLIED
other CDATA #IMPLIED"

>

<!- Presentation element set ->

<!- Attribute definitions ->

<!ENTITY % att-fontsize
"fontsize CDATA #IMPLIED" >

<!ENTITY % att-fontweight
"fontweight (normal | bold) #IMPLIED" >

<!ENTITY % att-fontstyle
"fontstyle (normal | italic) #IMPLIED" >

<!ENTITY % att-fontfamily
"fontfamily CDATA #IMPLIED" >

<!ENTITY % att-color
"color CDATA #IMPLIED" >

<!- MathML2 typographically-distinguished symbol attributes ->

<!ENTITY % att-mathvariant
"mathvariant CDATA #IMPLIED" >

<!ENTITY % att-mathsize
"mathsize CDATA #IMPLIED" >

<!ENTITY % att-mathcolor
"mathcolor CDATA #IMPLIED" >

<!ENTITY % att-mathbackground
"mathbackground CDATA #IMPLIED" >

261

<!ENTITY % att-fontinfo
"%att-fontsize;
%att-fontweight;
%att-fontstyle;
%att-fontfamily;
%att-color;
%att-mathvariant;
%att-mathsize;
%att-mathcolor;
%att-mathbackground;"

>

<!ENTITY % att-form
"form (prefix | infix | postfix) #IMPLIED" >

<!ENTITY % att-fence
"fence (true | false) #IMPLIED" >

<!ENTITY % att-separator
"separator (true | false) #IMPLIED" >

<!ENTITY % att-lspace
"lspace CDATA #IMPLIED" >

<!ENTITY % att-rspace
"rspace CDATA #IMPLIED" >

<!ENTITY % att-stretchy
"stretchy (true | false) #IMPLIED" >

<!ENTITY % att-symmetric
"symmetric (true | false) #IMPLIED" >

<!ENTITY % att-maxsize
"maxsize CDATA #IMPLIED" >

<!ENTITY % att-minsize
"minsize CDATA #IMPLIED" >

<!ENTITY % att-largeop
"largeop (true | false) #IMPLIED" >

<!ENTITY % att-movablelimits
"movablelimits (true | false) #IMPLIED" >

<!ENTITY % att-accent
"accent (true | false) #IMPLIED" >

<!ENTITY % att-opinfo
"%att-form;
%att-fence;
%att-separator;
%att-lspace;
%att-rspace;
%att-stretchy;
%att-symmetric;
%att-maxsize;
%att-minsize;
%att-largeop;

262

%att-movablelimits;
%att-accent;"

>
<!ENTITY % att-width

"width CDATA #IMPLIED" >
<!ENTITY % att-height

"height CDATA #IMPLIED" >
<!ENTITY % att-depth

"depth CDATA #IMPLIED" >
<!ENTITY % att-linebreak

"linebreak CDATA #IMPLIED" >
<!ENTITY % att-sizeinfo

"%att-width;
%att-height;
%att-depth;"

>
<!ENTITY % att-lquote

"lquote CDATA #IMPLIED" >
<!ENTITY % att-rquote

"rquote CDATA #IMPLIED" >
<!ENTITY % att-linethickness

"linethickness CDATA #IMPLIED" >
<!ENTITY % att-scriptlevel

"scriptlevel CDATA #IMPLIED" >
<!ENTITY % att-displaystyle

"displaystyle (true | false) #IMPLIED" >
<!ENTITY % att-scriptsizemultiplier

"scriptsizemultiplier CDATA #IMPLIED" >
<!ENTITY % att-scriptminsize

"scriptminsize CDATA #IMPLIED" >
<!ENTITY % att-background

"background CDATA #IMPLIED" >
<!ENTITY % att-veryverythinmathspace

"veryverythinmathspace CDATA #IMPLIED" >
<!ENTITY % att-verythinmathspace

"verythinmathspace CDATA #IMPLIED" >
<!ENTITY % att-thinmathspace

"thinmathspace CDATA #IMPLIED" >
<!ENTITY % att-mediummathspace

"mediummathspace CDATA #IMPLIED" >
<!ENTITY % att-thickmathspace

"thickmathspace CDATA #IMPLIED" >
<!ENTITY % att-verythickmathspace

"verythickmathspace CDATA #IMPLIED" >
<!ENTITY % att-veryverythickmathspace

"veryverythickmathspace CDATA #IMPLIED" >
<!ENTITY % att-open

"open CDATA #IMPLIED" >
<!ENTITY % att-close

263

"close CDATA #IMPLIED" >
<!ENTITY % att-separators

"separators CDATA #IMPLIED" >
<!ENTITY % att-subscriptshift

"subscriptshift CDATA #IMPLIED" >
<!ENTITY % att-superscriptshift

"superscriptshift CDATA #IMPLIED" >
<!ENTITY % att-accentunder

"accentunder (true | false) #IMPLIED" >
<!ENTITY % att-align

"align CDATA #IMPLIED" >
<!ENTITY % att-rowalign

"rowalign CDATA #IMPLIED" >
<!ENTITY % att-columnalign

"columnalign CDATA #IMPLIED" >
<!ENTITY % att-columnwidth

"columnwidth CDATA #IMPLIED" >
<!ENTITY % att-groupalign

"groupalign CDATA #IMPLIED" >
<!ENTITY % att-alignmentscope

"alignmentscope CDATA #IMPLIED" >
<!ENTITY % att-rowspacing

"rowspacing CDATA #IMPLIED" >
<!ENTITY % att-columnspacing

"columnspacing CDATA #IMPLIED" >
<!ENTITY % att-rowlines

"rowlines CDATA #IMPLIED" >
<!ENTITY % att-columnlines

"columnlines CDATA #IMPLIED" >
<!ENTITY % att-frame

"frame (none | solid | dashed) #IMPLIED" >
<!ENTITY % att-framespacing

"framespacing CDATA #IMPLIED" >
<!ENTITY % att-equalrows

"equalrows CDATA #IMPLIED" >
<!ENTITY % att-equalcolumns

"equalcolumns CDATA #IMPLIED" >

<!ENTITY % att-tableinfo
"%att-align;
%att-rowalign;
%att-columnalign;
%att-columnwidth;
%att-groupalign;
%att-alignmentscope;
%att-rowspacing;
%att-columnspacing;
%att-rowlines;
%att-columnlines;

264

%att-frame;
%att-framespacing;
%att-equalrows;
%att-equalcolumns;
%att-displaystyle;"

>

<!ENTITY % att-rowspan
"rowspan CDATA #IMPLIED" >

<!ENTITY % att-columnspan
"columnspan CDATA #IMPLIED" >

<!ENTITY % att-edge
"edge (left | right) #IMPLIED" >

<!ENTITY % att-actiontype
"actiontype CDATA #IMPLIED" >

<!ENTITY % att-selection
"selection CDATA #IMPLIED" >

<!ENTITY % att-name
"name CDATA #IMPLIED" >

<!ENTITY % att-alt
"alt CDATA #IMPLIED" >

<!ENTITY % att-index
"index CDATA #IMPLIED" >

<!ENTITY % att-bevelled
"bevelled CDATA #IMPLIED" >

<!- Presentation schemata with content ->

<!ENTITY % ptoken
"%mi.qname; | %mn.qname; | %mo.qname;
| %mtext.qname; | %ms.qname;" >

{<!ATTLIST} %mi.qname;
%MATHML.Common.attrib;
%att-fontinfo;

>

{<!ATTLIST} %mn.qname;
%MATHML.Common.attrib;
%att-fontinfo;

>

{<!ATTLIST} %mo.qname;
%MATHML.Common.attrib;
%att-fontinfo;
%att-opinfo;

>

265

{<!ATTLIST} %mtext.qname;
%MATHML.Common.attrib;
%att-fontinfo;

>

{<!ATTLIST} %ms.qname;
%MATHML.Common.attrib;
%att-fontinfo;
%att-lquote;
%att-rquote;

>

<!- Empty presentation schemata ->

<!ENTITY % petoken
"%mspace.qname;" >

{<!ELEMENT} %mspace.qname; EMPTY >

{<!ATTLIST} %mspace.qname;
%att-sizeinfo;
%att-linebreak;
%MATHML.Common.attrib;

>

<!- Presentation: general layout schemata ->

<!ENTITY % pgenschema
"%mrow.qname; | %mfrac.qname; | %msqrt.qname; | %mroot.qname;
| %menclose.qname; | %mstyle.qname; | %merror.qname;
| %mpadded.qname; | %mphantom.qname; | %mfenced.qname;" >

{<!ATTLIST} %mrow.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %mfrac.qname;
%MATHML.Common.attrib;
%att-bevelled;
%att-linethickness;

>

{<!ATTLIST} %msqrt.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %menclose.qname;
%MATHML.Common.attrib;
notation CDATA ’longdiv’ >

266

{<!ATTLIST} %mroot.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %mstyle.qname;
%MATHML.Common.attrib;
%att-fontinfo;
%att-opinfo;
%att-lquote;
%att-rquote;
%att-linethickness;
%att-scriptlevel;
%att-scriptsizemultiplier;
%att-scriptminsize;
%att-background;
%att-veryverythinmathspace;
%att-verythinmathspace;
%att-thinmathspace;
%att-mediummathspace;
%att-thickmathspace;
%att-verythickmathspace;
%att-veryverythickmathspace;
%att-open;
%att-close;
%att-separators;
%att-subscriptshift;
%att-superscriptshift;
%att-accentunder;
%att-tableinfo;
%att-rowspan;
%att-columnspan;
%att-edge;
%att-actiontype;
%att-selection;

>

{<!ATTLIST} %merror.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %mpadded.qname;
%MATHML.Common.attrib;
%att-sizeinfo;
%att-lspace;

>

{<!ATTLIST} %mphantom.qname;
%MATHML.Common.attrib;

267

>

{<!ATTLIST} %mfenced.qname;
%MATHML.Common.attrib;
%att-open;
%att-close;
%att-separators;

>

<!- Presentation layout schemata: scripts and limits ->

<!ENTITY % pscrschema
"%msub.qname; | %msup.qname; | %msubsup.qname; | %munder.qname;
| %mover.qname; | %munderover.qname; | %mmultiscripts.qname;" >

{<!ATTLIST} %msub.qname;
%MATHML.Common.attrib;
%att-subscriptshift;

>

{<!ATTLIST} %msup.qname;
%MATHML.Common.attrib;
%att-superscriptshift;

>

{<!ATTLIST} %msubsup.qname;
%MATHML.Common.attrib;
%att-subscriptshift;
%att-superscriptshift;

>

{<!ATTLIST} %munder.qname;
%MATHML.Common.attrib;
%att-accentunder;

>

{<!ATTLIST} %mover.qname;
%MATHML.Common.attrib;
%att-accent;

>

{<!ATTLIST} %munderover.qname;
%MATHML.Common.attrib;
%att-accent;
%att-accentunder;

>

{<!ATTLIST} %mmultiscripts.qname;
%MATHML.Common.attrib;

268

%att-subscriptshift;
%att-superscriptshift;

>

<!- Presentation layout schemata: empty elements for scripts ->

<!ENTITY % pscreschema
"%mprescripts.qname; | %none.qname;" >

{<!ELEMENT} %mprescripts.qname; EMPTY >
{<!ATTLIST} %mprescripts.qname;

%MATHML.xmlns.attrib; >

{<!ELEMENT} %none.qname; EMPTY >
{<!ATTLIST} %none.qname;

%MATHML.xmlns.attrib; >

<!- Presentation layout schemata: tables ->

<!ENTITY % ptabschema
"%mtable.qname; | %mtr.qname; | %mlabeledtr.qname; | %mtd.qname;" >

{<!ATTLIST} %mtable.qname;
%MATHML.Common.attrib;
%att-tableinfo;

>

{<!ATTLIST} %mtr.qname;
%MATHML.Common.attrib;
%att-rowalign;
%att-columnalign;
%att-groupalign;

>

{<!ATTLIST} %mlabeledtr.qname;
%MATHML.Common.attrib;
%att-rowalign;
%att-columnalign;
%att-groupalign;

>

{<!ATTLIST} %mtd.qname;
%MATHML.Common.attrib;
%att-rowalign;
%att-columnalign;
%att-groupalign;
%att-rowspan;
%att-columnspan;

>

269

<!ENTITY % plschema
"{%pgenschema;} | {%pscrschema;} | {%ptabschema;}" >

<!- Empty presentation layout schemata ->

<!ENTITY % peschema
"%maligngroup.qname; | %malignmark.qname;" >

{<!ELEMENT} %malignmark.qname; EMPTY >

{<!ATTLIST} %malignmark.qname;
%att-edge; >

{<!ELEMENT} %maligngroup.qname; EMPTY >
{<!ATTLIST} %maligngroup.qname;

%MATHML.Common.attrib;
%att-groupalign;

>

{<!ELEMENT} %mglyph.qname; EMPTY >
{<!ATTLIST} %mglyph.qname;

%att-alt;
%att-fontfamily;
%att-index; >

<!- Presentation action schemata ->

<!ENTITY % pactions
"%maction.qname;" >

{<!ATTLIST} %maction.qname;
%MATHML.Common.attrib;
%att-actiontype;
%att-selection;

>

<!- The following entity for substitution into
content constructs excludes elements that
are not valid as expressions.

->

<!ENTITY % PresInCont
"{%ptoken;} | {%petoken;} |
{%plschema;} | {%peschema;} | {%pactions;}" >

<!- Presentation entity: all presentation constructs ->

<!ENTITY % Presentation

270

"{%ptoken;} | {%petoken;} | {%pscreschema;} |
{%plschema;} | {%peschema;} | {%pactions;}">

<!- Content element set .. ->

<!- Attribute definitions ->

<!ENTITY % att-base
"base CDATA ’10’" >

<!ENTITY % att-closure
"closure CDATA ’closed’" >

<!ENTITY % att-definition
"definitionURL CDATA ’’" >

<!ENTITY % att-encoding
"encoding CDATA ’’" >

<!ENTITY % att-nargs
"nargs CDATA ’1’" >

<!ENTITY % att-occurrence
"occurrence CDATA ’function-model’" >

<!ENTITY % att-order
"order CDATA ’numeric’" >

<!ENTITY % att-scope
"scope CDATA ’local’" >

<!ENTITY % att-type
"type CDATA #IMPLIED" >

<!- Content elements: leaf nodes ->

<!ENTITY % ctoken
"%csymbol.qname; | %ci.qname; | %cn.qname;" >

{<!ATTLIST} %ci.qname;
%MATHML.Common.attrib;
%att-type;
%att-definition;
%att-encoding;

>

{<!ATTLIST} %csymbol.qname;
%MATHML.Common.attrib;
%att-encoding;
%att-type;
%att-definition;

>

{<!ATTLIST} %cn.qname;
%MATHML.Common.attrib;
%att-type;
%att-base;

271

%att-definition;
%att-encoding;

>

<!- Content elements: specials ->

<!ENTITY % cspecial
"%apply.qname; | %reln.qname; |
%lambda.qname;" >

{<!ATTLIST} %apply.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %reln.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %lambda.qname;
%MATHML.Common.attrib;

>

<!- Content elements: others ->

<!ENTITY % cother
"%condition.qname; | %declare.qname; | %sep.qname;" >

{<!ATTLIST} %condition.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %declare.qname;
%MATHML.Common.attrib;
%att-type;
%att-scope;
%att-nargs;
%att-occurrence;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %sep.qname; EMPTY >
{<!ATTLIST} %sep.qname;

%MATHML.xmlns.attrib; >

<!- Content elements: semantic mapping ->

<!ENTITY % csemantics
"%semantics.qname; | %annotation.qname; |

272

%annotation-xml.qname;" >

{<!ATTLIST} %semantics.qname;
%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ATTLIST} %annotation.qname;
%MATHML.Common.attrib;
%att-encoding;

>

{<!ATTLIST} %annotation-xml.qname;
%MATHML.Common.attrib;
%att-encoding;

>

<!- Content elements: constructors ->

<!ENTITY % cconstructor
"%interval.qname; | %list.qname; | %matrix.qname;
| %matrixrow.qname; | %set.qname; | %vector.qname;
| %piecewise.qname; " >

{<!ATTLIST} %interval.qname;
%MATHML.Common.attrib;
%att-closure;

>

{<!ATTLIST} %set.qname;
%MATHML.Common.attrib;
%att-type;

>

{<!ATTLIST} %list.qname;
%MATHML.Common.attrib;
%att-order;

>

{<!ATTLIST} %vector.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %matrix.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %matrixrow.qname;

273

%MATHML.Common.attrib;
>

{<!ATTLIST} %piecewise.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %piece.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %otherwise.qname;
%MATHML.Common.attrib;

>

<!- Content elements: symbols ->

<!ENTITY % c0ary
"%integers.qname; |
%reals.qname; |
%rationals.qname; |
%naturalnumbers.qname; |
%complexes.qname; |
%primes.qname; |
%exponentiale.qname; |
%imaginaryi.qname; |
%notanumber.qname; |
%true.qname; |
%false.qname; |
%emptyset.qname; |
%pi.qname; |
%eulergamma.qname; |
%infinity.qname;" >

{<!ELEMENT} %integers.qname; EMPTY >
{<!ATTLIST} %integers.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %reals.qname; EMPTY >
{<!ATTLIST} %reals.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

274

{<!ELEMENT} %rationals.qname; EMPTY >
{<!ATTLIST} %rationals.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %naturalnumbers.qname; EMPTY >
{<!ATTLIST} %naturalnumbers.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %complexes.qname; EMPTY >
{<!ATTLIST} %complexes.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %primes.qname; EMPTY >
{<!ATTLIST} %primes.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %exponentiale.qname; EMPTY >
{<!ATTLIST} %exponentiale.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %imaginaryi.qname; EMPTY >
{<!ATTLIST} %imaginaryi.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %notanumber.qname; EMPTY >
{<!ATTLIST} %notanumber.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

275

{<!ELEMENT} %true.qname; EMPTY >
{<!ATTLIST} %true.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %false.qname; EMPTY >
{<!ATTLIST} %false.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %emptyset.qname; EMPTY >
{<!ATTLIST} %emptyset.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %pi.qname; EMPTY >
{<!ATTLIST} %pi.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %eulergamma.qname; EMPTY >
{<!ATTLIST} %eulergamma.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %infinity.qname; EMPTY >
{<!ATTLIST} %infinity.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!- Content elements: operators ->

<!ENTITY % cfuncop1ary
"%inverse.qname; | %ident.qname;|
%domain.qname; | %codomain.qname; |
%image.qname; " >

276

{<!ELEMENT} %inverse.qname; EMPTY >
{<!ATTLIST} %inverse.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %domain.qname; EMPTY >
{<!ATTLIST} %domain.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %codomain.qname; EMPTY >
{<!ATTLIST} %codomain.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %image.qname; EMPTY >
{<!ATTLIST} %image.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % cfuncopnary
"%fn.qname; | %compose.qname;" >

{<!ATTLIST} %fn.qname;
%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %ident.qname; EMPTY >
{<!ATTLIST} %ident.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %compose.qname; EMPTY >
{<!ATTLIST} %compose.qname;

%MATHML.Common.attrib;

277

%att-definition;
%att-encoding;

>

<!ENTITY % carithop1ary
"%abs.qname; | %conjugate.qname; | %exp.qname; | %factorial.qname; |
%arg.qname; | %real.qname; | %imaginary.qname; |
%floor.qname; | %ceiling.qname;" >

{<!ELEMENT} %exp.qname; EMPTY >
{<!ATTLIST} %exp.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %abs.qname; EMPTY >
{<!ATTLIST} %abs.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %arg.qname; EMPTY >
{<!ATTLIST} %arg.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %real.qname; EMPTY >
{<!ATTLIST} %real.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %imaginary.qname; EMPTY >
{<!ATTLIST} %imaginary.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %conjugate.qname; EMPTY >
{<!ATTLIST} %conjugate.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

278

>

{<!ELEMENT} %factorial.qname; EMPTY >
{<!ATTLIST} %factorial.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %floor.qname; EMPTY >
{<!ATTLIST} %floor.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %ceiling.qname; EMPTY >
{<!ATTLIST} %ceiling.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>
<!ENTITY % carithop1or2ary

"%minus.qname;" >

{<!ELEMENT} %minus.qname; EMPTY >
{<!ATTLIST} %minus.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % carithop2ary
"%quotient.qname; | %divide.qname; | %power.qname; | %rem.qname;" >

{<!ELEMENT} %quotient.qname; EMPTY >
{<!ATTLIST} %quotient.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %divide.qname; EMPTY >
{<!ATTLIST} %divide.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

279

{<!ELEMENT} %power.qname; EMPTY >
{<!ATTLIST} %power.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %rem.qname; EMPTY >
{<!ATTLIST} %rem.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % carithopnary
"%plus.qname; | %times.qname; | %max.qname;
| %min.qname; | %gcd.qname; | %lcm.qname;" >

{<!ELEMENT} %plus.qname; EMPTY >
{<!ATTLIST} %plus.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %max.qname; EMPTY >
{<!ATTLIST} %max.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %min.qname; EMPTY >
{<!ATTLIST} %min.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %times.qname; EMPTY >
{<!ATTLIST} %times.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %gcd.qname; EMPTY >
{<!ATTLIST} %gcd.qname;

280

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %lcm.qname; EMPTY >
{<!ATTLIST} %lcm.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % carithoproot
"%root.qname;" >

{<!ELEMENT} %root.qname; EMPTY >
{<!ATTLIST} %root.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clogicopquant
"%exists.qname; | %forall.qname;" >

{<!ELEMENT} %exists.qname; EMPTY >
{<!ATTLIST} %exists.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %forall.qname; EMPTY >
{<!ATTLIST} %forall.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clogicopnary
"%and.qname; | %or.qname; | %xor.qname;" >

{<!ELEMENT} %and.qname; EMPTY >
{<!ATTLIST} %and.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

281

{<!ELEMENT} %or.qname; EMPTY >
{<!ATTLIST} %or.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %xor.qname; EMPTY >
{<!ATTLIST} %xor.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clogicop1ary
"%not.qname;" >

{<!ELEMENT} %not.qname; EMPTY >
{<!ATTLIST} %not.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clogicop2ary
"%implies.qname;" >

{<!ELEMENT} %implies.qname; EMPTY >
{<!ATTLIST} %implies.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % ccalcop
"%log.qname; | %int.qname; | %diff.qname; | %partialdiff.qname; |
%divergence.qname; | %grad.qname; | %curl.qname; | %laplacian.qname;" >

{<!ELEMENT} %divergence.qname; EMPTY >
{<!ATTLIST} %divergence.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %grad.qname; EMPTY >
{<!ATTLIST} %grad.qname;

%MATHML.Common.attrib;
%att-definition;

282

%att-encoding;
>

{<!ELEMENT} %curl.qname; EMPTY >
{<!ATTLIST} %curl.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %laplacian.qname; EMPTY >
{<!ATTLIST} %laplacian.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %log.qname; EMPTY >
{<!ATTLIST} %log.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %int.qname; EMPTY >
{<!ATTLIST} %int.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %diff.qname; EMPTY >
{<!ATTLIST} %diff.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %partialdiff.qname; EMPTY >
{<!ATTLIST} %partialdiff.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % ccalcop1ary
"%ln.qname;" >

{<!ELEMENT} %ln.qname; EMPTY >

283

{<!ATTLIST} %ln.qname;
%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % csetop1ary
"%card.qname;" >

{<!ELEMENT} %card.qname; EMPTY >
{<!ATTLIST} %card.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % csetop2ary
"%setdiff.qname;" >

{<!ELEMENT} %setdiff.qname; EMPTY >
{<!ATTLIST} %setdiff.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % csetopnary
"%union.qname; | %intersect.qname; | %cartesianproduct.qname; " >

{<!ELEMENT} %union.qname; EMPTY >
{<!ATTLIST} %union.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %intersect.qname; EMPTY >
{<!ATTLIST} %intersect.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %cartesianproduct.qname; EMPTY >
{<!ATTLIST} %cartesianproduct.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

284

<!ENTITY % cseqop
"%sum.qname; | %product.qname; | %limit.qname;" >

{<!ELEMENT} %sum.qname; EMPTY >
{<!ATTLIST} %sum.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %product.qname; EMPTY >
{<!ATTLIST} %product.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %limit.qname; EMPTY >
{<!ATTLIST} %limit.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % ctrigop
"%sin.qname; | %cos.qname; | %tan.qname;
| %sec.qname; | %csc.qname; | %cot.qname;
| %sinh.qname; | %cosh.qname; | %tanh.qname;
| %sech.qname; | %csch.qname; | %coth.qname;
| %arcsin.qname; | %arccos.qname; | %arctan.qname;
| %arccosh.qname; | %arccot.qname; | %arccoth.qname;
| %arccsc.qname; | %arccsch.qname; | %arcsec.qname;
| %arcsech.qname; | %arcsinh.qname; | %arctanh.qname;
" >

{<!ELEMENT} %sin.qname; EMPTY >
{<!ATTLIST} %sin.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %cos.qname; EMPTY >
{<!ATTLIST} %cos.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

285

{<!ELEMENT} %tan.qname; EMPTY >
{<!ATTLIST} %tan.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %sec.qname; EMPTY >
{<!ATTLIST} %sec.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %csc.qname; EMPTY >
{<!ATTLIST} %csc.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %cot.qname; EMPTY >
{<!ATTLIST} %cot.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %sinh.qname; EMPTY >
{<!ATTLIST} %sinh.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %cosh.qname; EMPTY >
{<!ATTLIST} %cosh.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %tanh.qname; EMPTY >
{<!ATTLIST} %tanh.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

286

{<!ELEMENT} %sech.qname; EMPTY >
{<!ATTLIST} %sech.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %csch.qname; EMPTY >
{<!ATTLIST} %csch.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %coth.qname; EMPTY >
{<!ATTLIST} %coth.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %arcsin.qname; EMPTY >
{<!ATTLIST} %arcsin.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %arccos.qname; EMPTY >
{<!ATTLIST} %arccos.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %arctan.qname; EMPTY >
{<!ATTLIST} %arctan.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %arccosh.qname; EMPTY >
{<!ATTLIST} %arccosh.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

287

{<!ELEMENT} %arccot.qname; EMPTY >
{<!ATTLIST} %arccot.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %arccoth.qname; EMPTY >
{<!ATTLIST} %arccoth.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %arccsc.qname; EMPTY >
{<!ATTLIST} %arccsc.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %arccsch.qname; EMPTY >
{<!ATTLIST} %arccsch.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %arcsec.qname; EMPTY >
{<!ATTLIST} %arcsec.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %arcsech.qname; EMPTY >
{<!ATTLIST} %arcsech.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %arcsinh.qname; EMPTY >
{<!ATTLIST} %arcsinh.qname;

%MATHML.Common.attrib;
%att-definition;

288

%att-encoding;
>

{<!ELEMENT} %arctanh.qname; EMPTY >
{<!ATTLIST} %arctanh.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % cstatopnary
"%mean.qname; | %sdev.qname; |
%variance.qname; | %median.qname; |
%mode.qname;" >

{<!ELEMENT} %mean.qname; EMPTY >
{<!ATTLIST} %mean.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %sdev.qname; EMPTY >
{<!ATTLIST} %sdev.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %variance.qname; EMPTY >
{<!ATTLIST} %variance.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %median.qname; EMPTY >
{<!ATTLIST} %median.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %mode.qname; EMPTY >
{<!ATTLIST} %mode.qname;

%MATHML.Common.attrib;
%att-definition;

289

%att-encoding;
>

<!ENTITY % cstatopmoment
"%moment.qname;" >

{<!ELEMENT} %moment.qname; EMPTY >
{<!ATTLIST} %moment.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clalgop1ary
"%determinant.qname; |
%transpose.qname;" >

{<!ELEMENT} %determinant.qname; EMPTY >
{<!ATTLIST} %determinant.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %transpose.qname; EMPTY >
{<!ATTLIST} %transpose.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clalgop2ary
"%vectorproduct.qname;
| %scalarproduct.qname;
| %outerproduct.qname;" >

{<!ELEMENT} %vectorproduct.qname; EMPTY >
{<!ATTLIST} %vectorproduct.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %scalarproduct.qname; EMPTY >
{<!ATTLIST} %scalarproduct.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

290

{<!ELEMENT} %outerproduct.qname; EMPTY >
{<!ATTLIST} %outerproduct.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % clalgopnary
"%selector.qname;" >

{<!ELEMENT} %selector.qname; EMPTY >
{<!ATTLIST} %selector.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!- Content elements: relations ->

<!ENTITY % cgenrel2ary
"%neq.qname; | %factorof.qname;" >

{<!ELEMENT} %neq.qname; EMPTY >
{<!ATTLIST} %neq.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %factorof.qname; EMPTY >
{<!ATTLIST} %factorof.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % cgenrelnary
"%eq.qname; | %leq.qname; | %lt.qname; | %geq.qname;
| %gt.qname;| %equivalent.qname; | %approx.qname;" >

{<!ELEMENT} %eq.qname; EMPTY >
{<!ATTLIST} %eq.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %equivalent.qname; EMPTY >

291

{<!ATTLIST} %equivalent.qname;
%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %approx.qname; EMPTY >
{<!ATTLIST} %approx.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %gt.qname; EMPTY >
{<!ATTLIST} %gt.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %lt.qname; EMPTY >
{<!ATTLIST} %lt.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %geq.qname; EMPTY >
{<!ATTLIST} %geq.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %leq.qname; EMPTY >
{<!ATTLIST} %leq.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % csetrel2ary
"%in.qname; | %notin.qname; | %notsubset.qname; | %notprsubset.qname;" >

{<!ELEMENT} %in.qname; EMPTY >
{<!ATTLIST} %in.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

292

>

{<!ELEMENT} %notin.qname; EMPTY >
{<!ATTLIST} %notin.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %notsubset.qname; EMPTY >
{<!ATTLIST} %notsubset.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %notprsubset.qname; EMPTY >
{<!ATTLIST} %notprsubset.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % csetrelnary
"%subset.qname; | %prsubset.qname;" >

{<!ELEMENT} %subset.qname; EMPTY >
{<!ATTLIST} %subset.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

{<!ELEMENT} %prsubset.qname; EMPTY >
{<!ATTLIST} %prsubset.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;

>

<!ENTITY % cseqrel2ary
"%tendsto.qname;" >

{<!ELEMENT} %tendsto.qname; EMPTY >
{<!ATTLIST} %tendsto.qname;

%MATHML.Common.attrib;
%att-definition;
%att-encoding;
%att-type;

293

>

<!- Content elements: quantifiers ->

<!ENTITY % cquantifier
"%lowlimit.qname; | %uplimit.qname; | %bvar.qname;
| %degree.qname; | %logbase.qname;
| %momentabout.qname; | %domainofapplication.qname; " >

{<!ATTLIST} %lowlimit.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %uplimit.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %bvar.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %degree.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %logbase.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %momentabout.qname;
%MATHML.Common.attrib;

>

{<!ATTLIST} %domainofapplication.qname;
%MATHML.Common.attrib;

>

<!- Operator groups ->

<!ENTITY % cop1ary
"{%cfuncop1ary;} | {%carithop1ary;} | {%clogicop1ary;} |
{%ccalcop1ary;} | {%ctrigop;} | {%clalgop1ary;} |
{%csetop1ary;}" >

<!ENTITY % cop2ary
"{%carithop2ary;} | {%clogicop2ary;}| {%clalgop2ary;} | {%csetop2ary;}" >

<!ENTITY % copnary
"{%cfuncopnary;} | {%carithopnary;} | {%clogicopnary;} |

294

{%csetopnary;} | {%cstatopnary;} | {%clalgopnary;}" >

<!ENTITY % copmisc
"{%carithoproot;} | {%carithop1or2ary;} | {%ccalcop;} |
{%cseqop;} | {%cstatopmoment;} | {%clogicopquant;}" >

<!- Relation groups ->

<!ENTITY % crel2ary
"{%cgenrel2ary;} | {%csetrel2ary;} | {%cseqrel2ary;}" >

<!ENTITY % crelnary
"{%cgenrelnary;} | {%csetrelnary;}" >

<!- Content constructs: all ->

<!ENTITY % Content
"{%ctoken;} | {%cspecial;} | {%cother;} | {%csemantics;} | {%c0ary;}
| {%cconstructor;} | {%cquantifier;} | {%cop1ary;} | {%cop2ary;}
| {%copnary;} |{%copmisc;} | {%crel2ary;} | {%crelnary;}" >

<!- Content constructs for substitution in presentation structures ->

<!ENTITY % ContInPres
"%ci.qname; |%csymbol.qname;| %cn.qname; | {%c0ary;} |
%apply.qname; | %fn.qname; |
%lambda.qname; | %reln.qname; |
{%cconstructor;} |
%semantics.qname; |%declare.qname;" >

<!- ... ->
<!- Recursive definition for content of expressions. Include

presentation constructs at lowest level so presentation
layout schemata hold presentation or content elements.
Include content constructs at lowest level so content
elements hold PCDATA or presentation elements at leaf
level (for permitted substitutable elements in context)

->

<!ENTITY % ContentExpression
"({%Content;} | {%PresInCont;})*" >

<!ENTITY % PresExpression
"({%Presentation;} | {%ContInPres;})*" >

<!ENTITY % MathExpression
"({%PresInCont;} | {%ContInPres;})*" >

<!- PCDATA or MathML character elements ->
<!ENTITY % MathMLCharacters

"#PCDATA | %mglyph.qname; " >

295

<!- Content elements: tokens ->
<!- (may contain embedded presentation constructs) ->

{<!ELEMENT} %ci.qname; ({%MathMLCharacters;} | {%PresInCont;})* >
{<!ELEMENT} %csymbol.qname; ({%MathMLCharacters;} | {%PresInCont;})* >
{<!ELEMENT} %cn.qname; ({%MathMLCharacters;} | %sep.qname; | {%PresInCont;})* >

<!- Content elements: special ->

{<!ELEMENT} %apply.qname; ({%ContentExpression;}) >
{<!ELEMENT} %reln.qname; ({%ContentExpression;}) >
{<!ELEMENT} %lambda.qname; ({%ContentExpression;}) >

<!- Content elements: other ->

{<!ELEMENT} %condition.qname; ({%ContentExpression;}) >
{<!ELEMENT} %declare.qname; ({%ContentExpression;}) >

<!- Content elements: semantics ->

{<!ELEMENT} %semantics.qname; ({%ContentExpression;}) >
<!ENTITY % Annotation.content "(#PCDATA)" >
{<!ELEMENT} %annotation.qname; %Annotation.content; >

<!ENTITY % Annotation-xml.content "ANY" >
{<!ELEMENT} %annotation-xml.qname; %Annotation-xml.content; >

<!- Content elements: constructors ->

{<!ELEMENT} %interval.qname; ({%ContentExpression;}) >
{<!ELEMENT} %set.qname; ({%ContentExpression;}) >
{<!ELEMENT} %list.qname; ({%ContentExpression;}) >
{<!ELEMENT} %vector.qname; ({%ContentExpression;}) >
{<!ELEMENT} %matrix.qname; ({%ContentExpression;}) >
{<!ELEMENT} %matrixrow.qname; ({%ContentExpression;}) >

{<!ELEMENT} %piecewise.qname; ((%piece.qname;)*, (%otherwise.qname;)?) >
{<!ELEMENT} %piece.qname; ({%ContentExpression;}) >
{<!ELEMENT} %otherwise.qname; ({%ContentExpression;}) >

<!- Content elements: operator (user-defined) ->

{<!ELEMENT} %fn.qname; ({%ContentExpression;}) >

<!- Content elements: quantifiers ->

{<!ELEMENT} %lowlimit.qname; ({%ContentExpression;}) >
{<!ELEMENT} %uplimit.qname; ({%ContentExpression;}) >

296

{<!ELEMENT} %bvar.qname; ({%ContentExpression;}) >
{<!ELEMENT} %degree.qname; ({%ContentExpression;}) >
{<!ELEMENT} %logbase.qname; ({%ContentExpression;}) >
{<!ELEMENT} %momentabout.qname; ({%ContentExpression;}) >
{<!ELEMENT} %domainofapplication.qname; ({%ContentExpression;}) >

<!- ... ->
<!- Presentation layout schemata contain tokens,

layout and content schemata.
->

{<!ELEMENT} %mstyle.qname; ({%PresExpression;}) >
{<!ELEMENT} %merror.qname; ({%PresExpression;}) >
{<!ELEMENT} %mphantom.qname; ({%PresExpression;}) >
{<!ELEMENT} %mrow.qname; ({%PresExpression;}) >
{<!ELEMENT} %mfrac.qname; ({%PresExpression;}) >
{<!ELEMENT} %msqrt.qname; ({%PresExpression;}) >
{<!ELEMENT} %menclose.qname; ({%PresExpression;}) >
{<!ELEMENT} %mroot.qname; ({%PresExpression;}) >
{<!ELEMENT} %msub.qname; ({%PresExpression;}) >
{<!ELEMENT} %msup.qname; ({%PresExpression;}) >
{<!ELEMENT} %msubsup.qname; ({%PresExpression;}) >
{<!ELEMENT} %mmultiscripts.qname; ({%PresExpression;}) >
{<!ELEMENT} %munder.qname; ({%PresExpression;}) >
{<!ELEMENT} %mover.qname; ({%PresExpression;}) >
{<!ELEMENT} %munderover.qname; ({%PresExpression;}) >
{<!ELEMENT} %mtable.qname; ({%PresExpression;}) >
{<!ELEMENT} %mtr.qname; ({%PresExpression;}) >
{<!ELEMENT} %mlabeledtr.qname; ({%PresExpression;}) >
{<!ELEMENT} %mtd.qname; ({%PresExpression;}) >
{<!ELEMENT} %maction.qname; ({%PresExpression;}) >
{<!ELEMENT} %mfenced.qname; ({%PresExpression;}) >
{<!ELEMENT} %mpadded.qname; ({%PresExpression;}) >

<!- Presentation elements contain PCDATA or malignmark constructs. ->

{<!ELEMENT} %mi.qname; ({%MathMLCharacters;} |
%malignmark.qname;)* >

{<!ELEMENT} %mn.qname; ({%MathMLCharacters;} |
%malignmark.qname;)* >

{<!ELEMENT} %mo.qname; ({%MathMLCharacters;} |
%malignmark.qname;)* >

{<!ELEMENT} %mtext.qname; ({%MathMLCharacters;} |
%malignmark.qname;)* >

{<!ELEMENT} %ms.qname; ({%MathMLCharacters;} |
%malignmark.qname;)* >

<!- Browser interface definition ->

297

<!- Attributes for top-level element "math" ->

<!ENTITY % att-macros
"macros CDATA #IMPLIED" >

<!ENTITY % att-mode
"mode CDATA #IMPLIED" >

<!ENTITY % att-display
"display CDATA #IMPLIED" >

<!ENTITY % att-topinfo
"%MATHML.Common.attrib;
%att-macros;
%att-mode;
%att-display;" >

<!- Attributes for browser interface element ->

<!ENTITY % att-baseline
"baseline CDATA #IMPLIED" >

<!ENTITY % att-overflow
"overflow (scroll | elide | truncate | scale) ’scroll’" >

<!ENTITY % att-altimg
"altimg CDATA #IMPLIED" >

<!ENTITY % att-alttext
"alttext CDATA #IMPLIED" >

<!ENTITY % att-browif
"%att-type;
%att-name;
%att-height;
%att-width;
%att-baseline;
%att-overflow;
%att-altimg;
%att-alttext;" >

<!- ... ->
<!- The top-level element "math" contains MathML encoded

mathematics. The "math" element has the browser info
attributes iff it is also the browser interface element.

->

{<!ELEMENT} %math.qname; ({%MathExpression;}) >

{<!ATTLIST} %math.qname;
%att-topinfo;
%att-browif; >

<!- MathML Character Entities .. ->

298

<!ENTITY % mathml-charent.module "INCLUDE" >
<![%mathml-charent.module;[
<!- Entity sets from ISO Technical Report 9573-13 ->

<!ENTITY % ent-isoamsa
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Arrow Relations for MathML 2.0//EN"

"isoamsa.ent" >
{%ent-isoamsa;}

<!ENTITY % ent-isoamsb
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Binary Operators for MathML 2.0//EN"

"isoamsb.ent" >
{%ent-isoamsb;}

<!ENTITY % ent-isoamsc
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Delimiters for MathML 2.0//EN"

"isoamsc.ent" >
{%ent-isoamsc;}

<!ENTITY % ent-isoamsn
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Negated Relations for MathML 2.0//EN"

"isoamsn.ent" >
{%ent-isoamsn;}

<!ENTITY % ent-isoamso
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Ordinary for MathML 2.0//EN"

"isoamso.ent" >
{%ent-isoamso;}

<!ENTITY % ent-isoamsr
PUBLIC "-//W3C//ENTITIES Added Math Symbols: Relations for MathML 2.0//EN"

"isoamsr.ent" >
{%ent-isoamsr;}

<!ENTITY % ent-isogrk3
PUBLIC "-//W3C//ENTITIES Greek Symbols for MathML 2.0//EN"

"isogrk3.ent" >
{%ent-isogrk3;}

<!ENTITY % ent-isomfrk
PUBLIC "-//W3C//ENTITIES Math Alphabets: Fraktur for MathML 2.0//EN"

"isomfrk.ent" >
{%ent-isomfrk;}

<!ENTITY % ent-isomopf
PUBLIC "-//W3C//ENTITIES Math Alphabets: Open Face for MathML 2.0//EN"

"isomopf.ent" >
{%ent-isomopf;}

299

<!ENTITY % ent-isomscr
PUBLIC "-//W3C//ENTITIES Math Alphabets: Script for MathML 2.0//EN"

"isomscr.ent" >
{%ent-isomscr;}

<!ENTITY % ent-isotech
PUBLIC "-//W3C//ENTITIES General Technical for MathML 2.0//EN"

"isotech.ent" >
{%ent-isotech;}

<!- Entity sets from informative annex to ISO 8879:1986 (SGML) ->

<!ENTITY % ent-isobox
PUBLIC "-//W3C//ENTITIES Box and Line Drawing for MathML 2.0//EN"

"isobox.ent" >
{%ent-isobox;}

<!ENTITY % ent-isocyr1
PUBLIC "-//W3C//ENTITIES Russian Cyrillic for MathML 2.0//EN"

"isocyr1.ent" >
{%ent-isocyr1;}

<!ENTITY % ent-isocyr2
PUBLIC "-//W3C//ENTITIES Non-Russian Cyrillic for MathML 2.0//EN"

"isocyr2.ent" >
{%ent-isocyr2;}

<!ENTITY % ent-isodia
PUBLIC "-//W3C//ENTITIES Diacritical Marks for MathML 2.0//EN"

"isodia.ent" >
{%ent-isodia;}

<!ENTITY % ent-isolat1
PUBLIC "-//W3C//ENTITIES Added Latin 1 for MathML 2.0//EN"

"isolat1.ent" >
{%ent-isolat1;}

<!ENTITY % ent-isolat2
PUBLIC "-//W3C//ENTITIES Added Latin 2 for MathML 2.0//EN"

"isolat2.ent" >
{%ent-isolat2;}

<!ENTITY % ent-isonum
PUBLIC "-//W3C//ENTITIES Numeric and Special Graphic for MathML 2.0//EN"

"isonum.ent" >
{%ent-isonum;}

<!ENTITY % ent-isopub
PUBLIC "-//W3C//ENTITIES Publishing for MathML 2.0//EN"

300

"isopub.ent" >
{%ent-isopub;}

<!- New characters defined by MathML ->

<!ENTITY % ent-mmlextra
PUBLIC "-//W3C//ENTITIES Extra for MathML 2.0//EN"

"mmlextra.ent" >
{%ent-mmlextra;}

<!- MathML aliases for characters defined above ->

<!ENTITY % ent-mmlalias
PUBLIC "-//W3C//ENTITIES Aiases for MathML 2.0//EN"

"mmlalias.ent" >
{%ent-mmlalias;}

<!- end of MathML Character Entity section ->]]>

<!- Revision History:

Initial draft (syntax = XML) 1997-05-09
Stephen Buswell

Revised 1997-05-14
Robert Miner

Revised 1997-06-29 and 1997-07-02
Stephen Buswell

Revised 1997-12-15
Stephen Buswell

Revised 1998-02-08
Stephen Buswell

Revised 1998-04-04
Stephen Buswell

Entities and small revisions 1999-02-21
David Carlisle

Added attribute definitionURL to ci and cn 1999-10-11
Nico Poppelier

Additions for MathML 2 1999-12-16
David Carlisle

Namespace support 2000-01-14
David Carlisle

XHTML Compatibility 2000-02-23
Murray Altheim

New content elements 2000-03-26
David Carlisle

Further revisions for MathML2 CR draft 2000-07-11
David Carlisle

Further revisions for MathML2 CR draft 2000-10-31
David Carlisle

301

->

<!- end of MathML 2.0 DTD .. ->
<!- ... ->

302

Appendix B

Content Markup Validation Grammar

Informal EBNF grammar for Content Markup structure validation
===
// Notes
//
// This defines the valid expression trees in content markup
//
// ** it does not define attribute validation -
// ** this has to be done on top
//
// Presentation_tags is a placeholder for a valid
// presentation element start tag or end tag
//
// #PCDATA is the XML parsed character data
//
// symbols beginning with ’_’ for example _mmlarg are internal symbols
// (recursive grammar usually required for recognition)
//
// all-lowercase symbols for example ’ci’ are terminal symbols
// representing MathML content elements
//
// symbols beginning with Uppercase are terminals
// representating other tokens
//
// revised sb 3.nov.97, 16.nov.97 and 22.dec.1997
// revised sb 6.jan.98, 6.Feb.1998 and 4.april.1998
// revised sb 27.nov.2000 for MathML2.0
//
// whitespace definitions including presentation_tags
Presentation_tags ::= "presentation" //placeholder
Space ::= #x09 | #xoA | #xoD | #x20 //tab, lf, cr, space characters
S ::= (Space | Presentation_tags)* //treat presentation as space
// only for content validation
// characters
Char ::= Space | [#x21 - #xFFFD]

| [#x00010000 - #x7FFFFFFFF] //valid XML chars
// start and end tag functions
// start(\%x) returns a valid start tag for the element \%x

303

// end(\%x) returns a valid end tag for the element \%x
// empty(\%x) returns a valid empty tag for the element \%x
//
// start(ci) ::= "<ci>"
// end(cn) ::= "</cn>"
// empty(plus) ::= "<plus/>"
//
// The reason for doing this is to avoid writing a grammar
// for all the attributes. The model below is not complete
// for all possible attribute values.

_start(\%x) ::= "<\%x" (Char - ’>’)* ">" // returns a valid start tag for the element \%x
_end(\%x) ::= "<\%x" Space* ">" // returns a valid end tag for the element \%x
_empty(\%x) ::= "<\%x" (Char - ’>’)* "/>" // returns a valid empty tag for the element \%x
_sg(\%x) ::= S _start(\%x) // start tag preceded by optional whitespace
_eg(\%x) ::= _end(\%x) S // end tag followed by optional whitespace
_ey(\%x) ::= S _empty(\%x) S // empty tag preceded and followed by optional whitespace

// mathml content constructs
_mmlall ::= _container | _relation | _operator | _qualifier | _other
_mmlarg ::= _container
_container ::= _token | _special | _constructor
_token ::= ci | cn | csymbol | _constantsym
_special ::= apply | lambda | reln | fn
_constructor ::= interval | list | matrix | matrixrow | set | vector | piecewise

| piece | otherwise
_other ::= condition | declare | sep
_qualifier ::= lowlimit | uplimit | bvar | degree | logbase | domainofapplication

| momentabout
_constantsym ::= integers | rationals | reals | naturalnumbers | complexes | primes

| exponentiale | imaginaryi | notanumber | true | false | pi
| eulergamma | infinity

// relations
_relation ::= _genrel | _setrel | _seqrel2ary
_genrel ::= _genrel2ary | _genrelnary
_genrel2ary ::= ne
_genrelnary ::= eq | leq | lt | geq | gt
_setrel ::= _seqrel2ary | _setrelnary
_setrel2ary ::= in | notin | notsubset | notprsubset
_setrelnary ::= subset | prsubset
_seqrel2ary ::= tendsto

//operators
_operator ::= _funcop | _sepop | _arithop | _calcop | _vcalcop

| _seqop | _trigop | _classop | _statop | _lalgop
| _logicop | _setop

//functional operators

304

_funcop ::= _funcop1ary | _funcopnary
_funcop1ary ::= inverse | ident | domain | codomain | image
_funcopnary ::= fn| compose // general user-defined function is n-ary

// arithmetic operators
// (note minus is both 1ary and 2ary)
_arithop ::= _arithop1ary | _arithop2ary | _arithopnary | root
_arithop1ary ::= abs | conjugate | factorial | minus | arg | real | imaginary

| floor | ceiling
_arithop2ary ::= quotient | divide | minus | power | rem
_arithopnary ::= plus | times | max | min | gcd | lcm

// calculus and vector calculus
_calcop ::= int | diff | partialdiff
_vcalcop ::= divergence | grad | curl | laplacian

// sequences and series
_seqop ::= sum | product | limit

// elementary classical functions and trigonometry

_classop ::= exp | ln | log

_trigop ::= sin | cos | tan | sec | csc | cot | sinh
| cosh | tanh | sech | csch | coth
| arcsin | arccos | arctan

// statistics operators
_statop ::= _statopnary | moment
_statopnary ::= mean | sdev | variance | median | mode

// linear algebra operators
_lalgop ::= _lalgop1ary |_lalgop2ary | _lalgopnary
_lalgop1ary ::= determinant | transpose
_lalgop2ary ::= vectorproduct | scalarproduct | outerproduct
_lalgopnary ::= selector

// logical operators
_logicop ::= _logicop1ary | _logicopnary | _logicop2ary | _logicopquant
_logicop1ary ::= not
_logicop2ary ::= implies | equivalent | approx | factorof
_logicopnary ::= and | or | xor
_logicopquant ::= forall | exists

// set theoretic operators
_setop ::= _setop1ary |_setop2ary | _setopnary
_setop1ary ::= card
_setop2ary ::= setdiff
_setopnary ::= union | intersect | cartesianproduct

305

// operator groups
_unaryop ::= _func1ary | _arithop1ary | _trigop | _classop

| _calcop | vcalcop | _logicop1ary | _lalgop1ary | setop1ary
_binaryop ::= _arithop2ary | _setop2ary | _logicop2ary | _lalgop2ary
_naryop ::= _arithopnary | _statopnary | _logicopnary

| _lalgopnary | _setopnary | _funcopnary
_ispop ::= int | sum | product
_diffop ::= diff | partialdiff
_binaryrel ::= _genrel2ary | _setrel2ary | _seqrel2ary
_naryrel ::= _genrelnary | _setrelnary

//separator
sep ::= _ey(sep)

// leaf tokens and data content of leaf elements
// note _mdata includes Presentation constructs here.
_mdatai ::= (#PCDATA | Presentation_tags)*
_mdatan ::= (#PCDATA | sep | Presentation_tags)*
ci ::= _sg(ci) _mdatai _eg(ci)
cn ::= _sg(cn) _mdatan _eg(cn)
csymbol ::= _sg(csymbol) _mdatai _eg(csymbol)

// condition - constraints constraints. contains either
// a single reln (relation), or
// an apply holding a logical combination of relations, or
// a set (over which the operator should be applied)
condition ::= _sg(condition) reln | apply | set _eg(condition)

// domains for integral, sum , product
_ispdomain ::= (lowlimit uplimit?)

| uplimit
| interval
| condition

// apply construct
// Note that apply is used in place of the deprecated reln in MathML2.0
// for relational operators as well as arithmetic, algebraic etc.
//
apply ::= _sg(apply) _applybody | _relnbody _eg(apply)
_applybody ::=

(_unaryop _mmlarg) //1-ary ops
| (_binaryop _mmlarg _mmlarg) //2-ary ops
| (_naryop _mmlarg*) //n-ary ops, enumerated arguments
| (_naryop bvar* condition _mmlarg) //n-ary ops, condition defines argument list
| (_ispop bvar? _ispdomain? _mmlarg) //integral, sum, product
| (_ispop domainofapplication? _mmlarg) //integral, sum, product
| (_diffop bvar* _mmlarg) //differential ops
| (log logbase? _mmlarg) //logs

306

| (moment degree? momentabout? _mmlarg*) //statistical moment
| (root degree? _mmlarg) //radicals - default is square-root
| (limit bvar* lowlimit? condition? _mmlarg) //limits
| (_logicopquant bvar+ condition? (reln | apply)) //quantifier with explicit bound variables

// equations and relations - reln uses lisp-like syntax (like apply)
// the bvar and condition are used to construct a "such that" or
// "where" constraint on the relation .
// Note that reln is deprecated but still valid in MathML2.0
reln ::= _sg(reln) _relnbody _eg(reln)
_relnbody ::= (_binaryrel bvar* condition? _mmlarg _mmlarg)

| (_naryrel bvar* condition? _mmlarg*)

// fn construct
// Note that fn is deprecated but still valid in MathML2.0
fn ::= _sg(fn) _fnbody _eg(fn)
_fnbody ::= Presentation_tags | container

// lambda construct - note at least 1 bvar must be present
lambda ::= _sg(lambda) _lambdabody _eg(lambda)
_lambdabody ::= bvar+ _container //multivariate lambda calculus

//declare construct
declare ::= _sg(declare) _declarebody _eg(declare)
_declarebody ::= ci (fn | constructor)?

// constructors
interval ::= _sg(interval) _mmlarg _mmlarg _eg(interval) //start, end define interval
set ::= _sg(set) _lsbody _eg(set)
list ::= _sg(list) _lsbody _eg(list)
_lsbody ::= _mmlarg* //enumerated arguments

| (bvar* condition _mmlarg) //condition constructs arguments

matrix ::= _sg(matrix) matrixrow* _eg(matrix)
matrixrow ::= _sg(matrixrow) _mmlall* _eg(matrixrow) //allows matrix of operators

vector ::= _sg(vector) _mmlarg* _eg(vector)

piecewise ::= _sg(piecewise) piece* otherwise? _eg(piecewise)
piece ::= _sg(piece) _mmlall _eg(piece) //allows piecewise construct of operators
otherwise ::= _sg(otherwise) _mmlall _eg(otherwise) //allows piecewise construct of operators

//qualifiers - note the contained _mmlarg could be a reln
lowlimit ::= _sg(lowlimit) _mmlarg _eg(lowlimit)
uplimit ::= _sg(uplimit) _mmlarg _eg(uplimit)
bvar ::= _sg(bvar) ci degree? _eg(bvar)
degree ::= _sg(degree) _mmlarg _eg(degree)

307

logbase ::= _sg(logbase) _mmlarg _eg(logbase)
domainofapplication ::= _sg(domainofapplication) _mmlarg _eg(domainofapplication)
momentabout ::= _sg(momentabout) _mmlarg _eg(momentabout)

//relations and operators and constant symbols
// (one declaration for each operator and relation element)
_relation ::= _ey(\%relation) //for example <eq/> <lt/>
_operator ::= _ey(\%operator) //for example <exp/> <times/>
_const-symbol ::= _ey(\%const-symbol) //for example <integers/> <false/>

//the top level math element
//allow declare only at the head of a math element.
math ::= _sg(math) declare* mmlall* _eg(math)

308

Appendix C

Content Element Definitions

C.1 About Content Markup Elements

The primary role of MathML content elements is to provide a mechanism for recording that a particular notational
structure has a particular mathematical meaning. To this end, every content element must have a mathematical defini-
tion associated with it in some form. The purpose of this appendix is to providedefault definitions. (An index to the
definitions is provided later in this document.) Authors may adapt the notation to their own particular needs by using
mechanisms provided to override these default definitions for selected content elements.

The mathematical definitions below are not restricted to any one format. There are several reasons for allowing this,
nearly all derived from the fact that if it is extremely important to allow authors to make use of existing definitions from
the mathematical literature.

1. There is no suitable notation in common use. For example, the mathematical libraries of even the most
extensive mathematical computation systems in use today capture only a small fraction of the mathematical
literature and furthermore much of mathematics is not computational.

2. In most cases, the translation of a mathematical definition into a new notation is an inappropriate use of an
author’s energy and time.

3. The task of designing a new machine readable language suitable for recording semantic descriptions is one
that goes substantially beyond the scope of this particular recommendation. It would also overlap substan-
tially with the efforts of such groups as the OpenMath Consortium (see also the North American OpenMath
Initiative, and the European OpenMath Consortium).

The key issues for both archival and computational purposes are that there be a definition and that the author have a
mechanism to specify which definition is intended for a given instance of a notational construct. This requirement is
important whether or not there is an implementation of a particular concept or object in a mathematical computation
system. The definition may be as vague as claiming that, say,F is an unknown but differentiable function from the real
numbers to the real numbers, or as complicated as requiring thatF be an elaborate function or operation as defined in
a specific research paper. The important thing is that the reader always have a way of determining how the notation is
being used.

C.1.1 The Default Definitions

An author’s decision to use content elements is a decision to used defined objects. To make this easier, default definitions
are provided. In this way, an author need only provide explicit definitions where the usage differs from the default. Where
possible the default definitions have naturally been chosen to reflect common usage.

Definitions are overridden in a particular instance by making use of thedefinitionURL attribute. The value of this
attribute is a URI (notwithstanding its old-style name) and beyond that its format is unspecified. It may even be the case
that thedefinitionURL’s value is just a name invented by the author. In that case it serves to warn the reader (and
computational systems) that the author is using a private local definition. It may be the URL of a mathematical paper,

309

or a reference to a traditional source in which the construct is defined. If the author’s mathematical operator matches
exactly an operator in a particular computational system, an appropriate definition might use a MathMLsemantics
element to establish a correspondence between two encodings. Whatever format is chosen, the only requirement is that
some sort of definition be indicated.

This rest of this appendix provides detailed descriptions of the default semantics associated with each of the MathML
content elements. Since this is exactly the role intended for the encodings under development by the OpenMath Con-
sortium, and one of our goals is to foster cooperation in such standardization efforts we have presented the default
definitions in a format modeled on OpenMath’scontent dictionaries. While the actual details differ somewhat from the
OpenMath specification, the underlying principles are the same.

C.1.2 The Structure of an MMLdefinition.

In the XML source for this appendix each MathML element is described using an XML vocabulary designed for the
purpose. However, though well adapted to machine processing the XML form of the definitions is difficult to read for
humans. Therefore the text below is composed in a way automatically derived by XSL transformations (and typesetting
in the case of the PDF versions of the MathML specification) from the XML source, but formatted so that it is much
easier to read and comprehend. The conventions employed will be explained just below in the course of going through
the elements of the XML markup in the XML source. The first example definition, but only that one, will be provided
in both the more legible form and in raw XML, so the difference can be appreciated.

The top element isMMLdefinition. The sub-elements identify the various parts of the description and include:

name PCDATA providing the name of the MathML element.
description A CDATA description of the object that an element represents. This will often reference more traditional

texts or papers or existing papers on the Web.
classification Each MathML element must be classified according to its mathematical role.

punctuation Some elements exist simply as an aid to parsing. For example thesep element is used to
separate theCDATA defining a rational number into two parts in a manner that is easily parsed by an
XML application. These objects are referred to aspunctuation.

descriptor Some elements exist simply to modify the properties of an existing element or mathematical
object. For example thedeclare construct is used to reset the default attribute values, or to associate
a name with a specific instance of an object. These kinds of elements are referred to asdescriptors and
the type of the resulting object is the same as that of element being modified, but with the new attribute
values.

function (operator) The traditional mathematical functions and operators are represented in MathML by
empty XML elements such asplus andsin. Thesefunction definitions are parameterized by their
XML attribute values (for example, they may be of type vector) and are either used as is, for example
when discussing the properties of a particular function or operator, or they areapplied to arguments us-
ingapply. The latter case is referred to as function application. Functions are often classified according
to how they are used. For example theplus element is annary operator. This additional information
is captured by the signature. Thesignature of a function (see below) describes how it is to be used
a mathematical function inside anapply element. Each combination of types of function arguments
used inside anapply gives rise to anapply element of a given type.

constant Mathematical constants are generally represented by empty elements and are distinguished from
functions by the fact that they are not used as the first argument of an apply. Their signature is simply
the type of the object they represent.

constructor The remaining objects that ‘contain’ sub-elements are all objectconstructors of some sort or
another. They combine the sub-elements into a compound mathematical object such as a constant, set,
list, or a function application. For example, thelambda elementconstructs a function definition from
a list of variables and an expression. while theapply element constructs afunction application. By

310

function application we mean the result of applying the first element of the apply (the function) to the
zero or more remaining elements (the arguments). Afunction application represents an object in the
range of the function. For each given combination of type and order of XML children, the signature of
a constructor indicates the type (and sometimes subtype) of the resulting object.

MMLattribute Some of the XML attributes of a MathML content element have a direct impact on the mathematical
semantics of the object. For example thetype attribute of thecn element is used to determine what type of
constant (integer, real, etc.) is being constructed. Only those attributes that affect the mathematical properties
of an object are listed here and typically these also appear explicitly in the signature.

signature The signature is a systematic representation that associates the types of different possible combinations of at-
tributes and function arguments to type of mathematical object that is constructed. The possible combinations
of parameter and argument types (the left-hand side) each result in an object of some type (the right-hand
side). In effect, it describes how to resolve operator overloading. For constructors, the left-hand side of the
signature describes the types of the child elements and the right-hand side describes the type of object that
is constructed. For functions, the left-hand side of the signature indicates the types of the parameters and
arguments that would be expected when it is applied, or used to construct a relation, and the right-hand side
represents the mathematical type of the object constructed by theapply. Modifiers modify the attributes of
an existing object. For example, asymbol might become asymbol of type vector. The signature must be able
to record specific attribute values and argument types on the left, and parameterized types on the right.. The
syntax used for signatures is of the general form:
[<attribute name>=<attribute-value>](<list of argument types>)
-> <mathematical result type>(<mathematical subtype>)
The MMLattributes, if any, appear in the form<name>=<value>. They are separated notationally from the
rest of the arguments by square braces. The possible values are usually taken from an enumerated list, and the
signature is usually affected by selection of a specific value. For the actual function arguments and named
parameters on the left, the focus is on the mathematical types involved. The function argument types are
presented in a syntax similar to that used for a DTD, with the one main exception. The types of the named
parameters appear in the signature as<elementname>=<type> in a manner analogous for that used for
attribute values. For example, if the argument is named (e.g.bvar) then it is represented in the signature by
an equation as in:

[<attribute name>=<attributevalue>](bvar=symbol,<argument list>) ->
<mathematical result type>(<mathematical subtype>)
There is no formal type system in MathML. The type values that are used in the signatures are common math-
ematical types such as integer, rational, real, complex (such as found in the description ofcn), or a name such
as string or the name of a MathML constructor. Various collections of types such asanything, matrixtype
are used from time to time. The type namemmlpresentation is used to represent any valid MathML presen-
tation object and the nameMathMLtype is used to describe the collection of all MathML types. The type
algebraic is used for expressions constructed from one or more symbols through arithmetic operations and
interval-type refers to the valid types of intervals as defined in chapter 4. The collection of types is not closed.
Users writing their own definitions of new constructs may introduce new types. Depending on the types in-
volved, more than one signature may apply. For example, many arithmetic operations involving integers map
to integers, but since integers are real numbers, the signature for real numbers also is valid. Generally, the
signature providing the most information is most appropriate. No mathematical evaluation ever takes place
in MathML. Every MathML content element either refers to a defined object such as a mathematical function
or it combines such objects in some way to build a new object. For purposes of the signature, the constructed
object represents an object of a certain type parameterized type. For example the result of applyingplus to
arguments is an expression that represents a sum. The type of the resulting expression depends on the types
of the operands, and the values of the MathML attributes.

example Examples of the use of this object in MathML are included in these elements.

311

property This element describes the mathematical properties of such objects. For simple associations of values with
specific instances of an object, the first child is an instance of the object being defined. The second is a
value or approx (approximation) element that contains a MathML description of this particular value.
More elaborate conditions on the object are expressed using the MathML syntax.

comment These elements contain only PCDATA and can occur as a child of the MMLDefinition at any point.

C.2 Definitions of MathML Content Elements

C.2.1 Token Elements

C.2.1.1 MMLdefinition: cn

Description The cn element is used to encode numerical constants. The mathematical type of number is given as an
attribute. The default type is "real". Numbers such as floating-point, rational and complex, require two parts
for a complete specification. The parts of such a number are separated by an empty sep element.
Many of the commonly occurring numeric constants such asπ have their own elements.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type integer | rational | complex-cartesian | complex-polar | real | floating-

point | MathMLtype
real

base integer between 2 and 36 10
Signature [type=integer](numstring) -> constant(integer)

[base=base-value](numstring) -> constant(integer)
[type=rational](numstring,numstring) -> constant(rational)
[type=complex-cartesian](numstring,numstring) -> constant(complex)
[type=rational](numstring,numstring) -> constant(rational)
[definitionURL=definition](numstring*) -> constant(user-defined)

Property <apply><eq/><cn base="16"> A </cn><cn> 10 </cn></apply>

Property <apply><eq/><cn base="16"> B </cn><cn> 11 </cn></apply>

Property <apply><eq/><cn base="16"> C </cn><cn> 12 </cn></apply>

Property <apply><eq/><cn base="16"> D </cn><cn> 13 </cn></apply>

Property <apply><eq/><cn base="16"> E </cn><cn> 14 </cn></apply>

Property <apply><eq/><cn base="16"> F </cn><cn> 15 </cn></apply>

Example <cn> 245 </cn>

Example <cn type="integer"> 245 </cn>

Example <cn type="integer" base="16"> A </cn>

Example <cn type="rational"> 245 <sep/> 351 </cn>

Example <cn type="complex-cartesian"> 1 <sep/> 2 </cn>

Example <cn> 245 </cn>

Example <apply><eq/>
<cn type="e-notation"> 2 <sep/> 5 </cn>
<apply><times/><cn>2</cn><apply><power/><cn>10</cn><cn>5</cn></apply></apply>
</apply>

312

C.2.1.2 MMLdefinition: ci

Description This element constructs an identifier (symbolic name). The type attribute is used to indicate the type of
object being specified. By default, the type is real.
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type constant | matrix | set | vector | list | MathMLtype real

Signature (string|mmlpresentation) -> symbol
[type=typename](string|mmlpresentation) -> symbol(typename)

Example <ci> xyz </ci>
Example <ci> type="vector"> v </ci>

C.2.1.3 MMLdefinition: csymbol

Description The csymbol element allows a writer to introduce new objects into MathML. The objects are linked to
external definitions by means of the definitionURL attribute and encoding attribute. The csymbol element
becomes the "name" of the new object. The new objects are typically either constants or functions.
See also .

Classification constant function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature [definitionURL=definition](string|mmlpresentation) -> defined_symbol
[type=typename](string|mmlpresentation) -> defined_symbol(typename)

Example <csymbol definitionURL=".../mydefinitionofPi">π</csymbol>

C.2.2 Basic Content Elements

C.2.2.1 MMLdefinition: apply

Description This is the MathML constructor for function application. The first argument is applied to the remaining
arguments. It may be the case that some of the child elements are named elements. (See the signature.)
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function,anything*) -> apply
Example <apply><plus/>

<ci>x</ci>
<cn>1</cn>

</apply>
Example <apply><sin/>

<ci>x</ci>
</apply>

313

C.2.2.2 MMLdefinition: reln

Description This constructor has been deprecated. All uses of reln are replaced by apply.
This is the MathML 1.0 constructor for expressing a relation between two or more mathematical objects.
The first argument indicates the type of "relation" between the remaining arguments. (See the signature.) No
assumptions are made about the truth value of such a relation. Typically, the relation is used as a component
in the construction of some logical assertion. Relations may be combined into sets, etc. just like any other
mathematical object.
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function,anything*) -> reln
Example
Description No examples of deprecated constructions are provided.

C.2.2.3 MMLdefinition: fn

Description This constructor has been deprecated.
This was the MathML 1.0 constructor for building new functions. Its role was to identify a general MathML
content object as a function in such a way that it could have a definition and be used in a function context
such as in apply and declare. This is now accomplished through the use of definitionURL and the fact that
declare and apply allow any content element as their first argument.
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (anything) -> function
[definitionURL=functiondef](anything) ->function

Example
Description No examples of deprecated constructions are provided.

C.2.2.4 MMLdefinition: interval

Description This is the MathML constructor element for building an interval on the real line. While an interval can be
expressed by combining relations appropriately, they occur here explicitly because of the frequency of their
use.
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML
type closed | open | open-closed | closed-open closed

314

Signature [type=interval-type](expression,expression) -> interval(interval-type)
Example <apply><interval closure="open"/>

<ci>x</ci>
<cn>1</cn>

</apply>
Example <apply><interval closure="open-closed"/>

<cn>0</cn>
<cn>1</cn>

</apply>

C.2.2.5 MMLdefinition: inverse

Description This MathML element is applied to a function in order to construct a new function that is to be interpreted
as the inverse function of the original function. For a particular function F, inverse(F) composed with F
behaves like the identity map on the domain of F and F composed with inverse(F) should be an identity
function on a suitably restricted subset of the Range of F. The MathML definitionURL attribute should be
used to resolve notational ambiguities, or to restrict the inverse to a particular domain or to make it one-sided.
See also .

Classification operator
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> function
[definitionURL=URI](function) -> function(definition)

Property
Description ForAll(y such y in domain(f^(-1)) , f(f^(-1)(y)) = y

<apply><forall/>
<bvar><ci>y</ci></bvar>
<bvar><ci type="function">f</ci></bvar>
<condition>
<apply><in/>
<ci>y</ci>
<apply><csymbol definitionURL="domain"><mtext>Domain</mtext></csymbol>
<apply><inverse/><ci type="function">f</ci></apply>

</apply>
</apply>

</condition>
<apply><eq/>
<apply><ci type="function">f</ci>
<apply><apply><inverse/><ci type="function">f</ci></apply>
<ci>y</ci>

</apply>
</apply>
<ci>y</ci>

</apply>
</apply>

Example <apply><inverse/>

315

<sin/>
</apply>

Example <apply><inverse definitionURL="www.example.com/MathML/Content/arcsin"/>
<sin/>

</apply>

C.2.2.6 MMLdefinition: sep

Description This is the MathML infix constructor used to sub-divide PCDATA into separate components. This is used
in the description of a multi-part number such as a rational or a complex number.
See also .

Classification punctuation
Example <cn type="complex-polar">123<sep/>456</cn>

Example <cn>123</cn>

C.2.2.7 MMLdefinition: condition

Description This is the MathML constructor for building conditions. A condition differs from a relation in how it is
used. A relation is simply an expression, while a condition is used as a predicate to place conditions on bound
variables.
You can build compound conditions by applying operators such as "and" or "or" .
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (apply) -> predicate
Example <condition>

<apply><lt/>
<apply><power/><ci>x</ci><cn>5</cn></apply>
<cn>3</cn>

</apply>
</condition>

C.2.2.8 MMLdefinition: declare

Description This is the MathML constructor for associating default attribute values and values with mathematical
objects. For example V may be an identifier declared to be a vector (has the attribute of being a vector), or V
may be a name that stands for a particular vector.
The attribute values of the declare statement itself become the default attribute values of the first argument
of the declare.
If there is a second argument, the first argument becomes an alias for the second argument and it also assumes
all the properties of the second argument . For example, a ci identifier v, declared to be the vector (1,2,3)
would appear in the type style of a vector, and would have a norm which is the norm of (1,2,3)
See also .

Classification modifier

316

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLtype none
nargs number of arguments for an object of operator *
occurrence infix | prefix prefix

Signature [(attributename=attributevalue)*](anything) -> [(attributename=attributevalue)*](anything)
[(attributename=attributevalue)*](anything,anything) -> [(attributename=attributevalue)*](anything)
(anything,anything) -> (anything)

Example <declare>
<ci>y</ci>
<apply><plus/><ci>x</ci><cn>3</cn></apply>

</declare>
Example <declare type="vector"> <ci> V </ci> </declare>
Example <declare type="vector">

<ci> V </ci>
<vector><cn> 1 </cn><cn> 2 </cn><cn> 3 </cn></vector>

</declare>

C.2.2.9 MMLdefinition: lambda

Description This is the operation of lambda calculus that constructs a function from an expression and a variable.
Lambda is an n-ary function, where all but the last argument are bound variables and the last argument is an
expression possibly involving those variables. The lambda function can be viewed as the inverse of function
application.
For example, Lambda(x, F) is written as \lambda x [F] in the lambda calculus literature. The expression F
may contain x but the full lambda expression itsself is interpreted to be free of x. A computational application
receiving a MathML lambda expression should not evaluate x or test for x. Such an application may apply
the lambda expression as a function to arguments in which case any result that is computed is computed
through parameter substitutions into F.
Note that a lambda expression on an arbitrary function applied to a simple argument is equivalent to that
arbitrary function.
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (bvar*,anything) -> function
Property
Description ForAll(F , lambda(x,F(x)) = F)

<apply><forall/>
<bvar><ci>F</ci></bvar>
<apply><eq/>
<lambda>
<bvar><ci>x</ci></bvar>
<apply><ci>F</ci><ci>x</ci></apply>

</lambda>

317

<ci>F</ci>
</apply>

</apply>

Example <lambda>
<bvar><ci>x</ci></bvar>
<apply><sin/><apply><plus/><ci> x </ci><cn> 3 </cn></apply></apply>

</lambda>

C.2.2.10 MMLdefinition: compose

Description This is the MathML constructor for composing functions. In order for a composition to be meaningful, the
range of the first function should be the domain of the second function, etc. . However, since no evaluation
takes place in MathML, such a construct can safely be used to make statements such as that f composed with
g is undefined.
The result is a new function whose domain is the domain of the first function and whose range is the range
of the last function and whose definition is equivalent to applying each function to the previous outcome in
turn as in:
(f @ g)(x) == f(g(x)).
This function is often denoted by a small circle infix operator.
See also .

Classification function

MMLattribute
Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function*) -> function

Property

Description ForAll(x, (f@g)(x) = f(g(x))

<apply><forall/>
<bvar><ci>x</ci></bvar><bvar><ci>f</ci></bvar><bvar><ci>g</ci></bvar>
<apply><eq/>
<apply><apply><compose/><ci>f</ci><ci>g</ci></apply>
<ci>x</ci>

</apply>
<apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply>

</apply>
</apply>

Example

Description The use of fn is deprecated. Use type="function" instead.

<apply><compose/>
<ci type="function"> f </ci>
<ci type="function"> g </ci>
<sin/>

</apply>

318

C.2.2.11 MMLdefinition: ident

Description The ident element represents the identity function. MathML makes no assumption about the function
space in which the identity function resides. Proper interpretation of the domain (and hence range) of the
identity function depends on the context in which it is used.
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature function
Property
Description ForAll(x, ident(x) = x)

<apply><forall/>
<bvar><ci>x</ci></bvar>
<apply><eq/>
<apply><ident/><ci>x</ci></apply>
<ci>x</ci>

</apply>
</apply>

Example <apply><eq/>
<apply><compose/>
<ci type="function"> f </ci>
<apply><inverse/><ci type="function"> f </ci>

</apply>
</apply>
<ident/>

</apply>

C.2.2.12 MMLdefinition: domain

Description The domain element denotes the domain of a given function, which is the set of values over which it is
defined.
To override the default semantics for this element, or to associate a more specific definition, use the defini-
tionURL and encoding attributes
See also .

Classification function
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> set
Example <apply><eq/>

<apply><domain/><ci>f</ci></apply>
<reals/>

</apply>

319

C.2.2.13 MMLdefinition: codomain

Description The codomain (range) element denotes the codomain of a given function, which is a set containing all
values taken by the function. The codomain may contain additional points which are not realized by applying
the the function to elements of the domain.
To override the default semantics for this element, or to associate a more specific definition, use the defini-
tionURL and encoding attributes
See also .

Classification function
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> set
Property
Description ForAll(y, y =f(x) , member(y,codomain(f)))

Example <apply><eq/>
<apply><codomain/><ci>f</ci></apply>
<rationals/>

</apply>

C.2.2.14 MMLdefinition: image

Description The image element denotes the image of a given function, which is the set of values taken by the function.
Every point in the image is generated by the function applied to some point of the domain.
To override the default semantics for this element, or to associate a more specific definition, use the defini-
tionURL and encoding attributes
See also .

Classification function
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> set
Property
Description ForAll(x, x in codomain(f) , ThereExists(y,f(y)=x))

Example <apply><eq/>
<apply><image/><sin/></apply>
<interval><cn>-1</cn><cn> 1</cn></interval>

</apply>

C.2.2.15 MMLdefinition: domainofapplication

Description The domainofapplication element denotes the domain over which a given function is being applied. It is
intended to be a more general alternative to specification of this domain using such quantifier elements as
bvar, lowlimit or condition
To override the default semantics for this element, or to associate a more specific definition, use the defini-
tionURL and encoding attributes
See also .

320

Classification function
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> set
Example <apply><int/>

<domainofapplication><ci>C</ci></domainofapplication>
<ci>f </ci>

</apply>

C.2.2.16 MMLdefinition: piecewise

Description The piecewise, piece, and otherwise elements are used to support ’piecewise’ declarations of the form
H(x) = 0 if x less than 0, H(x) = 1 otherwise. The piece and otherwise elements describe evaluation rules.
If no rule applies or if more than one rule applies but they give different answers then the expression is
undefined.
To override the default semantics for this element, or to associate a more specific definition, use the defini-
tionURL and encoding attributes
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (piece*,otherwise) -> algebraic
Property
Description ForAll(x, x in domain(f) , the evaluation rules collectively produce at most one value in codomain(f))

Example <piecewise>
<piece><cn> 0</cn><apply><lt/><ci> x</ci> <cn> 0</cn></apply></piece>
<otherwise><ci>x</ci></otherwise>

</piecewise>
Example
Description The value of the abs function evaluated at x can be written as:

<piecewise>
<piece>
<apply><minus/><ci>x</ci></apply>
<apply><lt/><ci> x</ci><cn> 0</cn></apply>

</piece>
<piece>
<cn>0</cn>
<apply><eq/><ci>x</ci><cn>0</cn></apply>

</piece>
<piece>
<ci>x</ci>
<apply><gt/><ci>x</ci><cn>0</cn></apply>

</piece>
</piecewise>

321

C.2.2.17 MMLdefinition: piece

Description The piece element is used to construct the conditionally defined values as part of a piecewise object.
To override the default semantics for this element, or to associate a more specific definition, use the defini-
tionURL and encoding attributes
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (algebraic,boolean) -> piece
Example <piecewise>

<piece><cn>0</cn><apply><lt/><ci> x</ci> <cn> 0</cn></apply></piece>
<otherwise><ci>x</ci></otherwise>

</piecewise>

C.2.2.18 MMLdefinition: otherwise

Description The otherwise element is used to describe the value of a piecewise construct when none of the conditions
of the associated pieces are satisfied.
To override the default semantics for this element, or to associate a more specific definition, use the defini-
tionURL and encoding attributes
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL a URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (algebraic) -> algebraic
Example <piecewise>

<piece><cn> 0</cn><apply><lt/><ci> x</ci> <cn> 0</cn></apply></piece>
<otherwise><ci>x</ci></otherwise>

</piecewise>

C.2.3 Arithmetic Algebra and Logic

C.2.3.1 MMLdefinition: quotient

Description quotient is the binary function used to represent the operation of integer division. quotient(a,b) denotes q
such that a = b*q+r, with |r| less than |b| and a*r positive.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature (integer, integer) -> integer
Property
Description forall([a,b], b != 0, a = b*quotient(a,b) + rem(a,b)

322

<apply><forall/>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<condition><apply><neq/><ci>b</ci><cn>0</cn></apply></condition>
<apply><eq/>
<ci>a</ci>
<apply><plus/>
<apply><times/>

<ci>b</ci>
<apply><quotient/><ci>a</ci><ci>b</ci></apply>

</apply>
<apply><rem/><ci>a</ci><ci>b</ci></apply>

</apply>
</apply>

</apply>
Example <apply><quotient/>

<ci> a </ci>
<ci> b </ci>

</apply>
Example <apply>

<quotient/>
<cn>5</cn>
<cn>4</cn>
</apply>

C.2.3.2 MMLdefinition: factorial

Description This is the unary operator used to construct factorials. Factorials are defined by n! = n*(n-1)* ... * 1
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature (algebraic) -> algebraic
(integer)->integer

Property
Description ForAll(n,n \gt 0, n! = n*(n-1)!)

<apply><forall/>
<bvar><ci>n</ci></bvar>
<condition><apply><gt/><ci>n</ci><cn>0</cn></apply></condition>
<apply><eq/>
<apply><factorial/><ci>n</ci></apply>
<apply><times/>
<ci>n</ci>
<apply><factorial/>
<apply><minus/><ci>n</ci><cn>1</cn></apply>

</apply>

323

</apply>
</apply>

</apply>
Property
Description 0! = 1

<apply></eq>
<apply><factorial/><cn>0</cn></apply>
<cn>1</cn>

</apply>
Example <apply><factorial/>

<ci>n</ci>
</apply>

C.2.3.3 MMLdefinition: divide

Description This is the binary MathML operator that is used indicate the mathematical operation a "divided by" b.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (complex, complex) -> complex
(real, real) -> real
(rational, rational) -> rational
(integer, integer) -> rational

Property
Description Division by Zero error

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><divide/><ci> a </ci><ci> 0 </ci>
<notanumber/>

</apply>
</apply>

</apply>
Property
Description ForAll(a , a!= 0, a/a = 1)

<apply><forall/>
<bvar><ci>a</ci></bvar>
<condition><apply><neq/><ci>a</ci><cn>0</cn></apply></condition>
<apply><eq/>
<apply><divide/><ci>a</ci><ci>a</ci></apply>
<cn>1</cn>

</apply>
</apply>

324

Example <apply><divide/>
<ci> a </ci>
<ci> b </ci>
</apply>

C.2.3.4 MMLdefinition: max

Description This is the n-ary operator used to represent the maximum of a set of elements. The elements may be listed
explicitly or they may be described by a condition, e.g., the maximum over all x in the set A.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (ordered_set_element *) -> ordered_set_element
(bvar,condition,anything) -> anything

Property
Description ForAll(x in S, max(y in S,y) \geq x)

Example
Description Maximum of a finite listing of elements

<apply><max/><cn>2</cn><cn>3</cn><cn>5</cn></apply>
Example
Description Max(y^3, y in (0,1))

<apply>
<max/>
<bvar><ci>y</ci></bvar>
<condition>
<apply><in/><ci>y</ci><interval><cn>0</cn><cn>1</cn></interval></apply>
</condition>
<apply><power/><ci> y</ci><cn>3</cn></apply>
</apply>

C.2.3.5 MMLdefinition: min

Description This is the n-ary operator used to represent the minimum of a set of elements. The elements may be listed
explicitly or they may be described by a condition, e.g., the minimum over all x in the set A.
The elements must all be comparable if the result is to be well defined.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

325

Signature (ordered_set_element *) -> ordered_set_element
(bvar,condition,anything) -> ordered_set_element

Example
Description Minimum of a finite listing of elements

<apply><min/><cn>2</cn><cn>3</cn><cn>5</cn></apply>
Example
Description min(y^2, y in (0,1))

<apply>
<min/>
<bvar><ci>y</ci></bvar>
<condition>
<apply><in/><ci>y</ci><interval><cn>0</cn><cn>1</cn></interval></apply>
</condition>
<apply><power/><ci> y</ci><cn>2</cn></apply>
</apply>

C.2.3.6 MMLdefinition: minus

Description This is the subtraction operator for an additive group.
If one argument is provided this operator constructs the additive inverse of that group element. If two argu-
ments, say a and b, are provided it constructs the mathematical expression a - b.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (real) -> real
(real,real) -> real
[type=MathMLtype](MathMLtype) -> MathMLtype
[type=MathMLtype](MathMLtype,MathMLtype) -> MathMLtype
(set,set) -> set
(multiset,multiset)->multiset

Property
Description ForAll(x,x-x=0)

<apply><forall/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply><minus/><ci> x </ci><ci> x </ci></apply>
<cn>0</cn>

</apply>
</apply>

Example <apply><minus/>
<cn>3</cn>
<cn>5</cn>
</apply>

326

Example <apply><minus/>
<cn>3</cn>
</apply>

C.2.3.7 MMLdefinition: plus

Description This is the n-ary addition operator of an algebraic structure. If no operands are provided, the expression
represents the additive identity. If one operand, a, is provided the expression evaluates to "a". If two or more
operands are provided, the expression represents the (semi) group element corresponding to a left associative
binary pairing of the operands. The meaning of mixed operand types not covered by the signatures shown
here are left up to the target system.
To use different type coercion rules different from those indicated by the signatures, use the definitionURL
attribute to identify a new definition.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature [type=MathMLtype](anything*) -> MathMLtype
(set*)->set
(multiset*)->multiset
(real*)->real
(complex*)->complex
(integer*)->integer

Property
Description an sum of no terms is 0

<apply><eq/>
<apply><plus/></apply>
<cn>0</cn>

</apply>
Property
Description a sum of one term is equal to itsself

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><plus/><ci>a</ci></apply>
<cn>a</cn>

</apply>
</apply>

Property
Description Commutivity

<apply><forall/>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>

327

<condition>
<apply><and/>
<apply><in/><ci>a</ci><reals/></apply>
<apply><in/><ci>b</ci><reals/></apply>

</apply>
</condition>
<apply><eq/>
<apply><plus/><ci>a</ci><ci>b</ci></apply>
<apply><plus/><ci>b</ci><ci>a</ci></apply>

</apply>
</apply>

Example <apply><plus/>
<cn>3</cn>

</apply>
Example <apply><plus/>

<cn>3</cn>
<cn>5</cn>
</apply>

Example <apply><plus/>
<cn>3</cn>
<cn>5</cn>
<cn>7</cn>
</apply>

C.2.3.8 MMLdefinition: power

Description This is the binary powering operator that is used to construct expressions such as a "to the power of" b. In
particular, it is the operation for which a "to the power of" 2 is equivalent to a * a.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (complex, complex) -> complex
(real, real) -> complex
(rational, integer) -> rational
(integer, integer) -> rational
[type=MathMLtype](anything,anything) -> MathMLtype

Property
Description ForAll(a,a!=0,a^0=1)

<apply><forall/>
<bvar><ci>a</ci></bvar>
<condition><apply><neq/><ci>a</ci><cn>0</cn></apply></condition>
<apply><eq/>
<apply><power/><ci>a</ci><cn>0</cn></apply>
<cn>1</cn>

328

</apply>
</apply>

Property
Description ForAll(a,a^1=a)

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><power/><ci>a</ci><cn>1</cn></apply>
<ci>a</ci>

</apply>
</apply>

Property
Description ForAll(a,1^a=1)

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><power/><cn>1</cn><ci>a</ci></apply>
<cn>1</cn>

</apply>
</apply>

Example <apply><power/><cn>2</cn><ci>x</ci></apply>
Example <apply><power/><ci> x </ci><cn> 3 </cn></apply>

C.2.3.9 MMLdefinition: rem

Description This is the binary operator used to represent the integer remainder a mod b. For arguments a and b, such
that a = b*q + r with |r| < |b| it represents the value r.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature (integer, integer) -> integer
[type=MathMLtype](MathMLtype,MathMLtype)->MathMLtype

Property
Description rem(a, 0) is undefined

Property
Description ForAll([a,b],b!=0,a = b*quotient(a,b) + rem(a,b))

<apply><forall/>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<condition><apply><neq/><ci>b</ci><cn>0</cn></apply></condition>
<apply><eq/>

329

<ci>a</ci>
<apply><plus/>
<apply><times/>
<ci>b</ci>
<apply><quotient/><ci>a</ci><ci>b</ci></apply>
</apply>
<apply><rem/>
<ci>a</ci>
<ci>b</ci>
</apply>
</apply>
<apply/>
</apply>

Example <apply><rem/><ci> a </ci><ci> b </ci></apply>

C.2.3.10 MMLdefinition: times

Description This is the n-ary multiplication operator of a ring. If no arguments are supplied then this represents the
multiplicative identity. If one argument is supplied, this represents an expression that would evaluate to that
single argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (complex*) -> complex
(real*) -> real
(rational*) -> rational
(integer*) -> integer

Property
Description ForAll([a,b],condition(in(a,b,Commutative)),a*b=b*a)

Property
Description ForAll([a,b,c],Associative,a*(b*c)=(a*b)*c), associativity

Property
Description multiplicative identity

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><times/><cn>1</cn><ci>a</ci></apply>
<ci>a</ci>
</apply>
</apply>

Property
Description a*0=0

330

Property
Description Commutative property

<apply><forall/>
<bvar><ci>a</ci></bvar>
<bvar><ci>b</ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci>a</ci><reals/></apply>
<apply><in/><ci>b</ci><reals/></apply>
</apply>
</condition>
<apply><eq/>
<apply><times/><ci>a</ci><ci>b</ci></apply>
<apply><times/><ci>b</ci><ci>a</ci></apply>
</apply>
</apply>

Property
Description a*0=0

<apply><forall/>
<bvar><ci>a</ci></bvar>
<apply><eq/>
<apply><times/><cn>0</cn><ci>a</ci></apply>
<cn>0</cn>
</apply>
</apply>

Example <apply>
<times/>
<ci> a </ci>
<ci> b </ci>
</apply>

C.2.3.11 MMLdefinition: root

Description This is the binary operator used to construct the nth root of an expression. The first argument "a" is the
expression and the second object "n" denotes the root, as in (a) ^ (1/n)
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type real | complex | principle_branch | MathMLType real

Signature (anything , anything) -> root
Property
Description ForAll(bvars(a,n),root(a,n) = a^(1/n))

331

Example
Description nth root of a

<apply><root/>
<ci> a </ci>
<ci> n </ci>
</apply>

C.2.3.12 MMLdefinition: gcd

Description This is the n-ary operator used to construct an expression which represents the greatest common divisor of
its arguments. If no argument is provided, the gcd is 1. If one argument is provided, the gcd is that argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature [type=MathMLtype](MathMLtype*) ->MathMLtype
(integer*) -> integer

Property <apply><forall/>
<forall/>
<bvar><ci>x</ci></bvar>
<apply><eq/>
<apply><gcd/>
<ci>x</ci>
<cn>1</cn>
</apply>
<cn>1</cn>
</apply>
</apply>

Example <apply><gcd/>
<cn>12</cn>
<cn>17</cn>
</apply>

Example <apply><gcd/>
<cn>3</cn>
<cn>5</cn>
<cn>7</cn>
</apply>

C.2.3.13 MMLdefinition: and

Description This is the n-ary logical "and" operator. It is used to construct the logical expression which were it to
be evaluated would have a value of "true" when all of its operands have a truth value of "true", and "false"
otherwise.
See also .

Classification function

332

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

Signature (boolean*) -> boolean
Property
Description forall(p,(true and p = p)

Property
Description forall([p,q],(p and q = q and p))

Property
Description x and not(x) = false

Example <apply><and/>
<ci>p</ci>
<ci>q</ci>
</apply>

C.2.3.14 MMLdefinition: or

Description The is the n-ary logical "or" operator. The constructed expression has a truth value of true if at least one
of its arguments is true.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

Signature (boolean*) -> boolean
[type="boolean"](symbolic*) -> boolean

Example <apply>
<or/>
<ci> a </ci>
<ci> b </ci>
</apply>

C.2.3.15 MMLdefinition: xor

Description The is the n-ary logical "xor" operator. The constructed expression has a truth value of true if an odd
number of its arguments are true.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

333

Signature (boolean*) -> boolean
[type="boolean"](symbolic*) -> symbolic

Property
Description x xor x = false

Property
Description x xor not(x) = true

Example <apply>
<xor/>
<ci> a </ci>
<ci> b </ci>
</apply>

C.2.3.16 MMLdefinition: not

Description This is the unary logical "not" operator. It negates the truth value of its single argument. e.g., not P is true
when P is false and false when P is true.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

Signature (boolean) -> boolean
[type="boolean"](algebraic) -> boolean

Example <apply>
<not/>
<ci> a </ci>
</apply>

C.2.3.17 MMLdefinition: implies

Description This is the binary "implies" operator. It is used to construct the logical expression "A implies B".
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

Signature (boolean,boolean) -> boolean
Property
Description false implies x

Example <apply>
<implies/>
<ci> A </ci>
<ci> B </ci>

334

</apply>

C.2.3.18 MMLdefinition: forall

Description The forall operator is the logical "For all" quantifier. The bound variables, if any, appear first and are
tagged using the bvar element. Next comes an optional condition on the bound variables. The last argument
is the boolean expression that is asserted to be true for all values of the bound variables that meet the specified
conditions (if any).
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

Signature (bvar*,condition?,apply) -> boolean
(bvar*,condition?,(reln)) -> boolean

Example <apply>
<forall/>
<bvar><ci> x </ci></bvar>
<apply><eq/>
<apply>
<minus/><ci> x </ci><ci> x </ci>
</apply>
<cn>0</cn>
</apply>
</apply>

C.2.3.19 MMLdefinition: exists

Description This is the MathML operator that is used to assert existence, as in "There exists an x such that x is real
and x is positive."
- The first argument indicates the bound variable,
- The second optional argument places conditions on that bound variable.
- The last argument is the expression that is asserted to be true.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType boolean

Signature (element,set) ->boolean
Example <apply><exists/>

<bvar><ci>x</ci></bvar>
<apply><eq/>
<apply><ci>f</ci>
<ci>x</ci>

</apply>
<cn>0</cn>

335

</apply>
</apply>

C.2.3.20 MMLdefinition: abs

Description A unary operator which represents the absolute value of its argument. In the complex case this is often
referred to as the modulus.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (real)->real
(complex)->real

Property
Description for all x and y, abs(x) + abs(y) >= abs(x+y)

Example <apply><abs/><ci>x</ci></apply>

C.2.3.21 MMLdefinition: conjugate

Description The unary "conjugate" arithmetic operator is used to represent the complex conjugate of its argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (algebraic) -> algebraic
(complex)->complex

Example <apply><conjugate/>
<apply><plus/>
<ci> x </ci>
<apply><times/>
<imaginaryi/>

<ci> y </ci>
</apply>

</apply>
</apply>

C.2.3.22 MMLdefinition: arg

Description The unary "arg" operator is used to construct an expression which represents the "argument" of a complex
number.
See also .

Classification function

336

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (compex)->real

Example <apply><arg/>
<apply><plus/>
<ci> x </ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>

</apply>
</apply>

C.2.3.23 MMLdefinition: real

Description A unary operator used to construct an expression representing the "real" part of a complex number.
See also .

Classification function

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (complex)->real

Property

Description ForAll(x,y, x in R, Y in R, real(x+i*y)=x)

<apply><forall/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<apply><eq/>
<apply><real/>
<apply><plus/>
<ci> x </ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>

</apply>
</apply>
<ci> x </ci>

</apply>
</apply>

Example <apply><real/>
<apply><plus/>
<ci> x </ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>

</apply>
</apply>

337

C.2.3.24 MMLdefinition: imaginary

Description The unary function used to construct an expression which represents the imaginary part of a complex
number.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (complex)->real
Property
Description forall([x,y],Imaginary(x + i*y) = y)

<apply><forall/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<apply><eq/>
<apply><imaginary/>
<apply><plus/>
<ci> x </ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>

</apply>
</apply>
<ci> y </ci>

</apply>
</apply>

Example <apply><imaginary/>
<apply><plus/>
<ci> x </ci>
<apply><times/><imaginaryi/><ci>y</ci></apply>

</apply>
</apply>

C.2.3.25 MMLdefinition: lcm

Description This n-ary operator is used to construct an expression which represents the least common multiple of its
arguments. If no argument is provided, the lcm is 0. If one argument is provided, the lcm is that argument.
The least common multiple of x and 1 is x.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature [type=MathMLtype](MathMLtype*) ->MathMLtype
(integer*) -> integer
(algebraic*) -> algebraic

338

Property
Description ForAll(x,lcm(x,1)=x)

<apply><forall/>
<bvar><ci>x</ci></bvar>

<apply><eq/>
<apply><lcm/><ci>x</ci><cn>1</cn></apply>
<ci>x</ci>
</apply>
</apply>

Example <apply><lcm/>
<cn>12</cn>
<cn>17</cn>

</apply>
Example <apply><lcm/>

<cn>3</cn>
<cn>5</cn>
<cn>7</cn>

</apply>

C.2.3.26 MMLdefinition: floor

Description The floor element is used to denote the round-down (towards -infinity) operator.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature (real) -> integer
[type=MathMLtype](orderedset_element) -> orderedset_element

Property
Description ForAll(x,floor(x) <= x)

<apply><forall/>
<bvar><ci>x</ci></bvar>
<apply><leq/>
<apply><floor/>
<ci>x</ci>

</apply>
<ci>x</ci>

</apply>
</apply>

Example <apply> <floor/>
<ci> a </ci>

</apply>

C.2.3.27 MMLdefinition: ceiling

Description The ceiling element is used to denote the round-up (towards +infinity) operator.

339

See also .
Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

Signature (real) -> integer
[type=MathMLtype](orderedset_element) -> orderedset_element

Property
Description ForAll(x,ceiling(x) >= x)

<apply><forall/>
<bvar><ci>x</ci></bvar>
<apply><geq/>
<apply><ceiling/>
<ci>x</ci>

</apply>
<ci>x</ci>

</apply>
</apply>

Example <apply> <ceiling/>
<ci> a </ci>

</apply>

C.2.4 Relations

C.2.4.1 MMLdefinition: eq

Description This n-ary function is used to indicate that two or more quantities are equal. There must be at least two
arguments.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real+) -> boolean
(boolean, boolean+) -> boolean
(set,set+) -> set
(multiset,multiset+) -> multiset

Property
Description Symmetric

Property
Description Transitive

Property
Description Reflexive

Example <apply><eq/><cn type="rational">2<sep/>4</cn><cn type="rational">1<sep/>2</cn></apply>

340

Example <apply><eq/><ci type="set">A</ci><ci type="set">B</ci></apply>
Example <apply><eq/><ci type="multiset">A</ci><ci type="multiset">B</ci></apply>

C.2.4.2 MMLdefinition: neq

Description This binary function represents the relation "not equal to" which returns true unless the two arguments are
equal.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real) -> boolean
(boolean,boolean)-> boolean
(set,set) -> set
(multiset,multiset) -> multiset

Property
Description Symmetric

Example <apply><neq/><cn>3</cn><cn>4</cn></apply>

C.2.4.3 MMLdefinition: gt

Description This n-ary function represents the relation "greater than" which returns true if each argument in turn is
greater than the one following it. There must be at least two arguments.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real+) -> boolean
Property
Description Transitive

Example <apply><gt/><cn>3</cn><cn>2</cn></apply>

C.2.4.4 MMLdefinition: lt

Description This n-ary function represents the relation "less than" which returns true if each argument in turn is less
than the one following it. There must be at least two arguments.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real+) -> boolean
Property

341

Description Transitive

Example <apply><lt/><cn>2</cn><cn>3</cn><cn>4</cn></apply>

C.2.4.5 MMLdefinition: geq

Description This element represents the n-ary greater than or equal to function. which returns true if each argument in
turn is greater than or equal to the one following it. . There must be at least two arguments.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real+) -> boolean
Property
Description Transitive

Property
Description Reflexive

Example <apply><geq/><cn>4</cn><cn>3</cn><cn>3</cn></apply>

C.2.4.6 MMLdefinition: leq

Description This n-ary function represents the relation "less than or equal to" which returns true if each argument in
turn is less or equal to the one following it. There must be at least two arguments.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real+) -> boolean
Property
Description Transitive

Property
Description Reflexive

Example <apply><leq/><cn>3</cn><cn>3</cn><cn>4</cn></apply>

C.2.4.7 MMLdefinition: equivalent

Description This element represents the n-ary equivalence function as defined by a partitioning of sets. There must be
at least two arguments.
See also .

Classification function

342

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (real,real+) -> boolean
Property
Description Symmetric

Property
Description Transitive

Property
Description Reflexive

Example <apply><equivalent/><ci>a</ci><ci>b</ci></apply>

C.2.4.8 MMLdefinition: approx

Description This element is used to indicate that two or more quantites are approximately equal. If a more precise defi-
nition of approximately equal is required the definintionURL should be used to identify a suitable definition..
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType real

Signature (real,real+) -> boolean
(boolean, boolean+) -> boolean

Property
Description Symmetric

Property
Description Transitive

Property
Description Reflexive

Example <apply><approx/><pi/><cn type="rational">22<sep/>7</cn></apply>

C.2.4.9 MMLdefinition: factorof

Description This is the binary MathML operator that is used indicate the mathematical relationship a "is a factor of" b.
This relationship is true just if b mod a = 0
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type MathMLType integer

343

Signature (integer, integer) -> boolean
Property
Description ForAll(a,b a and b integers, a divides b if there is an integer c such that a*c = b

Example <apply><factorof/>
<ci> a </ci>
<ci> b </ci>

</apply>

C.2.5 Calculus and Vector Calculus

C.2.5.1 MMLdefinition: int

Description The definite or indefinite integral of a function or algebraic expression. There are several forms of calling
sequences depending on the nature of the arguments, and whether or not it is a definite integral.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> function
(bvar,algebraic) -> algebraic
(bvar,interval,algebraic) -> algebraic
(bvar,condition,algebraic) -> algebraic
(bvar,lowlimit,uplimit,algebraic) -> algebraic

Example <apply><int/>
<bvar><ci> x </ci></bvar>
<lowlimit><cn> 0 </cn></lowlimit>
<uplimit><ci> a </ci></uplimit>
<apply><ci> f </ci><ci> x </ci></apply>

</apply>
Example <apply><int/>

<bvar><ci> x </ci></bvar>
<interval><ci> a </ci><ci> b </ci></interval>
<apply><cos/><ci> x </ci></apply>

</apply>
Example <apply><int/>

<bvar><ci> x </ci></bvar>
<condition>
<apply><in/><ci> x </ci><ci type="set"> D </ci></apply>

</condition>
<apply><ci type="function"> f </ci><ci> x </ci></apply>

</apply>

C.2.5.2 MMLdefinition: diff

Description This occurs in two forms, one for functions and one for expressions involving a bound variable.
For expressions in the bound variable x, the expression to be differentiated follows the bound variable.

344

If there is only one argument, a function, the result of applying diff to that function is a new function, the
derivative of f, often written as f’ .
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type function | algebraic algebraic

Signature (bvar,algebraic) -> algebraic
(function) -> function

Property
Description ForAll([x,n],n!=0,diff(x^n , x) = n*x^(n-1))

Example
Description diff(sin(x) , x) = cos(x)

<apply><eq/>
<apply><diff/>
<bvar><ci>x</ci></bvar>
<apply><sin/><ci>x</ci></apply>

</apply>
<apply><cos/><ci>x</ci></apply>

</apply>
Example
Description diff(x^2,x)

<apply><diff/>
<bvar><ci>x</ci></bvar>
<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>
Example
Description diff(f(x),x)

<apply><diff/><bvar><ci> x </ci></bvar>
<apply><ci type="function"> f </ci><ci> x </ci></apply>
</apply>

Example
Description diff(sin) = cos

<apply><eq/><apply><diff/><sin/></apply><cos/></apply>

C.2.5.3 MMLdefinition: partialdiff

Description This symbol is used to express partial differentiation. It occurs in two forms: one form corresponding
to the differentiation of algebraic expressions (often displayed using the Leibnitz notation, and the other to
express partial derivatives of actual functions (often expressed asD_1,2 f)
For the first form, the arguments are the bound variables followed by the algebraic expression. The result is
an algebraic expression. Repetitions of the bound variables are indicated using the degree element. The total
degree is indicated by use of a degree element at the top level.

345

For the second form, there are two arguments: a list of indices indicating by position which coordinates are
involved in constructing the partial derivatives, and the actual function. The coordinates may be repeated.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type function | algebraic algebraic

Signature (degree?,bvar+,algebraic) -> algebraic
(vector,function) -> function

Property
Description ForAll(x,y,diff(x*y , x) = diff(x,x)*y + diff(y,x)*x)

Property
Description ForAll(x,a,b,diff(a + b , x) = diff(a,x) + diff(b,x))

Property
Description diff(sin) = cos

Example
Description d^k/(dx^m dy^n) f(x,y)

<apply><partialdiff/>
<degree><ci>k</ci></degree>
<bvar><ci> x </ci><degree><ci> m </ci></degree></bvar>
<bvar><ci> y </ci><degree><ci> n </ci></degree></bvar>
<apply><ci type="function"> f </ci>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>

Example
Description d^2/(dx dy) f(x,y)

<apply><partialdiff/>
<bvar><ci> x </ci></degree></bvar>
<bvar><ci> y </ci></degree></bvar>
<apply><ci type="function"> f </ci>
<ci> x </ci>
<ci> y </ci>
</apply>
</apply>

Example
Description D_1,1,3(f)

<apply><partialdiff/>
<list><cn>1</cn><cn>1</cn><cn>3</cn></list>
<ci type="function">f</ci>

346

</apply>

C.2.5.4 MMLdefinition: lowlimit

Description Construct a lower limit. Upper and lower limits are used in some integrals as alternative way of describing
the interval
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (algebraic+) -> lowlimit
Example
Description See int

C.2.5.5 MMLdefinition: uplimit

Description Construct an upper limit. Upper and lower limits are used in some integrals as alternative way of describing
the interval
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (algebraic+) -> uplimit
Example
Description See int

C.2.5.6 MMLdefinition: bvar

Description The bvar element is the container element for the "bound variable" of an operation. For example, in an
integral it specifies the variable of integration. In a derivative, it indicates which variable with respect to
which a function is being differentiated. When the bvar element is used to quantifiy a derivative, the bvar
element may contain a child degree element that specifies the order of the derivative with respect to that
variable. The bvar element is also used for the internal variable in sums and products.
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (symbol,degree?) -> bvar
Example <apply><forall/><bvar><ci>x</ci></bvar>

<condition><apply><in/><ci>x</ci><reals/></apply></condition>
<apply><eq/><apply><minus/><ci>x</ci><ci>x</ci></apply><cn>0</cn></apply>
</apply>

347

Example <apply><diff/>
<bvar><ci>x</ci><degree><cn>2</cn></degree></bvar>
<apply><power/><ci>x</ci><cn>5</cn></apply>
</apply>

C.2.5.7 MMLdefinition: degree

Description A parameter used by some MathML data-types to specify that, for example, a bound variable is repeated
several times.
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (anything) -> degree
Example <apply><diff/>

<bvar><ci>x</ci><degree><cn>2</cn></degree></bvar>
<apply><power/><ci>x</ci><cn>5</cn></apply>
</apply>

C.2.5.8 MMLdefinition: divergence

Description This symbol is used to represent the divergence function.
Given, one argument which is a vector of scalar valued functions defined on the coordinates x_1, x_2, ... x_n.
It returns a scalar value function. That function satisfies the defining relation:
divergence(F) = \partial(F_(x_1))/\partial(x_1) + ... + \partial(F_(x_n))/\partial(x_n)
The functions defining the coordinates may be defined implicitely as expressions defined in terms of the
coordinate names, in which case the coordinate names must be provided as bound variables.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (vector(function)) -> function
(bvar+,vector(algebraic)) -> algebraic

Example <apply><divergence/><ci type="vector"> E</ci></apply>
Example <declare><ci>F</ci><vector><ci>f1</ci><ci>f2</ci><ci>f3</ci></vector></declare>

<apply><divergence/><ci>F</ci></apply>
Example <apply><divergence/>

<bvar><ci>x</ci></bvar><bvar><ci>y</ci></bvar><bvar><ci>z</ci></bvar>
<vector>
<apply><plus/><ci>x</ci><ci>y</ci></apply>
<apply><plus/><ci>x</ci><ci>z</ci></apply>
<apply><plus/><ci>z</ci><ci>y</ci></apply>
</vector>
</apply>

Example

348

Description If a is a vector field defined inside a closed surfaceS enclosing a volumeV, then the divergence ofa is
given by

<apply>
<eq/>
<apply><divergence/><ci type="vectorfield">a</ci></apply>
</apply>
<apply>
<limit/>
<bvar>
<ci> V </ci>

</bvar>
<condition>
<apply>
<tendsto/>
<ci> V </ci>
<cn> 0 </cn>

</apply>
</condition>
<apply>
<divide/>
<apply><int encoding="text" definitionURL="SurfaceIntegrals.htm"/>
<bvar>
<ci> S</ci>

</bvar>
<ci> a </ci>
</apply>
<ci> V </ci>

</apply>
</apply>

</apply>

C.2.5.9 MMLdefinition: grad

Description The gradient element is the vector calculus gradient operator, often called grad. It represents the operation
that constructs a vector of partial derivatives vector(df/dx_1 , df/dx_2, ... df/dx_n)
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> vector(function)
(bvar+,algebraic) -> vector(algebraic)

Example <apply><grad/><ci type="function"> f</ci></apply>
Example <apply><grad/>

<bvar><ci>x</ci></bvar><bvar><ci>y</ci></bvar><bvar><ci>z</ci></bvar>

349

<apply><times/><ci>x</ci><ci>y</ci><ci>z</ci></apply></apply>
</apply>

C.2.5.10 MMLdefinition: curl

Description This symbol is used to represent the curl operator. It requires both a coordinates and a vector of expressions
defined over those coordinates. It returns a vector valued expression.
In its functional form the coordinates are implicit in the definition of the function so it needs only one
argument which is a vector valued function and returns a vector of functions.
Given F = F(x,y,z) = (f1(x,y,z) , f2(x,y,z), f3(x,y,z)) and coordinate names (x,y,z) the following relationship
must hold:
curl(F) = i X \partial(F)/\partial(x) + j X \partial(F)/\partial(y) + j X \partial(F)/\partial(Z) where i,j,k are the
unit vectors corresponding to the x,y,z axes respectivly and the multiplication X is cross multiplication.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (bvar,bvar,bvar,algebraic) -> vector(algebraic)
(vector(function)) -> vector(function)

Property
Description curl(F) = i X \partial(F)/\partial(x) + j X \partial(F)/\partial(y) + j X \partial(F)/\partial(Z)

Example <apply>
<curl/>
<ci type="vector" > f</ci>
</apply>

C.2.5.11 MMLdefinition: laplacian

Description This is the element used to indicate an application of the laplacian operator. It may be applied directly to
expressions, in which case the coordinate names are provided in order by use of bvar. It may also be applied
directly to a function F in which case, the definition below is for F = F(x_1, x_2, ... x_n) where x_1, x_2, ...
x_n are the coordinate names.
laplacian(F) = \partial^2(F)/\partial(x_1)^2 + ... + \partial^2(F)/\partial(x_n)^2
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (bvar+,algebraic) -> algebraic
(scalar_valued_function) -> scalar_valued_function

Example <apply><laplacian/><ci type="vector"> E</ci></apply>
Example <declare><ci>F</ci><vector><ci>f1</ci><ci>f2</ci><ci>f3</ci></vector></declare>

<apply><laplacian/><ci>F</ci></apply>
Example <apply><laplacian/>

<bvar><ci>x</ci></bvar><bvar><ci>y</ci></bvar><bvar><ci>z</ci></bvar>
<apply><ci>f</ci>

350

<ci>x</ci><ci>y</ci>
</apply>

</apply>

C.2.6 Theory of Sets

C.2.6.1 MMLdefinition: set

Description The set element is the container element that constructs a set of elements. They may be explicitly listed,
or defined through conditions on a bound variable.
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type set | multiset set

Signature (anything*) -> set
(bvar , condition , anything) -> set

Example <set>
<ci> a </ci>
<ci> b </ci>
<ci> c </ci>

</set>
Example <set>

<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<ci> x </ci>
<cn> 5 </cn>

</apply>
</condition>

</set>

C.2.6.2 MMLdefinition: list

Description The list element is the container element that constructs a list of elements. They may be explicitly listed,
or defined through conditions on a bound variable.
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
order lexicographic | numeric none

Signature (anything*) -> list
(bvar,condition,anything) -> list
[order=ordering](bvar,condition,anything) -> list(ordering)

Example <list>
<ci> a </ci>

351

<ci> b </ci>
<ci> c </ci>

</list>

Example <list order="numeric">
<bvar><ci> x </ci></bvar>
<condition>
<apply><lt/>
<ci> x </ci>
<cn> 5 </cn>

</apply>
</condition>

</list>

C.2.6.3 MMLdefinition: union

Description This is the set-theoretic operation of union of two or more sets. It generalizes to operations on multisets
by tracking the frequency of occurrence of each element in the union.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (set*) -> set
(multiset+) -> multiset

Example <apply><union/>
<ci> A </ci>
<ci> B </ci>

</apply>

C.2.6.4 MMLdefinition: intersect

Description This operator indicates the intersection of two sets. If the two sets are multisets, the result is a multiset. in
which each element is present with a repetition determined by the smallest number of occurrences in any of
the sets (multisets) that occur as arguments.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (set+) -> set
(multiset+) -> multiset

Example <apply><intersect/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>

</apply>

352

C.2.6.5 MMLdefinition: in

Description The in element is the relational operator used for a set-theoretic inclusion (‘is in’ or ‘is a member of’).
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (anything, set) -> boolean
(anything, multiset) -> boolean

Example <apply><in/>
<ci> a </ci>
<ci type="set"> A </ci>

</apply>

C.2.6.6 MMLdefinition: notin

Description The notin element is the relational operator element used to construct set-theoretic exclusion (‘is not in’
or ‘is not a member of’).
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (anything, set) -> boolean
(anything , multiset) -> boolean

Example <apply><notin/>
<ci> a </ci>
<ci type="set"> A </ci>

</apply>

C.2.6.7 MMLdefinition: subset

Description The subset element is the relational operator element for a set-theoretic containment (‘is a subset of’).
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (set,set) -> boolean
(multiset , multiset) -> boolean

Example <apply><subset/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>

</apply>

353

C.2.6.8 MMLdefinition: prsubset

Description The prsubset element is the relational operator element for set-theoretic proper containment (‘is a proper
subset of’).
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (set, set) -> boolean
(multiset , multiset) -> boolean

Example <apply><prsubset/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>

</apply>

C.2.6.9 MMLdefinition: notsubset

Description The notsubset element is the relational operator element for the set-theoretic relation ‘is not a subset of’.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (set, set) -> boolean
(multiset , multiset) -> boolean

Example <apply><notsubset/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>

</apply>

C.2.6.10 MMLdefinition: notprsubset

Description The notprsubset element is the element for constructing the set-theoretic relation ‘is not a proper subset
of’.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (set, set) -> boolean
(multiset , multiset) -> boolean

Example <apply><notprsubset/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>

</apply>

354

C.2.6.11 MMLdefinition: setdiff

Description The setdiff element is the operator element for a set-theoretic difference of two sets.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (set, set) -> set
(multiset , multiset) -> multiset

Example <apply><setdiff/>
<ci type="set"> A </ci>
<ci type="set"> B </ci>

</apply>

C.2.6.12 MMLdefinition: card

Description The card element is the operator element for deriving the size or cardinality of a set. The size of a multset
is simply the total number of elements in the multiset.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (set) -> scalar
(multiset) -> scalar

Example <apply><eq/>
<apply><card/><ci> A </ci></apply>
<ci> 5 </ci>

</apply>

C.2.6.13 MMLdefinition: cartesianproduct

Description The cartesianproduct element is the operator for a set-theoretic cartesian product of two (or more) sets.
The cartesian product of multisets produces a multiset since n-tuples may be repeated if elements in the base
sets are repeated.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (set*) -> set
(multiset*) -> multiset

Example <apply><cartesianproduct/>
<ci> A </ci>
<ci> B </ci>

</apply>

355

Example <apply><cartesianproduct/>
<reals/>
<reals/>
<reals/>

</apply>

C.2.7 Sequences and Series

C.2.7.1 MMLdefinition: sum

Description The sum element denotes the summation operator. Upper and lower limits for the sum, and more generally
a domains for the bound variables are specified using uplimit, lowlimit or a condition on the bound variables.
The index for the summation is specified by a bvar element.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (bvar*, ((lowlimit, uplimit) |condition), algebraic) -> real
Example <apply><sum/>

<bvar> <ci> x </ci></bvar>
<lowlimit><ci> a </ci></lowlimit>
<uplimit><ci> b </ci></uplimit>
<apply><ci> f </ci><ci> x </ci></apply>

</apply>
Example <apply><sum/>

<bvar><ci> x </ci></bvar>
<condition><apply> <in/><ci> x </ci><ci type="set"> B </ci></apply></condition>
<apply><ci type="function"> f </ci><ci> x </ci></apply>

</apply>

C.2.7.2 MMLdefinition: product

Description The product element denotes the product operator. Upper and lower limits for the product, and more
generally a domains for the bound variables are specified using uplimit, lowlimit or a condition on the bound
variables. The index for the product is specified by a bvar element.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (bvar*, ((lowlimit, uplimit) |condition), algebraic) -> real
Example <apply><product/>

<bvar><ci> x </ci></bvar>
<lowlimit> <ci> a </ci></lowlimit>
<uplimit><ci> b </ci></uplimit>
<apply><ci type="function"> f </ci><ci> x </ci></apply>

</apply>

356

Example <apply><product/>
<bvar><ci> x </ci></bvar>
<condition><apply> <in/><ci> x </ci><ci type="set"> B </ci></apply></condition>
<apply><ci> f </ci><ci> x </ci></apply>

</apply>

C.2.7.3 MMLdefinition: limit

Description The limit element represents the operation of taking a limit of a sequence. The limit point is expressed by
specifying a lowlimit and a bvar, or by specifying a condition on one or more bound variables.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (bvar*, ((lowlimit, uplimit) |condition), algebraic) -> real
Example <apply><limit/>

<apply>
<tendsto type="above"/>
<ci>x</ci><cn>0</cn>
</apply>
<apply><sin/><ci>x</ci></apply>

</apply>
Example <apply><limit/>

<tendsto><ci>x</ci><cn>0</cn></tendsto>
<apply><sin/><ci>x</ci></apply>

</apply>

C.2.7.4 MMLdefinition: tendsto

Description The tendsto element is used to express the relation that a quantity is tending to a specified value.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type above | below | all | MathMLType all

Signature (algebraic,algebraic) -> tendsto
[type=direction](algebraic,algebraic) -> tendsto(direction)

Example <apply><tendsto type="above"/>
<apply><power/><ci> x </ci><cn> 2 </cn></apply>
<apply><power/><ci> a </ci><cn> 2 </cn></apply>

</apply>
Example <apply><tendsto/>

<vector><ci> x </ci><ci> y </ci></vector>
<vector>
<apply><ci type="function">f</ci><ci> x </ci><ci> y </ci></apply>
<apply><ci type="function">g</ci><ci> x </ci><ci> y </ci></apply>

357

</vector>
</apply>

C.2.8 Elementary Classical Functions

C.2.8.1 MMLdefinition: exp

Description This element represents the exponentiation function as described in Abramowitz and Stegun, section 4.2.
It takes one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property <apply><eq/>
<apply><exp/><cn>0</cn></apply>
<cn>1</cn>

</apply>
Property
Description for all k if k is an integer then e^(z+2*pi*k*i)=e^z

Example <apply><exp/><ci> x </ci></apply>

C.2.8.2 MMLdefinition: ln

Description This element represents the ln function (natural logarithm) as described in Abramowitz and Stegun, section
4.1. It takes one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description -pi lt Im ln x leq pi

Example <apply><ln/><ci> a </ci></apply>

C.2.8.3 MMLdefinition: log

Description This element represents the log function. It is defined in Abramowitz and Stegun, Handbook of Mathe-
matical Functions, section 4.1 If its first argument is a logbase element, it specifies the base and the second
argument is the argument to which the function is applied using that base. If no logbase element is present,
the base is assumed to be 10.
See also .

358

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (logbase, real) -> real
(logbase,complex) -> complex
(real) -> real
(complex) -> complex

Property
Description a^b = c implies log_a c = b

Example <apply><log/>
<logbase><cn> 3 </cn></logbase>
<ci> x </ci>

</apply>
Example <apply><log/><ci>x</ci></apply>

C.2.8.4 MMLdefinition: sin

Description This element represents the sin function as described in Abramowitz and Stegun, section 4.3. It takes one
argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description sin(0) = 0

Property
Description sin(integer*Pi) = 0

Property
Description sin(x) = (exp(ix)-exp(-ix))/2i

Example <apply><sin/><ci> x </ci></apply>

C.2.8.5 MMLdefinition: cos

Description This element represents the cos function as described in Abramowitz and Stegun, section 4.3. It takes one
argument. It takes one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

359

Signature real -> real
complex -> complex

Property
Description cos(0) = 1

Property
Description cos(integer*Pi+Pi/2) = 0

Property
Description cos(x) = (exp(ix)+exp(-ix))/2

Example <apply><cos/><ci>x</ci></apply>

C.2.8.6 MMLdefinition: tan

Description This element represents the tan function as described in Abramowitz and Stegun, section 4.3. It takes one
argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description tan(integer*Pi) = 0

Property
Description tan(x) = sin(x)/cos(x)

Example <apply><tan/><ci>x</ci></apply>

C.2.8.7 MMLdefinition: sec

Description This element represents the sec function as described in Abramowitz and Stegun, section 4.3. It takes one
argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description sec(x) = 1/cos(x)

Example <apply><sec/><ci>x</ci></apply>

360

C.2.8.8 MMLdefinition: csc

Description This element represents the csc function as described in Abramowitz and Stegun, section 4.3. It takes one
argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description csc(x) = 1/sin(x)

Example <apply><csc/><ci>x</ci></apply>

C.2.8.9 MMLdefinition: cot

Description This element represents the cot function as described in Abramowitz and Stegun, section 4.3. It takes one
argument. It takes one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description cot(integer*Pi+Pi/2) = 0

Property
Description cot(x) = cos(x)/sin(x)

Property
Description cot A = 1/tan A

Example <apply><cot/><ci>x</ci></apply>

C.2.8.10 MMLdefinition: sinh

Description This element represents the sinh function as described in Abramowitz and Stegun, section 4.5. It takes one
argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

361

Signature real -> real
complex -> complex

Property
Description sinh A = 1/2 * (e^A - e^(-A))

Example <apply><sinh/><ci>x</ci></apply>

C.2.8.11 MMLdefinition: cosh

Description This symbol represents the cosh function as described in Abramowitz and Stegun, section 4.5. It takes one
argument. It takes one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description cosh A = 1/2 * (e^A + e^(-A))

Example <apply><cosh/><ci>x</ci></apply>

C.2.8.12 MMLdefinition: tanh

Description This element represents the tanh function as described in Abramowitz and Stegun, section 4.5. It takes one
argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description tanh A = sinh A / cosh A

Example <apply><tanh/><ci>x</ci></apply>

C.2.8.13 MMLdefinition: sech

Description This element represents the sech function as described in Abramowitz and Stegun, section 4.5. It takes
one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

362

Signature real -> real
complex -> complex

Property
Description sech A = 1/cosh A

Example <apply><sech/><ci>x</ci></apply>

C.2.8.14 MMLdefinition: csch

Description This element represents the csch function as described in Abramowitz and Stegun, section 4.5. It takes
one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description csch A = 1/sinh A

Example <apply><csch/><ci>x</ci></apply>

C.2.8.15 MMLdefinition: coth

Description This element represents the coth function as described in Abramowitz and Stegun, section 4.5. It takes one
argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description coth A = 1/tanh A

Example <apply><coth/><ci>x</ci></apply>

C.2.8.16 MMLdefinition: arcsin

Description This element represents the arcsin function which is the inverse of the sin function as described in
Abramowitz and Stegun, section 4.4. It takes one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

363

Signature real -> real
complex -> complex

Property
Description arcsin(z) = -i ln (sqrt(1-z^2)-iz)

Example <apply><arcsin/><ci>x</ci></apply>

C.2.8.17 MMLdefinition: arccos

Description This element represents the arccos function which is the inverse of the cos function as described in
Abramowitz and Stegun, section 4.4. It takes one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description arccos(z) = -i ln(z+i \sqrt(1-z^2))

Example <apply><arccos/><ci>x</ci></apply>

C.2.8.18 MMLdefinition: arctan

Description This element represents the arctan function which is the inverse of the tan function as described in
Abramowitz and Stegun, section 4.4. It takes one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description arctan(z) = (log(1+iz)-log(1-iz))/2i

Example <apply><arctan/><ci>x</ci></apply>

C.2.8.19 MMLdefinition: arccosh

Description This symbol represents the arccosh function as described in Abramowitz and Stegun, section 4.6. It takes
one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

364

Signature real -> real
complex -> complex

Property
Description arccosh(z) = 2*ln(\sqrt((z+1)/2) + \sqrt((z-1)/2))

Example <apply><arccosh/><ci>x</ci></apply>

C.2.8.20 MMLdefinition: arccot

Description This element represents the arccot function as described in Abramowitz and Stegun, section 4.4. It takes
one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description arccot(-z) = - arccot(z)

Example <apply><arccot/><ci>x</ci></apply>

C.2.8.21 MMLdefinition: arccoth

Description This element represents the arccoth function as described in Abramowitz and Stegun, section 4.6. It takes
one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description arccoth(z) = (ln(-1-z)-ln(1-z))/2

Example <apply><arccoth/><ci>x</ci></apply>

C.2.8.22 MMLdefinition: arccsc

Description This element represents the arccsc function as described in Abramowitz and Stegun, section 4.4. It takes
one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

365

Signature real -> real
complex -> complex

Property
Description arccsc(z) = -i ln(i/z + \sqrt(1 - 1/z^2))

Example <apply><arccsc/><ci>x</ci></apply>

C.2.8.23 MMLdefinition: arccsch

Description This element represents the arccsch function as described in Abramowitz and Stegun, section 4.6. It takes
one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description arccsch(z) = ln(1/z + \sqrt(1+(1/z)^2))

Example <apply><arccsch/><ci>x</ci></apply>

C.2.8.24 MMLdefinition: arcsec

Description This element represents the arcsec function as described in Abramowitz and Stegun, section 4.4. It takes
one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description arcsec(z) = -i ln(1/z + i \sqrt(1-1/z^2))

Example <apply><arcsec/><ci>x</ci></apply>

C.2.8.25 MMLdefinition: arcsech

Description This element represents the arcsech function as described in Abramowitz and Stegun, section 4.6. It takes
one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

366

Signature real -> real
complex -> complex

Property
Description arcsech(z) = 2 ln(\sqrt((1+z)/(2z)) + \sqrt((1-z)/(2z)))

Example <apply><arcsech/><ci>x</ci></apply>

C.2.8.26 MMLdefinition: arcsinh

Description This element represents the arcsinh function as described in Abramowitz and Stegun, section 4.6. It takes
one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description arcsinh z = ln(z + \sqrt(1+z^2))

Example <apply><arcsinh/><ci>x</ci></apply>

C.2.8.27 MMLdefinition: arctanh

Description This element represents the arctanh function as described in Abramowitz and Stegun, section 4.6. It takes
one argument.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real -> real
complex -> complex

Property
Description arctanh(z) = - i * arctan(i * z)

Example <apply><arctanh/><ci>x</ci></apply>

C.2.9 Statistics

C.2.9.1 MMLdefinition: mean

Description The mean value of a set of data, or of a , or of a
random variable. See CRC Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC Press
Inc., 1996, section 7.7.1
See also .

Classification function

367

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (random_variable) -> scalar
(scalar+) -> scalar

Example <apply><mean/><ci type="discrete_random_variable"> X </ci></apply>
Example <apply><mean/><cn>3</cn><cn>4</cn><cn>3</cn><cn>7</cn><cn>4</cn></apply>
Example <apply><mean/><ci> X </ci></apply>

C.2.9.2 MMLdefinition: sdev

Description This element represents a function denoting the sample standard deviation of its arguments. The arguments
are either all data, or a discrete random variable, or a continuous random variable.
For numeric data at least two values are required and this is the square root of (the sum of the squares
of the deviations from the mean of the arguments, divided by the number of arguments less one). For a
"discrete_random_variable", this is the square root of the second moment about the mean. This further gen-
eralizes to identifiers of type continuous_random_variable.
See CRC Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996,
(7.7.11) section 7.7.1.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (scalar,scalar+) -> scalar
(descrete_random_variable) -> scalar
(continuous_random_variable) -> scalar

Example <apply><sdev/><cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn></apply>
Example <apply><sdev/>

<ci type="discrete_random_variable"> X </ci>
</apply>

C.2.9.3 MMLdefinition: variance

Description This symbol represents a function denoting the variance of its arguments, that is, the square of the standard
deviation. The arguments are either all data in which case there are two or more of them, or an identifier of
type discrete_random_variable, or continuous_random_variable. See CRC Standard Mathematical Tables
and Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996, [7.1.2] and [7.7].
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (scalar*) -> scalar
(descrete_random_variable) -> scalar
(continuous_random_variable) -> scalar

Example <apply><variance/><cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn></apply>

368

Example <apply><variance/>
<ci type="discrete_random_variable"> X </ci>
</apply>

C.2.9.4 MMLdefinition: median

Description This symbol represents an n-ary function denoting the median of its arguments. That is, if the data were
placed in ascending order then it denotes the middle one (in the case of an odd amount of data) or the
average of the middle two (in the case of an even amount of data). See CRC Standard Mathematical Tables
and Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996, section 7.7.1
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (scalar+) -> scalar
Example <apply><median/><cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn></apply>

C.2.9.5 MMLdefinition: mode

Description This represents the mode of n data values. The mode is the data value that occurs with the greatest fre-
quency. See CRC Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC Press Inc.,
1996, section 7.7.1
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA

Signature (scalar+) -> scalar
Example <apply><mode/><cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn></apply>

C.2.9.6 MMLdefinition: moment

Description This symbol is used to denote the i’th moment of a set of data, or a random variable. Unless otherwise
specified, the moment is about the origin. For example, the ith moment of X about the origin is given by
moment(0 , i , x).
The first argument specifies the point about which the moment is computed. It is either an actual point (e.g. 0
), or a function which can be used on the data to compute that point. To indicate a central moment, specify the
element "mean". The second argument indicates which moment about that point is being specified. For the
i’th moment the second argument should be i. The third argument is either a discrete or continuous random
variable, or the start of a sequence of data. If there is a sequence of data then the i’th moment is (1/n) (x_1^i
+ x_2^i + ... + x_n^i) and the higher the moment, the more data is required.
The use of of a degree to indicate the order of the moment has been deprecated.
See CRC Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996, section
7.7.1
See also .

Classification function

369

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (degree, momentabout? , scalar+) -> scalar
(degree, momentabout? , discrete_random_variable) -> scalar
(degree, momentabout? , continuous_random_variable) -> scalar

Example
Description The third moment about the point p of a discrete random variable

<apply> <moment/>
<degree><cn>3</cn></degree>
<momentabout><ci>p</ci></momentabout>
<ci>X</ci>

</apply>

Example
Description The 3rd central moment of a set of data.

<apply><moment/>
<degree><cn>3</cn></degree>
<momentabout><mean/></momentabout>
<cn>6</cn><cn>4</cn><cn>2</cn><cn>2</cn><cn>5</cn>

</apply>

Example
Description The 3rd central moment of a discrete random variable.

<apply><moment/>
<degree><cn>3</cn></degree>
<momentabout><mean/></momentabout>
<ci type="discrete_random_variable"> X </ci>

</apply>

Example
Description The 3rd moment about the origin of a set of data.

<apply><moment/>
<degree><cn>3</cn></degree>
<momentabout><cn>0</cn></momentabout>
<cn>6</cn><cn>4</cn><cn>2</cn><cn>2</cn>

</apply>

C.2.9.7 MMLdefinition: momentabout

Description This element is used to identify the point about which a moment is to be computed. It may be an explicit
point, or it may identify a method by which the point is to be computed from the given data. For example the
moment may be computed about the mean by specifying the element used for the mean.
See also .

Classification constructor
MMLattribute

370

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (function) -> method
(scalar) -> point

Example
Description The third moment about the point p of a discrete random variable

<apply> <moment/>
<degree> <cn> 3 </cn> </degree>
<momentabout> <ci> p </ci> </momentabout>
<ci> X </ci>

</apply>
Example
Description The 3rd central moment of a set of data.

<apply><moment/>
<degree><cn> 3 </cn></degree>
<momentabout><mean/></momentabout>
<cn>6</cn><cn>4</cn><cn>2</cn><cn>2</cn><cn>5</cn>

</apply>

C.2.10 Linear Algebra

C.2.10.1 MMLdefinition: vector

Description A vector is an ordered n-tuple of values representing an element of an n-dimensional vector space. The
"values" are all from the same ring, typically real or complex. Where orientation is important, such as for pre
or post multiplication by a matrix a vector is treated as if it were a column vector and its transpose is treated
a row vector. The type attribute can be used to explicitly specify that a vector is a "row" vector. See CRC
Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4]
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type row | column | MathMLType column

Signature (real*) -> vector(type=real)
[type=vectortype]((cn|ci|apply)*) -> vector(type=vectortype)

Property
Description vector=column_vector

Property
Description matrix * vector = vector

Property
Description matrix * column_vector = column_ vector

Property

371

Description row_vector*matrix = row_vector

Property
Description transpose(vector) = row_vector

Property
Description transpose(column_vector) = row_vector

Property
Description transpose(row_vector) = column_vector

Property
Description distributive over scalars

Property
Description associativity.

Property
Description Matrix * column vector

Property
Description row vector * Matrix

Example <vector>
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>

<ci> x </ci>
</vector>

Example <vector type="row">
<cn> 1 </cn>
<cn> 2 </cn>
<cn> 3 </cn>
<ci> x </ci>

</vector>

C.2.10.2 MMLdefinition: matrix

Description This is the constructor for a matrix. it requires matrixrow’s as arguments. It is used to represent matrices.
See CRC Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.1].
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML
type real | complex | integer | symbolic | integer | MathMLType real

Signature (matrixrow*) -> matrix
[type=matrixtype](matrixrow*) -> matrix(type=matrixtype)

372

Property
Description scalar multiplication

Property
Description scalar multiplication

Matrix*column vector

Property
Description scalar multiplication

Addition

Property
Description scalar multiplication

Matrix*Matrix

Example <matrix>
<matrixrow><cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn></matrixrow>
<matrixrow><cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn></matrixrow>
<matrixrow><cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn></matrixrow>

</matrix>

C.2.10.3 MMLdefinition: matrixrow

Description This symbol is an n-ary constructor used to represent rows of matrices. Its arguments should be members
of a ring.
See also .

Classification constructor
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (ringelement +) -> matrixrow
Example <matrixrow>

<cn> 1 </cn>
<cn> 2 </cn>

</matrixrow>

C.2.10.4 MMLdefinition: determinant

Description The "determinant" of a matrix. This is a unary function. See CRC Standard Mathematical Tables and
Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996, [2.5.4].
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA

Signature (matrix)-> scalar
Example <apply><determinant/>

<ci type="matrix"> A </ci>
</apply>

373

C.2.10.5 MMLdefinition: transpose

Description The transpose of a matrix or vector. See CRC Standard Mathematical Tables and Formulae, editor: Dan
Zwillinger, CRC Press Inc., 1996, [2.4] and [2.5.1].
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (vector)->vector(type=row)
(matrix)->matrix
(vector(type=row)->vector

Property
Description transpose(transpose(A))= A

Property
Description transpose(transpose(V))= V

Example <apply><transpose/>
<ci type="matrix"> A </ci>

</apply>
Example <apply><transpose/>

<ci type="vector"> V </ci>
</apply>

C.2.10.6 MMLdefinition: selector

Description The operator used to extract sub-objects from vectors, matrices matrix rows and lists. Elements are ac-
cessed by providing one index element for each dimension. For matrices, sub-matrices are selected by pro-
viding one fewer index items. For a matrix A and a column vector V : select(i, j , A) is the i,j th element of
A. select(i , A) is the matrixrow formed from the ith row of A. select(i , V) is the ith element of V. select(
V) is the sequence of all elements of V. select(A) is the sequence of all elements of A, extracted row by row.
select(i,L) is the ith element of a list. select(L) is the sequence of elements of a list.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (matrix , scalar,scalar)->scalar
(matrix, scalar)->matrixrow
(matrix)->scalar*
((vector|list|matrixrow) , scalar)->scalar
(vector|list|matrixrow)->scalar*

Property
Description For all vectors V, V = vector(select(V))

Property

374

Description For all matrices M, M = matrix(select(M))

Example <selector/><ci type="matrix">M</ci><cn>3</cn><cn>2</cn>

C.2.10.7 MMLdefinition: vectorproduct

Description The vector or cross product of two nonzero three-dimensional vectors v1 and v2 is defined by
v1 x v2 = n norm(v1) * norm(v2) sin(theta) where n is the unit normal vector perpendicular to both, adhering
to the right hand rule. CRC Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC Press
Inc., 1996, [2.4]
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (vector,vector)->vector
Property
Description if v1 and v2 are parallel then their vector product is 0

Example <apply><vectorproduct/><ci>u</ci><ci>v</ci></apply>

C.2.10.8 MMLdefinition: scalarproduct

Description This symbol represents the scalar product function. It takes two vector arguments and returns a scalar
value. The scalar product of two vectors a, b is defined as |a| * |b| * cos(\theta), where \theta is the angle
between the two vectors and |.| is a euclidean size function. Note that the scalar product is often referred to
as the dot product.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature (vector,vector) -> scalar
Property
Description if the scalar product of two vectors is 0 then they are orthogonal.

Example <apply><scalarproduct/><ci>u</ci><ci>v</ci></apply>

C.2.10.9 MMLdefinition: outerproduct

Description This symbol represents the outer product function. It takes two vector arguments and returns a matrix. It
is defined as follows: if we write the i,j’th element of the matrix to be returned as m_i,j, then: m_i,j=a_i *
b_j where a_i,b_j are the i’th and j’th elements of a, b respectively.
See also .

Classification function
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

375

Signature (vector,vector) -> matrix
Example <apply><outerproduct/><ci>u</ci><ci>v</ci></apply>

C.2.11 Constants and Symbol Elements

C.2.11.1 MMLdefinition: integers

Description integers represents the set of all integers.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature set
Property
Description n is an integer implies n+1 is an integer.

<apply><implies/>
<apply><in/><ci>n</ci><integers/></apply>
<apply><in/><apply><plus/><ci>n</ci><cn>1</cn></apply><integers/></apply>

</apply>
Property
Description 0 is an integer

<apply><in/><cn>0</cn><integers/></apply>
Property
Description n is an integer implies -n is an integer

<apply><implies/>
<apply><in/><ci>n</ci><integers/></apply>
<apply><in/><apply><minus/><ci>n</ci></apply><integers/></apply>

</apply>
Example <apply><in/>

<cn type="integer"> 42 </cn>
<integers/>

</apply>

C.2.11.2 MMLdefinition: reals

Description reals represents the set of all real numbers.
See also .

Classification symbol
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature set
Property

376

Description S \subset R and exists y in R : forall x in S x \le y) implies exists z in R such that ((forall x in S x \le z)
and ((forall x in S x \le w) implies z le w)

Property
Description for all a,b | a,b rational with a<b implies there exists rational a,c s.t. a<c and c<b

Example <apply><in/>
<cn type="real"> 44.997 </cn>
<reals/>

</apply>

C.2.11.3 MMLdefinition: rationals

Description rationals represents the set of all rational numbers.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature set
Property
Description for all z where z is a rational, there exists integers p and q with p/q = z

<apply><forall/>
<bvar><ci>z</ci></bvar>
<condition><apply><in/><ci>z</ci><rationals/></apply></condition>
<apply><exists/>
<bvar><ci>p</ci></bvar>
<bvar><ci>q</ci></bvar>
<apply><and/>
<apply><in/><ci>p</ci><integers/></apply>
<apply><in/><ci>q</ci><integers/></apply>
<apply><eq/>
<apply><divide/><ci>p</ci><ci>q</ci></apply><integers/></apply>
<ci>z</ci>

</apply>
</apply>

</apply>
</apply>

Property
Description ForAll([a,b], a and b are rational, a < b implies there exists c such that a < c and c < b)

Property
Description for all z where z is a rational, there exists integers p and q with p/q = z

Example <apply><in/>
<cn type="rational"> 22 <sep/>7</cn>
<rationals/>

377

</apply>

C.2.11.4 MMLdefinition: naturalnumbers

Description naturalnumbers represents the set of all natural numbers, i.e.. non-negative integers.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature set
Property
Description For all n | n is a natural number implies n+1 is a natural number.

<apply><forall/>
<bvar><ci>n</ci></bvar>
<apply><implies/>
<apply><in/><ci>n</ci><naturalnumbers/></apply>
<apply><in/><apply><plus/><ci>n</ci><cn>1</cn></apply><naturalnumbers/></apply>

</apply>
</apply>

Property
Description 0 is a natural number.

<apply><in/><cn>0</cn><naturalnumbers/></apply>

Property
Description for all n | n in the natural numbers is equivalent to saying n=0 or n-1 is a natural number

Example <apply><in/>
<cn type="integer">1729</cn>
<naturalnumbers/>

</apply>

C.2.11.5 MMLdefinition: complexes

Description complexes represents the set of all complex numbers, i.e., numbers which may have a real and an imagi-
nary part.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature set
Property
Description for all z | if z is complex then there exist reals x,y s.t. z = x + i * y

378

Example <apply><in/>
<cn type="complex">17<sep/>29</cn>
<complexes/>

</apply>

C.2.11.6 MMLdefinition: primes

Description primes represents the set of all natural prime numbers, i.e., integers greater than 1 which have no positive
integer factor other than themselves and 1.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature set
Property
Description ForAll([d,p], p is prime , Implies(d | p , d=1 or d=p))

<apply><forall/>
<bvar><ci>d</ci></bvar>
<bvar><ci>p</ci></bvar>
<condition>
<apply><and/>
<apply><in/><ci>p</ci><primes/></apply>
<apply><in/><ci>d</ci><naturalnumbers/></apply>
</apply>

</condition>
<apply><implies/>
<apply><divide/><ci>d</ci><ci>p</ci></apply>
<apply><or/>
<apply><eq/><ci>d</ci><cn>1</cn></apply>
<apply><eq/><ci>d</ci><ci>p</ci></apply>

</apply>
</apply>

</apply>

Example <apply>
<in/>
<cn type="integer">17</cn>
<primes/>
</apply>

C.2.11.7 MMLdefinition: exponentiale

Description exponentiale represents the mathematical constant which is the exponential base of the natural logarithms,
commonly written e . It is approximately 2.718281828..
See also .

Classification constant

379

MMLattribute
Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real constant
Property
Description ln(e) = 1

<apply><eq/>
<apply><ln/><exponentiale/></apply>
<cn>1</cn>

</apply>
Property
Description e is approximately 2.718281828

<apply><apply><approx/>
<exponentiale/>
<cn>2.718281828 </cn>

</apply>
</apply>

Property
Description e = the sum as j ranges from 0 to infinity of 1/(j!)

Example <apply> <eq/>
<apply><ln/><exponentiale/></apply>
<cn>1</cn>

</apply>

C.2.11.8 MMLdefinition: imaginaryi

Description imaginaryi represents the mathematical constant which is the square root of -1, commonly written i
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature complex constant
Property
Description sqrt(-1) = i

<apply><eq/>
<imaginaryi/>
<apply><root/><cn>-1</cn><cn>2</cn></apply>

</apply>
Example <apply> <eq/>

<apply><power/>
<imaginaryi/>
<cn>2</cn>

</apply>
<cn>-1</cn>

380

</apply>

C.2.11.9 MMLdefinition: notanumber

Description notanumber represents the result of an ill-defined floating point operation, sometimes also called NaN.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature undefined
Example <apply><eq/>

<apply><divide/><cn>0</cn><cn>0</cn></apply>
<notanumber/>

</apply>

C.2.11.10 MMLdefinition: true

Description true represents the logical constant for truth.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA

Signature boolean constant
Property
Description not true = false

<apply><eq/>
<apply><not/><true/></apply>
<cn>false</cn>

</apply>
Property
Description For all boolean p, p or true is true

<declare type="boolean"><ci>p</ci></declare>
<apply><forall/>
<bvar><ci>p</ci></bvar>
<apply><eq/>
<apply><or/><ci>p</ci><true/></apply>
<true/>

</apply>
</apply>

Example <apply> <eq/>
<apply><or/>
<true/>
<ci type = "logical">P</ci>

</apply>

381

<true/>
</apply>

C.2.11.11 MMLdefinition: false

Description false represents the logical constant for falsehood.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature boolean constant
Property
Description not true = false

<apply><eq/>
<apply><not/><true/></apply>
<false/>

</apply>
Property
Description p and false = false

<declare type="boolean"><ci>p</ci></declare>
<apply><forall/>
<bvar><ci>p</ci></bvar>
<apply><and/><ci>p</ci><false/></apply>
<false/>

</apply>
Example <apply><eq/>

<apply><and/>
<false/>
<ci type = "logical">P</ci>

</apply>
<false/>

</apply>

C.2.11.12 MMLdefinition: emptyset

Description emptyset represents the empty set.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature set
Property
Description for all sets S, intersect(S,emptyset) = emptyset

382

<apply><forall/><bvar><ci type="set">S</ci></bvar>
<apply><eq/>
<apply><intersect/><emptyset/><ci>S</ci></apply>
<emptyset/>

</apply>
</apply>

Example <apply><neq/>
<integers/>
<emptyset/>

</apply>

C.2.11.13 MMLdefinition: pi

Description pi represents the mathematical constant which is the ratio of a circle’s circumference to its diameter,
approximately 3.141592653.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature constant
Property <apply><approx/>

<cn>pi</cn>
<cn> 3.141592654 </cn>

</apply>
Property
Description pi = 4 * the sum as j ranges from 0 to infinity of ((1/(4j+1))-(1/(4j+3)))

Example <apply><approx/>
<pi/>
<cn type = "rational">22<sep/>7</cn>

</apply>

C.2.11.14 MMLdefinition: eulergamma

Description A symbol to convey the notion of the gamma constant as defined in Abramowitz and Stegun, Handbook of
Mathematical Functions, section 6.1.3. It is the limit of 1 + 1/2 + 1/3 + ... + 1/m - ln m as m tends to infinity,
this is approximately 0.5772 15664.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature real constant
Property
Description gamma is approx. 0.5772156649

383

<apply><approx/>
<eulergamma/>
<cn> .5772156649 </cn>

</apply>
Property
Description gamma = limit_(m -> infinity)(sum_(j ranges from 1 to m)(1/j) - ln m)

Example <apply><approx/>
<eulergamma/>
<cn>0.5772156649</cn>

</apply>

C.2.11.15 MMLdefinition: infinity

Description Infinity. Interpretation depends on the context. The default value is the positive infinity used to extend the
real number line. The "type" attribute can be use to indicate that this is a "complex" infinity.
See also .

Classification constant
MMLattribute

Name Value Default
definitionURL URI identifying the definition APPENDIX_C
encoding CDATA MathML

Signature constant
Property
Description infinity/infinity is not defined.

<apply><eq/>
<apply><divide/><infinity/><infinity/></apply>
<notanumber/>

</apply>
Property
Description for all reals x, x \lt infinity

<apply><forall/>
<bvar><ci>n</ci></bvar>
<condition><apply><in/><ci>n</ci><reals/></apply></condition>
<apply><lt/><ci>n</ci><infinity/></apply>

</apply>
Example <apply><eq/>

<apply><limit/>
<bvar><ci>x</ci></bvar>
<condition><apply><tendsto/><ci>x</ci><infinity/></apply></condition>
<apply><divide/><cn>1</cn><ci>x</ci></apply>

</apply>
<cn>0</cn>

</apply>

384

Appendix D

Document Object Model for MathML

The following sections describe the interfaces that have been defined in the Document Object Model for MathML.
Please refer to Chapter8 for more information.

Bindings for IDL, Java and ECMAScript are located in AppendixE.

D.1 IDL Interfaces

D.1.1 Miscellaneous Object Definitions

Interface MathMLDOMImplementation

Extends:DOMImplementation

This interface extends theDOMImplementation interface by adding a method to create aMathMLDocument.

IDL Definition

interface MathMLDOMImplementation: DOMImplementation {
MathMLDocument createMathMLDocument();

};

Methods

createMathMLDocument
Creates aMathMLDocument with a minimal tree containing only aMathMLMathElement corresponding
to a MathMLmath element. TheMathMLMathElement is empty, having no child elements or non-default
attributes; it is the root element of the document, and is the element accessed via thedocumentElement
attribute of theMathMLDocument. Note that aMathMLDocument object should only be created for a stand-
alone MathML document.
Return value
MathMLDocument TheMathMLDocument created.

This method raises no exceptions.

Interface MathMLDocument

Extends:Document

This interface extends theDocument interface to add access to document properties relating to navigation. Thedoc-
umentElement attribute for aMathMLDocument should be theMathMLMathElement representing the top-levelmath
element which is the root of the document.

385

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#i-Document

IDL Definition

interface MathMLDocument: Document {
readonly attribute DOMString referrer;
readonly attribute DOMString domain;
readonly attribute DOMString URI;

};

Attributes

referrer of type DOMString, readonly The URI of the page that linked to this document, if available. This isnull
if the user navigated directly to the page. If this is not a stand-alone MathML document (e.g. is embedded in
an XHTML document), this may be retrieved from the parentDocument if available.

domain of type DOMString, readonly The domain name of the server that served the document, ornull if the server
cannot be identified by a domain name, or if it is not available. If this is not a stand-alone MathML document
(e.g. is embedded in an XHTML document), this may be retrieved from the parentDocument if available.

URI of type DOMString, readonly The complete URI of this document. This isnull if this is not a stand-alone
MathML document.

Interface MathMLNodeList

Extends:NodeList

This interface is provided as a specialization of theNodeList interface. The childNodes of this NodeList must be
MathMLElements or Text nodes. Note thatMathMLNodeLists are frequently used in the DOM as values ofreadonly
attributes, encapsulating, for instance, various collections of child elements. When used in this way, these objects
are always understood to belive, in the sense that changes to the document are immediately reflected in them.

IDL Definition

interface MathMLNodeList: NodeList {
};

D.1.2 Generic MathML Elements

Interface MathMLElement

Extends:Element

All MathML element interfaces derive from this object, which derives from the basic DOM interfaceElement.

IDL Definition

interface MathMLElement: Element {
attribute DOMString className;
attribute DOMString mathElementStyle;
attribute DOMString id;
attribute DOMString xref;
attribute DOMString href;
readonly attribute MathMLMathElement ownerMathElement;

};

386

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Attributes

classNameof type DOMString Theclass attribute of the element. See the discussion elsewhere in this document of
theclass attribute; see also the HTML definition of this attribute.

mathElementStyle of type DOMString A string identifying the element’sstyle attribute.

id of type DOMString The element’s identifier. See the discussion elsewhere in this document of theid attribute; see
also the HTML definition.

xref of type DOMString The xref attribute of the element. See the discussion elsewhere in this document of the
xref attribute.

href of type DOMString Thexlink:href attribute of the element. See the discussion elsewhere in this document of
thexlink:href attribute; see also the definition of this attribute in the XLink specification.

ownerMathElement of type MathMLMathElement, readonly TheMathMLMathElement corresponding to the near-
estmath element ancestor of this element. Should benull if this element is a top-levelmath element.

Interface MathMLContainer

This is an abstract interface containing functionality required by MathML elements that may contain arbitarily many
child elements. No elements are directly supported by this interface; all instances are instances of eitherMathMLPre-
sentationContainer, MathMLContentContainer, or MathMLMathElement.

IDL Definition

interface MathMLContainer {
readonly attribute unsigned long nArguments;
readonly attribute MathMLNodeList arguments;
readonly attribute MathMLNodeList declarations;
MathMLElement getArgument(in unsigned long index);
MathMLElement setArgument(in MathMLElement newArgument, in unsigned long index);
MathMLElement insertArgument(in MathMLElement newArgument, in unsigned long index);
void deleteArgument(in unsigned long index);
MathMLElement removeArgument(in unsigned long index);
MathMLDeclareElement getDeclaration(in unsigned long index);
MathMLDeclareElement setDeclaration(in MathMLDeclareElement newDeclaration, in unsigned long index);
MathMLDeclareElement insertDeclaration(in MathMLDeclareElement newDeclaration, in unsigned long index);
MathMLDeclareElement removeDeclaration(in unsigned long index);
void deleteDeclaration(in unsigned long index);

};

Attributes

nArguments of type unsigned long, readonly The number of child elements of this element which represent argu-
ments of the element, as opposed to qualifiers ordeclare elements. Thus for aMathMLContentContainer
it does not contain elements representing bound variables, conditions, separators, degrees, or upper or lower
limits (bvar, condition, sep, degree, lowlimit, or uplimit).

arguments of type MathMLNodeList, readonly This attribute accesses the childMathMLElements of this element
which are arguments of it, as aMathMLNodeList. Note that this list does not contain anyMathMLElements
representing qualifier elements ordeclare elements.

declarations of type MathMLNodeList, readonly Provides access to thedeclare elements which are children of
this element, in aMathMLNodeList. All Nodes in this list must beMathMLDeclareElements.

387

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html

Methods

getArgument
This method returns theindexth child argument element of this element.This frequently differs from
the value of Node::childNodes().item(index), as qualifier elements anddeclare elements are not
counted.
Parameters
unsigned long index The one-based index of the argument to be retrieved.

Return value
MathMLElement A MathMLElement representing theindex-th argument of this element.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of child elements.

setArgument
This method setsnewArgument as theindex-th argument of this element. If there is currently anindex-th
argument, it is replaced bynewArgument. This frequently differs from setting the node at Node::childNodes().item(index),
as qualifier elements anddeclare elements are not counted.
Parameters
MathMLElement newArgument A MathMLElement representing the element that is to be set as the

index-th argument of this element.
unsigned long index The index of the argument that is to be set tonewArgument. The

first argument is numbered 1. Ifindex is one more than the current
number of arguments, a new argument is appended.

Return value
MathMLElement The MathMLElement child of this element that represents the new argument in the

DOM.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised if this element does not permit a child element

of the type ofnewArgument, if this is aMathMLContentContainer andnewArgument is a qualifier
element, or ifnewElement is a MathMLDeclareElement. INDEX_SIZE_ERR: Raised ifindex is
greater than one more than the number of child elements.

insertArgument
This method insertsnewArgument before the currentindex-th argument of this element. Ifindex is 0, or if
index is one more than the current number of arguments,newArgument is appended as the last argument.
This frequently differs from setting the node at Node::childNodes().item(index), as qualifier elements
anddeclare elements are not counted.
Parameters
MathMLElement newArgument A MathMLElement representing the element that is to be inserted as

a child argument of this element.
unsigned long index The one-based index of the position before whichnewArgument is

to be inserted. The first argument is numbered 1.
Return value
MathMLElement The MathMLElement child of this element that represents the new argument in the

DOM.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised if this element does not permit a child argument

of the type ofnewArgument, or, forMathMLContentContainers, if newArgument represents a qual-
ifier element. INDEX_SIZE_ERR: Raised ifindex is greater than one more than the number of child
arguments.

deleteArgument
This method deletes theindex-th child element that is an argument of this element. Note that child elements
which are qualifier elements ordeclare elements are not counted in determining theindex-th argument.

388

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Parameters
unsigned long index The one-based index of the argument to be deleted.

Return value
void None.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of child elements.

removeArgument
This method deletes theindex-th child element that is an argument of this element, and returns it to the caller.
Note that child elements that are qualifier elements ordeclare elements are not counted in determining the
index-th argument.
Parameters
unsigned long index The one-based index of the argument to be removed.

Return value
MathMLElement A MathMLElement representing the argument being removed.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of child elements.

getDeclaration
This method retrieves theindex-th childdeclare element of this element.
Parameters
unsigned long index A one-based index into the list of childdeclare elements of this element

giving the position of thedeclare element to be retrieved.
Return value
MathMLDeclareElement TheMathMLDeclareElement representing theindex-th childdeclare.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of childdeclare ele-

ments.

setDeclaration
This method insertsnewDeclaration as theindex-th child declaration of this element. If there is already
anindex-th declare child element, it is replaced bynewDeclaration.
Parameters
MathMLDeclareElement newDeclaration A MathMLDeclareElement to be inserted as thein-

dex-th childdeclare element.
unsigned long index A one-based index into the list of childdeclare el-

ements of this element giving the position into which
newDeclaration is to be inserted. Ifindex is one
more than the number ofdeclare children of this el-
ement,newDeclaration is appended as the lastde-
clare child.

Return value
MathMLDeclareElement TheMathMLDeclareElement being inserted.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than one more than the number of child

declare elements. HIERARCHY_REQUEST_ERR: Raised if this element does not permit childde-
clare elements.

insertDeclaration
This method insertsnewDeclaration before the currentindex-th child declare element of this element.
If index is 0,newDeclaration is appended as the last childdeclare element.
Parameters

389

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

MathMLDeclareElement newDeclaration A MathMLDeclareElement to be inserted as thein-
dex-th childdeclare element.

unsigned long index A one-based index into the list of childdeclare ele-
ments of this element giving the position before which
newDeclaration is to be inserted. Ifindex is 0 or if
it is one more than the number of childdeclare chil-
dren,newDeclaration is appended as the last child
declare element.

Return value
MathMLDeclareElement The MathMLDeclareElement child of this element representingnewDec-

laration in the DOM.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than one more than the number of child

declare elements. HIERARCHY_REQUEST_ERR: Raised if this element does not permit childde-
clare elements.

removeDeclaration
This method removes theMathMLDeclareElement representing theindex-th declare child element of
this element, and returns it to the caller. Note thatindex is the position in the list ofdeclare element
children, as opposed to the position in the list of all childNodes.
Parameters
unsigned long index The one-based index of thedeclare element to be removed.

Return value
MathMLDeclareElement The MathMLDeclareElement being removed as a childNode of this ele-

ment.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of childdeclare ele-

ments.

deleteDeclaration
This method deletes theMathMLDeclareElement representing theindex-th declare child element of this
element. Note thatindex is the position in the list ofdeclare element children, as opposed to the position
in the list of all childNodes.
Parameters
unsigned long index The one-based index of thedeclare element to be removed.

Return value
void None.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of childdeclare ele-

ments.

Interface MathMLMathElement

Extends:MathMLElement, MathMLContainer

This interface represents the top-level MathMLmath element. It may become useful for interfacing between the Doc-
ument Object Model objects encoding an enclosing document and the MathML DOM elements that are its children. It
could also be used for some purposes as a MathML DOM surrogate for a Document object. For instance, MathML-
specific factory methods could be placed here, as could methods for creating MathML-specificIterators or Tree-
Walkers. However, this functionality is as yet undefined.

390

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

IDL Definition

interface MathMLMathElement: MathMLElement, MathMLContainer {
attribute DOMString macros;
attribute DOMString display;

};

Attributes

macros of type DOMString Represents themacros attribute of themath element. See Section7.1.2.

display of type DOMString Represents thedisplay attribute of themath element. This value is eitherblock or
inline. See Section7.1.2.

Interface MathMLSemanticsElement

Extends:MathMLElement

This interface represents thesemantics element in MathML.

IDL Definition

interface MathMLSemanticsElement: MathMLElement {
attribute MathMLElement body;
readonly attribute unsigned long nAnnotations;
MathMLElement getAnnotation(in unsigned long index);
MathMLElement insertAnnotation(in MathMLElement newAnnotation, in unsigned long index);
MathMLElement setAnnotation(in MathMLElement newAnnotation, in unsigned long index);
void deleteAnnotation(in unsigned long index);
MathMLElement removeAnnotation(in unsigned long index);

};

Attributes

body of type MathMLElement This attribute represents the first child of thesemantics element, i.e. the child giving
the ‘primary’ content represented by the element.

nAnnotations of type unsigned long, readonly Represents the number ofannotation orannotation-xml chil-
dren of thesemantics element, i.e. the number of alternate content forms for this element.

Methods

getAnnotation
This method gives access to theindex-th ‘alternate’ content associated with asemantics element.
Parameters
unsigned long index The one-based index of the annotation being retrieved.

Return value
MathMLElement TheMathMLAnnotationElement or MathMLXMLAnnotationElement representing

the index-th annotation or annotation-xml child of the semantics element.
Note that all child elements of asemantics element other than the first are required
to be of one of these types.

This method raises no exceptions.

391

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

insertAnnotation
This method insertsnewAnnotation before the currentindex-th ‘alternate’ content associated with ase-
mantics element. Ifindex is 0,newAnnotation is appended as the lastannotation or annotation-xml
child of this element.
Parameters
MathMLElement newAnnotation A MathMLAnnotationElement or MathMLXMLAnno-

tationElement representing the new annotation or
annotation-xml to be inserted.

unsigned long index The position in the list ofannotation or annotation-xml chil-
dren before whichnewAnnotation is to be inserted. The first an-
notation is numbered 1.

Return value
MathMLElement TheMathMLAnnotationElement or MathMLXMLAnnotationElement child of this

element that represents the new annotation in the DOM.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised ifnewAnnotation is not aMathMLAnnota-

tionElement or MathMLXMLAnnotationElement. INDEX_SIZE_ERR: Raised ifindex is greater
than the current number ofannotation or annotation-xml children of this semantics element.

setAnnotation
This method allows setting or replacement of theindex-th ‘alternate’ content associated with asemantics
element. If there is already anannotation or annotation-xml element with this index, it is replaced by
newAnnotation.
Parameters
MathMLElement newAnnotation A MathMLAnnotationElement or MathMLXMLAnnota-

tionElement representing the new value of theindex-th
annotation or annotation-xml child of this semantics
element.

unsigned long index The position in the list ofannotation or annotation-xml chil-
dren of thissemantics element that is to be occupied bynewAn-
notation. The first annotation element is numbered 1.

Return value
MathMLElement TheMathMLAnnotationElement or MathMLXMLAnnotationElement child of this

element that represents the new annotation in the DOM.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised ifnewAnnotation is not aMathMLAnnota-

tionElement or MathMLXMLAnnotationElement. INDEX_SIZE_ERR: Raised ifindex is greater
than one more than the current number ofannotation or annotation-xml children of this seman-
tics element.

deleteAnnotation
A convenience method to delete theindex-th ‘alternate’ content associated with thissemantics element.
Parameters
unsigned long index The one-based index of the annotation being deleted.

Return value
void None.

This method raises no exceptions.
removeAnnotation

A convenience method to delete theindex-th ‘alternate’ content associated with thissemantics element,
and to return it to the caller.
Parameters
unsigned long index The one-based index of the annotation being deleted.

392

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Return value
MathMLElement The MathMLAnnotationElement or MathMLXMLAnnotationElement being

deleted.
This method raises no exceptions.

Interface MathMLAnnotationElement

Extends:MathMLElement

This interface represents theannotation element of MathML.

IDL Definition

interface MathMLAnnotationElement: MathMLElement {
attribute DOMString body;
attribute DOMString encoding;

};

Attributes

body of type DOMString Provides access to the content of anannotation element.

encoding of type DOMString Provides access to theencoding attribute of anannotation element.

Interface MathMLXMLAnnotationElement

Extends:MathMLElement

This interface represents theannotation-xml element of MathML.

IDL Definition

interface MathMLXMLAnnotationElement: MathMLElement {
attribute DOMString encoding;

};

Attributes

encoding of type DOMString Provides access to theencoding attribute of anxml-annotation element.

D.1.3 Presentation Elements

Interface MathMLPresentationElement

Extends:MathMLElement

This interface is provided to serve as a base interface for various MathML Presentation interfaces. It contains no new
attributes or methods at this time; however, it is felt that the distinction between Presentation and Content MathML
entities should be indicated in the MathMLElement hierarchy. In particular, future versions of the MathML DOM may
add functionality on this interface; it may also serve as an aid to implementors.

393

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

IDL Definition

interface MathMLPresentationElement: MathMLElement {
};

D.1.3.1 Leaf Presentation Element Interfaces

Interface MathMLGlyphElement

Extends:MathMLPresentationElement

This interface supports themglyph element Section3.2.9.

IDL Definition

interface MathMLGlyphElement: MathMLPresentationElement {
attribute DOMString alt;
attribute DOMString fontfamily;
attribute unsigned long index;

};

Attributes

alt of type DOMString A string giving an alternate name for the character. Represents themglyph’s alt attribute.

fontfamily of type DOMString A string representing the font family.

index of type unsigned long An unsigned integer giving the glyph’s position within the font.

Interface MathMLSpaceElement

Extends:MathMLPresentationElement

This interface extends theMathMLPresentationElement interface for the MathMLspace elementmspace. Note that
this is not derived fromMathMLPresentationToken, despite the fact thatmspace is classified as a token element,
since it does not carry the attributes declared forMathMLPresentationToken.

IDL Definition

interface MathMLSpaceElement: MathMLPresentationElement {
attribute DOMString width;
attribute DOMString height;
attribute DOMString depth;

};

Attributes

width of type DOMString A string of the form ‘number h-unit ’; represents thewidth attribute for themspace ele-
ment, if specified.

height of type DOMString A string of the form ‘number v-unit ’; represents theheight attribute for themspace
element, if specified.

depth of type DOMString A string of the form ‘number v-unit ’; represents thedepth attribute for themspace ele-
ment, if specified.

394

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

D.1.3.2 Presentation Token Element Interfaces

Interfaces representing the MathML Presentation token elements that may have content are described here.

Interface MathMLPresentationToken

Extends:MathMLPresentationElement

This interface extends theMathMLElement interface to include access for attributes specific to text presentation. It
serves as the base class for all MathML presentation token elements. Access to the body of the element is via the
nodeValue attribute inherited fromNode. Elements that expose only the core presentation token attributes are directly
supported by this object. These elements are:

mi identifier element
mn number element
mtext text element

IDL Definition

interface MathMLPresentationToken: MathMLPresentationElement {
attribute DOMString mathvariant;
attribute DOMString mathsize;
attribute DOMString mathfamily;
attribute DOMString mathcolor;
attribute DOMString mathbackground;
readonly attribute MathMLNodeList contents;

};

Attributes

mathvariant of type DOMString Themathvariant attribute for the element, if specified. One of the valuesnormal,
bold, italic, bold-italic, double-struck, bold-fraktur, script, bold-script, fraktur, sans-
serif, bold-sans-serif, sans-serif-italic, sans-serif-bold-italic, or monospace.

mathsize of type DOMString Themathsize attribute for the element, if specified. Eithersmall, normal or big, or
of the formnumber v-unit.

mathfamily of type DOMString Themathfamily attribute for the element, if specified. This should be a string of
the formcss-fontfamily.

mathcolor of type DOMString Themathcolor attribute for the element, if specified. TheDOMString returned should
be in the form of a CSS color spec.

mathbackground of type DOMString Themathbackground attribute for the element, if specified. TheDOMString
returned should be in the form of a CSS color spec.

contents of type MathMLNodeList, readonly Returns the childNodes of the element. These should consist only of
Text nodes and possiblyMathMLGlyphElements. Should behave the same as the base class’sNode::childNodes
attribute; however, it is provided here for clarity.

Interface MathMLOperatorElement

Extends:MathMLPresentationToken

This interface extends theMathMLPresentationToken interface for the MathMLoperator elementmo.

395

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

IDL Definition

interface MathMLOperatorElement: MathMLPresentationToken {
attribute DOMString form;
attribute DOMString fence;
attribute DOMString separator;
attribute DOMString lspace;
attribute DOMString rspace;
attribute DOMString stretchy;
attribute DOMString symmetric;
attribute DOMString maxsize;
attribute DOMString minsize;
attribute DOMString largeop;
attribute DOMString moveablelimits;
attribute DOMString accent;

};

Attributes

form of type DOMString Theform attribute (prefix, infix or postfix) for themo element, if specified.

fence of type DOMString Thefence attribute (true or false) for themo element, if specified.

separator of type DOMString Theseparator attribute (true or false) for themo element, if specified.

lspace of type DOMString Thelspace attribute (spacing to left) of themo element, if specified.

rspace of type DOMString Therspace attribute (spacing to right) of themo element, if specified.

stretchy of type DOMString Thestretchy attribute (true or false) for themo element, if specified.

symmetric of type DOMString Thesymmetric attribute (true or false) for themo element, if specified.

maxsize of type DOMString Themaxsize attribute for themo element, if specified.

minsize of type DOMString Theminsize attribute for themo element, if specified.

largeop of type DOMString Thelargeop attribute for themo element, if specified.

moveablelimits of type DOMString Themoveablelimits (true orfalse) attribute for themo element, if specified.

accent of type DOMString Theaccent attribute (true or false) for themo element, if specified.

Interface MathMLStringLitElement

Extends:MathMLPresentationToken

This interface extends theMathMLPresentationToken interface for the MathMLstring literal elementms.

IDL Definition

interface MathMLStringLitElement: MathMLPresentationToken {
attribute DOMString lquote;
attribute DOMString rquote;

};

396

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

lquote of type DOMString A string giving the opening delimiter for the string literal; represents thelquote attribute
for thems element, if specified.

rquote of type DOMString A string giving the closing delimiter for the string literal; represents therquote attribute
for thems element, if specified.

D.1.3.3 Presentation Container Interfaces

Interfaces designed to represent MathML Presentation elements that can contain arbitrary numbers of childMathM-
LElements are included under the heading of Presentation Container Elements.

Interface MathMLPresentationContainer

Extends:MathMLPresentationElement, MathMLContainer

This interface represents MathML Presentation elements that may contain arbitarily many child elements. Elements
directly supported by this interface includemrow, mphantom andmerror. All attributes and methods are derived from
the baseMathMLPresentationElement andMathMLContainer interfaces.

IDL Definition

interface MathMLPresentationContainer: MathMLPresentationElement, MathMLContainer {
};

Interface MathMLStyleElement

Extends:MathMLPresentationContainer

This interface extends theMathMLElement interface for the MathMLstyle elementmstyle. While themstyle el-
ement may contain anyattributes allowable on any MathML presentation element, onlyattributes specific to the
mstyle element are included in the interface below. Other attributes should be accessed using the methods on the
baseElement class, particularly theElement::getAttribute andElement::setAttribute methods, or even the
Node::attributes attribute to access all of them at once. Not only does this obviate a lengthy list below, but it seems
likely that most implementations will find this a considerably more useful interface to aMathMLStyleElement.

IDL Definition

interface MathMLStyleElement: MathMLPresentationContainer {
attribute DOMString scriptlevel;
attribute DOMString displaystyle;
attribute DOMString scriptsizemultiplier;
attribute DOMString scriptminsize;
attribute DOMString color;
attribute DOMString background;

};

397

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

scriptlevel of type DOMString A string of the form ‘+/- unsigned integer ’; represents thescriptlevel attribute for
themstyle element, if specified. See also the discussion of this attribute.

displaystyle of type DOMString Either true or false; a string representing thedisplaystyle attribute for the
mstyle element, if specified. See also the discussion of this attribute.

scriptsizemultiplier of type DOMString A string of the form ‘number ’; represents thescriptsizemultiplier
attribute for themstyle element, if specified. See also the discussion of this attribute.

scriptminsize of type DOMString A string of the form ‘number v-unit ’; represents thescriptminsize attribute for
themstyle element, if specified. See also the discussion of this attribute.

color of type DOMString A string representation of a color; represents thecolor attribute for themstyle element,
if specified. See also the discussion of this attribute.

background of type DOMString A string representation of a color or the stringtransparent; represents theback-
ground attribute for themstyle element, if specified. See also the discussion of this attribute.

Interface MathMLPaddedElement

Extends:MathMLPresentationContainer

This interface extends theMathMLElement interface for the MathMLspacing adjustment elementmpadded.

IDL Definition

interface MathMLPaddedElement: MathMLPresentationContainer {
attribute DOMString width;
attribute DOMString lspace;
attribute DOMString height;
attribute DOMString depth;

};

Attributes

width of type DOMString A string representing the totalwidth of thempadded element, if specified. See also the
discussion of this attribute.

lspace of type DOMString A string representing thelspace attribute - the additional space to the left - of the
mpadded element, if specified. See also the discussion of this attribute.

height of type DOMString A string representing theheight above the baseline of thempadded element, if specified.
See also the discussion of this attribute.

depth of type DOMString A string representing thedepth beneath the baseline of thempadded element, if specified.
See also the discussion of this attribute.

Interface MathMLFencedElement

Extends:MathMLPresentationContainer

This interface extends theMathMLPresentationContainer interface for the MathMLfenced content elementmfenced.

398

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

IDL Definition

interface MathMLFencedElement: MathMLPresentationContainer {
attribute DOMString open;
attribute DOMString close;
attribute DOMString separators;

};

Attributes

open of type DOMString A string representing theopening-fence for themfenced element, if specified; this is the
element’sopen attribute.

close of type DOMString A string representing theopening-fence for themfenced element, if specified; this is the
element’sclose attribute.

separators of type DOMString A string representing any separating characters inside themfenced element, if spec-
ified; this is the element’sseparators attribute.

Interface MathMLEncloseElement

Extends:MathMLPresentationContainer

This interface supports themenclose element Section3.3.9.

IDL Definition

interface MathMLEncloseElement: MathMLPresentationContainer {
attribute DOMString notation;

};

Attributes

notation of type DOMString A string giving a name for the notation enclosing the element’s contents. Represents the
notation attribute of themenclose. Allowed values arelongdiv, actuarial, radical.

Interface MathMLActionElement

Extends:MathMLPresentationContainer

This interface extends theMathMLPresentationContainer interface for the MathMLenlivening expression element
maction.

IDL Definition

interface MathMLActionElement: MathMLPresentationContainer {
attribute DOMString actiontype;
attribute DOMString selection;

};

Attributes

actiontype of type DOMString A string specifying the action. Possible values includetoggle, statusline, tooltip,
highlight, andmenu.

selection of type DOMString A string specifying an integer that selects the current subject of the action.

399

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

D.1.3.4 Presentation Schemata Interfaces

Interface MathMLFractionElement

Extends:MathMLPresentationElement

This interface extends theMathMLPresentationElement interface for the MathMLfraction elementmfrac.

IDL Definition

interface MathMLFractionElement: MathMLPresentationElement {
attribute DOMString linethickness;
attribute MathMLElement numerator;
attribute MathMLElement denominator;

};

Attributes

linethickness of type DOMString A string representing thelinethickness attribute of themfrac, if specified.
numerator of type MathMLElement The first childMathMLElement of theMathMLFractionElement; represents

the numerator of the represented fraction.
denominator of type MathMLElement The second childMathMLElement of theMathMLFractionElement; repre-

sents the denominator of the represented fraction.

Interface MathMLRadicalElement

Extends:MathMLPresentationElement

This interface extends theMathMLPresentationElement interface for the MathMLradical andsquare root elements
mroot andmsqrt.

IDL Definition

interface MathMLRadicalElement: MathMLPresentationElement {
attribute MathMLElement radicand;
attribute MathMLElement index;

};

Attributes

radicand of type MathMLElement The first childMathMLElement of theMathMLRadicalElement; represents the
base of the represented radical.

index of type MathMLElement The second childMathMLElement of the MathMLRadicalElement; represents the
index of the represented radical. This must benull for msqrt elements.

Interface MathMLScriptElement

Extends:MathMLPresentationElement

This interface extends theMathMLPresentationElement interface for the MathMLsubscript, superscript andsubscript-
superscript pair elementsmsub, msup, andmsubsup.

400

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

IDL Definition

interface MathMLScriptElement: MathMLPresentationElement {
attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;
attribute MathMLElement subscript;
attribute MathMLElement superscript;

};

Attributes

subscriptshift of type DOMString A string representing the minimum amount to shift the baseline of thesubscript
down, if specified; this is the element’ssubscriptshift attribute. This must returnnull for anmsup.

superscriptshift of type DOMString A string representing the minimum amount to shift the baseline of thesuper-
script up, if specified; this is the element’ssuperscriptshift attribute. This must returnnull for amsub.

base of type MathMLElement A MathMLElement representing thebase of the script. This is the first child of the
element.

subscript of type MathMLElement A MathMLElement representing thesubscript of the script. This is the second
child of amsub or msubsup; retrieval must returnnull for anmsup.
DOMException HIERARCHY_REQUEST_ERR: Raised when the element is amsup.

superscript of type MathMLElement A MathMLElement representing thesuperscript of the script. This is the second
child of amsup or the third child of amsubsup; retrieval must returnnull for anmsub.
DOMException HIERARCHY_REQUEST_ERR: Raised when the element is amsub.

Interface MathMLUnderOverElement

Extends:MathMLPresentationElement

This interface extends theMathMLPresentationElement interface for the MathMLunderscript, overscript andoverscript-
underscript pair elementsmunder, mover andmunderover.

IDL Definition

interface MathMLUnderOverElement: MathMLPresentationElement {
attribute DOMString accentunder;
attribute DOMString accent;
attribute MathMLElement base;
attribute MathMLElement underscript;
attribute MathMLElement overscript;

};

Attributes

accentunder of type DOMString Eithertrue or false if present; a string controlling whetherunderscript is drawn
as an ‘accent’ or as a ‘limit’, if specified; this is the element’saccentunder attribute. This must returnnull
for anmover.

accent of type DOMString Eithertrue or false if present; a string controlling whetheroverscript is drawn as an
‘accent’ or as a ‘limit’, if specified; this is the element’saccent attribute. This must returnnull for an
munder.

401

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

base of type MathMLElement A MathMLElement representing thebase of the script. This is the first child of the
element.

underscript of type MathMLElement A MathMLElement representing theunderscript of the script. This is the sec-
ond child of amunder or munderover; retrieval must returnnull for anmover.
DOMException HIERARCHY_REQUEST_ERR: Raised when the element is amover.

overscript of type MathMLElement A MathMLElement representing theoverscript of the script. This is the second
child of amover or the third child of a munderover; retrieval must returnnull for anmunder.
DOMException HIERARCHY_REQUEST_ERR: Raised when the element is amunder.

Interface MathMLMultiScriptsElement

Extends:MathMLPresentationElement

This interface extends theMathMLPresentationElement interface for the MathMLmultiscripts (including prescripts
or tensors) elementmmultiscripts.

IDL Definition

interface MathMLMultiScriptsElement: MathMLPresentationElement {
attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;
readonly attribute MathMLNodeList prescripts;
readonly attribute MathMLNodeList scripts;
readonly attribute unsigned long numprescriptcolumns;
readonly attribute unsigned long numscriptcolumns;
MathMLElement getPreSubScript(in unsigned long colIndex);
MathMLElement getSubScript(in unsigned long colIndex);
MathMLElement getPreSuperScript(in unsigned long colIndex);
MathMLElement getSuperScript(in unsigned long colIndex);
MathMLElement insertPreSubScriptBefore(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement setPreSubScriptAt(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement insertSubScriptBefore(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement setSubScriptAt(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement insertPreSuperScriptBefore(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement setPreSuperScriptAt(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement insertSuperScriptBefore(in unsigned long colIndex, in MathMLElement newScript);
MathMLElement setSuperScriptAt(in unsigned long colIndex, in MathMLElement newScript);

};

Attributes

subscriptshift of type DOMString A string representing the minimum amount to shift the baseline of thesubscripts
down, if specified; this is the element’ssubscriptshift attribute.

superscriptshift of type DOMString A string representing the minimum amount to shift the baseline of thesuper-
scripts up, if specified; this is the element’ssuperscriptshift attribute.

base of type MathMLElement A MathMLElement representing thebase of the script. This is the first child of the
element.

402

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

prescripts of type MathMLNodeList, readonly A NodeList representing theprescripts of the script, which appear
in the order described by the expression(prescript presuperscript)*. This is the same as traversing the contents
of the NodeList returned byNode::childNodes() from theNode following the <mprescripts/> (if
present) to the end of the list.

scripts of type MathMLNodeList, readonly A MathMLNodeList representing thescripts of the script, which appear
in the order described by the expression(script superscript)*. This is the same as traversing the contents of the
NodeList returned byNode::childNodes() from the firstNode up to and including theNode preceding
the<mprescripts/> (if present).

numprescriptcolumns of type unsigned long, readonly The number of script/subscript columns preceding (to the
left of) thebase. Should always be half ofgetprescripts().length()

numscriptcolumns of type unsigned long, readonly The number of script/subscript columns following (to the
right of) thebase. Should always be half ofgetscripts().length()

Methods

getPreSubScript
A convenience method to retrievepre-subscript children of the element, referenced by column index .
Parameters
unsigned long colIndex Column index ofprescript (where 1 represents the leftmostprescript col-

umn).
Return value
MathMLElement Returns theMathMLElement representing thecolIndex-th presubscript (to the left of

thebase, counting from 1 at the far left). Note that this may be theMathMLElement
corresponding to the special element<none/> in the case of a ‘missing’presubscript
(see the discussion ofmmultiscripts), or it may benull if colIndex is out of
range for the element.

This method raises no exceptions.
getSubScript

A convenience method to retrievesubscript children of the element, referenced by column index.
Parameters
unsigned long colIndex Column index ofscript (where 1 represents the leftmostscript column,

the first to the right of thebase).
Return value
MathMLElement Returns theMathMLElement representing thecolIndex-th subscript to the right of the

base. Note that this may be theMathMLElement corresponding to the special element
<none/> in the case of a ‘missing’subscript (see the discussion ofmmultiscripts),
or it may benull if colIndex is out of range for the element.

This method raises no exceptions.
getPreSuperScript

A convenience method to retrievepre-superscript children of the element, referenced by column index .
Parameters
unsigned long colIndex Column index ofpre-superscript (where 1 represents the leftmostpre-

script column).
Return value
MathMLElement Returns theMathMLElement representing thecolIndex-th presuperscript (to the left

of thebase, counting from 1 at the far left). Note that this may be theMathMLElement
corresponding to the special element<none/> in the case of a ‘missing’presuperscript
(see the discussion ofmmultiscripts), or it may benull if colIndex is out of range
for the element.

This method raises no exceptions.

403

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

getSuperScript
A convenience method to retrievesuperscript children of the element, referenced by column index .
Parameters
unsigned long colIndex Column index ofscript (where 1 represents the leftmostscript column,

the first to the right of thebase)
Return value
MathMLElement Returns theMathMLElement representing thecolIndex-th superscript to the right of

the base. Note that this may be theMathMLElement corresponding to the special
element<none/> in the case of a ‘missing’superscript (see the discussion ofmmul-
tiscripts), or it may benull if colIndex is out of range for the element.

This method raises no exceptions.

insertPreSubScriptBefore
A convenience method to insert apre-subscript before the position referenced by column index. IfcolIndex
is 0, the newpre-subscript is appended as the lastpre-subscript of the mmultiscripts element; if colIndex
is 1, a newpre-subscript is prepended at the far left. Note that inserting a newpre-subscript will cause the
insertion of an emptypre-superscript in the same column.
Parameters
unsigned long colIndex Column index ofpre-subscript (where 1 represents the leftmostpre-

script column).
MathMLElement newScript A MathMLElement representing the element to be inserted as apre-

subscript.
Return value
MathMLElement TheMathMLElement child of thisMathMLMultiScriptsElement representing the

new script in the DOM.
Exceptions

DOMException HIERARCHY_REQUEST_ERR: Raised ifnewScript represents an element that cannot
be a pre-subscript. INDEX_SIZE_ERR: Raised ifcolIndex is greater than the number ofpre-scripts
of the element.

setPreSubScriptAt
A convenience method to set thepre-subscript child at the position referenced bycolIndex. If there is
currently apre-subscript at this position, it is replaced bynewScript.
Parameters
unsigned long colIndex Column index ofpre-subscript (where 1 represents the leftmostpre-

script column).
MathMLElement newScript MathMLElement representing the element that is to be set as thecol-

Index-th pre-subscript child of this element.
Return value
MathMLElement TheMathMLElement child of thisMathMLMultiScriptsElement representing the

new pre-subscript in the DOM.
Exceptions

DOMException HIERARCHY_REQUEST_ERR: Raised ifnewScript represents an element that cannot
be apre-subscript. INDEX_SIZE_ERR: Raised ifcolIndex is greater than one more than the number
of pre-scripts of the element.

insertSubScriptBefore
A convenience method to insert asubscript before the position referenced by column index. IfcolIndex
is 0, the newsubscript is appended as the lastsubscript of themmultiscripts element; if colIndex is 1, a
newsubscript is prepended at the far left. Note that inserting a newsubscript will cause the insertion of an
emptysuperscript in the same column.
Parameters

404

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

unsigned long colIndex Column index ofsubscript, where 1 represents the leftmostscript col-
umn (the first to the right of thebase).

MathMLElement newScript A MathMLElement representing the element to be inserted as asub-
script.

Return value
MathMLElement TheMathMLElement child of thisMathMLMultiScriptsElement that represents the

newsubscript in the DOM.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised ifnewScript represents an element that cannot

be a subscript. INDEX_SIZE_ERR: Raised ifcolIndex is greater than the number ofscripts of the
element.

setSubScriptAt
A convenience method to set thesubscript child at the position referenced bycolIndex. If there is currently
a subscript at this position, it is replaced bynewScript.
Parameters
unsigned long colIndex Column index ofsubscript, where 1 represents the leftmostscript col-

umn (the first to the right of thebase).
MathMLElement newScript MathMLElement representing the element that is to be set as thecol-

Index-th subscript child of this element.
Return value
MathMLElement The MathMLElement chlid of this element representing the newsubscript in the

DOM.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised ifnewScript represents an element that cannot

be asubscript. INDEX_SIZE_ERR: Raised ifcolIndex is greater than one more than the number of
scripts of the element.

insertPreSuperScriptBefore
A convenience method to insert apre-superscript before the position referenced by column index. IfcolIn-
dex is 0, the newpre-superscript is appended as the lastpre-superscript of the mmultiscripts element;
if colIndex is 1, a newpre-superscript is prepended at the far left. Note that inserting a newpre-superscript
will cause the insertion of an emptypre-subscript in the same column.
Parameters
unsigned long colIndex Column index ofpre-superscript (where 1 represents the leftmostpre-

script column).
MathMLElement newScript A MathMLElement representing the element to be inserted as apre-

superscript.
Return value
MathMLElement TheMathMLElement child of this element that represents the newpre-superscript in

the DOM.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised ifnewScript represents an element that cannot

be a pre-superscript. INDEX_SIZE_ERR: Raised ifcolIndex is greater than the number ofpre-scripts
of the element.

setPreSuperScriptAt
A convenience method to set thepre-superscript child at the position referenced bycolIndex. If there is
currently apre-superscript at this position, it is replaced bynewScript.
Parameters
unsigned long colIndex Column index ofpre-superscript (where 1 represents the leftmostpre-

script column).
MathMLElement newScript MathMLElement representing the element that is to be set as thecol-

Index-th pre-superscript child of this element.

405

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Return value
MathMLElement TheMathMLElement child of this element that represents the newpre-superscript in

the DOM.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised ifnewScript represents an element that can-

not be apre-superscript. INDEX_SIZE_ERR: Raised ifcolIndex is greater than one more than the
number ofpre-scripts of the element.

insertSuperScriptBefore
A convenience method to insert asuperscript before the position referenced by column index. IfcolIndex
is 0, the newsuperscript is appended as the lastsuperscript of themmultiscripts element; if colIndex is 1,
a newsuperscript is prepended at the far left. Note that inserting a newsuperscript will cause the insertion
of an emptysubscript in the same column.
Parameters
unsigned long colIndex Column index ofsuperscript, where 1 represents the leftmostscript col-

umn (the first to the right of thebase).
MathMLElement newScript A MathMLElement representing the element to be inserted as asuper-

script.
Return value
MathMLElement TheMathMLElement child of this element that represents the newsuperscript in the

DOM.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised ifnewScript represents an element that cannot

be a superscript. INDEX_SIZE_ERR: Raised ifcolIndex is greater than the number ofscripts of the
element.

setSuperScriptAt
A convenience method to set thesuperscript child at the position referenced bycolIndex. If there is cur-
rently asuperscript at this position, it is replaced bynewScript.
Parameters
unsigned long colIndex Column index ofsuperscript, where 1 represents the leftmostscript col-

umn (the first to the right of thebase).
MathMLElement newScript MathMLElement representing the element that is to be set as thecol-

Index-th superscript child of this element.
Return value
MathMLElement TheMathMLElement child of this element that represents the newsuperscript in the

DOM.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised ifnewScript represents an element that cannot

be asuperscript. INDEX_SIZE_ERR: Raised ifcolIndex is greater than one more than the number of
scripts of the element.

Interface MathMLTableElement

Extends:MathMLPresentationElement

This interface extends theMathMLPresentationElement interface for the MathMLtable or matrix elementmtable.

IDL Definition

interface MathMLTableElement: MathMLPresentationElement {
attribute DOMString align;
attribute DOMString rowalign;

406

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

attribute DOMString columnalign;
attribute DOMString groupalign;
attribute DOMString alignmentscope;
attribute DOMString columnwidth;
attribute DOMString width;
attribute DOMString rowspacing;
attribute DOMString columnspacing;
attribute DOMString rowlines;
attribute DOMString columnlines;
attribute DOMString frame;
attribute DOMString framespacing;
attribute DOMString equalrows;
attribute DOMString equalcolumns;
attribute DOMString displaystyle;
attribute DOMString side;
attribute DOMString minlabelspacing;
readonly attribute MathMLNodeList rows;
MathMLTableRowElement insertEmptyRow(in long index);
MathMLLabeledRowElement insertEmptyLabeledRow(in long index);
MathMLTableRowElement getRow(in unsigned long index);
MathMLTableRowElement insertRow(in long index, in MathMLTableRowElement newRow);
MathMLTableRowElement setRow(in long index, in MathMLTableRowElement newRow);
void deleteRow(in unsigned long index);
MathMLTableRowElement removeRow(in long index);

};

Attributes

align of type DOMString A string representing the vertical alignment of the table with the adjacent text. Allowed
values are (top | bottom | center | baseline | axis)[rownumber], whererownumber is between 1 andn
(for a table withn rows) or -1 and -n.

rowalign of type DOMString A string representing the alignment of entries in each row, consisting of a space-
separated sequence of alignment specifiers, each of which can have the following values:top, bottom,
center, baseline, or axis.

columnalign of type DOMString A string representing the alignment of entries in each column, consisting of a space-
separated sequence of alignment specifiers, each of which can have the following values:left, center, or
right.

groupalign of type DOMString A string specifying how the alignment groups within the cells of each row are to be
aligned with the corresponding items above or below them in the same column. The string consists of a
sequence of braced group alignment lists. Each group alignment list is a space-separated sequence, each of
which can have the following values:left, right, center, or decimalpoint.

alignmentscope of type DOMString A string consisting of the valuestrue or false indicating, for each column,
whether it can be used as an alignment scope.

columnwidth of type DOMString A string consisting of a space-separated sequence of specifiers, each of which
can have one of the following forms:auto, number h-unit, namedspace, or fit. (A value of the form
namedspace is one ofveryverythinmathspace, verythinmathspace, thinmathspace, mediummath-
space, thickmathspace, verythickmathspace, or veryverythickmathspace.) This represents the el-
ement’scolumnwidth attribute.

407

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

width of type DOMString A string that is either of the formnumber h-unit or is the stringauto. This represents
the element’swidth attribute.

rowspacing of type DOMString A string consisting of a space-separated sequence of specifiers of the formnumber
v-unit representing the space to be added between rows.

columnspacing of type DOMString A string consisting of a space-separated sequence of specifiers of the formnum-
ber h-unit representing the space to be added between columns.

rowlines of type DOMString A string specifying whether and what kind of lines should be added between each row.
The string consists of a space-separated sequence of specifiers, each of which can have the following values:
none, solid, or dashed.

columnlines of type DOMString A string specifying whether and what kind of lines should be added between each
column. The string consists of a space-separated sequence of specifiers, each of which can have the following
values:none, solid, or dashed.

frame of type DOMString A string specifying a frame around the table. Allowed values are(none | solid |
dashed).

framespacing of type DOMString A string of the formnumber h-unit number v-unit specifying the spacing
between table and its frame.

equalrows of type DOMString A string with the valuestrue or false.

equalcolumns of type DOMString A string with the valuestrue or false.

displaystyle of type DOMString A string with the valuestrue or false.

side of type DOMString A string with the valuesleft, right, leftoverlap, or rightoverlap.

minlabelspacing of type DOMString A string of the formnumber h-unit, specifying the minimum space between
a label and the adjacent entry in the labeled row.

rows of type MathMLNodeList, readonly A MathMLNodeList consisting ofMathMLTableRowElements andMathM-
LLabeledRowElements representing the rows of the table. This is alive object.

Methods

insertEmptyRow
A convenience method to insert a new (empty) row (mtr) in the table before the currentindex-th row. If
index is less than 0, the new row is inserted before the-index-th row counting up from the current last
row; if index is equal to the current number of rows, the new row is appended as the last row.
Parameters
long index Position before which to insert the new row, where 0 represents the first row. Negative

numbers are used to count backwards from the last row.
Return value
MathMLTableRowElement Returns theMathMLTableRowElement child of this MathMLTableEle-

ment that represents the newmtr element being inserted.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the current number of rows of this

mtable element or less than minus this number.
insertEmptyLabeledRow

A convenience method to insert a new (empty) labeled row (mlabeledtr) in the table before the current
index-th row. If index is less than 0, the new row is inserted before the-index-th row counting up from
the current last row; ifindex is equal to the current number of rows, the new row is appended as the last
row.
Parameters
long index Position before which to insert the new row, where 0 represents the first row. Negative

numbers are used to count backwards from the last row.
Return value

408

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

MathMLLabeledRowElement Returns the MathMLLabeledRowElement child of this
MathMLTableElement representing themtr element being inserted.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the current number of rows of this

mtable element or less than minus this number.
getRow

A convenience method to retrieve theindex-th row from the table. Ifindex is less than 0, the-index-th row
from the bottom of the table is retrieved. (So, for instance, ifindex is -2, the next-to-last row is retrieved.)
If index is not a valid value (i.e. is greater than or equal to the number of rows, or is less than minus the
number of rows), anull MathMLTableRowElement is returned.
Parameters
unsigned long index Index of the row to be returned, where 0 represents the first row. Negative

numbers are used to count backwards from the last row.
Return value
MathMLTableRowElement Returns theMathMLTableRowElement representing theindex-th row of

the table.
This method raises no exceptions.

insertRow
A convenience method to insert the new row or labeled row (mtr or mlabeledtr) represented bynewRow
in the table before the currentindex-th row. If index is equal to the current number of rows,newRow is
appended as the last row in the table. Ifindex is less than 0, the new row is inserted before the-index-
th row from the bottom of the table. (So, for instance, ifindex is -2, the new row is inserted before the
next-to-last current row.)
Parameters
long index Index before which to insertnewRow, where 0 represents the first

row. Negative numbers are used to count backwards from the
current last row.

MathMLTableRowElement newRow A MathMLTableRowElement or MathMLLabeledRowElement
representing the row to be inserted.

Return value
MathMLTableRowElement The MathMLTableRowElement or MathMLLabeledRowElement child of

thisMathMLTableElement representing themtr element being inserted.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised ifnewRow is not aMathMLTableRowElement or

MathMLLabeledRowElement. INDEX_SIZE_ERR: Raised ifindex is greater than the current number
of rows or less than minus the current number of rows of thismtable element.

setRow
A method to set the value of the row in the table at the specified index to themtr or mlabeledtr represented
by newRow. If index is less than 0, the-index-th row counting up from the last is replaced bynewRow; if
index is one more than the current number of rows, the new row is appended as the last row in the table.
Parameters
long index Index of the row to be set tonewRow, where 0 represents the first

row. Negative numbers are used to count backwards from the last
row.

MathMLTableRowElement newRow A MathMLTableRowElement representing the row that is to be
the newindex-th row.

Return value
MathMLTableRowElement Returns theMathMLTableRowElement or MathMLLabeledRowElement

child of this element that represents the new row in the DOM.
Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised ifnewRow is not aMathMLTableRowElement or

409

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

MathMLLabeledRowElement. INDEX_SIZE_ERR: Raised ifindex is greater than the current number
of rows of thismtable element or less than minus this number.

deleteRow
A convenience method to delete the row of the table at the specified index. Ifindex is less than 0, the-
index-th row from the bottom of the table is deleted. (So, for instance, ifindex is -2, the next-to-last row is
deleted.)
Parameters
unsigned long index Index of row to be deleted, where 0 represents the first row.

Return value
void None.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than or equal to the current number of

rows of this mtable element or less than minus this number.
removeRow

A convenience method to delete the row of the table at the specified index and return it to the caller. Ifindex
is less than 0, the-index-th row from the bottom of the table is deleted. (So, for instance, ifindex is -2, the
next-to-last row is deleted.)
Parameters
long index Index of row to be removed, where 0 represents the first row.

Return value
MathMLTableRowElement A MathMLTableRowElement representing the row being deleted.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than or equal to the number of rows of this

mtable element or less than minus this number.

Interface MathMLTableRowElement

Extends:MathMLPresentationElement

This interface extends theMathMLPresentationElement interface for the MathML table or matrix row elementmtr.

IDL Definition

interface MathMLTableRowElement: MathMLPresentationElement {
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
readonly attribute MathMLNodeList cells;
MathMLTableCellElement insertEmptyCell(in unsigned long index);
MathMLTableCellElement insertCell(in MathMLTableCellElement newCell, in unsigned long index);
MathMLTableCellElement setCell(in MathMLTableCellElement newCell, in unsigned long index);
void deleteCell(in unsigned long index);

};

Attributes

rowalign of type DOMString A string representing an override of the row alignment specified in the containing
mtable. Allowed values aretop, bottom, center, baseline, andaxis.

columnalign of type DOMString A string representing an override of the column alignment specified in the contain-
ing mtable. Allowed values areleft, center, andright.

410

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

groupalign of type DOMString [To be changed?]

cells of type MathMLNodeList, readonly A MathMLNodeList consisting of the cells of the row.Note that this does
not include the label if this is a MathMLLabeledRowElement!

Methods

insertEmptyCell
A convenience method to insert a new (empty) cell in the row.
Parameters
unsigned long index Index of the cell before which the new cell is to be inserted, where the first

cell is numbered 0. Ifindex is equal to the current number of cells, the
new cell is appended as the last cell of the row.Note that the index will
differ from the index of the corresponding Node in the collection returned by
Node::childNodes if this is a MathMLLabeledRowElement!

Return value
MathMLTableCellElement Returns theMathMLTableCellElement representing themtd element be-

ing inserted.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the current number of cells of this

mtr element.
insertCell

A convenience method to insert a new cell in the row.
Parameters
MathMLTableCellElement newCell A MathMLTableCellElement representing the new cell (mtd

element) to be inserted.
unsigned long index Index of the cell before which the new cell is to be inserted,

where the first cell is numbered 0. Ifindex equals the current
number of cells, the new cell is appended as the last cell of the
row. Note that the index will differ from the index of the cor-
responding Node in Node::childNodes if this is a MathML-
LabeledRowElement!

Return value
MathMLTableCellElement TheMathMLTableCellElement representing themtd element being in-

serted.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the current number of cells of this

mtr element.
setCell

A convenience method to set the value of a cell in the row tonewCell. If index is equal to the current number
of cells,newCell is appended as the last cell in the row.
Parameters
MathMLTableCellElement newCell A MathMLTableCellElement representing the cell (mtd ele-

ment) that is to be inserted.
unsigned long index Index of the cell that is to be replaced by the new cell, where

the first cell is numbered 0.Note that the index will differ from
the index of the corresponding Node in the collection returned
by Node::childNodes if this is a MathMLLabeledRowEle-
ment!

Return value
MathMLTableCellElement TheMathMLTableCellElement child of thisMathMLTableRowElement

representing the newmtd element.

411

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

This method raises no exceptions.
deleteCell

A convenience method to delete a cell in the row.
Parameters
unsigned long index Index of cell to be deleted.Note that the count will differ from the index-th

child node if this is a MathMLLabeledRowElement!
Return value
void None.

This method raises no exceptions.

Interface MathMLLabeledRowElement

Extends:MathMLTableRowElement

This interface extends theMathMLTableRowElement interface to represent themlabeledtr element Section3.5.3.
Note that the presence of a label causes the indexth child node to differ from the index-th cell!

IDL Definition

interface MathMLLabeledRowElement: MathMLTableRowElement {
attribute MathMLElement label;

};

Attributes

label of type MathMLElement A MathMLElement representing the label of this row. Note that retrieving this should
have the same effect as a call toNode::getfirstChild(), while setting it should have the same effect as
Node::replaceChild(Node::getfirstChild()).
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised if thisMathMLElement or the newMathM-

LElement is read-only.

Interface MathMLTableCellElement

Extends:MathMLPresentationContainer

This interface extends theMathMLPresentationContainer interface for the MathML table or matrix cell element
mtd.

IDL Definition

interface MathMLTableCellElement: MathMLPresentationContainer {
attribute DOMString rowspan;
attribute DOMString columnspan;
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
readonly attribute boolean hasaligngroups;
readonly attribute DOMString cellindex;

};

412

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Attributes

rowspan of type DOMString A string representing a positive integer that specifies the number of rows spanned by
this cell. The default is 1.

columnspan of type DOMString A string representing a positive integer that specifies the number of columns spanned
by this cell. The default is 1.

rowalign of type DOMString A string specifying an override of the inherited vertical alignment of this cell within
the table row. Allowed values aretop, bottom, center, baseline, andaxis.

columnalign of type DOMString A string specifying an override of the inherited horizontal alignment of this cell
within the table column. Allowed values areleft, center, andright.

groupalign of type DOMString A string specifying how the alignment groups within the cell are to be aligned with
those in cells above or below this cell. The string consists of a space-separated sequence of specifiers, each
of which can have the following values:left, right, center, or decimalpoint.

hasaligngroups of type boolean, readonly A string with the valuestrue or false indicating whether the cell con-
tains align groups.

cellindex of type DOMString, readonly A string representing the integer index (1-based?) of the cell in its containing
row. [What about spanning cells? How do these affect this value?]

Interface MathMLAlignGroupElement

Extends:MathMLPresentationElement

This interface extends theMathMLPresentationElement interface for the MathML group -alignment element<ma-
ligngroup/>.

IDL Definition

interface MathMLAlignGroupElement: MathMLPresentationElement {
attribute DOMString groupalign;

};

Attributes

groupalign of type DOMString A string specifying how the alignment group is to be aligned with other alignment
groups above or below it. Allowed values areleft, right, center, or decimalpoint.

Interface MathMLAlignMarkElement

Extends:MathMLPresentationElement

This interface extends theMathMLPresentationElement interface for the MathMLalignment mark element<ma-
lignmark/>.

IDL Definition

interface MathMLAlignMarkElement: MathMLPresentationElement {
attribute DOMString edge;

};

413

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

edge of type DOMString A string specifying alignment on the right edge of the preceding element or the left edge of
the following element. Allowed values areleft andright.

D.1.4 Content Elements

Interface MathMLContentElement

Extends:MathMLElement

This interface is provided to serve as a base interface for various MathML Content interfaces. It contains no new
attributes or methods at this time; however, it is felt that the distinction between Presentation and Content MathML
entities should be indicated in the MathMLElement hierarchy. In particular, future versions of the MathML DOM may
add functionality on this interface; it may also serve as an aid to implementors.

IDL Definition

interface MathMLContentElement: MathMLElement {
};

D.1.4.1 Content Token Interfaces

Interface MathMLContentToken

Extends:MathMLContentElement

This is the interface from which the interfaces representing the MathML Content token elements (ci, cn andcsym-
bol) are derived. These elements may contain MathML Presentation elements,Text nodes, or a combination of both.
Thus thegetArgument andinsertArgument methods have been provided to deal with this distinction between these
elements and other MathML Content elements.

IDL Definition

interface MathMLContentToken: MathMLContentElement {
readonly attribute MathMLNodeList arguments;
attribute DOMString definitionURL;
attribute DOMString encoding;
Node getArgument(in unsigned long index);
Node insertArgument(in unsigned long index, in Node newArgument);
Node setArgument(in unsigned long index, in Node newArgument);
void deleteArgument(in unsigned long index);
Node removeArgument(in unsigned long index);

};

Attributes

arguments of type MathMLNodeList, readonly The arguments of this element, returned as aMathMLNodeList.
Note that this is not necessarily the same asNode::childNodes, particularly in the case of thecn element.
The reason is that thesep elements that are used to separate the arguments of acn are not returned.

definitionURL of type DOMString A URI pointing to a semantic definition for this content element. Note that there
is no stipulation about the form this definition may take!

encoding of type DOMString A string describing the syntax in which the definition located atdefinitionURL is
given.

414

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Methods

getArgument
A convenience method to retrieve the child argument at the position referenced byindex. Note that this is
not necessarily the same as theindex-th childNode of thisElement; in particular,sep elements will not be
counted.
Parameters
unsigned long index Position of desired argument in the list of arguments. The first argument is

numbered 1.
Return value
Node TheNode retrieved.

This method raises no exceptions.

insertArgument
A convenience method to insertnewArgument before the currentindex-th argument child of this element.
If index is 0,newArgument is appended as the last argument.
Parameters
unsigned long index Position before whichnewArgument is to be inserted. The first argu-

ment is numbered 1.Note that this is not necessarily the index of the
Node in the list of child nodes, as nodes representing such elements
as sep are not counted as arguments.

Node newArgument Node to be inserted as theindex-th argument. This will either be a
MathMLElement or aText node.

Return value
Node TheNode inserted. This is the element within the DOM.

This method raises no exceptions.

setArgument
A convenience method to set an argument child at the position referenced byindex. If there is currently an
argument at this position, it is replaced bynewArgument.
Parameters
unsigned long index Position of the argument that is to be set tonewArgument in the list

of arguments. The first argument is numbered 1.Note that this is not
necessarily the index of the Node in the list of child nodes, as nodes
representing such elements as sep are not counted as arguments.

Node newArgument Node to be inserted as the argument. This will either be aMathM-
LElement or aText node.

Return value
Node TheNode inserted. This is the element within the DOM.

This method raises no exceptions.

deleteArgument
A convenience method to delete the argument child located at the position referenced byindex.
Parameters
unsigned long index Position of the argument to be deleted from the list of arguments. The first

argument is numbered 1.
Return value
void None.

This method raises no exceptions.

removeArgument
A convenience method to delete the argument child located at the position referenced byindex, and to return
it to the caller.
Parameters

415

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

unsigned long index Position of the argument to be deleted from the list of arguments. The first
argument is numbered 1.

Return value
Node A Node representing the deleted argument.

This method raises no exceptions.

Interface MathMLCnElement

Extends:MathMLContentToken

Thecn element is used to specify actual numeric constants.

IDL Definition

interface MathMLCnElement: MathMLContentToken {
attribute DOMString type;
attribute DOMString base;
readonly attribute unsigned long nargs;

};

Attributes

type of type DOMString Values include, but are not restricted to,e-notation, integer, rational, real, float,
complex, complex-polar, complex-cartesian, andconstant.

base of type DOMString A string representing an integer between 2 and 36; the base of the numerical representation.
nargs of type unsigned long, readonly The number ofsep-separated arguments.

Interface MathMLCiElement

Extends:MathMLContentToken

Theci element is used to specify a symbolic name.

IDL Definition

interface MathMLCiElement: MathMLContentToken {
attribute DOMString type;

};

Attributes

type of type DOMString Values includeinteger, rational, real, float, complex, complex-polar, complex-
cartesian, constant, any of the MathML content container types (vector, matrix, set, list etc.) or
their types.

Interface MathMLCsymbolElement

Extends:MathMLContentToken

This interface represents thecsymbol element. Although it currently has no attributes or methods distinct from those
of MathMLContentToken, a separate interface is provided to emphasize the conceptual role of thecsymbol element.

416

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

IDL Definition

interface MathMLCsymbolElement: MathMLContentToken {
};

D.1.4.2 Content Container Interfaces

We have added interfaces for content elements that are containers, i.e. elements that may contain child elements corre-
sponding to arguments, bound variables, conditions, or lower or upper limits.

Interface MathMLContentContainer

Extends:MathMLContentElement, MathMLContainer

This interface supports the MathML Content elements that may contain child Content elements. The elements di-
rectly supported byMathMLContentContainer include:reln (deprecated),lambda, lowlimit, uplimit, degree,
domainofapplication, andmomentabout. Interfaces derived from MathMLContentContainer support the elements
apply, fn, interval, condition, declare, bvar, set, list, vector, matrix, andmatrixrow.

IDL Definition

interface MathMLContentContainer: MathMLContentElement, MathMLContainer {
readonly attribute unsigned long nBoundVariables;
attribute MathMLConditionElement condition;
attribute MathMLElement opDegree;
attribute MathMLElement domainOfApplication;
attribute MathMLElement momentAbout;
MathMLBvarElement getBoundVariable(in unsigned long index);
MathMLBvarElement insertBoundVariable(in MathMLBvarElement newBVar, in unsigned long index);
MathMLBvarElement setBoundVariable(in MathMLBvarElement newBVar, in unsigned long index);
void deleteBoundVariable(in unsigned long index);
MathMLBvarElement removeBoundVariable(in unsigned long index);

};

Attributes

nBoundVariables of type unsigned long, readonly The number ofbvar child elements of this element.

condition of type MathMLConditionElement This attribute represents thecondition child element of this node.
See Section4.2.3.2.
DOMException HIERARCHY_REQUEST_ERR: Raised if this element does not permit a childcondi-

tion element. In particular, raised if this element is not aapply, set, or list.
opDegree of type MathMLElement This attribute represents thedegree child element of this node. This expresses,

for instance, the degree of differentiation if this element is abvar child of anapply element whose first child
is adiff or partialdiff. If this is anapply element whose first child is apartialdiff, theopDegree
attribute, if present, represents the total degree of differentiation. See Section4.2.3.2.
DOMException HIERARCHY_REQUEST_ERR: Raised if this element does not permit a childdegree

element. In particular, raised if this element is not abvar or apply.
domainOfApplication of type MathMLElement This attribute represents thedomainofapplication child element

of this node, if present. This may express, for instance, the domain of integration if this element is anapply
element whose first child is an integral operator (int). See Section4.2.3.2.

417

http://www.w3.org/TR/DOM-Level-2/core.html

DOMException HIERARCHY_REQUEST_ERR: Raised if this element does not permit a childdomain-
ofapplication element.

momentAbout of type MathMLElement This attribute represents themomentabout child element of this node, if
present. This typically expresses the point about which a statistical moment is to be calculated, if this element
is anapply element whose first child is amoment. See Section4.2.3.2.
DOMException HIERARCHY_REQUEST_ERR: Raised if this element does not permit a childmomentabout

element. In particular, raised if this element is not anapply whose first child is amoment.

Methods

getBoundVariable
This method retrieves theindex-thMathMLBvarElement child of theMathMLElement. Note that onlybvar
child elements are counted in determining theindex-th bound variable.
Parameters
unsigned long index The one-based index into the bound variable children of this element of the

MathMLBvarElement to be retrieved.
Return value
MathMLBvarElement TheMathMLBvarElement representing theindex-thbvar child of this element.

This method raises no exceptions.
insertBoundVariable

This method inserts aMathMLBvarElement as a child node before the currentindex-th bound variable child
of this MathMLElement. If index is 0,newBVar is appended as the last bound variable child. This has the
effect of adding a bound variable to the expression this element represents. Note that the new bound variable
is inserted as theindex-th bvar child node, not necessarily as theindex-th child node. The point of the
method is to allow insertion of bound variables without requiring the caller to calculate the exact order of
child qualifier elements.
Parameters
MathMLBvarElement newBVar A MathMLBvarElement representing thebvar element being added.
unsigned long index The one-based index into the bound variable children of this element

before whichnewBVar is to be inserted.
Return value
MathMLBvarElement TheMathMLBvarElement being added.

Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised if this element does not permit childbvar ele-

ments.
setBoundVariable

This method sets theindex-th bound variable child of thisMathMLElement to newBVar. This has the effect
of setting a bound variable in the expression this element represents. Note that the new bound variable is
inserted as theindex-th bvar child node, not necessarily as theindex-th child node. The point of the
method is to allow insertion of bound variables without requiring the caller to calculate the exact order of
child qualifier elements. If there is already abvar at theindex-th position, it is replaced bynewBVar.
Parameters
MathMLBvarElement newBVar The newMathMLBvarElement child of this element being set.
unsigned long index The one-based index into the bound variable children of this element

at whichnewBVar is to be inserted.
Return value
MathMLBvarElement TheMathMLBvarElement being set.

Exceptions
DOMException HIERARCHY_REQUEST_ERR: Raised if this element does not permit childbvar ele-

ments.

418

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

deleteBoundVariable
This method deletes theindex-th MathMLBvarElement child of theMathMLElement. This has the effect of
removing this bound variable from the list of qualifiers affecting the element this represents.
Parameters
unsigned long index The one-based index into the bound variable children of this element of the

MathMLBvarElement to be removed.
Return value
void None.

This method raises no exceptions.
removeBoundVariable

This method removes theindex-th MathMLBvarElement child of theMathMLElement and returns it to the
caller. This has the effect of removing this bound variable from the list of qualifiers affecting the element this
represents.
Parameters
unsigned long index The one-based index into the bound variable children of this element of the

MathMLBvarElement to be removed.
Return value
MathMLBvarElement TheMathMLBvarElement being removed.

This method raises no exceptions.

Interface MathMLApplyElement

Extends:MathMLContentContainer

Theapply element allows a function or operator to be applied to its arguments.

IDL Definition

interface MathMLApplyElement: MathMLContentContainer {
attribute MathMLElement operator;
attribute MathMLElement domainOfApplication;
attribute MathMLElement lowLimit;
attribute MathMLElement upLimit;

};

Attributes

operator of type MathMLElement The MathML element representing the function or operator that is applied to the
list of arguments.

domainOfApplication of type MathMLElement This attribute represents thedomainofapplication child element
of this node (if any). This expresses, for instance, the domain of integration if this is anapply element whose
first child is aint. See Section4.2.3.2.
DOMException HIERARCHY_REQUEST_ERR: Raised if this element does not permit a childdomain-

ofapplication element.
lowLimit of type MathMLElement This attribute represents thelowlimit child element of this node (if any). This

expresses, for instance, the lower limit of integration if this is anapply element whose first child is aint.
See Section4.2.3.2.
DOMException HIERARCHY_REQUEST_ERR: Raised if this element does not permit a childlowlimit

element. In particular, raised if this element is not anapply element whose first child is anint, sum,
product, or limit element.

419

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

upLimit of type MathMLElement This attribute represents theuplimit child element of this node (if any). This
expresses, for instance, the upper limit of integration if this is anapply element whose first child is aint.
See Section4.2.3.2.
DOMException HIERARCHY_REQUEST_ERR: Raised if this element does not permit a childuplimit

element. In particular, raised if this element is not anapply element whose first child is anint, sum,
or product element.

Interface MathMLFnElement

Extends:MathMLContentContainer

Thefn element makes explicit the fact that a more general MathML object is intended to be used in the same manner
as if it were a pre-defined function such assin or plus.

IDL Definition

interface MathMLFnElement: MathMLContentContainer {
attribute DOMString definitionURL;
attribute DOMString encoding;

};

Attributes

definitionURL of type DOMString A URI pointing to a definition for this function-type element. Note that there is
no stipulation about the form this definition may take!

encoding of type DOMString A string describing the syntax in which the definition located atdefinitionURL is
given.

Interface MathMLLambdaElement

Extends:MathMLContentContainer

Thelambda element is used to construct a user-defined function from an expression and one or more free variables.

IDL Definition

interface MathMLLambdaElement: MathMLContentContainer {
attribute MathMLElement expression;

};

Attributes

expression of type MathMLElement The MathMLElement representing the expression. This is included only as a
convenience; getting it should give the same result asMathMLContentContainer::getArgument(1).

Interface MathMLSetElement

Extends:MathMLContentContainer

Theset element is the container element that represents a set of elements. The elements of a set can be defined either
by explicitly listing the elements, or by using thebvar andcondition elements.

420

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

IDL Definition

interface MathMLSetElement: MathMLContentContainer {
readonly attribute boolean isExplicit;
attribute DOMString type;

};

Attributes

isExplicit of type boolean, readonly This is true if the set is specified by giving the list of its elements explicitly.

type of type DOMString Thetype attribute of the represented element. Predefined values arenormal andmultiset.
See Section4.4.6and Section4.3.

Interface MathMLListElement

Extends:MathMLContentContainer

The list element is the container element which represents a list of elements. Elements can be defined either by
explicitly listing the elements, or by using thebvar andcondition elements.

IDL Definition

interface MathMLListElement: MathMLContentContainer {
readonly attribute boolean isExplicit;
attribute DOMString ordering;

};

Attributes

isExplicit of type boolean, readonly This is true if the list is specified by giving its elements explicitly.

ordering of type DOMString The order attribute of the represented element. Predefined values arenumeric and
lexicographic. See Section4.4.6and Section4.3.

Interface MathMLBvarElement

Extends:MathMLContentContainer

This interface represents the MathML bound variable elementbvar. The interface currently provides no functionality
beyond that ofMathMLContentContainer, but is useful for defining the type of bound variable access functions.

IDL Definition

interface MathMLBvarElement: MathMLContentContainer {
};

421

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

D.1.4.3 Content Leaf Element Interfaces

Interface MathMLPredefinedSymbol

Extends:MathMLContentElement

This interface supports all of the empty built-in operator, relation, function, and constant and symbol elements that have
thedefinitionURL andencoding attributes in addition to the standard set of attributes. The elements supported in
order of their appearance in Section4.4are:inverse, compose, ident, domain, codomain, image, quotient, exp,
factorial, divide, max, min, minus, plus, power, rem, times, root, gcd, and, or, xor, not, implies, forall,
exists, abs, conjugate, arg, real, imaginary, lcm, floor, ceiling, eq, neq, gt, lt, geq, leq, equivalent, ap-
prox, factorof, ln, log, int, diff, partialdiff, divergence, grad, curl, laplacian, union, intersect, in,
notin, subset, prsubset, notsubset, notprsubset, setdiff, card, cartesianproduct, sum, product, limit,
tendsto, sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin, arccos, arctan, arcsec, ar-
ccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth, mean, sdev, variance, median, mode,
moment, determinant, transpose, selector, vectorproduct, scalarproduct, outerproduct, integers, re-
als, rationals, naturalnumbers, complexes, primes, exponentiale, imaginaryi, notanumber, true, false,
emptyset, pi, eulergamma, andinfinity.

IDL Definition

interface MathMLPredefinedSymbol: MathMLContentElement {
attribute DOMString definitionURL;
attribute DOMString encoding;
attribute DOMString arity;
readonly attribute DOMString symbolName;

};

Attributes

definitionURL of type DOMString A string that provides an override to the default semantics, or provides a more
specific definition

encoding of type DOMString A string describing the syntax in which the definition located atdefinitionURL is
given.

arity of type DOMString A string representing the number of arguments. Values include 0, 1, ... andvariable.

symbolName of type DOMString, readonly A string giving the name of the MathML element represented. This is
a convenience attribute only; accessing it should be synonymous with accessing theElement::tagName
attribute.

D.1.4.4 Other Content Element Interfaces

Interface MathMLIntervalElement

Extends:MathMLContentElement

Theinterval element is used to represent simple mathematical intervals on the real number line. It contains either
two child elements that evaluate to real numbers or one child element that is a condition for defining membership in the
interval.

422

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

IDL Definition

interface MathMLIntervalElement: MathMLContentElement {
attribute DOMString closure;
attribute MathMLCnElement start;
attribute MathMLCnElement end;

};

Attributes

closure of type DOMString A string with valueopen, closed, open-closed or closed-open. The default value is
closed.

start of type MathMLCnElement A MathMLCnElement representing the real number defining the start of the interval.
If end has not already been set, it becomes the same asstart until set otherwise.

end of type MathMLCnElement A MathMLCnElement representing the real number defining the end of the interval.
If start has not already been set, it becomes the same asend until set otherwise.

Interface MathMLConditionElement

Extends:MathMLContentElement

Thecondition element is used to place a condition on one or more free variables or identifiers.

IDL Definition

interface MathMLConditionElement: MathMLContentElement {
attribute MathMLApplyElement condition;

};

Attributes

condition of type MathMLApplyElement A MathMLApplyElement that represents the condition.

Interface MathMLDeclareElement

Extends:MathMLContentElement

The declare construct has two primary roles. The first is to change or set the default attribute values for a specific
mathematical object. The second is to establish an association between a ‘name’ and an object.

IDL Definition

interface MathMLDeclareElement: MathMLContentElement {
attribute DOMString type;
attribute unsigned long nargs;
attribute DOMString occurrence;
attribute DOMString definitionURL;
attribute DOMString encoding;
attribute MathMLCiElement identifier;
attribute MathMLElement constructor;

};

423

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString

Attributes

type of type DOMString A string indicating the type of the identifier. It must be compatible with the type of thecon-
structor, if a constructor is present. The type is inferred from theconstructor if present, otherwise it
must be specified.

nargs of type unsigned long If the identifier is a function, this attribute specifies the number of arguments the
function takes. This represents thedeclare element’snargs attribute; see Section4.4.2.8.

occurrence of type DOMString A string with the valuesprefix, infix, postfix, or function-model.

definitionURL of type DOMString A URI specifying the detailed semantics of the element.

encoding of type DOMString A description of the syntax used indefinitionURL.

identifier of type MathMLCiElement A MathMLCiElement representing the name being declared.

constructor of type MathMLElement An optionalMathMLElement providing an initial value for the object being
declared.

Interface MathMLVectorElement

Extends:MathMLContentElement

vector is the container element for a vector.

IDL Definition

interface MathMLVectorElement: MathMLContentElement {
readonly attribute unsigned long ncomponents;
MathMLContentElement getComponent(in unsigned long index);
MathMLContentElement insertComponent(in MathMLContentElement newComponent, in unsigned long index);
MathMLContentElement setComponent(in MathMLContentElement newComponent, in unsigned long index);
deleteComponent(in unsigned long index);
MathMLContentElement removeComponent(in unsigned long index);

};

Attributes

ncomponents of type unsigned long, readonly The number of components in the vector.

Methods

getComponent
A convenience method to retrieve a component.
Parameters
unsigned long index Position of the component in the list of components. The first element is

numbered 1.
Return value
MathMLContentElement The MathMLContentElement component at the position specified byin-

dex. If index is not a valid index (i.e. is greater than the number of com-
ponents of the vector or less than 1), anull MathMLContentElement is
returned.

This method raises no exceptions.

424

http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html#DOMString
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

insertComponent
A convenience method to insert a new component in the vector before the currentindex-th component. If
index is 0 or is one more than the number of components currently in the vector,newComponent is appended
as the last component of the vector.
Parameters
MathMLContentElement newComponent A MathMLContentElement representing the component

that is to be added.
unsigned long index Position of the component in the list of components. The

first component is numbered 1.
Return value
MathMLContentElement TheMathMLContentElement child of thisMathMLVectorElement repre-

senting the new component in the DOM.
Exceptions

DOMException INDEX_SIZE_ERR: Raised ifindex is greater than one more than the current number of
components of thisvector element.

setComponent
A convenience method to set theindex-th component of the vector tonewComponent. If index is one more
than the current number of components,newComponent is appended as the last component.
Parameters
MathMLContentElement newComponent A MathMLContentElement representing the element that

is to be theindex-th component of the vector.
unsigned long index Position of the component in the list of components. The

first element is numbered 1.
Return value
MathMLContentElement The MathMLContentElement child of this MathMLVectorElement that

represents the new component in the DOM.
Exceptions

DOMException INDEX_SIZE_ERR: Raised ifindex is greater than one more than the current number of
components of thisvector element.

deleteComponent
A convenience method to delete an element. The deletion changes the indices of the following components.
Parameters
unsigned long index Position of the component in the vector. The position of the first component

is 1
Return value

None
Exceptions

DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the current number of components of
thisvector element.

removeComponent
A convenience method to remove a component from a vector and return it to the caller. If index is greater
than the number of components or is 0, anull MathMLContentElement is returned.
Parameters
unsigned long index Position of the component in the list of components. The first element is

numbered 1.
Return value
MathMLContentElement TheMathMLContentElement component being removed.

This method raises no exceptions.

425

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Interface MathMLMatrixElement

Extends:MathMLContentElement

Thematrix element is the container element formatrixrow elements.

IDL Definition

interface MathMLMatrixElement: MathMLContentElement {
readonly attribute unsigned long nrows;
readonly attribute unsigned long ncols;
readonly attribute MathMLNodeList rows;
MathMLMatrixrowElement getRow(in unsigned long index);
MathMLMatrixrowElement insertRow(in MathMLMatrixrowElement newRow, in unsigned long index);
MathMLMatrixrowElement setRow(in MathMLMatrixrowElement newRow, in unsigned long index);
deleteRow(in unsigned long index);
MathMLMatrixrowElement removeRow(in unsigned long index);

};

Attributes

nrows of type unsigned long, readonly The number of rows in the represented matrix.

ncols of type unsigned long, readonly The number of columns in the represented matrix.
rows of type MathMLNodeList, readonly The rows of the matrix, returned as aMathMLNodeList consisting of

MathMLMatrixrowElements.

Methods

getRow
A convenience method to retrieve a specified row.
Parameters
unsigned long index Position of the row in the list of rows. The first row is numbered 1.

Return value
MathMLMatrixrowElement TheMathMLMatrixrowElement representing theindex-th row.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of rows in the matrix.

insertRow
A convenience method to insert a row before the row that is currently theindex-th row of this matrix. If
index is 0,newRow is appended as the last row of the matrix.
Parameters
MathMLMatrixrowElement newRow MathMLMatrixrowElement to be inserted into the matrix.
unsigned long index Unsigned integer giving the row position before whichnewRow

is to be inserted. The first row is numbered 1.
Return value
MathMLMatrixrowElement The MathMLMatrixrowElement added. This is the new element within

the DOM.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than one more than the number of rows in

the matrix. HIERARCHY_REQUEST_ERR: Raised if the number of cells innewRow doesn’t match
the number of columns in the matrix.

426

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

setRow
A convenience method to set the value of theindex-th childmatrixrow element of this element. If there is
already a row at the specified index, it is replaced bynewRow.
Parameters
MathMLMatrixrowElement newRow MathMLMatrixrowElement representing thematrixrow

which is to become theindex-th row of the matrix.
unsigned long index Unsigned integer giving the row which is to be set tonewRow.

The first row is numbered 1.
Return value
MathMLMatrixrowElement The MathMLMatrixrowElement child of this MathMLMatrixrowEle-

ment representingnewRow within the DOM.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of rows in the matrix.

HIERARCHY_REQUEST_ERR: Raised if the number of cells innewRow doesn’t match the number
of columns in the matrix.

deleteRow
A convenience method to delete a row. The deletion changes the indices of the following rows.
Parameters
unsigned long index Position of the row to be deleted in the list of rows

Return value
None

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of rows in the matrix.

removeRow
A convenience method to remove a row and return it to the caller. The deletion changes the indices of the
following rows.
Parameters
unsigned long index Position of the row to be removed in the list of rows. The first row is num-

bered 1.
Return value
MathMLMatrixrowElement TheMathMLMatrixrowElement being removed.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of rows in the matrix.

Interface MathMLMatrixrowElement

Extends:MathMLContentElement

Thematrixrow element is the container element for the elements of amatrix.

IDL Definition

interface MathMLMatrixrowElement: MathMLContentElement {
readonly attribute unsigned long nEntries;
MathMLContentElement getEntry(in unsigned long index);
MathMLContentElement insertEntry(in MathMLContentElement newEntry, in unsigned long index);
MathMLContentElement setEntry(in MathMLContentElement newEntry, in unsigned long index);
deleteEntry(in unsigned long index);
MathMLContentElement removeEntry(in unsigned long index);

};

427

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Attributes

nEntries of type unsigned long, readonly The number of entries in the row.

Methods

getEntry
A convenience method to retrieve the contents of an entry by index.
Parameters
unsigned long index Position of the entry in the row. The first entry is numbered 1.

Return value
MathMLContentElement The MathMLContentElement element representing theindex-th entry in

the row.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of entries in the row.

insertEntry
A convenience method to insert an entry before the currentindex-th entry of the row. Ifindex is 0,newEn-
try is appended as the last entry. Note that this method increases the size of thematrixrow.
Parameters
MathMLContentElement newEntry TheMathMLContentElement to be representing the new entry

to be inserted into the row.
unsigned long index The index before whichnewEntry is to be inserted in the row.

The first entry is numbered 1.
Return value
MathMLContentElement The MathMLContentElement child of this MathMLMatrixrowElement

representingnewEntry in the DOM.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of entries in the row.

setEntry
A convenience method to set the contents of the entry at positionindex in the row tonewEntry. If there is
already a entry at the specified index, it is replaced by the new entry.
Parameters
MathMLContentElement newEntry TheMathMLContentElement representing the element that is

to be theindex-th entry.
unsigned long index The index of the entry that is to be set equal tonewEntry. The

first entry is numbered 1.
Return value
MathMLContentElement The MathMLContentElement child of this MathMLMatrixRowElement

representingnewEntry in the DOM.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than one more than the number of ele-

ments in the row.
deleteEntry

A convenience method to delete an entry. The deletion changes the indices of the following entries.
Parameters
unsigned long index Position of the entry to be deleted in the row. The first entry is numbered 1.

Return value
None

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of entries in the row.

428

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

removeEntry
A convenience method to remove an entry from the row and return the removed entry to the caller.
Parameters
unsigned long index Position of the entry to be removed from the row. The first entry is numbered

1.
Return value
MathMLContentElement TheMathMLContentElement being removed from the row.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number of entries in the row.

Interface MathMLPiecewiseElement

Extends:MathMLContentElement

Thepiecewise element represents the piecewise definition of a function. It contains childpiece elements, each rep-
resented by aMathMLCaseElement, giving the various conditions and associated function value specifications in the
function definition, and an optionalotherwise child element, represented by aMathMLContentElement, giving the
‘default’ value of the function - that is, the value to be assigned when none of the conditions specified in thepiece
child elements hold.

IDL Definition

interface MathMLPiecewiseElement: MathMLContentElement {
readonly attribute MathMLNodeList pieces;
attribute MathMLContentElement otherwise;
MathMLCaseElement getCase(in unsigned long index);
MathMLCaseElement setCase(in unsigned long index, in MathMLCaseElement case);
void deleteCase(in unsigned long index);
MathMLCaseElement removeCase(in unsigned long index);
MathMLCaseElement insertCase(in unsigned long index, in MathMLCaseElement newCase);
MathMLContentElement getCaseValue(in unsigned long index);
MathMLContentElement setCaseValue(in unsigned long index, in MathMLContentElement value);
MathMLContentElement getCaseCondition(in unsigned long index);
MathMLContentElement setCaseCondition(in unsigned long index, in MathMLContentElement condition);

};

Attributes

pieces of type MathMLNodeList, readonly A MathMLNodeList containing oneMathMLCaseElement representing
each of thepiece element children of thisMathMLPiecewiseElement. Theotherwise child (if present)
is not contained in thisMathMLNodeList.

otherwise of type MathMLContentElement Returns aMathMLContentElement representing the value to be taken
by the piecewise function when none of the conditions described in thepiece children is true.

Methods

getCase
A convenience method to retrieve the childpiece at the position referenced byindex.
Parameters

429

http://www.w3.org/TR/DOM-Level-2/core.html

unsigned long index Position of desired case in the list of cases. The first piece is numbered 1;
theotherwise child (if present) is not counted, regardless of its position. If
index is greater than the number ofpieces, a nullMathMLCaseElement is
returned; no error is generated.

Return value
MathMLCaseElement TheMathMLCaseElement retrieved.

This method raises no exceptions.

setCase
A convenience method to set the value of the childpiece at the position referenced byindex to the value
of case.
Parameters
unsigned long index Position of thepiece to be set tocase. The first piece is numbered 1;

theotherwise child (if present) is not counted, regardless of its posi-
tion. If there is currently apiece at this position, it will be replaced by
case. If index is one more than the number ofpiece child elements,
a new one will be appended.

MathMLCaseElement case A MathMLCaseElement representing the new value of theindexth
piece child.

Return value
MathMLCaseElement The newMathMLCaseElement created.

Exceptions

DOMException INDEX_SIZE_ERR: Raised ifindex is greater than one more than the number ofpieces
in this element.

deleteCase
A convenience method to delete the childpiece at the position referenced byindex. The deletion changes
the indices of the followingpieces.
Parameters
unsigned long index Position of the piece to be deleted. The first piece is numbered 1; theoth-

erwise child (if present) is not counted, regardless of its position.
Return value
void None.

Exceptions

DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number ofpieces in this ele-
ment.

removeCase
A convenience method to remove the childpiece at the position referenced byindex and return it to the
caller. The removal changes the indices of the followingpieces.
Parameters
unsigned long index Position of the piece to be removed. The first piece is numbered 1; theoth-

erwise child (if present) is not counted, regardless of its position.
Return value
MathMLCaseElement TheMathMLCaseElement removed.

Exceptions

DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number ofpieces in this ele-
ment.

insertCase
A convenience method to insert a newpiece child into this element.
Parameters

430

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

unsigned long index Position before whichcase is to be inserted. Ifindex is 0,newCase
is appended as the lastpiece child of this element. Theotherwise
child (if present) is not counted, regardless of its position.

MathMLCaseElement newCase A MathMLCaseElement representing thepiece to be inserted.
Return value
MathMLCaseElement The newMathMLCaseElement inserted. This is the actualElement in the DOM.

Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater one more than the number ofpieces in

this element.
getCaseValue

A convenience method to retrieve the child of theindexthpiece in this element which specifies the function
value for that case.
Parameters
unsigned long index Position of thepiecewhose value is being requested in the list of pieces. The

first piece is numbered 1; theotherwise child (if present) is not counted,
regardless of its position.

Return value
MathMLContentElement The MathMLContentElement representing the value to be taken by the

function in theindexth case.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number ofpieces in this ele-

ment.
setCaseValue

A convenience method to set the function value for theindexth piece in this element.
Parameters
unsigned long index Position of thepiece whose value is being set in the list of pieces.

The first piece is numbered 1; theotherwise child (if present) is
not counted, regardless of its position.

MathMLContentElement value A MathMLContentElement representing the function value to be
assigned in theindexth case.

Return value
MathMLContentElement The MathMLContentElement representing the value to be taken by the

function in theindexth case.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number ofpieces in this ele-

ment.
getCaseCondition

A convenience method to retrieve the child of thepiece at the position referenced byindex which gives
the condition for this case.
Parameters
unsigned long index Position of thepiece whose condition is being requested in the list of

pieces. The first piece is numbered 1; theotherwise child (if present) is
not counted, regardless of its position.

Return value
MathMLContentElement TheMathMLContentElement representing the condition to be satisfied for

theindexth case.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number ofpieces in this ele-

ment.
setCaseCondition

A convenience method to set the condition for theindexth piece in this element.

431

http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html
http://www.w3.org/TR/DOM-Level-2/core.html

Parameters
unsigned long index Position of thepiece whose condition is being set in the list

of pieces. The first piece is numbered 1; theotherwise child
(if present) is not counted, regardless of its position.

MathMLContentElement condition A MathMLContentElement representing the condition to be
associated to theindexth case.

Return value
MathMLContentElement TheMathMLContentElement which is inserted as the condition child of the

indexth piece.
Exceptions
DOMException INDEX_SIZE_ERR: Raised ifindex is greater than the number ofpieces in this ele-

ment.

Interface MathMLCaseElement

Extends:MathMLContentElement

Thepiece element represents one of a sequence of cases used in the piecewise definition of a function. It contains two
child elements, each represented by aMathMLContentElement. The first child determines the subset of the domain
affected, normally by giving a condition to be satisfied. The second gives the value of the function over the indicated
subset of its domain.

IDL Definition

interface MathMLCaseElement: MathMLContentElement {
attribute MathMLContentElement caseCondition;
attribute MathMLContentElement caseValue;

};

Attributes

caseCondition of type MathMLContentElement Accesses theMathMLContentElement representing the condition
to be satisfied in order for this branch of the piecewise definition to be used.

caseValue of type MathMLContentElement Accesses theMathMLContentElement representing the value to be
taken by the piecewise function when the condition described bycaseCondition is true.

D.2 MathML DOM Tables

D.2.1 Chart of MathML DOM Inheritance

• MathMLDOMImplementation
• MathMLDocument
• MathMLNodeList
• MathMLElement

– MathMLSemanticsElement
– MathMLAnnotationElement
– MathMLXMLAnnotationElement
– MathMLPresentationElement

∗ MathMLGlyphElement
∗ MathMLSpaceElement

432

http://www.w3.org/TR/DOM-Level-2/core.html

∗ MathMLPresentationToken
· MathMLOperatorElement
· MathMLStringLitElement

∗ MathMLFractionElement
∗ MathMLRadicalElement
∗ MathMLScriptElement
∗ MathMLUnderOverElement
∗ MathMLMultiScriptsElement
∗ MathMLTableElement
∗ MathMLTableRowElement

· MathMLLabeledRowElement
∗ MathMLAlignGroupElement
∗ MathMLAlignMarkElement

– MathMLContentElement
∗ MathMLContentToken

· MathMLCnElement
· MathMLCiElement
· MathMLCsymbolElement

∗ MathMLPredefinedSymbol
∗ MathMLIntervalElement
∗ MathMLConditionElement
∗ MathMLDeclareElement
∗ MathMLVectorElement
∗ MathMLMatrixElement
∗ MathMLMatrixrowElement
∗ MathMLPiecewiseElement
∗ MathMLCaseElement

• MathMLContainer

D.2.2 Table of Elements and MathML DOM Representations

MathML Element MathML DOM Interface
math MathMLMathElement
mi MathMLPresentationToken
mn MathMLPresentationToken
mo MathMLOperatorElement
mtext MathMLPresentationToken
mspace MathMLSpaceElement
ms MathMLStringLitElement
mglyph MathMLGlyphElement
mrow MathMLPresentationContainer
mfrac MathMLFractionElement
msqrt MathMLRadicalElement
mroot MathMLRadicalElement
mstyle MathMLStyleElement
merror MathMLPresentationContainer
mpadded MathMLPaddedElement
mphantom MathMLPresentationContainer
mfenced MathMLFencedElement

433

MathML Element MathML DOM Interface
menclose MathMLEncloseElement
msub MathMLScriptElement
msup MathMLScriptElement
msubsup MathMLScriptElement
munder MathMLUnderOverElement
mover MathMLUnderOverElement
munderover MathMLUnderOverElement
mmultiscripts MathMLMultiScriptsElement
mtable MathMLTableElement
mlabeledtr MathMLLabeledRowElement
mtr MathMLTableRowElement
mtd MathMLTableCellElement
maligngroup MathMLAlignGroupElement
malignmark MathMLAlignMarkElement
maction MathMLActionElement
cn MathMLCnElement
ci MathMLCiElement
csymbol MathMLCsymbolElement
apply MathMLApplyElement
reln MathMLContentContainer
fn MathMLFnElement
interval MathMLIntervalElement
inverse MathMLPredefinedSymbol
condition MathMLConditionElement
declare MathMLDeclareElement
lambda MathMLLambdaElement
compose MathMLPredefinedSymbol
ident MathMLPredefinedSymbol
domain MathMLPredefinedSymbol
codomain MathMLPredefinedSymbol
image MathMLPredefinedSymbol
domainofapplication MathMLContentContainer
piecewise MathMLPiecewiseElement
piece MathMLCaseElement
otherwise MathMLContentContainer
quotient MathMLPredefinedSymbol
exp MathMLPredefinedSymbol
factorial MathMLPredefinedSymbol
divide MathMLPredefinedSymbol
max MathMLPredefinedSymbol
min MathMLPredefinedSymbol
minus MathMLPredefinedSymbol
plus MathMLPredefinedSymbol
power MathMLPredefinedSymbol
rem MathMLPredefinedSymbol
times MathMLPredefinedSymbol
root MathMLPredefinedSymbol
gcd MathMLPredefinedSymbol

434

MathML Element MathML DOM Interface
and MathMLPredefinedSymbol
or MathMLPredefinedSymbol
xor MathMLPredefinedSymbol
not MathMLPredefinedSymbol
implies MathMLPredefinedSymbol
forall MathMLPredefinedSymbol
exists MathMLPredefinedSymbol
abs MathMLPredefinedSymbol
conjugate MathMLPredefinedSymbol
arg MathMLPredefinedSymbol
real MathMLPredefinedSymbol
imaginary MathMLPredefinedSymbol
lcm MathMLPredefinedSymbol
floor MathMLPredefinedSymbol
ceiling MathMLPredefinedSymbol
eq MathMLPredefinedSymbol
neq MathMLPredefinedSymbol
gt MathMLPredefinedSymbol
lt MathMLPredefinedSymbol
geq MathMLPredefinedSymbol
leq MathMLPredefinedSymbol
equivalent MathMLPredefinedSymbol
approx MathMLPredefinedSymbol
factorof MathMLPredefinedSymbol
int MathMLPredefinedSymbol
diff MathMLPredefinedSymbol
partialdiff MathMLPredefinedSymbol
lowlimit MathMLContentContainer
uplimit MathMLContentContainer
bvar MathMLBvarElement
degree MathMLContentContainer
divergence MathMLPredefinedSymbol
grad MathMLPredefinedSymbol
curl MathMLPredefinedSymbol
laplacian MathMLPredefinedSymbol
set MathMLSetElement
list MathMLListElement
union MathMLPredefinedSymbol
intersect MathMLPredefinedSymbol
in MathMLPredefinedSymbol
notin MathMLPredefinedSymbol
subset MathMLPredefinedSymbol
prsubset MathMLPredefinedSymbol
notsubset MathMLPredefinedSymbol
notprsubset MathMLPredefinedSymbol
setdiff MathMLPredefinedSymbol
card MathMLPredefinedSymbol
cartesianproduct MathMLPredefinedSymbol

435

MathML Element MathML DOM Interface
sum MathMLPredefinedSymbol
product MathMLPredefinedSymbol
limit MathMLPredefinedSymbol
tendsto MathMLPredefinedSymbol
exp MathMLPredefinedSymbol
ln MathMLPredefinedSymbol
log MathMLPredefinedSymbol
sin MathMLPredefinedSymbol
cos MathMLPredefinedSymbol
tan MathMLPredefinedSymbol
sec MathMLPredefinedSymbol
csc MathMLPredefinedSymbol
cot MathMLPredefinedSymbol
sinh MathMLPredefinedSymbol
cosh MathMLPredefinedSymbol
tanh MathMLPredefinedSymbol
sech MathMLPredefinedSymbol
csch MathMLPredefinedSymbol
coth MathMLPredefinedSymbol
arcsin MathMLPredefinedSymbol
arccos MathMLPredefinedSymbol
arctan MathMLPredefinedSymbol
arccosh MathMLPredefinedSymbol
arccot MathMLPredefinedSymbol
arccoth MathMLPredefinedSymbol
arccsc MathMLPredefinedSymbol
arccsch MathMLPredefinedSymbol
arcsec MathMLPredefinedSymbol
arcsech MathMLPredefinedSymbol
arcsinh MathMLPredefinedSymbol
arctanh MathMLPredefinedSymbol
mean MathMLPredefinedSymbol
sdev MathMLPredefinedSymbol
variance MathMLPredefinedSymbol
median MathMLPredefinedSymbol
mode MathMLPredefinedSymbol
moment MathMLPredefinedSymbol
momentabout MathMLContentContainer
vector MathMLVectorElement
matrix MathMLMatrixElement
matrixrow MathMLMatrixRowElement
determinant MathMLPredefinedSymbol
transpose MathMLPredefinedSymbol
selector MathMLPredefinedSymbol
vectorproduct MathMLPredefinedSymbol
scalarproduct MathMLPredefinedSymbol
outerproduct MathMLPredefinedSymbol
annotation MathMLAnnotationElement

436

MathML Element MathML DOM Interface
semantics MathMLSemanticsElement
annotation-xml MathMLXMLAnnotationElement
integers MathMLPredefinedSymbol
reals MathMLPredefinedSymbol
rationals MathMLPredefinedSymbol
naturalnumbers MathMLPredefinedSymbol
complexes MathMLPredefinedSymbol
primes MathMLPredefinedSymbol
exponentiale MathMLPredefinedSymbol
imaginaryi MathMLPredefinedSymbol
notanumber MathMLPredefinedSymbol
true MathMLPredefinedSymbol
false MathMLPredefinedSymbol
emptyset MathMLPredefinedSymbol
pi MathMLPredefinedSymbol
eulergamma MathMLPredefinedSymbol
infinity MathMLPredefinedSymbol

437

Appendix E

MathML Document Object Model Bindings (Non-Normative)

E.1 MathML Document Object Model IDL Binding

The IDL binding is also available as an IDL file athttp://www.w3.org/TR/2001/PR-MathML2-20010108/mathml-
dom.idl.

// File: mathml-dom.idl
#ifndef _MATHMLDOM_IDL_
#define _MATHMLDOM_IDL_

#include "dom.idl"

#pragma prefix "w3c.org"

module mathml_dom
{
interface MathMLDocument;
interface MathMLMathElement;
interface MathMLTableRowElement;
interface MathMLLabeledRowElement;
interface MathMLTableCellElement;
interface MathMLBvarElement;
interface MathMLConditionElement;
interface MathMLDeclareElement;
interface MathMLMatrixrowElement;
interface MathMLCaseElement;

interface MathMLDOMImplementation : DOMImplementation
{
MathMLDocument createMathMLDocument();

};

interface MathMLDocument : Document
{
readonly attribute DOMString referrer;
readonly attribute DOMString domain;
readonly attribute DOMString URI;

};

438

http://www.w3.org/TR/2001/PR-MathML2-20010108/mathml-dom.idl
http://www.w3.org/TR/2001/PR-MathML2-20010108/mathml-dom.idl

interface MathMLNodeList : NodeList
{
};

interface MathMLElement : Element
{

attribute DOMString className;
attribute DOMString mathElementStyle;
attribute DOMString id;
attribute DOMString xref;
attribute DOMString href;

readonly attribute MathMLMathElement ownerMathElement;
};

interface MathMLContainer
{
readonly attribute unsigned long nArguments;
readonly attribute MathMLNodeList arguments;
readonly attribute MathMLNodeList declarations;
MathMLElement getArgument(in unsigned long index)

raises(DOMException);
MathMLElement setArgument(in MathMLElement newArgument,

in unsigned long index)
raises(DOMException);

MathMLElement insertArgument(in MathMLElement newArgument,
in unsigned long index)
raises(DOMException);

void deleteArgument(in unsigned long index)
raises(DOMException);

MathMLElement removeArgument(in unsigned long index)
raises(DOMException);

MathMLDeclareElement getDeclaration(in unsigned long index)
raises(DOMException);

MathMLDeclareElement setDeclaration(in MathMLDeclareElement newDeclaration,
in unsigned long index)
raises(DOMException);

MathMLDeclareElement insertDeclaration(in MathMLDeclareElement newDeclaration,
in unsigned long index)
raises(DOMException);

MathMLDeclareElement removeDeclaration(in unsigned long index)
raises(DOMException);

void deleteDeclaration(in unsigned long index)
raises(DOMException);

};

interface MathMLMathElement : MathMLElement, MathMLContainer
{

attribute DOMString macros;

439

attribute DOMString display;
};

interface MathMLSemanticsElement : MathMLElement
{

attribute MathMLElement body;
readonly attribute unsigned long nAnnotations;
MathMLElement getAnnotation(in unsigned long index);
MathMLElement insertAnnotation(in MathMLElement newAnnotation,

in unsigned long index)
raises(DOMException);

MathMLElement setAnnotation(in MathMLElement newAnnotation,
in unsigned long index)

raises(DOMException);
void deleteAnnotation(in unsigned long index);
MathMLElement removeAnnotation(in unsigned long index);

};

interface MathMLAnnotationElement : MathMLElement
{

attribute DOMString body;
attribute DOMString encoding;

};

interface MathMLXMLAnnotationElement : MathMLElement
{

attribute DOMString encoding;
};

interface MathMLPresentationElement : MathMLElement
{
};

interface MathMLGlyphElement : MathMLPresentationElement
{

attribute DOMString alt;
attribute DOMString fontfamily;
attribute unsigned long index;

};

interface MathMLSpaceElement : MathMLPresentationElement
{

attribute DOMString width;
attribute DOMString height;
attribute DOMString depth;

};

interface MathMLPresentationToken : MathMLPresentationElement
{

440

attribute DOMString mathvariant;
attribute DOMString mathsize;
attribute DOMString mathfamily;
attribute DOMString mathcolor;
attribute DOMString mathbackground;

readonly attribute MathMLNodeList contents;
};

interface MathMLOperatorElement : MathMLPresentationToken
{

attribute DOMString form;
attribute DOMString fence;
attribute DOMString separator;
attribute DOMString lspace;
attribute DOMString rspace;
attribute DOMString stretchy;
attribute DOMString symmetric;
attribute DOMString maxsize;
attribute DOMString minsize;
attribute DOMString largeop;
attribute DOMString moveablelimits;
attribute DOMString accent;

};

interface MathMLStringLitElement : MathMLPresentationToken
{

attribute DOMString lquote;
attribute DOMString rquote;

};

interface MathMLPresentationContainer : MathMLPresentationElement, MathMLContainer
{
};

interface MathMLStyleElement : MathMLPresentationContainer
{

attribute DOMString scriptlevel;
attribute DOMString displaystyle;
attribute DOMString scriptsizemultiplier;
attribute DOMString scriptminsize;
attribute DOMString color;
attribute DOMString background;

};

interface MathMLPaddedElement : MathMLPresentationContainer
{

attribute DOMString width;
attribute DOMString lspace;
attribute DOMString height;

441

attribute DOMString depth;
};

interface MathMLFencedElement : MathMLPresentationContainer
{

attribute DOMString open;
attribute DOMString close;
attribute DOMString separators;

};

interface MathMLEncloseElement : MathMLPresentationContainer
{

attribute DOMString notation;
};

interface MathMLActionElement : MathMLPresentationContainer
{

attribute DOMString actiontype;
attribute DOMString selection;

};

interface MathMLFractionElement : MathMLPresentationElement
{

attribute DOMString linethickness;
attribute MathMLElement numerator;
attribute MathMLElement denominator;

};

interface MathMLRadicalElement : MathMLPresentationElement
{

attribute MathMLElement radicand;
attribute MathMLElement index;

};

interface MathMLScriptElement : MathMLPresentationElement
{

attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;
attribute MathMLElement subscript;

// raises(DOMException) on setting
attribute MathMLElement superscript;

// raises(DOMException) on setting
};

interface MathMLUnderOverElement : MathMLPresentationElement
{

attribute DOMString accentunder;
attribute DOMString accent;

442

attribute MathMLElement base;
attribute MathMLElement underscript;

// raises(DOMException) on setting
attribute MathMLElement overscript;

// raises(DOMException) on setting
};

interface MathMLMultiScriptsElement : MathMLPresentationElement
{

attribute DOMString subscriptshift;
attribute DOMString superscriptshift;
attribute MathMLElement base;

readonly attribute MathMLNodeList prescripts;
readonly attribute MathMLNodeList scripts;
readonly attribute unsigned long numprescriptcolumns;
readonly attribute unsigned long numscriptcolumns;
MathMLElement getPreSubScript(in unsigned long colIndex);
MathMLElement getSubScript(in unsigned long colIndex);
MathMLElement getPreSuperScript(in unsigned long colIndex);
MathMLElement getSuperScript(in unsigned long colIndex);
MathMLElement insertPreSubScriptBefore(in unsigned long colIndex,

in MathMLElement newScript)
raises(DOMException);

MathMLElement setPreSubScriptAt(in unsigned long colIndex,
in MathMLElement newScript)
raises(DOMException);

MathMLElement insertSubScriptBefore(in unsigned long colIndex,
in MathMLElement newScript)

raises(DOMException);
MathMLElement setSubScriptAt(in unsigned long colIndex,

in MathMLElement newScript)
raises(DOMException);

MathMLElement insertPreSuperScriptBefore(in unsigned long colIndex,
in MathMLElement newScript)

raises(DOMException);
MathMLElement setPreSuperScriptAt(in unsigned long colIndex,

in MathMLElement newScript)
raises(DOMException);

MathMLElement insertSuperScriptBefore(in unsigned long colIndex,
in MathMLElement newScript)

raises(DOMException);
MathMLElement setSuperScriptAt(in unsigned long colIndex,

in MathMLElement newScript)
raises(DOMException);

};

interface MathMLTableElement : MathMLPresentationElement
{

attribute DOMString align;

443

attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;
attribute DOMString alignmentscope;
attribute DOMString columnwidth;
attribute DOMString width;
attribute DOMString rowspacing;
attribute DOMString columnspacing;
attribute DOMString rowlines;
attribute DOMString columnlines;
attribute DOMString frame;
attribute DOMString framespacing;
attribute DOMString equalrows;
attribute DOMString equalcolumns;
attribute DOMString displaystyle;
attribute DOMString side;
attribute DOMString minlabelspacing;

readonly attribute MathMLNodeList rows;
MathMLTableRowElement insertEmptyRow(in long index)

raises(DOMException);
MathMLLabeledRowElement insertEmptyLabeledRow(in long index)

raises(DOMException);
MathMLTableRowElement getRow(in unsigned long index);
MathMLTableRowElement insertRow(in long index,

in MathMLTableRowElement newRow)
raises(DOMException);

MathMLTableRowElement setRow(in long index,
in MathMLTableRowElement newRow)

raises(DOMException);
void deleteRow(in unsigned long index)

raises(DOMException);
MathMLTableRowElement removeRow(in long index)

raises(DOMException);
};

interface MathMLTableRowElement : MathMLPresentationElement
{

attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;

readonly attribute MathMLNodeList cells;
MathMLTableCellElement insertEmptyCell(in unsigned long index)

raises(DOMException);
MathMLTableCellElement insertCell(in MathMLTableCellElement newCell,

in unsigned long index)
raises(DOMException);

MathMLTableCellElement setCell(in MathMLTableCellElement newCell,
in unsigned long index);

void deleteCell(in unsigned long index);

444

};

interface MathMLLabeledRowElement : MathMLTableRowElement
{

attribute MathMLElement label;
// raises(DOMException) on setting

};

interface MathMLTableCellElement : MathMLPresentationContainer
{

attribute DOMString rowspan;
attribute DOMString columnspan;
attribute DOMString rowalign;
attribute DOMString columnalign;
attribute DOMString groupalign;

readonly attribute boolean hasaligngroups;
readonly attribute DOMString cellindex;

};

interface MathMLAlignGroupElement : MathMLPresentationElement
{

attribute DOMString groupalign;
};

interface MathMLAlignMarkElement : MathMLPresentationElement
{

attribute DOMString edge;
};

interface MathMLContentElement : MathMLElement
{
};

interface MathMLContentToken : MathMLContentElement
{
readonly attribute MathMLNodeList arguments;

attribute DOMString definitionURL;
attribute DOMString encoding;

Node getArgument(in unsigned long index);
Node insertArgument(in unsigned long index,

in Node newArgument);
Node setArgument(in unsigned long index,

in Node newArgument);
void deleteArgument(in unsigned long index);
Node removeArgument(in unsigned long index);

};

interface MathMLCnElement : MathMLContentToken
{

445

attribute DOMString type;
attribute DOMString base;

readonly attribute unsigned long nargs;
};

interface MathMLCiElement : MathMLContentToken
{

attribute DOMString type;
};

interface MathMLCsymbolElement : MathMLContentToken
{
};

interface MathMLContentContainer : MathMLContentElement, MathMLContainer
{
readonly attribute unsigned long nBoundVariables;

attribute MathMLConditionElement condition;
// raises(DOMException) on setting

attribute MathMLElement opDegree;
// raises(DOMException) on setting

attribute MathMLElement domainOfApplication;
// raises(DOMException) on setting

attribute MathMLElement momentAbout;
// raises(DOMException) on setting

MathMLBvarElement getBoundVariable(in unsigned long index);
MathMLBvarElement insertBoundVariable(in MathMLBvarElement newBVar,

in unsigned long index)
raises(DOMException);

MathMLBvarElement setBoundVariable(in MathMLBvarElement newBVar,
in unsigned long index)
raises(DOMException);

void deleteBoundVariable(in unsigned long index);
MathMLBvarElement removeBoundVariable(in unsigned long index);

};

interface MathMLApplyElement : MathMLContentContainer
{

attribute MathMLElement operator;
attribute MathMLElement domainOfApplication;

// raises(DOMException) on setting
attribute MathMLElement lowLimit;

// raises(DOMException) on setting
attribute MathMLElement upLimit;

// raises(DOMException) on setting
};

interface MathMLFnElement : MathMLContentContainer
{

446

attribute DOMString definitionURL;
attribute DOMString encoding;

};

interface MathMLLambdaElement : MathMLContentContainer
{

attribute MathMLElement expression;
};

interface MathMLSetElement : MathMLContentContainer
{
readonly attribute boolean isExplicit;

attribute DOMString type;
};

interface MathMLListElement : MathMLContentContainer
{
readonly attribute boolean isExplicit;

attribute DOMString ordering;
};

interface MathMLBvarElement : MathMLContentContainer
{
};

interface MathMLPredefinedSymbol : MathMLContentElement
{

attribute DOMString definitionURL;
attribute DOMString encoding;
attribute DOMString arity;

readonly attribute DOMString symbolName;
};

interface MathMLIntervalElement : MathMLContentElement
{

attribute DOMString closure;
attribute MathMLCnElement start;
attribute MathMLCnElement end;

};

interface MathMLConditionElement : MathMLContentElement
{

attribute MathMLApplyElement condition;
};

interface MathMLDeclareElement : MathMLContentElement
{

attribute DOMString type;
attribute unsigned long nargs;

447

attribute DOMString occurrence;
attribute DOMString definitionURL;
attribute DOMString encoding;
attribute MathMLCiElement identifier;
attribute MathMLElement constructor;

};

interface MathMLVectorElement : MathMLContentElement
{
readonly attribute unsigned long ncomponents;
MathMLContentElement getComponent(in unsigned long index);
MathMLContentElement insertComponent(in MathMLContentElement newComponent,

in unsigned long index)
raises(DOMException);

MathMLContentElement setComponent(in MathMLContentElement newComponent,
in unsigned long index)

raises(DOMException);
deleteComponent(in unsigned long index)

raises(DOMException);
MathMLContentElement removeComponent(in unsigned long index);

};

interface MathMLMatrixElement : MathMLContentElement
{
readonly attribute unsigned long nrows;
readonly attribute unsigned long ncols;
readonly attribute MathMLNodeList rows;
MathMLMatrixrowElement getRow(in unsigned long index)

raises(DOMException);
MathMLMatrixrowElement insertRow(in MathMLMatrixrowElement newRow,

in unsigned long index)
raises(DOMException);

MathMLMatrixrowElement setRow(in MathMLMatrixrowElement newRow,
in unsigned long index)

raises(DOMException);
deleteRow(in unsigned long index)

raises(DOMException);
MathMLMatrixrowElement removeRow(in unsigned long index)

raises(DOMException);
};

interface MathMLMatrixrowElement : MathMLContentElement
{
readonly attribute unsigned long nEntries;
MathMLContentElement getEntry(in unsigned long index)

raises(DOMException);
MathMLContentElement insertEntry(in MathMLContentElement newEntry,

in unsigned long index)
raises(DOMException);

448

MathMLContentElement setEntry(in MathMLContentElement newEntry,
in unsigned long index)

raises(DOMException);
deleteEntry(in unsigned long index)

raises(DOMException);
MathMLContentElement removeEntry(in unsigned long index)

raises(DOMException);
};

interface MathMLPiecewiseElement : MathMLContentElement
{
readonly attribute MathMLNodeList pieces;

attribute MathMLContentElement otherwise;
MathMLCaseElement getCase(in unsigned long index);
MathMLCaseElement setCase(in unsigned long index,

in MathMLCaseElement case)
raises(DOMException);

void deleteCase(in unsigned long index)
raises(DOMException);

MathMLCaseElement removeCase(in unsigned long index)
raises(DOMException);

MathMLCaseElement insertCase(in unsigned long index,
in MathMLCaseElement newCase)

raises(DOMException);
MathMLContentElement getCaseValue(in unsigned long index)

raises(DOMException);
MathMLContentElement setCaseValue(in unsigned long index,

in MathMLContentElement value)
raises(DOMException);

MathMLContentElement getCaseCondition(in unsigned long index)
raises(DOMException);

MathMLContentElement setCaseCondition(in unsigned long index,
in MathMLContentElement condition)
raises(DOMException);

};

interface MathMLCaseElement : MathMLContentElement
{

attribute MathMLContentElement caseCondition;
attribute MathMLContentElement caseValue;

};

};

#endif

449

E.2 MathML Document Object Model Java Binding

The Java bindings are also available in zipped form athttp://www.w3.org/TR/2001/PR-MathML2-20010108/mathml-
dom_java.zip.

E.2.1 org/w3c/mathmldom/MathMLDOMImplementation.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMImplementation;

public interface MathMLDOMImplementation extends DOMImplementation
{

public MathMLDocument createMathMLDocument();
};

E.2.2 org/w3c/mathmldom/MathMLDocument.java

package org.w3c.dom.mathml;

import org.w3c.dom.Document;

public interface MathMLDocument extends Document
{

public String getReferrer();
public String getDomain();
public String getURI();

};

E.2.3 org/w3c/mathmldom/MathMLNodeList.java

package org.w3c.dom.mathml;

import org.w3c.dom.NodeList;

public interface MathMLNodeList extends NodeList
{
};

E.2.4 org/w3c/mathmldom/MathMLElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.Element;

public interface MathMLElement extends Element

450

http://www.w3.org/TR/2001/PR-MathML2-20010108/mathml-dom_java.zip
http://www.w3.org/TR/2001/PR-MathML2-20010108/mathml-dom_java.zip

{
public String getClassName();
public void setClassName(String className);
public String getMathElementStyle();
public void setMathElementStyle(String mathElementStyle);
public String getId();
public void setId(String id);
public String getXref();
public void setXref(String xref);
public String getHref();
public void setHref(String href);
public MathMLMathElement getOwnerMathElement();

};

E.2.5 org/w3c/mathmldom/MathMLContainer.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLContainer
{

public int getNArguments();
public MathMLNodeList getArguments();
public MathMLNodeList getDeclarations();
public MathMLElement getArgument(int index)

throws DOMException;
public MathMLElement setArgument(MathMLElement newArgument,

int index)
throws DOMException;

public MathMLElement insertArgument(MathMLElement newArgument,
int index)

throws DOMException;
public void deleteArgument(int index)

throws DOMException;
public MathMLElement removeArgument(int index)

throws DOMException;
public MathMLDeclareElement getDeclaration(int index)

throws DOMException;
public MathMLDeclareElement setDeclaration(MathMLDeclareElement newDeclaration,

int index)
throws DOMException;

public MathMLDeclareElement insertDeclaration(MathMLDeclareElement newDeclaration,
int index)

throws DOMException;
public MathMLDeclareElement removeDeclaration(int index)

throws DOMException;
public void deleteDeclaration(int index)

451

throws DOMException;
};

E.2.6 org/w3c/mathmldom/MathMLMathElement.java

package org.w3c.dom.mathml;

public interface MathMLMathElement extends MathMLElement, MathMLContainer
{

public String getMacros();
public void setMacros(String macros);
public String getDisplay();
public void setDisplay(String display);

};

E.2.7 org/w3c/mathmldom/MathMLSemanticsElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLSemanticsElement extends MathMLElement
{

public MathMLElement getBody();
public void setBody(MathMLElement body);
public int getNAnnotations();
public MathMLElement getAnnotation(int index);
public MathMLElement insertAnnotation(MathMLElement newAnnotation,

int index)
throws DOMException;

public MathMLElement setAnnotation(MathMLElement newAnnotation,
int index)

throws DOMException;
public void deleteAnnotation(int index);
public MathMLElement removeAnnotation(int index);

};

E.2.8 org/w3c/mathmldom/MathMLAnnotationElement.java

package org.w3c.dom.mathml;

public interface MathMLAnnotationElement extends MathMLElement
{

public String getBody();

452

public void setBody(String body);
public String getEncoding();
public void setEncoding(String encoding);

};

E.2.9 org/w3c/mathmldom/MathMLXMLAnnotationElement.java

package org.w3c.dom.mathml;

public interface MathMLXMLAnnotationElement extends MathMLElement
{

public String getEncoding();
public void setEncoding(String encoding);

};

E.2.10 org/w3c/mathmldom/MathMLPresentationElement.java

package org.w3c.dom.mathml;

public interface MathMLPresentationElement extends MathMLElement
{
};

E.2.11 org/w3c/mathmldom/MathMLGlyphElement.java

package org.w3c.dom.mathml;

public interface MathMLGlyphElement extends MathMLPresentationElement
{

public String getAlt();
public void setAlt(String alt);
public String getFontfamily();
public void setFontfamily(String fontfamily);
public int getIndex();
public void setIndex(int index);

};

E.2.12 org/w3c/mathmldom/MathMLSpaceElement.java

package org.w3c.dom.mathml;

453

public interface MathMLSpaceElement extends MathMLPresentationElement
{

public String getWidth();
public void setWidth(String width);
public String getHeight();
public void setHeight(String height);
public String getDepth();
public void setDepth(String depth);

};

E.2.13 org/w3c/mathmldom/MathMLPresentationToken.java

package org.w3c.dom.mathml;

public interface MathMLPresentationToken extends MathMLPresentationElement
{

public String getMathvariant();
public void setMathvariant(String mathvariant);
public String getMathsize();
public void setMathsize(String mathsize);
public String getMathfamily();
public void setMathfamily(String mathfamily);
public String getMathcolor();
public void setMathcolor(String mathcolor);
public String getMathbackground();
public void setMathbackground(String mathbackground);
public MathMLNodeList getContents();

};

E.2.14 org/w3c/mathmldom/MathMLOperatorElement.java

package org.w3c.dom.mathml;

public interface MathMLOperatorElement extends MathMLPresentationToken
{

public String getForm();
public void setForm(String form);
public String getFence();
public void setFence(String fence);
public String getSeparator();
public void setSeparator(String separator);
public String getLspace();
public void setLspace(String lspace);
public String getRspace();
public void setRspace(String rspace);

454

public String getStretchy();
public void setStretchy(String stretchy);
public String getSymmetric();
public void setSymmetric(String symmetric);
public String getMaxsize();
public void setMaxsize(String maxsize);
public String getMinsize();
public void setMinsize(String minsize);
public String getLargeop();
public void setLargeop(String largeop);
public String getMoveablelimits();
public void setMoveablelimits(String moveablelimits);
public String getAccent();
public void setAccent(String accent);

};

E.2.15 org/w3c/mathmldom/MathMLStringLitElement.java

package org.w3c.dom.mathml;

public interface MathMLStringLitElement extends MathMLPresentationToken
{

public String getLquote();
public void setLquote(String lquote);
public String getRquote();
public void setRquote(String rquote);

};

E.2.16 org/w3c/mathmldom/MathMLPresentationContainer.java

package org.w3c.dom.mathml;

public interface MathMLPresentationContainer extends MathMLPresentationElement, MathMLContainer
{
};

E.2.17 org/w3c/mathmldom/MathMLStyleElement.java

package org.w3c.dom.mathml;

public interface MathMLStyleElement extends MathMLPresentationContainer
{

public String getScriptlevel();

455

public void setScriptlevel(String scriptlevel);
public String getDisplaystyle();
public void setDisplaystyle(String displaystyle);
public String getScriptsizemultiplier();
public void setScriptsizemultiplier(String scriptsizemultiplier);
public String getScriptminsize();
public void setScriptminsize(String scriptminsize);
public String getColor();
public void setColor(String color);
public String getBackground();
public void setBackground(String background);

};

E.2.18 org/w3c/mathmldom/MathMLPaddedElement.java

package org.w3c.dom.mathml;

public interface MathMLPaddedElement extends MathMLPresentationContainer
{

public String getWidth();
public void setWidth(String width);
public String getLspace();
public void setLspace(String lspace);
public String getHeight();
public void setHeight(String height);
public String getDepth();
public void setDepth(String depth);

};

E.2.19 org/w3c/mathmldom/MathMLFencedElement.java

package org.w3c.dom.mathml;

public interface MathMLFencedElement extends MathMLPresentationContainer
{

public String getOpen();
public void setOpen(String open);
public String getClose();
public void setClose(String close);
public String getSeparators();
public void setSeparators(String separators);

};

E.2.20 org/w3c/mathmldom/MathMLEncloseElement.java

456

package org.w3c.dom.mathml;

public interface MathMLEncloseElement extends MathMLPresentationContainer
{

public String getNotation();
public void setNotation(String notation);

};

E.2.21 org/w3c/mathmldom/MathMLActionElement.java

package org.w3c.dom.mathml;

public interface MathMLActionElement extends MathMLPresentationContainer
{

public String getActiontype();
public void setActiontype(String actiontype);
public String getSelection();
public void setSelection(String selection);

};

E.2.22 org/w3c/mathmldom/MathMLFractionElement.java

package org.w3c.dom.mathml;

public interface MathMLFractionElement extends MathMLPresentationElement
{

public String getLinethickness();
public void setLinethickness(String linethickness);
public MathMLElement getNumerator();
public void setNumerator(MathMLElement numerator);
public MathMLElement getDenominator();
public void setDenominator(MathMLElement denominator);

};

E.2.23 org/w3c/mathmldom/MathMLRadicalElement.java

package org.w3c.dom.mathml;

public interface MathMLRadicalElement extends MathMLPresentationElement
{

public MathMLElement getRadicand();
public void setRadicand(MathMLElement radicand);

457

public MathMLElement getIndex();
public void setIndex(MathMLElement index);

};

E.2.24 org/w3c/mathmldom/MathMLScriptElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLScriptElement extends MathMLPresentationElement
{

public String getSubscriptshift();
public void setSubscriptshift(String subscriptshift);
public String getSuperscriptshift();
public void setSuperscriptshift(String superscriptshift);
public MathMLElement getBase();
public void setBase(MathMLElement base);
public MathMLElement getSubscript();
public void setSubscript(MathMLElement subscript)

throws DOMException;
public MathMLElement getSuperscript();
public void setSuperscript(MathMLElement superscript)

throws DOMException;
};

E.2.25 org/w3c/mathmldom/MathMLUnderOverElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLUnderOverElement extends MathMLPresentationElement
{

public String getAccentunder();
public void setAccentunder(String accentunder);
public String getAccent();
public void setAccent(String accent);
public MathMLElement getBase();
public void setBase(MathMLElement base);
public MathMLElement getUnderscript();
public void setUnderscript(MathMLElement underscript)

throws DOMException;
public MathMLElement getOverscript();
public void setOverscript(MathMLElement overscript)

throws DOMException;
};

458

E.2.26 org/w3c/mathmldom/MathMLMultiScriptsElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLMultiScriptsElement extends MathMLPresentationElement
{

public String getSubscriptshift();
public void setSubscriptshift(String subscriptshift);
public String getSuperscriptshift();
public void setSuperscriptshift(String superscriptshift);
public MathMLElement getBase();
public void setBase(MathMLElement base);
public MathMLNodeList getPrescripts();
public MathMLNodeList getScripts();
public int getNumprescriptcolumns();
public int getNumscriptcolumns();
public MathMLElement getPreSubScript(int colIndex);
public MathMLElement getSubScript(int colIndex);
public MathMLElement getPreSuperScript(int colIndex);
public MathMLElement getSuperScript(int colIndex);
public MathMLElement insertPreSubScriptBefore(int colIndex,

MathMLElement newScript)
throws DOMException;

public MathMLElement setPreSubScriptAt(int colIndex,
MathMLElement newScript)

throws DOMException;
public MathMLElement insertSubScriptBefore(int colIndex,

MathMLElement newScript)
throws DOMException;

public MathMLElement setSubScriptAt(int colIndex,
MathMLElement newScript)

throws DOMException;
public MathMLElement insertPreSuperScriptBefore(int colIndex,

MathMLElement newScript)
throws DOMException;

public MathMLElement setPreSuperScriptAt(int colIndex,
MathMLElement newScript)

throws DOMException;
public MathMLElement insertSuperScriptBefore(int colIndex,

MathMLElement newScript)
throws DOMException;

public MathMLElement setSuperScriptAt(int colIndex,
MathMLElement newScript)

throws DOMException;
};

459

E.2.27 org/w3c/mathmldom/MathMLTableElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLTableElement extends MathMLPresentationElement
{

public String getAlign();
public void setAlign(String align);
public String getRowalign();
public void setRowalign(String rowalign);
public String getColumnalign();
public void setColumnalign(String columnalign);
public String getGroupalign();
public void setGroupalign(String groupalign);
public String getAlignmentscope();
public void setAlignmentscope(String alignmentscope);
public String getColumnwidth();
public void setColumnwidth(String columnwidth);
public String getWidth();
public void setWidth(String width);
public String getRowspacing();
public void setRowspacing(String rowspacing);
public String getColumnspacing();
public void setColumnspacing(String columnspacing);
public String getRowlines();
public void setRowlines(String rowlines);
public String getColumnlines();
public void setColumnlines(String columnlines);
public String getFrame();
public void setFrame(String frame);
public String getFramespacing();
public void setFramespacing(String framespacing);
public String getEqualrows();
public void setEqualrows(String equalrows);
public String getEqualcolumns();
public void setEqualcolumns(String equalcolumns);
public String getDisplaystyle();
public void setDisplaystyle(String displaystyle);
public String getSide();
public void setSide(String side);
public String getMinlabelspacing();
public void setMinlabelspacing(String minlabelspacing);
public MathMLNodeList getRows();
public MathMLTableRowElement insertEmptyRow(int index)

throws DOMException;
public MathMLLabeledRowElement insertEmptyLabeledRow(int index)

460

throws DOMException;
public MathMLTableRowElement getRow(int index);
public MathMLTableRowElement insertRow(int index,

MathMLTableRowElement newRow)
throws DOMException;

public MathMLTableRowElement setRow(int index,
MathMLTableRowElement newRow)

throws DOMException;
public void deleteRow(int index)

throws DOMException;
public MathMLTableRowElement removeRow(int index)

throws DOMException;
};

E.2.28 org/w3c/mathmldom/MathMLTableRowElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLTableRowElement extends MathMLPresentationElement
{

public String getRowalign();
public void setRowalign(String rowalign);
public String getColumnalign();
public void setColumnalign(String columnalign);
public String getGroupalign();
public void setGroupalign(String groupalign);
public MathMLNodeList getCells();
public MathMLTableCellElement insertEmptyCell(int index)

throws DOMException;
public MathMLTableCellElement insertCell(MathMLTableCellElement newCell,

int index)
throws DOMException;

public MathMLTableCellElement setCell(MathMLTableCellElement newCell,
int index);

public void deleteCell(int index);
};

E.2.29 org/w3c/mathmldom/MathMLLabeledRowElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLLabeledRowElement extends MathMLTableRowElement
{

461

public MathMLElement getLabel();
public void setLabel(MathMLElement label)

throws DOMException;
};

E.2.30 org/w3c/mathmldom/MathMLTableCellElement.java

package org.w3c.dom.mathml;

public interface MathMLTableCellElement extends MathMLPresentationContainer
{

public String getRowspan();
public void setRowspan(String rowspan);
public String getColumnspan();
public void setColumnspan(String columnspan);
public String getRowalign();
public void setRowalign(String rowalign);
public String getColumnalign();
public void setColumnalign(String columnalign);
public String getGroupalign();
public void setGroupalign(String groupalign);
public boolean getHasaligngroups();
public String getCellindex();

};

E.2.31 org/w3c/mathmldom/MathMLAlignGroupElement.java

package org.w3c.dom.mathml;

public interface MathMLAlignGroupElement extends MathMLPresentationElement
{

public String getGroupalign();
public void setGroupalign(String groupalign);

};

E.2.32 org/w3c/mathmldom/MathMLAlignMarkElement.java

package org.w3c.dom.mathml;

public interface MathMLAlignMarkElement extends MathMLPresentationElement
{

public String getEdge();
public void setEdge(String edge);

};

462

E.2.33 org/w3c/mathmldom/MathMLContentElement.java

package org.w3c.dom.mathml;

public interface MathMLContentElement extends MathMLElement
{
};

E.2.34 org/w3c/mathmldom/MathMLContentToken.java

package org.w3c.dom.mathml;

import org.w3c.dom.Node;

public interface MathMLContentToken extends MathMLContentElement
{

public MathMLNodeList getArguments();
public String getDefinitionURL();
public void setDefinitionURL(String definitionURL);
public String getEncoding();
public void setEncoding(String encoding);
public Node getArgument(int index);
public Node insertArgument(int index,

Node newArgument);
public Node setArgument(int index,

Node newArgument);
public void deleteArgument(int index);
public Node removeArgument(int index);

};

E.2.35 org/w3c/mathmldom/MathMLCnElement.java

package org.w3c.dom.mathml;

public interface MathMLCnElement extends MathMLContentToken
{

public String getType();
public void setType(String type);
public String getBase();
public void setBase(String base);
public int getNargs();

};

E.2.36 org/w3c/mathmldom/MathMLCiElement.java

463

package org.w3c.dom.mathml;

public interface MathMLCiElement extends MathMLContentToken
{

public String getType();
public void setType(String type);

};

E.2.37 org/w3c/mathmldom/MathMLCsymbolElement.java

package org.w3c.dom.mathml;

public interface MathMLCsymbolElement extends MathMLContentToken
{
};

E.2.38 org/w3c/mathmldom/MathMLContentContainer.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLContentContainer extends MathMLContentElement, MathMLContainer
{

public int getNBoundVariables();
public MathMLConditionElement getCondition();
public void setCondition(MathMLConditionElement condition)

throws DOMException;
public MathMLElement getOpDegree();
public void setOpDegree(MathMLElement opDegree)

throws DOMException;
public MathMLElement getDomainOfApplication();
public void setDomainOfApplication(MathMLElement domainOfApplication)

throws DOMException;
public MathMLElement getMomentAbout();
public void setMomentAbout(MathMLElement momentAbout)

throws DOMException;
public MathMLBvarElement getBoundVariable(int index);
public MathMLBvarElement insertBoundVariable(MathMLBvarElement newBVar,

int index)
throws DOMException;

public MathMLBvarElement setBoundVariable(MathMLBvarElement newBVar,
int index)

throws DOMException;
public void deleteBoundVariable(int index);

464

public MathMLBvarElement removeBoundVariable(int index);
};

E.2.39 org/w3c/mathmldom/MathMLApplyElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLApplyElement extends MathMLContentContainer
{

public MathMLElement getOperator();
public void setOperator(MathMLElement operator);
public MathMLElement getDomainOfApplication();
public void setDomainOfApplication(MathMLElement domainOfApplication)

throws DOMException;
public MathMLElement getLowLimit();
public void setLowLimit(MathMLElement lowLimit)

throws DOMException;
public MathMLElement getUpLimit();
public void setUpLimit(MathMLElement upLimit)

throws DOMException;
};

E.2.40 org/w3c/mathmldom/MathMLFnElement.java

package org.w3c.dom.mathml;

public interface MathMLFnElement extends MathMLContentContainer
{

public String getDefinitionURL();
public void setDefinitionURL(String definitionURL);
public String getEncoding();
public void setEncoding(String encoding);

};

E.2.41 org/w3c/mathmldom/MathMLLambdaElement.java

package org.w3c.dom.mathml;

public interface MathMLLambdaElement extends MathMLContentContainer
{

public MathMLElement getExpression();
public void setExpression(MathMLElement expression);

};

465

E.2.42 org/w3c/mathmldom/MathMLSetElement.java

package org.w3c.dom.mathml;

public interface MathMLSetElement extends MathMLContentContainer
{

public boolean getIsExplicit();
public String getType();
public void setType(String type);

};

E.2.43 org/w3c/mathmldom/MathMLListElement.java

package org.w3c.dom.mathml;

public interface MathMLListElement extends MathMLContentContainer
{

public boolean getIsExplicit();
public String getOrdering();
public void setOrdering(String ordering);

};

E.2.44 org/w3c/mathmldom/MathMLBvarElement.java

package org.w3c.dom.mathml;

public interface MathMLBvarElement extends MathMLContentContainer
{
};

E.2.45 org/w3c/mathmldom/MathMLPredefinedSymbol.java

package org.w3c.dom.mathml;

public interface MathMLPredefinedSymbol extends MathMLContentElement
{

public String getDefinitionURL();
public void setDefinitionURL(String definitionURL);
public String getEncoding();
public void setEncoding(String encoding);
public String getArity();
public void setArity(String arity);

466

public String getSymbolName();
};

E.2.46 org/w3c/mathmldom/MathMLIntervalElement.java

package org.w3c.dom.mathml;

public interface MathMLIntervalElement extends MathMLContentElement
{

public String getClosure();
public void setClosure(String closure);
public MathMLCnElement getStart();
public void setStart(MathMLCnElement start);
public MathMLCnElement getEnd();
public void setEnd(MathMLCnElement end);

};

E.2.47 org/w3c/mathmldom/MathMLConditionElement.java

package org.w3c.dom.mathml;

public interface MathMLConditionElement extends MathMLContentElement
{

public MathMLApplyElement getCondition();
public void setCondition(MathMLApplyElement condition);

};

E.2.48 org/w3c/mathmldom/MathMLDeclareElement.java

package org.w3c.dom.mathml;

public interface MathMLDeclareElement extends MathMLContentElement
{

public String getType();
public void setType(String type);
public int getNargs();
public void setNargs(int nargs);
public String getOccurrence();
public void setOccurrence(String occurrence);
public String getDefinitionURL();
public void setDefinitionURL(String definitionURL);
public String getEncoding();
public void setEncoding(String encoding);

467

public MathMLCiElement getIdentifier();
public void setIdentifier(MathMLCiElement identifier);
public MathMLElement getConstructor();
public void setConstructor(MathMLElement constructor);

};

E.2.49 org/w3c/mathmldom/MathMLVectorElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLVectorElement extends MathMLContentElement
{

public int getNcomponents();
public MathMLContentElement getComponent(int index);
public MathMLContentElement insertComponent(MathMLContentElement newComponent,

int index)
throws DOMException;

public MathMLContentElement setComponent(MathMLContentElement newComponent,
int index)

throws DOMException;
public deleteComponent(int index)

throws DOMException;
public MathMLContentElement removeComponent(int index);

};

E.2.50 org/w3c/mathmldom/MathMLMatrixElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLMatrixElement extends MathMLContentElement
{

public int getNrows();
public int getNcols();
public MathMLNodeList getRows();
public MathMLMatrixrowElement getRow(int index)

throws DOMException;
public MathMLMatrixrowElement insertRow(MathMLMatrixrowElement newRow,

int index)
throws DOMException;

public MathMLMatrixrowElement setRow(MathMLMatrixrowElement newRow,
int index)

throws DOMException;
public deleteRow(int index)

468

throws DOMException;
public MathMLMatrixrowElement removeRow(int index)

throws DOMException;
};

E.2.51 org/w3c/mathmldom/MathMLMatrixrowElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLMatrixrowElement extends MathMLContentElement
{

public int getNEntries();
public MathMLContentElement getEntry(int index)

throws DOMException;
public MathMLContentElement insertEntry(MathMLContentElement newEntry,

int index)
throws DOMException;

public MathMLContentElement setEntry(MathMLContentElement newEntry,
int index)

throws DOMException;
public deleteEntry(int index)

throws DOMException;
public MathMLContentElement removeEntry(int index)

throws DOMException;
};

E.2.52 org/w3c/mathmldom/MathMLPiecewiseElement.java

package org.w3c.dom.mathml;

import org.w3c.dom.DOMException;

public interface MathMLPiecewiseElement extends MathMLContentElement
{

public MathMLNodeList getPieces();
public MathMLContentElement getOtherwise();
public void setOtherwise(MathMLContentElement otherwise);
public MathMLCaseElement getCase(int index);
public MathMLCaseElement setCase(int index,

MathMLCaseElement case)
throws DOMException;

public void deleteCase(int index)
throws DOMException;

public MathMLCaseElement removeCase(int index)
throws DOMException;

469

public MathMLCaseElement insertCase(int index,
MathMLCaseElement newCase)

throws DOMException;
public MathMLContentElement getCaseValue(int index)

throws DOMException;
public MathMLContentElement setCaseValue(int index,

MathMLContentElement value)
throws DOMException;

public MathMLContentElement getCaseCondition(int index)
throws DOMException;

public MathMLContentElement setCaseCondition(int index,
MathMLContentElement condition)

throws DOMException;
};

E.2.53 org/w3c/mathmldom/MathMLCaseElement.java

package org.w3c.dom.mathml;

public interface MathMLCaseElement extends MathMLContentElement
{

public MathMLContentElement getCaseCondition();
public void setCaseCondition(MathMLContentElement caseCondition);
public MathMLContentElement getCaseValue();
public void setCaseValue(MathMLContentElement caseValue);

};

E.3 MathML Document Object Model ECMAScript Binding

E.3.1 Object MathMLDOMImplementation

MathMLDOMImplementation has all the properties and methods ofDOMImplementation as well as the properties
and methods defined below.

TheMathMLDOMImplementation object has the following methods:
createMathMLDocument() This method returns aMathMLDocument .

E.3.2 Object MathMLDocument

MathMLDocument has all the properties and methods ofDocument as well as the properties and methods defined
below.

TheMathMLDocument object has the following properties:
referrer This property is of typeDOMString .
domain This property is of typeDOMString .
URI This property is of typeDOMString .

470

E.3.3 Object MathMLNodeList

MathMLNodeList has all the properties and methods ofNodeList as well as the properties and methods defined below.

E.3.4 Object MathMLElement

MathMLElement has all the properties and methods ofElementas well as the properties and methods defined below.

TheMathMLElement object has the following properties:
classNameThis property is of typeDOMString .
mathElementStyle This property is of typeDOMString .
id This property is of typeDOMString .
xref This property is of typeDOMString .
href This property is of typeDOMString .
ownerMathElement This property is of typeMathMLMathElement .

E.3.5 Object MathMLContainer

TheMathMLContainer object has the following properties:
nArguments This property is of typeunsigned long.
arguments This property is of typeMathMLNodeList .
declarations This property is of typeMathMLNodeList .

TheMathMLContainer object has the following methods:
getArgument(index) This method returns aMathMLElement . The index parameter is of typeunsigned

long.
setArgument(newArgument,index) This method returns aMathMLElement . ThenewArgument param-

eter is of typeMathMLElement . Theindex parameter is of typeunsigned long.
insertArgument(newArgument,index) This method returns aMathMLElement . ThenewArgument pa-

rameter is of typeMathMLElement . Theindex parameter is of typeunsigned long.
deleteArgument(index) This method returns avoid. Theindex parameter is of typeunsigned long.
removeArgument(index) This method returns aMathMLElement . The index parameter is of typeun-

signed long.
getDeclaration(index) This method returns aMathMLDeclareElement. The index parameter is of type

unsigned long.
setDeclaration(newDeclaration,index)This method returns aMathMLDeclareElement. ThenewDecla-

ration parameter is of typeMathMLDeclareElement. Theindex parameter is of typeunsigned long.
insertDeclaration(newDeclaration,index) This method returns aMathMLDeclareElement. ThenewDec-

laration parameter is of typeMathMLDeclareElement. The index parameter is of typeunsigned
long.

removeDeclaration(index) This method returns aMathMLDeclareElement. The index parameter is of
typeunsigned long.

deleteDeclaration(index) This method returns avoid. Theindex parameter is of typeunsigned long.

E.3.6 Object MathMLMathElement

MathMLMathElement has all the properties and methods ofMathMLElement, MathMLContainer as well as the
properties and methods defined below.

TheMathMLMathElement object has the following properties:
macros This property is of typeDOMString .
display This property is of typeDOMString .

471

E.3.7 Object MathMLSemanticsElement

MathMLSemanticsElement has all the properties and methods ofMathMLElement as well as the properties and
methods defined below.

TheMathMLSemanticsElementobject has the following properties:
body This property is of typeMathMLElement .
nAnnotations This property is of typeunsigned long.

TheMathMLSemanticsElementobject has the following methods:
getAnnotation(index) This method returns aMathMLElement . Theindex parameter is of typeunsigned

long.
insertAnnotation(newAnnotation,index) This method returns aMathMLElement . ThenewAnnotation

parameter is of typeMathMLElement . Theindex parameter is of typeunsigned long.
setAnnotation(newAnnotation,index) This method returns aMathMLElement . ThenewAnnotation pa-

rameter is of typeMathMLElement . Theindex parameter is of typeunsigned long.
deleteAnnotation(index) This method returns avoid. Theindex parameter is of typeunsigned long.
removeAnnotation(index) This method returns aMathMLElement . The index parameter is of typeun-

signed long.

E.3.8 Object MathMLAnnotationElement

MathMLAnnotationElement has all the properties and methods ofMathMLElement as well as the properties and
methods defined below.

TheMathMLAnnotationElement object has the following properties:
body This property is of typeDOMString .
encoding This property is of typeDOMString .

E.3.9 Object MathMLXMLAnnotationElement

MathMLXMLAnnotationElement has all the properties and methods ofMathMLElement as well as the properties
and methods defined below.

TheMathMLXMLAnnotationElement object has the following properties:
encoding This property is of typeDOMString .

E.3.10 Object MathMLPresentationElement

MathMLPresentationElement has all the properties and methods ofMathMLElement as well as the properties and
methods defined below.

E.3.11 Object MathMLGlyphElement

MathMLGlyphElement has all the properties and methods ofMathMLPresentationElement as well as the properties
and methods defined below.

TheMathMLGlyphElement object has the following properties:
alt This property is of typeDOMString .
fontfamily This property is of typeDOMString .
index This property is of typeunsigned long.

472

E.3.12 Object MathMLSpaceElement

MathMLSpaceElementhas all the properties and methods ofMathMLPresentationElement as well as the properties
and methods defined below.

TheMathMLSpaceElementobject has the following properties:
width This property is of typeDOMString .
height This property is of typeDOMString .
depth This property is of typeDOMString .

E.3.13 Object MathMLPresentationToken

MathMLPresentationToken has all the properties and methods ofMathMLPresentationElement as well as the prop-
erties and methods defined below.

TheMathMLPresentationToken object has the following properties:
mathvariant This property is of typeDOMString .
mathsize This property is of typeDOMString .
mathfamily This property is of typeDOMString .
mathcolor This property is of typeDOMString .
mathbackground This property is of typeDOMString .
contents This property is of typeMathMLNodeList .

E.3.14 Object MathMLOperatorElement

MathMLOperatorElement has all the properties and methods ofMathMLPresentationToken as well as the proper-
ties and methods defined below.

TheMathMLOperatorElement object has the following properties:
form This property is of typeDOMString .
fence This property is of typeDOMString .
separator This property is of typeDOMString .
lspace This property is of typeDOMString .
rspace This property is of typeDOMString .
stretchy This property is of typeDOMString .
symmetric This property is of typeDOMString .
maxsize This property is of typeDOMString .
minsize This property is of typeDOMString .
largeop This property is of typeDOMString .
moveablelimits This property is of typeDOMString .
accent This property is of typeDOMString .

E.3.15 Object MathMLStringLitElement

MathMLStringLitElement has all the properties and methods ofMathMLPresentationToken as well as the proper-
ties and methods defined below.

TheMathMLStringLitElement object has the following properties:
lquote This property is of typeDOMString .
rquote This property is of typeDOMString .

473

E.3.16 Object MathMLPresentationContainer

MathMLPresentationContainer has all the properties and methods ofMathMLPresentationElement, MathML-
Container as well as the properties and methods defined below.

E.3.17 Object MathMLStyleElement

MathMLStyleElement has all the properties and methods ofMathMLPresentationContainer as well as the proper-
ties and methods defined below.

TheMathMLStyleElement object has the following properties:
scriptlevel This property is of typeDOMString .
displaystyle This property is of typeDOMString .
scriptsizemultiplier This property is of typeDOMString .
scriptminsize This property is of typeDOMString .
color This property is of typeDOMString .
background This property is of typeDOMString .

E.3.18 Object MathMLPaddedElement

MathMLPaddedElement has all the properties and methods ofMathMLPresentationContainer as well as the prop-
erties and methods defined below.

TheMathMLPaddedElement object has the following properties:
width This property is of typeDOMString .
lspace This property is of typeDOMString .
height This property is of typeDOMString .
depth This property is of typeDOMString .

E.3.19 Object MathMLFencedElement

MathMLFencedElement has all the properties and methods ofMathMLPresentationContainer as well as the prop-
erties and methods defined below.

TheMathMLFencedElement object has the following properties:
open This property is of typeDOMString .
close This property is of typeDOMString .
separators This property is of typeDOMString .

E.3.20 Object MathMLEncloseElement

MathMLEncloseElement has all the properties and methods ofMathMLPresentationContainer as well as the prop-
erties and methods defined below.

TheMathMLEncloseElement object has the following properties:
notation This property is of typeDOMString .

E.3.21 Object MathMLActionElement

MathMLActionElement has all the properties and methods ofMathMLPresentationContainer as well as the prop-
erties and methods defined below.

TheMathMLActionElement object has the following properties:
actiontype This property is of typeDOMString .
selection This property is of typeDOMString .

474

E.3.22 Object MathMLFractionElement

MathMLFractionElement has all the properties and methods ofMathMLPresentationElement as well as the prop-
erties and methods defined below.

TheMathMLFractionElement object has the following properties:
linethickness This property is of typeDOMString .
numerator This property is of typeMathMLElement .
denominator This property is of typeMathMLElement .

E.3.23 Object MathMLRadicalElement

MathMLRadicalElement has all the properties and methods ofMathMLPresentationElement as well as the proper-
ties and methods defined below.

TheMathMLRadicalElement object has the following properties:
radicand This property is of typeMathMLElement .
index This property is of typeMathMLElement .

E.3.24 Object MathMLScriptElement

MathMLScriptElement has all the properties and methods ofMathMLPresentationElement as well as the properties
and methods defined below.

TheMathMLScriptElement object has the following properties:
subscriptshift This property is of typeDOMString .
superscriptshift This property is of typeDOMString .
base This property is of typeMathMLElement .
subscript This property is of typeMathMLElement .
superscript This property is of typeMathMLElement .

E.3.25 Object MathMLUnderOverElement

MathMLUnderOverElement has all the properties and methods ofMathMLPresentationElement as well as the
properties and methods defined below.

TheMathMLUnderOverElement object has the following properties:
accentunder This property is of typeDOMString .
accent This property is of typeDOMString .
base This property is of typeMathMLElement .
underscript This property is of typeMathMLElement .
overscript This property is of typeMathMLElement .

E.3.26 Object MathMLMultiScriptsElement

MathMLMultiScriptsElement has all the properties and methods ofMathMLPresentationElement as well as the
properties and methods defined below.

TheMathMLMultiScriptsElement object has the following properties:
subscriptshift This property is of typeDOMString .
superscriptshift This property is of typeDOMString .
base This property is of typeMathMLElement .
prescripts This property is of typeMathMLNodeList .

475

scripts This property is of typeMathMLNodeList .
numprescriptcolumns This property is of typeunsigned long.
numscriptcolumns This property is of typeunsigned long.

TheMathMLMultiScriptsElement object has the following methods:
getPreSubScript(colIndex) This method returns aMathMLElement . ThecolIndex parameter is of type

unsigned long.
getSubScript(colIndex) This method returns aMathMLElement . ThecolIndex parameter is of typeun-

signed long.
getPreSuperScript(colIndex) This method returns aMathMLElement . ThecolIndex parameter is of type

unsigned long.
getSuperScript(colIndex) This method returns aMathMLElement . The colIndex parameter is of type

unsigned long.
insertPreSubScriptBefore(colIndex,newScript)This method returns aMathMLElement . ThecolIndex

parameter is of typeunsigned long. ThenewScript parameter is of typeMathMLElement .
setPreSubScriptAt(colIndex,newScript) This method returns aMathMLElement . ThecolIndex param-

eter is of typeunsigned long. ThenewScript parameter is of typeMathMLElement .
insertSubScriptBefore(colIndex,newScript) This method returns aMathMLElement . ThecolIndex pa-

rameter is of typeunsigned long. ThenewScript parameter is of typeMathMLElement .
setSubScriptAt(colIndex,newScript) This method returns aMathMLElement . ThecolIndex parameter

is of typeunsigned long. ThenewScript parameter is of typeMathMLElement .
insertPreSuperScriptBefore(colIndex,newScript)This method returns aMathMLElement . The colIn-

dexparameter is of typeunsigned long. ThenewScript parameter is of typeMathMLElement .
setPreSuperScriptAt(colIndex,newScript) This method returns aMathMLElement . The colIndex pa-

rameter is of typeunsigned long. ThenewScript parameter is of typeMathMLElement .
insertSuperScriptBefore(colIndex,newScript) This method returns aMathMLElement . The colIndex

parameter is of typeunsigned long. ThenewScript parameter is of typeMathMLElement .
setSuperScriptAt(colIndex,newScript) This method returns aMathMLElement . ThecolIndexparameter

is of typeunsigned long. ThenewScript parameter is of typeMathMLElement .

E.3.27 Object MathMLTableElement

MathMLTableElement has all the properties and methods ofMathMLPresentationElement as well as the properties
and methods defined below.

TheMathMLTableElement object has the following properties:
align This property is of typeDOMString .
rowalign This property is of typeDOMString .
columnalign This property is of typeDOMString .
groupalign This property is of typeDOMString .
alignmentscopeThis property is of typeDOMString .
columnwidth This property is of typeDOMString .
width This property is of typeDOMString .
rowspacing This property is of typeDOMString .
columnspacing This property is of typeDOMString .
rowlines This property is of typeDOMString .
columnlines This property is of typeDOMString .
frame This property is of typeDOMString .
framespacing This property is of typeDOMString .
equalrows This property is of typeDOMString .
equalcolumns This property is of typeDOMString .

476

displaystyle This property is of typeDOMString .
side This property is of typeDOMString .
minlabelspacing This property is of typeDOMString .
rows This property is of typeMathMLNodeList .

TheMathMLTableElement object has the following methods:
insertEmptyRow(index) This method returns aMathMLTableRowElement . The index parameter is of

type long.
insertEmptyLabeledRow(index) This method returns aMathMLLabeledRowElement. The index pa-

rameter is of typelong.
getRow(index) This method returns aMathMLTableRowElement . The index parameter is of typeun-

signed long.
insertRow(index,newRow) This method returns aMathMLTableRowElement . Theindex parameter is of

type long. ThenewRowparameter is of typeMathMLTableRowElement .
setRow(index,newRow)This method returns aMathMLTableRowElement . The index parameter is of

type long. ThenewRowparameter is of typeMathMLTableRowElement .
deleteRow(index) This method returns avoid. Theindex parameter is of typeunsigned long.
removeRow(index) This method returns aMathMLTableRowElement . The index parameter is of type

long.

E.3.28 Object MathMLTableRowElement

MathMLTableRowElement has all the properties and methods ofMathMLPresentationElement as well as the prop-
erties and methods defined below.

TheMathMLTableRowElement object has the following properties:
rowalign This property is of typeDOMString .
columnalign This property is of typeDOMString .
groupalign This property is of typeDOMString .
cells This property is of typeMathMLNodeList .

TheMathMLTableRowElement object has the following methods:
insertEmptyCell(index) This method returns aMathMLTableCellElement . The index parameter is of

typeunsigned long.
insertCell(newCell,index) This method returns aMathMLTableCellElement . ThenewCell parameter is

of typeMathMLTableCellElement . Theindex parameter is of typeunsigned long.
setCell(newCell,index)This method returns aMathMLTableCellElement . ThenewCell parameter is of

typeMathMLTableCellElement . Theindex parameter is of typeunsigned long.
deleteCell(index) This method returns avoid. Theindex parameter is of typeunsigned long.

E.3.29 Object MathMLLabeledRowElement

MathMLLabeledRowElement has all the properties and methods ofMathMLTableRowElement as well as the prop-
erties and methods defined below.

TheMathMLLabeledRowElement object has the following properties:
label This property is of typeMathMLElement .

E.3.30 Object MathMLTableCellElement

MathMLTableCellElement has all the properties and methods ofMathMLPresentationContainer as well as the
properties and methods defined below.

477

TheMathMLTableCellElement object has the following properties:
rowspan This property is of typeDOMString .
columnspan This property is of typeDOMString .
rowalign This property is of typeDOMString .
columnalign This property is of typeDOMString .
groupalign This property is of typeDOMString .
hasaligngroups This property is of typeboolean.
cellindex This property is of typeDOMString .

E.3.31 Object MathMLAlignGroupElement

MathMLAlignGroupElement has all the properties and methods ofMathMLPresentationElement as well as the
properties and methods defined below.

TheMathMLAlignGroupElement object has the following properties:
groupalign This property is of typeDOMString .

E.3.32 Object MathMLAlignMarkElement

MathMLAlignMarkElement has all the properties and methods ofMathMLPresentationElement as well as the
properties and methods defined below.

TheMathMLAlignMarkElement object has the following properties:
edge This property is of typeDOMString .

E.3.33 Object MathMLContentElement

MathMLContentElement has all the properties and methods ofMathMLElement as well as the properties and meth-
ods defined below.

E.3.34 Object MathMLContentToken

MathMLContentToken has all the properties and methods ofMathMLContentElement as well as the properties and
methods defined below.

TheMathMLContentToken object has the following properties:
arguments This property is of typeMathMLNodeList .
definitionURL This property is of typeDOMString .
encoding This property is of typeDOMString .

TheMathMLContentToken object has the following methods:
getArgument(index) This method returns aNode. Theindex parameter is of typeunsigned long.
insertArgument(index,newArgument) This method returns aNode. The index parameter is of typeun-

signed long. ThenewArgument parameter is of typeNode.
setArgument(index,newArgument) This method returns aNode. Theindex parameter is of typeunsigned

long. ThenewArgument parameter is of typeNode.
deleteArgument(index) This method returns avoid. Theindex parameter is of typeunsigned long.
removeArgument(index) This method returns aNode. Theindex parameter is of typeunsigned long.

478

E.3.35 Object MathMLCnElement

MathMLCnElement has all the properties and methods ofMathMLContentToken as well as the properties and
methods defined below.

TheMathMLCnElement object has the following properties:
type This property is of typeDOMString .
base This property is of typeDOMString .
nargs This property is of typeunsigned long.

E.3.36 Object MathMLCiElement

MathMLCiElement has all the properties and methods ofMathMLContentToken as well as the properties and meth-
ods defined below.

TheMathMLCiElement object has the following properties:
type This property is of typeDOMString .

E.3.37 Object MathMLCsymbolElement

MathMLCsymbolElement has all the properties and methods ofMathMLContentToken as well as the properties
and methods defined below.

E.3.38 Object MathMLContentContainer

MathMLContentContainer has all the properties and methods ofMathMLContentElement, MathMLContainer as
well as the properties and methods defined below.

TheMathMLContentContainer object has the following properties:
nBoundVariables This property is of typeunsigned long.
condition This property is of typeMathMLConditionElement .
opDegree This property is of typeMathMLElement .
domainOfApplication This property is of typeMathMLElement .
momentAbout This property is of typeMathMLElement .

TheMathMLContentContainer object has the following methods:
getBoundVariable(index) This method returns aMathMLBvarElement . The index parameter is of type

unsigned long.
insertBoundVariable(newBVar,index) This method returns aMathMLBvarElement . ThenewBVar pa-

rameter is of typeMathMLBvarElement . Theindex parameter is of typeunsigned long.
setBoundVariable(newBVar,index) This method returns aMathMLBvarElement . ThenewBVar param-

eter is of typeMathMLBvarElement . Theindex parameter is of typeunsigned long.
deleteBoundVariable(index) This method returns avoid. Theindex parameter is of typeunsigned long.
removeBoundVariable(index) This method returns aMathMLBvarElement . The index parameter is of

typeunsigned long.

E.3.39 Object MathMLApplyElement

MathMLApplyElement has all the properties and methods ofMathMLContentContainer as well as the properties
and methods defined below.

TheMathMLApplyElement object has the following properties:
operator This property is of typeMathMLElement .
domainOfApplication This property is of typeMathMLElement .

479

lowLimit This property is of typeMathMLElement .
upLimit This property is of typeMathMLElement .

E.3.40 Object MathMLFnElement

MathMLFnElement has all the properties and methods ofMathMLContentContainer as well as the properties and
methods defined below.

TheMathMLFnElement object has the following properties:
definitionURL This property is of typeDOMString .
encoding This property is of typeDOMString .

E.3.41 Object MathMLLambdaElement

MathMLLambdaElement has all the properties and methods ofMathMLContentContainer as well as the properties
and methods defined below.

TheMathMLLambdaElement object has the following properties:
expression This property is of typeMathMLElement .

E.3.42 Object MathMLSetElement

MathMLSetElement has all the properties and methods ofMathMLContentContainer as well as the properties and
methods defined below.

TheMathMLSetElement object has the following properties:
isExplicit This property is of typeboolean.
type This property is of typeDOMString .

E.3.43 Object MathMLListElement

MathMLListElement has all the properties and methods ofMathMLContentContainer as well as the properties and
methods defined below.

TheMathMLListElement object has the following properties:
isExplicit This property is of typeboolean.
ordering This property is of typeDOMString .

E.3.44 Object MathMLBvarElement

MathMLBvarElement has all the properties and methods ofMathMLContentContainer as well as the properties
and methods defined below.

E.3.45 Object MathMLPredefinedSymbol

MathMLPredefinedSymbol has all the properties and methods ofMathMLContentElement as well as the properties
and methods defined below.

TheMathMLPredefinedSymbol object has the following properties:
definitionURL This property is of typeDOMString .
encoding This property is of typeDOMString .
arity This property is of typeDOMString .
symbolName This property is of typeDOMString .

480

E.3.46 Object MathMLIntervalElement

MathMLIntervalElement has all the properties and methods ofMathMLContentElement as well as the properties
and methods defined below.

TheMathMLIntervalElement object has the following properties:
closure This property is of typeDOMString .
start This property is of typeMathMLCnElement .
end This property is of typeMathMLCnElement .

E.3.47 Object MathMLConditionElement

MathMLConditionElement has all the properties and methods ofMathMLContentElement as well as the properties
and methods defined below.

TheMathMLConditionElement object has the following properties:
condition This property is of typeMathMLApplyElement .

E.3.48 Object MathMLDeclareElement

MathMLDeclareElement has all the properties and methods ofMathMLContentElement as well as the properties
and methods defined below.

TheMathMLDeclareElement object has the following properties:
type This property is of typeDOMString .
nargs This property is of typeunsigned long.
occurrence This property is of typeDOMString .
definitionURL This property is of typeDOMString .
encoding This property is of typeDOMString .
identifier This property is of typeMathMLCiElement .
constructor This property is of typeMathMLElement .

E.3.49 Object MathMLVectorElement

MathMLVectorElement has all the properties and methods ofMathMLContentElement as well as the properties and
methods defined below.

TheMathMLVectorElement object has the following properties:
ncomponents This property is of typeunsigned long.

TheMathMLVectorElement object has the following methods:
getComponent(index) This method returns aMathMLContentElement . The index parameter is of type

unsigned long.
insertComponent(newComponent,index)This method returns aMathMLContentElement . The new-

Componentparameter is of typeMathMLContentElement . Theindex parameter is of typeunsigned
long.

setComponent(newComponent,index)This method returns aMathMLContentElement . ThenewCom-
ponent parameter is of typeMathMLContentElement . The index parameter is of typeunsigned
long.

deleteComponent(index)This method returns avoid The index parameter is of typeunsigned long.
removeComponent(index)This method returns aMathMLContentElement . The index parameter is of

typeunsigned long.

481

E.3.50 Object MathMLMatrixElement

MathMLMatrixElement has all the properties and methods ofMathMLContentElement as well as the properties
and methods defined below.

TheMathMLMatrixElement object has the following properties:
nrows This property is of typeunsigned long.
ncols This property is of typeunsigned long.
rows This property is of typeMathMLNodeList .

TheMathMLMatrixElement object has the following methods:
getRow(index) This method returns aMathMLMatrixrowElement . The index parameter is of typeun-

signed long.
insertRow(newRow,index) This method returns aMathMLMatrixrowElement . ThenewRowparameter

is of typeMathMLMatrixrowElement . Theindex parameter is of typeunsigned long.
setRow(newRow,index)This method returns aMathMLMatrixrowElement . ThenewRowparameter is

of typeMathMLMatrixrowElement . Theindex parameter is of typeunsigned long.
deleteRow(index) This method returns avoid The index parameter is of typeunsigned long.
removeRow(index) This method returns aMathMLMatrixrowElement . The index parameter is of type

unsigned long.

E.3.51 Object MathMLMatrixrowElement

MathMLMatrixrowElement has all the properties and methods ofMathMLContentElement as well as the properties
and methods defined below.

TheMathMLMatrixrowElement object has the following properties:
nEntries This property is of typeunsigned long.

TheMathMLMatrixrowElement object has the following methods:
getEntry(index) This method returns aMathMLContentElement . The index parameter is of typeun-

signed long.
insertEntry(newEntry,index) This method returns aMathMLContentElement . ThenewEntry parame-

ter is of typeMathMLContentElement . Theindex parameter is of typeunsigned long.
setEntry(newEntry,index) This method returns aMathMLContentElement . ThenewEntry parameter is

of typeMathMLContentElement . Theindex parameter is of typeunsigned long.
deleteEntry(index) This method returns avoid The index parameter is of typeunsigned long.
removeEntry(index) This method returns aMathMLContentElement . The index parameter is of type

unsigned long.

E.3.52 Object MathMLPiecewiseElement

MathMLPiecewiseElementhas all the properties and methods ofMathMLContentElement as well as the properties
and methods defined below.

TheMathMLPiecewiseElementobject has the following properties:
pieces This property is of typeMathMLNodeList .
otherwise This property is of typeMathMLContentElement .

TheMathMLPiecewiseElementobject has the following methods:
getCase(index)This method returns aMathMLCaseElement. The index parameter is of typeunsigned

long.
setCase(index,case)This method returns aMathMLCaseElement. The index parameter is of typeun-

signed long. Thecaseparameter is of typeMathMLCaseElement.
deleteCase(index)This method returns avoid. Theindex parameter is of typeunsigned long.

482

removeCase(index)This method returns aMathMLCaseElement. The index parameter is of typeun-
signed long.

insertCase(index,newCase)This method returns aMathMLCaseElement. Theindex parameter is of type
unsigned long. ThenewCaseparameter is of typeMathMLCaseElement.

getCaseValue(index)This method returns aMathMLContentElement . The index parameter is of type
unsigned long.

setCaseValue(index,value)This method returns aMathMLContentElement . The index parameter is of
typeunsigned long. Thevalueparameter is of typeMathMLContentElement .

getCaseCondition(index)This method returns aMathMLContentElement . The index parameter is of
typeunsigned long.

setCaseCondition(index,condition)This method returns aMathMLContentElement . The index param-
eter is of typeunsigned long. Thecondition parameter is of typeMathMLContentElement .

E.3.53 Object MathMLCaseElement

MathMLCaseElement has all the properties and methods ofMathMLContentElement as well as the properties and
methods defined below.

TheMathMLCaseElement object has the following properties:
caseCondition This property is of typeMathMLContentElement .
caseValueThis property is of typeMathMLContentElement .

483

Appendix F

Operator Dictionary (Non-Normative)

The following table gives the suggested dictionary of rendering properties for operators, fences, separators, and accents
in MathML, all of which are represented bymo elements. For brevity, all such elements will be called simply ‘operators’
in this Appendix.

F.1 Format of operator dictionary entries

The operators are divided into groups, which are separated by blank lines in the listing below. The grouping, and the
order of the groups, is significant for the proper grouping of sub-expressions using<mrow> (Section3.3.1); the rule
described there is especially relevant to the automatic generation of MathML by conversion from other formats for
displayed mathematics, such as TEX, which do not always specify how sub-expressions nest.

The format of the table entries is: the<mo> element content between double quotes (start and end tags not shown),
followed by the attribute list in XML format, starting with theform attribute, followed by the default rendering attributes
which should be used formo elements with the given content andform attribute.

Any attribute not listed for some entry has its default value, which is given in parentheses in the table of attributes in
Section3.2.5.

Note that the characters & and < are represented in the following table entries by the entity references& and<
respectively, as would be necessary if they appeared in the content of an actualmo element (or any other MathML or
XML element).

For example, the first entry,

"(" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

could be expressed as anmo element by:

<mo form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"> (</mo>

(note the lack of double quotes around the content, and the whitespace added around the content for readability, which
is optional in MathML).

This entry means that, for MathML renderers which use this suggested operator dictionary, giving the element<mo
form="prefix"> (</mo> alone, or simply<mo> (</mo> in a position for whichform="prefix" would be in-
ferred (see below), is equivalent to giving the element with all attributes as shown above.

484

F.2 Indexing of operator dictionary

Note that the dictionary is indexed not just by the element content, but by the element content andform attribute value,
together. Operators with more than one possible form have more than one entry. The MathML specification describes
how the renderer chooses (‘infers’) which form to use when noform attribute is given; see Section3.2.5.7.

Having made that choice, or with theform attribute explicitly specified in the<mo> element’s start tag, the MathML
renderer uses the remaining attributes from the dictionary entry for the appropriate single form of that operator, ignoring
the entries for the other possible forms.

F.3 Choice of entity names

Extended characters in MathML (and in the operator dictionary below) are represented by XML-style entity references
using the syntax&character-name; the complete list of characters and character names is given in Chapter6. Many
characters can be referred to by more than one name; often, memorable names composed of full words have been
provided in MathML, as well as one or more names used in other standards, such as Unicode. The characters in the
operators in this dictionary are generally listed under their full-word names when these exist. For example, the integral
operator is named below by the one-character sequence∫, but could equally well be named∫. The
choice of name for a given character in MathML has no effect on its rendering.

It is intended that every entity named below appears somewhere in Chapter6. If this is not true, it is an error in this
specification. If such an error exists, the abovementioned chapter should be taken as definitive, rather than this appendix.

F.4 Notes onlspace and rspace attributes

The values forlspace andrspace given here range from 0 toverythickmathspace, which has a default value of
6/18 em. For the invisible operators whose content is⁢ or ⁡, it is suggested that
MathML renderers choose spacing in a context-sensitive way (which is an exception to the static values given in the
following table). For<mo>⁡</mo>, the total spacing (lspace+rspace) in expressions such as ‘sinx’
(where the right operand doesn’t start with a fence) should be greater than zero; for<mo>⁢</mo>,
the total spacing should be greater than zero when both operands (or the nearest tokens on either side, if on the baseline)
are identifiers displayed in a non-slanted font (i.e. under the suggested rules, when both operands are multi-character
identifiers).

Some renderers may wish to use no spacing for most operators appearing in scripts (i.e. whenscriptlevel is greater
than 0; see Section3.3.4), as is the case in TEX.

F.5 Operator dictionary entries
"(" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

")" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"[" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"]" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"{" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"}" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"”" form="postfix" fence="true" lspace="0em" rspace="0em"

"’" form="postfix" fence="true" lspace="0em" rspace="0em"

"⟨" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"&LeftBracketingBar;" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"⌈" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"⟦" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"&LeftDoubleBracketingBar;" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

485

"⌊" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"“" form="prefix" fence="true" lspace="0em" rspace="0em"

"‘" form="prefix" fence="true" lspace="0em" rspace="0em"

"⟩" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"&RightBracketingBar;" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"⌉" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"⟧" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"&RightDoubleBracketingBar;" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"⌋" form="postfix" fence="true" stretchy="true" lspace="0em" rspace="0em"

"&LeftSkeleton;" form="prefix" fence="true" lspace="0em" rspace="0em"

"&RightSkeleton;" form="postfix" fence="true" lspace="0em" rspace="0em"

"⁣" form="infix" separator="true" lspace="0em" rspace="0em"

"," form="infix" separator="true" lspace="0em" rspace="verythickmathspace"

"─" form="infix" stretchy="true" minsize="0" lspace="0em" rspace="0em"

"|" form="infix" stretchy="true" minsize="0" lspace="0em" rspace="0em"

";" form="infix" separator="true" lspace="0em" rspace="thickmathspace"

";" form="postfix" separator="true" lspace="0em" rspace="0em"

":=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≔" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∵" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∴" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"❘" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"//" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∷" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"&" form="prefix" lspace="0em" rspace="thickmathspace"

"&" form="postfix" lspace="thickmathspace" rspace="0em"

"*=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"-=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"+=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"/=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"->" form="infix" lspace="thickmathspace" rspace="thickmathspace"

":" form="infix" lspace="thickmathspace" rspace="thickmathspace"

".." form="postfix" lspace="mediummathspace" rspace="0em"

"..." form="postfix" lspace="mediummathspace" rspace="0em"

"∋" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⫤" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊨" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊤" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊣" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊢" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⇒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥰" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"|" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"||" form="infix" lspace="mediummathspace" rspace="mediummathspace"

"⩔" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"&&" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩓" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"&" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"!" form="prefix" lspace="0em" rspace="thickmathspace"

"⫬" form="prefix" lspace="0em" rspace="thickmathspace"

"∃" form="prefix" lspace="0em" rspace="thickmathspace"

"∀" form="prefix" lspace="0em" rspace="thickmathspace"

"∄" form="prefix" lspace="0em" rspace="thickmathspace"

"∈" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∉" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∌" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋢" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊐̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋣" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊂⃒" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊈" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊃⃒" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊉" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∋" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊏" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊑" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊐" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊒" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋐" form="infix" lspace="thickmathspace" rspace="thickmathspace"

486

"⊆" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊃" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊇" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⇐" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇔" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥐" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥞" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↽" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥖" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥟" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇁" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥗" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"←" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇤" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇆" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↔" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥎" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↤" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥚" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↼" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥒" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↙" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↘" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"→" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇥" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇄" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↦" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥛" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⇀" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⥓" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"←" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"→" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"↖" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"↗" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"<" form="infix" lspace="thickmathspace" rspace="thickmathspace"

">" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"!=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"==" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"<=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

">=" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≡" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≍" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≐" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∥" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩵" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≂" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⇌" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"≥" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋛" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≧" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪢" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≷" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩾" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≳" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≎" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≏" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊲" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⧏" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊴" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≤" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋚" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≦" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≶" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪡" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩽" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≲" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≫" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≪" form="infix" lspace="thickmathspace" rspace="thickmathspace"

487

"≢" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≭" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∦" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≠" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≂̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≯" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≱" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≧̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≫̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≹" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩾̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≵" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≎̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋪" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⧏̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋬" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≮" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≰" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"&NotLessFullEqual;" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≪̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⩽̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≴" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪢̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪡̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊀" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪯̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋠" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"&NotPrecedesTilde;" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋫" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⧐̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋭" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊁" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪰̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⋡" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≿̸" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≁" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≄" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≇" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≉" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∤" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≺" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪯" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≼" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≾" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∷" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∝" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⇋" form="infix" stretchy="true" lspace="thickmathspace" rspace="thickmathspace"

"⊳" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⧐" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊵" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≻" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⪰" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≽" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≿" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∼" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≃" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≅" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"≈" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊥" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"∣" form="infix" lspace="thickmathspace" rspace="thickmathspace"

"⊔" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"⋃" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"⊎" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"-" form="infix" lspace="mediummathspace" rspace="mediummathspace"

"+" form="infix" lspace="mediummathspace" rspace="mediummathspace"

"⋂" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"∓" form="infix" lspace="mediummathspace" rspace="mediummathspace"

"±" form="infix" lspace="mediummathspace" rspace="mediummathspace"

488

"⊓" form="infix" stretchy="true" lspace="mediummathspace" rspace="mediummathspace"

"⋁" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"⊖" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"

"⊕" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"

"∑" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"⋃" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"⊎" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"lim" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"

"max" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"

"min" form="prefix" movablelimits="true" lspace="0em" rspace="thinmathspace"

"⊖" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⊕" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"∲" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"

"∮" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"

"∳" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"

"∯" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"

"∫" form="prefix" largeop="true" stretchy="true" lspace="0em" rspace="0em"

"⋓" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋒" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"≀" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋀" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"⊗" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"

"∐" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"∏" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"⋂" form="prefix" largeop="true" movablelimits="true" stretchy="true" lspace="0em" rspace="thinmathspace"

"∐" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋆" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⊙" form="prefix" largeop="true" movablelimits="true" lspace="0em" rspace="thinmathspace"

"*" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⁢" form="infix" lspace="0em" rspace="0em"

"·" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⊗" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋁" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋀" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"⋄" form="infix" lspace="thinmathspace" rspace="thinmathspace"

"∖" form="infix" stretchy="true" lspace="thinmathspace" rspace="thinmathspace"

"/" form="infix" stretchy="true" lspace="thinmathspace" rspace="thinmathspace"

"-" form="prefix" lspace="0em" rspace="veryverythinmathspace"

"+" form="prefix" lspace="0em" rspace="veryverythinmathspace"

"∓" form="prefix" lspace="0em" rspace="veryverythinmathspace"

"±" form="prefix" lspace="0em" rspace="veryverythinmathspace"

"." form="infix" lspace="0em" rspace="0em"

"⨯" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"**" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"⊙" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"∘" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"□" form="prefix" lspace="0em" rspace="verythinmathspace"

"∇" form="prefix" lspace="0em" rspace="verythinmathspace"

"∂" form="prefix" lspace="0em" rspace="verythinmathspace"

"ⅅ" form="prefix" lspace="0em" rspace="verythinmathspace"

"ⅆ" form="prefix" lspace="0em" rspace="verythinmathspace"

"√" form="prefix" stretchy="true" lspace="0em" rspace="verythinmathspace"

"⇓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⟸" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⟺" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⟹" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⇑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⇕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⤓" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⇵" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↧" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥡" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⇃" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥙" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥠" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↿" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥘" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⟵" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

489

"⟷" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⟶" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥯" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥝" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⇂" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥏" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥜" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↾" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥔" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↓" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"↑" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"↑" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⤒" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⇅" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↕" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"⥮" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"↥" form="infix" stretchy="true" lspace="verythinmathspace" rspace="verythinmathspace"

"^" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"<>" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"’" form="postfix" lspace="verythinmathspace" rspace="0em"

"!" form="postfix" lspace="verythinmathspace" rspace="0em"

"!!" form="postfix" lspace="verythinmathspace" rspace="0em"

"~" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"@" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"--" form="postfix" lspace="verythinmathspace" rspace="0em"

"--" form="prefix" lspace="0em" rspace="verythinmathspace"

"++" form="postfix" lspace="verythinmathspace" rspace="0em"

"++" form="prefix" lspace="0em" rspace="verythinmathspace"

"⁡" form="infix" lspace="0em" rspace="0em"

"?" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"_" form="infix" lspace="verythinmathspace" rspace="verythinmathspace"

"˘" form="postfix" accent="true" lspace="0em" rspace="0em"

"¸" form="postfix" accent="true" lspace="0em" rspace="0em"

"`" form="postfix" accent="true" lspace="0em" rspace="0em"

"˙" form="postfix" accent="true" lspace="0em" rspace="0em"

"˝" form="postfix" accent="true" lspace="0em" rspace="0em"

"&DiacriticalLeftArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"&DiacriticalLeftRightArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"&DiacriticalLeftRightVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"&DiacriticalLeftVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"´" form="postfix" accent="true" lspace="0em" rspace="0em"

"&DiacriticalRightArrow;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"&DiacriticalRightVector;" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"˜" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"¨" form="postfix" accent="true" lspace="0em" rspace="0em"

"̑" form="postfix" accent="true" lspace="0em" rspace="0em"

"ˇ" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"^" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"‾" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⏞" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⎴" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⏜" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⃛" form="postfix" accent="true" lspace="0em" rspace="0em"

"_" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⏟" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⎵" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

"⏝" form="postfix" accent="true" stretchy="true" lspace="0em" rspace="0em"

490

Appendix G

Sample CSS Style Sheet for MathML (Non-Normative)

The Cascading Style Sheet sample given here isnot normative. It is provided as a guide to illustrate the sort of CSS
style sheet rules which a MathML renderer should include in its default style sheet in order to comply with both the CSS
and MathML specifications. In particular, there is a need to provide rules to prevent the descent of CSS font rules into
MathML expressions embedded in ambient text, and to provide support for themathfamily, mathslant, mathweight,
mathsize, mathcolor andmathbackground attributes.

We expect that implementation experience will allow us to provide a more authoritative default MathML style sheet in
the future. In the interim, it is hoped that this illustrative sample will be helpful.

math, math[mode="inline"] {
display: inline;
font-family: CMSY10, CMEX10, Symbol, Times;
font-style: normal;

}

math[mode="display"] {
display: block;
text-align: center;
font-family: CMSY10, CMEX10, Symbol, Times;
font-style: normal;

}

@media screen { /* hide from old browsers */

/* Rules desling with the various values of the "mathvariant" attribute: */

math *.[mathvariant="normal"] {
font-family: "Times New Roman", Courier, Garamond, serif;
font-weight: normal;
font-style: normal;

}

math *.[mathvariant="bold"] {
font-family: "Times New Roman", Courier, Garamond, serif;

491

font-weight: bold;
font-style: normal;

}

math *.[mathvariant="italic"] {
font-family: "Times New Roman", Courier, Garamond, serif;
font-weight: normal;
font-style: italic;

}

math *.[mathvariant="bold-italic"] {
font-family: "Times New Roman", Courier, Garamond, serif;
font-weight: bold;
font-style: italic;

}

math *.[mathvariant="double-struck"] {
font-family: msbm;
font-weight: normal;
font-style: normal;

}

math *.[mathvariant="script"] {
font-family: eusb;
font-weight: normal;
font-style: normal;

}

math *.[mathvariant="bold-script"] {
font-family: eusb;
font-weight: bold;
font-style: normal;

}

math *.[mathvariant="fraktur"] {
font-family: eufm;
font-weight: normal;
font-style: normal;

}

math *.[mathvariant="bold-fraktur"] {
font-family: eufm;
font-weight: bold;
font-style: italic;

}

math *.[mathvariant="sans-serif"] {
font-family: Arial, "Lucida Sans Unicode", Verdana, sans-serif;
font-weight: normal;

492

font-style: normal;
}

math *.[mathvariant="bold-sans-serif"] {
font-family: Arial, "Lucida Sans Unicode", Verdana, sans-serif;
font-weight: bold;
font-style: normal;

}

math *.[mathvariant="sans-serif-italic"] {
font-family: Arial, "Lucida Sans Unicode", Verdana, sans-serif;
font-weight: normal;
font-style: italic;

}

math *.[mathvariant="sans-serif-bold-italic"] {
font-family: Arial, "Lucida Sans Unicode", Verdana, sans-serif;
font-weight: bold;
font-style: italic;

}

math *.[mathvariant="monospace"] {
font-family: monospace

}

/* Rules dealing with "mathsize" attribute */

math *.[mathsize="small"] {
font-size: 80%

}

math *.[mathsize="normal"] {
/* font-size: 100% - which is unnecessary */
}

math *.[mathsize="big"] {
font-size: 125%

}

/*Set size values for the "base" children of script and limit schema to
distinguish them from the script or limit children:

*/

msub>*:first-child[mathsize="big"],
msup>*:first-child[mathsize="big"],
msubsup>*:first-child[mathsize="big"],
munder>*:first-child[mathsize="big"],
mover>*:first-child[mathsize="big"],

493

munderover>*:first-child[mathsize="big"],
mmultiscripts>*:first-child[mathsize="big"],
mroot>*:first-child[mathsize="big"] {
font-size: 125%

}

msub>*:first-child[mathsize="small"],
msup>*:first-child[mathsize="small"],
msubsup>*:first-child[mathsize="small"],
munder>*:first-child[mathsize="small"],
mover>*:first-child[mathsize="small"],
munderover>*:first-child[mathsize="small"],
mmultiscripts>*:first-child[mathsize="small"],
mroot>*:first-child[mathsize="small"] {
font-size: 80%

}

msub>*:first-child,
msup>*:first-child,
msubsup>*:first-child,
munder>*:first-child,
mover>*:first-child,
munderover>*:first-child,
mmultiscripts>*:first-child,
mroot>*:first-child {
font-size: 100%

}

/*Set size values for the other children of script and limit schema (the
script and limit children) - include scriptlevel increment attribute?

*/

msub>*[mathsize="big"],
msup>*[mathsize="big"],
msubsup>*[mathsize="big"],
munder>*[mathsize="big"],
mover>*[mathsize="big"],
munderover>*[mathsize="big"],
mmultiscripts>*[mathsize="big"],
math[display="inline"] mfrac>*[mathsize="big"],
math *[scriptlevel="+1"][mathsize="big"] {
font-size: 89% /* (.71 times 1.25) */

}

msub>* [mathsize="small"],
msup>*[mathsize="small"],
msubsup>*[mathsize="small"],
munder>*[mathsize="small"],
mover>*[mathsize="small"],

494

munderover>*[mathsize="small"],
mmultiscripts>*[mathsize="small"],
math[display="inline"] mfrac>*[mathsize="small"],
math *[scriptlevel="+1"][mathsize="small"] {
font-size: 57% /* (.71 times .80) */

}

msub>*,
msup>*,
msubsup>*,
munder>*,
mover>*,
munderover>*,
mmultiscripts>*,
math[display="inline"] mfrac>*,
math *[scriptlevel="+1"] {
font-size: 71%

}

mroot>*[mathsize="big"] {
font-size: 62% /* (.50 times 1.25) */

}

mroot>*[mathsize="small"] {
font-size: 40% /* (.50 times .80) */

}

mroot>* {
font-size: 50%

}

/* Set size values for other scriptlevel increment attributes */

math *[scriptlevel="+2"][mathsize="big"] {
font-size: 63% /* (.71 times .71 times 1.25) */

}

math *[scriptlevel="+2"][mathsize="small"] {
font-size: 36% /* (.71 times .71 times .71) */

}

math *[scriptlevel="+2"] {
font-size: 50% /* .71 times .71 */

}

math *.[mathcolor="green"] {
color: green

}

495

math *.[mathcolor="black"] {
color: black

}

math *.[mathcolor="red"] {
color: red

}

math *.[mathcolor="blue"] {
color: blue

}

math *.[mathcolor="olive"] {
color: olive

}

math *.[mathcolor="purple"] {
color: purple

}

math *.[mathcolor="teal"] {
color: teal

}

math *.[mathcolor="aqua"] {
color: aqua

}

math *.[mathcolor="gray"] {
color: gray

}

math *.[mathbackground="blue"] {
background-color: blue

}

math *.[mathbackground="green"] {
background-color: green

}

math *.[mathbackground="white"] {
background-color: white

}

math *.[mathbackground="yellow"] {
background-color: yellow

}

math *.[mathbackground="aqua"] {

496

background-color: aqua
}

} /* Close "@media screen" scope */

@media aural {
}

497

Appendix H

Glossary (Non-Normative)

Several of the following definitions of terms have been borrowed or modified from similar definitions in documents
originating from W3C or standards organizations. See the individual definitions for more information.

Argument A child of a presentation layout schema. That is, ‘A is an argument of B’ means ‘A is a child of B and B is
a presentation layout schema’. Thus, token elements have no arguments, even if they have children (which
can only bemalignmark).

Attribute A parameter used to specify some property of an SGML or XML element type. It is defined in terms of
an attribute name, attribute type, and a default value. A value may be specified for it on a start-tag for that
element type.

Axis The axis is an imaginary alignment line upon which a fraction line is centered. Often, operators as well as char-
acters that can stretch, such as parentheses, brackets, braces, summation signs etc., are centered on the axis,
and are symmetric with respect to it.

Baseline The baseline is an imaginary alignment line upon which a glyph without a descender rests. The baseline is
an intrinsic property of the glyph (namely a horizontal line). Often baselines are aligned (joined) during
typesetting.

Black box The bounding box of the actual size taken up by the viewable portion (ink) of a glyph or expression.
Bounding box The rectangular box of smallest size, taking into account the constraints on boxes allowed in a particular

context, which contains some specific part of a rendered display.
Box A rectangular plane area considered to contain a character or further sub-boxes, used in discussions of rendering

for display. It is usually considered to have a baseline, height, depth and width.
Cascading Style Sheets (CSS)A mechanism that allows authors and readers to attach style (e.g. fonts, colors and

spacing) to HTML and XML documents.
Character A member of a set of identifiers used for the organization, control or representation of text. ISO/IEC Stan-

dard 10646-1:1993 uses the word ‘data’ here instead of ‘text’.
Character data (CDATA) A data type in SGML and XML for raw data that does not include markup or entity references.

Attributes of typeCDATA may contain entity references. These are expanded by an XML processor before
the attribute value is processed asCDATA.

Character or expression depth Distance between the baseline and bottom edge of the character glyph or expression.
Also known as the descent.

Character or expression height Distance between the baseline and top edge of the character glyph or expression. Also
known as the ascent.

Character or expression width Horizontal distance taken by the character glyph as indicated in the font metrics, or
the total width of an expression.

Condition A MathML content element used to place a mathematical condition on one or more variables.
Contained (element A is contained in element B)A is part of B’s content.
Container (Constructor) A non-empty MathML Content element that is used to construct a mathematical object such

as a number, set, or list.

498

Content elementsMathML elements that explicitly specify the mathematical meaning of a portion of a MathML
expression (defined in Chapter4).

Content token element Content element having onlyPCDATA, sep and presentation expressions as content. Represents
either an identifier (ci) or a number (cn).

Context (of a given MathML expression) Information provided during the rendering of some MathML data to the
rendering process for the given MathML expression; especially information about the MathML markup
surrounding the expression.

Declaration An instance of the declare element.
Depth (of a box) The distance from the baseline of the box to the bottom edge of the box.
Direct sub-expression (of a MathML expression ‘E’) A sub-expression directly contained in E.
Directly contained (element A in element B)A is a child of B (as defined in XML), in other words A is contained in

B, but not in any element that is itself contained in B.
Document Object Model A model in which the document or Web page is treated as an object repository. This model

is developed by the DOM Working Group (DOM) of the W3C.
Document Style Semantics and Specification Language (DSSSL)A method of specifying the formatting and trans-

formation of SGML documents. ISO International Standard 10179:1996.
Document Type Definition (DTD) In SGML or XML, a DTD is a formal definition of the elements and the relation-

ship among the data elements (the structure) for a particular type of document.
Em A font-relative measure encoded by the font. Before electronic typesetting, anem was the width of an ‘M’ in the

font. In modern usage, anem is either specified by the designer of the font or is taken to be the height (point
size) of the font. Em’s are typically used for font-relative horizontal sizes.

Ex A font-relative measure that is the height of an ‘x’ in the font.exs are typically used for font-relative vertical sizes.
Height (of a box) The distance from the baseline of the box to the top edge of the box.
Inferred mrow An mrow element that is ‘inferred’ around the contents of certain layout schemata when they have other

than exactly one argument. Defined precisely in Section3.1.6
Embedded object Embedded objects such as Java applets, Microsoft Component Object Model (COM) objects (e.g.

ActiveX Controls and ActiveX Document embeddings), and plug-ins that reside in an HTML document.
Embellished operator An operator, including any ‘embellishment’ it may have, such as superscripts or style infor-

mation. The ‘embellishment’ is represented by a layout schema that contains the operator itself. Defined
precisely in Section3.2.5.

Entity reference A sequence of ASCII characters of the form&name; representing some other data, typically a non-
ASCII character, a sequence of characters, or an external source of data, e.g. a file containing a set of standard
entity definitions such as ISO Latin 1.

Extensible Markup Language (XML) A simple dialect of SGML intended to enable generic SGML to be served,
received, and processed on the Web.

Fences In typesetting, bracketing tokens like parentheses, braces, and brackets, which usually appear in matched pairs.
Font A particular collection of glyphs of a typeface of a given size, weight and style, for example ‘Times Roman Bold

12 point’.
Glyph The actual shape (bit pattern, outline) of a character. ISO/IEC Standard 9541-1:1991 defines a glyph as a rec-

ognizable abstract graphic symbol that is independent of any specific design.
Indirectly contained A is contained in B, but not directly contained in B.
Instance of MathML A single instance of the top level element of MathML, and/or a single instance of embedded

MathML in some other data format.
Inverse function A mathematical function that, when composed with the original function acts like an identity func-

tion.
Lambda expression A mathematical expression used to define a function in terms of variables and an expression in

those variables.
Layout schema (plural: schemata)A presentation element defined in chapter 3, other than the token elements and

empty elements defined there (i.e. not the elements defined in Section3.2 and Section3.5.5, or the empty

499

elementsnone andmprescripts defined in Section3.4.7). The layout schemata are never empty elements
(though their content may contain nothing in some cases), are always expressions, and all allow any MathML
expressions as arguments (except for requirements on argument count, and the requirement for a certain
empty element inmmultiscripts).

Mathematical Markup Language (MathML) The markup language specified in this document for describing the
structure of mathematical expressions, together with a mathematical context.

MathML element An XML element that forms part of the logical structure of a MathML document.
MathML expression (within some valid MathML data) A single instance of a presentation element, except for the

empty elementsnone or mprescripts, or an instance ofmalignmark within a token element (defined
below); or a single instance of certain of the content elements (see Chapter4 for a precise definition of which
ones).

Multi-purpose Internet Mail Extensions (MIME) A set of specifications that offers a way to interchange text in lan-
guages with different character sets, and multi-media content among many different computer systems that
use Internet mail standards.

Operator, content element A mathematical object that is applied to arguments using theapply element.
Operator, an mo element Used to represent ordinary operators, fences, separators in MathML presentation. (The token

elementmo is defined in Section3.2.5).
OpenMath A general representation language for communicating mathematical objects between application programs.
Parsed character data (PCDATA) An SGML/XML data type for raw data occurring in a context where text is parsed

and markup (for instance entity references and element start/end tags) is recognized.
Point Point is often abbreviated ‘pt’. The value of 1 pt is approximately 1/72 inch. Points are typically used to specify

absolute sizes for font-related objects.
Pre-defined function One of the empty elements defined in Section4.2.3and used with theapply construct to build

function applications.
Presentation elementsMathML tags and entities intended to express the syntactic structure of mathematical notation

(defined in Chapter3).
Presentation layout schemaA presentation element that can have other MathML elements as content.
Presentation token elementA presentation element that can contain only parsed character data or themalignmark

element.
Qualifier A MathML content element that is used to specify the value of a specific named parameter in the application

of selected pre-defined functions.
Relation A MathML content element used to construct expressions such asa < b.
Render Faithfully translate into application-specific form allowing native application operations to be performed.
Schema Schema (plural: schemata or schemas). See ‘presentation layout schema’.
Scope of a declarationThe portion of a MathML document in which a particular definition is active.
Selected sub-expression (of anmaction element) The argument of anmaction element (a layout schema defined in

Section3.6) that is (at any given time) ‘selected’ within the viewing state of a MathML renderer, or by the
selection attribute when the element exists only in MathML data. Defined precisely in the abovementioned
section.

Space-like (MathML expression) A MathML expression that is ignored by the suggested rendering rules for MathML
presentation elements when they determine operator forms and effective operator rendering attributes based
on operator positions inmrow elements. Defined precisely in Section3.2.7.

Standard Generalized Markup Language (SGML) An ISO standard (ISO 8879:1986) that provides a formal mech-
anism for the definition of document structure via DTDs (Document Type Definitions), and a notation for
the markup of document instances conforming to a DTD.

Sub-expression (of a MathML expression ‘E’) A MathML expression contained (directly or indirectly) in the content
of E.

Suggested rendering rules for MathML presentation elementsDefined throughout Chapter3; the ones that use other
terms defined here occur mainly in Section3.2.5and in Section3.6.

500

TEX A software system developed by Professor Donald Knuth for typesetting documents.
Token element Presentation token element or a Content token element. (See above.)
Top-level element (of MathML) math (defined in Chapter7).
Typeface A typeface is a specific design of a set of letters, numbers and symbols, such as ‘Times Roman’ or ‘Chicago’.
Valid MathML data MathML data that (1) conforms to the MathML DTD, (2) obeys the additional rules defined in

the MathML standard for the legal contents and attribute values of each MathML element, and (3) satisfies
the EBNF grammar for content elements.

Width (of a box) The distance from the left edge of the box to the right edge of the box.
Extensible Style Language (XSL)A style language for XML developed by W3C. See XSL FO and XSLT.
XSL Formatting Objects (XSL FO) An XML vocabulary to express formatting, which is a part of XSL.
XSL Transformation (XSLT) A language to express the transformation of XML documents into other XML docu-

ments.

501

Appendix I

Working Group Membership and Acknowledgments (Non-Normative)

I.1 The Math Working Group Memberships

The W3C Math Working Group has been co-chaired by Patrick Ion of the AMS, and Angel Diaz of IBM from July
1998 to December 2000. Contact the co-chairs if you are interested in joining the group. For the present membership
see theW3C Math home page.

Members of the Working Group responsible for MathML 2.0 are:

• Ron Ausbrooks, Mackichan Software, Las Cruces NM, USA
• Laurent Bernardin, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Buswell, Stilo Technologies, Cardiff, UK
• David Carlisle, NAG Ltd., Oxford, UK
• Stéphane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Stratum Technical Services Ltd., Waterloo ON, CAN (earlier with Waterloo Maple, Inc., Water-

loo ON, CAN)
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Ben Hinkle, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Hunt, MATH.EDU Inc., Champaign IL, USA
• Douglas Lovell, IBM Hawthorn Research, Yorktown Heights NY, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Robert Miner, Design Science Inc., Long Beach CA, USA (earlier with Geometry Technologies Inc., Min-

neapolis MN, USA)
• Ivor Philips, Boeing, Seattle WA, USA
• Nico Poppelier, Penta Scope, Amersfoort, NL (earlier with Salience and Elsevier Science, NL)
• Dave Raggett, W3C (Hewlett Packard), Bristol, UK
• T.V. Raman, IBM Almaden, Palo Alto CA, USA (earlier with Adobe Inc., Mountain View CA, USA)
• Murray Sargent III, Microsoft, Redmond WA, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Irene Schena, Universitá di Bologna, Bologna, IT
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN

Earlier active members of this second W3C Math Working Group have included:

• Sam Dooley, IBM Research, Yorktown Heights NY, USA
• Robert Sutor, IBM Research, Yorktown Heights NY, USA
• Barry MacKichan, MacKichan Software, Las Cruces NM, USA

At the time of release of MathML 1.0 the Math Working Group was co-chaired by Patrick Ion and Robert Miner, then
of the Geometry Center. Since that time several changes in membership have taken place. In the course of the update to

502

http://www.w3.org/Math/

MathML 1.01, in addition to people listed in the original membership below, corrections were offered by David Carlisle,
Don Gignac, Kostya Serebriany, Ben Hinkle, Sebastian Rahtz, Sam Dooley and others.

Members of the Math Working Group responsible for the finished MathML 1.0 specification were:

• Stephen Buswell, Stilo Technologies, Cardiff, UK
• Stéphane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Maplesoft Inc., Waterloo ON, CAN
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Brenda Hunt, Wolfram Research Inc., Champaign IL, USA
• Stephen Hunt, Wolfram Research Inc., Champaign IL, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Robert Miner, Geometry Center, University of Minnesota, Minneapolis MN, USA
• Nico Poppelier, Elsevier Science, Amsterdam, NL
• Dave Raggett, W3C (Hewlett Packard), Bristol, UK
• T.V. Raman, Adobe Inc., Mountain View CA, USA
• Bruce Smith, Wolfram Research Inc., Champaign IL, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Robert Sutor, IBM Research, Yorktown Heights NY, USA
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN
• Ralph Youngen, American Mathematical Society, Providence RI, USA

Others who had been members of the W3C Math WG for periods at earlier stages were:

• Stephen Glim, Mathsoft Inc., Cambridge MA, USA
• Arnaud Le Hors, W3C, Cambridge MA, USA
• Ron Whitney, Texterity Inc., Boston MA, USA
• Lauren Wood, SoftQuad, Surrey BC, CAN
• Ka-Ping Yee, University of Waterloo, Waterloo ON, CAN

I.2 Acknowledgments

The working group benefited from the help of many other people in developing the specification for MathML 1.0. We
would like to particularly name Barbara Beeton, Chris Hamlin, John Jenkins, Ira Polans, Arthur Smith, Robby Villegas
and Joe Yurvati for help and information in assembling the character tables in Chapter6, as well as Peter Flynn, Russell
S.S. O’Connor, Andreas Strotmann, and other contributors to the www-math mailing list for their careful proofreading
and constructive criticisms.

As the Math Working Group went on to MathML 2.0, it again was helped by many from the W3C family of Working
Groups with whom we necessarily had a great deal of interaction. Outside the W3C, a particularly active relevant front
was the interface with the Unicode Technical Committee (UTC) and the NTSC WG2 dealing with ISO 10646. There
the STIX project put together a proposal for the addition of characters for mathematical notation to Unicode, and this
work was again spear-headed by Barbara Beeton of the AMS. The whole problem ended split into three proposals,
two of which were advanced by Murray Sargent of Microsoft, a Math WG member and member of the UTC. But the
mathematical community should be grateful for essential help and guidance over a couple of years of refinement of the
proposals to help mathematics provided by Kenneth Whistler of Sybase, and a UTC and WG2 member. Asmus Freytag,
also involved in the UTC and WG2 deliberations, was also a stalwart supporter of the needs of scientific notation.

503

Appendix J

Changes (Non-Normative)

This appendix summarizes the changes with respect to the preceding version (1.01) of the MathML Specification.

• changes to Chapter1
– rewritten to reflect developments since publication of the MathML 1.0 Recommendation, for example

XML, XSL, CSS and schemas
• changes to Chapter2

– rewritten to reflect developments since publication of the MathML 1.0 Recommendation, for example
XML, XSL, CSS and schemas

– examples were rewritten to reflect good MathML 2.0 practice
– descriptions of attribute values were updated to reflect MathML 2.0

• changes to Chapter3
– introduced a new section on bidirectional layout of mathematics
– introduced new mathematics style attributesmathvariant, mathsize, mathweight, andmathcolor

on token elements, and deprecated the use offontfamily, fontsize, fontweight, fontstyle and
color.

– introduced new elementsmglyph, menclose andmlabeledtr and updated related text accordingly
– added attributesbeveled, numalign anddenomalign to mfrac
– added a linebreaking attribute tomspace
– requiredmtr andmtd elements to be explicit instead of allowing them to be inferred.

• changes to Chapter4
– deprecated the use ofreln andfn and changed the use ofapply accordingly
– introducedcsymbol and added a discussion about the relation to the deprecatedfn element
– introduced new content elementsdomain, codomain, image, domainofapplication, arg, real,

imaginary, lcm, floor, ceiling, equivalent, approx, divergence, grad, curl, laplacian,
card, cartesianproduct, momentabout, vectorproduct, scalarproduct, outerproduct, in-
tegers, reals, rationals, naturalnumbers, complexes, primes, exponentiale, imaginaryi,
notanumber, true, false, emptyset, pi, eulergamma andinfinity

– corrected examples and fixed typos
– expanded the attributedefinitionURL to allow a URL or a URI as a value
– clarified the use of presentation markup insidecn
– made use ofencoding attribute more uniform
– changed description of the use ofbvar in combination withmin andmax

• changes to Chapter5
– added description of content-faithful transformation
– updated examples to reflect MathML 2.0
– define list of content that can appear in presentation
– add attributexref for cross-referencing purposes

504

– added examples using XLink and namespaces
– make use ofencoding attribute more uniform
– miscellaneous typographical corrections

• changes to Chapter6
– added a new section describing the methods of using Unicode data within MathML
– added a new section describing the correspondence between Math Alphabet characters and themath-

variant attribute
– completely revised and reformatted the MathML character tables to reflect changes in Unicode since

MathML 1.01
• changes to Chapter7

– reworked the text in acknowledgement of the fact that the top-level and interface elements for MathML
are now in practice the same

– rewrote the text about linking to reflect changes in XLink since MathML 1.01
– revised material about interactions with embedded renderers to reflect the current state of DOM imple-

mentation
– added a definition of deprecated features in MathML 2
– updated the text to reflect the use of namespaces and the introduction of XHTML. 2.0
– added a new section on the appropriate use of CSS and the new mathematics style attributes in rendering

environments with support CSS
• changes to Chapter8

– this is a completely new chapter
• changes to AppendixA

– renamed attributeoccurence to occurrence
– added global attributexref
– add links to tables for each entity set

• changes to AppendixB
– Updated to reflect MathML 2.0.

• changes to AppendixC
– completely rewritten to reflect changes in MathML 2.0

• changes to AppendixF
– entries in operator dictionary are parametrized
– operator dictionary has become a non-normative part of the specification
– new entries were added to operator dictionary

• changes to AppendixD
– this is a completely new appendix, containing the IDL definitions

• changes to AppendixH
– added entries for XSL, XSLT and XSL FO

• changes to AppendixI
– all members of first and second Math Working Group are listed

• changes to AppendixJ
– completely new appendix, based on the logs obtained from CVS

• changes to AppendixK
– added and updated many entries

• general changes
– text of specification now in XML form, with HTML and XHTML rendering by means of XSLT, and

PDF rendering by means of XSLT and TEX
– fixed errors in spelling and notation
– normative examples of formulas are images, with a LaTEX equivalent
– non-normative examples of formulas are HTML constructions wherever possible

505

– improved cross-referencing

506

Appendix K

References (Non-Normative)

[AAP-math] ANSI/NISO Z39.59-1998;AAP Math DTD, Standard for Electronic Manuscript Preparation and MarkUp.
(Association of American Publishers, Inc., Washington, DC) Bethesda, MD, 1988.

[Behaviors] Vidur Apparao, Daniel Glazman, and Chris Wilson (editors)Behavioral Extensions to CSS World Wide
Web Consortium Working Draft, 4 August 1999. (http://www.w3.org/TR/becss)

[Bidi] Mark Davis The Bidirectional Algorithm, Unicode Standard Annex #9, August 2000.
(http://www.unicode.org/unicode/reports/tr9/)

[Buswell1996] Buswell, S., Healey, E.R. Pike, and M. Pike;SGML and the Semantic Representation of Mathematics,
UIUC Digital Library Initiative SGML Mathematics Workshop, May 1996 and SGML Europe 96 Conference,
Munich 1996.

[Cajori1928] Cajori, Florian;A History of Mathematical Notations, vol. I & II. Open Court Publishing Co., La Salle
Illinois, 1928 & 1929 republished Dover Publications Inc., New York, 1993, xxviii+820 pp. ISBN 0-486-67766-4
(paperback).

[Carroll1871] Carroll, Lewis [Rev. C.L. Dodgson];Through the Looking Glass and What Alice Found There, Macmil-
lian & Co., 1871.

[Chaundy1954]Chaundy, T.W., P.R. Barrett, and C. Batey;The Printing of Mathematics. Aids for authors and editors
and rules for compositors and readers at the University Press, Oxford, Oxford University Press, London, 1954,
ix+105 pp.

[CSS1] Lie, Håkon Wium and Bert Bos;Cascading Style Sheets, level 1, W3C Recommendation, 17 Dec 1996,
(http://www.w3.org/pub/WWW/TR/REC-CSS1.)

[CSS2] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs (editors);Cascading Style Sheets, level 2 CSS2
Specification, W3C Recommendation, 12 May 1998, (http://www.w3.org/pub/WWW/TR/REC-CSS2.)

[DOM] Mark Davis, Arnaud Le Hors, Philippe Le Hégaret, Jonathan Robie and Lauren Wood (editors),Document
Object Model (DOM) Level 2 Core Specification World Wide Web Consortium Proposed Recommendation, 27
September, 2000 (http://www.w3.org/TR/DOM-Level-2-Core/)

[Higham1993] Higham, Nicholas J.,Handbook of writing for the mathematical sciences. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1993. xii+241 pp. ISBN: 0-89871-314-5.

[HTML4] Raggett, Dave, Arnaud Le Hors and Ian Jacobs (editors);HTML 4.01 Specification, 24 Dec 1999,
http://www.w3.org/TR/html401; section on data types.

[ISO-12083] ISO 12083:1993;ISO 12083 DTD Information and Documentation - Electronic Manuscript Preparation
and Markup, Geneva, Switzerland, 1993.

[Knuth1986] Knuth, Donald E.,The TEXbook. American Mathematical Society, Providence, RI and Addison-Wesley
Publ. Co., Reading, MA, 1986, ix+483 pp. ISBN: 0-201-13448-9.

[Modularization] Robert Adams, Murray Altheim, Frank Boumphrey, Sam Dooley, Shane McCarron, Sebastian
Schnitzenbaumer, Ted Wugofski (editors)Modularization of XHTML[tm] World Wide Web Consortium Can-
didate Recommendation, 20 October 2000, (http://www.w3.org/TR/xhtml-modularization/)

[Namespaces]Tim Bray, Dave Hollander, Andrew Layman (editors)Namespaces in XML. World Wide Web Consor-
tium Recommendation, 14 January 1999. (http://www.w3.org/TR/REC-xml-names/)

507

http://www.w3.org/TR/becss
http://www.unicode.org/unicode/reports/tr9/
http://www.w3.org/pub/WWW/TR/REC-CSS1
http://www.w3.org/pub/WWW/TR/REC-CSS2/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/xhtml-modularization/
http://www.w3.org/TR/REC-xml-names/

[OpenMath2000]O. Caprotti, D. P. Carlisle, A. M. Cohen (editors);The OpenMath Standard, February 2000,
(http://www.openmath.org/standard).

[Pierce1961]Pierce, John R.;An Introduction to Information Theory. Symbols, Signals and Noise., Revised edition
of Symbols, Signals and Noise: the Nature and Process of Communication (1961). Dover Publications Inc., New
York, 1980, xii+305 pp. ISBN 0-486-24061-4.

[Poppelier1992]Poppelier, N.A.F.M., E. van Herwijnen, and C.A. Rowley;Standard DTD’s and Scientific Publishing,
EPSIG News 5 (1992) #3, September 1992, 10-19.

[RFC2045] N. Freed and N. BorensteinMultipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, RFC 2045, November 1996. (ftp://www.ietf.org/rfc/rfc2045.txt)

[RFC2046] N. Freed and N. BorensteinMultipurpose Internet Mail Extensions (MIME) Part Two: Media Types, RFC
2045, November 1996. (ftp://www.ietf.org/rfc/rfc2046.txt)

[RodWatt2000] Igor Rodionov, Stephen Watt;Content-Faithful Stylesheets for MathML. Technical Report TR-00-23,
Ontario Research Center for Computer Algebra, December 2000. (http://www.orcca.on.ca/TechReports/2000/TR-
00-24.html)

[Spivak1986] Spivak, M. D.The Joy of TEX A gourmet guide to typesetting with the AMS-TEX macro package. Amer-
ican Mathematical Society, Providence, RI, MA 1986, xviii+290 pp. ISBN: 0-8218-2999-8.

[Swanson1979]Swanson, Ellen,Mathematics into type. Copy editing and proofreading of mathematics for editorial
assistants and authors. Revised edition. American Mathematical Society, Providence, R.I., 1979. x+90 pp. ISBN:
0-8218-0053-1.

[Swanson1999]Swanson, Ellen,Mathematics into type: Updated Edition. American Mathematical Society, Provi-
dence, R.I., 1999. 102 pp. ISBN: 0-8218-1961-5.

[Thieme1983]Thieme, Romeo,Satz und bedeutung mathematischer Formeln [Typesetting and meaning of mathemat-
ical formulas]. Reprint of the 1934 original. Edited by Karl Billmann, Helmut Bodden and Horst Nacke. Werner-
Verlag Gmbh, Dusseldorf, 1983, viii + 92 pp. ISBN 3-8041-3549-8.

[Unicode] The Unicode ConsortiumThe Unicode Standard, Version 3.0, Addison-Wesley Longman, Inc., Reading
MA, 2000, XXX + 1040. ISBN 0-201-61633-5.

[XHTML] Steve Pemberton, Murray Altheim, et al.XHTML[tm] 1.0: The Extensible HyperText Markup Language
World Wide Web Consortium Recommendation, 26 January 2000. (http://www.w3.org/TR/xhtml1/)

[XLink] Steve DeRose, Eve Maler, David Orchard and Ben Trafford (editors),XML Linking Language (XLink) Ver-
sion 1.0, World Wide Web Consortium Candidate Recommendation, 3 July 2000. (http://www.w3.org/TR/xlink)

[XML] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen and Eve Maler (editors),Extensible Markup Language (XML)
1.0 (Second Edition), 6 October 2000, (http://www.w3.org/TR/REC-xml)

[XMLSchemas] David C. Fallside, editorXML Schema Part 0: Primer World Wide Web Consortium Candidate Rec-
ommendation, 24 October 2000. (http://www.w3.org/TR/xmlschema-0)

[XPointer] Ron Daniel, Steve DeRose, Eve Maler (editors),XML Pointer Language (XPointer) Version 1.0, World
Wide Web Consortium Candidate Recommendation, 7 June 2000. (http://www.w3.org/TR/xptr)

[XSLT] James Clark (editor)XSL Transformations (XSLT) Version 1.0, World Wide Web Consortium Recommenda-
tion, 16 November 1999. (http://www.w3.org/TR/xslt)

508

http://www.openmath.org/standard/
ftp://www.ietf.org/rfc/rfc2045.txt
ftp://www.ietf.org/rfc/rfc2046.txt
http://www.orcca.on.ca/TechReports/2000/TR-00-24.html
http://www.orcca.on.ca/TechReports/2000/TR-00-24.html
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xlink
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xslt

	Mathematical Markup Language Specification
	Introduction
	Mathematics and its Notation
	Origins and Goals
	The History of MathML
	Limitations of HTML
	Requirements for Mathematics Markup
	Design Goals of MathML

	The Role of MathML on the Web
	Layered Design of Mathematical Web Services
	Relation to Other Web Technology
	Existing Mathematical Markup Languages
	HTML Extension Mechanisms
	Browser Extension Mechanisms

	MathML Fundamentals
	MathML Overview
	Taxonomy of MathML Elements
	Presentation Markup
	Content Markup
	Mixing Presentation and Content

	MathML in a Document
	Some MathML Examples
	Presentation Examples
	Content Examples
	Mixed Markup Examples

	MathML Syntax and Grammar
	MathML Syntax and Grammar
	An XML Syntax Primer
	Children versus Arguments
	MathML Attribute Values
	Syntax notations used in the MathML specification
	Attributes with units
	CSS-compatible attributes
	Default values of attributes
	Attribute values in the MathML DTD

	Attributes Shared by all MathML Elements
	Collapsing Whitespace in Input

	Presentation Markup
	Introduction
	What Presentation Elements Represent
	Terminology Used In This Chapter
	Types of presentation elements
	Terminology for other classes of elements and their relationships

	Required Arguments
	Inferred mrows
	Table of argument requirements

	Elements with Special Behaviors
	Bidirectional Layout
	Bidirectional Layout in Token Elements
	Bidirectional Layout of Mathematics Formulas

	Summary of Presentation Elements
	Token Elements
	General Layout Schemata
	Script and Limit Schemata
	Tables and Matrices
	Enlivening Expressions

	Token Elements
	MathML characters in token elements
	Letter-like symbol characters

	Mathematics style attributes common to token elements
	Deprecated style attributes on token elements
	Color-related attributes

	Identifier (mi)
	Description
	Attributes
	Examples

	Number (mn)
	Description
	Attributes
	Examples
	Numbers that should not be written using mn alone

	Operator, Fence, Separator or Accent (mo)
	Description
	Attributes
	Examples with ordinary operators
	Examples with fences and separators
	Invisible operators
	Names for other special operators
	Detailed rendering rules for mo elements
	Stretching of operators, fences and accents
	Other attributes of mo

	Text (mtext)
	Description
	Attributes
	Examples
	Mixing text and mathematics

	Space (mspace)
	Description
	Attributes
	Definition of space-like elements
	Legal grouping of space-like elements

	String Literal (ms)
	Description
	Attributes

	Adding new character glyphs to MathML (mglyph)
	Description
	Attributes
	Example

	General Layout Schemata
	Horizontally Group Sub-Expressions (mrow)
	Description
	Attributes
	Proper grouping of sub-expressions using mrow
	Examples

	Fractions (mfrac)
	Description
	Attributes of mfrac
	Examples

	Radicals (msqrt, mroot)
	Description
	Attributes

	Style Change (mstyle)
	Description
	Attributes
	Examples

	Error Message (merror)
	Description
	Attributes
	Example

	Adjust Space Around Content (mpadded)
	Description
	Attributes
	Meanings of dimension attributes
	Warning: nonportability of `tweaking'
	Warning: spacing should not be used to convey meaning

	Making Sub-Expressions Invisible (mphantom)
	Description
	Attributes
	Examples

	Expression Inside Pair of Fences (mfenced)
	Description
	Attributes
	Examples

	Enclose Expression Inside Notation (menclose)
	Description
	Attributes
	Examples

	Script and Limit Schemata
	Subscript (msub)
	Description
	Attributes

	Superscript (msup)
	Description
	Attributes

	Subscript-superscript Pair (msubsup)
	Description
	Attributes
	Examples

	Underscript (munder)
	Description
	Attributes
	Examples

	Overscript (mover)
	Description
	Attributes
	Examples

	Underscript-overscript Pair (munderover)
	Description
	Attributes
	Examples

	Prescripts and Tensor Indices (mmultiscripts)
	Description
	Attributes
	Examples

	Tables and Matrices
	Table or Matrix (mtable)
	Description
	Attributes
	Examples

	Row in Table or Matrix (mtr)
	Description
	Attributes

	Labeled Row in Table or Matrix (mlabeledtr)
	Description
	Attributes
	Equation Numbering

	Entry in Table or Matrix (mtd)
	Description
	Attributes

	Alignment Markers
	Description
	Specifying alignment groups
	Table cells that are not divided into alignment groups
	Specifying alignment points using malignmark
	Attributes
	Attributes
	Inheritance of groupalign values
	MathML representation of an alignment example
	Further details of alignment elements
	A simple alignment algorithm

	Enlivening Expressions
	Bind Action to Sub-Expression (maction)
	Attributes

	Content Markup
	Introduction
	The Intent of Content Markup
	The Scope of Content Markup
	Basic Concepts of Content Markup

	Content Element Usage Guide
	Overview of Syntax and Usage
	Constructing Mathematical Objects
	Constructing General Expressions
	The apply construct
	Explicitly defined functions and operators
	The inverse construct
	The declare construct
	The lambda construct
	The use of qualifier elements and the condition construct
	Rendering of Content elements

	Containers
	Tokens
	Constructors
	Special Constructs

	Functions, Operators and Qualifiers
	Predefined functions and operators
	Operators taking Qualifiers

	Relations
	Conditions
	Examples

	Syntax and Semantics
	Semantic Mappings
	Constants and Symbols
	MathML element types

	Content Element Attributes
	Content Element Attribute Values
	Attributes Modifying Content Markup Semantics
	 base
	 closure
	 definitionURL
	 encoding
	 nargs
	 occurrence
	 order
	 scope
	 type

	Attributes Modifying Content Markup Rendering
	 type
	General Attributes

	The Content Markup Elements
	Token Elements
	Number (cn)
	Identifier (ci)
	Externally defined symbol (csymbol)

	Basic Content Elements
	Apply (apply)
	Relation (reln)
	Function (fn)
	Interval (interval)
	Inverse (inverse)
	Separator (sep)
	Condition (condition)
	Declare (declare)
	Lambda (lambda)
	Function composition (compose)
	Identity function (ident)
	Domain (domain)
	codomain (codomain)
	Image (image)
	Domain of Application (domainofapplication)
	Piecewise declaration (piecewise, piece, otherwise)

	Arithmetic, Algebra and Logic
	Quotient (quotient)
	Factorial (factorial)
	Division (divide)
	Maximum and minimum (max, min)
	Subtraction (minus)
	Addition (plus)
	Exponentiation (power)
	Remainder (rem)
	Multiplication (times)
	Root (root)
	Greatest common divisor (gcd)
	And (and)
	Or (or)
	Exclusive Or (xor)
	Not (not)
	Implies (implies)
	Universal quantifier (forall)
	Existential quantifier (exists)
	Absolute Value (abs)
	Complex conjugate (conjugate)
	Argument (arg)
	Real part (real)
	Imaginary part (imaginary)
	Lowest common multiple (lcm)
	Floor (floor)
	Ceiling (ceiling)

	Relations
	Equals (eq)
	Not Equals (neq)
	Greater than (gt)
	Less Than (lt)
	Greater Than or Equal (geq)
	Less Than or Equal (leq)
	Equivalent (equivalent)
	Approximately (approx)
	Factor Of (factorof)

	Calculus and Vector Calculus
	Integral (int)
	Differentiation (diff)
	Partial Differentiation (partialdiff)
	Lower limit (lowlimit)
	Upper limit (uplimit)
	Bound variable (bvar)
	Degree (degree)
	Divergence (divergence)
	Gradient (grad)
	Curl (curl)
	Laplacian (laplacian)

	Theory of Sets
	Set (set)
	List (list)
	Union (union)
	Intersect (intersect)
	Set inclusion (in)
	Set exclusion (notin)
	Subset (subset)
	Proper Subset (prsubset)
	Not Subset (notsubset)
	Not Proper Subset (notprsubset)
	Set Difference (setdiff)
	Cardinality (card)
	Cartesian product (cartesianproduct)

	Sequences and Series
	Sum (sum)
	Product (product)
	Limit (limit)
	Tends To (tendsto)

	Elementary classical functions
	common trigonometric functions
	Exponential (exp)
	Natural Logarithm (ln)
	Logarithm (log)

	Statistics
	Mean (mean)
	Standard Deviation (sdev)
	Variance (variance)
	Median (median)
	Mode (mode)
	Moment (moment)
	Point of Moment (momentabout)

	Linear Algebra
	Vector (vector)
	Matrix (matrix)
	Matrix row (matrixrow)
	Determinant (determinant)
	Transpose (transpose)
	Selector (selector)
	Vector product (vectorproduct)
	Scalar product (scalarproduct)
	Outer product (outerproduct)

	Semantic Mapping Elements
	Annotation (annotation)
	Semantics (semantics)
	XML-based annotation (annotation-xml)

	Constant and Symbol Elements
	integers (integers)
	reals (reals)
	Rational Numbers (rationals)
	Natural Numbers (naturalnumbers)
	complexes (complexes)
	primes (primes)
	Exponential e (exponentiale)
	Imaginary i (imaginaryi)
	Not A Number (notanumber)
	True (true)
	False (false)
	Empty Set (emptyset)
	pi (pi)
	Euler gamma (eulergamma)
	infinity (infinity)

	Combining Presentation and Content Markup
	Why Two Different Kinds of Markup?
	Mixed Markup
	Reasons to Mix Markup
	Combinations that are prohibited
	Presentation Markup Contained in Content Markup
	Content Markup Contained in Presentation Markup

	Parallel Markup
	Top-level Parallel Markup
	Fine-grained Parallel Markup
	Parallel Markup via Cross-References: id and xref
	Annotation Cross-References using XLink: id and href

	Tools, Style Sheets and Macros for Combined Markup
	Notational Style Sheets
	Content-Faithful Transformations
	Style Sheets for Extensions

	Characters, Entities and Fonts
	Introduction
	MathML Characters
	Unicode Character Data
	Special Characters Not in Unicode
	Mathematical Alphabetic Symbol Characters.
	Non-Marking Characters

	Character Symbol Listings
	Special Constants
	Character Tables (ASCII format)
	Tables arranged by Unicode block
	Negated Mathematical Characters
	Variant Mathematical Characters
	Mathematical Alphabetic Characters
	MathML Character Names

	Differences from Characters in MathML 1
	Coverage
	Fewer Non-marking Characters
	ISO Tables
	Status of Character Encodings

	The MathML Interface
	Embedding MathML in other Documents
	MathML and Namespaces
	Document Validation Issues
	Compatibility Suggestions

	The Top-Level math Element
	Invoking MathML Processors
	Mixing and Linking MathML and HTML
	Linking
	Images

	Using CSS with MathML

	Generating, Processing and Rendering MathML
	MathML Compliance
	MathML Test Suite and Validator
	Deprecated MathML 1.x Features

	Handling of Errors
	Attributes for unspecified data

	Future Extensions
	Macros and Style Sheets
	XML Extensions to MathML

	Document Object Model for MathML
	Introduction
	hasFeature String
	MathML DOM Extensions
	Traversal and Range Interfaces
	Embedding Issues

	Parsing MathML
	DOCTYPE Declaration for MathML
	MathML as a DTD Module
	Namespace prefix declarations
	Use of MathML without a DTD
	SGML
	The MathML DTD

	Content Markup Validation Grammar
	Content Element Definitions
	About Content Markup Elements
	The Default Definitions
	The Structure of an MMLdefinition.

	Definitions of MathML Content Elements
	Token Elements
	MMLdefinition: cn
	MMLdefinition: ci
	MMLdefinition: csymbol

	Basic Content Elements
	MMLdefinition: apply
	MMLdefinition: reln
	MMLdefinition: fn
	MMLdefinition: interval
	MMLdefinition: inverse
	MMLdefinition: sep
	MMLdefinition: condition
	MMLdefinition: declare
	MMLdefinition: lambda
	MMLdefinition: compose
	MMLdefinition: ident
	MMLdefinition: domain
	MMLdefinition: codomain
	MMLdefinition: image
	MMLdefinition: domainofapplication
	MMLdefinition: piecewise
	MMLdefinition: piece
	MMLdefinition: otherwise

	Arithmetic Algebra and Logic
	MMLdefinition: quotient
	MMLdefinition: factorial
	MMLdefinition: divide
	MMLdefinition: max
	MMLdefinition: min
	MMLdefinition: minus
	MMLdefinition: plus
	MMLdefinition: power
	MMLdefinition: rem
	MMLdefinition: times
	MMLdefinition: root
	MMLdefinition: gcd
	MMLdefinition: and
	MMLdefinition: or
	MMLdefinition: xor
	MMLdefinition: not
	MMLdefinition: implies
	MMLdefinition: forall
	MMLdefinition: exists
	MMLdefinition: abs
	MMLdefinition: conjugate
	MMLdefinition: arg
	MMLdefinition: real
	MMLdefinition: imaginary
	MMLdefinition: lcm
	MMLdefinition: floor
	MMLdefinition: ceiling

	Relations
	MMLdefinition: eq
	MMLdefinition: neq
	MMLdefinition: gt
	MMLdefinition: lt
	MMLdefinition: geq
	MMLdefinition: leq
	MMLdefinition: equivalent
	MMLdefinition: approx
	MMLdefinition: factorof

	Calculus and Vector Calculus
	MMLdefinition: int
	MMLdefinition: diff
	MMLdefinition: partialdiff
	MMLdefinition: lowlimit
	MMLdefinition: uplimit
	MMLdefinition: bvar
	MMLdefinition: degree
	MMLdefinition: divergence
	MMLdefinition: grad
	MMLdefinition: curl
	MMLdefinition: laplacian

	Theory of Sets
	MMLdefinition: set
	MMLdefinition: list
	MMLdefinition: union
	MMLdefinition: intersect
	MMLdefinition: in
	MMLdefinition: notin
	MMLdefinition: subset
	MMLdefinition: prsubset
	MMLdefinition: notsubset
	MMLdefinition: notprsubset
	MMLdefinition: setdiff
	MMLdefinition: card
	MMLdefinition: cartesianproduct

	Sequences and Series
	MMLdefinition: sum
	MMLdefinition: product
	MMLdefinition: limit
	MMLdefinition: tendsto

	Elementary Classical Functions
	MMLdefinition: exp
	MMLdefinition: ln
	MMLdefinition: log
	MMLdefinition: sin
	MMLdefinition: cos
	MMLdefinition: tan
	MMLdefinition: sec
	MMLdefinition: csc
	MMLdefinition: cot
	MMLdefinition: sinh
	MMLdefinition: cosh
	MMLdefinition: tanh
	MMLdefinition: sech
	MMLdefinition: csch
	MMLdefinition: coth
	MMLdefinition: arcsin
	MMLdefinition: arccos
	MMLdefinition: arctan
	MMLdefinition: arccosh
	MMLdefinition: arccot
	MMLdefinition: arccoth
	MMLdefinition: arccsc
	MMLdefinition: arccsch
	MMLdefinition: arcsec
	MMLdefinition: arcsech
	MMLdefinition: arcsinh
	MMLdefinition: arctanh

	Statistics
	MMLdefinition: mean
	MMLdefinition: sdev
	MMLdefinition: variance
	MMLdefinition: median
	MMLdefinition: mode
	MMLdefinition: moment
	MMLdefinition: momentabout

	Linear Algebra
	MMLdefinition: vector
	MMLdefinition: matrix
	MMLdefinition: matrixrow
	MMLdefinition: determinant
	MMLdefinition: transpose
	MMLdefinition: selector
	MMLdefinition: vectorproduct
	MMLdefinition: scalarproduct
	MMLdefinition: outerproduct

	Constants and Symbol Elements
	MMLdefinition: integers
	MMLdefinition: reals
	MMLdefinition: rationals
	MMLdefinition: naturalnumbers
	MMLdefinition: complexes
	MMLdefinition: primes
	MMLdefinition: exponentiale
	MMLdefinition: imaginaryi
	MMLdefinition: notanumber
	MMLdefinition: true
	MMLdefinition: false
	MMLdefinition: emptyset
	MMLdefinition: pi
	MMLdefinition: eulergamma
	MMLdefinition: infinity

	Document Object Model for MathML
	IDL Interfaces
	Miscellaneous Object Definitions
	Generic MathML Elements
	Presentation Elements
	Leaf Presentation Element Interfaces
	Presentation Token Element Interfaces
	Presentation Container Interfaces
	Presentation Schemata Interfaces

	Content Elements
	Content Token Interfaces
	Content Container Interfaces
	Content Leaf Element Interfaces
	Other Content Element Interfaces

	MathML DOM Tables
	Chart of MathML DOM Inheritance
	Table of Elements and MathML DOM Representations

	MathML Document Object Model Bindings (Non-Normative)
	MathML Document Object Model IDL Binding
	MathML Document Object Model Java Binding
	org/w3c/mathmldom/MathMLDOMImplementation.java
	org/w3c/mathmldom/MathMLDocument.java
	org/w3c/mathmldom/MathMLNodeList.java
	org/w3c/mathmldom/MathMLElement.java
	org/w3c/mathmldom/MathMLContainer.java
	org/w3c/mathmldom/MathMLMathElement.java
	org/w3c/mathmldom/MathMLSemanticsElement.java
	org/w3c/mathmldom/MathMLAnnotationElement.java
	org/w3c/mathmldom/MathMLXMLAnnotationElement.java
	org/w3c/mathmldom/MathMLPresentationElement.java
	org/w3c/mathmldom/MathMLGlyphElement.java
	org/w3c/mathmldom/MathMLSpaceElement.java
	org/w3c/mathmldom/MathMLPresentationToken.java
	org/w3c/mathmldom/MathMLOperatorElement.java
	org/w3c/mathmldom/MathMLStringLitElement.java
	org/w3c/mathmldom/MathMLPresentationContainer.java
	org/w3c/mathmldom/MathMLStyleElement.java
	org/w3c/mathmldom/MathMLPaddedElement.java
	org/w3c/mathmldom/MathMLFencedElement.java
	org/w3c/mathmldom/MathMLEncloseElement.java
	org/w3c/mathmldom/MathMLActionElement.java
	org/w3c/mathmldom/MathMLFractionElement.java
	org/w3c/mathmldom/MathMLRadicalElement.java
	org/w3c/mathmldom/MathMLScriptElement.java
	org/w3c/mathmldom/MathMLUnderOverElement.java
	org/w3c/mathmldom/MathMLMultiScriptsElement.java
	org/w3c/mathmldom/MathMLTableElement.java
	org/w3c/mathmldom/MathMLTableRowElement.java
	org/w3c/mathmldom/MathMLLabeledRowElement.java
	org/w3c/mathmldom/MathMLTableCellElement.java
	org/w3c/mathmldom/MathMLAlignGroupElement.java
	org/w3c/mathmldom/MathMLAlignMarkElement.java
	org/w3c/mathmldom/MathMLContentElement.java
	org/w3c/mathmldom/MathMLContentToken.java
	org/w3c/mathmldom/MathMLCnElement.java
	org/w3c/mathmldom/MathMLCiElement.java
	org/w3c/mathmldom/MathMLCsymbolElement.java
	org/w3c/mathmldom/MathMLContentContainer.java
	org/w3c/mathmldom/MathMLApplyElement.java
	org/w3c/mathmldom/MathMLFnElement.java
	org/w3c/mathmldom/MathMLLambdaElement.java
	org/w3c/mathmldom/MathMLSetElement.java
	org/w3c/mathmldom/MathMLListElement.java
	org/w3c/mathmldom/MathMLBvarElement.java
	org/w3c/mathmldom/MathMLPredefinedSymbol.java
	org/w3c/mathmldom/MathMLIntervalElement.java
	org/w3c/mathmldom/MathMLConditionElement.java
	org/w3c/mathmldom/MathMLDeclareElement.java
	org/w3c/mathmldom/MathMLVectorElement.java
	org/w3c/mathmldom/MathMLMatrixElement.java
	org/w3c/mathmldom/MathMLMatrixrowElement.java
	org/w3c/mathmldom/MathMLPiecewiseElement.java
	org/w3c/mathmldom/MathMLCaseElement.java

	MathML Document Object Model ECMAScript Binding
	Object MathMLDOMImplementation
	Object MathMLDocument
	Object MathMLNodeList
	Object MathMLElement
	Object MathMLContainer
	Object MathMLMathElement
	Object MathMLSemanticsElement
	Object MathMLAnnotationElement
	Object MathMLXMLAnnotationElement
	Object MathMLPresentationElement
	Object MathMLGlyphElement
	Object MathMLSpaceElement
	Object MathMLPresentationToken
	Object MathMLOperatorElement
	Object MathMLStringLitElement
	Object MathMLPresentationContainer
	Object MathMLStyleElement
	Object MathMLPaddedElement
	Object MathMLFencedElement
	Object MathMLEncloseElement
	Object MathMLActionElement
	Object MathMLFractionElement
	Object MathMLRadicalElement
	Object MathMLScriptElement
	Object MathMLUnderOverElement
	Object MathMLMultiScriptsElement
	Object MathMLTableElement
	Object MathMLTableRowElement
	Object MathMLLabeledRowElement
	Object MathMLTableCellElement
	Object MathMLAlignGroupElement
	Object MathMLAlignMarkElement
	Object MathMLContentElement
	Object MathMLContentToken
	Object MathMLCnElement
	Object MathMLCiElement
	Object MathMLCsymbolElement
	Object MathMLContentContainer
	Object MathMLApplyElement
	Object MathMLFnElement
	Object MathMLLambdaElement
	Object MathMLSetElement
	Object MathMLListElement
	Object MathMLBvarElement
	Object MathMLPredefinedSymbol
	Object MathMLIntervalElement
	Object MathMLConditionElement
	Object MathMLDeclareElement
	Object MathMLVectorElement
	Object MathMLMatrixElement
	Object MathMLMatrixrowElement
	Object MathMLPiecewiseElement
	Object MathMLCaseElement

	Operator Dictionary (Non-Normative)
	Format of operator dictionary entries
	Indexing of operator dictionary
	Choice of entity names
	Notes on lspace and rspace attributes
	Operator dictionary entries

	Sample CSS Style Sheet for MathML (Non-Normative)
	Glossary (Non-Normative)
	Working Group Membership and Acknowledgments (Non-Normative)
	The Math Working Group Memberships
	Acknowledgments

	Changes (Non-Normative)
	References (Non-Normative)

