The Python Library Reference
Release 2.7.4

Guido van Rossum
Fred L. Drake, Jr., editor

April 06, 2013

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Non-essential Built-in Functions 25
Built-in Constants 27
4.1 Constants added by the sitemodule L e 27
Built-in Types 29
5.1 Truth Value Testing e 29
5.2 Boolean Operations — and, OF, NOT . .+« v v v vt v e et e e e e e e e e e 30
53 ComPpariSONS v v v v e e e e e e e e e e e e e e e e e 30
5.4 Numeric Types — int, float, 10Nng, COMPLEX + . v v v v v v v v v v e et e e e e e e e 31
5.5 Tterator TYPES . . o v o v v e e e e e e e e e e e e e e 34
5.6 Sequence Types — str,unicode, list, tuple, bytearray, buffer, xrange 35
5.7 SetTypes — set, frozenset L e 45
5.8 Mapping Types — dict o o o o e e 47
5.9 File ObjJects o vt i e e e e e e e e e e e e 51
5.10 MeMOTYVIEW LYPE .« v v o v v e i e 55
5.11 Context Manager Types i i e e e 56
5.12 Other Built-in Types e 57
5.13 Special Attributes L e e e e e e 59
Built-in Exceptions 61
6.1 Exceptionhierarchy L e 66
String Services 69
7.1 string-— Common String Operationso e 69
7.2 re—Regular expression Operationso e e 81
7.3 struct — Interpret strings as packed binarydata Lo 96
7.4 difflib— Helpers for computingdeltas 100
7.5 StringIO—Readand writestringsasfiles L o 110
7.6 cStringIO—Faster version of StringTO o v i v i it e e e e e e e e 111
777 textwrap — Textwrapping and filling L 112
7.8 codecs — Codec registry and base classeso 114
7.9 unicodedata—Unicode Database 128
7.10 stringprep — Internet String Preparation L Lo 130
7.11 fpformat — Floating point cCONVErsionso v v v vt i i e e 131

8

9

Data Types

8.1 datetime —Basicdateand imetypes it e e e e e e e e e
8.2 calendar — General calendar-related functions L.
8.3 collections — High-performance container datatypes
8.4 heapg—Heapqueuealgorithm
8.5 bisect — Array bisection algorithm oL
8.6 array — Efficient arrays of numeric values L L e
8.7 sets — Unordered collections of unique elements
8.8 sched—Eventscheduler
8.9 mutex — Mutual exclusion supporto
8.10 Queue — A synchronized queueclass e
8.11 weakref — Weakreferences L
8.12 UserDict — Class wrapper for dictionary objects i vt
8.13 UserList — Class wrapper for listobjects
8.14 UserString— Class wrapper for stringobjects
8.15 types—Names forbuilt-intypes L
8.16 new — Creation of runtime internal objects L. oo
8.17 copy — Shallow and deep cOpy OPerations v v v v v v v vt e e e e e e e
8.18 pprint — Datapretty printer e e e e e e e e e e e e
8.19 repr — Alternate repr () implementation Lo

Numeric and Mathematical Modules

9.1 numbers — Numeric abstractbaseclasses o ...
9.2 math — Mathematical functions e
9.3 cmath — Mathematical functions for complex numbers
9.4 decimal — Decimal fixed point and floating point arithmetic
9.5 fractions—Rationalnumbers L o
9.6 random — Generate pseudo-random nUMDbETSo ..ol e e e e e
9.7 itertools — Functions creating iterators for efficient looping
9.8 functools — Higher-order functions and operations on callable objects
9.9 operator — Standard operators as functions L. L Lo

10 File and Directory Access

10.1 os.path — Common pathname manipulations
10.2 fileinput — Iterate over lines from multiple input streams
10.3 stat — Interpreting stat () results e e e
104 statvfs — Constants used with os.statvEs ()
10.5 filecmp — File and Directory Comparisons v ...
10.6 tempfile — Generate temporary files and directories
10.7 glob — Unix style pathname pattern expansion oo v vt et
10.8 fnmatch — Unix filename pattern matching L ...
109 linecache —Randomaccesstotextlines
10.10 shutil — High-level file operations
10.11 dircache — Cached directory listings
10.12 macpath — Mac OS 9 path manipulation functions

11 Data Persistence

11.1 pickle — Python object serialization e
11.2 cPickle—Afasterpickle i i i e
11.3 copy_reg—Register pickle support functions oL
11.4 shelve —Pythonobject persistence o v i v v i v v et e e e e
11.5 marshal — Internal Python object serialization
11.6 anydbm — Generic access to DBM-style databases
11.7 whichdb — Guess which DBM module created a database

133
133
156
160
174
177
179
182
185
187
188
190
194
195
195
196
199
199
200
203

207
207
210
214
217
241
243
247
260
263

271
271
274
276
280
281
283
286
287
288
288
292
293

11.8 dbm— Simple “database” interface e
11.9 gdbm — GNU’s reinterpretationofdbm
11.10 dbhash — DBM-style interface to the BSD database library
11.11 bsddb — Interface to Berkeley DB library
11.12 dumbdbm — Portable DBM implementation
11.13 sglite3 — DB-API 2.0 interface for SQLite databases

12 Data Compression and Archiving
12.1 zlib — Compression compatible with gzip
12.2 gzip—Supportforgzipfiles
12.3 Dbz2 — Compression compatible withbzip2
124 zipfile— Work withZIP archives e
12.5 tarfile — Read and write tar archive files L o oL

13 File Formats
13.1 csv—CSV File Reading and Writing i e
13.2 ConfigParser — Configuration file parser
13.3 robotparser —Parser forrobots.tXt e e e e e
13.4 netrc—netrc file processingo e e
13.5 xdrlib —Encode and decode XDRdata,
13.6 plistlib — Generate and parse Mac OS X .plistfiles.

14 Cryptographic Services
14.1 hashlib — Secure hashes and message digests o v i it
142 hmac — Keyed-Hashing for Message Authentication
143 md5 — MD5 message digest algorithm o oL
14.4 sha — SHA-1 message digest algorithm

15 Generic Operating System Services
15.1 os — Miscellaneous operating system interfaces L.
15.2 io— Core tools for working with streams L oo
15.3 time — Time access and CONVEISIONS v v v v v vttt et e e e
15.4 argparse — Parser for command-line options, arguments and sub-commands
15.5 optparse — Parser for command lineoptions Lo
15.6 getopt — C-style parser for command line options
15.7 logging — Logging facility for Python L
15.8 logging.config— Logging configuration
159 logging.handlers—Logginghandlers
15.10 getpass — Portable password input Lo e e e
15.11 curses — Terminal handling for character-cell displays
15.12 curses.textpad — Text input widget for curses programs
15.13 curses.ascii — Utilities for ASCII characters
15.14 curses.panel — A panel stack extension forcurses oL
15.15 plat form — Access to underlying platform’s identifying data
15.16 errno — Standard errno system symbols e e
15.17 ctypes — A foreign function library for Python o000

16 Optional Operating System Services
16.1 select — Waiting forI/O completion L ..
16.2 threading — Higher-level threading interface
16.3 thread — Multiple threads of control
16.4 dummy_threading — Drop-in replacement for the threadingmodule
16.5 dummy_thread — Drop-in replacement for the threadmodule
16.6 multiprocessing — Process-based “threading” interface
16.7 mmap — Memory-mapped file support oo

339
339
341
343
345
350

359
359
366
372
373
374
377

379
379
381
381
382

385
385
412
422
428
456
482
484
495
504
512
513
529
531
533
534
537
543

17

18

19

20

16.8 readline —GNUreadlineinterface i
16.9 rlcompleter — Completion function for GNU readline

Interprocess Communication and Networking

17.1 subprocess — Subprocess managementt . e e e e e
17.2 socket — Low-level networking interface
17.3 ss1 — TLS/SSL wrapper for socket objects
17.4 signal — Set handlers for asynchronous events
17.5 popen2 — Subprocesses with accessible [/O streams
17.6 asyncore — Asynchronous sockethandler
17.7 asynchat — Asynchronous socket command/response handler

Internet Data Handling

18.1 email — Anemail and MIME handling package
182 json—JSONencoderanddecoder
18.3 mailcap—Mailcap filehandling
18.4 mailbox — Manipulate mailboxes in various formats L0000 L.
185 mhlib— Accessto MHmailboxes
18.6 mimetools — Tools for parsing MIME messages
18.7 mimetypes — Map filenames to MIME types e
18.8 MimeWriter — Generic MIME filewriter
18.9 mimify — MIME processing of mail messages
18.10 multifile — Support for files containing distinct parts
18.11 r£c822 — Parse RFC 2822 mail headers,
18.12 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings
18.13 binhex — Encode and decode binhex4 files o ...
18.14 binascii — Convert between binary and ASCII
18.15 quopri — Encode and decode MIME quoted-printabledata
18.16 uu — Encode and decode uuencode files oo o

Structured Markup Processing Tools

19.1 HTMLParser — Simple HTML and XHTML parser
19.2 sgmllib — Simple SGML parser it it e e e
193 htmllib — A parser for HTML documents
19.4 htmlentitydefs — Definitions of HTML general entities
19.5 XML Processing Modules L
19.6 XML vulnerabilities o . e e e e e e e e e e
19.7 xml.etree.ElementTree — The ElementTree XML API
19.8 xml.dom — The Document Object Model API
19.9 xml.dom.minidom— Minimal DOM implementation
19.10 xml.dom.pulldom— Support for building partial DOM trees
19.11 xml.sax — Support for SAX2 parsers
19.12 xml.sax.handler — Baseclasses for SAX handlers
19.13 xml.sax.saxutils — SAX Utilities i i i e e e
19.14 xml.sax.xmlreader — Interface for XML parsers,
19.15 xml .parsers.expat — Fast XML parsingusing Expat

Internet Protocols and Support

20.1 webbrowser — Convenient Web-browser controller
20.2 cgi — Common Gateway Interface support e
20.3 cgitb — Traceback manager for CGIscripts
20.4 wsgiref — WSGI Utilities and Reference Implementation
20.5 urllib — Open arbitrary resourcesby URL
20.6 urllib2 — extensible library foropening URLs
20.7 httplib —HTTP protocolclient ittt e e e e

651
651
662
674
682
685
687
691

695
695
726
733
734
752
754
755
758
759
760
762
766
768
768
770
771

773
773
778
780
782
782
783
784
795
805
810
811
812
817
818
822

21

22

23

24

25

20.8 ftplib—FTPprotocolclient o e 872

209 poplib—POP3 protocolclient e e e 876
20.10 imaplib —IMAP4 protocol client e e 878
20.11 nntplib—NNTPprotocolclient 883
20.12 smtplib — SMTP protocol client 887
20.13 smtpd — SMTP Server L e 892
20.14 telnetlib—Telnetclient 0 i i i e e e e 893
20.15 uuid — UUID objects according to RFC 4122 i i 895
20.16 urlparse —Parse URLsinto components 898
20.17 SocketServer — A framework for network servers 902
20.18 BaseHTTPServer — Basic HTTPserver ittt i .. 909
20.19 SimpleHTTPServer — Simple HTTP requesthandler 912
20.20 CGIHTTPServer — CGl-capable HTTP requesthandler 914
20.21 cookielib — Cookie handling for HTTPclients 914
20.22 Cookie — HTTP state managementot i it ... 923
20.23 xmlrpclib — XML-RPC client access v v v v v v i i e e e e e e e e e e 927
20.24 SimpleXMLRPCServer — Basic XML-RPCserver 934
20.25 DocXMLRPCServer — Self-documenting XML-RPCserver 937
Multimedia Services 939
21.1 audioop — Manipulateraw audiodatao o 939
21.2 imageop — Manipulate raw image data oo e e e e 942
21.3 aifc—Readand write AIFF and AIFC files 943
214 sunau—Read and write Sun AU files 945
21.5 wave —Read and write WAV files e e 948
21.6 chunk —Read IFFchunkeddata i 950
21.7 colorsys — Conversions between color SyStems v v ittt e e e 951
21.8 imghdr — Determine the type of animage 952
21.9 sndhdr — Determine type of sound file o oo L. 953
21.10 ossaudiodev — Access to OSS-compatible audio devices 953
Internationalization 959
22.1 gettext — Multilingual internationalization services 959
22.2 locale — Internationalization SEIVICES v v v v v v v v e e e e e e e e e e e 968
Program Frameworks 975
23.1 cmd — Support for line-oriented command interpreters oL 975
23.2 shlex — Simple lexical analysis L 977
Graphical User Interfaces with Tk 981
24.1 Tkinter — Pythoninterfaceto Tcl/Tk 981
242 ttk —Tkthemed widgets o e 991
243 Tix —Extensionwidgets for Tk 1008
244 ScrolledText — Scrolled Text Widget i it e e 1013
245 turtle —Turtle graphicsfor Tk 1013
24.6 IDLE e 1044
247 Other Graphical User Interface Packages, 1048
Development Tools 1049
25.1 pydoc — Documentation generator and online help system 1049
25.2 doctest — Testinteractive Pythonexamples L 0oL, 1050
253 unittest — Unittesting framework o 1073
25.4 2to3 - Automated Python 2 to 3 code translation oo 1096
25.5 test — Regression tests package for Python. L o oo oL 1101
25.6 test.test_support — Utility functions fortests 1103

26 Debugging and Profiling 1109

26.1 bdb — Debugger framework e e e e e e 1109
26.2 pdb —The Python Debugger e e 1113
26.3 Debugger Commands e e e e 1115
26.4 The Python Profilers e 1118
26.5 hotshot — High performance logging profiler, 1125
26.6 timeit — Measure execution time of small code snippets 1126
26.7 trace — Trace or track Python statement execution 1130
27 Python Runtime Services 1135
27.1 sys — System-specific parameters and functions Lo 1135
27.2 sysconfig— Provide access to Python’s configuration information. 1146
273 __builtin_ —Built-inobjects L e 1149
274 future_builtins —Python3builtins L 1150
27.5 __main___ — Top-level script environmento 1151
27.6 warnings — Warningcontrol e e e e e e 1151
27.7 contextlib — Utilities for with-statementcontexts 1156
27.8 abc — Abstract Base Classes e e e 1158
279 atexit —Exithandlers e 1160
27.10 traceback — Print or retrieve a stack traceback oL L oL 1162
27.11 ___future_ — Future statement definitions« . .t e e e e 1165
27.12 gc — Garbage Collectorinterface o o e e 1167
27.13 inspect — Inspectlive objects L e e e e e 1169
27.14 site — Site-specific configurationhook o oL 0oL 1175
27.15 user — User-specific configurationhook oL Lo 1177
27.16 fpectl — Floating point exceptioncontrol L. oL 1178
27.17 distutils — Building and installing Pythonmodules 1179
28 Custom Python Interpreters 1181
28.1 code —Interpreter base classes L. 1181
28.2 codeop — Compile Pythoncode e 1183
29 Restricted Execution 1185
29.1 rexec — Restricted execution framework L L L L L 1185
29.2 Bastion — Restricting access to ObJeCts L. e e e e e e e e e 1189
30 Importing Modules 1191
30.1 imp — Accessthe importinternals e 1191
30.2 importlib — Convenience wrappers for ___import__ () oo 1194
303 imputil —Importutilities L e 1195
304 zipimport — Import modules from Ziparchives. 1198
30.5 pkgutil — Package extensionutility e 1200
30.6 modulefinder —Find modulesused by ascript 1202
30.7 runpy — Locating and executing Pythonmodules, 1204
31 Python Language Services 1207
31.1 parser — Access Pythonparsetrees o o i i i i e e e e 1207
31.2 ast —Abstract Syntax Trees o o i e e e e e e e e e 1211
31.3 symtable — Access to the compiler’s symbol tables 1216
31.4 symbol — Constants used with Python parse trees 1218
31.5 token — Constants used with Python parse trees 1219
31.6 keyword — Testing for Python keywords 1220
31.7 tokenize — Tokenizer for Pythonsource 1220
31.8 tabnanny — Detection of ambiguous indentation Lo 1222
31.9 pyclbr — Python class browser support L o L 1223

vi

31.10 py_compile — Compile Python sourcefiles
31.11 compileall — Byte-compile Python libraries
31.12 dis — Disassembler for Python bytecode oL
31.13 pickletools — Tools for pickle developers,

32 Python compiler package
32.1 Thebasicinterface L e
322 LAMItAtIONS .« . v v v vt e
32.3 Python Abstract Syntax e e e e e
324 Using Visitors to Walk ASTS o o o e
32.5 Bytecode Generation v v it e

33 Miscellaneous Services
33.1 formatter — Generic output formatting oo

34 MS Windows Specific Services
34.1 msilib — Read and write Microsoft Installer files
34.2 msvcrt — Useful routines from the MS VC++runtime
343 _winreg— Windows regiStry aCCESS . . . v v v v v v v v e e e e e e e e e e e e e e e e
34.4 winsound — Sound-playing interface for Windows o000

35 Unix Specific Services
35.1 posix — The most common POSIX systemcalls
35.2 pwd—The password database e
35.3 spwd— The shadow password database
354 grp—Thegroupdatabase e
35.5 crypt — Function to check Unix passwords e
35.6 dl — Call Cfunctions in shared objects e
357 termios —POSIXstylettycontrol L
35.8 tty —Terminal control functions L. e
35.9 pty —Pseudo-terminal utilities
35.10 fcntl —The fentl () and ioctl () systemcalls L oL,
35.11 pipes — Interface to shell pipelines e
35.12 posixfile — File-like objects with locking support,
35.13 resource — Resource usage information 0oL
35.14 nis — Interface to Sun’s NIS (Yellow Pages)
35.15 syslog — Unix syslog library routines e
35.16 commands — Utilities for running commands Lo e

36 Mac OS X specific services
36.1 ic— Accesstothe Mac OS X Internet Config
36.2 MacOS — Access to Mac OS interpreter features L e
36.3 macostools — Convenience routines for file manipulation
364 findertools — The finder‘s Apple Eventsinterface
36.5 EasyDialogs — Basic Macintoshdialogs,
36.6 FrameWork — Interactive application framework,
36.7 autoGIL — Global Interpreter Lock handling in eventloops
36.8 Mac OS Toolbox Modules e e
369 ColorPicker —Colorselectiondialog e

37 MacPython OSA Modules
37.1 gensuitemodule — Generate OSA stub packages
372 aetools —OSAclent SUpport o i i i e e e e e e e e
37.3 aepack — Conversion between Python variables and AppleEvent data containers
374 aetypes —AppleEventobjects e

vii

37.5 MiniAEFrame — Open Scripting Architecture server support

38 SGI IRIX Specific Services

38.1 al — Audio functionsonthe SGI
38.2 AL — Constants used with the a1l module
38.3 cd— CD-ROM access on SGI systems
38.4 £1 — FORMS library for graphical user interfaces
38.5 FL — Constants used with the £1 module
38.6 flp — Functions for loading stored FORMS designs . . .
38.7 fm— Font Managerinterface
38.8 gl — Graphics Library interface
38.9 DEVICE — Constants used with the g1 module
38.10 GL — Constants used with the g1 module
38.11 imgfile — Support for SGI imglib files
38.12 jpeg — Read and write JPEGfiles

39 SunOS Specific Services

39.1 sunaudiodev — Access to Sun audio hardware

39.2 SUNAUDIODEV — Constants used with sunaudiodev

40 Undocumented Modules

40.1 Miscellaneous useful utilities
40.2 Platform specificmodules
40.3 Multimedia
40.4 Undocumented Mac OS modules
40.5 Obsolete e
40.6 SGl-specific Extension modules

A Glossary
Bibliography

B About these documents

B.1 Contributors to the Python Documentation

C History and License

C.1 Historyofthesoftware

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Python Module Index

Index

1311
1311
1313
1313
1316
1321
1321
1322
1323
1324
1325
1325
1325

1327
1327
1328

1329
1329
1329
1329
1330
1331
1331

1333

1341

1343
1343

1345
1345
1346
1348

1361

1363

1369

viii

The Python Library Reference, Release 2.7.4

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 2.7.4

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual), or
look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a section or two. Regardless of the order
in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the remainder of the
manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 2.7.4

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions built into it that are always available. They are listed here in

alphabetical order.

Built-in Functions

abs () divmod () input () open () staticmethod ()
all() enumerate () int () ord () str()
any () eval () isinstance () pow () sum ()
basestring() execfile () issubclass () print () super ()
bin () file () iter () property () tuple ()
bool () filter () len () range () type ()
bytearray () float () list () raw_input () unichr ()
callable () format () locals () reduce () unicode ()
chr () frozenset () long () reload () vars ()
classmethod () getattr () map () repr () xrange ()
cmp () globals () max () reversed () zip ()
compile () hasattr() memoryview () round () _ _import__ ()
complex () hash () min () set () apply ()
delattr () help () next () setattr () buffer ()
dict () hex () object () slice () coerce ()
dir () id () oct () sorted () intern ()

abs (x)

Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.

If the argument is a complex number, its magnitude is returned.

all (iterable)

Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:

if not element:
return False
return True

New in version 2.5.
any (iterable)

Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:

The Python Library Reference, Release 2.7.4

return True
return False

New in version 2.5.

basestring ()
This abstract type is the superclass for st r and unicode. It cannot be called or instantiated, but it can be
used to test whether an object is an instance of str or unicode. isinstance (obj, basestring) is
equivalentto isinstance (obj, (str, unicode)).New in version 2.3.

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python int
object, it has to define an __index__ () method that returns an integer. New in version 2.6.

bool ([x])
Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot be
subclassed further. Its only instances are False and True.

New in version 2.2.1.Changed in version 2.3: If no argument is given, this function returns False.

bytearray ([s0urce[, encoding[, errors]]])
Return a new array of bytes. The bytearray type is a mutable sequence of integers in the range 0 <= x < 256.
It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as most
methods that the st r type has, see String Methods.

The optional source parameter can be used to initialize the array in a few different ways:

eIf it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

oIf it is an integer, the array will have that size and will be initialized with null bytes.

oIf it is an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

oIf it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created. New in version 2.6.

callable (object)
Return True if the object argument appears callable, Fal se if not. If this returns true, it is still possible that a
call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class returns
a new instance); class instances are callable if they have a __call__ () method.

chr (i)
Return a string of one character whose ASCII code is the integer i. For example, chr (97) returns the string
"a’. This is the inverse of ord (). The argument must be in the range [0..255], inclusive; ValueError will
be raised if i is outside that range. See also unichr ().

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C(object) :
@classmethod
def f(cls, argl, arg2, ...):

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.4

The @classmethod form is a function decorator — see the description of function definitions in function for
details.

It can be called either on the class (such as C. f ()) or on an instance (such as C () . f ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see st at icmethod () in this
section.

For more information on class methods, consult the documentation on the standard type hierarchy in fypes. New
in version 2.2.Changed in version 2.4: Function decorator syntax added.

cmp (X, y)
Compare the two objects x and y and return an integer according to the outcome. The return value is negative if
x < y,zeroif x == y and strictly positive if x > y.

compile (source, filename, mode[,ﬂags[, dont_inherit]])
Compile the source into a code or AST object. Code objects can be executed by an exec statement or evaluated
by acall to eval (). source can either be a string or an AST object. Refer to the ast module documentation
for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (* <string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be ’ exec’ if source consists of a
sequence of statements, ' eval’ if it consists of a single expression, or ’ single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the compi-
lation of source. If neither is present (or both are zero) the code is compiled with those future statements that are
in effect in the code that is calling compile. If the flags argument is given and dont_inherit is not (or is zero) then
the future statements specified by the flags argument are used in addition to those that would be used anyway.
If dont_inherit is a non-zero integer then the flags argument is it — the future statements in effect around the call
to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute on the _Feature
instance in the _ future__ module.

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source contains
null bytes.

Note: When compiling a string with multi-line codein ’ single’ or’ eval’ mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in the
code module.

Changed in version 2.3: The flags and dont_inherit arguments were added.Changed in version 2.6: Support for
compiling AST objects.Changed in version 2.7: Allowed use of Windows and Mac newlines. Also input in
"exec’ mode does not have to end in a newline anymore.

complex ([real[, imag]])
Create a complex number with the value real + imag*j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the function serves as a numeric conversion
function like int (), long () and float (). If both arguments are omitted, returns 0 7.

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 2.7.4

Note: When converting from a string, the string must not contain whitespace around the central + or — operator.
For example, complex (’ 1+273’) is fine, but complex (' 1 + 27j’) raises ValueError.

The complex type is described in Numeric Types — int, float, long, complex.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ’foobar’) isequivalenttodel x.foobar.

dict (**kwarg)
dict (mapping, **kwarg)
dict (iterable, **kwarg)

Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 1ist, set, and tuple classes, as well as the collections module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or__getattribute__ () function to cus-
tomize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict___ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace
["__builtins_ ', ’__doc_ ', ’'__name_ ', ’struct’]
>>> dir (struct) # show the names in the struct module

["Struct’, ’'__builtins_ ', ’'__doc__ ', ' file ', '__ _name_ '/

14

! __package__'’, ’'_clearcache’, ’'calcsize’, ’'error’, ’'pack’, ’'pack_into’

"unpack’, "unpack_from’]
>>> class Shape (object):

def _ dir_ (self):
return [’"area’, ’'perimeter’, ’location’]

>>> s = Shape()
>>> dir(s)

["area’, '"perimeter’, ’'location’]

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.4

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when
the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators apply.
For plain and long integers, the result is the same as (a // b, a % b). For floating point numbers the
resultis (g, a % b), where g is usually math.floor (a / b) but may be 1 less than that. In any case g
x b + a % bisveryclosetoa,if a $ b isnon-zero it has the same sign as b, and 0 <= abs(a % b)
< abs (b). Changed in version 2.3: Using divmod () with complex numbers is deprecated.

enumerate (sequence, start=0)
Return an enumerate object. sequence must be a sequence, an iferator, or some other object which supports
iteration. The next () method of the iterator returned by enumerate () returns a tuple containing a count
(from start which defaults to 0) and the values obtained from iterating over sequence:

>>> gseasons = [’/ Spring’, ’Summer’, ’'Fall’, ’'Winter’]

>>> list (enumerate (seasons))

[(O, "Spring’), (1, ’Summer’), (2, ’'Fall’), (3, ’'Winter’)]
>>> list (enumerate (seasons, start=1))

[(1, "Spring’), (2, 'Summer’), (3, ’'Fall’), (4, "Winter’)]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

New in version 2.3.Changed in version 2.6: The start parameter was added.

eval (expressian[, globals[, locals]])

The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object. Changed in version 2.4: formerly locals was required to be a dictionary. The
expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present
and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed. This means
that expression normally has full access to the standard __builtin__ module and restricted environments
are propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are
omitted, the expression is executed in the environment where eval () is called. The return value is the result
of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval ("x+1’)
2

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with * exec’ as the mode
argument, eval () ‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec statement. Execution of statements from
a file is supported by the execfile () function. The globals () and locals () functions returns the

The Python Library Reference, Release 2.7.4

current global and local dictionary, respectively, which may be useful to pass around for use by eval () or
execfile ().

See ast.literal eval () for a function that can safely evaluate strings with expressions containing only
literals.

execfile (ﬁlename[, globals[, locals]])

This function is similar to the exec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new module. !

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using the globals and locals dictionaries as global and local names-
pace. If provided, locals can be any mapping object. Remember that at module level, globals and locals are the
same dictionary. If two separate objects are passed as globals and locals, the code will be executed as if it were
embedded in a class definition. Changed in version 2.4: formerly locals was required to be a dictionary. If the
locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are omitted, the expression
is executed in the environment where execfile () is called. The return value is None.

Note: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code
on locals after function execfile () returns. execfile () cannot be used reliably to modify a function’s
locals.

file (name[, mode[, buﬁ”ering]])

Constructor function for the £ile type, described further in section File Objects. The constructor’s arguments
are the same as those of the open () built-in function described below.

When opening a file, it’s preferable to use open () instead of invoking this constructor directly. £i1e is more
suited to type testing (for example, writing isinstance (f, file)). New in version 2.2.

filter (function, iterable)

Construct a list from those elements of iterable for which function returns true. iterable may be either a se-
quence, a container which supports iteration, or an iterator. If iterable is a string or a tuple, the result also has
that type; otherwise it is always a list. If function is None, the identity function is assumed, that is, all elements
of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to [item for item in iterable if
function (item)] if functionis not None and [item for item in iterable if item] if func-
tion is None.

See itertools.ifilter () and itertools.ifilterfalse () for iterator versions of this function,
including a variation that filters for elements where the function returns false.

float ([x])

Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. The argument may also be [+I-]nan or
[+l-]inf. Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point
number with the same value (within Python’s floating point precision) is returned. If no argument is given,
returns 0. 0.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. Float accepts the strings nan, inf and -inf for NaN and positive or negative infinity. The case and a
leading + are ignored as well as a leading - is ignored for NaN. Float always represents NaN and infinity as nan,
inf or -inf.

! 1t is used relatively rarely so does not warrant being made into a statement.

10

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.4

The float type is described in Numeric Types — int, float, long, complex.

format (value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec
will depend on the type of the value argument, however there is a standard formatting syntax that is used by
most built-in types: Format Specification Mini-Language.

Note: format (value, format_spec) merely calls value.__ format__ (format_spec).

New in version 2.6.

frozenset ([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Ser Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module. New in version 2.4.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’)
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current

module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether it
raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module. New in version 2.2.

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.

Note: To obtain a hexadecimal string representation for a float, use the f 1oat . hex () method.

Changed in version 2.4: Formerly only returned an unsigned literal.

id (object)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and

11

The Python Library Reference, Release 2.7.4

constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id () value.

CPython implementation detail: This is the address of the object in memory.

input ([prompt])

Equivalent to eval (raw_input (prompt)).

This function does not catch user errors. If the input is not syntactically valid, a SyntaxError will be raised.
Other exceptions may be raised if there is an error during evaluation.

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

Consider using the raw__input () function for general input from users.

int (x=0)
int (x, base=10)

Convert a number or string x to an integer, or return 0O if no arguments are given. If x is a number, it can be a
plain integer, a long integer, or a floating point number. If x is floating point, the conversion truncates towards
zero. If the argument is outside the integer range, the function returns a long object instead.

If x is not a number or if base is given, then x must be a string or Unicode object representing an integer literal
in radix base. Optionally, the literal can be preceded by + or — (with no space in between) and surrounded by
whitespace. A base-n literal consists of the digits O to n-1, with a to z (or A to Z) having values 10 to 35. The
default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals can be optionally prefixed
with 0b/0B, 00/00/0, or 0x/0X, as with integer literals in code. Base 0 means to interpret the string exactly as
an integer literal, so that the actual base is 2, 8, 10, or 16.

The integer type is described in Numeric Types — int, float, long, complex.

isinstance (object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virtual)
subclass thereof. Also return true if classinfo is a type object (new-style class) and object is an object of that
type or of a (direct, indirect or virfual) subclass thereof. If object is not a class instance or an object of the given
type, the function always returns false. If classinfo is neither a class object nor a type object, it may be a tuple
of class or type objects, or may recursively contain other such tuples (other sequence types are not accepted).
If classinfo is not a class, type, or tuple of classes, types, and such tuples, a TypeError exception is raised.
Changed in version 2.2: Support for a tuple of type information was added.

issubclass (class, classinfo)

Return true if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any
other case, a TypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (0[, sentinel])

Return an iferator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, o must be a collection object which supports the iteration protocol
(the __iter__ () method), or it must support the sequence protocol (the __getitem__ () method with
integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then o must be a callable object. The iterator created in this case
will call o with no arguments for each call to its next () method; if the value returned is equal to sentinel,
StopIteration will be raised, otherwise the value will be returned.

One useful application of the second form of iter () isto read lines of a file until a certain line is reached. The

following example reads a file until the readline () method returns an empty string:

with open ('mydata.txt’) as fp:
for line in iter (fp.readline, ’7):

12

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.4

process_line(line)

New in version 2.2.

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list([iterable])
Return a list whose items are the same and in the same order as iterable‘s items. iterable may be either a
sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and
returned, similar to iterable [:]. Forinstance, 1ist (" abc’) returns ["a’, ’'b’, ’'c’] and list (
(1, 2, 3))returns [1, 2, 3].Ifnoargumentis given, returns a new empty list, [].

11ist is a mutable sequence type, as documented in Sequence Types — str; unicode, list, tuple, bytearray, buffer,
xrange. For other containers see the built in dict, set, and tuple classes, and the collect ions module.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

long (x=0)

long (x, base=10)
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace. The base argument is interpreted in the same way as for
int (), and may only be given when x is a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating point numbers
to integers truncates (towards zero). If no arguments are given, returns 0L.

The long type is described in Numeric Types — int, float, long, complex.

map (function, iterable, ...)
Apply function to every item of iterable and return a list of the results. If additional iterable arguments are
passed, function must take that many arguments and is applied to the items from all iterables in parallel. If one
iterable is shorter than another it is assumed to be extended with None items. If function is None, the identity
function is assumed; if there are multiple arguments, map () returns a list consisting of tuples containing the
corresponding items from all iterables (a kind of transpose operation). The iferable arguments may be a sequence
or any iterable object; the result is always a list.

max (ilerable[, key])
max (argl, arg2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, iterable must be a non-empty iterable (such as a non-empty string, tuple
or list). The largest item in the iterable is returned. If two or more positional arguments are provided, the largest
of the positional arguments is returned.

The optional key argument specifies a one-argument ordering function like that used for 1ist.sort (). The
key argument, if supplied, must be in keyword form (for example, max (a, b, ¢, key=func)). Changed in
version 2.5: Added support for the optional key argument.

memoryview (obj)
Return a “memory view” object created from the given argument. See memoryview type for more information.

min (iterable[, key])

13

The Python Library Reference, Release 2.7.4

min (argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, iterable must be a non-empty iterable (such as a non-empty string, tuple
or list). The smallest item in the iterable is returned. If two or more positional arguments are provided, the
smallest of the positional arguments is returned.

The optional key argument specifies a one-argument ordering function like that used for 1ist.sort (). The
key argument, if supplied, must be in keyword form (for example, min (a, b, ¢, key=func)). Changed in
version 2.5: Added support for the optional key argument.

next (iterator[, default])
Retrieve the next item from the iferator by calling its next () method. If default is given, it is returned if the
iterator is exhausted, otherwise StopIteration israised. New in version 2.6.

object ()
Return a new featureless object. object is a base for all new style classes. It has the methods that are common
to all instances of new style classes. New in version 2.2.Changed in version 2.3: This function does not accept
any arguments. Formerly, it accepted arguments but ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed in
version 2.4: Formerly only returned an unsigned literal.

open (name[, mode[, buﬁ‘ering]])
Open a file, returning an object of the 1 1 e type described in section File Objects. If the file cannot be opened,
IOError israised. When opening a file, it’s preferable to use open () instead of invoking the £1i1e construc-
tor directly.

The first two arguments are the same as for stdio‘s fopen () : name is the file name to be opened, and mode
is a string indicating how the file is to be opened.

The most commonly-used values of mode are ' v’ for reading, ' w’ for writing (truncating the file if it already
exists), and " a’ for appending (which on some Unix systems means that all writes append to the end of the
file regardless of the current seek position). If mode is omitted, it defaults to ’ r’. The default is to use text
mode, which may convert / \n’ characters to a platform-specific representation on writing and back on reading.
Thus, when opening a binary file, you should append ’ b’ to the mode value to open the file in binary mode,
which will improve portability. (Appending ’ b’ is useful even on systems that don’t treat binary and text files
differently, where it serves as documentation.) See below for more possible values of mode.

The optional buffering argument specifies the file’s desired buffer size: 0 means unbuffered, 1 means line
buffered, any other positive value means use a buffer of (approximately) that size (in bytes). A negative buffering
means to use the system default, which is usually line buffered for tty devices and fully buffered for other files.
If omitted, the system default is used. >

Modes " r+’, "w+’ and ' a+’ open the file for updating (note that * w+’ truncates the file). Append b’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files; on systems
that don’t have this distinction, adding the ’ b’ has no effect.

In addition to the standard fopen () values mode may be ’ U’ or ’ rU’ . Python is usually built with universal
newlines support; supplying ’ U’ opens the file as a text file, but lines may be terminated by any of the following:
the Unix end-of-line convention ’ \n’, the Macintosh convention ’ \r’, or the Windows convention ' \r\n’.
All of these external representations are seen as ' \n’ by the Python program. If Python is built without
universal newlines support a mode with ’ U’ is the same as normal text mode. Note that file objects so opened
also have an attribute called newl ines which has a value of None (if no newlines have yet been seen), ’ \n’,
"\r’, " \r\n’, or a tuple containing all the newline types seen.

2 Specifying a buffer size currently has no effect on systems that don’t have setvbuf (). The interface to specify the buffer size is not done
using a method that calls setvbuf (), because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.4

Python enforces that the mode, after stripping ’ U’ , begins with " r’/, "w’ or " a’.

Python provides many file handling modules including fileinput, os, os.path, tempfile, and
shutil. Changed in version 2.5: Restriction on first letter of mode string introduced.

ord (c)
Given a string of length one, return an integer representing the Unicode code point of the character when the
argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord (”a’) returns the integer 97, ord (u’ \u2020’) returns 8224. This is the inverse of chr () for 8-bit
strings and of unichr () for unicode objects. If a unicode argument is given and Python was built with UCS2
Unicode, then the character’s code point must be in the range [0..65535] inclusive; otherwise the string length
is two, and a TypeError will be raised.

pow (x,y[. z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than

o)

pow (x, y) % z). The two-argument form pow (x, y) isequivalent to using the power operator: x* xy.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int and long int operands, the result has the same type as the operands (after coercion)
unless the second argument is negative; in that case, all arguments are converted to float and a float result is
delivered. For example, 10+ %2 returns 100, but 10x%-2 returns 0.01. (This last feature was added in
Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must be omitted. If z
is present, x and y must be of integer types, and y must be non-negative. (This restriction was added in Python
2.2. In Python 2.1 and before, floating 3-argument pow () returned platform-dependent results depending on
floating-point rounding accidents.)

print (*objects, sep="*, end="\n’, file=sys.stdout)
Print objects to the stream file, separated by sep and followed by end. sep, end and file, if present, must be given
as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no objects are given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None,
sys.stdout will be used. Output buffering is determined by file. Use file.flush () to ensure, for
instance, immediate appearance on a screen.

Note: This function is not normally available as a built-in since the name print is recognized as the print
statement. To disable the statement and use the print () function, use this future statement at the top of your
module:

from _ future_ import print_function

New in version 2.6.

property ([fget[,fset[,fdel[, doc]]]])
Return a property attribute for new-style classes (classes that derive from object).

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object) :
def _ init__ (self):
self._x = None

15

The Python Library Reference, Release 2.7.4

def getx(self):
return self._x
def setx(self, wvalue):
self._x = value
def delx(self):
del self._x
x = property(getx, setx, delx, "I'm the 'x’ property.")

If then c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x
the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot (object) :
def @ init_ (self):
self._voltage = 100000

@property

def voltage (self):
"""Get the current voltage."""
return self._voltage

turns the voltage () method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

class C(object) :
def _ _init__ (self):
self. _x = None

@property

def x(self):
"""I/m the /X/ property. mmn
return self._x

@x.setter
def x(self, wvalue):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property also has the attributes fget, fset, and £del corresponding to the constructor argu-
ments. New in version 2.2.Changed in version 2.5: Use fget‘s docstring if no doc given.Changed in version 2.6:
The getter, setter, and deleter attributes were added.

range (stop)
range (start, stop[, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used in for loops.

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.4

The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. The full form returns a list of plain integers [start, start + step, start
+ 2 % step, ...].Ifstepispositive, the last element is the largest start + i % step less than stop;
if step is negative, the last element is the smallest start + i x step greater than stop. step must not be
zero (or else ValueError is raised). Example:

>>> range (10)

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(l, 11)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range (0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range (0, -10, -1)

(¢, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range (0)

>>> range(l, 0)

raw_input(hnvnmt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = raw_input ('-—-> ')
—-—> Monty Python’s Flying Circus
>>> s

"Monty Python’s Flying Circus"

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing and
history features.

reduce (function, iterable[, initializer])
Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the
iterable to a single value. For example, reduce (lambda x, y: x+y, [1, 2, 3, 4, 5]) calcu-
lates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the
update value from the iterable. If the optional initializer is present, it is placed before the items of the iterable in
the calculation, and serves as a default when the iterable is empty. If initializer is not given and iterable contains
only one item, the first item is returned. Roughly equivalent to:

def reduce (function, iterable, initializer=None) :

it = iter(iterable)
if initializer is None:
try:
initializer = next (it)
except StopIteration:
raise TypeError (' reduce () of empty sequence with no initial wvalue’)
accum_value = initializer
for x in it:
accum_value = function (accum_value, Xx)

return accum_value

17

The Python Library Reference, Release 2.7.4

reload (module)
Reload a previously imported module. The argument must be a module object, so it must have been successfully
imported before. This is useful if you have edited the module source file using an external editor and want to try
out the new version without leaving the Python interpreter. The return value is the module object (the same as
the module argument).

When reload (module) is executed:

*Python modules’ code is recompiled and the module-level code reexecuted, defining a new set of objects
which are bound to names in the module’s dictionary. The init function of extension modules is not
called a second time.

*As with all other objects in Python the old objects are only reclaimed after their reference counts drop to
Zero.

*The names in the module namespace are updated to point to any new or changed objects.

*Other references to the old objects (such as names external to the module) are not rebound to refer to the
new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does not bind
its name locally, but does store a (partially initialized) module object in sys.modules. To reload the module
you must first import it again (this will bind the name to the partially initialized module object) before you
can reload () it

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with a t ry statement it can test
for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for sys,
__main__and__builtin__ . In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload () for the
other module does not redefine the objects imported from it — one way around this is to re-execute the from
statement, another is to use import and qualified names (module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed to eval (), otherwise the representation is a string enclosed in angle brackets that contains the name of
the type of the object together with additional information often including the name and address of the object.
A class can control what this function returns for its instances by defining a __repr__ () method.

reversed (seq)
Return a reverse iferator. seq must be an object which has a ___reversed__ () method or supports the

18 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.4

sequence protocol (the __len__ () method andthe __getitem__ () method with integer arguments starting
at 0). New in version 2.4.Changed in version 2.6: Added the possibility to write a custom __reversed__ ()
method.

round (number[, ndigits])
Return the floating point value number rounded to ndigits digits after the decimal point. If ndigits is omitted,
it defaults to zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to
the power minus ndigits; if two multiples are equally close, rounding is done away from 0 (so. for example,
round (0.5) is 1.0 and round (-0.5) is —1.0).

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives 2.67
instead of the expected 2. 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be
represented exactly as a float. See fut-fp-issues for more information.

set ([iterable])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and
Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the
collections module. New in version 2.4.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar = 123.

slice (stop)

slice (start, stop[, step])
Return a slice object representing the set of indices specified by range (start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, 1i]. See
itertools.islice () for an alternate version that returns an iterator.

sorted (itemble[, cmp[, key[, reverse]]])
Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as those for the 1ist.sort () method
(described in section Mutable Sequence Types).

cmp specifies a custom comparison function of two arguments (iterable elements) which should return a nega-
tive, zero or positive number depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument: cmp=lambda x,y: cmp(x.lower (), y.lower ()). The default
value is None.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp function.
This is because cmp is called multiple times for each list element while key and reverse touch each element only
once. Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

For sorting examples and a brief sorting tutorial, see Sorting HowTo. New in version 2.4.

staticmethod (function)
Return a static method for function.

19

http://wiki.python.org/moin/HowTo/Sorting/

The Python Library Reference, Release 2.7.4

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C(object):
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in function for
details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. Also see classmethod () for a variant
that is useful for creating alternate class constructors.

For more information on static methods, consult the documentation on the standard type hierarchy in frypes. New
in version 2.2.Changed in version 2.4: Function decorator syntax added.

str (object="")

Return a string containing a nicely printable representation of an object. For strings, this returns the string itself.
The difference with repr (object) isthat str (object) does not always attempt to return a string that is
acceptable to eval () ;its goal is to return a printable string. If no argument is given, returns the empty string,

”

For more information on strings see Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange which
describes sequence functionality (strings are sequences), and also the string-specific methods described in the
String Methods section. To output formatted strings use template strings or the % operator described in the String
Formatting Operations section. In addition see the String Services section. See also unicode ().

sum (iterable[, start])

Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The iterable‘s
items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ” . join (sequence). To add floating point values with extended precision, see
math.fsum (). To concatenate a series of iterables, consider using itertools.chain (). New in ver-
sion 2.3.

super (type[, object-or-type])

Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for accessing
inherited methods that have been overridden in a class. The search order is same as that used by getattr ()
except that the type itself is skipped.

The __mro___ attribute of the type lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an ob-
ject, isinstance (obj, type) must be true. If the second argument is a type, issubclass (type?2,
type) must be true (this is useful for classmethods).

Note: super () only works for new-style classes.

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single

20

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.4

inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement
the same method. Good design dictates that this method have the same calling signature in every case (because
the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and
because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super (C, self).method(arg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such as
super () .__getitem__ (name). It does so by implementing its own __getattribute__ () method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that super () is not limited to use inside methods. The two argument form specifies the arguments
exactly and makes the appropriate references.

For practical suggestions on how to design cooperative classes using super (), see guide to using super(). New
in version 2.2.

tuple ([itemble])
Return a tuple whose items are the same and in the same order as iferable‘s items. iterable may be a sequence, a
container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned unchanged. For
instance, tuple (' abc’) returns (‘a’, ’'b’, ’'c’) andtuple([1, 2, 3]) returns (1, 2, 3).If
no argument is given, returns a new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, unicode, list, tuple, bytearray,
buffer, xrange. For other containers see the built in dict, 1ist, and set classes, and the collections
module.

type (object)
type (name, bases, dict)
With one argument, return the type of an object. The return value is a type object. The isinstance ()
built-in function is recommended for testing the type of an object.

With three arguments, return a new type object. This is essentially a dynamic form of the c1ass statement. The
name string is the class name and becomes the ___name___ attribute; the bases tuple itemizes the base classes
and becomes the ___bases___ attribute; and the dict dictionary is the namespace containing definitions for class
body and becomes the __dict___ attribute. For example, the following two statements create identical t ype
objects:

>>> class X (object):
a =1

>>> X = type('X’, (object,), dict(a=1))

New in version 2.2.

unichr (i)
Return the Unicode string of one character whose Unicode code is the integer i. For example, unichr (97)
returns the string u” a’ . This is the inverse of ord () for Unicode strings. The valid range for the argument de-
pends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF]. ValueError
is raised otherwise. For ASCII and 8-bit strings see chr (). New in version 2.0.

unicode (object="")

21

http://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 2.7.4

unicode (object[, encoding[, errors]])

Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode () will decode the object which can either be an 8-bit string
or a character buffer using the codec for encoding. The encoding parameter is a string giving the name of an
encoding; if the encoding is not known, LookupError is raised. Error handling is done according to errors;
this specifies the treatment of characters which are invalid in the input encoding. If errors is ' strict’ (the
default), a ValueError is raised on errors, while a value of ’ ignore’ causes errors to be silently ignored,
and a value of “ replace’ causes the official Unicode replacement character, U+FFFD, to be used to replace
input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode () will mimic the behaviour of str () except that it returns
Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or subclass it will return
that Unicode string without any additional decoding applied.

For objects which provide a __unicode__ () method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted
to a Unicode string using the codec for the default encoding in ’ strict’ mode.

For more information on Unicode strings see Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange
which describes sequence functionality (Unicode strings are sequences), and also the string-specific methods
described in the String Methods section. To output formatted strings use template strings or the $ operator
described in the String Formatting Operations section. In addition see the String Services section. See also
str (). New in version 2.0.Changed in version 2.2: Support for __unicode__ () added.

vars ([object])

Return the __dict___ attribute for a module, class, instance, or any other object witha ___dict___ attribute.

Objects such as modules and instances have an updateable __dict___ attribute; however, other objects may
have write restrictions on their __dict___ attributes (for example, new-style classes use a dictproxy to prevent
direct dictionary updates).

Without an argument, vars () acts like 1locals (). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

xrange (stop)
xXrange (start, stop[, step])

This function is very similar to range (), but returns an xrange object instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage of xrange () over range () is minimal (since xrange () still has to create the
values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminated with break). For more
information on xrange objects, see XRange Type and Sequence Types — str, unicode, list, tuple, bytearray, buffer,
xrange.

CPython implementation detail: xrange () is intended to be simple and fast. Implementations may im-
pose restrictions to achieve this. The C implementation of Python restricts all arguments to native C longs
(“short” Python integers), and also requires that the number of elements fit in a native C long. If a larger range
is needed, an alternate version can be crafted using the itertools module: islice (count (start,
step), (stop-start+step-1+2x* (step<0))//step).

zip ([iterable,])

This function returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument
sequences or iterables. The returned list is truncated in length to the length of the shortest argument sequence.
When there are multiple arguments which are all of the same length, zip () is similar to map () with an initial
argument of None. With a single sequence argument, it returns a list of 1-tuples. With no arguments, it returns
an empty list.

22

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7.4

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups using zip (* [iter (s)]*n).

zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>>y = [4, 5, 6]

>>> zipped = zip(x, V)

>>> zipped

[(1, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(xzipped)

>>> x == list(x2) and y == list (y2)
True

New in version 2.0.Changed in version 2.4: Formerly, zip () required at least one argument and zip () raised
a TypeError instead of returning an empty list.

__import___ (name[, globals[, locals[,fromlist[, level]]]])

Note: This is an advanced function that is not needed in everyday Python programming, unlike
importlib.import_module ().

This function is invoked by the import statement. It can be replaced (by importing the __ builtin__ module
and assigning to __builtin__.___import__) in order to change semantics of the import statement, but
nowadays it is usually simpler to use import hooks (see PEP 302). Direct use of __import__ () is rare,
except in cases where you want to import a module whose name is only known at runtime.

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at all,
and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. The default is —1 which indicates both absolute and
relative imports will be attempted. 0 means only perform absolute imports. Positive values for /evel indicate the
number of parent directories to search relative to the directory of the module calling __import__ ().

When the name variable is of the form package .module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:
spam = ___import__ ('spam’, globals (), locals(), []1, -1)

The statement import spam.ham results in this call:

spam = __import__ (’spam.ham’, globals (), locals(), []1, -1)

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ (’spam.ham’, globals (), locals(), [’'eggs’, ’'sausage’], -1)
eggs = _temp.eggs
saus = _temp.sausage

23

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.7.4

Here, the spam.ham module is returned from ___import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use
importlib.import_module (). Changed in version 2.5: The level parameter was added.Changed
in version 2.5: Keyword support for parameters was added.

24 Chapter 2. Built-in Functions

CHAPTER
THREE

NON-ESSENTIAL BUILT-IN FUNCTIONS

There are several built-in functions that are no longer essential to learn, know or use in modern Python programming.
They have been kept here to maintain backwards compatibility with programs written for older versions of Python.

Python programmers, trainers, students and book writers should feel free to bypass these functions without concerns
about missing something important.

apply (function, args[, keywords])

The function argument must be a callable object (a user-defined or built-in function or method, or a class object)
and the args argument must be a sequence. The function is called with args as the argument list; the number of
arguments is the length of the tuple. If the optional keywords argument is present, it must be a dictionary whose
keys are strings. It specifies keyword arguments to be added to the end of the argument list. Calling apply ()

is different from just calling function (args), since in that case there is always exactly one argument.
The use of apply () is equivalent to function (xargs, x+keywords). Deprecated since version 2.3:
Use function (xargs, =*xkeywords) instead of apply (function, args, keywords) (see tut-
unpacking-arguments).

buffer (object[, oﬁset[, size]])
The object argument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which references the object argument. The buffer object will be a slice from
the beginning of object (or from the specified offset). The slice will extend to the end of object (or will have a
length given by the size argument).

coerce (x,y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations. If coercion is not possible, raise TypeError.

intern (string)

Enter string in the table of “interned” strings and return the interned string — which is string itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and
the dictionaries used to hold module, class or instance attributes have interned keys. Changed in version 2.3:
Interned strings are not immortal (like they used to be in Python 2.2 and before); you must keep a reference to
the return value of intern () around to benefit from it.

25

The Python Library Reference, Release 2.7.4

26 Chapter 3. Non-essential Built-in Functions

CHAPTER
FOUR

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. New in version 2.3.

True
The true value of the boo1l type. New in version 2.3.

None
The sole value of t ypes.NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Changed in version 2.4: Assignments to None are illegal and
raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq__ (), __1t__ (), and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

__debug___
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None and___debug___ cannot be reassigned (assignments to them, even as an attribute name, raise
SyntaxError), so they can be considered “true” constants. Changed in version 2.7: Assignments to __debug___
as an attribute became illegal.

4.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be
used in programs.

quit([code:Abne])

exit ([code:None])
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemEx1it with the specified exit code.

copyright
license

27

The Python Library Reference, Release 2.7.4

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

28 Chapter 4. Built-in Constants

CHAPTER
FIVE

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

Note: Historically (until release 2.2), Python’s built-in types have differed from user-defined types because it was not
possible to use the built-in types as the basis for object-oriented inheritance. This limitation no longer exists.

The principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested for
truth value, and converted to a string (with the repr () function or the slightly different st r () function). The latter
function is implicitly used when an object is written by the print () function.

5.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or while condition or as operand of the Boolean operations
below. The following values are considered false:

* None

* False

* zero of any numeric type, for example, 0, 0L, 0.0, 0.
* any empty sequence, for example, ”, (), [].

e any empty mapping, for example, { }.

¢ instances of user-defined classes, if the class definesa __ _nonzero__ () or__len__ () method, when that
method returns the integer zero or boo1l value False. !

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

I Additional information on these special methods may be found in the Python Reference Manual (customization).

29

The Python Library Reference, Release 2.7.4

5.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes

X Or y if x is false, then y, else x @))]

x and y if x is false, then x, else y 2)

not x if x is false, then True, else False | (3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.
2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has alower priority than non-Boolean operators, so not a == Db isinterpreted as not (a == b),and
a == not b isasyntax error.

5.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalentto x < y
and y <= gz, except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
= not equal 1)
is object identity
is not negated object identity
Notes:
1. !'=can also be written <>, but this is an obsolete usage kept for backwards compatibility only. New code should
always use !=.

Objects of different types, except different numeric types and different string types, never compare equal; such objects
are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (for example, file objects) support only a degenerate notion of comparison where any two objects of that
type are unequal. Again, such objects are ordered arbitrarily but consistently. The <, <=, > and >= operators will raise
a TypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class defines the ___cmp___ () method. Refer to cus-
tomization) for information on the use of this method to effect object comparisons.

CPython implementation detail: Objects of different types except numbers are ordered by their type names; objects
of the same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, in and not 1in, are supported only by sequence types (below).

30 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

5.4 Numeric Types — int, float, long, complex

There are four distinct numeric types: plain integers, long integers, floating point numbers, and complex numbers.
In addition, Booleans are a subtype of plain integers. Plain integers (also just called infegers) are implemented us-
ing long in C, which gives them at least 32 bits of precision (sys.maxint is always set to the maximum plain
integer value for the current platform, the minimum value is —sys.maxint - 1). Long integers have unlimited
precision. Floating point numbers are usually implemented using double in C; information about the precision and
internal representation of floating point numbers for the machine on which your program is running is available in
sys.float_info. Complex numbers have a real and imaginary part, which are each a floating point number. To
extract these parts from a complex number z, use z.real and z.imag. (The standard library includes additional
numeric types, fractions that hold rationals, and decimal that hold floating-point numbers with user-definable
precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including binary, hex, and octal numbers) yield plain integers unless the value they denote is too large to be represented
as a plain integer, in which case they yield a long integer. Integer literals with an ’ L” or ’ 1’ suffix yield long integers
(" L” is preferred because 11 looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending ’ j’ or ’ J’ to a numeric literal yields a complex number with a zero
real part. A complex numeric literal is the sum of a real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than long integer
is narrower than floating point is narrower than complex. Comparisons between numbers of mixed type use the same
rule. > The constructors int (), long (), float (), and complex () can be used to produce numbers of a specific

type.

All built-in numeric types support the following operations. See power and later sections for the operators’ priorities.

Operation Result Notes
X + vy sum of x and y

X -y difference of x and y

X * Y product of x and y

x /y quotient of x and y (1

x /]y (floored) quotient of x and y D)
X %y remainder of x / vy “4)
-x x negated

+x x unchanged

abs (x) absolute value or magnitude of x 3)
int (x) x converted to integer 2)
long (x) x converted to long integer 2)
float (x) x converted to floating point 6)
complex (re,im) | acomplex number with real part re, imaginary part im. im defaults to zero.
c.conjugate () conjugate of the complex number c. (Identity on real numbers)

divmod (x, y) the pair (x // y, x % V) 3)@)
pow (x, V) x to the power y 3)7)
X k% Y X to the power y ©)]

Notes:

1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/21is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

2. Conversion from floats using int () or long () truncates toward zero like the related function,

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

5.4. Numeric Types — int, float, long, complex 31

The Python Library Reference, Release 2.7.4

math.trunc (). Use the function math.floor () to round downward and math.ceil () to round up-
ward.

3. See Built-in Functions for a full description.

4. Deprecated since version 2.3: The floor division operator, the modulo operator, and the divmod () function are
no longer defined for complex numbers. Instead, convert to a floating point number using the abs () function
if appropriate.

5. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int.

6. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-”” for Not a Number (NaN) and
positive or negative infinity. New in version 2.6.

7. Python defines pow (0, 0) and 0 =% O tobe 1, as is common for programming languages.

All numbers.Real types (int, long, and £ 1oat) also include the following operations:

Operation Result Notes
math.trunc (x) | xtruncated to Integral

round(x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor (x) | the greatest integral float <= x

math.ceil (x) the least integral float >=x

5.4.1 Bitwise Operations on Integer Types
Bitwise operations only make sense for integers. Negative numbers are treated as their 2’s complement value (this
assumes a sufficiently large number of bits that no overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

This table lists the bitwise operations sorted in ascending priority (operations in the same box have the same priority):

Operation Result Notes
x |y bitwise or of x and y
x "y bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n x shifted left by n bits)
X >> n x shifted right by n bits (DH@A3)
~X the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.

2. A left shift by »n bits is equivalent to multiplication by pow (2, n). A long integer is returned if the result
exceeds the range of plain integers.

3. A right shift by n bits is equivalent to division by pow (2, n).

5.4.2 Additional Methods on Integer Types

The integer types implement the numbers. Integral abstract base class. In addition, they provide one more
method:

int.bit_length()

32 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

long.bit_length ()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = -37

>>> bin(n)
"-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x . bit_length () is the unique positive integer k such that 2+ (k-1)
<= abs (x) < 2*xk. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm,
thenk = 1 + int (log(abs(x), 2)).If xiszero,thenx.bit_length () returns 0.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) —-—-> ’-0b100101’
s = s.lstrip('-0b’) # remove leading zeros and minus sign
return len(s) # len(’71001017) ——> 6

New in version 2.7.

5.4.3 Additional Methods on Float

The float type implements the numbers .Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a ValueError on NaNs. New in version 2.6.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).1is_integer()
True

>>> (3.2).is_integer ()
False

New in version 2.6.

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float .hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent. New in version 2.6.

float.fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing
whitespace. New in version 2.6.

Note that f1oat .hex () is an instance method, while f1loat . fromhex () is a class method.
A hexadecimal string takes the form:

[sign] [’0x’] integer [’.’ fraction] [’'p’ exponent]

5.4. Numeric Types — int, float, long, complex 33

The Python Library Reference, Release 2.7.4

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of float.hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by float . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3
+ 10./16 + 7./16%%2) % 2.0%x10,0r 3740.0:

>>> float.fromhex (' 0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
"0x1.d4380000000000p+11"

5.5 lterator Types

New in version 2.2. Python supports a concept of iteration over containers. This is implemented using two distinct
methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more detail,
always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

container._ _iter ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the t p_iter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APIL.

iterator.next ()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
APL

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iterator’s next () method raises StopIteration, it will continue to
do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was
added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

34 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

5.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__ ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter_ () and next () methods. More information about generators can be found in the docu-
mentation for the yield expression.

5.6 Sequence Types — str, unicode, list, tuple, bytearray,
buffer, xrange

There are seven sequence types: strings, Unicode strings, lists, tuples, bytearrays, buffers, and xrange objects.
For other containers see the built in dict and set classes, and the collections module.

String literals are written in single or double quotes: ' xyzzy’, "frobozz". See strings for more about string
literals. Unicode strings are much like strings, but are specified in the syntax using a preceding ’u’ character:
u’ abc’,u"def". In addition to the functionality described here, there are also string-specific methods described in
the String Methods section. Lists are constructed with square brackets, separating items with commas: [a, b, c].
Tuples are constructed by the comma operator (not within square brackets), with or without enclosing parentheses, but
an empty tuple must have the enclosing parentheses, suchas a, b, cor (). A single item tuple must have a trailing
comma, such as (d,).

Bytearray objects are created with the built-in function bytearray ().

Buffer objects are not directly supported by Python syntax, but can be created by calling the built-in function
buffer (). They don’t support concatenation or repetition.

Objects of type xrange are similar to buffers in that there is no specific syntax to create them, but they are created using
the xrange () function. They don’t support slicing, concatenation or repetition, and using in, not in, min () or
max () on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities as
the comparison operations. The + and * operations have the same priority as the corresponding numeric operations.
Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the table, s and ¢ are sequences of the same type; n, i and j are integers:

Operation Result Notes
X in s True if an item of s is equal to x, else False | (1)

X not in s False if an item of s is equal to x, else True | (1)

s + t the concatenation of s and ¢ (6)

s * n, n x s | nshallow copies of s concatenated 2)
s[i] ith item of s, origin 0 3)
s[i:J] slice of s from i to j 3@
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (i) index of the first occurence of i in s

s.count (i) total number of occurences of i in s

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by comparing
corresponding elements. This means that to compare equal, every element must compare equal and the two sequences
must be of the same type and have the same length. (For full details see comparisons in the language reference.)

3 They must have since the parser can’t tell the type of the operands.

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 35

The Python Library Reference, Release 2.7.4

Notes:

1. When s is a string or Unicode string object the in and not in operations act like a substring test. In Python
versions before 2.3, x had to be a string of length 1. In Python 2.3 and beyond, x may be a string of any length.

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also that
the copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

>>> lists = [[]] = 3
>>> lists

(er, 1, 11

>>> 1lists[0] .append(3)
>>> lists

(31, [31, [3]]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
x 3 are (pointers to) this single empty list. Modifying any of the elements of 1ists modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> 1lists[0] .append(3)

>>> lists[1l].append(5)

>>> lists[2] .append(7)

>>> lists

(esy, 51, (711

3. If i orj is negative, the index is relative to the end of the string: 1en(s) + iorlen(s) + 7Jissubstituted.
But note that -0 is still 0.

4. The slice of s from i to j is defined as the sequence of items with index k such that i <= k < Jj. Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If i
is greater than or equal to j, the slice is empty.

5. The slice of s from i to j with step k is defined as the sequence of items with index x = i + n=k such that
0 <= n < (j-1i) /k. In other words, the indices are i, 1+k, i+2xk, i+3«k and so on, stopping when j is
reached (but never including j). If i or j is greater than len (s), use len (s). If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is
treated like 1.

6. CPython implementation detail: If s and ¢ are both strings, some Python implementations such as CPython
can usually perform an in-place optimization for assignments of the form s = s + t or s += t. When
applicable, this optimization makes quadratic run-time much less likely. This optimization is both version and
implementation dependent. For performance sensitive code, it is preferable to use the str. join () method
which assures consistent linear concatenation performance across versions and implementations. Changed in
version 2.4: Formerly, string concatenation never occurred in-place.

5.6.1 String Methods

Below are listed the string methods which both 8-bit strings and Unicode objects support. Some of them are also
available on bytearray objects.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str, unicode, list,
tuple, bytearray, buffer, xrange section. To output formatted strings use template strings or the % operator described in
the String Formatting Operations section. Also, see the re module for string functions based on regular expressions.

str.capitalize ()
Return a copy of the string with its first character capitalized and the rest lowercased.

For 8-bit strings, this method is locale-dependent.

36 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

str.center (width[,ﬁllchar])
Return centered in a string of length widrh. Padding is done using the specified fillchar (default is a space).
Changed in version 2.4: Support for the fillchar argument.

str.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

str.decode ([encoding[, errors]])
Decodes the string using the codec registered for encoding. encoding defaults to the default string encoding.
errors may be given to set a different error handling scheme. The default is ’ strict’, meaning that encod-
ing errors raise UnicodeError. Other possible values are ' ignore’, ' replace’ and any other name
registered via codecs.register_error (), see section Codec Base Classes. New in version 2.2.Changed
in version 2.3: Support for other error handling schemes added.Changed in version 2.7: Support for keyword
arguments added.

str.encode ([encoding[, errors]])

Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The default for errors is
"strict’, meaning that encoding errors raise a UnicodeError. Other possible values are ' ignore’,
"replace’, 'xmlcharrefreplace’, "backslashreplace’ and any other name registered via
codecs.register_error (), see section Codec Base Classes. For a list of possible encodings, see sec-
tion Standard Encodings. New in version 2.0.Changed in version 2.3: Support for ’ xmlcharrefreplace’
and 'backslashreplace’ and other error handling schemes added.Changed in version 2.7: Support for
keyword arguments added.

str.endswith (suﬁ‘ix[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position. Changed in version 2.5: Accept tuples as suffix.

str.expandtabs ([tabsize])
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current
column and the given tab size. The column number is reset to zero after each newline occurring in the string. If
tabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other non-printing characters
or escape sequences.

str.find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the slice
s[start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is a
substring or not, use the in operator:

>>> Py’ in ’Python’
True

str.format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a posi-
tional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field
is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0}".format (1+2)
"The sum of 1 + 2 is 3’

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 37

The Python Library Reference, Release 2.7.4

str.

str.

str.

str.

str.

str.

str.

str.

str.

str

str.

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

This method of string formatting is the new standard in Python 3, and should be preferred to the % formatting
described in String Formatting Operations in new code. New in version 2.6.

index (sub[, start[, end]])
Like find (), but raise ValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isdigit ()

Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters * in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters # in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join (iterable)
Return a string which is the concatenation of the strings in the iterable iterable. The separator between elements
is the string providing this method.

.1ljust (width[,ﬁllchar])

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than or equal to 1len (s). Changed in version 2.4:
Support for the fillchar argument.

lower ()
Return a copy of the string with all the cased characters # converted to lowercase.

For 8-bit strings, this method is locale-dependent.

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter,
titlecase).

38

Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

str.lstrip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> spacious " .lstrip ()
" spacious
>>> 'www.example.com’ .1lstrip (' cmowz.’)
"example.com’

4

Changed in version 2.2.2: Support for the chars argument.

str.partition (sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings. New in version 2.5.

str.replace (0ld, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

str.rfind (sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on fail-
ure.

str.rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the substring sub is not found.

str.rjust (width[,ﬁllchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than or equal to 1len (s). Changed in version 2.4:
Support for the fillchar argument.

str.rpartition (sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself. New in version 2.5.

str.rsplit ([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below. New in
version 2.4.

str.rstrip ([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> spacious " .rstrip()

! spacious’

>>> 'mississippi’ .rstrip(’ipz’)
"mississ’

Changed in version 2.2.2: Support for the chars argument.

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 39

The Python Library Reference, Release 2.7.4

str.split ([sep[, maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or —1, then
there is no limit on the number of splits (all possible splits are made).
If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, /1,2’ .split (’,’) returns ['1’, ", ' 2'1). The sep argument may consist of multiple char-
acters (for example, ' 1<>2<>3’ .split (' <>') returns ["1’, ’'2’, ’3’1). Splitting an empty string
with a specified separator returns [”].
If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].
Forexample,” 1 2 3 ’.split () returns ["1’, '2’, '3’],and’ 1 2 3 ’.split (None, 1)
returns [717, "2 3 '].

str.splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. This method uses the universal newlines
approach to splitting lines. Line breaks are not included in the resulting list unless keepends is given and true.
For example, ’ab c\n\nde fg\rkl\r\n’.splitlines() returns [‘ab c’, ”, ’'de fg’,
k1’1, while the same call with splitlines (True) returns ["ab c\n’, ‘\n’, ’'de fg\r’,
"k1\r\n’].
Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line.

str.startswith (preﬁx[, smrt[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string at
that position. Changed in version 2.5: Accept tuples as prefix.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:
>>> spacious " .strip ()
" spacious’
>>> 'www.example.com’ .strip(’ cmowz.’)
"example’
Changed in version 2.2.2: Support for the chars argument.

str.swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.
For 8-bit strings, this method is locale-dependent.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the remaining char-
acters are lowercase.
The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

40 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

>>> "they’re bill’s friends from the UK".title()
"They’Re Bill’S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r" [A-Za-z]+ (' [A-Za-2z]
lambda mo: mo.group (0
mo.group (0

)2y

) [0] .upper () +
)y[1:].lower (),
s)

>>> titlecase("they’re bill’s friends.")
"They’re Bill’s Friends."

For 8-bit strings, this method is locale-dependent.

str.translate (table[, deletechars])
Return a copy of the string where all characters occurring in the optional argument deletechars are removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

You can use the maketrans () helper function in the st ring module to create a translation table. For string
objects, set the table argument to None for translations that only delete characters:

>>> ’"read this short text’ .translate (None, ’'aeiou’)
"rd ths shrt txt’

New in version 2.6: Support for a None fable argument. For Unicode objects, the t ranslate () method does
not accept the optional deletechars argument. Instead, it returns a copy of the s where all characters have been
mapped through the given translation table which must be a mapping of Unicode ordinals to Unicode ordinals,
Unicode strings or None. Unmapped characters are left untouched. Characters mapped to None are deleted.
Note, a more flexible approach is to create a custom character mapping codec using the codecs module (see
encodings.cpl251 for an example).

str.upper ()
Return a copy of the string with all the cased characters converted to uppercase. Note that
str.upper () .isupper () might be False if s contains uncased characters or if the Unicode category
of the resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

4

For 8-bit strings, this method is locale-dependent.

str.z£ill (width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly.
The original string is returned if width is less than or equal to 1len (s). New in version 2.2.2.

The following methods are present only on unicode objects:

unicode.isnumeric ()
Return True if there are only numeric characters in S, False otherwise. Numeric characters include digit char-
acters, and all characters that have the Unicode numeric value property, e.g. U+2155, VULGAR FRACTION
ONE FIFTH.

unicode.isdecimal ()
Return True if there are only decimal characters in S, False otherwise. Decimal characters include digit
characters, and all characters that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC
DIGIT ZERO.

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 41

The Python Library Reference, Release 2.7.4

5.6.2 String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also known as the
string formatting or interpolation operator. Given format % values (where format is a string or Unicode object),
% conversion specifications in format are replaced with zero or more elements of values. The effect is similar to the
using sprintf () inthe C language. If format is a Unicode object, or if any of the objects being converted using the
%s conversion are Unicode objects, the result will also be a Unicode object.

If format requires a single argument, values may be a single non-tuple object. > Otherwise, values must be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The " %’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an * =’ (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), givenas a ’ .’ (dot) followed by the precision. If specified as »’ (an asterisk), the actual
width is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a paren-
thesised mapping key into that dictionary inserted immediately after the * $’ character. The mapping key selects the
value to be formatted from the mapping. For example:

>>> print ’ has quote types.’ % \
ce {"language": "Python", "number": 2}
Python has 002 quote types.

In this case no specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning

" The value conversion will use the “alternate form” (where defined below).

"0’ The conversion will be zero padded for numeric values.

r—r The converted value is left adjusted (overrides the / 0’ conversion if both are given).

rs (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
T4 A sign character (* +’ or ’ -’) will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to 3d.

The conversion types are:

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

42 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

Conver- | Meaning Notes
sion
rd’ Signed integer decimal.
rir Signed integer decimal.
"o’ Signed octal value. (1)
ru’ Obsolete type — it is identical to " d’ . @)
rx! Signed hexadecimal (lowercase). 2)
rxX’ Signed hexadecimal (uppercase). 2)
re’ Floating point exponential format (lowercase). 3)
"E’ Floating point exponential format (uppercase). 3)
i Floating point decimal format. 3)
"E’ Floating point decimal format. 3)
rg’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not (@)
less than precision, decimal format otherwise.
"G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not “)
less than precision, decimal format otherwise.
el Single character (accepts integer or single character string).
"¢’ String (converts any Python object using repr ()).)
"s’ String (converts any Python object using st r ()). (6)
I No argument is converted, results in a * $’ character in the result.
Notes:
1. The alternate form causes a leading zero (’ 0’) to be inserted between left-hand padding and the formatting of

7.

the number if the leading character of the result is not already a zero.

The alternate form causes a leading 0x’ or / 0X’ (depending on whether the ’ x’ or ’ X’ format was used)
to be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
The % r conversion was added in Python 2.0.

The precision determines the maximal number of characters used.

If the object or format provided is a unicode string, the resulting string will also be unicode.

The precision determines the maximal number of characters used.

See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that \ 0’ is the end of the string. Changed
in version 2.7: $£ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g conver-

sions.

Additional string operations are defined in standard modules st ring and re.

5.6.3 XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type
is that an xrange object will always take the same amount of memory, no matter the size of the range it represents.

There

are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, and the 1en () function.

5.6. Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange 43

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 2.7.4

5.6.4 Mutable Sequence Types

List and bytearray objects support additional operations that allow in-place modification of the object. Other
mutable sequence types (when added to the language) should also support these operations. Strings and tuples are
immutable sequence types: such objects cannot be modified once created. The following operations are defined on
mutable sequence types (where x is an arbitrary object):

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:3] = t slice of s from i to j is replaced by the contents of the
iterable ¢
del s[i:7] sameass[i:3] = []
s[i:j:k] =t the elements of s [1: j:k] are replaced by those of ¢ (D
del s[i:7j:k] removes the elements of s [1:j:k] from the list
s.append (x) sameas s[len(s) :len(s)] = [x] 2)
s.extend (x) sameas s[len(s) :len(s)] = x 3
s.count (x) return number of i‘s for which s [1] == x
s.index (x[, 1[, J11) return smallest £ such that s [k] == xand i <= 4)
<
s.insert (i, x) sameas s[i:1] = [x] (@)
s.pop([il) sameas x = s[i]; del s[i]; return x (6)
S.remove (x) same as del s[s.index (x)] 4)
s.reverse () reverses the items of s in place @)
s.sort ([cmp[, keyl[, sort the items of s in place (7N (8)(9)(10)
reversel]]l])

Notes:
1. ¢ must have the same length as the slice it is replacing.

2. The C implementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

3. x can be any iterable object.

4. Raises ValueError when x is not found in s. When a negative index is passed as the second or third parameter
to the index () method, the list length is added, as for slice indices. If it is still negative, it is truncated to zero,
as for slice indices. Changed in version 2.3: Previously, index () didn’t have arguments for specifying start
and stop positions.

5. When a negative index is passed as the first parameter to the insert () method, the list length is added, as for
slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3: Previously,
all negative indices were truncated to zero.

6. The pop () method is only supported by the list and array types. The optional argument i defaults to -1, so
that by default the last item is removed and returned.

7. The sort () and reverse () methods modify the list in place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed list.

8. The sort () method takes optional arguments for controlling the comparisons.

cmp specifies a custom comparison function of two arguments (list items) which should return a negative, zero or
positive number depending on whether the first argument is considered smaller than, equal to, or larger than the
second argument: cmp=lambda x,y: cmp(x.lower (), y.lower ()). The default valueis None.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

44 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp function.
This is because cmp is called multiple times for each list element while key and reverse touch each element only
once. Use functools.cmp_to_key () to convert an old-style cmp function to a key function. Changed in
version 2.3: Support for None as an equivalent to omitting cmp was added.Changed in version 2.4: Support for
key and reverse was added.

9. Starting with Python 2.3, the sort () method is guaranteed to be stable. A sort is stable if it guarantees not
to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

10. CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python 2.3 and newer makes the list appear empty for
the duration, and raises ValueError if it can detect that the list has been mutated during a sort.

5.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, remov-
ing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. (For other containers see the builtin dict, 1ist, and tuple classes, and the collections
module.) New in version 2.4. Like other collections, sets support x in set, len (set), and for x in set.
Being an unordered collection, sets do not record element position or order of insertion. Accordingly, sets do not
support indexing, slicing, or other sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

As of Python 2.7, non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within
braces, for example: {’ jack’, ’sjoerd’},in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterable])

class frozenset ([iterable])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Instances of set and frozenset provide the following operations:

len (s)
Return the cardinality of set s.

x in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their intersec-
tion is the empty set. New in version 2.6.

issubset (other)
set <= other
Test whether every element in the set is in other.

5.7. Set Types — set, frozenset 45

The Python Library Reference, Release 2.7.4

set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, thatis, set >= other and set != other.

union (other, ...)

set | other |
Return a new set with elements from the set and all others. Changed in version 2.6: Accepts multiple input
iterables.

intersection (other,...)

set & other &
Return a new set with elements common to the set and all others. Changed in version 2.6: Accepts multiple
input iterables.

difference (other,...)

set - other -
Return a new set with elements in the set that are not in the others. Changed in version 2.6: Accepts
multiple input iterables.

symmetric_difference (other)
set ~ other
Return a new set with elements in either the set or other but not both.

copy ()

Return a new set with a shallow copy of s.
Note, the non-operator versions of wunion(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any iter-

able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set (’abc’) & ’‘cbs’ in favor of the more readable
set ("abc’) .intersection (' cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the
first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and
only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For
example, set ('abc’) == frozenset ("abc’) returns True and so does set (’abc’) in
set ([frozenset ("abc’)1).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==Db,
or a>b. Accordingly, sets do not implement the __cmp___ () method.

Since sets only define partial ordering (subset relationships), the output of the 1ist . sort () method is unde-
fined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ("ab’) | set (’bc’) returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (other, ...)

46

Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

set |= other |
Update the set, adding elements from all others. Changed in version 2.6: Accepts multiple input iterables.

intersection_update (other, ...)

set &= other &
Update the set, keeping only elements found in it and all others. Changed in version 2.6: Accepts multiple
input iterables.

difference_update (other,...)

set —-= other |
Update the set, removing elements found in others. Changed in version 2.6: Accepts multiple input iter-
ables.

symmetric_difference_update (other)
set “= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update (), intersection_update (),
difference_update (), and symmetric_difference_update () methods will accept any
iterable as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set. To
support searching for an equivalent frozenset, the elem set is temporarily mutated during the search and then
restored. During the search, the elem set should not be read or mutated since it does not have a meaningful
value.

See Also:

Comparison to the built-in set types Differences between the set s module and the built-in set types.

5.8 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the builtin 1ist, set, and tuple classes, and
the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not sashable, that is, values containing lists, dictionaries
or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such as 1 and 1. 0)
then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store
floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

5.8. Mapping Types — dict 47

The Python Library Reference, Release 2.7.4

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{"jack’: 4098, ’'sjoerd’: 4127} or {4098: 'Jjack’, 4127: ’sjoerd’}, orby the dict
constructor.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise,
the positional argument must be an iterator object. Each item in the iterable must itself be an iterator with
exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object
the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding
value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument. If a key being added is already present, the value from the keyword argument
replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2,
"three": 3}:

>>> a = dict (one=1, two=2, three=3)

>>> b = {’one’: 1, "two’: 2, ’'three’: 3}

>>> ¢ = dict(zip([’one’, 'two’, ’'three’], [1, 2, 31))

>>> d = dict([('two’, 2), ("one’, 1), ('three’, 3)1])

>>> e = dict({’'three’: 3, ’"one’: 1, "two’: 2})

>>> a == == c == d == e

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers.
Otherwise, any valid keys can be used. New in version 2.2.Changed in version 2.3: Support for building a
dictionary from keyword arguments added. These are the operations that dictionaries support (and therefore,
custom mapping types should support too):

len(d)
Return the number of items in the dictionary d.

d[key]

Return the item of d with key key. Raises a KeyError if key is not in the map. New in version 2.5:
If a subclass of dict defines a method __missing__ (), if the key key is not present, the d[key]
operation calls that method with the key key as argument. The d [key] operation then returns or raises
whatever is returned or raised by the _ _missing__ (key) call if the key is not present. No other
operations or methods invoke __missing___ (). If _ missing__ () is not defined, KeyError is
raised. __missing__ () must be a method; it cannot be an instance variable. For an example, see
collections.defaultdict.

d[key] = value
Set d [key] to value.

del dlkey]
Remove d [key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False. New in version 2.2.

48 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

key not in d
Equivalent to not key in d. New in version 2.2.

iter (d)
Return an iterator over the keys of the dictionary. This is a shortcut for iterkeys ().

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

fromkeys (seq[, value])
Create a new dictionary with keys from seq and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None. New in version
2.3.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

has_key (key)
Test for the presence of key in the dictionary. has_key () is deprecated in favor of key in d.

items ()
Return a copy of the dictionary’s list of (key, wvalue) pairs.

CPython implementation detail: Keys and values are listed in an arbitrary order which is non-random,
varies across Python implementations, and depends on the dictionary’s history of insertions and deletions.

If items (), keys (), values (), iteritems (), iterkeys (), and itervalues () are called
with no intervening modifications to the dictionary, the lists will directly correspond. This allows
the creation of (value, key) pairsusing zip(): pairs = zip(d.values(), d.keys()).
The same relationship holds for the iterkeys() and itervalues () methods: pairs =
zip(d.itervalues (), d.iterkeys()) provides the same value for pairs. Another way to
create the same listis pairs = [(v, k) for (k, v) in d.iteritems()].

iteritems ()
Return an iterator over the dictionary’s (key, wvalue) pairs. See the note for dict.items ().

Using iteritems () while adding or deleting entries in the dictionary may raise a Runt imeError or
fail to iterate over all entries. New in version 2.2.

iterkeys ()
Return an iterator over the dictionary’s keys. See the note for dict.items ().

Using iterkeys () while adding or deleting entries in the dictionary may raise a RuntimeError or
fail to iterate over all entries. New in version 2.2.

itervalues ()
Return an iterator over the dictionary’s values. See the note for dict.items ().

Using itervalues () while adding or deleting entries in the dictionary may raise a RuntimeError
or fail to iterate over all entries. New in version 2.2.

keys ()
Return a copy of the dictionary’s list of keys. See the note for dict.items ().

pop (key [, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and key
is not in the dictionary, a KeyError is raised. New in version 2.3.

5.8. Mapping Types — dict 49

The Python Library Reference, Release 2.7.4

popitem/()
Remove and return an arbitrary (key, wvalue) pair from the dictionary.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2). Changed in version 2.4: Allowed the argument to be
an iterable of key/value pairs and allowed keyword arguments.

values ()
Return a copy of the dictionary’s list of values. See the note for dict.items ().

viewitems ()
Return a new view of the dictionary’s items ((key, value) pairs). See below for documentation of
view objects. New in version 2.7.

viewkeys ()
Return a new view of the dictionary’s keys. See below for documentation of view objects. New in version
2.7.

viewvalues ()
Return a new view of the dictionary’s values. See below for documentation of view objects. New in version
2.7.

5.8.1 Dictionary view objects

The objects returned by dict .viewkeys (), dict.viewvalues () and dict.viewitems () are view ob-
jects. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the
view reflects these changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, wvalue)) in the dictionary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python implementa-
tions, and depends on the dictionary’s history of insertions and deletions. If keys, values and items views are
iterated over with no intervening modifications to the dictionary, the order of items will directly correspond. This
allows the creation of (value, key) pairsusing zip (): pairs = zip(d.values (), d.keys()).
Another way to create the same listis pairs = [(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

50 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value) pairs
are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since the entries
are generally not unique.) Then these set operations are available (“other” refers either to another view or a set):

dictview & other
Return the intersection of the dictview and the other object as a new set.

dictview | other
Return the union of the dictview and the other object as a new set.

dictview - other
Return the difference between the dictview and the other object (all elements in dictview that aren’t in other) as
a new set.

dictview ~ other
Return the symmetric difference (all elements either in dictview or other, but not in both) of the dictview and
the other object as a new set.

An example of dictionary view usage:

>>> dishes = {’eggs’: 2, ’'sausage’: 1, ’'bacon’: 1, ’'spam’: 500}
>>> keys = dishes.viewkeys ()
>>> values = dishes.viewvalues ()

>>> # iteration

>>n = 0

>>> for val in values:
n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order
>>> list (keys)

["eggs’, ’'bacon’, ’'sausage’, ’spam’]

>>> list (values)

(2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes[’eggs’]

>>> del dishes|[’sausage’]

>>> list (keys)

[/ spam’, ’'bacon’]

>>> # set operations
>>> keys & {’eggs’, ’'bacon’, ’'salad’}
{"bacon’}

5.9 File Objects

File objects are implemented using C’s stdio package and can be created with the built-in open () function. File
objects are also returned by some other built-in functions and methods, such as os .popen () and os. fdopen ()
and the makefile () method of socket objects. Temporary files can be created using the tempfile module, and
high-level file operations such as copying, moving, and deleting files and directories can be achieved with the shutil
module.

5.9. File Objects 51

The Python Library Reference, Release 2.7.4

When a file operation fails for an I/O-related reason, the exception TOError is raised. This includes situations where
the operation is not defined for some reason, like seek () on a tty device or writing a file opened for reading.

Files have the following methods:

file.close()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the file be
open will raise a ValueError after the file has been closed. Calling c1ose () more than once is allowed.

As of Python 2.5, you can avoid having to call this method explicitly if you use the with statement. For
example, the following code will automatically close f when the with block is exited:

from _ future_ import with_statement # This isn’t required in Python 2.6

with open("hello.txt") as f:
for line in f:
print line,

In older versions of Python, you would have needed to do this to get the same effect:

f = open("hello.txt")
try:
for line in f:
print line,
finally:
f.close()

Note: Not all “file-like” types in Python support use as a context manager for the with statement. If your code
is intended to work with any file-like object, you can use the function contextlib.closing () instead of
using the object directly.

file.flush ()
Flush the internal buffer, like stdio‘s ££1lush (). This may be a no-op on some file-like objects.

Note: flush () does not necessarily write the file’s data to disk. Use f1ush () followed by os. fsync ()
to ensure this behavior.

file.fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the
fcentl module or os. read () and friends.

Note: File-like objects which do not have a real file descriptor should not provide this method!

file.isatty ()
Return True if the file is connected to a tty(-like) device, else False.

Note: If a file-like object is not associated with a real file, this method should not be implemented.

file.next ()
A file object is its own iterator, for example iter (£) returns f (unless f is closed). When a file is used as an
iterator, typically in a for loop (for example, for line in f: print line.strip()),thenext ()

52 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

method is called repeatedly. This method returns the next input line, or raises StopIteration when EOF is
hit when the file is open for reading (behavior is undefined when the file is open for writing). In order to make
a for loop the most efficient way of looping over the lines of a file (a very common operation), the next ()
method uses a hidden read-ahead buffer. As a consequence of using a read-ahead buffer, combining next ()
with other file methods (like readline ()) does not work right. However, using seek () to reposition the file
to an absolute position will flush the read-ahead buffer. New in version 2.3.

file.read([size])
Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the size argument
is negative or omitted, read all data until EOF is reached. The bytes are returned as a string object. An empty
string is returned when EOF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after an EOF is hit.) Note that this method may call the underlying C function fread () more than
once in an effort to acquire as close to size bytes as possible. Also note that when in non-blocking mode, less
data than was requested may be returned, even if no size parameter was given.

Note: This function is simply a wrapper for the underlying fread () C function, and will behave the same in
corner cases, such as whether the EOF value is cached.

file.readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete line). © If the size argument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. When size is not 0, an empty
string is returned only when EOF is encountered immediately.

Note: Unlike stdio‘s fgets (), the returned string contains null characters (* \ 0’) if they occurred in the
input.

file.readlines ([sizehint])
Read until EOF using readline () and return a list containing the lines thus read. If the optional sizehint
argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignore sizehint if it cannot be implemented, or cannot be implemented efficiently.

file.xreadlines ()
This method returns the same thing as iter (£). New in version 2.1.Deprecated since version 2.3: Use for
line in file instead.

file.seek (oﬁset[, whence])
Set the file’s current position, like stdio‘s £seek (). The whence argument is optional and defaults to
0s.SEEK_SET or 0 (absolute file positioning); other values are os.SEEK_CUR or 1 (seek relative to the
current position) and os . SEEK_END or 2 (seek relative to the file’s end). There is no return value.

For example, f.seek (2, os.SEEK_CUR) advances the position by two and f.seek (-3,
os.SEEK_END) sets the position to the third to last.

Note that if the file is opened for appending (mode " a’ or " a+’), any seek () operations will be undone at
the next write. If the file is only opened for writing in append mode (mode ’ a’), this method is essentially
a no-op, but it remains useful for files opened in append mode with reading enabled (mode * a+’). If the file
is opened in text mode (without ' b’), only offsets returned by te11 () are legal. Use of other offsets causes
undefined behavior.

Note that not all file objects are seekable. Changed in version 2.6: Passing float values as offset has been
deprecated.

6 The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. It is also possible (in cases
where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a file ended
in a newline or not (yes this happens!).

5.9. File Objects 53

The Python Library Reference, Release 2.7.4

file.tell()
Return the file’s current position, like stdio‘s ftell ().

Note: On Windows, tell () can return illegal values (after an fgets ()) when reading files with Unix-style
line-endings. Use binary mode (’ rb’) to circumvent this problem.

file.truncate ([size])
Truncate the file’s size. If the optional size argument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that the file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined new
content. Availability: Windows, many Unix variants.

file.write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the
file until the £1ush () or close () method is called.

file.writelines (sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list
of strings. There is no return value. (The name is intended to match readlines (); writelines () does
not add line separators.)

Files support the iterator protocol. Each iteration returns the same result as readline (), and iteration ends when
the readline () method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

file.closed
bool indicating the current state of the file object. This is a read-only attribute; the close () method changes
the value. It may not be available on all file-like objects.

file.encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte strings
using this encoding. In addition, when the file is connected to a terminal, the attribute gives the encoding that
the terminal is likely to use (that information might be incorrect if the user has misconfigured the terminal). The
attribute is read-only and may not be present on all file-like objects. It may also be None, in which case the file
uses the system default encoding for converting Unicode strings. New in version 2.3.

file.errors
The Unicode error handler used along with the encoding. New in version 2.6.

file.mode
The I/O mode for the file. If the file was created using the open () built-in function, this will be the value of
the mode parameter. This is a read-only attribute and may not be present on all file-like objects.

file.name
If the file object was created using open (), the name of the file. Otherwise, some string that indicates the
source of the file object, of the form <. . . >. This is a read-only attribute and may not be present on all file-like
objects.

file.newlines
If Python was built with universal newlines enabled (the default) this read-only attribute exists, and for files
opened in universal newline read mode it keeps track of the types of newlines encountered while reading the
file. The values it can take are *\r’, "\n’, ' \r\n’, None (unknown, no newlines read yet) or a tuple
containing all the newline types seen, to indicate that multiple newline conventions were encountered. For files
not opened in universal newlines read mode the value of this attribute will be None.

54 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

file.softspace
Boolean that indicates whether a space character needs to be printed before another value when using the print
statement. Classes that are trying to simulate a file object should also have a writable soft space attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute.

Note: This attribute is not used to control the print statement, but to allow the implementation of print to
keep track of its internal state.

5.10 memoryview type

New in version 2.7. memoryview objects allow Python code to access the internal data of an object that supports the
buffer protocol without copying. Memory is generally interpreted as simple bytes.

class memoryview (0bj)
Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that support
the buffer protocol include st r and bytearray (but not unicode).

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object obj. For many simple types such as st r and bytearray, an element is a single byte, but other third-
party types may expose larger elements.

len (view) returns the total number of elements in the memoryview, view. The itemsi ze attribute will give
you the number of bytes in a single element.

A memoryview supports slicing to expose its data. Taking a single index will return a single element as a st r
object. Full slicing will result in a subview:

>>> v = memoryview (' abcefg’)
>>> v[1l]

Ibl

>>> v[-1]

"g
>>> v[l:4]

<memory at 0x77ab28>
>>> v[l:4].tobytes ()
"bce’

4

If the object the memoryview is over supports changing its data, the memoryview supports slice assignment:

>>> data = bytearray (’abcefg’)
>>> v = memoryview (data)

>>> v.readonly

False

>>> v[0] = "z’

>>> data

bytearray (b’ zbcefg’)

>>> v[1:4] = 123"

>>> data
bytearray (b’ z123fg’)
>>> v[2] = ’spam’

Traceback (most recent call last):

5.10. memoryview type 55

The Python Library Reference, Release 2.7.4

File "<stdin>", line 1, in <module>
ValueError: cannot modify size of memoryview object

Notice how the size of the memoryview object cannot be changed.
memoryview has two methods:

tobytes ()
Return the data in the buffer as a bytestring (an object of class st r).

>>> m = memoryview ("abc")

>>> m.tobytes ()

14 4

abc

tolist ()
Return the data in the buffer as a list of integers.

>>> memoryview ("abc") .tolist ()
[97, 98, 99]

There are also several readonly attributes available:

format
A string containing the format (in st ruct module style) for each element in the view. This defaults to
"B’ , a simple bytestring.

itemsize
The size in bytes of each element of the memoryview.

shape
A tuple of integers the length of ndim giving the shape of the memory as a N-dimensional array.

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension
of the array.

readonly
A bool indicating whether the memory is read only.

5.11 Context Manager Types

New in version 2.5. Python’s with statement supports the concept of a runtime context defined by a context
manager. This is implemented using two separate methods that allow user-defined classes to define a runtime context
that is entered before the statement body is executed and exited when the statement ends.

The context management protocol consists of a pair of methods that need to be provided for a context manager object
to define a runtime context:

contextmanager.__enter_ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open () to be used as the context expression in a with statement.

56 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

An example of a context manager that returns a related object is the one returned by
decimal.localcontext (). These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context in
the body of the with statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body of the with statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code (such as contextlib.nested) to easily detect whether ornotan ___exit__ ()
method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. See the context 11ib module for some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will
return a context manager implementing the necessary __enter__ () and __exit__ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C APL
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

5.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

5.12.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name
defined in m‘s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather
it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the ___dict___
attribute is not possible (you can write m.___dict___[’a’] = 1, which defines m.a to be 1, but you can’t write
m.__dict__ = {}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a file,
they are written as <module ’os’ from ' /usr/local/lib/pythonX.Y/os.pyc’>.

5.12.2 Classes and Class Instances

See objects and class for these.

5.12. Other Built-in Types 57

The Python Library Reference, Release 2.7.4

5.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

5.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im_self is the object

on which the method operates, and m.im_func is the function implementing the method. Calling m (arg-1,

arg-2, ..., arg-n) is completely equivalent to calling m.im_func (m.im_self, arg-1, arg-2,
., arg-n).

Class instance methods are either bound or unbound, referring to whether the method was accessed through an instance
or a class, respectively. When a method is unbound, its im_self attribute will be None and if called, an explicit
self object must be passed as the first argument. In this case, self must be an instance of the unbound method’s
class (or a subclass of that class), otherwise a TypeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.im_func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set an attribute on a method results in an AttributeError being
raised. In order to set a method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self) :
pass
>>> c = C()
>>> c.method.whoami = "my name is method’ # can’t set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: ’'instancemethod’ object has no attribute ’whoami’
>>> c.method.im_func.whoami = 'my name is method’
>>> c.method.whoami
"my name is method’

See types for more information.

5.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the built-in compile () function and can be extracted from function objects
through their func_code attribute. See also the code module.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement or the
built-in eval () function.

See types for more information.

58 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7.4

5.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function t ype (). There
are no special operations on types. The standard module t ypes defines names for all standard built-in types.

Types are written like this: <type ’int’>.

5.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name).

It is written as None.

5.12.8 The Ellipsis Object

This object is used by extended slice notation (see slicings). It supports no special operations. There is exactly one
ellipsis object, named E11ipsis (a built-in name).

It is written as E1 1ipsis. When in a subscript, it can also be written as . . ., for example seqg[...].

5.12.9 The Notimplemented Object
This object is returned from comparisons and binary operations when they are asked to operate on types they don’t
support. See comparisons for more information.

It is written as Not Implemented.

5.12.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool () can be used to
convert any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written as False and True, respectively.

5.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

5.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.

object.__dict_
A dictionary or other mapping object used to store an object’s (writable) attributes.

object._ _methods_
Deprecated since version 2.2: Use the built-in function dir () to get alist of an object’s attributes. This attribute
is no longer available.

5.13. Special Attributes 59

The Python Library Reference, Release 2.7.4

object._ _members_
Deprecated since version 2.2: Use the built-in function dir () to get alist of an object’s attributes. This attribute
is no longer available.

instance.__class_
The class to which a class instance belongs.

class._ _bases_
The tuple of base classes of a class object.

class._ name

The name of the class or type.
The following attributes are only supported by new-style classes.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored in ___mro___

class.__subclasses_ ()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns a list of
all those references still alive. Example:

>>> int.__ subclasses__ ()
[<type 'bool’>]

60 Chapter 5. Built-in Types

CHAPTER
SIX

BUILT-IN EXCEPTIONS

Exceptions should be class objects. The exceptions are defined in the module exceptions. This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as well as the exceptions
module.

For class exceptions, in a try statement with an except clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes from which it is derived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to the raise statement. If the exception class is derived from the standard root class BaseException,
the associated value is present as the exception instance’s args attribute.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from the Except ion class and not BaseException. More information on defining excep-
tions is available in the Python Tutorial under tut-userexceptions.

The following exceptions are only used as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If str () or unicode () is called on an instance of this class, the representation of
the argument(s) to the instance are returned, or the empty string when there were no arguments. New in version
2.5.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like TOError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class. Changed in version 2.5: Changed to inherit from BaseException.

exception StandardError
The base class for all built-in exceptions except Stoplteration, GeneratorExit,
KeyboardInterrupt and SystemExit. StandardError itself is derived from Exception.

61

The Python Library Reference, Release 2.7.4

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError,FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. lookup ().

exception EnvironmentError

The base class for exceptions that can occur outside the Python system: TOError, OSError. When exceptions
of this type are created with a 2-tuple, the first item is available on the instance’s e rrno attribute (it is assumed
to be an error number), and the second item is available on the st rerror attribute (it is usually the associated
error message). The tuple itself is also available on the args attribute. New in version 1.5.2. When an
EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as above, while
the third item is available on the £ i 1ename attribute. However, for backwards compatibility, the args attribute
contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The errno and
strerror attributes are also None when the instance was created with other than 2 or 3 arguments. In this
last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (input () or raw_input ()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: the file.read () and file.readline () methods return an empty string
when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the ——with—-fpectl option, or the WANT_SIGFPE_HANDLER symbol is defined
in the pyconfig.h file.

exception GeneratorExit
Raise when a generator‘s close () method is called. It directly inherits from BaseException instead of
StandardError since it is technically not an error. New in version 2.5.Changed in version 2.6: Changed to
inherit from BaseException.

exception IOError
Raised when an I/O operation (such as a print statement, the built-in open () function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on exception
instance attributes. Changed in version 2.6: Changed socket .error to use this as a base class.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import fails
to find a name that is to be imported.

62 Chapter 6. Built-in Exceptions

The Python Library Reference, Release 2.7.4

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in function input () or raw_input () is waiting
for input also raise this exception. The exception inherits from BaseException so as to not be accidentally
caught by code that catches Except ion and thus prevent the interpreter from exiting. Changed in version 2.5:
Changed to inherit from BaseException.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’s malloc () function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exception Not ImplementedError
This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exception OSError
This exception is derived from EnvironmentError. Itis raised when a function returns a system-related
error (not for illegal argument types or other incidental errors). The errno attribute is a numeric error code
from errno, and the strerror attribute is the corresponding string, as would be printed by the C function
perror (). See the module errno, which contains names for the error codes defined by the underlying
operating system.

For exceptions that involve a file system path (such as chdir () or unlink ()), the exception instance will
contain a third attribute, £i lename, which is the file name passed to the function. New in version 1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raise MemoryError than give up) and for most operations with plain integers,
which return a long integer instead. Because of the lack of standardization of floating point exception handling
in C, most floating point operations also aren’t checked.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref .proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weakref module. New in version 2.2: Previously known as the weakref.ReferenceError
exception.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exception StopIteration
Raised by an iterator‘s next () method to signal that there are no further values. This is derived from

63

The Python Library Reference, Release 2.7.4

Exception rather than StandardError, since this is not considered an error in its normal application.
New in version 2.2.

exception SyntaxError

Raised when the parser encounters a syntax error. This may occur in an import statement, in an exec
statement, in a call to the built-in function eval () or input (), or when reading the initial script or standard
input (also interactively).

Instances of this class have attributes £ilename, 1ineno, of fset and text for easier access to the details.
str () of the exception instance returns only the message.

exception IndentationError

Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError

Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError

Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of
the Python interpreter (sys . version; itis also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exception SystemExit

This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C’s exit () function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting to None).
Also, this exception derives directly from BaseException and not StandardError, since it is not techni-
cally an error.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a call to fork ()).

The exception inherits from BaseException instead of StandardError or Exception so that it is not
accidentally caught by code that catches Except ion. This allows the exception to properly propagate up and
cause the interpreter to exit. Changed in version 2.5: Changed to inherit from BaseException.

exception TypeError

Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

exception UnboundLocalError

Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass of NameError. New in version 2.0.

exception UnicodeError

Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError has attributes that describe the encoding or decoding error. For example,
err.object [err.start:err.end] gives the particular invalid input that the codec failed on.

64

Chapter 6. Built-in Exceptions

The Python Library Reference, Release 2.7.4

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in ob ject.

end
The index after the last invalid data in ob ject.

New in version 2.0.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError. New in
version 2.3.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError. New in
version 2.3.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError. New in
version 2.3.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

exception VMSError
Only available on VMS. Raised when a VMS-specific error occurs.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to an errno
value. The winerror and strerror values are created from the return values of the GetLastError ()
and FormatMessage () functions from the Windows Platform API. The errno value maps the winerror
value to corresponding errno.h values. This is a subclass of OSError. New in version 2.0.Changed in
version 2.5: Previous versions put the GetLastError () codes into errno.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax

65

The Python Library Reference, Release 2.7.4

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports. New in version 2.5.

exception UnicodeWarning
Base class for warnings related to Unicode. New in version 2.5.

6.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException

+-— SystemExit

+—— KeyboardInterrupt
+-— GeneratorExit

+-— Exception
+-— StopIlteration
+-— StandardError
| +-— BufferError
| +—— ArithmeticError
| \ +-— FloatingPointError
| \ +-— OverflowError
| \ +—— ZeroDivisionError
| +—— AssertionError
| +-— AttributeError
| +—— EnvironmentError
| | +—— IOError
| | +—— OSError
| \ +-— WindowsError (Windows)
| \ +-— VMSError (VMS)
| +—— EOFError
| +—— ImportError
| +-—— LookupError
| | +—-— IndexError
| | +—— KeyError
| +-— MemoryError
| +—— NameError
| \ +—— UnboundLocalError
| +-— ReferenceError
| +—— RuntimeError
| | +—— NotImplementedError
| +—— SyntaxError
| \ +—— IndentationError
| \ +-— TabError
| +-— SystemError
| +—— TypeError
| +-— ValueError
| +-— UnicodeError
| +—-— UnicodeDecodeError
66 Chapter 6. Built-in Exceptions

The Python Library Reference, Release 2.7.4

| +-— UnicodeEncodeError
| +-— UnicodeTranslateError
+-— Warning

+-— DeprecationWarning

+-— PendingDeprecationWarning

+-— RuntimeWarning

+-— SyntaxWarning

+-— UserWarning

+-— FutureWarning
+-—— ImportWarning
+-— UnicodeWarning

+-— BytesWarning

6.1. Exception hierarchy 67

The Python Library Reference, Release 2.7.4

68 Chapter 6. Built-in Exceptions

CHAPTER
SEVEN

STRING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations.

In addition, Python’s built-in string classes support the sequence type methods described in the Sequence Types —
str; unicode, list, tuple, bytearray, buffer, xrange section, and also the string-specific methods described in the String
Methods section. To output formatted strings use template strings or the % operator described in the String Formatting
Operations section. Also, see the re module for string functions based on regular expressions.

7.1 string — Common string operations

Source code: Lib/string.py

The st ring module contains a number of useful constants and classes, as well as some deprecated legacy functions
that are also available as methods on strings. In addition, Python’s built-in string classes support the sequence type
methods described in the Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange section, and also the
string-specific methods described in the String Methods section. To output formatted strings use template strings or
the % operator described in the String Formatting Operations section. Also, see the re module for string functions
based on regular expressions.

7.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters " abcdefghi jklmnopgrstuvwxyz’ . This value is not locale-dependent and will not
change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ' . This value is not locale-dependent and will not
change.

string.digits
The string ' 0123456789".

string.hexdigits
The string 0123456789%abcde fABCDEF’ .

69

http://hg.python.org/cpython/file/2.7/Lib/string.py

The Python Library Reference, Release 2.7.4

string.letters
The concatenation of the strings 1owercase and uppercase described below. The specific value is locale-
dependent, and will be updated when locale.setlocale () is called.

string.lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
"abcdefghijklmnopgrstuvwxyz’. The specific value is locale-dependent, and will be updated when
locale.setlocale () is called.

string.octdigits
The string ' 01234567

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

string.printable
String of characters which are considered printable. This is a combination of digits, letters,
punctuation, and whitespace.

string.uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string
" ABCDEFGHIJKLMNOPQRSTUVWXYZ’ . The specific value is locale-dependent, and will be updated when
locale.setlocale () is called.

string.whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab.

7.1.2 String Formatting

New in version 2.6. The built-in str and unicode classes provide the ability to do complex variable substitutions and
value formatting via the str. format () method described in PEP 3101. The Formatter class in the string
module allows you to create and customize your own string formatting behaviors using the same implementation as
the built-in format () method.

class string.Formatter
The Formatter class has the following public methods:

format (format_string, *args, **kwargs)
format () is the primary API method. It takes a format string and an arbitrary set of positional and
keyword arguments. format () is just a wrapper that calls vformat ().

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary as
individual arguments using the xargs and x+kwargs syntax. vformat () does the work of breaking
up the format string into character data and replacement fields. It calls the various methods described
below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, conver-
sion). This is used by vformat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively), then literal_text
will be a zero-length string. If there is no replacement field, then the values of field_name, format_spec
and conversion will be None.

70 Chapter 7. String Services

http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 2.7.4

get_field (field_name, args, kwargs)
Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as
“O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key
has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer, it
represents the index of the positional argument in args; if it is a string, then it represents a named argument
in kwargs.

The args parameter is set to the list of positional arguments to vformat (), and the kwargs parameter is
set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘O.name’ would cause get_value () to be called with a key ar-
gument of 0. The name attribute will be looked up after get_value () returns by calling the built-in
getattr () function.

If the index or keyword refers to an item that does not exist, then an ITndexError or KeyError should
be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The set
of unused args can be calculated from these parameters. check_unused_args () is assumed to raise
an exception if the check fails.

format_field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that sub-
classes can override it.

convert_ field (value, conversion)
Converts the value (returned by get_field ()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘s’ (str), ‘r” (repr) and ‘a’ (ascii) conversion types.

7.1.3 Format String Syntax
The str.format () method and the Formatter class share the same syntax for format strings (although in the
case of Formatter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doubling: { { and } }.

The grammar for a replacement field is as follows:

“{” [field_name] [”!” conversion] [":"” Wy

replacement_field format_spec]

field_name

arg_name (”.” attribute_name | “[” element_index “]”)

arg_name = [identifier | integer]
attribute_name = identifier
element_index = integer | index_string

index_string <any source character except “]”> +
conversion “r “s

format_spec = <described in the next section>

”

” |

7.1. string — Common string operations 71

http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 2.7.4

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ’ !/, and a format_spec, which is preceded by a colon
’ . 7. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to
a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names
in a format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ...
will be automatically inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify
arbitrary dictionary keys (e.g., the strings * 10’ or ’ : —]) within a format string. The arg_name can be followed by
any number of index or attribute expressions. An expression of the form ’ . name’ selects the named attribute using
getattr (), while an expression of the form ’ [index]’ does an index lookup using __getitem__ (). Changed
in version 2.7: The positional argument specifiers can be omitted, so * {} {}’ isequivalentto ' {0} {1}’. Some
simple format string examples:

"First, thou shalt count to {0}" # References first positional argument

"Bring me a {}" # Implicitly references the first positional argument
"From {} to {}" # Same as "From {0} to {1}"

"My quest is {name}" # References keyword argument ’name’

"Weight in tons {0.weight}" # ’weight’ attribute of first positional arg

"Units destroyed: {players[0]}" # First element of keyword argument ’‘players’.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format__ () method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before calling __ format__ (),
the normal formatting logic is bypassed.

Two conversion flags are currently supported: ’ ! s’ whichcalls str () on the value, and ’ ! r’ which calls repr ().
Some examples:

"Harold’s a clever {0O!s}™" # Calls str() on the argument first
"Bring out the holy {name!r}" # Calls repr() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields can contain
only a field name; conversion flags and format specifications are not allowed. The replacement fields within the
format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to be
dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual
values are presented (see Format String Syntax). They can also be passed directly to the built-in format () function.
Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

72 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

A general convention is that an empty format string (" ") produces the same result as if you had called st r () on the
value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

[.precision] [type]

format_spec [[filllalign] [sign] [#][0] [width]

[,1]
<a character other than ‘{' or ‘}’>

fill =

align — \\<II | \\>II ‘ \\:II | WA

Sign — \\+I’ | N __ 7 ‘ ” w

width = integer

precision = integer

type ::= \\bl’ | \\cll \\dl’ I \\ell | \\EII I \\fl’ | \\FII I \\gll | \\GII \\nll

The fill character can be any character other than ‘{‘ or ‘}’. The presence of a fill character is signaled by the character
following it, which must be one of the alignment options. If the second character of format_spec is not a valid
alignment option, then it is assumed that both the fill character and the alignment option are absent.

The meaning of the various alignment options is as follows:

Op- | Meaning
tion
"<’ | Forces the field to be left-aligned within the available space (this is the default for most
objects).

">’ | Forces the field to be right-aligned within the available space (this is the default for numbers).
"=’ | Forces the padding to be placed after the sign (if any) but before the digits. This is used for
printing fields in the form ‘+000000120°. This alignment option is only valid for numeric

types.
7 ~7 | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning

tion

T4 indicates that a sign should be used for both positive as well as negative numbers.

r—r indicates that a sign should be used only for negative numbers (this is the default behavior).

space indicates that a leading space should be used on positive numbers, and a minus sign on
negative numbers.

The ” #” option is only valid for integers, and only for binary, octal, or hexadecimal output. If present, it specifies that
the output will be prefixed by * 0b’, ’ 0o’, or * 0x’, respectively.

The ', ’ option signals the use of a comma for a thousands separator. For a locale aware separator, use the ’ n’
integer presentation type instead. Changed in version 2.7: Added the ’ ,’ option (see also PEP 378). width is a
decimal integer defining the minimum field width. If not specified, then the field width will be determined by the
content.

Preceding the width field by a zero (* 0’) character enables sign-aware zero-padding for numeric types. This is
equivalent to a fill character of / 0’ with an alignment type of ' =" .

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating
point value formatted with * £/ and ’ F’, or before and after the decimal point for a floating point value formatted with
g’ or ' G’ . For non-number types the field indicates the maximum field size - in other words, how many characters
will be used from the field content. The precision is not allowed for integer values.

Finally, the rype determines how the data should be presented.

7.1. string — Common string operations 73

http://www.python.org/dev/peps/pep-0378

The Python Library Reference, Release 2.7.4

The available string presentation types are:

Type | Meaning
rs’ String format. This is the default type for strings and may be omitted.
None | The sameas’s’.

The available integer presentation types are:

Type| Meaning

"b’ | Binary format. Outputs the number in base 2.

"¢’ | Character. Converts the integer to the corresponding unicode character before printing.

"d’ | Decimal Integer. Outputs the number in base 10.

"o’ | Octal format. Outputs the number in base 8.

"%’ | Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.
"X’ | Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.
"n’ | Number. This is the same as * d’, except that it uses the current locale setting to insert the
appropriate number separator characters.

None | The same as " d’ .

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed
below (except ' n’ and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for floating point and decimal values are:

Type Meaning

"e’ | Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the
exponent.

"E’ | Exponent notation. Same as ' e’ except it uses an upper case ‘E’ as the separator character.
" £/ | Fixed point. Displays the number as a fixed-point number.

"F’ | Fixed point. Same as " £’ .

" g’ | General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on
its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation type ' e’
and precision p—1 would have exponent exp. Then if -4 <= exp < p, the number is
formatted with presentation type ’ £/ and precision p—1-exp. Otherwise, the number is
formatted with presentation type ’ e’ and precision p—1. In both cases insignificant trailing
zeros are removed from the significand, and the decimal point is also removed if there are no
remaining digits following it.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf,
—-inf, 0, -0 and nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1.

"G’ | General format. Same as ' g’ except switches to / E/ if the number gets too large. The
representations of infinity and NaN are uppercased, too.

"n’ | Number. This is the same as ’ g’ , except that it uses the current locale setting to insert the
appropriate number separator characters.

%’ | Percentage. Multiplies the number by 100 and displays in fixed (* £) format, followed by a
percent sign.

None The same as ' g’ .

Format examples

This section contains examples of the new format syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old $-formatting, with the addition of the { } and with : used instead
of %. For example, ' $03.2£’ can be translated to ’ { : 03.2£}".

74 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

The new format syntax also supports new and different options, shown in the follow examples.
Accessing arguments by position:

>>> {0}, {1}, {2} .format('a’, "b’, ’'c’)

"a, b, c’

>>> " {}, {}, {} .format('a’, "b’, ’'c’) # 2.7+ only
"a, b, c’

>>> {2}, {1}, {0} .format("a’, "b’, ’'c’)

"c, b, a’

>>> {2}, {1}, {0}’ .format (" abc’) # unpacking argument sequence
"c, b, a’
>>> {0} {1} {0}’ .format (' abra’, ’'cad’) # arguments’ indices can be repeated

"abracadabra’

Accessing arguments by name:

>>> ’Coordinates: {latitude}, {longitude}’.format (latitude=’37.24N’, longitude='-115.81W")

"Coordinates: 37.24N, -115.81W’

>>> coord = {’latitude’: '37.24N’, ’longitude’: ’-115.81W’}
>>> ’Coordinates: {latitude}, {longitude}’.format (x+xcoord)
"Coordinates: 37.24N, -115.81W’

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> (’The complex number {0} is formed from the real part {O.real} '
"and the imaginary part {0.imag}.’).format (c)

"The complex number (3-57j) is formed from the real part 3.0 and the imaginary part -5.0.7

>>> class Point (object):
def _ _init__ (self, x, y):
self.x, self.y = x, vy
def _ str_ (self):
return ’'Point ({self.x}, {self.y})’.format (self=self)

>>> str (Point (4, 2))
"Point (4, 2)’

Accessing arguments’ items:

>>> coord = (3, 5)
>> 'X: {0[0]1}; Y: {O0[1]}".format (coord)
'X: 3; Y: 57

Replacing %s and %$r:

>>> "repr () shows quotes: {!r}; str() doesn’t: {!s}".format (’'testl’, ’'test2’)
"repr () shows quotes: ’"testl’; str() doesn’t: test2"

Aligning the text and specifying a width:

>>> / {:<30}" .format (' left aligned’)

"left aligned !

>>> 7 {:>30}" .format (' right aligned’)

! right aligned’

>>> 7 {:730}" .format (' centered’)

! centered !

>>> " {:+x730}’ .format (' centered’) # use '+’ as a fill char
FdxxkkkhrrxkkrCcenteredcrrx,xckkxxkkx’

7.1. string — Common string operations 75

The Python Library Reference, Release 2.7.4

Replacing $+£, $—f,and $ f and specifying a sign:

>>> " {:+f}; {:+f}" .format (3.14, -3.14) # show it always

"+3.140000; -3.140000"

>>> " {: f}; {: £}’ .format(3.14, -3.14) # show a space for positive numbers

" 3.140000; -3.140000"

>>> " {:-f}; {:—f}’ . format(3.14, -3.14) # show only the minus —- same as ’{:f};

3.140000; -3.140000"

Replacing $x and %o and converting the value to different bases:

>>> # format also supports binary numbers
>>> "int: {0:d}; hex: {0:x}; oct: {0:0};

bin: {0:b}".format (42)

"int: 42; hex: 2a; oct: 52; bin: 101010’

>>> # with 0x, 0o, or 0b as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0:#0}; bin: {O0:#b}".format (42)
"int: 42; hex: 0x2a; oct: 0052; bin: 00101010’

Using the comma as a thousands separator:

>>> ' {:,}’ . format (1234567890)
"1,234,567,890'

Expressing a percentage:

>>> points = 19.5
>>> total = 22

>>> ’'Correct answers: {:.2%}’.format (points/total)

"Correct answers: 88.64%'
Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12,
>>> 7 {:5Y-%m-%d SH:%M:%S}’ .format (d)
72010-07-04 12:15:587

Nesting arguments and more complex examples:

>>> for align, text in zip('<*>’, [’'left’,
"{0:{fill}{align}l6}’ .format (text,

Fleftii<i<i<gg<!
’ /\/\/\/\Acenter/\/\/\/\/\l
">>>>>>>>>>>right’
>>>

>>> octets = [192, 168, 0, 1]

15, 58)

"center’,

"right’]):

fill=align, align=align)

>>> 7 {:02X}{:02X}{:02X}{:02X}’ .format (xoctets)

"COAB0001"

>>> int (_, 16)

3232235521

>>>

>>> width = 5

>>> for num in range(5,12):
for base in ’'dXob’:

print ’ {0:{width}{base}}’.format (num,

print

5 5 5 101

base=base, width=width),

76

Chapter 7. String Services

{:£}7

The Python Library Reference, Release 2.7.4

6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

7.1.4 Template strings

New in version 2.4. Templates provide simpler string substitutions as described in PEP 292. Instead of the normal

%-based substitutions, Templates support $-based substitutions, using the following rules:

e $$ is an escape; it is replaced with a single $.

e Sidentifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" must spell a Python identifier. The first non-identifier character after the $ character termi-

nates this placeholder specification.

e ${identifier} is equivalent to Sidentifier. Itis required when valid identifier characters follow the

placeholder but are not part of the placeholder, such as "$ {noun}ification".
Any other appearance of $ in the string will result in a ValueError being raised.

The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (template)

The constructor takes a single argument which is the template string.

substitute (mapping[, **kws])

Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kws are given and there are duplicates, the

placeholders from kws take precedence.

safe_substitute (mapping[, **kws])

Like substitute (), except that if placeholders are missing from mapping and kws, instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute (), any other appearances of the $ will simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries to
return a usable string instead of raising an exception. In another sense, safe_substitute () may be
anything other than safe, since it will silently ignore malformed templates containing dangling delimiters,

unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template

This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but

read-only access is not enforced.
Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template (’ $who likes Swhat’)

>>> s.substitute (who="tim’, what=’'kung pao’)
"tim likes kung pao’

>>> d = dict (who="tim’)

>>> Template (' Give $who $1007) .substitute (d)
Traceback (most recent call last):

7.1. string — Common string operations

77

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 2.7.4

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template (' Swho likes S$what’) .substitute (d)
Traceback (most recent call last):

KeyError: ’what’
>>> Template (' Swho likes S$what’) .safe_substitute (d)
"tim likes Swhat’

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

* delimiter — This is the literal string describing a placeholder introducing delimiter. The default value is $. Note
that this should not be a regular expression, as the implementation will call re.escape () on this string as
needed.

* idpattern — This is the regular expression describing the pattern for non-braced placeholders (the braces will be
added automatically as appropriate). The default value is the regular expression [_a-z] [_a-z0-9] *.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

* escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

* invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

7.1.5 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

string.capwords (s[, sep])
Split the argument into words using str.split (), capitalize each word using str.capitalize (), and
join the capitalized words using str. join (). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.

string.maketrans (from, to)
Return a translation table suitable for passing to t ranslate (), that will map each character in from into the
character at the same position in fo; from and to must have the same length.

Note: Don’t use strings derived from lowercase and uppercase as arguments; in some locales, these
don’t have the same length. For case conversions, always use str.lower () and str.upper ().

7.1.6 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see section String Methods
for more information on those. You should consider these functions as deprecated, although they will not be removed
until Python 3. The functions defined in this module are:

78 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

string.atof (s)
Deprecated since version 2.0: Use the £ 1oat () built-in function. Convert a string to a floating point number.
The string must have the standard syntax for a floating point literal in Python, optionally preceded by a sign (+
or —). Note that this behaves identical to the built-in function f1oat () when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

string.atoi (s[, base])
Deprecated since version 2.0: Use the int () built-in function. Convert string s to an integer in the given base.
The string must consist of one or more digits, optionally preceded by a sign (+ or —). The base defaults to 10. If
itis 0, a default base is chosen depending on the leading characters of the string (after stripping the sign): 0x or
0X means 16, 0 means 8, anything else means 10. If base is 16, a leading 0x or 0X is always accepted, though
not required. This behaves identically to the built-in function int () when passed a string. (Also note: for a
more flexible interpretation of numeric literals, use the built-in function eval ().)

string.atol (s[, base])
Deprecated since version 2.0: Use the 1ong () built-in function. Convert string s to a long integer in the given
base. The string must consist of one or more digits, optionally preceded by a sign (+ or —). The base argument
has the same meaning as for atoi (). A trailing 1 or L is not allowed, except if the base is 0. Note that when
invoked without base or with base set to 10, this behaves identical to the built-in function 1ong () when passed
a string.

string.capitalize (word)
Return a copy of word with only its first character capitalized.

string.expandtabs (s[, tabsize])
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

string. find (s, sub[, start[, end]])
Return the lowest index in s where the substring sub is found such that sub is wholly contained in
s[start:end]. Return -1 on failure. Defaults for start and end and interpretation of negative values is
the same as for slices.

string.rfind (s, sub[, start[, end]])
Like £ind () but find the highest index.

string.index (s, sub[, start[, end]])
Like find () butraise ValueError when the substring is not found.

string.rindex (s, sub[, start[, end]])
Like r£ind () butraise ValueError when the substring is not found.

string.count (s, sub[, start[, end]])
Return the number of (non-overlapping) occurrences of substring sub in string s [start :end]. Defaults for
start and end and interpretation of negative values are the same as for slices.

string.lower (s)
Return a copy of s, but with upper case letters converted to lower case.

string.split (s[, sep[, maxsplit]])
Return a list of the words of the string s. If the optional second argument sep is absent or None, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argument sep is present and not None, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string. If

7.1. string — Common string operations 79

The Python Library Reference, Release 2.7.4

maxsplit is given, at most maxsplit number of splits occur, and the remainder of the string is returned as the final
element of the list (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1,
then there is no limit on the number of splits (all possible splits are made).

The behavior of split on an empty string depends on the value of sep. If sep is not specified, or specified as
None, the result will be an empty list. If sep is specified as any string, the result will be a list containing one
element which is an empty string.

string.rsplit (s[, sep[, maxsplit]])
Return a list of the words of the string s, scanning s from the end. To all intents and purposes, the resulting list
of words is the same as returned by split (), except when the optional third argument maxsplit is explicitly
specified and nonzero. If maxsplit is given, at most maxsplit number of splits — the rightmost ones — occur, and
the remainder of the string is returned as the first element of the list (thus, the list will have at most maxsplit+1
elements). New in version 2.4.

string.splitfields (s[, sep[, maxsplit]])
This function behaves identically to split (). (Inthe past, split () was only used with one argument, while
splitfields () was only used with two arguments.)

string. join (words[, sep])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep is a single
space character. It is always true that string. join (string.split (s, sep), sep) equalss.

string.joinfields (words[, sep])
This function behaves identically to join (). (In the past, join () was only used with one argument, while
joinfields () was only used with two arguments.) Note that there isno joinfields () method on string
objects; use the join () method instead.

string.lstrip (s[, chars])
Return a copy of the string with leading characters removed. If chars is omitted or None, whitespace characters
are removed. If given and not None, chars must be a string; the characters in the string will be stripped from
the beginning of the string this method is called on. Changed in version 2.2.3: The chars parameter was added.
The chars parameter cannot be passed in earlier 2.2 versions.

string.rstrip (s[, chars])
Return a copy of the string with trailing characters removed. If chars is omitted or None, whitespace characters
are removed. If given and not None, chars must be a string; the characters in the string will be stripped from
the end of the string this method is called on. Changed in version 2.2.3: The chars parameter was added. The
chars parameter cannot be passed in earlier 2.2 versions.

string.strip (s[, chars])
Return a copy of the string with leading and trailing characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string will be
stripped from the both ends of the string this method is called on. Changed in version 2.2.3: The chars parameter
was added. The chars parameter cannot be passed in earlier 2.2 versions.

string.swapcase (s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

string.translate (s, table[, deletechars])
Delete all characters from s that are in deletechars (if present), and then translate the characters using table,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal. If
table is None, then only the character deletion step is performed.

string.upper (s)
Return a copy of s, but with lower case letters converted to upper case.

string.ljust (s, width[,ﬁllchar])
string.rjust (s, width[,ﬁllchar])

80 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

string.center (s, width[,ﬁllchar])
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at least width characters wide, created by padding the string s with the character fillchar (default is
a space) until the given width on the right, left or both sides. The string is never truncated.

string.z£ill (s, width)
Pad a numeric string s on the left with zero digits until the given width is reached. Strings starting with a sign
are handled correctly.

string.replace (s, old, new[, maxreplace])
Return a copy of string s with all occurrences of substring old replaced by new. If the optional argument
maxreplace is given, the first maxreplace occurrences are replaced.

7.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Both patterns and strings
to be searched can be Unicode strings as well as 8-bit strings.

Regular expressions use the backslash character (* \’) to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write * \\\\’ as the pattern
string, because the regular expression must be \ \, and each backslash must be expressed as \ \ inside a regular Python
string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with /. So r"\n" is a two-character string containing ’ \’ and ’ n’, while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as module-level functions and
RegexObject methods. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

See Also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The second
edition of the book no longer covers Python at all, but the first edition covered writing good regular expression
patterns in great detail.

7.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string
pg will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

7.2. re — Regular expression operations 81

The Python Library Reference, Release 2.7.4

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like *A’, "a’, or
" 0', are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so
last matches the string * Last’. (In the rest of this section, we’ll write RE’sinthis special style, usually
without quotes, and strings to be matched / in single quotes’.)

Some characters, like |7 or ’ (’, are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted. Regular expression pattern strings may not contain
null bytes, but can specify the null byte using the \number notation, e.g., * \x00".

The special characters are:

(Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline.

(Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each newline.

’$’ Matches the end of the string or just before the newline at the end of the string, and in MULT ILINE mode also
matches before a newline. foo matches both ‘foo’” and ‘foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo.$ in ' fool\nfoo2\n’ matches ‘foo2’ normally, but
‘fool” in MULTILINE mode; searching for a single $ in * foo\n’ will find two (empty) matches: one just
before the newline, and one at the end of the string.

"%’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab+ will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

"+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

"2’ Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

*?,+?,?2? The "+, "+’ ,and ’ 2’ qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. x> is matched against * <H1>title</H1>’, it will match the entire
string, and not just / <H1>’. Adding ’ 2’ after the qualifier makes it perform the match in non-greedy or
minimal fashion; as few characters as possible will be matched. Using . +? in the previous expression will
match only ’ <H1>"'.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For example, a { 6} will match exactly six ’ a’ characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a{3, 5} will match from 3 to 5 " a’ characters. Omitting m specifies
a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4, }b will match
aaaab or a thousand ’ a’ characters followed by a b, but not aaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

{m, n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string ' aaaaaa’,a{3,5} will match 5 ” a’ characters, while a {3, 5} ? will only match 3 characters.

"\’ Either escapes special characters (permitting you to match characters like ’ «’, * 2, and so forth), or signals a
special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. In a set:

 Characters can be listed individually, e.g. [amk] will match "a’, "m’,or " k’.

82 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

» Ranges of characters can be indicated by giving two characters and separating them by a / -’ , for example
[a—z] will match any lowercase ASCII letter, [0—-5] [0-9] will match all the two-digits numbers from
00to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If - is escaped (e.g. [a\-z]) orifit’s
placed as the first or last character (e.g. [a—1), it will match a literal " -’ .

» Special characters lose their special meaning inside sets. For example, [(+x)] will match any of the
literal characters ” (7, ’+’,’x",or’)"’.

¢ Character classes such as \w or \'S (defined below) are also accepted inside a set, although the characters
they match depends on whether LOCALE or UNICODE mode is in force.

* Characters that are not within a range can be matched by complementing the set. If the first character of
the set is * ~/, all the characters that are not in the set will be matched. For example, [~5] will match
any character except /' 5/, and [~"] will match any character except * ~’. ~ has no special meaning if
it’s not the first character in the set.

* To match a literal ”]’ inside a set, precede it with a backslash, or place it at the beginning of the set. For
example, both [() [\]1{}] and [] () [{}] will both match a parenthesis.

"|” A|B,where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by the ’ |’ in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated by ’ |/ are tried from left to right. When one pattern completely
matches, that branch is accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the ’ | 7 operator is never greedy. To match a literal ’ | 7, use
\ |, or enclose it inside a character class, asin [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \number special sequence, described below. To match the literals * (* or ’)’, use \ (or \), or
enclose them inside a character class: [(1 [)].

(?...) This is an extension notation (a ’ ?’ following a ’ (’ is not meaningful otherwise). The first character
after the * 2’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group; (?P<name>. . .) isthe only exception to this rule. Following are the currently supported
extensions.

(?iLmsux) (One or more letters from the set 7 1i’, "L”, ‘m’, "s’, "u’, ' x’.) The group matches the empty
string; the letters set the corresponding flags: re . I (ignore case), re . L (locale dependent), re . M (multi-line),
re .S (dot matches all), re.U (Unicode dependent), and re.X (verbose), for the entire regular expression.
(The flags are described in Module Contents.) This is useful if you wish to include the flags as part of the
regular expression, instead of passing a flag argument to the re . compile () function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression string, or
after one or more whitespace characters. If there are non-whitespace characters before the flag, the results are
undefined.

(?:...) A non-capturing version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the group cannot be retrieved after performing a match or referenced later
in the pattern.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible within the rest
of the regular expression via the symbolic group name name. Group names must be valid Python identifiers, and
each group name must be defined only once within a regular expression. A symbolic group is also a numbered
group, just as if the group were not named. So the group named id in the example below can also be referenced
as the numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_]\wx), the group can be referenced by its name in argu-
ments to methods of match objects, such as m.group (’ id’) orm.end (’ 1d’), and also by name in the
regular expression itself (using (?P=1d)) and replacement text given to . sub () (using \g<id>).

7.2. re — Regular expression operations 83

The Python Library Reference, Release 2.7.4

(?P=name) Matches whatever text was matched by the earlier group named name.
(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matchesif ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example, Isaac (?=Asimov) will match ’ Isaac ' only ifit’s followed by ' Asimov’.

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac
(?!'Asimov) will match ' Isaac ’ only if it’s not followed by ’ Asimov’ .

(?<=...) Matches if the current position in the string is preceded by a match for ... that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc) def will find a match in abcde £, since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must
only match strings of some fixed length, meaning that abc or a | b are allowed, but ax and a{3, 4} are not.
Note that patterns which start with positive lookbehind assertions will not match at the beginning of the string
being searched; you will most likely want to use the search () function rather than the match () function:

>>> import re

>>> m = re.search(’ (?<=abc)def’, ’"abcdef’)
>>> m.group (0)
"def’

This example looks for a word following a hyphen:

>>> m = re.search(’ (?<=-)\wt+’, ’spam-egg’)
>>> m.group (0)
4 eggl
(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative

lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(? (id/name) yes—-pattern|no-pattern) Will try to match with yes—-pattern if the group with given
id or name exists, and with no—pattern if it doesn’t. no—pattern is optional and can be omitted. For
example, (<) ? (\w+@\w+ (2:\.\w+)+) (? (1)>) is a poor email matching pattern, which will match with
’<user@host.com>’ as well as ' user@host .com’, but not with / <user@host .com’. New in ver-
sion 2.4.

The special sequences consist of 7 \” and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example, \ $ matches the character ’ $” .

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1 matches ' the the’ or 55 55’, but not ' the end’ (note the space after the group). This
special sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or number
is 3 octal digits long, it will not be interpreted as a group match, but as the character with octal value number.
Inside the ” [* and ’] of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore character. Note that formally, \b is defined as the boundary between a \w and a \W character
(or vice versa), or between \w and the beginning/end of the string, so the precise set of characters deemed to be
alphanumeric depends on the values of the UNICODE and LOCALE flags. For example, r’ \bfoo\b’ matches
"foo’, " foo.’,’ (foo)’, "bar foo baz’ butnot’foobar’ or ' foo3’. Inside a character range,
\Db represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This means that r’ py\B’
matches ' python’, 'py3’, "py2’,butnot "py’, "py.’,or ' py!’. \B is just the opposite of \b, so is
also subject to the settings of LOCALE and UNICODE.

84 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

\d When the UNICODE flag is not specified, matches any decimal digit; this is equivalent to the set [0-9]. With
UNICODE, it will match whatever is classified as a decimal digit in the Unicode character properties database.

\D When the UNICODE flag is not specified, matches any non-digit character; this is equivalent to the set [*0-9].
With UNICODE, it will match anything other than character marked as digits in the Unicode character properties
database.

\s When the UNTCODE flag is not specified, it matches any whitespace character, this is equivalent to the set [
\t\n\r\f\v]. The LOCALE flag has no extra effect on matching of the space. If UNICODE is set, this will
match the characters [\t\n\r\£f£\v] plus whatever is classified as space in the Unicode character properties
database.

\S When the UNICODE flags is not specified, matches any non-whitespace character; this is equivalent to the set [*
\t\n\r\f\v] The LOCALE flag has no extra effect on non-whitespace match. If UNICODE is set, then any
character not marked as space in the Unicode character properties database is matched.

\w When the LOCALE and UNICODE flags are not specified, matches any alphanumeric character and the underscore;
this is equivalent to the set [a-zA-7Z0-9_]. With LOCALE, it will match the set [0-9_] plus whatever
characters are defined as alphanumeric for the current locale. If UNICODE is set, this will match the characters
[0-9_] plus whatever is classified as alphanumeric in the Unicode character properties database.

\W When the LOCALE and UNICODE flags are not specified, matches any non-alphanumeric character; this is equiv-
alent to the set ["a—-zA-Z0-9_]1. With LOCALE, it will match any character not in the set [0—9_], and not
defined as alphanumeric for the current locale. If UNICODE is set, this will match anything other than [0-9_]
plus characters classied as not alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

If both LOCALE and UNICODE flags are included for a particular sequence, then LOCALE flag takes effect first
followed by the UNICODE.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \x
AN\

(Note that \Db is used to represent word boundaries, and means “backspace” only inside character classes.)

Octal escapes are included in a limited form: If the first digit is a 0, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

7.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

re.compile (pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match () and search () methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

7.2. re — Regular expression operations 85

The Python Library Reference, Release 2.7.4

is equivalent to
result = re.match(pattern, string)

but using re.compile () and saving the resulting regular expression object for reuse is more efficient when
the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.match (), re.search() or
re.compile () are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

re .DEBUG
Display debug information about compiled expression.

re.I

re.IGNORECASE
Perform case-insensitive matching; expressions like [A-Z] will match lowercase letters, too. This is not af-
fected by the current locale.

re.L

re.LOCALE
Make \w, \W, \b, \B, \'s and \ S dependent on the current locale.

re.M

re .MULTILINE
When specified, the pattern character 7~ matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character * $’ matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, ~’ matches only at the beginning
of the string, and * $’ only at the end of the string and immediately before the newline (if any) at the end of the
string.

re.S

re .DOTALL
Make the ’ .’ special character match any character at all, including a newline; without this flag, * . will
match anything except a newline.

re.U

re.UNICODE
Make \w, \W, \b, \B, \d, \D, \'s and \'S dependent on the Unicode character properties database. New in
version 2.0.

re.X

re .VERBOSE
This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored, except
when in a character class or preceded by an unescaped backslash, and, when a line contains a ’ #’ neither in a
character class or preceded by an unescaped backslash, all characters from the leftmost such ’ #’ through the
end of the line are ignored.
That means that the two following regular expression objects that match a decimal number are functionally
equal:
a = re.compile(r"""\d + # the integral part

\. # the decimal point
\d » # some fractional digits""", re.X)

b = re.compile (r"\d+\.\d+")

86 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

re.search (pattern, string, flags=0)
Scan through string looking for a location where the regular expression pattern produces a match, and return a

corresponding Mat chOb ject instance. Return None if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

re .match (pattern, string, flags=0)
If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding

MatchObject instance. Return None if the string does not match the pattern; note that this is different from
a zero-length match.

Note that even in MULTILINE mode, re.match () will only match at the beginning of the string and not at
the beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

re.split (pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all groups
in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 release, maxsplit was ignored. This has been fixed in later releases.)

>>> re.split (' \W+’, ’Words, words, words.’)
["Words’, "words’, ’"words’, ']

>>> re.split (’ (\W+)’, ’'Words, words, words.’)
["Words", ', ', "words’, ', ', "words’, ".', ''"]

>>> re.split (/' \W+’, ’'Words, words, words.’, 1)
["Words’, ’"words, words.’]

>>> re.split (/' [a-f]+’, '0a3B9’, flags=re.IGNORECASE)
[ror, 37, 9]

If there are capturing groups in the separator and it matches at the start of the string, the result will start with an
empty string. The same holds for the end of the string:

>>> re.split (/ (\W+)’, ’...words, words...’)
rrr, oot "words’, ', ', '"words’, ...’ T

That way, separator components are always found at the same relative indices within the result list (e.g., if there’s
one capturing group in the separator, the Oth, the 2nd and so forth).

Note that split will never split a string on an empty pattern match. For example:

>>> re.split ('xx’, "foo’)

["foo']

>>> re.split (" (?m)"$", "foo\n\nbar\n")
[foo\n\nbar\n’]

Changed in version 2.7: Added the optional flags argument.

re.findall (pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-right,
and matches are returned in the order found. If one or more groups are present in the pattern, return a list of
groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the

result unless they touch the beginning of another match. New in version 1.5.2.Changed in version 2.4: Added
the optional flags argument.

re.finditer (pattern, string, flags=0)
Return an iterator yielding Mat chOb ject instances over all non-overlapping matches for the RE pattern in

7.2. re — Regular expression operations 87

The Python Library Reference, Release 2.7.4

string. The string is scanned left-to-right, and matches are returned in the order found. Empty matches are
included in the result unless they touch the beginning of another match. New in version 2.2.Changed in version
2.4: Added the optional flags argument.

re.sub (pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character,
\r is converted to a carriage return, and so forth. Unknown escapes such as \ j are left alone. Backreferences,
such as \ 6, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub (r’def\s+ ([a-zA-Z_][a—-zA-7Z_0-9]x)\s*\ (\sx\):’,
r’static PyObject*\npy_\1(void)\n{’,

Ce. "def myfunc():")

"static PyObject*\npy_myfunc (void)\n{’

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == ’"-’: return ' '/
else: return '’
>>> re.sub(’'-{1,2}’, dashrepl, 'pro-————-gram-files’)

"pro-—-gram files’
>>> re.sub(r’\sAND\s’, ' & ', ’'Baked Beans And Spam’, flags=re.IGNORECASE)
"Baked Beans & Spam’

The pattern may be a string or an RE object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous match, so sub (' x*’, ’'-’, ’abc’) returns ' —a-b-c-".

In addition to character escapes and backreferences as described above, \g<name> will use the substring
matched by the group named name, as defined by the (?P<name>...) syntax. \g<number> uses the
corresponding group number; \g<2> is therefore equivalent to \ 2, but isn’t ambiguous in a replacement such
as \g<2>0. \20 would be interpreted as a reference to group 20, not a reference to group 2 followed by the
literal character * 0’ . The backreference \ g<0> substitutes in the entire substring matched by the RE. Changed
in version 2.7: Added the optional flags argument.

re . subn (pattern, repl, string, count=0, flags=0)
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).
Changed in version 2.7: Added the optional flags argument.

re.escape (string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

re.purge ()
Clear the regular expression cache.

exception re .error
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern.

88 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

7.2.3 Regular Expression Objects

class re .RegexObject
The RegexObject class supports the following methods and attributes:

search (string[, pos[, endpos]])
Scan through string looking for a location where this regular expression produces a match, and return a
corresponding MatchObject instance. Return None if no position in the string matches the pattern;
note that this is different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to
0. This is not completely equivalent to slicing the string; the ~/ pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the
search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is
endpos characters long, so only the characters from pos to endpos - 1 will be searched for a match. If
endpos is less than pos, no match will be found, otherwise, if rx is a compiled regular expression object,
rx.search (string, 0, 50) isequivalentto rx.search (string[:50], 0).

>>> pattern = re.compile("d")

>>> pattern.search ("dog") # Match at index 0

<_sre.SRE_Match object at ...>

>>> pattern.search ("dog", 1) # No match; search doesn’t include the "d"

match (string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding
MatchObject instance. Return None if the string does not match the pattern; note that this is different
from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o")

>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".
<_sre.SRE_Match object at ...>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

split (string, maxsplit=0)
Identical to the split () function, using the compiled pattern.

findall (string[, pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match ().

finditer (string[, pos[, endpos]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and end-
pos parameters that limit the search region like for match ().

sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

flags
The regex matching flags. This is a combination of the flags given to compile () andany (?...) inline
flags in the pattern.

7.2. re — Regular expression operations 89

The Python Library Reference, Release 2.7.4

groups
The number of capturing groups in the pattern.

groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

7.2.4 Match Objects

class re .MatchObject

Match objects always have a boolean value of True. Since match () and search () return None when there
is no match, you can test whether there was a match with a simple i f statement:

match = re.search(pattern, string)
if match:
process (match)

Match objects support the following methods and attributes:

expand (template)
Return the string obtained by doing backslash substitution on the template string femplate, as done by the
sub () method. Escapes such as \n are converted to the appropriate characters, and numeric backref-
erences (\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of the
corresponding group.

group([gnmplpn])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string;
if there are multiple arguments, the result is a tuple with one item per argument. Without arguments,
groupl defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding
return value is the entire matching string; if it is in the inclusive range [1..99], it is the string matching
the corresponding parenthesized group. If a group number is negative or larger than the number of groups
defined in the pattern, an IndexError exception is raised. If a group is contained in a part of the pattern
that did not match, the corresponding result is None. If a group is contained in a part of the pattern that
matched multiple times, the last match is returned.

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group (0) # The entire match

"Isaac Newton’

>>> m.group (1) # The first parenthesized subgroup.
"Isaac’

>>> m.group (2) # The second parenthesized subgroup.
"Newton’

>>> m.group(l, 2) # Multiple arguments give us a tuple.

("Isaac’, ’"Newton’)

If the regular expression uses the (?P<name>...) syntax, the groupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

>>> m = re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")

>>> m.group (/' first_name’)

90

Chapter 7. String Services

The Python Library Reference, Release 2.7.4

"Malcolm’
>>> m.group (' last_name’)
"Reynolds’

Named groups can also be referred to by their index:
>>> m.group (1)

"Malcolm’

>>> m.group (2)

"Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
VC3I

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. The default argument is used for groups that did not participate in the match; it defaults to None.
(Incompatibility note: in the original Python 1.5 release, if the tuple was one element long, a string would
be returned instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

For example:
>>> m = re.match (r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()

(24", "1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match(r" (\d+)\.2 (\d+) 2", "24")

>>> m.groups () # Second group defaults to None.

(24", None)

>>> m.groups (' 0") # Now, the second group defaults to 70’.
(724/ , IOI)

groupdict ([default])
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The
default argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{"first_name’: 'Malcolm’, ’'last_name’: ’'Reynolds’}

start ([group])

end ([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning
the whole matched substring). Return -1 if group exists but did not contribute to the match. For a match
object m, and a group g that did contribute to the match, the substring matched by group g (equivalent to
m.group (g))is

m.string[m.start (g) :m.end (qg)]

7.2. re — Regular expression operations 91

The Python Library Reference, Release 2.7.4

Note that m. start (group) will equal m.end (group) if group matched a null string. For example,
after m = re.search('b(c?)’, 'cba’), m.start (0) is 1, m.end (0) is 2, m.start (1)
andm.end (1) are both 2, and m. start (2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]

"tony@tiger.net’

span ([group])
For Mat chObject m, return the 2-tuple (m.start (group), m.end (group)). Note thatif group
did not contribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

pos
The value of pos which was passed to the search () or match () method of the RegexObject. This
is the index into the string at which the RE engine started looking for a match.

endpos
The value of endpos which was passed to the search () or match () method of the RegexObject.
This is the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For
example, the expressions (a)b, ((a) (b)), and ((ab)) will have lastindex == 1 if applied to
the string " ab’, while the expression (a) (b) will have lastindex == 2, if applied to the same
string.

lastgroup

The name of the last matched capturing group, or None if the group didn’t have a name, or if no group
was matched at all.

re
The regular expression object whose match () or search () method produced this MatchObject
instance.

string

The string passed to match () or search ().

7.2.5 Examples
Checking For a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return ’'<Match: , groups=<r>" % (match.group(), match.groups/())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each

character representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2” through *“9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

92 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

>>> valid =

>>> displaymatch(valid.match ("aktbqg")) #
"<Match: ’"aktbqg’, groups=()>"
>>> displaymatch (valid.match ("akt5e")) #
>>> displaymatch(valid.match ("akt")) #
>>> displaymatch (valid.match("727ak")) #
"<Match: ’727ak’, groups=()>"

re.compile(r""[a2-9tjgk] {5}$")

Valid.

Invalid.
Invalid.
Valid.

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,

one could use backreferences as such:

>>> pair = re.compile(r".+(.).*x\1")
>>> displaymatch (pair.match ("717ak"))
"<Match: "717’, groups=("7",)>"

>>> displaymatch (pair.match("718ak"))
>>> displaymatch (pair.match("354aa"))

Pair of 7s.

No pairs.
Palir of aces.

"<Match: ’354aa’, groups=("a’,)>"

To find out what card the pair consists of, one could use the group () method of MatchObject in the following
manner:

>>> pair.match ("717ak") .group (1)
771
method:

Error because re.match() returns None, which doesn’t have a group ()

>>> pair.match("718ak") .group (1)

Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match(r".x(.).»\1", "718ak").group (1)

AttributeError: ’'NoneType’ object has no attribute ’'group’
>>> pair.match("354aa") .group (1)

14 a 4
Simulating scanf()
Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful, though

also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings
between scanf () format tokens and regular expressions.

scanf () Token | Regular Expression

%c .

%5¢ {5}

%d [—+]12\d+

%e, SE, 51, %9 [—+12 (\d+ (\.\d*) 2| \.\d+) ([eE] [-+]?\d+) ?
$i [—+]2 (0 [xX] [\dA-Fa-£]1+[0[0-7]+|\d+)

%0 [—+]12[0-7]+

%S \S+

Su \d+

%%, $X [-+]12(0[xX])?[\dA-Fa-f]+

To extract the filename and numbers from a string like

/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf () format like

%$s — %d errors, %d warnings

7.2. re — Regular expression operations 93

The Python Library Reference, Release 2.7.4

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers two different primitive operations based on regular expressions: re .match () checks for a match only
at the beginning of the string, while re . search () checks for a match anywhere in the string (this is what Perl does
by default).

For example:

>>> re.match ("c", "abcdef") # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object at ...>

Regular expressions beginning with ~’ can be used with search () to restrict the match at the beginning of the
string:

>>> re.match("c", "abcdef") # No match
>>> re.search (""c", "abcdef") # No match
>>> re.search(""a", "abcdef") # Match
<_sre.SRE_Match object at ...>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with * ~’ will match at the beginning of each line.

>>> re.match (’X’, "A\nB\nX’, re.MULTILINE) # No match
>>> re.search(’"X’, 'A\nB\nX’, re.MULTILINE) # Match
<_sre.SRE_Match object at ...>

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example that
creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split ("\n+", text)

>>> entries

["Ross McFluff: 834.345.1254 155 Elm Street’,
"Ronald Heathmore: 892.345.3428 436 Finley Avenue’,
"Frank Burger: 925.541.7625 662 South Dogwood Way’,
"Heather Albrecht: 548.326.4584 919 Park Place’]

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

94 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

>>> [re.split(":? ", entry, 3) for entry in entries]
[["Ross’, "McFluff’, ’834.345.1254", 7’155 Elm Street’],
["Ronald’, ’'Heathmore’, ’892.345.3428’, ’'436 Finley Avenue’],
["Frank’, ’"Burger’, ’925.541.7625", 7’662 South Dogwood Way’],
["Heather’, ’'Albrecht’, ’'548.326.4584’, "919 Park Place’]]

The : ? pattern matches the colon after the last name, so that it does not occur in the result list. With amaxsplit of
4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[["Ross’, '"McFluff’, 7834.345.1254", ’"155’, '"Elm Street’],
["Ronald’, ’"Heathmore’, ’7892.345.3428’, ’'436’, ’'Finley Avenue’],
["Frank’, ’"Burger’, ’925.541.7625’", ’'662’, ’'South Dogwood Way’],
["Heather’, ’'Albrecht’, ’548.326.4584’, 919", ’'Park Place’]]

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub () with a function to “munge” text, or randomize the order of all the characters in each word of a sentence
except for the first and last characters:

>>> def repl (m):
inner_word = list (m.group(2))
random.shuffle (inner_word)
return m.group(l) + "".join (inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub(r" (\w) (\w+) (\w)", repl, text)
"Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.’
>>> re.sub(r" (\w) (\w+) (\w)", repl, text)
"Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.’

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if one was
a writer and wanted to find all of the adverbs in some text, he or she might use findall () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly", text)
["carefully’, ’'quickly’]

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it
provides instances of MatchObject instead of strings. Continuing with the previous example, if one was a writer
who wanted to find all of the adverbs and their positions in some text, he or she would use finditer () in the
following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly", text):
print ' $502d-%502d: %s’ % (m.start (), m.end(), m.group(0))

07-16: carefully
40-47: quickly

7.2. re — Regular expression operations 95

The Python Library Reference, Release 2.7.4

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash (* \’) in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re.match (r"\W(.)\1\w", " ££f ")

<_sre.SRE_Match object at ...>
>>> re.match ("\\W(.)\\1\\w", " ££ ")
<_sre.SRE_Match object at ...>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string notation, this
means r"\\". Without raw string notation, one must use "\ \\\ ", making the following lines of code functionally
identical:

>>> re.match (r"\\", r"\\")

<_sre.SRE_Match object at ...>
>>> re.match ("\\\\", r"\\")
<_sre.SRE_Match object at ...>

7.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. This can be
used in handling binary data stored in files or from network connections, among other sources. It uses Format Strings
as compact descriptions of the layout of the C structs and the intended conversion to/from Python values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper alignment
for the C types involved; similarly, alignment is taken into account when unpacking. This behavior is chosen so that
the bytes of a packed struct correspond exactly to the layout in memory of the corresponding C struct. To handle
platform-independent data formats or omit implicit pad bytes, use standard size and alignment instead of native
size and alignment: see Byte Order, Size, and Alignment for details.

7.3.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct .error
Exception raised on various occasions; argument is a string describing what is wrong.

struct.pack (fimmt, vi, v2,...)
Return a string containing the values vl, v2, ... packed according to the given format. The arguments
must match the values required by the format exactly.

struct .pack_into (fimt, buffer, offset, vi, v2, ...)
Pack the values v1, wv2, ... according to the given format, write the packed bytes into the writable buffer
starting at offset. Note that the offset is a required argument. New in version 2.5.

struct .unpack (fint, string)
Unpack the string (presumably packed by pack (fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (len (string) mustequal calcsize (fmt)).

struct .unpack_£from (fint, buﬁ‘er[, oﬁset:O])
Unpack the buffer according to the given format. The result is a tuple even if it contains exactly one item. The

96 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

buffer must contain at least the amount of data required by the format (1en (buffer[offset:]) must be
at least calcsize (fmt)). New in version 2.5.

struct.calcsize (fint)
Return the size of the struct (and hence of the string) corresponding to the given format.

7.3.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data. They are
built up from Format Characters, which specify the type of data being packed/unpacked. In addition, there are special
characters for controlling the Byte Order; Size, and Alignment.

Byte Order, Size, and Alignment
By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size Alignment
@ native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, ’ @ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and AMD64
(x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium feature switchable
endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between ' @’ and ’ =’: both use native byte order, but the size and alignment of the latter is
standardized.

The form ’ !’ is available for those poor souls who claim they can’t remember whether network byte order is big-
endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of / <’ or ’ >’
Notes:

1. Padding is only automatically added between successive structure members. No padding is added at the begin-
ning or the end of the encoded struct.

o

2. No padding is added when using non-native size and alignment, e.g. with ‘<’, *>’, ‘=", and ‘!’

3. To align the end of a structure to the alighment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. See Examples.

7.3. struct — Interpret strings as packed binary data 97

The Python Library Reference, Release 2.7.4

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard size; that
is, when the format string starts with one of 7 <’, ’>’,/ !'* or ' =’ . When using native size, the size of the packed
value is platform-dependent.

Format C Type Python type Standard size | Notes

X pad byte no value

c char string of length 1 | 1

b signed char integer 1 3)

B unsigned char integer 1 3)

? _Bool bool 1 D

h short integer 2 3)

H unsigned short integer 2 3)

i int integer 4 3)

I unsigned int integer 4 3)

1 long integer 4 3)

L unsigned long integer 4 3)

q long long integer 8 2), (3

0 unsigned long long | integer 8 2), (3

f float float 4 “4)

d double float 8 “4)

s char[] string

P char[] string

P void = integer %), (3)
Notes:

1. The * 2’ conversion code corresponds to the _Bool type defined by C99. If this type is not available, it is

simulated using a char. In standard mode, it is always represented by one byte. New in version 2.6.

The " g’ and ' Q' conversion codes are available in native mode only if the platform C compiler supports C
long long, or, on Windows, ___int 64. They are always available in standard modes. New in version 2.2.

When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a
__index__ () method then that method is called to convert the argument to an integer before packing. If
no __index__ () method exists, or the call to __ _index__ () raises TypeError, thenthe _ _int__ ()
method is tried. However, the use of __int__ () is deprecated, and will raise DeprecationWarning.
Changed in version 2.7: Use of the __index__ () method for non-integers is new in 2.7.Changed in version
2.7: Prior to version 2.7, not all integer conversion codes would use the ___int__ () method to convert, and
DeprecationWarning was raised only for float arguments.

For the ’ £/ and ' d’ conversion codes, the packed representation uses the IEEE 754 binary32 (for ' £/) or
binary64 (for d’) format, regardless of the floating-point format used by the platform.

The / P’ format character is only available for the native byte ordering (selected as the default or with the " @*
byte order character). The byte order character ' =’ chooses to use little- or big-endian ordering based on the
host system. The struct module does not interpret this as native ordering, so the ’ P’ format is not available.

A format character may be preceded by an integral repeat count. For example, the format string 4h’ means exactly
the same as " hhhh’.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ’ s’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; for example, 10s’ means a single 10-byte string, while * 10c’ means 10 characters. If a count
is not given, it defaults to 1. For packing, the string is truncated or padded with null bytes as appropriate to make it fit.

98

Chapter 7. String Services

The Python Library Reference, Release 2.7.4

For unpacking, the resulting string always has exactly the specified number of bytes. As a special case, 0s’ means
a single, empty string (while * 0c’ means 0 characters).

The ' p’ format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed number
of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is smaller. The bytes
of the string follow. If the string passed in to pack () is too long (longer than the count minus 1), only the leading
count—1 bytes of the string are stored. If the string is shorter than count -1, it is padded with null bytes so that
exactly count bytes in all are used. Note that for unpack (), the ’ p’ format character consumes count bytes, but that
the string returned can never contain more than 255 characters.

For the ' P’ format character, the return value is a Python integer or long integer, depending on the size needed to
hold a pointer when it has been cast to an integer type. A NULL pointer will always be returned as the Python integer
0. When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha
and Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

For the ’ 2’ format character, the return value is either True or False. When packing, the truth value of the
argument object is used. Either O or 1 in the native or standard bool representation will be packed, and any non-zero
value will be True when unpacking.

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import =«

>>> pack("hhl”, 1, 2, 3)
"\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack (’hhl’, "\x00\x01\x00\x02\x00\x00\x00\x03")
(1, 2, 3)

>>> calcsize (’hhl’)

8

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = ’raymond \x32\x12\x08\x01\x08’
>>> name, serialnum, school, gradelevel = unpack (’<10sHHb’, record)

>>> from collections import namedtuple

>>> Student = namedtuple (’ Student’, ’'name serialnum school gradelevel’)
>>> Student._make (unpack (' <10sHHb’, record))
Student (name=’ raymond ", serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment require-
ments is different:

>>> pack(’ci’, ’"*", 0x12131415)
"x\x00\x00\x00\x12\x13\x14\x15"
>>> pack ("ic’, 0x12131415, ’"=«’)
"\x12\x13\x14\x15x"

>>> calcsize('ci’)

8

>>> calcsize(’ic’)

5

The following format * 11h01’ specifies two pad bytes at the end, assuming longs are aligned on 4-byte boundaries:

7.3. struct — Interpret strings as packed binary data 99

The Python Library Reference, Release 2.7.4

>>> pack (’11h01", 1, 2, 3)
"\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

This only works when native size and alignment are in effect; standard size and alignment does not enforce any
alignment.

See Also:

Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

7.3.3 Classes

The st ruct module also defines the following type:

class struct .Struct (format)

Return a new Struct object which writes and reads binary data according to the format string format. Creating
a Struct object once and calling its methods is more efficient than calling the st ruct functions with the same
format since the format string only needs to be compiled once. New in version 2.5. Compiled Struct objects
support the following methods and attributes:

pack (vi,v2,...)
Identical to the pack () function, using the compiled format. (1en (result) will equal self.size.)

pack_into (buffer, offset, vi, v2, ...)
Identical to the pack_into () function, using the compiled format.

unpack (string)
Identical to the unpack () function, using the compiled format. (len (string) must equal
self.size).

unpack_ from (buffer, offset=0)
Identical to the unpack_from () function, using the compiled format. (len (buffer[offset:])
must be at least self.size).

format
The format string used to construct this Struct object.
size
The calculated size of the struct (and hence of the string) corresponding to format.

7.4 difflib — Helpers for computing deltas

New in version 2.1. This module provides classes and functions for comparing sequences. It can be used for example,
for comparing files, and can produce difference information in various formats, including HTML and context and
unified diffs. For comparing directories and files, see also, the £1i1ecmp module.

class diffl1ib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn’t
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

100

Chapter 7. String Services

The Python Library Reference, Release 2.7.4

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

Automatic junk heuristic: SequenceMat cher supports a heuristic that automatically treats certain sequence
items as junk. The heuristic counts how many times each individual item appears in the sequence. If an item’s
duplicates (after the first one) account for more than 1% of the sequence and the sequence is at least 200 items
long, this item is marked as “popular’” and is treated as junk for the purpose of sequence matching. This heuristic
can be turned off by setting the aut o junk argument to False when creating the SequenceMatcher. New
in version 2.7.1: The autojunk parameter.

classdifflib.Differ
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

Code Meaning

r— line unique to sequence 1
T+ 7 line unique to sequence 2
s line common to both sequences

72 ' | line not present in either input sequence

Lines beginning with ‘2 attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

classdifflib.HtmlDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init__ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of Htm1Diff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped, de-
faults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff () (used by Htm1Diff to
generate the side by side HTML differences). See ndiff () documentation for argument default values
and descriptions.

The following methods are public:

make_file (fromlines, tolines [, fromdesc][, todesc][, context][, numlines])
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set confext to True when contextual differ-
ences are to be shown, else the default is False to show the full files. numlines defaults to 5. When
context is True numlines controls the number of context lines which surround the difference highlights.
When context is False numlines controls the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

7.4. difflib — Helpers for computing deltas 101

The Python Library Reference, Release 2.7.4

make_table (fromlines, tolines [, fromdesc]|, todesc][, context][, numlines])
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its
use. New in version 2.4.

difflib.context_diff (a, b], fromfile]][, tofile]], fromfiledate]], tofiledate][, n][, lineterm])
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by # which defaults to three.

By default, the diff control lines (those with %+ or ——-) are created with a trailing newline. This is
helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> gl = [’'bacon\n’, ’"eggs\n’, ’"ham\n’, ’‘guido\n’]

>>> s2 = [’python\n’, "eggy\n’, ’"hamster\n’, ’‘guido\n’]

>>> for line in context_diff (sl, s2, fromfile=’'before.py’, tofile="after.py’):
. sys.stdout.write (line)

*x*x before.py

-—— after.py

khkhkkkkkkkkhkhKhkhkhk

kxk 1,4 *kxxk

! bacon

! eggs

! ham

guido

- 1,4 ———-

! python

! eggy

! hamster
guido

See A command-line interface to difflib for a more detailed example. New in version 2.3.

difflib.get_close_matches (word, possibilities[, n][, cutoff])
Return a list of the best “good enough” matches. word is a sequence for which close matches are desired

(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; » must be greater than 0.

Optional argument cutoff (default 0. 6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

102 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

>>> get_close_matches (’appel’, ['ape’, ’'apple’, ’'peach’, ’'puppy’]l)
["apple’, ’"ape’]

>>> import keyword

>>> get_close_matches ('wheel’, keyword.kwlist)

["while’]

>>> get_close_matches ('apple’, keyword.kwlist)

[]

>>> get_close_matches (’accept’, keyword.kwlist)

["except’]

difflib.ndiff (a, b/, linejunk][, charjunk])
Compare a and b (lists of strings); return a Di f fe r-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The default is (None), starting with Python 2.3. Before then, the default was the module-level function
IS_LINE_JUNK (), which filters out lines without visible characters, except for at most one pound character
(" #). As of Python 2.3, the underlying SequenceMatcher class does a dynamic analysis of which lines
are so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level function IS_CHARACTER_JUNK (), which filters out whitespace characters
(a blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff ('one\ntwo\nthree\n’ .splitlines (1),
L. "ore\ntree\nemu\n’ .splitlines (1))
>>> print '’ .join(diff),

- one

? A

+ ore

? AN

- two

- three

? —_
+ tree
+ emu

difflib.restore (sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff (’one\ntwo\nthree\n’ .splitlines(1),
.. "ore\ntree\nemu\n’ .splitlines (1))
>>> diff = list(diff) # materialize the generated delta into a 1list
>>> print '’ .join(restore(diff, 1)),
one
two
three
>>> print '’ .join(restore(diff, 2)),
ore

7.4. difflib — Helpers for computing deltas 103

The Python Library Reference, Release 2.7.4

tree
emu

difflib.unified diff (a, b/, fromfile]], tofile][, fromfiledate]], tofiledate][, n][, lineterm])
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is set
by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @Q) are created with a trailing newline. This
is helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> sl = [’'bacon\n’, ’'eggs\n’, ’"ham\n’, ’‘guido\n’]

>>> s2 = [’'python\n’, ’eggy\n’, ’"hamster\n’, ’guido\n’]
>>> for line in unified_diff(sl, s2, fromfile=’'before.py’, tofile=’"after.py’):
R sys.stdout.write (line)

—-—— before.py

+++ after.py

@@ -1,4 +1,4 Q@a

—-bacon

-eggs

—ham

+python

teggy

+hamster

guido

See A command-line interface to difflib for a more detailed example. New in version 2.3.

difflib.IS_LINE_JUNK (l/ine)
Return true for ignorable lines. The line line is ignorable if line is blank or contains a single ’ #’ , otherwise it
is not ignorable. Used as a default for parameter linejunk in ndi £ f () before Python 2.3.

difflib.IS_CHARACTER_JUNK (ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See Also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published in Dr. Dobb’s Journal in July, 1988.

7.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

class difflib.SequenceMatcher (isjunk=None, a="‘, b="*, autojunk=True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element

104 Chapter 7. String Services

http://www.ddj.com/184407970?pgno=5
http://www.ddj.com/

The Python Library Reference, Release 2.7.4

and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: 0;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic. New in version 2.7.1: The
autojunk parameter. SequenceMat cher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_seg2 () to set the commonly used sequence once
and call set_seqgl () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhi)
Find longest matching block in a [alo:ahi] andb [blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, 3j, k) suchthata[i:i+k]
isequaltob[j: j+k],wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. For
all (i, 3j’, k') meeting those conditions, the additional conditions k >= k’, i <= i’,andif i
== 1’, j <= 7J’ are also met. In other words, of all maximal matching blocks, return one that starts
earliest in a, and of all those maximal matching blocks that start earliest in a, return the one that starts
earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents * abcd’ from
matching the / abcd’ at the tail end of the second sequence directly. Instead only the ' abcd’ can
match, and matches the leftmost * abcd’ in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).Changed in version 2.6: This method returns a named
tuple Match (a, b, size).

get_matching blocks ()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and
means thata[i:1i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

7.4. difflib — Helpers for computing deltas 105

The Python Library Reference, Release 2.7.4

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple with n
== 0. If (i, j, n) and (i’, 3j’, n’) are adjacent triples in the list, and the second is not the
last triple in the list, then i+n != i’ or j+n != 7j’;in other words, adjacent triples always describe
non-adjacent equal blocks. Changed in version 2.5: The guarantee that adjacent triples always describe
non-adjacent blocks was implemented.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, il, i2,
j1, Jj2). The first tuple has i1 == jl1 == 0, and remaining tuples have i/ equal to the i2 from the
preceding tuple, and, likewise, jI equal to the previous j2.

The tag values are strings, with these meanings:

Value Meaning
"replace’ a[i1i1:12] should be replaced by b[jl:7j2].
"delete’ al[il:12] should be deleted. Note that j1 == 72 in this case.
’insert’ b[j1:732] shouldbeinsertedata[il:11]. Notethat il == 12 in this case.
"equal’ al[il:i2] == b[jl:32] (the sub-sequences are equal).
For example:
>>> g = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)
>>> for tag, il, 12, jl, j2 in s.get_opcodes():
print (" al :]) bl :]« "%

(tag, il, i2, afil:i2], 31, 32, b[jl:321))

al0:1] (ag) b[0:0] ()
equal al[l:3] (ab) b[0:2] (ab)
replace a[3:4] (x) bl[2:3] (y)
equal af4:6] (cd) b[3:5] (cd)
insert al[6:6] () b[5:6] (£f)

get_grouped_opcodes ([n])
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes (). New in version 2.3.

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M
/ T. Note that this is 1. 0 if the sequences are identical, and 0 . 0 if they have nothing in common.

This is expensive to compute if get_matching _blocks () orget_opcodes () hasn’t already been
called, in which case you may want to try quick_ratio () or real_quick_ratio () firstto getan
upper bound.

quick_ratio()
Return an upper bound on ratio () relatively quickly.

real_quick_ratio ()
Return an upper bound on ratio () very quickly.

106 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, although quick_ratio () and real_quick_ratio () are always at least as large as ratio ():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio ()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

7.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value
over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you’re only interested in where the sequences match, get_matching_blocks () is handy:

>>> for block in s.get_matching_blocks () :

ce print "a[?d] and b[2%d] match for elements” % block
al[0] and b[0] match for 8 elements

al[8] and b[l7] match for 21 elements

al29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len(b), 0),
and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes() :

R print " alsd:2d] b[2d:5d]" % opcode
equal a[0:8] b[0:8]

insert al8:8] b[8:17]

equal a[8:29] b[17:38]

See Also:

e The get_close_matches () function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

 Simple version control recipe for a small application built with SequenceMatcher.

7.4.3 Differ Objects

Note that Di f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

The Dif fer class has this constructor:

7.4. difflib — Helpers for computing deltas 107

http://code.activestate.com/recipes/576729/

The Python Library Reference, Release 2.7.4

ckmsdifflib.Differ([ﬁnqunkLc%aﬁunk]])
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines () method of file-like objects. The delta generated also consists of
newline-terminated strings, ready to be printed as-is via the writelines () method of a file-like object.

7.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl =’’’ 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

. 777 splitlines (1)

>>> len (textl)

4

>>> textl1l[0] [-1]

14 \nl

>>> text2 = "'/ 1. Beautiful is better than ugly.

3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

777 splitlines (1)

Next we instantiate a Differ object:
>>> d = Differ()

Note that when instantiating a Di f fer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:
>>> result = list(d.compare (textl, text2))
result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint (result)

[’ 1. Beautiful is better than ugly.\n’,

" - 2. Explicit is better than implicit.\n’,
_— 3. Simple is better than complex.\n’,

"+ 3 Simple is better than complex.\n’,

"2 ++\n’,

i 4. Complex is better than complicated.\n’,
"2 ~ -———= ™\n’,

108 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

"+
1o

'+

4. Complicated is better than complex.\n’,
++++ 2 “\n’,
5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

>>>
>>>

D+

+ 0+

import sys

sys.stdout.writelines (result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.
3. Simple is better than complex.

3 Simple is better than complex.

++

Complex is better than complicated.

A A

sy

4. Complicated is better than complex.
++++ 7 ~
5. Flat is better than nested.

7.4.5 A command-line interface to difflib

This example shows how to use difflib to create a di f £-like utility. It is also contained in the Python source distribu-
tion, as Tools/scripts/diff.py

mmn

Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mmn

import sys, os, time, difflib, optparse

def

main() :

Configure the option parser

usage = "usage: %Sprog [options] fromfile tofile"

parser = optparse.OptionParser (usage)

parser.add_option("-c", action="store_true", default=False,
help=’'Produce a context format diff (default)’)

parser.add_option("-u", action="store_true", default=False,
help='Produce a unified format diff’)

hlp = ’'Produce HTML side by side diff (can use -c and -1 in conjunction)’

parser.add_option("-m", action="store_true", default=False, help=hlp)

parser.add_option("-n", action="store_true", default=False,
help=’'Produce a ndiff format diff’)

parser.add_option("-1", "--lines", type="int", default=3,
help=’Set number of context lines (default 3)’)

(options, args) = parser.parse_args()

if len(args) == 0:
parser.print_help ()
sys.exit (1)

if len(args) != 2:

7.4. difflib — Helpers for computing deltas 109

The Python Library Reference, Release 2.7.4

parser.error ("need to specify both a fromfile and tofile")

n = options.lines
fromfile, tofile = args # as specified in the usage string

we’re passing these as arguments to the diff function
fromdate = time.ctime (os.stat (fromfile) .st_mtime)
todate = time.ctime (os.stat (tofile) .st_mtime)

fromlines = open(fromfile, ’'U’).readlines|()

tolines = open(tofile, 'U’).readlines|()

if options.u:
diff = difflib.unified_diff (fromlines, tolines, fromfile, tofile,
fromdate, todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file(fromlines, tolines, fromfile,
tofile, context=options.c,
numlines=n)
else:
diff = difflib.context_diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n=n)

we’re using writelines because diff 1s a generator
sys.stdout.writelines (diff)

if name == '_main_ '":
main ()

7.5 stringIO — Read and write strings as files

This module implements a file-like class, St ringIO, that reads and writes a string buffer (also known as memory
files). See the description of file objects for operations (section File Objects). (For standard strings, see st r and
unicode.)

class StringIO.StringIO ([buﬁer])
When a StringIO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, the St ringIO will start empty. In both cases, the initial file position starts at
Zero.

The StringIO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as 7-bit ASCII (that use the 8th bit) will cause a
UnicodeError to be raised when getvalue () is called.

The following methods of St ringIO objects require special mention:

StringIO.getvalue ()
Retrieve the entire contents of the “file” at any time before the St ringIO object’s close () method is called.
See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause this method
toraise UnicodeError.

StringIO.close ()
Free the memory buffer. Attempting to do further operations with a closed St ringIO object will raise a
ValueError.

110 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

Example usage:
import StringIO
output = StringIO.StringIO()

output.write ('First line.\n’)
print >>output, ’Second line.’

Retrieve file contents —- this will be
’First line.\nSecond line.\n’
contents = output.getvalue ()

Close object and discard memory buffer —--—
.getvalue() will now raise an exception.
output.close ()

7.6 cStringIO — Faster version of StringIO

The module cStringIO provides an interface similar to that of the StringIO module.

Heavy use of

StringIO.StringIO objects can be made more efficient by using the function St ringIO () from this mod-

ule instead.

cStringIO.StringIO ([s])
Return a StringlO-like stream for reading or writing.

Since this is a factory function which returns objects of built-in types, there’s no way to build your own version
using subclassing. It’s not possible to set attributes on it. Use the original St ringIO module in those cases.

Unlike the St ringIO module, this module is not able to accept Unicode strings that cannot be encoded as

plain ASCII strings.

Another difference from the St ringI0O module is that calling St ringIO () with a string parameter creates
a read-only object. Unlike an object created without a string parameter, it does not have write methods. These

objects are not generally visible. They turn up in tracebacks as St ringI and StringO.
The following data objects are provided as well:

cStringIO.InputType
The type object of the objects created by calling St ringIO () with a string parameter.

cStringIO.OutputType
The type object of the objects returned by calling St ringIO () with no parameters.

There is a C API to the module as well; refer to the module source for more information.
Example usage:

import cStringIO

output = cStringIO.StringIO ()

output.write ('First line.\n’)
print >>output, ’Second line.’

Retrieve file contents —— this will be
’First line.\nSecond line.\n’
contents = output.getvalue /()

Close object and discard memory buffer —--—

7.6. cStringIO — Faster version of StringIo

111

The Python Library Reference, Release 2.7.4

.getvalue() will now raise an exception.
output.close ()

7.7 textwrap — Text wrapping and filling

New in version 2.3. Source code: Lib/textwrap.py

The textwrap module provides two convenience functions, wrap () and £111 (), as well as TextWrapper,
the class that does all the work, and a utility function dedent (). If you’re just wrapping or filling one or two text
strings, the convenience functions should be good enough; otherwise, you should use an instance of TextWrapper
for efficiency.

textwrap.wrap (text[, width[,]])
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. width
defaults to 70.

See the TextWrapper.wrap () method for additional details on how wrap () behaves.

textwrap.fill (text[, width[,]])
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. £i11 () is
shorthand for

"\n".Jjoin (wrap (text, ...))

In particular, £111 () accepts exactly the same keyword arguments as wrap () .

Both wrap () and £i11 () work by creating a TextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unless TextWrapper .break_long_words is set to false.

An additional utility function, dedent (), is provided to remove indentation from strings that have unwanted whites-
pace to the left of the text.

textwrap.dedent (fext)
Remove any common leading whitespace from every line in fext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello" are considered to have no common leading whitespace. (This behaviour is new in Python 2.5;
older versions of this module incorrectly expanded tabs before searching for common leading whitespace.)

For example:

def test():
end first line with \ to avoid the empty line!
s = III\
hello

world
rrr

112 Chapter 7. String Services

http://hg.python.org/cpython/file/2.7/Lib/textwrap.py

The Python Library Reference, Release 2.7.4

print repr(s) # prints ' hello\n world\n ’
print repr(dedent(s)) # prints “hello\n world\n’

class textwrap.TextWrapper (...)
The TextWrapper constructor accepts a number of optional keyword arguments. Each argument corresponds
to one instance attribute, so for example

wrapper = TextWrapper (initial_indent="x ")
is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "x "

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer than width, TextWrapper guarantees that no output line will be longer than width
characters.

expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the
expandtabs () method of text.

replace_whitespace
(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace each
whitespace character with a single space. The whitespace characters replaced are as follows: tab, newline,
vertical tab, formfeed, and carriage return (“ \t\n\v\f\r’).

Note: If expand_tabs is false and replace_whitespace is true, each tab character will be re-
placed by a single space, which is not the same as tab expansion.

Note: If replace_whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines () or
similar) which are wrapped separately.

drop_whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but before
indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped if non-
whitespace follows it. If whitespace being dropped takes up an entire line, the whole line is dropped. New
in version 2.6: Whitespace was always dropped in earlier versions.

initial indent
(default:) String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line. The empty string is not indented.

subsequent_indent
(default:) String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

7.7. textwrap — Text wrapping and filling 113

The Python Library Reference, Release 2.7.4

fix sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a
lowercase letter followed by oneof .7, !’ or ' ?’, possibly followed by one of "’ or "’ ", followed
by a space. One problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]
and “Spot.” in
[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer than
width. (Long words will be put on a line by themselves, in order to minimize the amount by which
width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially
good places for line breaks, but you need to set break_long_words to false if you want truly insecable
words. Default behaviour in previous versions was to always allow breaking hyphenated words. New in
version 2.6.

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most width characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines. If the wrapped output has no content, the returned list is empty.

£ill (text)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

7.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

codecs.register (search_function)
Register a codec search function. Search functions are expected to take one argument, the encoding name in all
lower case letters, and return a CodecInfo object having the following attributes:

ename The name of the encoding;
eencode The stateless encoding function;

*decode The stateless decoding function;

114 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

eincrementalencoder An incremental encoder class or factory function;
eincrementaldecoder An incremental decoder class or factory function;
estreamwriter A stream writer class or factory function;
estreamreader A stream reader class or factory function.

The various functions or classes take the following arguments:

encode and decode: These must be functions or methods which have the same interface as the
encode ()/decode () methods of Codec instances (see Codec Interface). The functions/methods are ex-
pected to work in a stateless mode.

incrementalencoder and incrementaldecoder: These have to be factory functions providing the following inter-
face:

factory(errors='strict’)

The factory functions must return objects providing the interfaces defined by the base classes
IncrementalEncoder and IncrementalDecoder, respectively. Incremental codecs can maintain state.

streamreader and streamwriter: These have to be factory functions providing the following interface:
factory(stream, errors=’'strict’)

The factory functions must return objects providing the interfaces defined by the base classes St reamiWriter
and St reamReader, respectively. Stream codecs can maintain state.

Possible values for errors are
e’ strict’: raise an exception in case of an encoding error
*’ replace’: replace malformed data with a suitable replacement marker, such as * 2/ or ' \uff£d’
e’ ignore’ : ignore malformed data and continue without further notice
' xmlcharrefreplace’: replace with the appropriate XML character reference (for encoding only)
*’backslashreplace’: replace with backslashed escape sequences (for encoding only)

as well as any other error handling name defined via register_error ().

In case a search function cannot find a given encoding, it should return None.

codecs.lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no CodecInfo objectis found, a LookupError is raised. Otherwise, the CodecInfo object is
stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions which use 1ookup () for
the codec lookup:

codecs .getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

7.8. codecs — Codec registry and base classes 115

The Python Library Reference, Release 2.7.4

codecs.getincrementalencoder (encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder. New in version 2.5.

codecs.getincrementaldecoder (encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder. New in version 2.5.

codecs .getreader (encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.getwriter (encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.register_error (name, error_handler)
Register the error handling function error_handler under the name name. error_handler will be called during
encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding error_handler will be called with a UnicodeEncodeError instance, which contains informa-
tion about the location of the error. The error handler must either raise this or a different exception or return a
tuple with a replacement for the unencodable part of the input and a position where encoding should continue.
The encoder will encode the replacement and continue encoding the original input at the specified position.
Negative position values will be treated as being relative to the end of the input string. If the resulting position
is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the output directly.

codecs.lookup_error (name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

codecs.strict_errors (exception)
Implements the st rict error handling: each encoding or decoding error raises a UnicodeError.

codecs.replace_errors (exception)
Implements the replace error handling: malformed data is replaced with a suitable replacement character
such as ’ 2’ in bytestrings and ' \uf ££d’ in Unicode strings.

codecs.ignore_errors (exception)
Implements the ignore error handling: malformed data is ignored and encoding or decoding is continued
without further notice.

codecs.xmlcharrefreplace_errors (exception)
Implements the xm1lcharrefreplace error handling (for encoding only): the unencodable character is re-
placed by an appropriate XML character reference.

codecs .backslashreplace_errors (exception)
Implements the backslashreplace error handling (for encoding only): the unencodable character is re-
placed by a backslashed escape sequence.

To simplify working with encoded files or stream, the module also defines these utility functions:

116 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

codecs . open (filename, mode[, encoding[, errors[, buﬁering]]])
Open an encoded file using the given mode and return a wrapped version providing transparent encod-
ing/decoding. The default file mode is ’ r’ meaning to open the file in read mode.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

Note: Files are always opened in binary mode, even if no binary mode was specified. This is done to avoid data
loss due to encodings using 8-bit values. This means that no automatic conversion of \n’ is done on reading
and writing.

encoding specifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaults to * strict’ which causes a ValueError to be
raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to line buffered.

codecs .EncodedFile (file, input[, output[, ermrs]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the given input encoding and then written to
the original file as strings using the oufput encoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If output is not given, it defaults to input.

errors may be given to define the error handling. It defaults to ’ strict’, which causes ValueError to be
raised in case an encoding error occurs.

codecs.iterencode (iterable, encoding[, errors])
Uses an incremental encoder to iteratively encode the input provided by iterable. This function is a generator.
errors (as well as any other keyword argument) is passed through to the incremental encoder. New in version
2.5.

codecs.iterdecode (iterable, encoding[, errors])
Uses an incremental decoder to iteratively decode the input provided by iterable. This function is a generator.
errors (as well as any other keyword argument) is passed through to the incremental decoder. New in version
2.5.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

codecs .BOM

codecs.BOM_BE

codecs.BOM_LE

codecs .BOM_UTF8

codecs .BOM_UTF16

codecs.BOM_UTF16_BE

codecs.BOM_UTF1l6_ LE

codecs .BOM_UTF32

codecs .BOM_UTF32_BE

codecs.BOM_UTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOM_UTF16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s native byte order,
BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE for BOM_UTF16_BE. The
others represent the BOM in UTF-8 and UTF-32 encodings.

7.8. codecs — Codec registry and base classes 117

The Python Library Reference, Release 2.7.4

7.8.1 Codec Base Classes

The codecs module defines a set of base classes which define the interface and can also be used to easily write your
own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode () and decode () methods may implement different error
handling schemes by providing the errors string argument. The following string values are defined and implemented
by all standard Python codecs:

Value Meaning

"strict’ Raise UnicodeError (or a subclass); this is the default.

"ignore’ Ignore the character and continue with the next.

"replace’ Replace with a suitable replacement character; Python will use the official U+FFFD
REPLACEMENT CHARACTER for the built-in Unicode codecs on decoding and ‘?” on
encoding.

" xmlcharref yreRdplace’with the appropriate XML character reference (only for encoding).

"backslashrepReptace with backslashed escape sequences (only for encoding).

The set of allowed values can be extended via register_error ().

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

Codec.encode (input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). While codecs are not restricted to
use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string using a particular
character set encoding (e.g., cp1252 or iso—-8859-1).

errors defines the error handling to apply. It defaults to ’ strict’ handling.

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

Codec.decode (input[, errors])
Decodes the object input and returns a tuple (output object, length consumed). In a Unicode context, decoding
converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides the bf_getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaults to * strict’ handling.

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental
encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder function,

118 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

but with multiple calls to the encode () /decode () method of the incremental encoder/decoder. The incremental
encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode () /decode () method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

New in version 2.5. The IncrementalEncoder class is used for encoding an input in multiple steps. It defines
the following methods which every incremental encoder must define in order to be compatible with the Python codec

registry.

class codecs.IncrementalEncoder ([errors])
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors key-
word argument. These parameters are predefined:

¢’ strict’ Raise ValueError (or a subclass); this is the default.

e’ ignore’ Ignore the character and continue with the next.

*’ replace’ Replace with a suitable replacement character
*’xmlcharrefreplace’ Replace with the appropriate XML character reference
*’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime of the TncrementalEncoder
object.

The set of allowed values for the errors argument can be extended with register_error ().

encode (object[,ﬁnal])
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode () final must be true (the default is false).

reset ()
Reset the encoder to the initial state.

IncrementalDecoder Objects
The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder ([errors])
Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors key-
word argument. These parameters are predefined:

e’ strict’ Raise ValueError (or a subclass); this is the default.

*’ ignore’ Ignore the character and continue with the next.

7.8. codecs — Codec registry and base classes 119

The Python Library Reference, Release 2.7.4

*’ replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime of the ITncrementalDecoder
object.

The set of allowed values for the errors argument can be extended with register_error ().

decode (object[,ﬁnal])
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode () final must be true (the default is false). If final is true the
decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of
incomplete byte sequences at the end of the input) it must initiate error handling just like in the stateless
case (which might raise an exception).

reset ()
Reset the decoder to the initial state.

The StreamWriter and St reamReader classes provide generic working interfaces which can be used to imple-
ment new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The St reamWriter class is a subclass of Codec and defines the following methods which every stream writer must
define in order to be compatible with the Python codec registry.

class codecs.StreamWriter (stream[, errors])

Constructor for a St reamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing binary data.

The St reamWriter may implement different error handling schemes by providing the errors keyword argu-
ment. These parameters are predefined:

¢’ strict’ Raise ValueError (or a subclass); this is the default.

e’ ignore’ Ignore the character and continue with the next.

*’ replace’ Replace with a suitable replacement character

e’ xmlcharrefreplace’ Replace with the appropriate XML character reference
*’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamWriter object.

The set of allowed values for the errors argument can be extended with register_error ().

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the write () method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

120

Chapter 7. String Services

The Python Library Reference, Release 2.7.4

In addition to the above methods, the St reamWriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects
The St reamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader (stream[, errors])
Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading (binary) data.

The St reamReader may implement different error handling schemes by providing the errors keyword argu-
ment. These parameters are defined:

e’ strict’ Raise ValueError (or a subclass); this is the default.
e’ ignore’ Ignore the character and continue with the next.
e’ replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamReader object.

The set of allowed values for the errors argument can be extended with register_error ().

read ([size[, chars[,ﬁrstline]]])
Decodes data from the stream and returns the resulting object.

chars indicates the number of characters to read from the stream. read () will never return more than
chars characters, but it might return less, if there are not enough characters available.

size indicates the approximate maximum number of bytes to read from the stream for decoding purposes.
The decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as
much as possible. size is intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on later
lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within
the definition of the encoding and the given size, e.g. if optional encoding endings or state markers are
available on the stream, these should be read too. Changed in version 2.4: chars argument added.Changed
in version 2.4.2: firstline argument added.

readline ([size[, keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s readline () method.

If keepends is false line-endings will be stripped from the lines returned. Changed in version 2.4: keepends
argument added.

readlines ([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if
keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

7.8. codecs — Codec registry and base classes 121

The Python Library Reference, Release 2.7.4

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide
useful in practice.

StreamReaderWriter Objects

The St reamReaderWriter allows wrapping streams which work in both read and write modes.
The design is such that one can use the factory functions returned by the 1ookup () function to construct the instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors)
Creates a St reamReaderWriter instance. stream must be a file-like object. Reader and Writer must be fac-
tory functions or classes providing the St reamReader and St reamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of StreamReader and StreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The St reamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned by the 1ookup () function to construct the instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work on
the frontend (the input to read () and output of write ()) while Reader and Writer work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
stream must be a file-like object.

encode, decode must adhere to the Codec interface. Reader, Writer must be factory functions or classes
providing objects of the St reamReader and St reamiWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
the intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

St reamRecoder instances define the combined interfaces of St reamReader and St reamWriter classes. They
inherit all other methods and attributes from the underlying stream.

7.8.2 Encodings and Unicode

Unicode strings are stored internally as sequences of codepoints (to be precise as Py_UNICODE arrays). Depending
on the way Python is compiled (either via ——enable-unicode=ucs?2 or ——enable—unicode=ucs4, with the
former being the default) Py_UNICODE is either a 16-bit or 32-bit data type. Once a Unicode object is used outside

122 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

of CPU and memory, CPU endianness and how these arrays are stored as bytes become an issue. Transforming
a unicode object into a sequence of bytes is called encoding and recreating the unicode object from the sequence
of bytes is known as decoding. There are many different methods for how this transformation can be done (these
methods are also called encodings). The simplest method is to map the codepoints 0-255 to the bytes 0x0-0xf£.
This means that a unicode object that contains codepoints above U+00FF can’t be encoded with this method (which is
called " latin—-1’ or’ iso—-8859-1"). unicode.encode () will raise a UnicodeEncodeError that looks
like this: UnicodeEncodeError: ‘latin-1’ codec can’t encode character u’\ul234’ in
position 3: ordinal not in range (256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all unicode
code points and how these codepoints are mapped to the bytes 0x0-0xf£. To see how this is done simply open e.g.
encodings/cpl252.py (which is an encoding that is used primarily on Windows). There’s a string constant with
256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 codepoints defined in unicode. A simple and straight-
forward way that can store each Unicode code point, is to store each codepoint as four consecutive bytes. There are
two possibilities: store the bytes in big endian or in little endian order. These two encodings are called UTF-32-BE
and UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF-32-BE on a little endian machine you
will always have to swap bytes on encoding and decoding. UTF-32 avoids this problem: bytes will always be in
natural endianness. When these bytes are read by a CPU with a different endianness, then bytes have to be swapped
though. To be able to detect the endianness of a UTF-16 or UTF 32 byte sequence, there’s the so called BOM (“Byte
Order Mark™). This is the Unicode character U+FEFF. This character can be prepended to every UTF-16 or UTF-32
byte sequence. The byte swapped version of this character (OxFFFE) is an illegal character that may not appear in a
Unicode text. So when the first character in an UTF-16 or UTF—32 byte sequence appears to be a U+FFFE the bytes
have to be swapped on decoding. Unfortunately the character U+FEFF had a second purpose as a ZERO WIDTH
NO-BREAK SPACE: a character that has no width and doesn’t allow a word to be split. It can e.g. be used to give
hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK SPACE has been
deprecated (with U+2060 (WORD JOINER) assuming this role). Nevertheless Unicode software still must be able
to handle U+FEFF in both roles: as a BOM it’s a device to determine the storage layout of the encoded bytes, and
vanishes once the byte sequence has been decoded into a Unicode string; as a ZERO WIDTH NO-BREAK SPACE
it’s a normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists of
two parts: marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to four 1 bits
followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when concatenated
give the Unicode character):

Range Encoding

U-00000000 ... U-0000007F | OXXXXXXX
U-00000080...U-000007FF | 110xxxxx 10XXXXXX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxXx 10XXXXXX
U-00010000 ... U=0010FFFF | 11110xxx 10xxxxxx 10xxxxxx 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded Unicode string (even if
it’s the first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a Uni-
code string. Each charmap encoding can decode any random byte sequence. However that’s not possible with
UTEF-8, as UTF-8 byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the re-
liability with which a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls
"utf-8-sig™") for its Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 en-
coded BOM (which looks like this as a byte sequence: Oxef, Oxbb, 0xbf) is written. As it’s rather improbable that
any charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS

7.8. codecs — Codec registry and base classes 123

The Python Library Reference, Release 2.7.4

RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in 1s0-8859-1), this increases the probability that a ut £-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte sequence,
but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write Oxef, 0xbb, 0xbf
as the first three bytes to the file. On decoding ut £-8-sig will skip those three bytes if they appear as the first three
bytes in the file. In UTF-8, the use of the BOM is discouraged and should generally be avoided.

7.8.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases; therefore,
e.g. "utf-8’ isavalid alias for the " ut £_8" codec.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

¢ an ISO 8859 codeset

* a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control characters
with additional graphic characters

» an IBM EBCDIC code page
e an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chir
big5hkscs big5-hkscs, hkscs Traditional Chir
cp037 IBM037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, 1BM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Europe
cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic language:
cp850 850, IBM850 Western Europe
cp852 852, IBM&52 Central and Eas
cp855 855, IBM855 Bulgarian, Byel
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBM858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norweg
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek

124 Chapter 7. String Services

The Python Library Reference, Release 2.7.4

Table 7.1 — continued from previous page

cp874

cp875

cp932

cp949

cp950
cpl1006
cpl026
cpl140
cpl250
cpl251
cpl252
cpl253
cpl254
cpl255
cpl256
cpl257
cpl258
euc_jp
euc_jis_2004
euc_jisx0213
euc_kr
gb2312

gbk
gb18030

hz
1802022_jp
1502022_jp_1
i802022_jp_2
is02022_jp_2004
1502022_jp_3
1802022_jp_ext
1502022 _kr
latin_1
is08859_2
1s08859_3
is08859_4
1s08859_5
is08859_6
is08859_7
1s08859_8
1s08859_9
1s08859_10
is08859_13
1508859 14
is08859_15
1s08859_16
johab
koi8_r
koi8_u
mac_cyrillic
mac_greek
mac_iceland

932, ms932, mskanji, ms-kanji
949, ms949, uhc
950, ms950

ibm1026
ibm1140
windows-1250
windows-1251
windows-1252
windows-1253
windows-1254
windows-1255
windows-1256
windows-1257
windows-1258
eucjp, ujis, u-jis
jisx0213, eucjis2004
eucjisx0213

euckr, korean, ksc5601, ks_c-5601, ks_c-5601-1987, ksx1001, ks_x-1001
chinese, csiso58gb231280, euc- cn, euccn, eucgb2312-cn, gb2312-1980, gb2312-80, iso- ir-58

936, cp936, ms936

gb18030-2000

hzgb, hz-gb, hz-gb-2312
¢si502022jp, 1s02022jp, is0-2022-jp
1502022jp-1, is0-2022-jp-1
1502022jp-2, is0-2022-jp-2
1502022jp-2004, is0-2022-jp-2004
1502022jp-3, is0-2022-jp-3
1802022jp-ext, is0-2022-jp-ext
¢s1502022kr, 1802022k, is0-2022-kr

150-8859-1, 1s08859-1, 8859, cp819, latin, latinl, L1

180-8859-2, latin2, L2
1s0-8859-3, l1atin3, L3
1s0-8859-4, latin4, L4
180-8859-5, cyrillic
150-8859-6, arabic
1s0-8859-7, greek, greek8
150-8859-8, hebrew
180-8859-9, latin5, L5
150-8859-10, latin6, L6
180-8859-13, latin7, L7
150-8859-14, latin8, L8
180-8859-15, latin9, L9
180-8859-16, latin10, L10
cpl361, ms1361

maccyrillic
macgreek
maciceland

Thai

Greek

Japanese
Korean
Traditional Chir
Urdu

Turkish
Western Europe
Central and Eas
Bulgarian, Byel
Western Europe
Greek

Turkish
Hebrew

Arabic

Baltic language:
Vietnamese
Japanese
Japanese
Japanese
Korean
Simplified Chin
Unified Chinese
Unified Chinese
Simplified Chin
Japanese
Japanese
Japanese, Korea
Japanese
Japanese
Japanese
Korean

West Europe
Central and Eas
Esperanto, Malt
Baltic language:
Bulgarian, Byel
Arabic

Greek

Hebrew
Turkish

Nordic languagt
Baltic language:
Celtic language:
Western Europe
South-Eastern E
Korean

Russian
Ukrainian
Bulgarian, Byel
Greek

Icelandic

7.8. codecs — Codec registry and base classes

125

The Python Library Reference, Release 2.7.4

Table 7.1 — continued from previous page

mac_latin2
mac_roman
mac_turkish
ptcpl54
shift_jis
shift_jis_2004
shift_jisx0213
utf 32
utf 32 be
utf_32 le
utf_16
utf_16_be
utf_16_le
utf 7

utf 8
utf_8_sig

maclatin2, maccentraleurope
macroman

macturkish

csptepl54, pt154, cpl54, cyrillic-asian
csshiftjis, shiftjis, sjis, s_jis
shiftjis2004, sjis_2004, sjis2004
shiftjisx0213, sjisx0213, s_jisx0213
U32, utf32

UTF-32BE

UTF-32LE

U16, utf16

UTF-16BE

UTF-16LE

U7, unicode-1-1-utf-7

U8, UTF, utf8

Central and Eas
Western Europe
Turkish

Kazakh
Japanese
Japanese
Japanese

all languages
all languages
all languages
all languages
all languages (B
all languages (B
all languages
all languages
all languages

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them

don’t convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery that

any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the “decoding”
direction is listed as operand type in the table.

126

Chapter 7. String Services

The Python Library Reference, Release 2.7.4

Codec Aliases Operand Purpose
type
base64_codebase64, base-64 byte Convert operand to MIME base64
string
bz2_codec| bz2 byte Compress the operand using bz2
string
hex_codec| hex byte Convert operand to hexadecimal representation, with two digits per
string byte
idna Uni- Implements RFC 3490, see also encodings.idna
code
string
mbcs dbcs Uni- Windows only: Encode operand according to the ANSI codepage
code (CP_ACP)
string
palmos Uni- Encoding of PalmOS 3.5
code
string
punycode Uni- Implements RFC 3492
code
string
quo- quopri, byte Convert operand to MIME quoted printable
pri_codec | quoted-printable, string
quotedprintable
raw_unicode_escape Uni- Produce a string that is suitable as raw Unicode literal in Python
code source code
string
rot_13 rotl3 Uni- Returns the Caesar-cypher encryption of the operand
code
string
string_escape byte Produce a string that is suitable as string literal in Python source
string code
unde- any Raise an exception for all conversions. Can be used as the system
fined encoding if no automatic coercion between byte and Unicode
strings is desired.
uni- Uni- Produce a string that is suitable as Unicode literal in Python source
code_escape code code
string
uni- Uni- Return the internal representation of the operand
code_internal code
string
uu_codec | uu byte Convert the operand using uuencode
string
zlib_codec| zip, zlib byte Compress the operand using gzip
string

New in version 2.3: The idna and punycode encodings.

7.8.4 encodings.idna — Internationalized Domain Names in Applications

New in version 2.3. This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC
3492 (Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode
encoding and stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name containing

7.8. codecs — Codec registry and base classes 127

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 2.7.4

non-ASCII characters (such as www.Alliancefrangaise.nu) is converted into an ASCII-compatible encoding
(ACE, such as www.xn—-—alliancefranaise—-npb.nu). The ACE form of the domain name is then used in all
places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host fields, and so on.
This conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting them
to the user.

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and ACE,
separating an input string into labels based on the separator characters defined in section 3.1 (1) of RFC 3490 and
converting each label to ACE as required, and conversely separating an input byte string into labels based on the .
separator and converting any ACE labels found into unicode. Furthermore, the socket module transparently converts
Unicode host names to ACE, so that applications need not be concerned about converting host names themselves when
they pass them to the socket module. On top of that, modules that have host names as function parameters, such as
httplib and ftplib, accept Unicode host names (httplib then also transparently sends an IDNA hostname in
the Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: Applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normalizations on
host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

encodings.idna.nameprep (label)
Return the nameprepped version of label. The implementation currently assumes query strings, so
AllowUnassigned is true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

7.8.5 encodings.utf 8 sig— UTF-8 codec with BOM signature

New in version 2.5. This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will
be prepended to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte
stream). For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

7.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based on the UnicodeData. t xt file version 5.2.0 which is publicly available
from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 5.2.0 (see
http://www.unicode.org/reports/tr44/tr44-4 html). It defines the following functions:

unicodedata.lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found, KeyError is raised.

unicodedata.name (unichr[, default])
Returns the name assigned to the Unicode character unichr as a string. If no name is defined, default is returned,
or, if not given, ValueError is raised.

128 Chapter 7. String Services

http://tools.ietf.org/html/rfc3490#section-3.1
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
ftp://ftp.unicode.org/
http://www.unicode.org/reports/tr44/tr44-4.html

The Python Library Reference, Release 2.7.4

unicodedata.decimal (unichr[, default])
Returns the decimal value assigned to the Unicode character unichr as integer. If no such value is defined,
default is returned, or, if not given, ValueError is raised.

unicodedata.digit (unichr[, default])
Returns the digit value assigned to the Unicode character unichr as integer. If no such value is defined, default
is returned, or, if not given, ValueError is raised.

unicodedata.numeric (unichr[, default])
Returns the numeric value assigned to the Unicode character unichr as float. If no such value is defined, default
is returned, or, if not given, ValueError is raised.

unicodedata.category (unichr)
Returns the general category assigned to the Unicode character unichr as string.

unicodedata.bidirectional (unichr)
Returns the bidirectional class assigned to the Unicode character unichr as string. If no such value is defined, an
empty string is returned.

unicodedata.combining (unichr)
Returns the canonical combining class assigned to the Unicode character unichr as integer. Returns 0 if no
combining class is defined.

unicodedata.east_asian width (unichr)
Returns the east asian width assigned to the Unicode character unichr as string. New in version 2.4.

unicodedata.mirrored (unichr)
Returns the mirrored property assigned to the Unicode character unichr as integer. Returns 1 if the character
has been identified as a “mirrored” character in bidirectional text, O otherwise.

unicodedata.decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode character unichr as string. An empty
string is returned in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canon-
ical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way.
For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility charac-
ters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed
by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining characters
and the other doesn’t, they may not compare equal. New in version 2.3.

In addition, the module exposes the following constant:

7.9. unicodedata — Unicode Database 129

The Python Library Reference, Release 2.7.4

unicodedata.unidata_version
The version of the Unicode database used in this module. New in version 2.3.

unicodedata.ued_3_2_0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA). New in
version 2.5.

Examples:

>>> import unicodedata
>>> unicodedata.lookup (' LEFT CURLY BRACKET’)
u’ {’
>>> unicodedata.name (u’ /")
" SOLIDUS’
>>> unicodedata.decimal (u’9")
9
>>> unicodedata.decimal (u’a’)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: not a decimal
>>> unicodedata.category (u’A’) # 'L’etter, ’‘u’ppercase
VLuI
>>> unicodedata.bidirectional (u’\u0660’) # ’‘A’rabic, ’'N’umber
IANI

7.10 stringprep — Internet String Preparation

New in version 2.3. When identifying things (such as host names) in the internet, it is often necessary to compare such
identifications for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g.
whether it should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow
only identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of the st ringprep procedure are part of the profile. One example of a st ringprep profile is
nameprep, which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns true if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

stringprep.in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_ b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

130 Chapter 7. String Services

http://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 2.7.4

stringprep.map_table_ b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

stringprep.in_table_cl1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_cl2 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_cll_cl2 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1 (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

7.11 fpformat — Floating point conversions

Deprecated since version 2.6: The fpformat module has been removed in Python 3. The fpformat module
defines functions for dealing with floating point numbers representations in 100% pure Python.

Note: This module is unnecessary: everything here can be done using the % string interpolation operator described in
the String Formatting Operations section.

The fpformat module defines the following functions and an exception:

7.11. fpformat — Floating point conversions 131

The Python Library Reference, Release 2.7.4

fpformat.£ix (x, digs)
Format x as [-]ddd.ddd with digs digits after the point and at least one digit before. If digs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like one. digs is an integer.
Return value is a string.

fpformat.sei (x, digs)
Format x as [-]1d.dddE [+-]ddd with digs digits after the point and exactly one digit before. If digs <=
0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like one. digs is an integer.
Return value is a string.

exception fpformat . NotANumber
Exception raised when a string passed to £ix () or sci () as the x parameter does not look like a number. This
is a subclass of ValueError when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
r1.27

132 Chapter 7. String Services

CHAPTER
EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, dict, 1ist, set (which along with frozenset,
replaces the deprecated set s module), and tuple. The str class can be used to handle binary data and 8-bit text,
and the unicode class to handle Unicode text.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

New in version 2.3. The datetime module supplies classes for manipulating dates and times in both simple and
complex ways. While date and time arithmetic is supported, the focus of the implementation is on efficient attribute
extraction for output formatting and manipulation. For related functionality, see also the t ime and calendar
modules.

There are two kinds of date and time objects: “naive” and “aware”.

An aware object has sufficient knowledge of applicable algorithmic and political time adjustments, such as time zone
and daylight saving time information, to locate itself relative to other aware objects. An aware object is used to
represent a specific moment in time that is not open to interpretation '.

A naive object does not contain enough information to unambiguously locate itself relative to other date/time objects.
Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some other timezone is
purely up to the program, just like it’s up to the program whether a particular number represents metres, miles, or
mass. Naive objects are easy to understand and to work with, at the cost of ignoring some aspects of reality.

For applications requiring aware objects, datet ime and t ime objects have an optional time zone information at-
tribute, t zinfo, that can be set to an instance of a subclass of the abstract t zinfo class. These t zinfo objects
capture information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in
effect. Note that no concrete t z1info classes are supplied by the dat et ime module. Supporting timezones at what-
ever level of detail is required is up to the application. The rules for time adjustment across the world are more political
than rational, and there is no standard suitable for every application.

The datet ime module exports the following constants:

datetime .MINYEAR
The smallest year number allowed in a date or datet ime object. MINYEAR is 1.

datetime .MAXYEAR
The largest year number allowed in a date or datet ime object. MAXYEAR is 9999.

LIf, that is, we ignore the effects of Relativity

133

The Python Library Reference, Release 2.7.4

See Also:
Module calendar General calendar related functions.

Module time Time access and conversions.

8.1.1 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 sec-
onds (there is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond,
and tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second,
microsecond,and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, t ime, or datet ime instances to microsecond reso-
lution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the dat et ime and t ime classes to
provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight saving
time).

Objects of these types are immutable.
Objects of the date type are always naive.

An object of type t ime or datetime may be naive or aware. A datetime object d is aware if d.tzinfo is
not None and d.tzinfo.utcoffset (d) does not return None. If d.tzinfo is None, orif d.tzinfo is not
None but d.tzinfo.utcoffset (d) returns None, d is naive. A time object ¢ is aware if t .tzinfo is not
Noneand t.tzinfo.utcoffset (None) does not return None. Otherwise, ¢ is naive.

The distinction between naive and aware doesn’t apply to t imede 1ta objects.
Subclass relationships:

object
timedelta
tzinfo
time
date
datetime

8.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta ([days[, seconds[, microseconds[, milliseconds[, minutes[, hours[, weeks]]

All arguments are optional and default to 0. Arguments may be ints, longs, or floats, and may be positive or
negative.

134 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:
*A millisecond is converted to 1000 microseconds.
*A minute is converted to 60 seconds.
*An hour is converted to 3600 seconds.
*A week is converted to 7 days.
and days, seconds and microseconds are then normalized so that the representation is unique, with
*0 <= microseconds < 1000000
°0 <= seconds < 3600x24 (the number of seconds in one day)
*—999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from all
arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float, the
conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.
Note that normalization of negative values may be surprising at first. For example,
>>> from datetime import timedelta
>>> d = timedelta (microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(=1, 86399, 999999)
Class attributes are:

timedelta.min
The most negative t imedelta object, timedelta (-999999999).

timedelta.max
The most positive t imedelta object, timedelta (days=999999999, hours=23, minutes=59,
seconds=59, microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal timedelta objects,
timedelta (microseconds=1).

Note that, because of normalization, t imedelta.max > —-timedelta.min. -timedelta.max is not repre-
sentable as a t imede 1t a object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between 0 and 999999 inclusive

Supported operations:

8.1. datetime — Basic date and time types 135

The Python Library Reference, Release 2.7.4

Operation Result

tl = t2 + t3 Sum of #2 and 3. Afterwards ¢/-t2 ==t3 and t1-t3 == {2 are true. (1)

tl = t2 - t3 Difference of 2 and ¢3. Afterwards tI == 2 - ¢t3 and ¢2 == ¢] + ¢3 are true. (1)

tl = t2 » i or tl Delta multiplied by an integer or long. Afterwards ¢/ // i == 12 is true, provided i

=1 % t2 '= 0.
In general, t1 *i==1¢tI * (i-1) + tI is true. (1)

tl = t2 // i The floor is computed and the remainder (if any) is thrown away. (3)

+t1 Returns a t imedelta object with the same value. (2)

-t1 equivalent to t imedelta(-tl.days, -tl.seconds, -t1.microseconds), and to t1* -1.
(1)(4)

abs (t) equivalent to +f when t .days >= 0,andto-f when t.days < 0. (2)

str(t) Returns a string in the form [D day[s], 1[H]JH:MM:SS[.UUUUUU], where
D is negative for negative t. (5)

repr (t) Returns a string in the form datetime.timedelta (D[, S[, Ul]), where
D is negative for negative t. (5)

Notes:
1. This is exact, but may overflow.
This is exact, and cannot overflow.
Division by O raises ZeroDivisionError.

-timedelta.max is not representable as a t imede 1ta object.

noA »N

String representations of t imedelta objects are normalized similarly to their internal representation. This
leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta (hours=-5)
datetime.timedelta (-1, 68400)
>>> print (_)

-1 day, 19:00:00

In addition to the operations listed above t imedelta objects support certain additions and subtractions with date
and datetime objects (see below).

Comparisons of t imedelta objects are supported with the t imedelta object representing the smaller duration
considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the default
comparison by object address, when a t imede1ta object is compared to an object of a different type, TypeError
is raised unless the comparison is == or !=. The latter cases return False or True, respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts, a
timedelta objectis considered to be true if and only if it isn’t equal to timedelta (0).

Instance methods:

timedelta.total_seconds ()
Return the total number of seconds contained in the duration. Equivalent to (td.microseconds +
(td.seconds + td.days x 24 * 3600) * 10%x6) / 10x%6 computed with true division en-
abled.

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose microsec-
ond accuracy. New in version 2.7.

Example usage:

>>> from datetime import timedelta
>>> year = timedelta (days=365)
>>> another_year = timedelta (weeks=40, days=84, hours=23,
minutes=50, seconds=600) # adds up to 365 days

136 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

>>> year.total_seconds ()

31536000.0

>>> year == another_year
True

>>> ten_years = 10 * year

>>> ten_years, ten_years.days // 365
(datetime.timedelta (3650), 10)

>>> nine_years = ten_years - year

>>> nine_years, nine_years.days // 365
(datetime.timedelta (3285), 9)

>>> three_years = nine_years // 3;

>>> three_years, three_years.days // 365
(datetime.timedelta (1095), 3)

>>> abs(three_years - ten_years) == * three_years + year
True

8.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called day
number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s
book Calendrical Calculations, where it’s the base calendar for all computations. See the book for algorithms for
converting between proleptic Gregorian ordinals and many other calendar systems.

class datet ime.date (year, month, day)
All arguments are required. Arguments may be ints or longs, in the following ranges:

*MINYEAR <= year <= MAXYEAR
*l <= month <= 12
*] <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date. This is equivalent to date . fromtimestamp (time.time ()).

classmethod date . fromtimestamp (timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by t ime . t ime () . This may
raise ValueError, if the timestamp is out of the range of values supported by the platform C localtime ()
function. It’s common for this to be restricted to years from 1970 through 2038. Note that on non-POSIX sys-
tems that include leap seconds in their notion of a timestamp, leap seconds are ignored by f romt imestamp ().

classmethod date . fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal (). For any date d,
date.fromordinal (d.toordinal()) == d

Class attributes:

date.min
The earliest representable date, date (MINYEAR, 1, 1).

date.max
The latest representable date, date (MAXYEAR, 12, 31).

8.1. datetime — Basic date and time types 137

The Python Library Reference, Release 2.7.4

date.resolution
The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

date.year
Between MINYEAR and MAXYEAR inclusive.

date.month
Between 1 and 12 inclusive.

date.day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result

date2 = datel + timedelta | date2is timedelta.days days removed from datel. (1)

date2 = datel - timedelta | Computes date2 such that date2 + timedelta == datel. (2)

timedelta = datel - date2 | (3)

datel < date2 datel is considered less than date2 when datel precedes date?2 in time. (4)
Notes:

1. date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days
< 0. Afterward date2 - datel == timedelta.days. timedelta.seconds and
timedelta.microseconds are ignored. OverflowError is raised if date2.year would be
smaller than MINYEAR or larger than MAXYEAR.

2. This isn’t quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases where
datel - timedelta does not. timedelta.seconds and timedelta.microseconds are ignored.

3. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== datel after.

4. In other words, datel < date2 if and only if datel.toordinal () < date2.toordinal (). In
order to stop comparison from falling back to the default scheme of comparing object addresses, date comparison
normally raises TypeError if the other comparand isn’t also a date object. However, Not Implemented
is returned instead if the other comparand has a t imetuple () attribute. This hook gives other kinds of date
objects a chance at implementing mixed-type comparison. If not, when a date object is compared to an object
of a different type, TypeError is raised unless the comparison is == or ! =. The latter cases return False or
True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date objects are considered to be true.
Instance methods:

date.replace (year, month, day)
Return a date with the same value, except for those parameters given new values by whichever keyword ar-
guments are specified. For example, if d == date (2002, 12, 31),then d.replace (day=26) ==
date (2002, 12, 26).

date.timetuple ()
Return a time.struct_time such as returned by time.localtime (). The hours, minutes and sec-
onds are 0, and the DST flag is -1. d.timetuple () is equivalent to time.struct_time ((d.year,
d.month, d.day, 0, 0, 0, d.weekday(), yday, -1)), where yday = d.toordinal ()
- date(d.year, 1, 1).toordinal() + 1 is the day number within the current year starting with
1 for January 1st.

date.toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date object
d,date.fromordinal (d.toordinal()) ==

138 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

date.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4).weekday () == 2,a Wednesday. See also isoweekday ().

date.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4).isoweekday () == 3, a Wednesday. See also weekday (), isocalendar ().

date.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely wused variant of the Gregorian calendar. See
http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, so that date (2003, 12, 29).isocalendar () == (2004, 1,
1) and date (2004, 1, 4) .isocalendar () == (2004, 1, 7).

date.isoformat ()
Return a string representing the date in ISO 8601 format, ‘'YYYY-MM-DD’. For example, date (2002, 12,
4) .isoformat () == ’2002-12-04".

date.__str ()
For adate d, str (d) isequivalentto d.isoformat ().

date.ctime ()

Return a string representing the date, for example date (2002, 12, 4).ctime() == 'Wed Dec 4
00:00:00 2002'. d.ctime () is equivalent to time.ctime (time.mktime (d.timetuple()))
on platforms where the native C ctime () function (which time.ctime () invokes, but which

date.ctime () does not invoke) conforms to the C standard.

date.strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. See section strftime() and strptime() Behavior.

Example of counting days to an event:

>>> import time

>>> from datetime import date

>>> today = date.today ()

>>> today

datetime.date (2007, 12, 5)

>>> today == date.fromtimestamp (time.time ())
True

>>> my_birthday = date(today.year, 6, 24)

>>> if my_birthday < today:

.. my_birthday = my_birthday.replace (year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)
>>> time_to_birthday.days

202

Example of working with date:

8.1. datetime — Basic date and time types 139

http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm

The Python Library Reference, Release 2.7.4

>>> from datetime import date
>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001

>>> d

datetime.date (2002, 3, 11)
>>> t = d.timetuple()
>>> for i in t:

c. print i

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> jc = d.isocalendar ()

>>> for i in ic:

c. print i

2002 # ISO year

11 # ISO week number

1 # ISO day number (1 = Monday)
>>> d.isoformat ()

72002-03-11"

>>> d.strftime ("2d/Sm/Sy")

711/03/02"

>>> d.strftime ("%A . %B %Y")

"Monday 11. March 2002’

8.1.4 datetime Objects

A datetime object is a single object containing all the information from a date object and a t ime object. Like
a date object, datetime assumes the current Gregorian calendar extended in both directions; like a time object,
datetime assumes there are exactly 3600%24 seconds in every day.

Constructor:

class datetime .datetime (year, month, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]])
The year, month and day arguments are required. fzinfo may be None, or an instance of a t zinfo subclass.
The remaining arguments may be ints or longs, in the following ranges:

*MINYEAR <= year <= MAXYEAR

o1
o1
«0
«0
«0
*0

<=

month <= 12

day <= number of days in the given month and year
hour < 24

minute < 60

second < 60

microsecond < 1000000

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

140

Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

classmethod datetime.today ()
Return the current local datetime, with tzinfo None. This is equivalent to
datetime.fromtimestamp (time.time ()). See also now (), fromtimestamp ().

classmethod datetime.now ([tz])
Return the current local date and time. If optional argument fz is None or not specified, this is like today (),
but, if possible, supplies more precision than can be gotten from going through a time.time () timestamp
(for example, this may be possible on platforms supplying the C gettimeofday () function).

Else 1tz must be an instance of a «class tzinfo subclass, and the current date
and time are converted to #z's time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcnow () .replace (tzinfo=tz)). See also today (), utcnow ().

classmethod datet ime.utcnow ()
Return the current UTC date and time, with t zinfo None. This is like now (), but returns the current UTC
date and time, as a naive datet ime object. See also now () .

classmethod datet ime . fromtimestamp (timestamp [, 1z])
Return the local date and time corresponding to the POSIX timestamp, such as is returned by time.time ().
If optional argument ¢z is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returned datet ime object is naive.

Else 1 must be an instance of a «class tzinfo subclass, and the times-
tamp is converted to fz's time zone. In this case the result is equivalent to
tz.fromutc (datetime.utcfromtimestamp (timestamp) .replace (tzinfo=tz)).

fromtimestamp () may raise ValueError, if the timestamp is out of the range of values supported by
the platform C localtime () or gmtime () functions. It’s common for this to be restricted to years in 1970
through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap
seconds are ignored by fromtimestamp (), and then it’s possible to have two timestamps differing by a
second that yield identical datet ime objects. See also utcfromtimestamp ().

classmethod datetime.utcfromtimestamp (timestamp)
Return the UTC datetime corresponding to the POSIX timestamp, with tzinfo None. This may raise
ValueError, if the timestamp is out of the range of values supported by the platform C gmt ime () function.
It’s common for this to be restricted to years in 1970 through 2038. See also fromt imestamp ().

classmethod datetime . fromordinal (ordinal)
Return the dat et ime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.
ValueError israised unless 1 <= ordinal <= datetime.max.toordinal (). The hour, minute,
second and microsecond of the result are all 0, and t zinfo is None.

classmethod datetime.combine (date, time)
Return a new datet ime object whose date components are equal to the given date object’s, and whose time
components and t zinfo attributes are equal to the given t ime object’s. For any datetime objectd, d ==
datetime.combine (d.date (), d.timetz()). If dateis a datetime object, its time components
and tzinfo attributes are ignored.

classmethod datetime . strptime (date_string, format)
Return a datetime corresponding to date_string, parsed according to format. This is equivalent to
datetime (x (time.strptime (date_string, format) [0:6])). ValueError is raised if the
date_string and format can’t be parsed by t ime . st rptime () or if it returns a value which isn’t a time tuple.
See section strftime() and strptime() Behavior. New in version 2.5.

Class attributes:

datetime.min
The earliest representable datetime, datetime (MINYEAR, 1, 1, tzinfo=None).

8.1. datetime — Basic date and time types 141

The Python Library Reference, Release 2.7.4

datetime.max

The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution

The smallest possible difference between non-equal datet ime objects, timedelta (microseconds=1).

Instance attributes (read-only):

datetime.year

Between MINYEAR and MAXYEAR inclusive.

datetime.month

Between 1 and 12 inclusive.

datetime.day

Between 1 and the number of days in the given month of the given year.

datetime.hour

In range (24).

datetime.minute

In range (60).

datetime.second

In range (60).

datetime.microsecond

In range (1000000).

datetime.tzinfo

The object passed as the tzinfo argument to the datet ime constructor, or None if none was passed.

Supported operations:

Operation Result

datetime2 = datetimel + timedelta | (1)
datetime2 = datetimel - timedelta | (2)
timedelta
datetimel < datetime2 Compares datetime to datetime. (4)

datetimel - datetime2 | (3)

1.

datetime? is a duration of timedelta removed from datetimel, moving forward in time if t imedelta.days >
0, or backward if t imedelta.days <0. The result has the same t zinfo attribute as the input datetime, and
datetime?2 - datetimel == timedelta after. OverflowError is raised if datetime2.year would be smaller than
MINYEAR or larger than MAXYEAR. Note that no time zone adjustments are done even if the input is an aware
object.

Computes the datetime2 such that datetime2 + timedelta == datetimel. As for addition, the result has the same
tzinfo attribute as the input datetime, and no time zone adjustments are done even if the input is aware. This
isn’t quite equivalent to datetimel + (-timedelta), because -timedelta in isolation can overflow in cases where
datetimel - timedelta does not.

Subtraction of a datet ime from a datet ime is defined only if both operands are naive, or if both are aware.
If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same t zinf o attribute, the t zin fo attributes are ignored, and
the resultis a t imedelta object ¢ such that datetime2 + t == datetimel. No time zone adjustments
are done in this case.

If both are aware and have different tzinfo attributes, a—b acts as if a and b were first converted
to naive UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset()) -
(b.replace (tzinfo=None) - b.utcoffset ()) except that the implementation never overflows.

142

Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

4. datetimel is considered less than datetime2 when datetimel precedes datetime?2 in time.

If one comparand is naive and the other is aware, TypeError is raised. If both comparands are aware, and
have the same tzinfo attribute, the common tzinfo attribute is ignored and the base datetimes are com-
pared. If both comparands are aware and have different t zinfo attributes, the comparands are first adjusted
by subtracting their UTC offsets (obtained from self.utcoffset ()).

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses, date-
time comparison normally raises TypeError if the other comparand isn’t also a datet ime object. However,
Not Implemented is returned instead if the other comparand has a t imetuple () attribute. This hook gives
other kinds of date objects a chance at implementing mixed-type comparison. If not, when a datet ime object
is compared to an object of a different type, TypeError is raised unless the comparison is == or !=. The
latter cases return False or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, all datet ime objects are considered to be
true.

Instance methods:

datetime.date ()
Return date object with same year, month and day.

datetime.time ()
Return t ime object with same hour, minute, second and microsecond. tzinfo is None. See also method
timetz ().

datetime.timetz ()
Return time object with same hour, minute, second, microsecond, and tzinfo attributes. See also method
time ().

datetime.replace ([year[, month[, day[, hour[, minute[, second[, microsecond[, tzinfo]]]]]]]])
Return a datetime with the same attributes, except for those attributes given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time data.

datetime.astimezone (17)
Return a datet ime object with new tzinfo attribute #z, adjusting the date and time data so the result is the
same UTC time as self, but in #z°s local time.

tz must be an instance of a t zinfo subclass, and its utcoffset () and dst () methods must not return
None. self must be aware (self.tzinfo must not be None, and self.utcoffset () must not return
None).

If self.tzinfo is tz, self.astimezone (tz) is equal to self: no adjustment of date or time data is
performed. Else the result is local time in time zone 7z, representing the same UTC time as self: after astz
= dt.astimezone (tz), astz - astz.utcoffset () will usually have the same date and time data
as dt - dt.utcoffset (). The discussion of class t zinfo explains the cases at Daylight Saving Time
transition boundaries where this cannot be achieved (an issue only if #z models both standard and daylight time).

If you merely want to attach a time zone object #z to a datetime dr without adjustment of date and time data, use
dt.replace (tzinfo=tz). If you merely want to remove the time zone object from an aware datetime dt
without conversion of date and time data, use dt . replace (tzinfo=None).

Note that the default tzinfo.fromutc () method can be overridden in a t zinfo subclass to affect the
result returned by astimezone (). Ignoring error cases, astimezone () acts like:

def astimezone (self, tz):
if self.tzinfo is tz:
return self

8.1. datetime — Basic date and time types 143

The Python Library Reference, Release 2.7.4

Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()) .replace(tzinfo=tz)

Convert from UTC to tz’s local time.

return tz.fromutc (utc)

datetime.utcoffset ()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (self), and raises an excep-
tion if the latter doesn’t return None, or a t imedelta object representing a whole number of minutes with
magnitude less than one day.

datetime.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (self), and raises an exception if the
latter doesn’t return None, or a t imedelta object representing a whole number of minutes with magnitude
less than one day.

datetime.tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (self), raises an exception if the
latter doesn’t return None or a string object,

datetime.timetuple ()
Returna time.struct_time suchasreturned by time.localtime (). d.timetuple () isequivalent
to time.struct_time((d.year, d.month, d.day, d.hour, d.minute, d.second,
d.weekday (), yday, dst)), where yday = d.toordinal () - date(d.year, 1,
1) .toordinal () + 1 is the day number within the current year starting with 1 for January lst.
The tm_isdst flag of the result is set according to the dst () method: tzinfo is None or dst ()
returns None, tm_isdst is set to —1; else if dst () returns a non-zero value, tm_isdst is set to 1; else
tm_isdst is setto O.

datetime.utctimetuple ()
If datet ime instance d is naive, this is the same as d.timetuple () except that tm_isdst is forced to 0
regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (),and a time.struct_time
for the normalized time is returned. tm_1isdst is forced to 0. Note that the result’s tm_year member may
be MINYEAR-1 or MAXYEAR+I, if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year
boundary.

datetime.toordinal ()
Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

datetime.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as
self.date () .weekday (). See also i soweekday ().

datetime.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date () .isoweekday (). See also weekday (), isocalendar ().

datetime.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as
self.date () .isocalendar ().

datetime.isoformat ([sep])
Return a string representing the date and time in ISO 8601 format, YYYY-MM-DDTHH:MM:SS.mmmmmm
or,ifmicrosecondis 0, YYYY-MM-DDTHH:MM:SS

If utcoffset () does not return None, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, if microsecondis 0 YYYY-
MM-DDTHH:MM:SS+HH:MM

144 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

The optional argument sep (default ’ T’) is a one-character separator, placed between the date and time portions
of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ (tzinfo):
def utcoffset(self, dt): return timedelta (minutes=-399)

>>> datetime (2002, 12, 25, tzinfo=TZ()) .isoformat (’ ')
72002-12-25 00:00:00-06:39"

datetime.__str ()
For a datetime instance d, str (d) is equivalentto d.isoformat (* ’).

datetime.ctime ()
Return a string representing the date and time, for example datetime (2002, 12, 4, 20,

30, 40).ctime() == 'Wed Dec 4 20:30:40 2002’. d.ctime () is equivalent to
time.ctime (time.mktime (d.timetuple ())) on platforms where the native C ctime () function
(which time.ctime () invokes, but which datetime.ctime () does not invoke) conforms to the C
standard.

datetime.strftime (format)
Return a string representing the date and time, controlled by an explicit format string. See section strftime() and
strptime() Behavior.

Examples of working with datetime objects:

>>> from datetime import datetime, date, time

>>> # Using datetime.combine ()

>>> d = date (2005, 7, 14)

>>> t = time (12, 30)

>>> datetime.combine(d, t)

datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now () or datetime.utcnow ()

>>> datetime.now ()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow ()

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060)

>>> # Using datetime.strptime ()

>>> dt = datetime.strptime ("21/11/06 16:30", "2d/Sm/%y SH:%M")
>>> dt

datetime.datetime (2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple() to get tuple of all attributes
>>> tt = dt.timetuple ()

>>> for it in tt:

print it
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1lst January

-1 # dst - method tzinfo.dst () returned None
>>> # Date in ISO format

8.1. datetime — Basic date and time types 145

The Python Library Reference, Release 2.7.4

>>> ic = dt.isocalendar ()
>>> for it in ic:
print it
2006 # ISO year
47 # ISO week
2 # ISO weekday

>>> # Formatting datetime
>>> dt.strftime ("%A, 2d.
"Tuesday, 21.

Using datetime with tzinfo:

>>> from datetime import timedelta,
>>> class GMT1 (tzinfo):

def utcoffset(self, dt):

return timedelta (hours=1)

def dst (self, dt):

$B %Y $I:%M%p")
November 2006 04:30PM’

datetime, tzinfo

+ self.dst (dt)

DST starts last Sunday in March

d = datetime (dt.year, 4, 1) # ends last Sunday in October
self.dston = d - timedelta (days=d.weekday () + 1)

d = datetime(dt.year, 11, 1)

self.dstoff = d - timedelta (days=d.weekday () + 1)

if self.dston <= dt.replace(tzinfo=None) < self.dstoff:

return timedelta (hours=1)

else:
return timedelta (0)
def tzname (self,dt):
return "GMT +1"

>>> class GMT2 (tzinfo) :

def utcoffset(self, dt):

return timedelta (hours=2)

+ self.dst (dt)

def dst (self, dt):
d = datetime (dt.year, 4, 1)
self.dston = d - timedelta (days=d.weekday () + 1)
d = datetime (dt.year, 11, 1)
self.dstoff = d - timedelta(days=d.weekday () + 1)

if self.dston <=

dt.replace (tzinfo=None)

< self.dstoff:

return timedelta (hours=1)

else:

return timedelta (0)
tzname (self,dt) :
return "GMT +2"

def
>>> gmtl = GMT1 ()
Daylight Saving Time
dtl = datetime (2006, 11,
>>> dtl.dst ()
datetime.timedelta (0)
>>> dtl.utcoffset ()
datetime.timedelta (0, 3600)
>>> dt2 = datetime (2006, 6,
>>> dt2.dst ()
datetime.timedelta (0,

>>>

>>> 21,

14, 13,

3600)

16,

30, tzinfo=gmtl)

0, tzinfo=gmtl)

146

Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

>>> dt2.utcoffset ()

datetime.timedelta (0, 7200)

>>> # Convert datetime to another time zone

>>> dt3 = dt2.astimezone (GMT2())

>>> dt3

datetime.datetime (2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=<GMT1l object at 0x...>)
>>> dt2.utctimetuple () == dt3.utctimetuple ()

True

8.1.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class datetime.time ([hour[, minute[, second[, microsecond[, tzinfo]]]]])
All arguments are optional. fzinfo may be None, or an instance of a t z1info subclass. The remaining arguments
may be ints or longs, in the following ranges:

*0 <= hour < 24

*0 <= minute < 60

*0 <= second < 60

*0 <= microsecond < 1000000.

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo, which
defaults to None.

Class attributes:

time.min
The earliest representable t ime, time (0, 0, 0, 0).

time.max
The latest representable t ime, time (23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal t ime objects, timedelta (microseconds=1), al-
though note that arithmetic on t ime objects is not supported.

Instance attributes (read-only):

time.hour
In range (24).

time.minute
In range (60).

time.second
In range (60).

time.microsecond
In range (1000000).

time.tzinfo
The object passed as the tzinfo argument to the t ime constructor, or None if none was passed.

Supported operations:

8.1. datetime — Basic date and time types 147

The Python Library Reference, Release 2.7.4

e comparison of t ime to t ime, where a is considered less than b when a precedes b in time. If one comparand is
naive and the other is aware, TypeError is raised. If both comparands are aware, and have the same t zinfo
attribute, the common tzinfo attribute is ignored and the base times are compared. If both comparands
are aware and have different t zinfo attributes, the comparands are first adjusted by subtracting their UTC
offsets (obtained from self.utcoffset ()). In order to stop mixed-type comparisons from falling back to
the default comparison by object address, when a t ime object is compared to an object of a different type,
TypeError is raised unless the comparison is == or ! =. The latter cases return False or True, respectively.

* hash, use as dict key
* efficient pickling

* in Boolean contexts, a t ime object is considered to be true if and only if, after converting it to minutes and
subtracting utcoffset () (or 0 if that’s None), the result is non-zero.

Instance methods:

time.replace ([hour[, minute[, second[, microsecond[, tzinfo]]]]])
Return a t ime with the same value, except for those attributes given new values by whichever keyword argu-
ments are specified. Note that tzinfo=None can be specified to create a naive t ime from an aware t ime,
without conversion of the time data.

time.isoformat ()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset () does not return None, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is O,
HH:MM:SS+HH:MM

time._ _str_ ()
Foratimet, str (t) isequivalentto t .isoformat ().

time.strftime (format)
Return a string representing the time, controlled by an explicit format string. See section strftime() and strptime()
Behavior.

time.utcoffset ()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset (None), and raises an excep-
tion if the latter doesn’t return None or a t imedelta object representing a whole number of minutes with
magnitude less than one day.

time.dst ()
If tzinfo is None, returns None, else returns self.tzinfo.dst (None), and raises an exception if the
latter doesn’t return None, or a t imedelta object representing a whole number of minutes with magnitude
less than one day.

time.tzname ()
If tzinfo is None, returns None, else returns self.tzinfo.tzname (None), or raises an exception if
the latter doesn’t return None or a string object.

Example:

>>> from datetime import time, tzinfo
>>> class GMT1 (tzinfo) :
def utcoffset (self, dt):
return timedelta (hours=1)
def dst (self, dt):
return timedelta (0)
def tzname (self,dt):
return "Europe/Prague"

148 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

>>> t = time (12, 10, 30, tzinfo=GMT1())
>>> t

datetime.time (12, 10, 30, tzinfo=<GMT1l object at 0Ox...>)
>>> gmt = GMT1 ()

>>> t.isoformat ()

712:10:30+01:00"

>>> t.dst ()

datetime.timedelta (0)

>>> t.tzname ()

" Europe/Prague’

>>> t.strftime ("$SH:$M:%S %2")

712:10:30 Europe/Prague’

8.1.6 tzinfo Objects

tzinfo is an abstract base class, meaning that this class should not be instantiated directly. You need to derive a
concrete subclass, and (at least) supply implementations of the standard t z info methods needed by the datetime
methods you use. The datet ime module does not supply any concrete subclasses of tzinfo.

An instance of (a concrete subclass of) t zinfo can be passed to the constructors for datet ime and t ime objects.
The latter objects view their attributes as being in local time, and the t z i n f o object supports methods revealing offset
of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time object passed to them.

Special requirement for pickling: A t zinfo subclass musthave an __init__ () method that can be called with no
arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that may be relaxed
in the future.

A concrete subclass of t zinfo may need to implement the following methods. Exactly which methods are needed
depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

tzinfo.utcoffset (self, dt)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should be
negative. Note that this is intended to be the total offset from UTC; for example, if a t zinfo object represents
both time zone and DST adjustments, ut cof fset () should return their sum. If the UTC offset isn’t known,
return None. Else the value returned must be a t imedelta object specifying a whole number of minutes in
the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less than one day). Most
implementations of ut cof fset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset () does notreturn None, dst () should not return None either.
The default implementation of utcoffset () raises Not ImplementedError.

tzinfo.dst (self, dt)

Return the daylight saving time (DST) adjustment, in minutes east of UTC, or None if DST information isn’t
known. Return t imedelta (0) if DST is not in effect. If DST is in effect, return the offset as a t imedelta
object (see utcoffset () for details). Note that DST offset, if applicable, has already been added to the UTC
offset returned by utcoffset (), so there’s no need to consult dst () unless you're interested in obtaining
DST info separately. For example, datetime.timetuple () callsits tzinfo attribute’s dst () method
to determine how the tm_1isdst flag should be set, and t zinfo.fromutc () calls dst () to account for
DST changes when crossing time zones.

An instance #z of a t zinfo subclass that models both standard and daylight times must be consistent in this
sense:

8.1. datetime — Basic date and time types 149

The Python Library Reference, Release 2.7.4

tz.utcoffset (dt) - tz.dst (dt)

must return the same result for every datetime df with dt .tzinfo == tz For sane t zinfo subclasses,
this expression yields the time zone’s “standard offset”, which should not depend on the date or the time, but
only on geographic location. The implementation of datetime.astimezone () relies on this, but cannot
detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass cannot guarantee
this, it may be able to override the default implementation of tzinfo.fromutc () to work correctly with
astimezone () regardless.

Most implementations of dst () will probably look like one of these two:

def dst (self, dt):
a fixed-offset class: doesn’t account for DST
return timedelta (0)

or

def dst (self, dt):
Code to set dston and dstoff to the time zone’s DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.

tzinfo.tzname (self, dt)
Return the time zone name corresponding to the datet ime object dt, as a string. Nothing about string names is
defined by the dat et ime module, and there’s no requirement that it mean anything in particular. For example,
“GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York™ are all valid replies. Return
None if a string name isn’t known. Note that this is a method rather than a fixed string primarily because some
tzinfo subclasses will wish to return different names depending on the specific value of dt passed, especially
if the tzinfo class is accounting for daylight time.

The default implementation of t zname () raises Not ImplementedError.

These methods are called by a datetime or time object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a t ime object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a df argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the t zinfo protocols. It may be more
useful for utcoffset (None) to return the standard UTC offset, as there is no other convention for discovering the
standard offset.

When a datetime object is passed in response to a datet ime method, dt .tzinfo is the same object as self.
tzinfo methods can rely on this, unless user code calls t zinfo methods directly. The intent is that the tzinfo
methods interpret dt as being in local time, and not need worry about objects in other timezones.

There is one more t z info method that a subclass may wish to override:

tzinfo.fromutc (self, dt)
This is called from the default datetime.astimezone () implementation. When called from that,
dt.tzinfo is self, and dt‘s date and time data are to be viewed as expressing a UTC time. The purpose
of fromutc () is to adjust the date and time data, returning an equivalent datetime in self ‘s local time.

150 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

Most t zinfo subclasses should be able to inherit the default fromutc () implementation without problems.
It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight
time, and the latter even if the DST transition times differ in different years. An example of a time zone the
default fromutc () implementation may not handle correctly in all cases is one where the standard offset
(from UTC) depends on the specific date and time passed, which can happen for political reasons. The default
implementations of ast imezone () and fromutc () may not produce the result you want if the result is one
of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc () implementation acts like:

def fromutc(self, dt):
raise ValueError error 1if dt.tzinfo is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
raise ValueError 1f dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self’s standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst ()
raise ValueError 1if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

Example t zinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO timedelta (0)
HOUR = timedelta (hours=1)

A UTC class.

class UTC(tzinfo):
mmn "UTC mmn

def utcoffset (self, dt):
return ZERO

def tzname (self, dt):
return "UTC"

def dst (self, dt):
return ZERO

utc = UTC()
A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset (0, "UTC") is a different way to build a

UTC tzinfo object.

class FixedOffset (tzinfo) :
""'pFixed offset in minutes east from UTC."""

8.1. datetime — Basic date and time types 151

The Python Library Reference, Release 2.7.4

def _ init_ (self, offset, name):
self.__offset = timedelta (minutes = offset)
self._ _name = name

def utcoffset (self, dt):
return self._offset

def tzname (self, dt):
return self._ name

def dst (self, dt):
return ZERO

A class capturing the platform’s idea of local time.

import time as _time

STDOFFSET = timedelta (seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta (seconds = —_time.altzone)
else:

DSTOFFSET = STDOFFSET
DSTDIFF = DSTOFFSET - STDOFFSET
class LocalTimezone (tzinfo) :

def utcoffset (self, dt):
if self._isdst (dt):
return DSTOFFSET
else:
return STDOFFSET

def dst (self, dt):
if self._isdst(dt):
return DSTDIFF
else:
return ZERO

def tzname (self, dt):
return _time.tzname[self._isdst (dt)]

def _isdst (self, dt):
tt = (dt.year, dt.month, dt.day,
dt .hour, dt.minute, dt.second,
dt .weekday (), 0, 0)
stamp = _time.mktime (tt)
tt = _time.localtime (stamp)
return tt.tm_isdst > 0

Local = LocalTimezone ()

A complete implementation of current DST rules for major US time zones.

152

Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

def first_sunday_on_or_after(dt):
days_to_go = 6 — dt.weekday ()
if days_to_go:
dt += timedelta (days_to_go)
return dt

US DST Rules

This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz-1ink.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)

In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.

DSTSTART_2007 = datetime(l, 3, 8, 2)

and ends at 2am (DST time; lam standard time) on the first Sunday of Nov.
DSTEND_2007 = datetime(1, 11, 1, 1)

From 1987 to 2006, DST used to start at 2am (standard time) on the first

Sunday in April and to end at Z2am (DST time; lam standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime(1, 4, 1, 2)

DSTEND_1987_2006 = datetime (1, 10, 25, 1)

From 1967 to 1986, DST used to start at 2am (standard time) on the last

Sunday in April (the one on or after April 24) and to end at 2am (DST time;
lam standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.

DSTSTART_1967_1986 = datetime(l, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

H oFHR HR R R R R R R

class USTimeZone (tzinfo) :

def _ _init__ (self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta (hours=hours)
self.reprname = reprname
self.stdname = stdname

self.dstname = dstname

def _ repr_ (self):
return self.reprname

def tzname (self, dt):
if self.dst (dt):
return self.dstname
else:
return self.stdname

def utcoffset (self, dt):
return self.stdoffset + self.dst (dt)

def dst (self, dt):

8.1. datetime — Basic date and time types 153

The Python Library Reference, Release 2.7.4

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc () implementation (called by the default astimezone ()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find start and end times for US DST. For years before 1967, return
ZERO for no DST.
if 2006 < dt.year:
dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < dt.year < 2007:
dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < dt.year < 1987:
dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else:
return ZERO

start = first_sunday_on_or_after (dststart.replace (year=dt.year))
end = first_sunday_on_or_after (dstend.replace (year=dt.year))

Can’t compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:
return HOUR
else:
return ZERO

Eastern = USTimeZone (-5, "Eastern", "EST", "EDT")
Central = USTimeZone (-6, "Central", "csT", "CDT")
Mountain = USTimeZone (-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone (-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per year in a t zinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT begins
the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59 (EDT) on the first Sunday
in November:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM : MM : MM MM 3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM

(@)
=
N

start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM doesn’t
really make sense on that day, so astimezone (Eastern) won’t deliver a result with hour == 2 on the day
DST begins. In order for ast imezone () to make this guarantee, the rzinfo.dst () method must consider times
in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unambigu-
ously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the day
daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again. Local
times of the form 1:MM are ambiguous. ast imezone () mimics the local clock’s behavior by mapping two adjacent

154 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM and 6:MM both map
to 1:MM when converted to Eastern. In order for astimezone () to make this guarantee, the tzinfo.dst ()
method must consider times in the “repeated hour” to be in standard time. This is easily arranged, as in the example,
by expressing DST switch times in the time zone’s standard local time.

Applications that can’t bear such ambiguities should avoid using hybrid t z info subclasses; there are no ambiguities
when using UTC, or any other fixed-offset t zinfo subclass (such as a class representing only EST (fixed offset -5
hours), or only EDT (fixed offset -4 hours)).

See Also:

pytz The standard library has no tzinfo instances, but there exists a third-party library which brings the JANA
timezone database (also known as the Olson database) to Python: pyzz.

pytz contains up-to-date information and its usage is recommended.

TANA timezone database The Time Zone Database (often called tz or zoneinfo) contains code and data that represent
the history of local time for many representative locations around the globe. It is updated periodically to reflect
changes made by political bodies to time zone boundaries, UTC offsets, and daylight-saving rules.

8.1.7 strftime () and strptime () Behavior

date, datetime, and t ime objects all supporta strftime (format) method, to create a string representing the
time under the control of an explicit format string. Broadly speaking, d.strftime (fmt) acts like the t ime mod-
ule’stime.strftime (fmt, d.timetuple ()) although not all objects support a t imetuple () method.

Conversely, the datetime.strptime () class method creates a datet ime object from a string representing a
date and time and a corresponding format string. datetime.strptime (date_string, format) isequiva-
lent to datetime (* (time.strptime (date_string, format) [0:6])).

For t ime objects, the format codes for year, month, and day should not be used, as time objects have no such values.
If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For dat e objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as dat e objects
have no such values. If they’re used anyway, O is substituted for them. New in version 2.6: t ime and datet ime
objects support a % £ format code which expands to the number of microseconds in the object, zero-padded on the left
to six places. For a naive object, the $z and %$Z format codes are replaced by empty strings.

For an aware object:

%z utcoffset () is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a 2-
digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC
offset minutes. For example, if utcoffset () returns timedelta (hours=-3, minutes=-30), %z is
replaced with the string ' -0330".

%2 If tzname () returns None, %7 is replaced by an empty string. Otherwise $7Z is replaced by the returned value,
which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime () function, and platform variations are common.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work on all
platforms with a standard C implementation. Note that the 1999 version of the C standard added additional format
codes.

The exact range of years for which st rftime () works also varies across platforms. Regardless of platform, years
before 1900 cannot be used.

8.1. datetime — Basic date and time types 155

http://pypi.python.org/pypi/pytz/
http://www.iana.org/time-zones

The Python Library Reference, Release 2.7.4

Di- Meaning Notes
rec-
tive
%a Locale’s abbreviated weekday name.
$A Locale’s full weekday name.
$b Locale’s abbreviated month name.
%B Locale’s full month name.
$C Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
$f Microsecond as a decimal number [0,999999], zero-padded on the left €))]
%H Hour (24-hour clock) as a decimal number [00,23].
$T Hour (12-hour clock) as a decimal number [01,12].
%7 Day of the year as a decimal number [001,366].
$m Month as a decimal number [01,12].
M Minute as a decimal number [00,59].
$p Locale’s equivalent of either AM or PM. 2)
%S Second as a decimal number [00,61]. 3)
%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. All “4)
days in a new year preceding the first Sunday are considered to be in week 0.
Sw Weekday as a decimal number [0(Sunday),6].
SW Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. All | (4)
days in a new year preceding the first Monday are considered to be in week 0.
$xX Locale’s appropriate date representation.
$X Locale’s appropriate time representation.
Sy Year without century as a decimal number [00,99].
Y Year with century as a decimal number.
%z UTC offset in the form +HHMM or -HHMM (empty string if the the object is naive). 5)
%7 Time zone name (empty string if the object is naive).
%% A literal * %’ character.
Notes:

1.

8.2

When used with the strptime () method, the $f directive accepts from one to six digits and zero pads on
the right. $f is an extension to the set of format characters in the C standard (but implemented separately in
datetime objects, and therefore always available).

When used with the st rpt ime () method, the $p directive only affects the output hour field if the $ I directive
is used to parse the hour.

. The range really is 0 to 61; according to the Posix standard this accounts for leap seconds and the (very rare)

double leap seconds. The t i me module may produce and does accept leap seconds since it is based on the Posix
standard, but the dat et ime module does not accept leap seconds in strptime () input nor will it produce
them in strftime () output.

When used with the st rpt ime () method, $U and $W are only used in calculations when the day of the week
and the year are specified.

For example, if utcoffset () returns timedelta (hours=-3, minutes=-30), %z is replaced with
the string /' —0330".

calendar — General calendar-related functions

Source code: Lib/calendar.py

156

Chapter 8. Data Types

http://hg.python.org/cpython/file/2.7/Lib/calendar.py

The Python Library Reference, Release 2.7.4

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Use set firstweekday () to set the first day of the week to Sunday (6) or to any other
weekday. Parameters that specify dates are given as integers. For related functionality, see also the datetime and
t ime modules.

Most of these functions and classes rely on the datet ime module which uses an idealized calendar, the current
Gregorian calendar indefinitely extended in both directions. This matches the definition of the “proleptic Gregorian”
calendar in Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computa-
tions.

class calendar.Calendar ([ﬁrstweekday])
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. 0 is Monday (the
default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for formatting.
This class doesn’t do any formatting itself. This is the job of subclasses. New in version 2.5. Calendar
instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the iterator
will be the same as the value of the i rstweekday property.

itermonthdates (year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end of the
month that are required to get a complete week.

itermonthdays2 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days returned
will be tuples consisting of a day number and a week day number.

itermonthdays (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (). Days returned
will simply be day numbers.

monthdatescalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples of
day numbers and weekday numbers.

monthdayscalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar (year[, width])
Return the data for the specified year ready for formatting. The return value is a list of month rows. Each
month row contains up to width months (defaulting to 3). Each month contains between 4 and 6 weeks
and each week contains 1-7 days. Days are datet ime . date objects.

yeardays2calendar (year[, width])
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()). Entries
in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this month are
Zero.

yeardayscalendar (year[, width])
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()). Entries

8.2. calendar — General calendar-related functions 157

The Python Library Reference, Release 2.7.4

in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar ([ﬁrstweekday])

This class can be used to generate plain text calendars. New in version 2.5. TextCalendar instances have
the following methods:

formatmonth (theyear, themonth[, w[, l]])
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the date columns,
which are centered. If [is given, it specifies the number of lines that each week will use. Depends on the
first weekday as specified in the constructor or set by the set firstweekday () method.

prmonth (theyear, themonth[, w[, l]])
Print a month’s calendar as returned by formatmonth ().

formatyear (theyear[, w[, l[, c[, m]]]])
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, [, and ¢ are for
date column width, lines per week, and number of spaces between month columns, respectively. Depends
on the first weekday as specified in the constructor or set by the set firstweekday () method. The
earliest year for which a calendar can be generated is platform-dependent.

pryear (theyear[, w[, i[,c[.m]]1])
Print the calendar for an entire year as returned by formatyear ().

class calendar.HTMLCalendar ([ﬁrstweekday])

This class can be used to generate HTML calendars. New in version 2.5. HTMLCalendar instances have the
following methods:

formatmonth (theyear, themonth[, withyear])
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the header,
otherwise just the month name will be used.

formatyear (theyear[, width])
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months per
row.

formatyearpage (theyear[, widlh[, css[, encoding]]])
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of months
per row. css is the name for the cascading style sheet to be used. None can be passed if no style sheet
should be used. encoding specifies the encoding to be used for the output (defaulting to the system default
encoding).

class calendar.LocaleTextCalendar ([ﬁrsrweekday[, locale]])

This subclass of TextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

class calendar.LocaleHTMLCalendar ([ﬁrstweekday[, locale]])

This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

Note: The formatweekday () and formatmonthname () methods of these two classes temporarily change the
current locale to the given locale. Because the current locale is a process-wide setting, they are not thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday (weekday)

Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY, WEDNESDAY,

158

Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example, to set the first
weekday to Sunday:

import calendar
calendar.setfirstweekday (calendar.SUNDAY)

New in version 2.0.

calendar.firstweekday ()
Returns the current setting for the weekday to start each week. New in version 2.0.

calendar.isleap (year)
Returns True if year is a leap year, otherwise False.

calendar.leapdays (yl, y2)
Returns the number of leap years in the range from y/ to y2 (exclusive), where y/ and y2 are years. Changed in
version 2.0: This function didn’t work for ranges spanning a century change in Python 1.5.2.

calendar .weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).

calendar.weekheader (n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

calendar .monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and month.

calendar .monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set by set firstweekday ().

calendar .prmonth (theyear, themonth[, w[, l]])
Prints a month’s calendar as returned by month ().

calendar .month (theyear, themonth[, w[, l]])
Returns a month’s calendar in a multi-line string using the formatmonth () of the TextCalendar class.
New in version 2.0.

calendar.precal (year[, w[, l[c]]])
Prints the calendar for an entire year as returned by calendar ().

calendar.calendar (year/[, w[, l[c]]])
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear () of the
TextCalendar class. New in version 2.0.

calendar.timegm (fuple)
An unrelated but handy function that takes a time tuple such as returned by the gmtime () function in the
t ime module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the POSIX
encoding. In fact, t ime . gmtime () and t imegm () are each others’ inverse. New in version 2.0.

The calendar module exports the following data attributes:

calendar.day_name
An array that represents the days of the week in the current locale.

calendar.day_abbr
An array that represents the abbreviated days of the week in the current locale.

calendar .month_name
An array that represents the months of the year in the current locale. This follows normal convention of January
being month number 1, so it has a length of 13 and month_name [0] is the empty string.

8.2. calendar — General calendar-related functions 159

The Python Library Reference, Release 2.7.4

calendar.month_ abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal convention
of January being month number 1, so it has a length of 13 and month_abbr [0] is the empty string.

See Also:
Module datetime Object-oriented interface to dates and times with similar functionality to the t ime module.

Module time Low-level time related functions.

8.3 collections — High-performance container datatypes

New in version 2.4. Source code: Lib/collections.py and Lib/_abcoll.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose built-in
containers, dict, 1ist, set,and tuple.

namedtuple () | factory function for creating tuple subclasses with named fields New in version 2.6.
deque list-like container with fast appends and pops on either end New in version 2.4.
Counter dict subclass for counting hashable objects New in version 2.7.
OrderedDict dict subclass that remembers the order entries were added New in version 2.7.
defaultdict dict subclass that calls a factory function to supply missing values | New in version 2.5.

In addition to the concrete container classes, the collections module provides abstract base classes that can be used to
test whether a class provides a particular interface, for example, whether it is hashable or a mapping.

8.3.1 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>> # Tally occurrences of words in a 1list

>>> cnt = Counter ()

>>> for word in ['red’, ’'blue’, '"red’, ’"green’, ’'blue’, ’'blue’]:

.. cnt [word] += 1

>>> cnt

Counter ({’blue’: 3, ’'red’: 2, ’'green’: 1})

>>> # Find the ten most common words in Hamlet

>>> import re

>>> words = re.findall(r’\w+’, open(’hamlet.txt’).read().lower())

>>> Counter (words) .most_common (10)

[("the’, 1143), ('and’, 966), ("to’, 762), ('of’, 669), ("i’", 631),
("you’, 554), ("a’”, 546), ('my’, 514), ("hamlet’, 471), ("in’, 451)]

class collections.Counter ([iterable-or—mapping])
A Counter is adict subclass for counting hashable objects. It is an unordered collection where elements are
stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer
value including zero or negative counts. The Counter class is similar to bags or multisets in other languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> ¢ = Counter () # a new, empty counter

>>> ¢ = Counter (’gallahad’) # a new counter from an iterable
>>> ¢ = Counter({’'red’: 4, ’"blue’: 2}) # a new counter from a mapping
>>> ¢ = Counter (cats=4, dogs=8) # a new counter from keyword args

160 Chapter 8. Data Types

http://hg.python.org/cpython/file/2.7/Lib/collections.py
http://hg.python.org/cpython/file/2.7/Lib/_abcoll.py

The Python Library Reference, Release 2.7.4

Counter objects have a dictionary interface except that they return a zero count for missing items instead of
raising a KeyError:

>>> ¢ = Counter ([’'eggs’, "ham’])
>>> c[’bacon’] # count of a missing element 1is zero
0

Setting a count to zero does not remove an element from a counter. Use de 1 to remove it entirely:

>>> c[’sausage’] = 0 # counter entry with a zero count
>>> del c[’sausage’] # del actually removes the entry

New in version 2.7. Counter objects support three methods beyond those available for all dictionaries:

elements ()
Return an iterator over elements repeating each as many times as its count. Elements are returned in
arbitrary order. If an element’s count is less than one, e lements () will ignore it.
>>> ¢ = Counter (a=4, b=2, c=0, d=-2)
>>> list (c.elements())
["a’, 'a’, 'a’, 'a’, 'b’, 'b’]

most_common ([n])
Return a list of the n» most common elements and their counts from the most common to the least. If n

is not specified, most__common () returns all elements in the counter. Elements with equal counts are
ordered arbitrarily:

>>> Counter (' abracadabra’) .most_common (3)
((ra", 5, ("', 2), ('b", 2)]

subtract ([iterable—or—mapping])
Elements are subtracted from an iterable or from another mapping (or counter). Like dict .update ()
but subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.

>>> ¢ = Counter (a=4, b=2, c=0, d=-2)
>>> d = Counter(a=1, b=2, c¢=3, d=4)
>>> c.subtract (d)

>>> ¢

Counter ({’a’": 3, "b’: 0, ’'c'": =3, 'd": -6})

The usual dictionary methods are available for Counter objects except for two which work differently for
counters.

fromkeys (iterable)
This class method is not implemented for Counter objects.

update ([iterable—or—mapping])
Elements are counted from an iferable or added-in from another mapping (or counter). Like

dict.update () but adds counts instead of replacing them. Also, the iterable is expected to be a
sequence of elements, not a sequence of (key, value) pairs.

Common patterns for working with Counter objects:

sum (c.values()) # total of all counts
c.clear () # reset all counts
list (c) # 1list unique elements

8.3. collections — High-performance container datatypes 161

The Python Library Reference, Release 2.7.4

set (c) # convert to a set

dict (c) # convert to a regular dictionary

c.items () # convert to a list of (elem, cnt) pairs
Counter (dict (list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common () [:—n:—1] # n least common elements

c += Counter () # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that
have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts of
corresponding elements. Intersection and union return the minimum and maximum of corresponding counts. Each
operation can accept inputs with signed counts, but the output will exclude results with counts of zero or less.

>>> ¢ = Counter (a=3, b=1)

>>> d = Counter (a=1, b=2)

>>> ¢ + d # add two counters together: c[x] + d[x]
Counter ({"a’": 4, '"b’: 3})

>>> ¢ - d # subtract (keeping only positive counts)
Counter ({"a’": 2})

>>> ¢ & d # Iintersection: min(c[x], d[x])

Counter ({"a’: 1, "b’: 1})

>>> ¢ | d # union: max(c[x], d[x])

Counter ({’"a’": 3, 'b’:

2})

Note:

Counters were primarily designed to work with positive integers to represent running counts; however, care

was taken to not unnecessarily preclude use cases needing other types or negative values. To help with those use cases,
this section documents the minimum range and type restrictions.

The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values are
intended to be numbers representing counts, but you could store anything in the value field.

The most_common () method requires only that the values be orderable.

For in-place operations such as c [key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true for
update () and subtract () which allow negative and zero values for both inputs and outputs.

The multiset methods are designed only for use cases with positive values. The inputs may be negative or zero,
but only outputs with positive values are created. There are no type restrictions, but the value type needs to
support addition, subtraction, and comparison.

The elements () method requires integer counts. It ignores zero and negative counts.

See Also:

Counter class adapted for Python 2.5 and an early Bag recipe for Python 2.4.
Bag class in Smalltalk.

Wikipedia entry for Multisets.

C++ multisets tutorial with examples.

For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer Pro-
gramming Volume I1, Section 4.6.3, Exercise 19.

To enumerate all distinct multisets of a given size over of elements, see

itertools.combinations_with_replacement ().

map(Counter, combinations_with_replacement(‘ABC’, 2)) > AA AB AC BB BC CC

a given set

162

Chapter 8. Data Types

http://code.activestate.com/recipes/576611/
http://code.activestate.com/recipes/259174/
http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
http://en.wikipedia.org/wiki/Multiset
http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 2.7.4

8.3.2 deque objects

class collections.deque ([iterable[, maxlen]])
Returns a new deque object initialized left-to-right (using append ()) with data from iterable. If iterable is not
specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque
with approximately the same O(1) performance in either direction.

Though 11st objects support similar operations, they are optimized for fast fixed-length operations and incur
O(n) memory movement costs for pop (0) and insert (0, v) operations which change both the size and
position of the underlying data representation. New in version 2.4. If maxlen is not specified or is None, deques
may grow to an arbitrary length. Otherwise, the deque is bounded to the specified maximum length. Once a
bounded length deque is full, when new items are added, a corresponding number of items are discarded from
the opposite end. Bounded length deques provide functionality similar to the tail filter in Unix. They are
also useful for tracking transactions and other pools of data where only the most recent activity is of interest.
Changed in version 2.6: Added maxlen parameter. Deque objects support the following methods:

append (x)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length 0.

count (x)
Count the number of deque elements equal to x. New in version 2.7.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

popleft ()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove (value)
Removed the first occurrence of value. If not found, raises a ValueError. New in version 2.5.

reverse ()
Reverse the elements of the deque in-place and then return None. New in version 2.7.

rotate (n)
Rotate the deque 7 steps to the right. If n is negative, rotate to the left. Rotating one step to the right is
equivalent to: d.appendleft (d.pop()).

Deque objects also provide one read-only attribute:

maxlen
Maximum size of a deque or None if unbounded. New in version 2.7.

8.3. collections — High-performance container datatypes 163

The Python Library Reference, Release 2.7.4

In addition to the above, deques support iteration, pickling, len (d), reversed(d), copy.copy (d),
copy .deepcopy (d), membership testing with the in operator, and subscript references such as d [-1]. Indexed
access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Example:

>>> from collections import deque

>>> d = deque ('ghi’) make a new deque with three items
>>> for elem in d: # iterate over the deque’s elements
print elem.upper ()

HH=

G
H
I

H=

>>> d.append(’j’) add a new entry to the right side
>>> d.appendleft ("£") add a new entry to the left side
>>> d # show the representation of the deque
deque (["f", '

H

4

g’, 'hr, rir, 13

>>> d.pop () # return and remove the rightmost item
lj/

>>> d.popleft () # return and remove the leftmost item
/f/

>>> list (d) # 1ist the contents of the deque
["g’, 'h', "i’]

>>> d[0] # peek at leftmost item

lg/

>>> d[-1] # peek at rightmost item

Iil

>>> list (reversed(d)) # list the contents of a deque in reverse
["i’, 'h', 'g’]

>>> 'h’ in d # search the deque

True

>>> d.extend (' Jk1”) # add multiple elements at once

>>> d

deque([’g’, "h’, "i’, 3", 'k’, "1'1])

>>> d.rotate (1) # right rotation

>>> d

deque ([’1", 'g’, 'h’", "1i’, 3", "k’'1])

>>> d.rotate(-1) # left rotation

>>> d

deque(l’g’, "h', 7i’, "37, 'k’, '1'])

>>> deque (reversed(d)) # make a new deque in reverse order
deque([’l’, ’k’, Ijl, ’i’, Ihl, Igl])

>>> d.clear () # empty the deque

>>> d.pop () # cannot pop from an empty deque

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop ()
IndexError: pop from an empty deque

>>> d.extendleft ("abc’) # extendleft () reverses the input order
>>> d

164 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

deque ([’'c’, 'b’, "a’'l)

deque Recipes

This section shows various approaches to working with deques.
Bounded length deques provide functionality similar to the tail filter in Unix:

def tail (filename, n=10):
"Return the last n lines of a file’
return deque (open (filename), n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right and
popping to the left:

def moving_average (iterable, n=3):
moving average ([40, 30, 50, 46, 39, 44]) —--> 40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving _average
it = iter(iterable)
d = deque(itertools.islice(it, n-1))
d.appendleft (0)
s = sum(d)
for elem in it:
s += elem - d.popleft ()
d.append (elem)
yield s / float (n)

The rotate () method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate () method to position elements to be popped:

def delete_nth(d, n):
d.rotate (—n)
d.popleft ()
d.rotate (n)

To implement deque slicing, use a similar approach applying rotate () to bring a target element to the left side
of the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup, drop,
swap, over, pick, rot,and roll.

8.3.3 defaultdict objects

class collections.defaultdict ([default_factory[,]])
Returns a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides one
method and adds one writable instance variable. The remaining functionality is the same as for the dict class
and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None. All
remaining arguments are treated the same as if they were passed to the dict constructor, including keyword ar-
guments. New in version 2.5. defaultdict objects support the following method in addition to the standard
dict operations:

__missing__ (key)
If the default_factory attribute is None, this raises a KeyError exception with the key as argu-
ment.

8.3. collections — High-performance container datatypes 165

The Python Library Reference, Release 2.7.4

If default_factory is not None, it is called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__ () method of the dict class when the requested key is not
found; whatever it returns or raises is then returned or raised by __getitem__ ().

Note that __missing__ () is not called for any operations besides __getitem__ (). This means that
get () will, like normal dictionaries, return None as a default rather than using default_factory.

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the __missing__ () method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

defaultdict Examples

Using 1ist asthe default_factory, itis easy to group a sequence of key-value pairs into a dictionary of lists:

>>> s = [("yellow’, 1), ("blue’, 2), ('yellow’, 3), ('blue’, 4), ('red’, 1)]
>>> d = defaultdict(list)
>>> for k, v in s:

d[k] .append (V)

>>> d.items ()

[("blue’, [2, 41), ('red", [1]), ("yellow’, [1, 31)]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_factory function which returns an empty 1ist. The list.append () operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the list
for that key) and the 1ist . append () operation adds another value to the list. This technique is simpler and faster
than an equivalent technique using dict .setdefault ():

>>> d = {}
>>> for k, v in s:
d.setdefault (k, []) .append(v)

>>> d.items ()
[("blue’, [2, 4]), ('red’, [1]), (‘yellow’, [1, 31)]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset in
other languages):

>>> s

"mississippi’
>>> d = defaultdict (int)
>>> for k in s:

dik] += 1

>>> d.items ()
(¢ir, 4y, ('p’, 2y, ('s", 4), ('m", 1)]
When a letter is first encountered, it is missing from the mapping, so the default_factory function calls int ()

to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int () which always returns zero is just a special case of constant functions. A faster and more flexible
way to create constant functions is to use itertools.repeat () which can supply any constant value (not just
Zero):

166 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

>>> def constant_factory(value) :

.. return itertools.repeat (value) .next

>>> d = defaultdict (constant_factory (/' <missing>"))
>>> d.update (name=’John’, action=’'ran’)

>>> to % d

"John ran to <missing>’

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> g [("red", 1), ("blue’, 2), ("red’, 3), ("blue’, 4), ('red’, 1), ("blue’, 4)]
>>> d = defaultdict (set)
>>> for k, v in s:

d[k].add(v)

>>> d.items ()
[("blue’, set([2, 4])), ('red’, set([1l, 31))]

8.3.4 namedtuple () Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code. They
can be used wherever regular tuples are used, and they add the ability to access fields by name instead of position
index.

collections.namedtuple(QpamnwhﬁddjmnwsLva%aw:the]Lrwumw:theL
Returns a new tuple subclass named rypename. The new subclass is used to create tuple-like objects that have
fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also have
a helpful docstring (with typename and field_names) and a helpful __repr__ () method which lists the tuple
contents in a name=value format.

The field_names are a sequence of strings such as [’ x’, 'y’ 1. Alternatively, field_names can be a single
string with each fieldname separated by whitespace and/or commas, for example ' x vy’ or ' x, y’.

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be a
keyword such as class, for, return, global, pass, print, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example, [’ abc’,
"def’, ’'ghi’, ’"abc’] isconvertedto [’abc’, ’_1’, ’"ghi’, ’_3’], eliminating the keyword
def and the duplicate fieldname abc.

If verbose is true, the class definition is printed just before being built.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more mem-
ory than regular tuples. New in version 2.6.Changed in version 2.7: added support for rename.

Example:

>>> Point = namedtuple (’'Point’, ['x’, 'vy’], verbose=True)
class Point (tuple):
"Point (x, vy)’

__slots___ = ()
_fields = (!x', 'y")
def _ _new__ (_cls, x, y):

"Create a new instance of Point (x, y)’

return _tuple.__new__ (_cls, (x, Vy))

8.3. collections — High-performance container datatypes 167

The Python Library Reference, Release 2.7.4

@classmethod
def _make(cls, iterable, new=tuple.__new__, len=len):
"Make a new Point object from a sequence or iterable’
result = new(cls, iterable)
if len(result) != 2:
raise TypeError ('Expected 2 arguments, got %d’ % len(result))
return result

def _ _repr_ (self):
"Return a nicely formatted representation string’

[

return ’Point (x=%r, y=%r)’ % self

def _asdict (self):
"Return a new OrderedDict which maps field names to their values’
return OrderedDict (zip(self._fields, self))

__dict__ = property(_asdict)

def _replace(_self, *xkwds):
"Return a new Point object replacing specified fields with new values’
result = _self._make (map (kwds.pop, ('x’', ’'y"), _self))
if kwds:
raise ValueError (' Got unexpected field names: %$r’ % kwds.keys())
return result

def _ _getnewargs__ (self):
"Return self as a plain tuple. Used by copy and pickle.’
return tuple(self)

x = _property(_itemgetter(0), doc="Alias for field number 0')
y = _property(_itemgetter(l), doc='Alias for field number 1')
>>> p = Point (11, y=22) # instantiate with positional or keyword arguments
>>> pl[0] + pl[l] # indexable like the plain tuple (11, 22)
33
>>> x, y =P # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> p # readable __ _repr. with a name=value style

Point (x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sglite3 mod-
ules:

EmployeeRecord = namedtuple (' EmployeeRecord’, ’'name, age, title, department, paygrade’)
import csv

for emp in map (EmployeeRecord._make, csv.reader (open("employees.csv", "rb"))):
print emp.name, emp.title

168 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

import sqglite3
conn = sglite3.connect (' /companydata’)
cursor = conn.cursor ()
cursor.execute (' SELECT name, age, title, department, paygrade FROM employees’)
for emp in map (EmployeeRecord._make, cursor.fetchall()):
print emp.name, emp.title

In addition to the methods inherited from tuples, named tuples support three additional methods and one attribute. To
prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make (iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make (t)
Point (x=11, y=22)

somenamedtuple._asdict ()
Return a new OrderedDict which maps field names to their corresponding values:

>>> p._asdict ()
OrderedDict ([('x', 11), ('y', 22)1])

Changed in version 2.7: Returns an OrderedDict instead of a regular dict.

somenamedtuple._replace (kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point (x=11, y=22)
>>> p._replace (x=33)
Point (x=33, y=22)

>>> for partnum, record in inventory.items():
inventory|[partnum] = record._replace (price=newprices|[partnum], timestamp=time.

somenamedtuple._£fields
Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types from
existing named tuples.

>>> p._fields # view the field names
14 14

("x", 'y")

>>> Color = namedtuple(’'Color’, ’"red green blue’)

>>> Pixel namedtuple ('Pixel’, Point._fields + Color._fields)
>>> Pixel (11, 22, 128, 255, 0)

Pixel (x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the getattr () function:

>>> getattr(p, "x’)
11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-arguments):

>>> d = {'x": 11, 'y': 22}
>>> Point (*+d)
Point (x=11, y=22)

8.3. collections — High-performance container datatypes 169

The Python Library Reference, Release 2.7.4

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is how to
add a calculated field and a fixed-width print format:

>>> class Point (namedtuple (' Point’, 'x y’)):
__slots__ = ()
@property
def hypot (self):
return (self.x xx 2 + self.y *x 2) xx 0.5
def _ str__ (self):
return ’'Point: x=%6.3f y=%6.3f hypot=%6.3f" % (self.x, self.y, self.hypot)

>>> for p in Point (3, 4), Point (14, 5/7.):
print p

Point: x= 3.000 y= 4.000 hypot= 5.000

Point: x=14.000 vy= 0.714 hypot=14.018

The subclass shown above sets ___slots__ to an empty tuple. This helps keep memory requirements low by pre-
venting the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_fields attribute:

>>> Point3D = namedtuple ('Point3D’, Point._fields + ("z’,))

Default values can be implemented by using _replace () to customize a prototype instance:

>>> Account = namedtuple (' Account’, ’"owner balance transaction_count’)
>>> default_account Account (' <owner name>’, 0.0, 0)
>>> johns_account = default_account._replace (owner='John’)

Enumerated constants can be implemented with named tuples, but it is simpler and more efficient to use a simple class
declaration:

>>> Status = namedtuple (' Status’, ’'open pending closed’) ._make (range(3))
>>> Status.open, Status.pending, Status.closed
(0, 1, 2)
>>> class Status:
open, pending, closed = range (3)

See Also:
Named tuple recipe adapted for Python 2.4.

8.3.5 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but they remember the order that items were inserted. When
iterating over an ordered dictionary, the items are returned in the order their keys were first added.

class collections.OrderedDict ([items])
Return an instance of a dict subclass, supporting the usual dict methods. An OrderedDict is a dict that
remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the original
insertion position is left unchanged. Deleting an entry and reinserting it will move it to the end. New in version
2.7.

OrderedDict .popitem (last=True)
The popitem () method for ordered dictionaries returns and removes a (key, value) pair. The pairs are returned
in LIFO order if last is true or FIFO order if false.

In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed ().

170 Chapter 8. Data Types

http://code.activestate.com/recipes/500261/

The Python Library Reference, Release 2.7.4

Equality tests between OrderedDict objects are order-sensitive and are implemented as
list (odl.items ())==1ist (od2.items ()). Equality tests between OrderedDict objects and other
Mapping objects are order-insensitive like regular dictionaries. This allows OrderedDict objects to be substituted
anywhere a regular dictionary is used.

The OrderedDict constructor and update () method both accept keyword arguments, but their order is lost
because Python’s function call semantics pass-in keyword arguments using a regular unordered dictionary.

See Also:

Equivalent OrderedDict recipe that runs on Python 2.4 or later.

OorderedDict Examples and Recipes

Since an ordered dictionary remembers its insertion order, it can be used in conjuction with sorting to make a sorted
dictionary:

>>> # regular unsorted dictionary
>>> d = {’banana’: 3, ’"apple’:4, ’'pear’: 1, ’'orange’: 2}

>>> # dictionary sorted by key
>>> OrderedDict (sorted(d.items (), key=lambda t: t[0]))
OrderedDict ([(' apple’, 4), (’banana’, 3), ('orange’, 2), ('pear’, 1)1)

>>> # dictionary sorted by value
>>> OrderedDict (sorted(d.items (), key=lambda t: t[1]))
OrderedDict ([('pear’, 1), ('orange’, 2), ('"banana’, 3), ("apple’, 4)1)

>>> # dictionary sorted by length of the key string
>>> QOrderedDict (sorted(d.items (), key=lambda t: len(t[0])))
OrderedDict ([('pear’, 1), ('apple’, 4), ('orange’, 2), ('banana’, 3)1)

The new sorted dictionaries maintain their sort order when entries are deleted. But when new keys are added, the keys
are appended to the end and the sort is not maintained.

It is also straight-forward to create an ordered dictionary variant that remembers the order the keys were last inserted.
If a new entry overwrites an existing entry, the original insertion position is changed and moved to the end:

class LastUpdatedOrderedDict (OrderedDict) :
"Store items in the order the keys were last added’

def _ setitem__ (self, key, value):
if key in self:
del self[key]
OrderedDict.__setitem__ (self, key, value)

An ordered dictionary can be combined with the Counter class so that the counter remembers the order elements are
first encountered:

class OrderedCounter (Counter, OrderedDict) :
"Counter that remembers the order elements are first encountered’

def _ repr_ (self):

return ' ¢s(%r)’ % (self._ class_ _._ _name_ , OrderedDict (self))
def _ reduce_ (self):
return self._ class_ , (OrderedDict (self),)

8.3. collections — High-performance container datatypes 171

http://code.activestate.com/recipes/576693/

The Python Library Reference, Release 2.7.4

8.3.6 Collections Abstract Base Classes

The collections module offers the following ABCs:

ABC Inherits Abstract Methods Mixin Methods
from
Container __contains___
Hashable __hash___
Iterable __iter_
IteratofrIterable next __iter_
Sized __len_
Callable _call__
SequenceSized, __getitem_,_ len_ __contains_ ,_ _iter
Iterable, __reversed__, index, and count
Container
Mutable|S€guaernee __getitem__, Inherited Sequence methods and append,
_ setitem_ , reverse, extend, pop, remove, and
__delitem_,_ len_ , __diadd___
insert
Set Sized, __contains__, _le ,_ 1t _,_eq_ ,_ne_ ,__gt_ ,
Iterable, __iter_ , len_ _ge_ ,__and__,__or__,__sub__,
Container __xor__,and isdisjoint
Mutablels&et __contains__, Inherited Set methods and clear, pop,
__iter_,_ len_,add, remove, ior_, dand_, ixor__,
discard and __isub___
Mapping| Sized, __getitem__,_ _iter_ , | _ _contains__,keys, items, values, get,
Iterable, __len__ _eq ,and_ _ne_
Container
MutableMipppigg __getitem__, Inherited Mapping methods and pop,
_ _setitem_, popitem, clear, update, and setdefault
__delitem_,_iter_
len
MappingViemwed __len___
ItemsVieMappingView, __contains_ ,_ _iter_
Set
KeysViewMappingView, __contains_ ,_ _iter
Set
ValuesVlidappingView __contains_ ,_ _iter_
class collections.Container
class collections.Hashable
class collections.Sized
class collections.Callable
ABC:s for classes that provide respectively the methods __contains__ (), __hash__ (), __len__ (),
and __call__ ().
class collections.Iterable
ABC for classes that provide the __iter__ () method. See also the definition of iferable.
class collections.Iterator
ABC for classes that provide the __iter__ () and next () methods. See also the definition of iterator.

class collections.Sequence
class collections.MutableSequence
ABC:s for read-only and mutable sequences.

class collections.Set

172

Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

class collections.MutableSet
ABC:s for read-only and mutable sets.

class collections.Mapping
class collections.MutableMapping
ABC:s for read-only and mutable mappings.

class collections.MappingView
class collections.ItemsView
class collections.KeysView
class collections.ValuesView
ABCs for mapping, items, keys, and values views.

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

size = None
if isinstance (myvar, collections.Sized):
size = len (myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs. For
example, to write a class supporting the full Set API, it only necessary to supply the three underlying abstract meth-
ods: _ contains__ (), __iter_ (), and __len__ (). The ABC supplies the remaining methods such as
__and__ () and isdisjoint ()

class ListBasedSet (collections.Set):
777 Alternate set implementation favoring space over speed
and not requiring the set elements to be hashable. 777
def _ init_ (self, iterable):
self.elements = 1lst = []
for value in iterable:
if value not in 1lst:
lst.append(value)
def _ _iter_ (self):
return iter(self.elements)
def _ contains_ (self, wvalue):
return value in self.elements
def _ len_ (self):
return len(self.elements)

sl = ListBasedSet (' abcdef’)
s2 = ListBasedSet (‘defghi’)
overlap = sl & s2 # The __and () method is supported automatically

Notes on using Set and MutableSet as a mixin:

1. Since some set operations create new sets, the default mixin methods need a way to create new instances from
an iterable. The class constructor is assumed to have a signature in the form ClassName (iterable).
That assumption is factored-out to an internal classmethod called _from_iterable () which calls
cls (iterable) to produce a new set. If the Set mixin is being used in a class with a different constructor
signature, you will need to override _from_iterable () with aclassmethod that can construct new instances
from an iterable argument.

2. To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__ () and then
the other operations will automatically follow suit.

3. The Set mixin provides a _hash () method to compute a hash value for the set; however, __hash__ () is
not defined because not all sets are hashable or immutable. To add set hashabilty using mixins, inherit from both
Set () and Hashable (), thendefine _ _hash__ = Set._hash.

8.3. collections — High-performance container datatypes 173

The Python Library Reference, Release 2.7.4

See Also:
* OrderedSet recipe for an example built on MutableSet.

¢ For more about ABCs, see the albc module and PEP 3119.

8.4 heapqg — Heap queue algorithm

New in version 2.3. Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. This implemen-
tation uses arrays for which heap [k] <= heap[2+k+1] and heap[k] <= heap[2+k+2] for all k, counting
elements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting
property of a heap is that its smallest element is always the root, heap [0].

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes the
relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a “min
heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest item,
and heap.sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function heapify ().
The following functions are provided:

heapqg.heappush (heap, item)
Push the value item onto the heap, maintaining the heap invariant.

heapqg.heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised.

heapqg.heappushpop (heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush () followed by a separate call to heappop (). New in version 2.6.

heapg.heapify (x)
Transform list x into a heap, in-place, in linear time.

heapqg.heapreplace (heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change. If
the heap is empty, IndexError is raised.

This one step operation is more efficient than a heappop () followed by heappush () and can be more
appropriate when using a fixed-size heap. The pop/push combination always returns an element from the heap
and replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using heappushpop ()
instead. Its push/pop combination returns the smaller of the two values, leaving the larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapqg.merge (*iterables)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple
log files). Returns an iterator over the sorted values.

174 Chapter 8. Data Types

http://code.activestate.com/recipes/576694/
http://www.python.org/dev/peps/pep-3119
http://hg.python.org/cpython/file/2.7/Lib/heapq.py

The Python Library Reference, Release 2.7.4

Similar to sorted (itertools.chain(xiterables)) but returns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest). New
in version 2.6.

heapg.nlargest (n, iterable[, key])
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies a function
of one argument that is used to extract a comparison key from each element in the iterable: key=str.lower
Equivalent to: sorted (iterable, key=key, reverse=True) [:n] New in version 2.4.Changed in
version 2.5: Added the optional key argument.

heapg.nsmallest (n, itemble[, key])
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, speci-
fies a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted (iterable, key=key) [:n] New in version 2.4.Changed in
version 2.5: Added the optional key argument.

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the
sorted () function. Also, when n==1, it is more efficient to use the built-in min () and max () functions.

8.4.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values one at a
time:

>>> def heapsort (iterable) :
"Equivalent to sorted(iterable)’
h = []
for value in iterable:
heappush (h, wvalue)
return [heappop(h) for i in range(len(h))]

>>> heapsort([l, 3, 5, 7, 9, 2, 4, 6, 8, 01])
(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside the
main record being tracked:

[]

>>> heappush (h,
>>> heappush (h,
>>> heappush (h
>>> heappush (h,
>>> heappop (h)
(1, "write spec’)

>>> h =
5, '"write code’))

7, '"release product’))
1, "write spec’))

3, ’'create tests’))

4

8.4.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

* Sort stability: how do you get two tasks with equal priorities to be returned in the order they were originally
added?

* In the future with Python 3, tuple comparison breaks for (priority, task) pairs if the priorities are equal and the
tasks do not have a default comparison order.

« If the priority of a task changes, how do you move it to a new position in the heap?

8.4. heapq — Heap queue algorithm 175

http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 2.7.4

* Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry count, and the
task. The entry count serves as a tie-breaker so that two tasks with the same priority are returned in the order they were
added. And since no two entry counts are the same, the tuple comparison will never attempt to directly compare two
tasks.

The remaining challenges revolve around finding a pending task and making changes to its priority or removing it
entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure invariants. So,
a possible solution is to mark the existing entry as removed and add a new entry with the revised priority:

ra = [] # list of entries arranged in a heap
entry_finder = {} # mapping of tasks to entries
REMOVED = ’<removed-task>’ # placeholder for a removed task
counter = itertools.count () # unique sequence count

def add_task(task, priority=0):
"Add a new task or update the priority of an existing task’
if task in entry_finder:
remove_task (task)

count = next (counter)
entry = [priority, count, task]
entry_finder([task] = entry

heappush (pg, entry)

def remove_task (task):
"Mark an existing task as REMOVED. Raise KeyError if not found.’
entry = entry_finder.pop (task)
entry[-1] = REMOVED

def pop_task():
"Remove and return the lowest priority task. Raise KeyError if empty.’
while pqg:
priority, count, task = heappop (pg)
if task is not REMOVED:
del entry_finder[task]
return task
raise KeyError ('pop from an empty priority queue’)

8.4.3 Theory

Heaps are arrays for which a[k] <= a[2xk+1] and a[k] <= a[2xk+2] for all k, counting elements from 0.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is
that a [0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
are k,notalk]:

176 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2+k+1 and 2+k+2. In an usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To be
more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the rule
becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the two topped
cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way to
remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the O position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not “better”” than the last 0’th element you extracted. This is especially useful in simulation contexts,
where the tree holds all incoming events, and the “win” condition means the smallest scheduled time. When an event
schedule other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a heap
is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a merging
passes for these runs, which merging is often very cleverly organised . It is very important that the initial sort produces
the longest runs possible. Tournaments are a good way to that. If, using all the memory available to hold a tournament,
you replace and percolate items that happen to fit the current run, you’ll produce runs which are twice the size of the
memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because the
value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed memory
could be cleverly reused immediately for progressively building a second heap, which grows at exactly the same rate
the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run. Clever and
quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to keep
a ‘heap’ module around. :-)

8.5 bisect — Array bisection algorithm

New in version 2.1. Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is called bisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (the boundary conditions are already right!).

2 The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabilities
of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in advance)
that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge). Some tapes were even able
to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all
times, sorting has always been a Great Art! :-)

8.5. bisect — Array bisection algorithm 177

http://hg.python.org/cpython/file/2.7/Lib/bisect.py

The Python Library Reference, Release 2.7.4

The following functions are provided:

bisect .bisect_left (a, x, lo=0, hi=len(a))
Locate the insertion point for x in a to maintain sorted order. The parameters /o and hi may be used to specify a
subset of the list which should be considered; by default the entire list is used. If x is already present in a, the
insertion point will be before (to the left of) any existing entries. The return value is suitable for use as the first
parameter to 1ist.insert () assuming that a is already sorted.

The returned insertion point i partitions the array a into two halves so that all (val < x for val in
allo:1]) fortheleftside and all (val >= x for val in a[i:hi]) for the right side.

bisect.bisect_right (a, x, lo=0, hi=len(a))

bisect.bisect (a, x, lo=0, hi=len(a))
Similar to bisect_left (), but returns an insertion point which comes after (to the right of) any existing
entries of x in a.

The returned insertion point i partitions the array a into two halves so that all (val <= x for val in
al[lo:1i]) fortheleftsideand all (val > x for val in a[i:hi]) for the right side.

bisect.insort_left (a, x, lo=0, hi=len(a))
Insert x in a in sorted order. This is equivalentto a.insert (bisect.bisect_left (a, x, lo, hi),
x) assuming that a is already sorted. Keep in mind that the O(log n) search is dominated by the slow O(n)
insertion step.

bisect.insort_right (a, x, lo=0, hi=len(a))
bisect.insort (a, x, lo=0, hi=len(a))
Similar to insort_left (), butinserting x in a after any existing entries of x.

See Also:

SortedCollection recipe that uses bisect to build a full-featured collection class with straight-forward search methods
and support for a key-function. The keys are precomputed to save unnecessary calls to the key function during searches.

8.5.1 Searching Sorted Lists

The above bisect () functions are useful for finding insertion points but can be tricky or awkward to use for common
searching tasks. The following five functions show how to transform them into the standard lookups for sorted lists:

def index(a, x):
"Locate the leftmost value exactly equal to x’
i = bisect_left (a, x)
if i != len(a) and a[i] == x:
return 1
raise ValueError

def find 1t (a, x):
"Find rightmost value less than x’
i = bisect_left (a, x)
if i:
return af[i-1]
raise ValueError

def find_le(a, x):
"Find rightmost value less than or equal to x’
i = bisect_right (a, x)
if i:
return a[i-1]
raise ValueError

178 Chapter 8. Data Types

http://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 2.7.4

def find gt (a, x):
"Find leftmost value greater than x’
i = bisect_right(a, x)
if i != len(a):
return ali]
raise ValueError

def find _ge(a, x):
"Find leftmost item greater than or equal to x’
i = bisect_left (a, x)
if 1 != len(a):
return ali]
raise ValueError

8.5.2 Other Examples

The bisect () function can be useful for numeric table lookups. This example uses bisect () to look up a letter
grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is a ‘B’,
and so on:

>>> def grade(score, breakpoints=[60, 70, 80, 90], grades=’'FDCBA’):
i = bisect (breakpoints, score)
return grades[i]

>>> [grade (score) for score in [33, 99, 77, 70, 89, 90, 100]]
[IFI, IAI, ICI, ICI, IBI, IAI, IAI]

Unlike the sorted () function, it does not make sense for the bisect () functions to have key or reversed arguments
because that would lead to an inefficient design (successive calls to bisect functions would not “remember” all of the
previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

>>> data = [("red’, 5), ('blue’, 1), ('yellow’, 8), ("black’, 0)]
>>> data.sort (key=lambda r: r[1])

>>> keys = [r[l] for r in data] # precomputed 1list of keys
>>> datal[bisect_left (keys, 0)]

("black’”, 0)

>>> datalbisect_left (keys, 1)]

("blue’, 1)

>>> data[bisect_left (keys, 5)]

("red’”, 5)

>>> datal[bisect_left (keys, 8)]
("yellow’, 8)

8.6 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a fype code, which is a single
character. The following type codes are defined:

8.6. array — Efficient arrays of numeric values 179

The Python Library Reference, Release 2.7.4

Type code C Type Python Type Minimum size in bytes
el char character 1

"of signed char int 1

"B’ unsigned char | int 1

ru’ Py_UNICODE | Unicode character | 2 (see note)
"h' signed short int 2

"H’ unsigned short | int 2

ri’ signed int int 2

rI’ unsigned int long 2

ryr signed long int 4

Y unsigned long | long 4

rf£r float float 4

rd’ double float 8

Note: The ’u’ typecode corresponds to Python’s unicode character. On narrow Unicode builds this is 2-bytes, on
wide builds this is 4-bytes.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through the itemsize attribute. The values stored for * L’ and ' I’ items
will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following type:

class array.array (typecode[, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value, which
must be a list, string, or iterable over elements of the appropriate type. Changed in version 2.4: Formerly, only
lists or strings were accepted. If given a list or string, the initializer is passed to the new array’s fromlist (),
fromstring (), or fromunicode () method (see below) to add initial items to the array. Otherwise, the
iterable initializer is passed to the extend () method.

array.ArrayType
Obsolete alias for array.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication. When
using slice assignment, the assigned value must be an array object with the same type code; in all other cases,
TypeError is raised. Array objects also implement the buffer interface, and may be used wherever buffer objects
are supported.

The following data items and methods are also supported:

array.typecode
The typecode character used to create the array.

array.itemsize
The length in bytes of one array item in the internal representation.

array.append (x)
Append a new item with value x to the end of the array.

array.buffer info()
Return a tuple (address, length) giving the current memory address and the length in elements of
the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array.buffer_info () [1] % array.itemsize. Thisis occasionally useful when working with low-
level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioct 1 () operations.
The returned numbers are valid as long as the array exists and no length-changing operations are applied to it.

180 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method is
maintained for backward compatibility and should be avoided in new code. The buffer interface is documented
in bufferobjects.

array.byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of values, Runt imeError is raised. It is useful when reading data from a file written on a machine with
a different byte order.

array.count (x)
Return the number of occurrences of x in the array.

array .extend (iterable)
Append items from iferable to the end of the array. If iterable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array. Changed in version 2.4: Formerly, the argument could only
be another array.

array.fromfile (f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array. f
must be a real built-in file object; something else with a read () method won’t do.

array.fromlist (list)
Append items from the list. This is equivalent to for x in list: a.append (x) except that if there is
a type error, the array is unchanged.

array.fromstring (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been read from
a file using the fromfile () method).

array.fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type ' u’ array; otherwise a
ValueError israised. Use array.fromstring (unicodestring.encode (enc)) to append Uni-
code data to an array of some other type.

array.index (x)
Return the smallest i such that i is the index of the first occurrence of x in the array.

array.insert (i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative to the
end of the array.

array.pop ([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to —1, so that
by default the last item is removed and returned.

array.read (f, n)
Deprecated since version 1.5.1: Use the fromfile () method. Read n items (as machine values) from the file
object f and append them to the end of the array. If less than n items are available, EOFError is raised, but the
items that were available are still inserted into the array. f must be a real built-in file object; something else with
a read () method won’t do.

array.remove (x)
Remove the first occurrence of x from the array.

array.reverse ()
Reverse the order of the items in the array.

8.6. array — Efficient arrays of numeric values 181

The Python Library Reference, Release 2.7.4

array.tofile (f)
Write all items (as machine values) to the file object f.

array.tolist ()
Convert the array to an ordinary list with the same items.

array.tostring()
Convert the array to an array of machine values and return the string representation (the same sequence of bytes
that would be written to a file by the tofile () method.)

array.tounicode ()
Convert the array to a unicode string. The array must be a type ’ u’ array; otherwise a ValueError is raised.
Use array.tostring () .decode (enc) to obtain a unicode string from an array of some other type.

array.write (f)
Deprecated since version 1.5.1: Use the tofile () method. Write all items (as machine values) to the file
object f.

When an array object is printed or converted to a string, it is represented as array (typecode, initializer).
The initializer is omitted if the array is empty, otherwise it is a string if the typecode is ’ ¢’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
eval (), solong as the array () function has been imported using from array import array. Examples:

array ("17)
array('c’, "hello world”)
array(‘u’, u’hello \u2641’")
(71
(

l4

array(’1’, [1, 2, 3, 4, 5])

array('d”, [1.0, 2.0, 3.14])

See Also:
Module st ruct Packing and unpacking of heterogeneous binary data.

Module xdrlib Packing and unpacking of External Data Representation (XDR) data as used in some remote pro-
cedure call systems.

The Numerical Python Manual The Numeric Python extension (NumPy) defines another array type; see
http://numpy.sourceforge.net/ for further information about Numerical Python. (A PDF version of the NumPy
manual is available at http://numpy.sourceforge.net/numdoc/numdoc.pdf).

8.7 sets — Unordered collections of unique elements

New in version 2.3.Deprecated since version 2.6: The built-in set/frozenset types replace this module. The sets
module provides classes for constructing and manipulating unordered collections of unique elements. Common uses
include membership testing, removing duplicates from a sequence, and computing standard math operations on sets
such as intersection, union, difference, and symmetric difference.

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

Most set applications use the Set class which provides every set method except for __hash__ (). For advanced
applications requiring a hash method, the TmmutableSet class adds a __hash__ () method but omits methods
which alter the contents of the set. Both Set and ImmutableSet derive from BaseSet, an abstract class useful
for determining whether something is a set: 1sinstance (obj, BaseSet).

The set classes are implemented using dictionaries. Accordingly, the requirements for set elements are the same
as those for dictionary keys; namely, that the element defines both _ _eq () and __hash__ (). As a re-
sult, sets cannot contain mutable elements such as lists or dictionaries. However, they can contain immutable

182 Chapter 8. Data Types

http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm
http://numpy.sourceforge.net/
http://numpy.sourceforge.net/numdoc/numdoc.pdf

The Python Library Reference, Release 2.7.4

collections such as tuples or instances of ImmutableSet. For convenience in implementing sets of sets, inner
sets are automatically converted to immutable form, for example, Set ([Set ([’ dog’]) 1) is transformed to
Set ([ImmutableSet (["dog’])1).

class sets.Set ([iterable])
Constructs a new empty Set object. If the optional iterable parameter is supplied, updates the set with elements
obtained from iteration. All of the elements in iterable should be immutable or be transformable to an immutable
using the protocol described in section Protocol for automatic conversion to immutable.

class sets.ImmutableSet ([iterable])
Constructs a new empty ImmutableSet object. If the optional iferable parameter is supplied, updates the set
with elements obtained from iteration. All of the elements in iferable should be immutable or be transformable
to an immutable using the protocol described in section Protocol for automatic conversion to immutable.

Because TmmutableSet objects provide a __hash__ () method, they can be used as set elements or as
dictionary keys. ImmutableSet objects do not have methods for adding or removing elements, so all of the
elements must be known when the constructor is called.

8.7.1 Set Objects

Instances of Set and ImmutableSet both provide the following operations:

Operation Equivalent | Result
len(s) cardinality of set s
x in s test x for membership in s
x not in s test x for non-membership in s
s.issubset (t) s <=t test whether every element in s is in ¢
s.issuperset (t) s >= t test whether every element in ¢ is in s
s.union (t) s | t new set with elements from both s and ¢
s.intersection (t) s & t new set with elements common to s and ¢
s.difference (t) s - t new set with elements in s but not in ¢
s.symmetric_difference(t) | s ~ t new set with elements in either s or ¢ but not both
s.copy () new set with a shallow copy of s

Note, the non-operator versions of union(), intersection (), difference (), and

symmetric_difference () will accept any iterable as an argument. In contrast, their operator based
counterparts require their arguments to be sets. This precludes error-prone constructions like Set (’abc’) &
"cbs’ in favor of the more readable Set (’abc’) .intersection(’cbs’). Changed in version 2.3.1:
Formerly all arguments were required to be sets. In addition, both Set and ImmutableSet support set to set
comparisons. Two sets are equal if and only if every element of each set is contained in the other (each is a subset
of the other). A set is less than another set if and only if the first set is a proper subset of the second set (is a subset,
but is not equal). A set is greater than another set if and only if the first set is a proper superset of the second set (is a
superset, but is not equal).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two disjoint
sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==b, or a>b.
Accordingly, sets do not implement the __cmp___ () method.

Since sets only define partial ordering (subset relationships), the output of the 1ist .sort () method is undefined
for lists of sets.

The following table lists operations available in TmmutableSet but not found in Set:

Operation Result
hash (s) returns a hash value for s

The following table lists operations available in Set but not found in TmmutableSet:

8.7. sets — Unordered collections of unique elements 183

The Python Library Reference, Release 2.7.4

Operation Equiva- Result
lent

s.update (t) sl=t return set s with elements added from ¢
s.intersection_update (t) s &=t return set s keeping only elements also found in ¢
s.difference_update (t) s-=t return set s after removing elements found in ¢
s.symmetric_difference_updatselesr) return set s with elements from s or ¢ but not both
s.add (x) add element x to set s
s.remove (x) lenwvexﬁnnlyxsnﬁmesKeyErrorifmﬁpﬂmem
s.discard (x) removes x from set s if present
s.pop () remove and return an arbitrary element from s; raises

KeyError if empty
s.clear () remove all elements from set s

Note, the non-operator versions of update (), intersection_update (), difference_update (), and

symmetric_difference_update () will accept any iterable as an argument. Changed in version 2.3.1: For-
merly all arguments were required to be sets. Also note, the module also includes a union_update () method
which is an alias for update (). The method is included for backwards compatibility. Programmers should prefer

the update () method because it is supported by the built-in set () and frozenset () types.

8.7.2 Example

>>> from sets import Set

>>> engineers = Set ([’John’, ’Jane’, ’'Jack’, ’"Janice’])

>>> programmers = Set ([’Jack’, ’'Sam’, ’Susan’, ’'Janice’])

>>> managers = Set ([’Jane’, "Jack’, ’Susan’, ’"Zack’])

>>> employees = engineers | programmers | managers # union

>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference
>>> engineers.add(’'Marvin’) # add element

>>> print engineers
Set ([’ Jane’, ’'Marvin’, ’Janice’, ’"John’, ’"Jack’])

>>> employees.issuperset (engineers) # superset test

False

>>> employees.update (engineers) # update from another set
>>> employees.issuperset (engineers)

True

>>> for group in [engineers, programmers, managers, employees]:
group.discard(’ Susan’) # unconditionally remove element
print group

Set

(["Jane’, ’'Marvin’, ’'Janice’, ’"John’, ’"Jack’])
Set (["Janice’, ’'Jack’, ’'Sam’])
Set (["Jane’, ’Zack’, ’"Jack’])
Set (["Jack’, ’'Sam’, ’"Jane’, ’'Marvin’, ’Janice’, ’"John’, ’"Zack’])

8.7.3 Protocol for automatic conversion to immutable

Sets can only contain immutable elements. For convenience, mutable Set objects are automatically copied to an

ImmutableSet before being added as a set element.

The mechanism is to always add a hashable element, or if it is not hashable, the element is checked to see if it has an

__as_immutable__ () method which returns an immutable equivalent.

184 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

Since Set objects havea ___as_immutable__ () method returning an instance of ImmutableSet, it is possible
to construct sets of sets.

A similar mechanism is needed by the __contains__ () and remove () methods which need to hash an ele-
ment to check for membership in a set. Those methods check an element for hashability and, if not, check for a
__as_temporarily_immutable__ () method which returns the element wrapped by a class that provides tem-
porary methods for __hash__ (),__eq__ (),and __ne__ ().

The alternate mechanism spares the need to build a separate copy of the original mutable object.

Set objects implement the _ _as_temporarily_immutable__ () method which returns the Set object
wrapped by a new class _TemporarilyImmutableSet.

The two mechanisms for adding hashability are normally invisible to the user; however, a conflict can arise in
a multi-threaded environment where one thread is updating a set while another has temporarily wrapped it in
_TemporarilyImmutableSet. In other words, sets of mutable sets are not thread-safe.

8.7.4 Comparison to the built-in set types
The built-in set and frozenset types were designed based on lessons learned from the set s module. The key
differences are:

e Set and ImmutableSet were renamed to set and frozenset.

* There is no equivalent to BaseSet. Instead, use isinstance (x, (set, frozenset)).

* The hash algorithm for the built-ins performs significantly better (fewer collisions) for most datasets.

 The built-in versions have more space efficient pickles.

¢ The built-in versions do not have a union_update () method. Instead, use the update () method which is
equivalent.

¢ The built-in versions do not have a _repr (sorted=True) method. Instead, use the built-in repr () and
sorted () functions: repr (sorted(s)).

* The built-in version does not have a protocol for automatic conversion to immutable. Many found this feature
to be confusing and no one in the community reported having found real uses for it.

8.8 sched — Event scheduler

Source code: Lib/sched.py

The sched module defines a class which implements a general purpose event scheduler:

class sched. scheduler (timefunc, delayfunc)
The scheduler class defines a generic interface to scheduling events. It needs two functions to actually deal
with the “outside world” — timefunc should be callable without arguments, and return a number (the “time”,
in any units whatsoever). The delayfunc function should be callable with one argument, compatible with the
output of timefunc, and should delay that many time units. delayfunc will also be called with the argument 0
after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time
>>> s = sched.scheduler (time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time ()

8.8. sched — Event scheduler 185

http://hg.python.org/cpython/file/2.7/Lib/sched.py

The Python Library Reference, Release 2.7.4

>>> def print_some_times():
print time.time ()
s.enter (5, 1, print_time, ())
s.enter (10, 1, print_time, ())
s.run ()
print time.time ()

>>> print_some_times ()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

In multi-threaded environments, the scheduler class has limitations with respect to thread-safety, inability to insert
a new task before the one currently pending in a running scheduler, and holding up the main thread until the event
queue is empty. Instead, the preferred approach is to use the threading. Timer class instead.

Example:

>>> import time
>>> from threading import Timer
>>> def print_time () :
print "From print_time", time.time ()

>>> def print_some_times():
print time.time ()

Timer (5, print_time, ()) .start/()
Timer (10, print_time, ()).start()
time.sleep(ll) # sleep while time-delay events execute

print time.time ()

>>> print_some_times ()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343701.301

8.8.1 Scheduler Objects

scheduler instances have the following methods and attributes:

scheduler.enterabs (time, priority, action, argument)
Schedule a new event. The time argument should be a numeric type compatible with the return value of the
timefunc function passed to the constructor. Events scheduled for the same fime will be executed in the order of
their priority.

Executing the event means executing action (xargument). argument must be a sequence holding the
parameters for action.

Return value is an event which may be used for later cancellation of the event (see cancel ()).

scheduler.enter (delay, priority, action, argument)
Schedule an event for delay more time units. Other than the relative time, the other arguments, the effect and
the return value are the same as those for enterabs ().

186 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

scheduler.cancel (event)
Remove the event from the queue. If event is not an event currently in the queue, this method will raise a
ValueError.

scheduler.empty ()
Return true if the event queue is empty.

scheduler.run ()
Run all scheduled events. This function will wait (using the delayfunc () function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a consistent state
and propagate the exception. If an exception is raised by action, the event will not be attempted in future calls
to run ().

If a sequence of events takes longer to run than the time available before the next event, the scheduler will simply
fall behind. No events will be dropped; the calling code is responsible for canceling events which are no longer
pertinent.

scheduler.queue
Read-only attribute returning a list of upcoming events in the order they will be run. Each event is shown as a
named tuple with the following fields: time, priority, action, argument. New in version 2.6.

8.9 mutex — Mutual exclusion support

Deprecated since version 2.6: The mutex module has been removed in Python 3. The mutex module defines a
class that allows mutual-exclusion via acquiring and releasing locks. It does not require (or imply) threading or
multi-tasking, though it could be useful for those purposes.

The mutex module defines the following class:

class mutex .mutex
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue is
empty. Otherwise, the queue contains zero or more (function, argument) pairs representing functions
(or methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first
queue entry is removed and its function (argument) pair called, implying it now has the lock.

Of course, no multi-threading is implied — hence the funny interface for 1ock (), where a function is called
once the lock is acquired.

8.9.1 Mutex Objects

mutex objects have following methods:

mutex.test ()
Check whether the mutex is locked.

mutex.testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and return True, otherwise, return False.

mutex . lock (function, argument)
Execute function (argument), unless the mutex is locked. In the case it is locked, place the function and
argument on the queue. See unlock () for explanation of when function (argument) is executed in that
case.

8.9. mutex — Mutual exclusion support 187

The Python Library Reference, Release 2.7.4

mutex.unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

8.10 Queue — A synchronized queue class

Note: The Queue module has been renamed to queue in Python 3. The 2703 tool will automatically adapt imports
when converting your sources to Python 3.

Source code: Lib/Queue.py

The Queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded pro-
gramming when information must be exchanged safely between multiple threads. The Queue class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python; see the
threading module.

The module implements three types of queue, which differ only in the order in which the entries are retrieved. In a
FIFO queue, the first tasks added are the first retrieved. In a LIFO queue, the most recently added entry is the first
retrieved (operating like a stack). With a priority queue, the entries are kept sorted (using the heapg module) and the
lowest valued entry is retrieved first.

The Queue module defines the following classes and exceptions:

class Queue . Queue (maxsize=0)
Constructor for a FIFO queue. maxsize is an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsize is less than or equal to zero, the queue size is infinite.

class Queue . LifoQueue (maxsize=0)
Constructor for a LIFO queue. maxsize is an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsize is less than or equal to zero, the queue size is infinite. New in version 2.6.

class Queue .PriorityQueue (maxsize=0)
Constructor for a priority queue. maxsize is an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one returned by
sorted(list (entries)) [0]). A typical pattern for entries is a tuple in the form:
(priority_number, data).New in version 2.6.

exception Queue . Empty
Exception raised when non-blocking get () (or get_nowait ())is called on a Queue object which is empty.

exception Queue .Full
Exception raised when non-blocking put () (or put_nowait ())is called on a Queue object which is full.

See Also:

collections.deque is an alternative implementation of unbounded queues with fast atomic append () and
popleft () operations that do not require locking.

188 Chapter 8. Data Types

http://hg.python.org/cpython/file/2.7/Lib/Queue.py

The Python Library Reference, Release 2.7.4

8.10.1 Queue Objects

Queue objects (Queue, LifoQueue, or PriorityQueue) provide the public methods described below.

Queue.qgsize ()
Return the approximate size of the queue. Note, gsize() > 0 doesn’t guarantee that a subsequent get() will not
block, nor will gsize() < maxsize guarantee that put() will not block.

Queue.empty ()
Return True if the queue is empty, False otherwise. If empty() returns True it doesn’t guarantee that a sub-
sequent call to put() will not block. Similarly, if empty() returns False it doesn’t guarantee that a subsequent
call to get() will not block.

Queue. full ()
Return True if the queue is full, False otherwise. If full() returns True it doesn’t guarantee that a subsequent
call to get() will not block. Similarly, if full() returns False it doesn’t guarantee that a subsequent call to put()
will not block.

Queue.put (item[, block[, timeout]])
Put item into the queue. If optional args block is true and timeout is None (the default), block if necessary until
a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the Full
exception if no free slot was available within that time. Otherwise (block is false), put an item on the queue
if a free slot is immediately available, else raise the Full exception (timeout is ignored in that case). New in
version 2.3: The timeout parameter.

Queue.put_nowait (item)
Equivalent to put (item, False).

Queue.get ([block[, timeout]])
Remove and return an item from the queue. If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds
and raises the Empty exception if no item was available within that time. Otherwise (block is false), return an
item if one is immediately available, else raise the Empty exception (timeout is ignored in that case). New in
version 2.3: The timeout parameter.

Queue.get_nowait ()
Equivalent to get (False).

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon consumer
threads.

Queue.task_done ()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get () used to
fetch a task, a subsequent call to task_done () tells the queue that the processing on the task is complete.

If a join () is currently blocking, it will resume when all items have been processed (meaning that a
task_done () call was received for every item that had been put () into the queue).

Raises a ValueError if called more times than there were items placed in the queue. New in version 2.5.

Queue. join ()
Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever
a consumer thread calls task_done () to indicate that the item was retrieved and all work on it is complete.
When the count of unfinished tasks drops to zero, join () unblocks. New in version 2.5.

Example of how to wait for enqueued tasks to be completed:

def worker () :
while True:

8.10. Queue — A synchronized queue class 189

The Python Library Reference, Release 2.7.4

item = g.get ()
do_work (item)
g.task_done ()
q = Queue()
for i in range (num_worker_threads) :
t = Thread(target=worker)
t.daemon = True

t.start ()

for item in source() :
g.put (item)

g.join () # block until all tasks are done

8.11 weakref — Weak references

New in version 2.1. Source code: Lib/weakref.py

The weakref module allows the Python programmer to create weak references to objects.
In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a referent
are weak references, garbage collection is free to destroy the referent and reuse its memory for something else. A
primary use for weak references is to implement caches or mappings holding large objects, where it’s desired that a
large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each.
If you used a Python dictionary to map names to images, or images to names, the image objects would re-
main alive just because they appeared as values or keys in the dictionaries. The WeakKeyDictionary and
WeakValueDictionary classes supplied by the weakref module are an alternative, using weak references to
construct mappings that don’t keep objects alive solely because they appear in the mapping objects. If, for example,
an image object is a value in a WeakValueDictionary, then when the last remaining references to that image ob-
ject are the weak references held by weak mappings, garbage collection can reclaim the object, and its corresponding
entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up
callback functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed by
garbage collection. Most programs should find that using one of these weak dictionary types is all they need — it’s not
usually necessary to create your own weak references directly. The low-level machinery used by the weak dictionary
implementations is exposed by the weak re £ module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), methods (both bound and unbound), sets, frozensets, file objects, generators, type objects,
DBcursor objects from the bsddb module, sockets, arrays, deques, regular expression pattern objects, and code
objects. Changed in version 2.4: Added support for files, sockets, arrays, and patterns.Changed in version 2.7: Added
support for thread.lock, threading.Lock, and code objects. Several built-in types such as 1ist and dict do not
directly support weak references but can add support through subclassing:

class Dict (dict):
pass

obj = Dict (red=1l, green=2, blue=3) # this object is weak referenceable

190 Chapter 8. Data Types

http://hg.python.org/cpython/file/2.7/Lib/weakref.py

The Python Library Reference, Release 2.7.4

CPython implementation detail: Other built-in types such as tuple and 1ong do not support weak references even
when subclassed.

Extension types can easily be made to support weak references; see weakref-support.

class weakref.ref (object[, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be
returned. If callback is provided and not None, and the returned weakref object is still alive, the callback will
be called when the object is about to be finalized; the weak reference object will be passed as the only parameter
to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an object’s __del__ () method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the object
was deleted. If hash () is called the first time only after the object was deleted, the call will raise TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless of the callback). If either referent has been deleted,
the references are equal only if the reference objects are the same object. Changed in version 2.4: This is now a
subclassable type rather than a factory function; it derives from ob ject.

weakref.proxy (object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type
of either ProxyType or CallableProxyType, depending on whether object is callable. Proxy objects are
not hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevent their use as dictionary keys. callback is the same as the parameter of the same name to the
ref () function.

weakref .getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

weakref .getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class weakref .WeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

Note: Caution: Because a WeakKeyDictionary is built on top of a Python dictionary, it must not change
size when iterating over it. This can be difficult to ensure for a WeakKeyDictionary because actions per-
formed by the program during iteration may cause items in the dictionary to vanish “by magic” (as a side effect
of garbage collection).

WeakKeyDictionary objects have the following additional methods. These expose the internal references directly.
The references are not guaranteed to be “live” at the time they are used, so the result of calling the references needs
to be checked before being used. This can be used to avoid creating references that will cause the garbage collector to
keep the keys around longer than needed.

WeakKeyDictionary.iterkeyrefs ()
Return an iterator that yields the weak references to the keys. New in version 2.5.

8.11. weakref — Weak references 191

The Python Library Reference, Release 2.7.4

WeakKeyDictionary.keyrefs ()
Return a list of weak references to the keys. New in version 2.5.

class weakref .WeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.

Note: Caution: Because a WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic” (as a
side effect of garbage collection).

WeakValueDictionary objects have the following additional methods. These method have the same issues as the
iterkeyrefs () and keyrefs () methods of WeakKeyDictionary objects.

WeakValueDictionary.itervaluerefs ()
Return an iterator that yields the weak references to the values. New in version 2.5.

WeakValueDictionary.valuerefs ()
Return a list of weak references to the values. New in version 2.5.

class weakref .WeakSet ([elements])
Set class that keeps weak references to its elements. An element will be discarded when no strong reference to
it exists any more. New in version 2.7.

weakref.ReferenceType
The type object for weak references objects.

weakref.ProxyType
The type object for proxies of objects which are not callable.

weakref.CallableProxyType
The type object for proxies of callable objects.

weakref .ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exception weakref .ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same as
the standard ReferenceError exception.

See Also:

PEP 0205 - Weak References The proposal and rationale for this feature, including links to earlier implementations
and information about similar features in other languages.

8.11.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:

pass
>>> o = Object ()
>>> r = weakref.ref (0)

192 Chapter 8. Data Types

http://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 2.7.4

>>> 02 = r()
>>> o0 is o2
True

If the referent no longer exists, calling the reference object returns None:

>>> del o, 02
>>> print r ()
None

Testing that a weak reference object is still live should be done using the expression ref () is not None. Nor-
mally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o= r()
if o is None:
referent has been garbage collected
print "Object has been deallocated; can’t frobnicate."
else:
print "Object is still livel!™"
o.do_something_ useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded appli-
cations as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most useful
to associate additional information with a reference, but could also be used to insert additional processing on calls to
retrieve the referent.

This example shows how a subclass of ref can be used to store additional information about an object and affect the
value that’s returned when the referent is accessed:

import weakref

class ExtendedRef (weakref.ref):

def @ init__ (self, ob, callback=None, *+*annotations):
super (ExtendedRef, self).__init__ (ob, callback)
self._ _counter = 0

for k, v in annotations.iteritems /() :
setattr(self, k, v)

def _ call (self):
""M"Return a palr containing the referent and the number of
times the reference has been called.

mmn

ob = super (ExtendedRef, self)._ _call__ ()
if ob is not None:

self.__counter += 1

ob = (ob, self._ counter)

return ob

8.11.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can

8.11. weakref — Weak references 193

The Python Library Reference, Release 2.7.4

still be retrieved by ID if they do.
import weakref
_id20bj_dict = weakref.WeakValueDictionary ()
def remember (obj) :
oid = id(obj)
_id2obj_dict[oid] = obj

return oid

def id2o0bj(oid):
return _id2obj_dict[oid]

8.12 UserDict — Class wrapper for dictionary objects

Source code: Lib/UserDict.py

The module defines a mixin, DictMixin, defining all dictionary methods for classes that already have a minimum
mapping interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such as the
shelve module).

This module also defines a class, UserDict, that acts as a wrapper around dictionary objects. The need for this class
has been largely supplanted by the ability to subclass directly from dict (a feature that became available starting
with Python version 2.2). Prior to the introduction of dict, the UserDict class was used to create dictionary-like
sub-classes that obtained new behaviors by overriding existing methods or adding new ones.

The UserDict module defines the UserDict class and DictMixin:

class UserDict .UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDict instances. If initialdata is provided, data is initialized with its contents;
note that a reference to initialdata will not be kept, allowing it be used for other purposes.

Note: For backward compatibility, instances of UserDict are not iterable.

class UserDict .IterableUserDict ([initialdata])
Subclass of UserDict that supports direct iteration (e.g. for key in myDict).

In addition to supporting the methods and operations of mappings (see section Mapping Types — dict), UserDict
and TterableUserDict instances provide the following attribute:

IterableUserDict.data
A real dictionary used to store the contents of the UserDict class.

class UserDict .DictMixin
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem__ (),__setitem__ (),__delitem__ (), and keys ().

This mixin should be used as a superclass. Adding each of the above methods adds progressively more func-
tionality. For instance, defining all but __delitem__ () will preclude only pop () and popitem () from
the full interface.

In addition to the four base methods, progressively more efficiency comes with defining __contains__ (),
__diter_ (),and iteritems ().

194 Chapter 8. Data Types

http://hg.python.org/cpython/file/2.7/Lib/UserDict.py

The Python Library Reference, Release 2.7.4

Since the mixin has no knowledge of the subclass constructor, it does not define __init__ () or copy ().

Starting with Python version 2.6, it is recommended to use collections.MutableMapping instead of
DictMixin.

8.13 UserList — Class wrapper for list objects

Note: When Python 2.2 was released, many of the use cases for this class were subsumed by the ability to subclass
1ist directly. However, a handful of use cases remain.

This module provides a list-interface around an underlying data store. By default, that data store is a 11 st; however,
it can be used to wrap a list-like interface around other objects (such as persistent storage).

In addition, this class can be mixed-in with built-in classes using multiple inheritance. This can sometimes be useful.
For example, you can inherit from UserList and st r at the same time. That would not be possible with both a real
list andareal str.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

The UserList module defines the UserList class:

class UserList .UserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. list can be any iterable, e.g. a real Python list or a UserList object.

Note: The UserList class has been moved to the collections module in Python 3. The 2703 tool will
automatically adapt imports when converting your sources to Python 3.

In addition to supporting the methods and operations of mutable sequences (see section Sequence Types — str, unicode,
list, tuple, bytearray, buffer, xrange), UserList instances provide the following attribute:

UserList.data
A real Python list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class
will need to be overridden; please consult the sources for information about the methods which need to be provided in
that case. Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no
parameters, and offer a mutable data attribute. Earlier versions of Python did not attempt to create instances of the
derived class.

8.14 userstring — Class wrapper for string objects

8.13. UserList — Class wrapper for list objects 195

The Python Library Reference, Release 2.7.4

Note: This UserString class from this module is available for backward compatibility only. If you are writing
code that does not need to work with versions of Python earlier than Python 2.2, please consider subclassing directly
from the built-in st r type instead of using UserSt ring (there is no built-in equivalent to MutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case for MutableString.

The UserString module defines the following classes:

class UserString.UserString ([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via the data attribute of UserString instances. The instance’s
contents are initially set to a copy of sequence. sequence can be either a regular Python string or Unicode string,
an instance of UserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-in st r () function.

Note: The UserString class has been moved to the collections module in Python 3. The 2703 tool will
automatically adapt imports when converting your sources to Python 3.

class UserString.MutableString ([sequence])
This class is derived from the UserSt ring above and redefines strings to be mutable. Mutable strings can’t
be used as dictionary keys, because dictionaries require immutable objects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (override) the __hash__ ()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down. Deprecated since version 2.6: The Mut ableString class has been removed in
Python 3.

In addition to supporting the methods and operations of string and Unicode objects (see section String Methods),
UserString instances provide the following attribute:

MutableString.data
A real Python string or Unicode object used to store the content of the UserString class.

8.15 types — Names for built-in types

Source code: Lib/types.py

This module defines names for some object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. Also, it does not include some of the types that arise during processing such
asthe listiterator type. Itis safe touse from types import x — the module does not export any names
besides the ones listed here. New names exported by future versions of this module will all end in Type.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import =
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove (item)

196 Chapter 8. Data Types

http://hg.python.org/cpython/file/2.7/Lib/types.py

The Python Library Reference, Release 2.7.4

Starting in Python 2.2, built-in factory functions such as int () and str () are also names for the corresponding
types. This is now the preferred way to access the type instead of using the t ype s module. Accordingly, the example
above should be written as follows:

def delete(mylist, item):
if isinstance (item, int):
del mylist[item]
else:
mylist.remove (item)

The module defines the following names:

types.NoneType
The type of None.

types.TypeType
The type of type objects (such as returned by t ype ()); alias of the built-in t ype.

types.BooleanType
The type of the bool values True and False; alias of the built-in bool. New in version 2.3.

types.IntType
The type of integers (e.g. 1); alias of the built-in int.

types.LongType
The type of long integers (e.g. 1L); alias of the built-in 1ong.

types.FloatType
The type of floating point numbers (e.g. 1. 0); alias of the built-in f1oat.

types.ComplexType
The type of complex numbers (e.g. 1.07). This is not defined if Python was built without complex number
support.

types.StringType
The type of character strings (e.g. ’ Spam’); alias of the built-in st r.

types.UnicodeType
The type of Unicode character strings (e.g. u’ Spam’). This is not defined if Python was built without Unicode
support. It’s an alias of the built-in unicode.

types.TupleType
The type of tuples (e.g. (1, 2, 3, ’Spam’));alias of the built-in tuple.

types.ListType
The type of lists (e.g. [0, 1, 2, 31]);alias of the built-in 1ist.

types.DictType
The type of dictionaries (e.g. {’ Bacon’: 1, ’Ham’: 0});alias of the built-in dict

types.DictionaryType
An alternate name for DictType

types.FunctionType
types.LambdaType
The type of user-defined functions and functions created by 1ambda expressions.

types.GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

types.CodeType
The type for code objects such as returned by compile ().

8.15. types — Names for built-in types 197

The Python Library Reference, Release 2.7.4

types.ClassType

The type of user-defined old-style classes.

types.InstanceType

The type of instances of user-defined classes.

types.MethodType

The type of methods of user-defined class instances.

types.UnboundMethodType

An alternate name for MethodType.

types.BuiltinFunctionType
types.BuiltinMethodType

The type of built-in functions like 1en () or sys.exit (), and methods of built-in classes. (Here, the term
“built-in” means “written in C”.)

types.ModuleType

The type of modules.

types.FileType

The type of open file objects such as sys . stdout; alias of the built-in file.

types.XRangeType

The type of range objects returned by xrange () ; alias of the built-in xrange.

types.SliceType

The type of objects returned by s1ice () ; alias of the built-in s1ice.

types.EllipsisType

The type of E11ipsis.

types.TracebackType

The type of traceback objects such as found in sys.exc_traceback.

types.FrameType

The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

types.BufferType

The type of buffer objects created by the buffer () function.

types.DictProxyType

The type of dict proxies, such as TypeType.__dict_ .

types.NotImplementedType

The type of Not Implemented

types.GetSetDescriptorType

The type of objects defined in extension modules with PyGetSetDef, such as FrameType.f_locals or
array.array.typecode. This type is used as descriptor for object attributes; it has the same purpose as
the property type, but for classes defined in extension modules. New in version 2.5.

types.MemberDescriptorType

The type of objects defined in extension modules with PyMemberDef, such as
datetime.timedelta.days. This type is used as descriptor for simple C data members which use
standard conversion functions; it has the same purpose as the property type, but for classes defined in
extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType. New in version 2.5.

198

Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

types.StringTypes
A sequence containing StringType and UnicodeType used to facilitate easier checking for any string ob-
ject. Using this is more portable than using a sequence of the two string types constructed elsewhere since it only
contains UnicodeType if it has been built in the running version of Python. For example: isinstance (s,
types.StringTypes). New in version 2.2.

8.16 new — Creation of runtime internal objects

Deprecated since version 2.6: The new module has been removed in Python 3. Use the t ypes module’s classes
instead. The new module allows an interface to the interpreter object creation functions. This is for use primarily
in marshal-type functions, when a new object needs to be created “magically” and not by using the regular creation
functions. This module provides a low-level interface to the interpreter, so care must be exercised when using this
module. It is possible to supply non-sensical arguments which crash the interpreter when the object is used.

The new module defines the following functions:

new.instance (class[, dict])
This function creates an instance of class with dictionary dict without calling the __init__ () constructor.
If dict is omitted or None, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

new.instancemethod (function, instance, class)
This function will return a method object, bound to instance, or unbound if instance is None. function must be
callable.

new. function (code, globals[, name[, argdefs[, closure]]])
Returns a (Python) function with the given code and globals. If name is given, it must be a string or None.
If it is a string, the function will have the given name, otherwise the function name will be taken from
code.co_name. If argdefs is given, it must be a tuple and will be used to determine the default values of
parameters. If closure is given, it must be None or a tuple of cell objects containing objects to bind to the names
in code.co_freevars.

new . code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, first-

lineno, lnotab)
This function is an interface to the PyCode_New () C function.

new.module (name[, doc])
This function returns a new module object with name name. name must be a string. The optional doc argument
can have any type.

new.classobj (name, baseclasses, dict)
This function returns a new class object, with name name, derived from baseclasses (which should be a tuple of
classes) and with namespace dict.

8.17 copy — Shallow and deep copy operations

Assignment statements in Python do not copy objects, they create bindings between a target and an object. For
collections that are mutable or contain mutable items, a copy is sometimes needed so one can change one copy without
changing the other. This module provides generic shallow and deep copy operations (explained below).

Interface summary:

Copy . cCopy (x)
Return a shallow copy of x.

8.16. new — Creation of runtime internal objects 199

The Python Library Reference, Release 2.7.4

copy . deepcopy (x)
Return a deep copy of x.

exception copy .error
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

* A shallow copy constructs a new compound object and then (to the extent possible) inserts references into it to
the objects found in the original.

* A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects found
in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

* Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

* Because deep copy copies everything it may copy too much, e.g., administrative data structures that should be
shared even between copies.

The deepcopy () function avoids these problems by:
* keeping a “memo” dictionary of objects already copied during the current copying pass; and
* letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array, or any
similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object unchanged;
this is compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict . copy (), and of lists by assigning a slice of the entire list, for
example, copied_list = original_list[:]. Changed in version 2.5: Added copying functions. Classes
can use the same interfaces to control copying that they use to control pickling. See the description of module pickle
for information on these methods. The copy module does not use the copy_ reg registration module.

In order for a class to define its own copy implementation, it can define special methods ___copy__ () and
__deepcopy__ (). The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the _ _deepcopy__ () implementation needs to make a deep copy of a component, it should call the deepcopy ()

function with the component as first argument and the memo dictionary as second argument.

See Also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

8.18 pprint — Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other built-in objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t
fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the width constraint.

200 Chapter 8. Data Types

http://hg.python.org/cpython/file/2.7/Lib/pprint.py

The Python Library Reference, Release 2.7.4

Changed in version 2.5: Dictionaries are sorted by key before the display is computed; before 2.5, a dictionary was
sorted only if its display required more than one line, although that wasn’t documented.Changed in version 2.6: Added
support for set and frozenset. The pprint module defines one class:

class pprint .PrettyPrinter (indent=1, width=80, depth=None, stream=None)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using the stream keyword; the only method used on the stream object is the file protocol’s
write () method. If not specified, the PrettyPrinter adopts sys.stdout. Three additional parameters
may be used to control the formatted representation. The keywords are indent, depth, and width. The amount
of indentation added for each recursive level is specified by indent; the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled by depth; if the data structure being printed is too deep, the next contained level is replaced by
. . .. By default, there is no constraint on the depth of the objects being formatted. The desired output width is
constrained using the width parameter; the default is 80 characters. If a structure cannot be formatted within the
constrained width, a best effort will be made.

>>> import pprint
>>> stuff = [’'spam’, "eggs’, ’lumberjack’, ’'knights’, ’'ni’]
>>> stuff.insert (0, stuff[:])
>>> pp = pprint.PrettyPrinter (indent=4)
>>> pp.pprint (stuff)
[[/spam’, ’'eggs’, ’lumberjack’, ’"knights’, ’'ni’],
" spam’,
"eggs’,
" lumberjack’,
"knights’,
"ni’]
>>> tup = ('spam’, ('eggs’, (’/lumberjack’, ('knights’, ('ni’, (’dead’,
... ('parrot’, ('fresh fruit’,))))))))
>>> pp = pprint.PrettyPrinter (depth=6)
>>> pp.pprint (tup)
(" spam’, ("eggs’, (’lumberjack’, ("knights’, ('ni’, ('dead’, (...)))))))

The PrettyPrinter class supports several derivative functions:

pprint .pformat (object, indent=1, width=80, depth=None)
Return the formatted representation of object as a string. indent, width and depth will be passed to the
PrettyPrinter constructor as formatting parameters. Changed in version 2.4: The parameters indent, width
and depth were added.

pprint .pprint (object, stream=None, indent=1, width=80, depth=None)
Prints the formatted representation of object on stream, followed by a newline. If stream is None,
sys.stdout is used. This may be used in the interactive interpreter instead of a print statement for in-
specting values. indent, width and depth will be passed to the PrettyPrinter constructor as formatting
parameters.

>>> import pprint
>>> stuff = [’spam’, 'eggs’, ’lumberjack’, ’'knights’, ’'ni’]
>>> stuff.insert (0, stuff)
>>> pprint.pprint (stuff)
[<Recursion on list with id=...>,
" spam’ ,
"eggs’,
" lumberjack’,
"knights’,

8.18. pprint — Data pretty printer 201

The Python Library Reference, Release 2.7.4

lnil]

Changed in version 2.4: The parameters indent, width and depth were added.

pprint.isreadable (object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct the value using
eval (). This always returns False for recursive objects.

>>> pprint.isreadable (stuff)
False

pprint.isrecursive (object)
Determine if object requires a recursive representation.

One more support function is also defined:

pprint .saferepr (object)
Return a string representation of object, protected against recursive data structures. If the representation of
object exposes a recursive entry, the recursive reference will be represented as <Recursion on typename
with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)
"[<Recursion on list with id=...>, ’‘spam’, ’"eggs’, ’lumberjack’, ’'knights’, ’'ni’]"

8.18.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

PrettyPrinter.pformat (object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.

PrettyPrinter.pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to be created.

PrettyPrinter.isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value using eval (). Note that this returns False for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns False.

PrettyPrinter.isrecursive (object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of the saferepr () implementation.

PrettyPrinter.format (object, context, maxlevels, level)
Returns three values: the formatted version of object as a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The
second is a dictionary which contains the id () of objects that are part of the current presentation context
(direct and indirect containers for object that are affecting the presentation) as the keys; if an object needs to
be presented which is already represented in context, the third return value should be True. Recursive calls
to the format () method should add additional entries for containers to this dictionary. The third argument,
maxlevels, gives the requested limit to recursion; this will be 0 if there is no requested limit. This argument

202 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

should be passed unmodified to recursive calls. The fourth argument, level, gives the current level; recursive
calls should be passed a value less than that of the current call. New in version 2.3.

8.18.2 pprint Example

This example demonstrates several uses of the pprint () function and its parameters.

>>> import pprint

>>> tup = (’spam’, (’eggs’, (’lumberjack’, (’knights’, ('ni’, (’dead’,
... ('parrot’, ('fresh fruit’,))))))))
>>> stuff = [’a’ = 10, tup, ["a" » 30, '"b" » 301, ['c" » 20, "d" » 20]1

>>> pprint.pprint (stuff)
["aaaaaaaaaa’,
(" spam’,
("eggs’,
(” lumberjack’,
("knights’, ('ni’, (’dead’, ('parrot’, ('fresh fruit’,)))))))),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, ’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
["ccccececcceccccecccccceccecee’, dddddddddddddddddddd’]]
>>> pprint.pprint (stuff, depth=3)
["aaaaaaaaaa’,
("spam’, ("eggs’, (...))),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, ’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
["cccccccececceccececccececccececece’, ’dddddddddddddddddddd’]
>>> pprint.pprint (stuff, width=60)
[aaaaaaaaaa’,
(" spam’,
("eggs’,
(" lumberjack’,
("knights’,
("ni’, ("dead’, ("'parrot’, (’fresh fruit’,)))))))),
[" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’,
" bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
["ccccecceccececceccececccececceece’, ’dddddddddddddddddddd’ 1]

8.19 repr — Alternate repr () implementation

Note: The repr module has been renamed to reprlib in Python 3. The 2703 tool will automatically adapt imports
when converting your sources to Python 3.

Source code: Lib/repr.py

The repr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class repr .Repr
Class which provides formatting services useful in implementing functions similar to the built-in repr () ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

8.19. repr — Alternate repr () implementation 203

http://hg.python.org/cpython/file/2.7/Lib/repr.py

The Python Library Reference, Release 2.7.4

repr.aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing the
attributes of this object will affect the size limits used by repr () and the Python debugger.

repr.repr (obj)
This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

8.19.1 Repr Objects

Repr instances provide several attributes which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

Repr.maxlevel
Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict

Repr.maxlist

Repr.maxtuple

Repr .maxset

Repr.maxfrozenset

Repr .maxdeque

Repr.maxarray
Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5 for
maxarray, and 6 for the others. New in version 2.4: maxset, maxfrozenset, and set.

Repr.maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is 40.

Repr.maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The default is 30.

Repr.maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. It is applied in a similar manner as maxstring. The default is 20.

Repr.repr (obj)
The equivalent to the built-in repxr () that uses the formatting imposed by the instance.

Repr.reprl (obj, level)
Recursive implementation used by repr (). This uses the type of obj to determine which formatting method to
call, passing it obj and level. The type-specific methods should call repr1 () to perform recursive formatting,
with level - 1 for the value of level in the recursive call.

Repr.repr_TYPE (obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name.
In the method name, TYPE is replaced by string. join (string.split (type (obj) .__name__,
’ _7)). Dispatch to these methods is handled by repr1 (). Type-specific methods which need to recursively
format a value should call self.reprl (subobj, level - 1).

8.19.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr . reprl () allows subclasses of Repr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file

204 Chapter 8. Data Types

The Python Library Reference, Release 2.7.4

objects could be added:
import repr as reprlib

import sys

class MyRepr (reprlib.Repr) :
def repr_file(self, obj, level):

if obj.name in [’ <stdin>’, ’'<stdout>’, ’<stderr>’]:

return obj.name
else:
return repr (obj)

aRepr = MyRepr ()
print aRepr.repr(sys.stdin)

prints ’<stdin>’

8.19. repr — Alternate repr () implementation

205

The Python Library Reference, Release 2.7.4

206 Chapter 8. Data Types

CHAPTER
NINE

NUMERIC AND MATHEMATICAL
MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbers
module defines an abstract hierarchy of numeric types. The math and cmath modules contain various mathematical
functions for floating-point and complex numbers. For users more interested in decimal accuracy than in speed, the
decimal module supports exact representations of decimal numbers.

The following modules are documented in this chapter:

9.1 numbers — Numeric abstract base classes

New in version 2.6. The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which
progressively define more operations. None of the types defined in this module can be instantiated.

class numbers .Number
The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring what
kind, use isinstance (x, Number).

9.1.1 The numeric tower

class numbers.Complex
Subclasses of this type describe complex numbers and include the operations that work on the built-in complex
type. These are: conversions to complex and bool, real, imag, +, -, *, /, abs (), conjugate (), ==,
and !=. All except — and ! = are abstract.

real
Abstract. Retrieves the real component of this number.

imag
Abstract. Retrieves the imaginary component of this number.

conjugate ()
Abstract. Returns the complex conjugate. For example, (1+37) .conjugate () == (1-37).

class numbers.Real
To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, math.trunc (), round (), math.floor (),math.ceil (),
divmod (), //, %, <, <=,>,and >=.

Real also provides defaults for complex (), real, imag, and conjugate ().

207

http://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 2.7.4

class numbers.Rational
Subtypes Real and adds numerator and denominator properties, which should be in lowest terms. With
these, it provides a default for f1oat ().

numerator
Abstract.

denominator
Abstract.

class numbers.Integral
Subtypes Rational and adds a conversion to int. Provides defaults for float (), numerator, and
denominator, and bit-string operations: <<, >>, &, *, |, ~.

9.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may be subtle if
there are two different extensions of the real numbers. For example, fractions.Fraction implements hash ()
as follows:

def _ hash__ (self):

if self.denominator ==
Get integers right.
return hash (self.numerator)

Expensive check, but definitely correct.

if self == float (self):
return hash (float (self))

else:
Use tuple’s hash to avoid a high collision rate on
simple fractions.
return hash ((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the possibility
of adding those. You can add MyFoo between Complex and Real with:

class MyFoo (Complex) :
MyFoo.register (Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there.
For subtypes of Integral, this means that __add__ () and __radd__ () should be defined as:

class MyIntegral (Integral):

def _ add_ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff(self, other)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_ adding_stuff(self, other)
else:
return NotImplemented

208 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.7.4

def = radd_ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_ stuff (other, self)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other adding stuff (other, self)
elif isinstance (other, Integral):
return int (other) + int(self)
elif isinstance (other, Real):
return float (other) + float (self)
elif isinstance (other, Complex):
return complex (other) + complex(self)
else:
return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I'll refer to all of the above code
that doesn’t refer to MyIntegral and OtherType IKnowAbout as “boilerplate”. a will be an instance of A, which

isasubtype of Complex(a : A <: Complex),andb : B <: Complex.I'llconsidera + b:

1. If A defines an __add___ () which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add___ (), we’d miss the possibility
that B defines a more intelligent __radd__ (), so the boilerplate should return Not Implemented from
__add__ (). (Or A may not implement __add__ () atall.)

3. Then B‘s __radd__ () gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default imple-
mentation should live.

5.If B <: A, Python tries B.___radd__ before A.___add__. This is ok, because it was implemented with
knowledge of A, so it can handle those instances before delegating to Complex.

IfA <: ComplexandB <: Real without sharing any other knowledge, then the appropriate shared operation
is the one involving the built in complex, and both __radd__ () sland there, so a+b == b+a

Because most of the operations on any given type will be very similar, it can be useful to define a helper function which
generates the forward and reverse instances of any given operator. For example, fractions.Fraction uses:

def _operator_fallbacks (monomorphic_operator, fallback_operator):
def forward(a, b):

if isinstance(b, (int, long, Fraction)):
return monomorphic_operator(a, b)

elif isinstance (b, float):
return fallback_operator (float(a), b)

elif isinstance (b, complex):
return fallback_operator (complex(a), b)

else:
return NotImplemented
forward.__name__ = '__ " + fallback_operator.__name___ + '__ '
forward.__doc__ = monomorphic_operator.__doc___

def reverse(b, a):
if isinstance(a, Rational):
Includes ints.
return monomorphic_operator (a, b)
elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float (b))

9.1. numbers — Numeric abstract base classes 209

The Python Library Reference, Release 2.7.4

elif isinstance(a, numbers.Complex) :
return fallback_operator (complex(a), complex (b))

else:
return NotImplemented
reverse.__name__ = '"__r’ + fallback_operator._ _name__ + "__ '
reverse.__doc__ = monomorphic_operator._ _doc_

return forward, reverse

def _add(a, b):
" o+ pnrrre
return Fraction (a.numerator * b.denominator +
b.numerator » a.denominator,
a.denominator * b.denominator)

_add__, _ _radd__ = _operator_fallbacks(_add, operator.add)

9.2 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath module
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the first
place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats.

9.2.1 Number-theoretic and representation functions

math.ceil (x)
Return the ceiling of x as a float, the smallest integer value greater than or equal to x.

math.copysign (x, y)
Return x with the sign of y. On a platform that supports signed zeros, copysign (1.0, —0.0) returns-/.0.
New in version 2.6.

math.fabs (x)
Return the absolute value of x.

math.factorial (x)
Return x factorial. Raises ValueError if x is not integral or is negative. New in version 2.6.

math. floor (x)
Return the floor of x as a float, the largest integer value less than or equal to x.

math. fmod (x, y)
Return fmod (x, vy), as defined by the platform C library. Note that the Python expression x % y may not
return the same result. The intent of the C standard is that fmod (x, y) be exactly (mathematically; to infinite
precision) equal to x — n=y for some integer n such that the result has the same sign as x and magnitude less

210 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.7.4

than abs (y) . Python’s x % vy returns a result with the sign of y instead, and may not be exactly computable for
float arguments. For example, fmod (-1e-100, 1e100) is —1e-100, but the result of Python’s —1e-100
% 1e100is 1e100-1e-100, which cannot be represented exactly as a float, and rounds to the surprising
1e100. For this reason, function fmod () is generally preferred when working with floats, while Python’s x

[o)

% vy is preferred when working with integers.

math. frexp (x)
Return the mantissa and exponent of x as the pair (m, e). mis a float and e is an integer such that x == m
x 2x*e exactly. If x is zero, returns (0.0, O0), otherwise 0.5 <= abs (m) < 1. This is used to “pick
apart” the internal representation of a float in a portable way.

math . £sum (iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
0.9999999999999999

>>> fsum(f({.1, .1, .1, .1, .1, .1, .1, .1, .1, .11])
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding
mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition and
may occasionally double-round an intermediate sum causing it to be off in its least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating
point summation. New in version 2.6.

math.isinf (x)
Check if the float x is positive or negative infinity. New in version 2.6.

math.isnan (x)
Check if the float x is a NaN (not a number). For more information on NaNs, see the IEEE 754 standards. New
in version 2.6.

math.ldexp (x, i)
Return x + (2+x1). This is essentially the inverse of function frexp ().

math.modf (x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

math.trunc (x)
Return the Real value x truncated to an Integral (usually a long integer). Uses the ___trunc___ method.
New in version 2.6.

Note that frexp () and modf () have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For the ceil (), floor (), and modf () functions, note that all floating-point numbers of sufficiently large mag-
nitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C
double type), in which case any float x with abs (x) >= 2%x52 necessarily has no fractional bits.

9.2.2 Power and logarithmic functions

math.exp (x)
Return e x xx.

9.2. math — Mathematical functions 211

http://code.activestate.com/recipes/393090/
http://code.activestate.com/recipes/393090/

The Python Library Reference, Release 2.7.4

math.expml (x)
Return exxx — 1. For small floats x, the subtraction in exp (x) — 1 can result in a significant loss of
precision; the expm1 () function provides a way to compute this quantity to full precision:

>>> from math import exp, expml

>>> exp(le-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expml (le-5) # result accurate to full precision

1.0000050000166668e-05

New in version 2.7.

math.log (x[, base])
With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as 1og (x) /log (base) . Changed
in version 2.3: base argument added.

math.loglp (x)
Return the natural logarithm of 7+x (base ¢). The result is calculated in a way which is accurate for x near zero.
New in version 2.6.

math.loglO (x)
Return the base-10 logarithm of x. This is usually more accurate than 1og (x, 10).

math.pow (x, y)
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible. In
particular, pow (1.0, x) and pow (x, 0.0) always return 1.0, even when x is a zero or a NaN. If both x
and y are finite, x is negative, and y is not an integer then pow (x, y) is undefined, and raises ValueError.

Unlike the built-in = = operator, math.pow () converts both its arguments to type £ Loat. Use % or the built-
in pow () function for computing exact integer powers. Changed in version 2.6: The outcome of 1 «+*nan and
nanx*0 was undefined.

math.sqrt (x)
Return the square root of x.

9.2.3 Trigonometric functions

math.acos (x)
Return the arc cosine of x, in radians.

math.asin (x)
Return the arc sine of x, in radians.

math.atan (x)
Return the arc tangent of x, in radians.

math.atan2 (y, x)
Return atan (y / x),inradians. The result is between —pi and pi. The vector in the plane from the origin to
point (x, y) makes this angle with the positive X axis. The point of atan?2 () is that the signs of both inputs
are known to it, so it can compute the correct quadrant for the angle. For example, atan (1) and atan2 (1,
1) are bothpi/4,butatan2 (-1, -1) is—-3xpi/4.

math.cos (x)
Return the cosine of x radians.

212 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.7.4

math.hypot (x, y)
Return the Euclidean norm, sqrt (x+x + y=*y). This is the length of the vector from the origin to point (x,

v).

math.sin (x)
Return the sine of x radians.

math.tan (x)
Return the tangent of x radians.

9.2.4 Angular conversion
math.degrees (x)
Converts angle x from radians to degrees.

math.radians (x)
Converts angle x from degrees to radians.

9.2.5 Hyperbolic functions
math.acosh (x)
Return the inverse hyperbolic cosine of x. New in version 2.6.

math.asinh (x)
Return the inverse hyperbolic sine of x. New in version 2.6.

math.atanh (x)
Return the inverse hyperbolic tangent of x. New in version 2.6.

math.cosh (x)
Return the hyperbolic cosine of x.

math.sinh (x)
Return the hyperbolic sine of x.

math.tanh (x)
Return the hyperbolic tangent of x.

9.2.6 Special functions
math.erf (x)
Return the error function at x. New in version 2.7.

math.erfec (x)
Return the complementary error function at x. New in version 2.7.

math.gamma (x)
Return the Gamma function at x. New in version 2.7.

math.lgamma (x)
Return the natural logarithm of the absolute value of the Gamma function at x. New in version 2.7.

9.2.7 Constants

math.pi
The mathematical constant 7w = 3.141592..., to available precision.

9.2. math — Mathematical functions 213

The Python Library Reference, Release 2.7.4

math.e
The mathematical constant e = 2.71828]1..., to available precision.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C math
library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate. The current
implementation will raise ValueError for invalid operations like sqrt (=1.0) or Log (0.0) (where C99 Annex
F recommends signaling invalid operation or divide-by-zero), and OverflowError for results that overflow (for
example, exp (1000.0)). A NaN will not be returned from any of the functions above unless one or more of
the input arguments was a NaN; in that case, most functions will return a NaN, but (again following C99 Annex F)
there are some exceptions to this rule, for example pow (float (“nan’), 0.0) or hypot (float ('nan’),
float ("inf’)).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet. Changed in version 2.6: Behavior
in special cases now aims to follow C99 Annex F. In earlier versions of Python the behavior in special cases was loosely
specified.

See Also:

Module cmath Complex number versions of many of these functions.

9.3 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
in this module accept integers, floating-point numbers or complex numbers as arguments. They will also accept any
Python object that has either a ___complex__ () ora__float__ () method: these methods are used to convert
the object to a complex or floating-point number, respectively, and the function is then applied to the result of the
conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the other.
On platforms that do not support signed zeros the continuity is as specified below.

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely deter-
mined by its real part z . real and its imaginary part z . imag. In other words:

z == z.real + z.imagx1l]

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number z
is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while the
phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that joins
the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and back.

cmath.phase (x)
Return the phase of x (also known as the argument of x), as a float. phase (x) is equivalent to
math.atan2 (x.imag, x.real). The result lies in the range [-7, 7], and the branch cut for this oper-
ation lies along the negative real axis, continuous from above. On systems with support for signed zeros (which
includes most systems in current use), this means that the sign of the result is the same as the sign of x . imag,
even when x . imag is zero:

214 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.7.4

>>> phase (complex (-1.0, 0.0))
3.1415926535897931
>>> phase (complex(-1.0, -0.0))
-3.1415926535897931

New in version 2.6.

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs () function.
There is no separate cmath module function for this operation.

cmath.polar (x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x and
phi is the phase of x. polar (x) is equivalentto (abs (x), phase (x)).New in version 2.6.

cmath.rect (r, phi)
Return the complex number x with polar coordinates r and phi. Equivalent to r * (math.cos (phi) +
math.sin (phi) *17j). New in version 2.6.

9.3.2 Power and logarithmic functions

cmath.exp (x)
Return the exponential value e * x x.

cmath.log (x[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x. There
is one branch cut, from 0 along the negative real axis to -oo, continuous from above. Changed in version 2.4:
base argument added.

cmath.loglO (x)
Return the base-10 logarithm of x. This has the same branch cut as 1og ().

cmath.sqgrt (x)
Return the square root of x. This has the same branch cut as 1og ().

9.3.3 Trigonometric functions

cmath.acos (x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to oo,
continuous from below. The other extends left from -1 along the real axis to -oco, continuous from above.

cmath.asin (x)
Return the arc sine of x. This has the same branch cuts as acos ().

cmath.atan (x)
Return the arc tangent of x. There are two branch cuts: One extends from 1 j along the imaginary axis to 0o j,
continuous from the right. The other extends from -1 j along the imaginary axis to —ocoJj, continuous from the
left. Changed in version 2.6: direction of continuity of upper cut reversed

cmath.cos (x)
Return the cosine of x.

cmath.sin (x)
Return the sine of x.

cmath.tan (x)
Return the tangent of x.

9.3. cmath — Mathematical functions for complex numbers 215

The Python Library Reference, Release 2.7.4

9.3.4 Hyperbolic functions

cmath.acosh (x)
Return the hyperbolic arc cosine of x. There is one branch cut, extending left from 1 along the real axis to -co,
continuous from above.

cmath.asinh (x)
Return the hyperbolic arc sine of x. There are two branch cuts: One extends from 1 j along the imaginary axis
to oo 7, continuous from the right. The other extends from —1 j along the imaginary axis to —ocoj, continuous
from the left. Changed in version 2.6: branch cuts moved to match those recommended by the C99 standard

cmath.atanh (x)
Return the hyperbolic arc tangent of x. There are two branch cuts: One extends from 1 along the real axis to oo,
continuous from below. The other extends from —1 along the real axis to —co, continuous from above. Changed
in version 2.6: direction of continuity of right cut reversed

cmath.cosh (x)
Return the hyperbolic cosine of x.

cmath.sinh (x)
Return the hyperbolic sine of x.

cmath.tanh (x)
Return the hyperbolic tangent of x.

9.3.5 Classification functions

cmath.isinf (x)
Return True if the real or the imaginary part of x is positive or negative infinity. New in version 2.6.

cmath.isnan (x)
Return True if the real or imaginary part of x is not a number (NaN). New in version 2.6.

9.3.6 Constants

cmath.pi
The mathematical constant 7, as a float.

cmath.e
The mathematical constant e, as a float.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather have math.sqrt (-1) raise an exception than return a complex number. Also note that the functions
defined in cmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A., and
Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

216 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.7.4

9.4 decimal — Decimal fixed point and floating point arithmetic

New in version 2.4. The decimal module provides support for decimal floating point arithmetic. It offers several
advantages over the £ 1oat datatype:

* Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle — computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” — excerpt from the decimal arithmetic specification.

* Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have exact
representations in binary floating point. End users typically would not expect 1.1 + 2.2 to display as
3.3000000000000003 as it does with binary floating point.

» The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 isexactly
equal to zero. In binary floating point, the resultis 5.5511151231257827e~-017. While near to zero, the
differences prevent reliable equality testing and differences can accumulate. For this reason, decimal is preferred
in accounting applications which have strict equality invariants.

* The decimal module incorporates a notion of significant places so that 1.30 + 1.20 is 2.50. The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For multi-
plication, the “schoolbook™ approach uses all the figures in the multiplicands. For instance, 1.3 * 1.2 gives
1.56while1.30 « 1.20 gives 1.5600.

 Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting to 28
places) which can be as large as needed for a given problem:

>>> from decimal import =*

>>> getcontext () .prec = 6

>>> Decimal (1) / Decimal (7)

Decimal ("0.142857")

>>> getcontext () .prec = 28

>>> Decimal (1) / Decimal (7)

Decimal (7 0.1428571428571428571428571429")

* Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of the
standard. When needed, the programmer has full control over rounding and signal handling. This includes an
option to enforce exact arithmetic by using exceptions to block any inexact operations.

¢ The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the coef-
ficient digits do not truncate trailing zeros. Decimals also include special values such as Infinity, -Infinity,
and NaN. The standard also differentiates —0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags indicating
the results of operations, and trap enablers which determine whether signals are treated as exceptions. Rounding
options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN, ROUND_HALF_EVEN,
ROUND_HALF_UP, ROUND_UP, and ROUND_05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the
decimal module are: Clamped, InvalidOperation,DivisionByZero, Inexact,Rounded, Subnormal,
Overflow, and Underflow.

9.4. decimal — Decimal fixed point and floating point arithmetic 217

The Python Library Reference, Release 2.7.4

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the trap
enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring a
calculation.

See Also:
* IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

¢ IEEE standard 854-1987, Unofficial IEEE 854 Text.

9.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with get context () and, if
necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import =

>>> getcontext ()

Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1l, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext () .prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer or a float
performs an exact conversion of the value of that integer or float. Decimal numbers include special values such as NaN
which stands for “Not a number”, positive and negative Infinity, and 0.

>>> getcontext () .prec = 28

>>> Decimal (10)

Decimal (710")

>>> Decimal (" 3.14")

Decimal ("3.14")

>>> Decimal (3.14)

Decimal (¥3.140000000000000124344978758017532527446746826171875")
>>> Decimal ((0, (3, 1, 4), -2))

Decimal ('3.14")

>>> Decimal (str (2.0 *+ 0.5))

Decimal ("1.41421356237")

>>> Decimal (2) =+ Decimal(’0.5")

Decimal (71.414213562373095048801688724")
>>> Decimal (' NaN’)

Decimal (' NaN’)

>>> Decimal (' -Infinity’)
Decimal (' -Infinity’)

The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext () .prec = 6

>>> Decimal ("3.0")

Decimal ("3.0")

>>> Decimal (73.1415926535")

Decimal ("3.1415926535")

>>> Decimal (3.1415926535") + Decimal(’2.7182818285")
Decimal ("5.85987")

>>> getcontext () .rounding = ROUND_UP

218 Chapter 9. Numeric and Mathematical Modules

http://speleotrove.com/decimal/
http://754r.ucbtest.org/standards/854.pdf

The Python Library Reference, Release 2.7.4

>>> Decimal ("3.1415926535") + Decimal(’2.7182818285")
Decimal (5.85988")

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = map(Decimal, ’"1.34 1.87 3.45 2.35 1.00 0.03 9.25" .split())
>>> max (data)

Decimal (" 9.25")

>>> min (data)

Decimal ("0.03")

>>> sorted(data)

[Decimal ("0.03"), Decimal ("1.00"), Decimal(’1.34"),
Decimal ("2.35"), Decimal(’3.45"), Decimal(’9.257)]
>>> sum(data)

Decimal (719.29")

>>> a,b,c = datal[:3]

>>> str(a)

r1.347

>>> float (a)

1.34

>>> round(a, 1) # round () first converts to binary floating point
1.3

>>> int (a)

1

>>> g « 5

Decimal ("6.70")

>>> a *« b

Decimal ('2.5058")

>>> c % a

Decimal ("0.77")

Decimal ("1.87"),

And some mathematical functions are also available to Decimal:

>>> getcontext () .prec = 28

>>> Decimal (2) .sqrt ()

Decimal (71.414213562373095048801688724")
>>> Decimal (1) .exp ()

Decimal (72.718281828459045235360287471")
>>> Decimal ("10") .1n{()

Decimal (72.302585092994045684017991455")
>>> Decimal ("107) .1ogl0 ()

Decimal ("1")

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary applications that
often round results to a fixed number of places:

>>> Decimal (' 7.325") .quantize (Decimal (' .01"), rounding=ROUND_DOWN)
Decimal (' 7.32")

>>> Decimal (' 7.325") .quantize (Decimal (’'1.’), rounding=ROUND_UP)
Decimal (" 8")

As shown above, the get context () function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use the set context () function.

9.4. decimal — Decimal fixed point and floating point arithmetic 219

The Python Library Reference, Release 2.7.4

In accordance with the standard, the Decimal module provides two ready to use standard contexts, BasicContext
and ExtendedContext. The former is especially useful for debugging because many of the traps are enabled:

>>> myothercontext = Context (prec=60, rounding=ROUND_HALF