Datastructures and String Handling with Qt

Ot 3.0

Copyright (© 2001 Trolltech AS. All rights reserved.

TROLLTECH, Qt and the Trolltech logo are registered trademarks of Trolltech AS. Linux is a registered trademark of
Linus Torvalds. UNIX is a registered trademark of X/Open Company Ltd. Mac is a registered trademark of Apple Com-
puter Inc. MS Windows is a registered trademark of Microsoft Corporation. All other products named are trademarks

of their respective owners.

The definitive Qt documentation is provided in HTML format supplied with Qt, and available online at http://doc.trolltech.com.
This PDF file was generated automatically from the HTML source as a convenience to users, although PDF is not an official Qt

documentation format.

Contents

QtTemplate Library e e e e e e e e e e e e 4
Collection ClasSes o v i i it e e e e e e e e e e e e e e e 9
QAsciiCache Class Reference o i i i i it it ittt e e e e e e e e e e e e 13
QAsciiCachelterator Class Reference i e it e e 17
QAsciiDict Class Reference e e e e e e e 21
QAsciiDictIterator Class Reference i i e e e e 27
QBitArray Class Reference e e e e e e 30
QBitVal Class Reference i it e e e e e e e e 36
QByteArray Class Reference i i i it e e e e e e e e 38
QCache Class Reference i i i i i i i i e e e e e e e e e e e e e e 39
QCachelterator Class Reference i e e e e e e 44
QChar Class Reference v i v i it i et e e e e e e e e e e e 48
QCharRef Class Reference i i i i i i e e e et e e e e e e e e e e e e 59
QConstString Class Reference i i i i i i e e e e e e e e e e e e e e e e 60
QCString Class Reference i i i it e e e e e e e e 62
QDict Class Reference i i i i e e e e e e e e 82
QDictlterator Class Reference i i i i e e e e e e e e 89
QIntCache Class Reference i i i i ittt e e e e e e e e e e e e 92
QIntCachelterator Class Reference i i i i i it e e e e e e e e e e 96
QIntDict Class Reference i i i i e e e e e e e e e e e e 100
QIntDictlterator Class Reference i @ i i i it e e e e e e 106
QMap Class Reference i e e e e e e e 109
QMapConstlterator Class Reference i i i ittt e et e 119
QMaplterator Class Reference i i e e e e e e e e e 122
QMemArray Class Reference L L e e e e 126
QPair Class Reference v i i i i it e e e e e e e e e e e e e e e e e 136
QPtrCollection Class Reference i i i i i i it it e e e e e e e e e e e 138

Contents 3

QPtrDict Class Reference i i i i it e e e e e e e e e e e e e e e e e e 141
QPtrDictlterator Class Reference v i v i v i i e e it e e e e e e e e e e e e e 147
QPtrList Class Reference i e e e e e e e 150
QPtrListIterator Class Reference i i i i i i it it e e e e e e e e e e e e e e 163
QPtrQueue Class Reference e e e e e e e 167
QPtrStack Class Reference e e e e e e e 171
QPtrVector Class Reference i i i i e e e e e e e e 175
QStrIList Class Reference i i i e e e e e e e e e e e 183
QString Class Reference L e e e e e e e 184
QStringList Class Reference i i i i i e e e e e e e 219
QStrList Class Reference i i e e e e e e e e 223
QStrListIterator Class Reference @ i it e e e e e e e e 225
QValueList Class Reference v i i i i i e e e e e et e e e e e e e e 226
QValueListConstlIterator Class Reference i i i i i i it e e e e e e e 240
QValueListIterator Class Reference i i i i i i it e e e e et e e e e e e e 243
QValueStack Class Reference o i i i i i i i i et et e e e e e e e e e e 246
QValueVector Class Reference i i i ittt e e e e e e e e e 249
QVariant Class Reference i i i i i i i e e e e e e e e e e e e 259

Qt Template Library

The Qt Template Library (QTL) is a set of templates that provide object containers. If a suitable STL implementation
is not available for your compiler, the QTL can be used instead. It provides a list of objects, a vector (dynamic array)
of objects, a map (or dictionary) from one type to another, and associated iterators and algorithms. A container is an
object which contains and manages other objects and provides iterators that allow the contained objects to be accessed.

The QTL classes’ naming conventions are consistent with the other Qt classes (e.g., count(), isEmpty()). They also
provide extra functions for compatibility with STL algorithms, such as size() and empty(). Programmers already
familiar with the STL map can use these functions instead.

Compared to the STL, the QTL contains only the most important features of the STL container API, has no platform
differences, is often a little slower and often expands to less object code.

If you cannot make copies of the objects you want to store you are better off with QPtrCollection and friends. They were
designed to handle exactly that kind of pointer semantics. This applies for example to all classes derived from QObject.
A QObject does not have a copy constructor, so using it as value is impossible. You may choose to store pointers to
QObjects in a QValuelList, but using QPtrList directly seems to be the better choice for this kind of application domain.
QPtrList, like all other QPtrCollection based containers, provides far more sanity checking than a speed-optimized value
based container.

If you have objects that implement value semantics, and the STL is not available on your target platform, the Qt
Template Library can be used instead. Value semantics require at least

e a copy constructor,
e an assignment operator and

e a defaultconstructor, i.e. a constructor that does not take any arguments.

Note that a fast copy constructor is absolutely crucial for a good overall performance of the container, since many copy
operations are going to happen.

If you intend sorting your data you must implement operator< () for your data’s class.

Good candidates for value based classes are QRect, QPoint, QSize, QString and all simple C+ + types, such as int, bool
or double.

The Qt Template Library is designed for speed. Iterators are extremely fast. To achieve this performance, less error
checking is done than in the QPtrCollection based containers. A QTL container, for example, does not track any
associated iterators. This makes certain validity checks, for example when removing items, impossible to perform
automatically, however it provides extremely good performance.

Qt Template Library 5

Iterators

The Qt Template Library deals with value objects, not with pointers. For that reason, there is no other way of iterating
over containers other than with iterators. This is no disadvantage as the size of an iterator matches the size of a normal
pointer.

To iterate over a container, use a loop like this:

typedef Qval uelList List;

List |;

for(List::Iterator it =1.begin(); it !'=1.end(); ++it)
printf("Nunber is %\n", *it);

begin() returns the iterator pointing at the first element, while end() returns an iterator that points after the last
element. end() marks an invalid position, it can never be dereferenced. It’s the break condition in any iteration, may
it be from begin() or fromLast(). For maximum speed, use increment or decrement iterators with the prefix operator
(+ +it, --it) instead of the postfix one (it++, it--), since the former is slightly faster.

The same concept applies to the other container classes:

typedef Qvap Map;
Map nap;
for(Map::iterator it = map.begin(); it != map.end(); ++it)
printf("Key=% Data=%\n", it.key().ascii(), it.data().ascii());

typedef Qval ueVector Vector;

Vector vec;

for(Vector::iterator it = vec.begin(); it !=vec.end(); ++it)
printf("Data=%l\n", *it);

There are two kind of iterators, the volatile iterator shown in the examples above and a version that returns a const
reference to its current object, the Constlterator. Const iterators are required whenever the container itself is const,
such as a member variable inside a const function. Assigning a Constlterator to a normal Iterator is not allowed as it
would violate const semantics.

Algorithms

The Qt Template Library defines a number of algorithms that operate on its containers. These algorithms are imple-
mented as template functions and provide useful generic code which can be applied to any container that provides
iterators (even your own containers).

qHeapSort() and gBubbleSort() provide the well known sorting algorithms. You can use them like this:

typedef Qval uelList List;

List |;

| << 42 << 100 << 1234 << 12 << 8;
qHeapSort(|);

List 12;

|2 << 42 << 100 << 1234 << 12 << 8;
List::lterator b = 12.find(100);

Qt Template Library 6

List::lterator e = 12.find(8);
gqHeapSort(b, e);

double arr[] ={ 3.2, 5.6, 8.9 };
gqHeapSort(arr, arr + 3);

The first example sorts the entire list. The second one sorts all elements enclosed in the two iterators, namely 100,
1234 and 12. The third example shows that iterators act like pointers and can be treated as such.

If using your own data types you must implement operator< () for your data’s class.
Naturally, the sorting templates won’t work with const iterators.

Another utility is gSwap(). It exchanges the values of two variables:

@String second("Einstein");
QString name("Al bert");
gqSwap(second, nane);

Another template function is qCount(). It counts the number of occurrences of a value within a container. For example:

Qval ueLi st |;
| . push_back(
| . push_back(
(
(

1)

1);
|. push_back(1);
| . push_back(2)
int ¢c =0;
qCount(|.begin(), l.end(), 1, ¢); // ¢ ==

Another template function is qFind. It find the first occurrence of a value within a container. For example:

Qval ueLi st |;

| . push_back(1);
|. push_back(1);
|. push_back(1);

|. push_back(2);

Qval ueListlterator it = gFind(I.begin(), [.end(), 2);

Another template function is gFill. It fills a range with copies of a value. For example:

Qval ueVector v(3);
gFill(v.begin(), v.end(), 99); // v contains 99, 99, 99

Another template function is gEqual. It compares two ranges for equality of their elements. Note that the number of
elements in each range is not considered, only if the elements in the first range are equal to the corresponding elements
in the second range (consequently, both ranges must be valid). For example:

Qval ueVector v1(3);

vl[0] = 1,
vi[2] = 2;
vil[3] = 3;

Qt Template Library 7

Qval ueVector v2(5);

vl[0] = 1,
vi[2] = 2;
vil[3] = 3;
vi[4] = 4
vl[5] = 5;

bool b = gEqual (v1.begin(), v2.end(), v2.begin());
Il b == TRUE

Another template function is qCopy(). It copies a range of elements to an Outputlterator, in this case a QTextOStreamIt-
erator:

Qval ueLi st |;

| . push_back(100);

| . push_back(200);

| . push_back(300);

Qlext CStream str(stdout);

qCopy(|.begin(), |.end(), QlextCStreamterator(str));

Here is another example which copies a range of elements from one container into another. It uses the gBackInserter()
template function which creates a QBackInsertlterator whose job is to insert elements into the end of a container. For
example:

Qval ueLi st |;

| . push_back(100);

| . push_back(200);

| . push_back(300);

Qval ueVector v;

qCopy(|.begin(), |.end(), qgBacklnserter(v));

Another template function is qCopyBackward(). It copies a container or a slice of it to an Outputlterator, but in
backwards fashion, for example:

Qval ueVector vec(3);
vec. push_back(100);
vec. push_back(200);

vec. push_back(300);

Qval ueVect or anot her;

qCopyBackwar d(vec. begin(), vec.end(), another.begin());
[/ ’another’ now contains 100, 200, 300

/1 however the elenments are copied one at a tine

/] in reverse order (300, 200, then 100)

Another template function is qMakePair(). This is a convenience function which is used for creating QPair<> objects.
For example:

Qvap m
minsert(gMakePair("Cinton", "Bill"));

The above code is equivalent to:

Qt Template Library 8

Qvap m
QPair p("dinton", "Bill");
minsert(p);

In addition, you can use any Qt Template Library iterator as the OQutputlterator. Just make sure that the right hand of
the iterator has as many elements present as you want to insert. The following example illustrates this:

QStringList 11, 12;

[1 << "Weis" << "Ettrich" << "Arnt" << "Sue";
| 2 << "Torben" << "Matthias";

qCopy(|2.begin(), 12.end(), I1.begin());

Qval ueVector v(I|1.size(), "Dave");
qCopy(12.begin(), [2.end(), v.begin());

At the end of this code fragment, the list 11 contains "Torben", "Matthias", "Arnt" and "Sue", with the prior contents
being overwritten. The vector v contains "Torben", "Matthias", "Dave" and "Dave, also with the prior contents being
overwritten.

If you write new algorithms, consider writing them as template functions in order to make them usable with as many
containers possible. In the above example, you could just as easily print out a standard C++ array with qCopy():

int arr[] ={ 100, 200, 300 };
Qlext OStream str(stdout);
qCopy(arr, arr + 3, QlextCStreaniterator(str));

Streaming
All mentioned containers can be serialized with the respective streaming operators. Here is an example.

QataStreamstr(...);
Qval ueLi st |;

{1 ... fill the list here
str << |;

The container can be read in again with:

Qval ueLi st |;
str > |;

The same applies to QStringList, QValueStack and QMap.

Collection Classes

A collection class is a container which holds a number of items in a certain data structure and performs operations on
the contained items; insert, remove, find etc.

Qt has several value-based and several pointer-based collection classes. The pointer-based collection classes work
with pointers to items, while the value-based classes store copies of their items. The value-based collections are very
similar to STL container classes, and can be used with STL algorithms and containers. See the Qt Template Library
documentation for details.

The value-based collections are:

QValuelList, a value-based list

QValueVector, a value-based vector structure

QValueStack, a value-based stack structure
e QMap, a value-based dictionary structure

The pointer-based collections are:

QCache and QIntCache, LRU (least recently used) cache structures.
QDict, QIntDict and QPtrDict dictionary structures.

QPtrList, a double linked list structure.

QPtrQueue, a FIFO (first in, first out) queue structure.
QPtrStack, a LIFO (last in, first out) stack structure.

QPtrVector, a vector structure.

QMemArray is exceptional; it is neither pointer nor value based, but memory based. For maximum efficiency with the
simple data types usually used in arrays, it uses bitwise operations to copy and compare array elements.

Some of these classes have corresponding iterators. An iterator is a class for traversing the items in a collection:

QCachelterator and QIntCachelterator
QDictIterator, QIntDictIterator, and QPtrDictIterator
QPtrListIterator

QValuelListlterator, and QValueListConstlterator

QMaplterator, and QMapConstIterator

The value-based collections plus algorithms operating on them are grouped together in the Qt Template Library. See
the respective documentation for details.

The rest of this page dicusses the pointer-based containers.

Collection Classes 10

Architecture of the pointer-based containers

There are four internal base classes for the pointer-based containers (QGCache, QGDict, QGList and QGVector) that
operate on void pointers. A thin template layer implements the actual collections by casting item pointers to and from
void pointers.

This strategy allows Qt’s templates to be very economical on space (instantiating one of these templates adds only
inlinable calls to the base classes), while it does not hurt performance.

A QPtrList Example

This example shows how to store Employee items in a list and prints them out in the reverse order:

#include <qgptrlist.h>
#include <gstring. h>
#incl ude

cl ass Enpl oyee

{
public:
Enpl oyee(const char *name, int salary) { n=name; s=salary; }
const char *name() const { return n; }
i nt sal ary() const { returns; }
private:
QString n;
int S;
b
int main()
{
QPtrList list; Il list of pointers to Enployee
list.setAutoDelete(TRUE); /1 delete itens when they are renoved
list.append(new Enpl oyee("Bill", 50000));
list.append(new Enpl oyee("Steve", 80000));
list.append(new Enpl oyee("Ron", 60000))
QPtrListlterator it(list); // iterator for enployee list
for (it.toLast(); it.current(); --it)) {
Enpl oyee *enp = it.current();
printf("% earns %\n", enp->name(), enp->salary());
}
return 0;
}

Program output:

Ron earns 60000
Steve earns 80000
Bill earns 50000

Collection Classes 11

Managing Collection Items

All pointer-based collections inherit the QPtrCollection base class. This class knows only the number of items in the
collection and the delete strategy.

Items in a collection are by default not deleted when they are removed from the collection. The QPtrCollec-
tion::setAutoDelete() function specifies the delete strategy. In the list example, we enable auto-deletion to make
the list delete the items when they are removed from the list.

When inserting an item into a collection, only the pointer is copied, not the item itself. This is called a shallow copy.
It is possible to make the collection copy all of the item’s data (known as a deep copy) when an item is inserted. All
collection functions that insert an item call the virtual function QPtrCollection::newltem() for the item to be inserted.
Inherit a collection and reimplement it if you want to have deep copies in your collection.

When removing an item from a list, the virtual function QPtrCollection::deleteltem() is called. The default implemen-
tation in all collection classes deletes the item if auto-deletion is enabled.

Usage

A pointer-based collection class, such as QPtrList<type>, defines a collection of pointers to type objects. The pointer
(*) is implicit.

We discuss QPtrList here, but the same techniques apply for all pointer-based collection classes and all collection class
iterators.

Template instantiation:
QPtrList list; /'l wherever the list is used

The item’s class or type, Employee in our example, must be defined prior to the list definition.

/1 Does not work: Enployee is not defined
cl ass Enpl oyee;
QPtrList list;

/1 This works: Enmployee is defined before it is used
cl ass Enpl oyee {

};
QPtrList list;

Iterators

Although QPtrList has member functions to traverse the list, it can often be better to make use of an iterator. QP-
trListIterator is very safe and can traverse lists that are being modified at the same time. Multiple iterators can work
independently on the same collection.

A QPtrList has an internal list of all iterators that are currently operating on the list. When a list entry is removed, the
list updates all iterators to point to this entry.

The QDict and QCache collections have no traversal functions. To traverse these collections, you must use QDictIterator
or QCachelterator.

Collection Classes

Predefined Collections

Qt has the following predefined collection classes:

e String lists: QStrList, QStrIList (gstrlist.h) and QStringList (gstringlist.h)

e String vectors: QStrVec and QStrIVec (gstrvec.h); these are obsolete

12

In almost all cases you would choose QStringList, a value list of implicitly shared QString unicode strings. QPtrStrList
and QPtrStriList store only char pointers, not the strings themselves.

List of Pointer-based Collection Classes and Related Iterator Classes

QAsciiCache Template class that provides a cache based on char* keys
p p y
QAsciiCachelterator Iterator for QAsciiCache collections
QAsciiDict Template class that provides a dictionary based on char*
keys
QAsciiDictIterator Iterator for QAsciiDict collections
QBitArray Array of bits
QBitVal Internal class, used with QBitArray
QBuffer I/0 device that operates on a QByteArray
QByteArray Array of bytes
QCache Template class that provides a cache based on QString
keys
QCachelterator Iterator for QCache collections
QCString Abstraction of the classic C zero-terminated char array
(char *)
QDict Template class that provides a dictionary based on
QString keys
QDictIterator Iterator for QDict collections
QIntCache Template class that provides a cache based on long keys
QIntCachelterator Iterator for QIntCache collections
QIntDict Template class that provides a dictionary based on long
keys
ntDictIterator terator for QIntDict collections
QIntDictI I for QIntDict collecti
QPtrCollection The base class of most pointer-based Qt collections
QPtrDict Template class that provides a dictionary based on void*
keys
QPtrDictlterator Iterator for QPtrDict collections
QPtrList Template class that provides doubly-linked lists
QPtrListlIterator Iterator for QPtrList collections
QPtrQueue Template class that provides a queue
QStriList Doubly-linked list of char* with case-insensitive
comparison
QStrList Doubly-linked list of char*

QAsciiCache Class Reference

The QAsciiCache class is a template class that provides a cache based on char* keys.

#i ncl ude <gasciicache. h>

Public Members

QAsciiCache (int maxCost = 100, int size = 17, bool caseSensitive = TRUE, bool copyKeys = TRUE)
~QAsciiCache ()

int maxCost () const

int totalCost () const

void setMaxCost (int m)

virtual uint count () const

uint size () const

m bool isEmpty () const

m virtual void clear ()

bool insert (const char * k, const type * d, intc = 1, intp = 0)
bool remove (const char * k)

type * take (const char * k)

type * find (const char * k, bool ref = TRUE) const

type * operator[] (const char * k) const

void statistics () const

Detailed Description

The QAsciiCache class is a template class that provides a cache based on char* keys.

QAsciiCache is implemented as a template class. Define a template instance QAsciiCache<X> to create a cache that
operates on pointers to X, or X*.

A cache is a least recently used (LRU) list of cache items. The cache items are accessed via char* keys. QAsciiCache
cannot handle Unicode keys; use the QCache template instead, which uses QString keys. A QCache has the same
performace as a QAsciiCache.

Each cache item has a cost. The sum of item costs, totalCost(), will not exceed the maximum cache cost, maxCost(). If
inserting a new item would cause the total cost to exceed the maximum cost, the least recently used items in the cache
are removed.

13

QAsciiCache Class Reference 14

Apart from insert(), by far the most important function is find() (which also exists as operator[]). This function looks
up an item, returns it, and by default marks it as being the most recently used item.

There are also methods to remove() or take() an object from the cache. Calling setAutoDelete(TRUE) for a cache tells
it to delete items that are removed. The default is to not delete items when then are removed (i.e., remove() and
take() are equivalent).

When inserting an item into the cache, only the pointer is copied, not the item itself. This is called a shallow copy. It is
possible to make the cache copy all of the item’s data (known as a deep copy) when an item is inserted. insert() calls
the virtual function QPtrCollection::newltem() for the item to be inserted. Inherit a cache and reimplement it if you
want deep copies.

When removing a cache item the virtual function QPtrCollection::deleteltem() is called. Its default implementation in
QAsciiCache is to delete the item if auto-deletion is enabled.

There is a QAsciiCachelterator which may be used to traverse the items in the cache in arbitrary order.

See also QAsciiCachelterator [p. 17], QCache [p. 39], QIntCache [p. 92], Collection Classes [p. 9] and Non-GUI
Classes.

Member Function Documentation

QAsciiCache::QAsciiCache (int maxCost = 100, int size = 17, bool caseSensitive = TRUE,
bool copyKeys = TRUE)

Constructs a cache whose contents will never have a total cost greater than maxCost and which is expected to contain
less than size items.

size is actually the size of an internal hash array; it’s usually best to make it prime and at least 50% bigger than the
largest expected number of items in the cache.

Each inserted item has an associated cost. When inserting a new item, if the total cost of all items in the cache will
exceed maxCost, the cache will start throwing out the older (least recently used) items until there is enough room for
the new item to be inserted.

If caseSensitive is TRUE (the default), the cache keys are case sensitive; if it is FALSE, they are case-insensitive. Case-
insensitive comparison includes only the 26 letters in US-ASCIL. If copyKeys is TRUE (the default), QAsciiCache makes
a copy of the cache keys, otherwise it copies just the const char * pointer - slightly faster if you can guarantee that the
keys will never change, but very risky.

QAsciiCache::~QAsciiCache ()

Removes all items from the cache and destroys it. All iterators that access this cache will be reset.

void QAsciiCache::clear () [virtual]

Removes all items from the cache, and deletes them if auto-deletion has been enabled.
All cache iterators that operate this on cache are reset.

See also remove() [p. 15] and take() [p. 16].

QAsciiCache Class Reference 15

uint QAsciiCache::count () const [virtual]

Returns the number of items in the cache.

See also totalCost() [p. 16].

type * QAsciiCache::find (const char * k, bool ref = TRUE) const
Returns the item associated with k, or null if the key does not exist in the cache. If ref is TRUE (the default), the item
is moved to the front of the least recently used list.

If there are two or more items with equal keys, the one that was inserted last is returned.

bool QAsciiCache::insert (const char * k, const type * d, intc = 1, intp = 0)

Inserts the item d into the cache with key k and cost c¢. Returns TRUE if it is successful and FALSE if it fails.

The cache’s size is limited, and if the total cost is too high, QAsciiCache will remove old, least recently used items until
there is room for this new item.

The parameter p is internal and should be left at the default value (0).

Warning: If this function returns FALSE, you must delete d yourself. Additionally, be very careful about using d after
calling this function, because any other insertions into the cache, from anywhere in the application or within Qt itself,
could cause the object to be discarded from the cache and the pointer to become invalid.

bool QAsciiCache::isEmpty () const

Returns TRUE if the cache is empty, or FALSE if there is at least one object in it.

int QAsciiCache::maxCost () const

Returns the maximum allowed total cost of the cache.

See also setMaxCost() [p. 16] and totalCost() [p. 16].

type * QAsciiCache::operator[] (const char * k) const

Returns the item associated with k, or null if k does not exist in the cache, and moves the item to the front of the least
recently used list.
If there are two or more items with equal keys, the one that was inserted last is returned.

This is the same as find(k, TRUE).
See also find() [p. 15].

bool QAsciiCache::remove (const char * k)

Removes the item associated with k and returns TRUE if the item was present in the cache, or FALSE if it was not.

QAsciiCache Class Reference 16

The item is deleted if auto-deletion has been enabled, i.e., you have called setAutoDelete(TRUE).
If there are two or more items with equal keys, the one that was inserted last is removed.
All iterators that refer to the removed item are set to point to the next item in the cache’s traversal order.

See also take() [p. 16] and clear() [p. 141].

void QAsciiCache::setMaxCost (int m)

Sets the maximum allowed total cost of the cache to m. If the current total cost is greater than m, some items are
removed immediately.

See also maxCost() [p. 15] and totalCost() [p. 16].

uint QAsciiCache::size () const

Returns the size of the hash array used to implement the cache. This should be a bit bigger than count() is likely to be.

void QAsciiCache::statistics () const

A debug-only utility function. Prints out cache usage, hit/miss, and distribution information using qDebug(). This
function does nothing in the release library.

type * QAsciiCache::take (const char * k)

Takes the item associated with k out of the cache without deleting it and returns a pointer to the item taken out, or
null if the key does not exist in the cache.

If there are two or more items with equal keys, the one that was inserted last is taken.

All iterators that refer to the taken item are set to point to the next item in the cache’s traversal order.

See also remove() [p. 15] and clear() [p. 14].

int QAsciiCache::totalCost () const

Returns the total cost of the items in the cache. This is an integer in the range 0 to maxCost().

See also setMaxCost() [p. 16].

QAsciiCachelterator Class Reference

The QAsciiCachelterator class provides an iterator for QAsciiCache collections.

#i ncl ude <gasciicache. h>

Public Members

m QAsciiCachelterator (const QAsciiCache <type> & cache)

m QAsciiCachelterator (const QAsciiCachelterator<type> & ci)
m QAsciiCachelterator <type> & operator= (const QAsciiCachelterator<type> & ci)
= uint count () const

m bool isEmpty () const

= bool atFirst () const

= bool atLast () const

m type * toFirst ()

m type * toLast ()

operator type * () const

type * current () const

const char * currentKey () const

type * operator() ()

type * operator++ ()

type * operator+ = (uint jump)

type * operator-- ()
e type * operator-= (uint jump)

Detailed Description

The QAsciiCachelterator class provides an iterator for QAsciiCache collections.

Note that the traversal order is arbitrary; you are not guaranteed any particular order. If new objects are inserted into
the cache while the iterator is active, the iterator may or may not see them.

Multiple iterators are completely independent, even when they operate on the same QAsciiCache. QAsciiCache updates
all iterators that refer an item when that item is removed.

QAsciiCachelterator provides an operator++ () and an operator+ = () to traverse the cache; current() and currentKey()
to access the current cache item and its key. It also provides atFirst() and atLast(), which return TRUE if the iterator

17

QAsciiCachelterator Class Reference 18

points to the first or last item in the cache respectively. The isEmpty() function returns TRUE if the cache is empty; and
count() returns the number of items in the cache.

Note that atFirst() and atLast() refer to the iterator’s arbitrary ordering, not to the cache’s internal least recently used
list.

See also QAsciiCache [p. 13], Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QAsciiCachelterator::QAsciiCachelterator (const QAsciiCache<type> & cache)

Constructs an iterator for cache. The current iterator item is set to point to the first item in the cache.

QAsciiCachelterator::QAsciiCachelterator (const QAsciiCachelterator<type> & ci)

Constructs an iterator for the same cache as ci. The new iterator starts at the same item as ci.current() but moves
independently from there on.

bool QAsciiCachelterator::atFirst () const

Returns TRUE if the iterator points to the first item in the cache. Note that this refers to the iterator’s arbitrary ordering,
not to the cache’s internal least recently used list.

See also toFirst() [p. 19] and atLast() [p. 18].
bool QAsciiCachelterator::atLast () const

Returns TRUE if the iterator points to the last item in the cache. Note that this refers to the iterator’s arbitrary ordering,
not to the cache’s internal least recently used list.

See also toLast() [p. 20] and atFirst() [p. 18].

uint QAsciiCachelterator::count () const

Returns the number of items in the cache over which this iterator operates.
See also isEmpty() [p. 19].

type * QAsciiCachelterator::current () const

Returns a pointer to the current iterator item.

const char * QAsciiCachelterator::currentKey () const

Returns the key for the current iterator item.

QAsciiCachelterator Class Reference 19

bool QAsciiCachelterator::isEmpty () const

Returns TRUE if the cache is empty, i.e. count() == 0; otherwise returns FALSE.
See also count() [p. 18].

QAsciiCachelterator::operator type * () const

Cast operator. Returns a pointer to the current iterator item. Same as current().

type * QAsciiCachelterator::operator() ()

Makes the succeeding item current and returns the original current item.

If the current iterator item was the last item in the cache or if it was null, null is returned.
type * QAsciiCachelterator::operator++ ()

Prefix ++ makes the iterator point to the item just after current(), and makes that the new current item for the iterator.
If current() was the last item, operator++ () returns O.

type * QAsciiCachelterator::operator+= (uint jump)

Returns the item jump positions after the current item, or null if it is beyond the last item. Makes this the current item.

type * QAsciiCachelterator::operator-- ()

Prefix — makes the iterator point to the item just before current(), and makes that the new current item for the iterator.
If current() was the first item, operator--() returns O.

type * QAsciiCachelterator::operator-= (uint jump)

Returns the item jump positions before the current item, or null if it is before the first item. Makes this the current
item.

QAsciiCachelterator<type> & QAsciiCachelterator::operator=
(const QAsciiCachelterator<type> & ci)

Makes this an iterator for the same cache as ci. The new iterator starts at the same item as ci.current(), but moves
independently thereafter.

type * QAsciiCachelterator::toFirst ()

Sets the iterator to point to the first item in the cache and returns a pointer to the item.

QAsciiCachelterator Class Reference

Sets the iterator to null and returns null if the cache is empty.

See also toLast() [p. 20] and isEmpty() [p. 19].

type * QAsciiCachelterator::toLast ()

Sets the iterator to point to the last item in the cache and returns a pointer to the item.

Sets the iterator to null and returns null if the cache is empty.

See also isEmpty() [p. 19].

20

QAsciiDict Class Reference

The QAsciiDict class is a template class that provides a dictionary based on char* keys.
#include <gasciidict.h>

Inherits QPtrCollection [p. 138].

Public Members

» QAsciiDict (int size = 17, bool caseSensitive = TRUE, bool copyKeys = TRUE)
m QAsciiDict (const QAsciiDict<type> & dict)

m ~QAsciiDict ()

m QAsciiDict<type> & operator= (const QAsciiDict<type> & dict)

virtual uint count () const

uint size () const

bool isEmpty () const

void insert (const char * key, const type * item)

void replace (const char * key, const type * item)

m bool remove (const char * key)

m type * take (const char * key)

type * find (const char * key) const

type * operator[] (const char * key) const
virtual void clear ()

void resize (uint newsize)
void statistics () const

Important Inherited Members

= bool autoDelete () const
= void setAutoDelete (bool enable)

Protected Members

m virtual QDataStream & read (QDataStream & s, QPtrCollection::Item & item)
m virtual QDataStream & write (QDataStream & s, QPtrCollection::Item) const

21

QAsciiDict Class Reference 22

Detailed Description

The QAsciiDict class is a template class that provides a dictionary based on char* keys.

QAsciiDict is implemented as a template class. Define a template instance QAsciiDict<X> to create a dictionary that
operates on pointers to X (X*).

A dictionary is a collection of key-value pairs. The key is a char* used for insertion, removal and lookup. The value is
a pointer. Dictionaries provide very fast insertion and lookup.

QAsciiDict cannot handle Unicode keys; use the QDict template instead, which uses QString keys. A QDict has the
same performace as a QAsciiDict.

Example:

QAsciiDict fields;
fields.insert("forenane", new QuineEdit(this));
fields.insert("surname", new QineEdit(this));

fields["forenane"]->set Text("Homer")
fiel ds["surnanme"]->set Text ("Sinpson")

MAsciiDictlterator it(extra); // See QAsciiDictlterator
for(; it.current(); ++it)

cout << it.currentKey() <<
cout << endl;

n.oon

<< it.current()->text() << endl;

if (fields["forename"] && fields["surname"])
cout <text() << " "
<text() << endl; // Prints "Homer Sinpson"

fields.renmove("forename"); // Does not delete the line edit
if (! fields["forename"])
cout << "forenane is not in the dictionary" << endl;

In this example we use a dictionary to keep track of the line edits we’re using. We insert each line edit into the
dictionary with a unique name and then access the line edits via the dictionary. See QPtrDict, QIntDict and QDict.

See QDict for full details, including the choice of dictionary size, and how deletions are handled.

See also QAsciiDictlterator [p. 271, QDict [p. 82], QIntDict [p. 100], QPtrDict [p. 141], Collection Classes [p. 9],
Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QAsciiDict::QAsciiDict (int size = 17, bool caseSensitive = TRUE, bool copyKeys = TRUE)

Constructs a dictionary optimized for less than size entries.

We recommend setting size to a suitably large prime number (a bit larger than the expected number of entries). This
makes the hash distribution better and hence the lookup faster.

When caseSensitive is TRUE (the default) QAsciiDict treats "abc" and "Abc" as different keys; when it is FALSE "abc" and
"Abc" are the same. Case-insensitive comparison includes only the 26 letters in US-ASCII.

QAsciiDict Class Reference 23

If copyKeys is TRUE (the default), the dictionary copies keys using strcpy; if it is FALSE, the dictionary just copies the
pointers.

QAsciiDict::QAsciiDict (const QAsciiDict<type> & dict)

Constructs a copy of dict.

Each item in dict is inserted into this dictionary. Only the pointers are copied (shallow copy).

QAsciiDict:: ~QAsciiDict ()

Removes all items from the dictionary and destroys it.
The items are deleted if auto-delete is enabled.
All iterators that access this dictionary will be reset.

See also setAutoDelete() [p. 140].

bool QPtrCollection::autoDelete () const

Returns the setting of the auto-delete option. The default is FALSE.
See also setAutoDelete() [p. 140].

void QAsciiDict::clear () [virtual]

Removes all items from the dictionary.

The removed items are deleted if auto-deletion is enabled.

All dictionary iterators that operate on dictionary are reset.

See also remove() [p. 25], take() [p. 26] and setAutoDelete() [p. 140].
Reimplemented from QPtrCollection [p. 139].

uint QAsciiDict::count () const [virtual]

Returns the number of items in the dictionary.
See also isEmpty() [p. 241].
Reimplemented from QPtrCollection [p. 139].

type * QAsciiDict::find (const char * key) const

Returns the item associated with key, or null if the key does not exist in the dictionary.
This function uses an internal hashing algorithm to optimize lookup.

If there are two or more items with equal keys, then the item that was most recently inserted will be found.

QAsciiDict Class Reference 24

Equivalent to the [] operator.

See also operator[]() [p. 24].

void QAsciiDict::insert (const char * key, const type * item)

Inserts the key with the item into the dictionary.

The key does not have to be a unique dictionary key. If multiple items are inserted with the same key, only the last item
will be visible.

Null items are not allowed.

See also replace() [p. 25].

bool QAsciiDict::isEmpty () const

Returns TRUE if the dictionary is empty, i.e. count() == 0; otherwise it returns FALSE.

See also count() [p. 23].

QAsciiDict<type> & QAsciiDict::operator= (const QAsciiDict<type> & dict)

Assigns dict to this dictionary and returns a reference to this dictionary.

This dictionary is first cleared and then each item in dict is inserted into this dictionary. Only the pointers are copied
(shallow copy) unless newItem() has been reimplemented().

type * QAsciiDict::operator[] (const char * key) const

Returns the item associated with key, or null if the key does not exist in the dictionary.

This function uses an internal hashing algorithm to optimize lookup.

If there are two or more items with equal keys, then the item that was most recently inserted will be found.
Equivalent to the find() function.

See also find() [p. 23].

QDataStream & QAsciiDict::read (QDataStream & s,
QPtrCollection::Item & item) [virtual protected]

Reads a dictionary item from the stream s and returns a reference to the stream.
The default implementation sets item to O.

See also write() [p. 26].

QAsciiDict Class Reference 25

bool QAsciiDict::remove (const char * key)

Removes the item associated with key from the dictionary. Returns TRUE if successful, or FALSE if the key does not
exist in the dictionary.

If there are two or more items with equal keys, then the last inserted of these will be removed.

The removed item is deleted if auto-deletion is enabled.

All dictionary iterators that refer to the removed item will be set to point to the next item in the dictionary traversal
order.

See also take() [p. 261, clear() [p. 23] and setAutoDelete() [p. 140].

void QAsciiDict::replace (const char * key, const type * item)

Replaces an item that has a key equal to key with item.
If the item does not already exist, it will be inserted.
Null items are not allowed.

Equivalent to:
QAsciiDict dict;

if (dict.find(key))
dict.remove(key);
dict.insert(key, item);
If there are two or more items with equal keys, then the last inserted of these will be replaced.

See also insert() [p. 24].

void QAsciiDict::resize (uint newsize)

Changes the size of the hashtable to newsize. The contents of the dictionary are preserved but all iterators on the
dictionary become invalid.

void QPtrCollection::setAutoDelete (bool enable)

Sets the collection to auto-delete its contents if enable is TRUE and to never delete them if enable is FALSE.

If auto-deleting is turned on, all the items in a collection are deleted when the collection itself is deleted. This is
convenient if the collection has the only pointer to the items.

The default setting is FALSE, for safety. If you turn it on, be careful about copying the collection - you might find
yourself with two collections deleting the same items.

Note that the auto-delete setting may also affect other functions in subclasses. For example, a subclass that has a
remove() function will remove the item from its data structure, and if auto-delete is enabled, will also delete the item.

See also autoDelete() [p. 139].
Examples: grapher/grapher.cpp, scribble/scribble.cpp and table/bigtable/main.cpp.

QAsciiDict Class Reference 26

uint QAsciiDict::size () const

Returns the size of the internal hash array (as specified in the constructor).

See also count() [p. 23].

void QAsciiDict::statistics () const

Debugging-only function that prints out the dictionary distribution using gDebug().

type * QAsciiDict::take (const char * key)

Takes the item associated with key out of the dictionary without deleting it (even if auto-deletion is enabled).

If there are two or more items with equal keys, then the last inserted of these will be taken.

Returns a pointer to the item taken out, or null if the key does not exist in the dictionary.

All dictionary iterators that refer to the taken item will be set to point to the next item in the dictionary traversal order.

See also remove() [p. 25], clear() [p. 23] and setAutoDelete() [p. 140].

QDataStream & QAsciiDict::write (QDataStream & s, QPtrCollection::Item)
const [virtual protected]

Writes a dictionary item to the stream s and returns a reference to the stream.

See also read() [p. 24].

QAsciiDictIterator Class Reference

The QAsciiDictlIterator class provides an iterator for QAsciiDict collections.

#include <gasciidict.h>

Public Members

m QAsciiDictIterator (const QAsciiDict<type> & dict)
m ~QAsciiDictIterator ()

uint count () const

bool isEmpty () const

type * toFirst ()

operator type * () const

type * current () const

» const char * currentKey () const
m type * operator() ()

m type * operator++ ()

m type * operator+= (uint jump)

Detailed Description

The QAsciiDictIterator class provides an iterator for QAsciiDict collections.

QAsciiDictlterator is implemented as a template class. Define a template instance QAsciiDictIterator<X> to create a
dictionary iterator that operates on QAsciiDict<X> (dictionary of X*).

Example:
QAsciiDict fields;
fields.insert("forenane", new QuineEdit(this));

fields.insert("surname", new QLineEdit(this));
fields.insert("age", new QineEdit(this));

fields["forenane"]->set Text("Honer");
fields["surname"]->set Text("Sinmpson");
fields["age"]->set Text("45");

QsciiDictlterator it(extra);

27

QAsciiDictIterator Class Reference

for(; it.current(); ++it)
cout << it.currentKey() <<
cout << endl;

n.oon

<< it.current()->text() << endl;

/1 Qutput (random order):
/1 age: 45

/1 surnane: Sinpson

/I forenane: Homer

28

In the example we insert some line edits into a dictionary, then iterate over the dictionary printing the strings associated

with those line edits.

Note that the traversal order is arbitrary; you are not guaranteed any particular order.

Multiple iterators may independently traverse the same dictionary. A QAsciiDict knows about all the iterators that are
operating on the dictionary. When an item is removed from the dictionary, QAsciiDict updates all the iterators that are

referring the removed item to point to the next item in the (arbitrary) traversal order.

See also QAsciiDict [p. 211, Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QAsciiDictIterator::QAsciiDictIterator (const QAsciiDict<type> & dict)

Constructs an iterator for dict. The current iterator item is set to point on the first item in the dict.

QAsciiDictIterator:: ~QAsciiDictIterator ()

Destroys the iterator.

uint QAsciiDictlIterator::count () const
Returns the number of items in the dictionary this iterator operates over.

See also isEmpty() [p. 28].

type * QAsciiDictlterator::current () const

Returns a pointer to the current iterator item.

const char * QAsciiDictIterator::currentKey () const

Returns a pointer to the key for the current iterator item.

bool QAsciiDictIterator::isEmpty () const

Returns TRUE if the dictionary is empty, i.e. count() == 0, otherwise returns FALSE.

QAsciiDictIterator Class Reference 29

See also count() [p. 28].

oS

QAsciiDictIterator::operator type * () const

Cast operator. Returns a pointer to the current iterator item. Same as current().

type * QAsciiDictlterator::operator() ()

Makes the succeeding item current and returns the original current item.

If the current iterator item was the last item in the dictionary or if it was null, null is returned.

type * QAsciiDictlterator::operator++ ()

Prefix ++ makes the succeeding item current and returns the new current item.

If the current iterator item was the last item in the dictionary or if it was null, null is returned.
type * QAsciiDictlterator::operator+= (uint jump)
Sets the current item to the item jump positions after the current item, and returns a pointer to that item.

If that item is beyond the last item or if the dictionary is empty, it sets the current item to null and returns null.

type * QAsciiDictlterator::toFirst ()

Sets the current iterator item to point to the first item in the dictionary and returns a pointer to the item. If the
dictionary is empty it sets the current item to null and returns null.

QBitArray Class Reference

The QBitArray class provides an array of bits.
#include <gbitarray. h>

Inherits QByteArray [p. 38].

Public Members

m QBitArray ()

m QBitArray (uint size)

m QBitArray (const QBitArray & a)

m QBitArray & operator= (const QBitArray & a)
m uint size () const

= bool resize (uint size)

= bool fill (bool v, int size = -1)

m virtual void detach ()

m QBitArray copy () const

= bool testBit (uint index) const

m void setBit (uint index)

m void setBit (uint index, bool value)

m void clearBit (uint index)

m bool toggleBit (uint index)

m bool at (uint index) const

m QBitVal operator[] (int index)

m bool operator[] (int index) const

m QBitArray & operator&= (const QBitArray & a)
m QBitArray & operator|= (const QBitArray & a)
m QBitArray & operator ™ = (const QBitArray & a)
e QBitArray operator~ () const

Related Functions

m QBitArray operator& (const QBitArray & al, const QBitArray & a2)

m QBitArray operator| (const QBitArray & al, const QBitArray & a2)

m QBitArray operator ™ (const QBitArray & al, const QBitArray & a2)

m QDataStream & operator<< (QDataStream & s, const QBitArray & a)
m QDataStream & operator>> ((QDataStream & s, QBitArray & a)

30

BitArray Class Reference 31
Q y

Detailed Description

The QBitArray class provides an array of bits.
Because QBitArray is a QMemArray, it uses explicit sharing with a reference count.

A QBitArray is a special byte array that can access individual bits and perform bit-operations (AND, OR, XOR and NOT)
on entire arrays or bits.

Bits can be manipulated by the setBit() and clearBit() functions, but it is also possible to use the indexing [] operator
to test and set individual bits. The [] operator is a little slower than setBit() and clearBit() because some tricks are
required to implement single-bit assignments.

Example:

@BitArray a(
a.setBit(0
a.clearBit(
a.setBit(2

? ;

3
)
1);

) Il a=1[101]
@BitArray b(3);

b[0] = 1;

b[1] = 1;

b[2] = 0; Il"b=[110]

@BitArray c;
c=-~aé&hb; [l ¢ =]010]

When a QBitArray is constructed the bits are uninitialized. Use fill() to set all the bits to 0 or 1. The array can be
resized with resize() and copied with copy(). Bits can be set with setBit() and cleared with clearBit(). Bits can be
toggled with toggleBit(). A bit’s value can be obtained with testBit() and with at().

QBitArray supports the & (AND), | (OR), ™ (XOR) and ~ (NOT) operators.
See also Collection Classes [p. 91, Implicitly and Explicitly Shared Classes and Non-GUI Classes.

Member Function Documentation

QBitArray::QBitArray ()

Constructs an empty bit array.

QBitArray::QBitArray (uint size)

Constructs a bit array of size bits. The bits are uninitialized.

See also fill() [p. 32].

QBitArray::QBitArray (const QBitArray & a)

Constructs a shallow copy of a.

BitArray Class Reference 32
Q y

bool QBitArray::at (uint index) const

Returns the value (0 or 1) of the bit at position index.

See also operator[]1() [p. 33].

void QBitArray::clearBit (uint index)

Clears the bit at position index (sets it to 0).

See also setBit() [p. 34] and toggleBit() [p. 35].

QBitArray QBitArray::copy () const

Returns a deep copy of the bit array.
See also detach() [p. 32].

void QBitArray::detach () [virtual]

Detaches from shared bit array data and makes sure that this bit array is the only one referring to the data.

If multiple bit arrays share common data, this bit array dereferences the data and gets a copy of the data. Nothing will
be done if there is just a single reference.

See also copy() [p. 32].
Reimplemented from QMemArray [p. 131].

bool QBitArray::fill (bool v, int size = -1)

Fills the bit array with v (1’s if v is TRUE, or O’s if v is FALSE).
fill() resizes the bit array to size bits if size is nonnegative.
Returns FALSE if a nonnegative size was specified and the bit array could not be resized; otherwise returns TRUE.

See also resize() [p. 34].

QBitArray & QBitArray::operator&= (const QBitArray & a)

Performs the AND operation between all bits in this bit array and a. Returns a reference to this bit array.

If the arrays have different sizes, the AND operation uses O for the missing bits, as the following example demonstrates:

@BitArray a(3), b(2);

a[0] =1, a[1] =0; a[2] =1, /[l a=1]101]
b[0] =1, b[1] =0; Ilb=110]
a & b; /[l a=1[100]

See also operator | =() [p. 33], operator ™ =() and operator~().

BitArray Class Reference 33
Q y

OQBitArray & QBitArray::operator= (const QBitArray & a)

Assigns a shallow copy of a to this bit array and returns a reference to this array.

QBitVal QBitArray::operator[] (int index)

Implements the [] operator for bit arrays.
The returned QBitVal is a context object. It makes it possible to get and set a single bit value by its index position.

Example:

QBitArray a(3);

a[0] = 0;
a[l] = 1;
a[2] =a[0] "~ a[l];

The functions testBit(), setBit() and clearBit() are faster.

See also at() [p. 32].

bool QBitArray::operator[] (int index) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Implements the [] operator for constant bit arrays.
QBitArray & QBitArray::operator ™ = (const QBitArray & a)

Performs the XOR operation between all bits in this bit array and a. Returns a reference to this bit array.

The result has the length of the longest bit array of the two, with the bits missing from the shortest array taken as 0.

Example:
QBitArray a(3), b(2);
al0] =1 a[1] =0; a2 =1 [/ a=[101]
b[0] =1; b[1l] =0; Il b=1]10]
a = b /I a=1[001]

See also operator&=() [p. 32], operator|=() [p. 33] and operator~().

QBitArray & QBitArray::operator| = (const QBitArray & a)

Performs the OR operation between all bits in this bit array and a. Returns a reference to this bit array.
The result has the length of the longest bit array of the two, with the bits missing from the shortest array taken as 0.
Example:

@BitArray a(3), b(2);
a[0] =1; a[1] =0; a[2] = 1; /[l a=1]101]

QBitArray Class Reference

b{0] =1, b[1] =0; Il b =110
a|=b; [l a=]10

See also operator&=() [p. 32], operator ™ =() and operator~().

QBitArray QBitArray::operator~ () const

Returns a bit array that contains the inverted bits of this bit array.

Example:
QBitArray a(3), b;
a[0] =1; a[l] =0; a[2] =1,
b = ~a;

bool QBitArray::resize (uint size)

Resizes the bit array to size bits and returns TRUE if the bit array could be resized, and FALSE otherwise.
If the array is expanded, the new bits are set to 0.

See also size() [p. 34].

void QBitArray::setBit (uint index, bool value)

Sets the bit at position index to value.

Equivalent to:
if (value)
setBit(index);
el se
clearBit(index);

See also clearBit() [p. 32] and toggleBit() [p. 35].

void QBitArray::setBit (uint index)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the bit at position index (sets it to 1).

See also clearBit() [p. 32] and toggleBit() [p. 35].

uint QBitArray::size () const

Returns the size (number of bits) of the bit array.

See also resize() [p. 34].

34

BitArray Class Reference 35
Q y

bool QBitArray::testBit (uint index) const

Returns TRUE if the bit at position index is set, i.e. is 1.

See also setBit() [p. 34] and clearBit() [p. 321].

bool QBitArray::toggleBit (uint index)

Toggles the bit at position index.
If the previous value was 0, the new value will be 1. If the previous value was 1, the new value will be 0.

See also setBit() [p. 34] and clearBit() [p. 32].

Related Functions

QBitArray operator& (const QBitArray & al, const QBitArray & a2)

Returns the AND result between the bit arrays al and a2.

See also QBitArray::operator&=() [p. 32].

QDataStream & operator<< (QDataStream & s, const QBitArray & a)

Writes bit array a to stream s.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QDataStream & operator>> (QDataStream & s, QBitArray & a)

Reads a bit array into a from stream s.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QBitArray operator ™ (const QBitArray & al, const QBitArray & a2)

Returns the XOR result between the bit arrays al and aZ2.
See also QBitArray::operator ™ ().

QBitArray operator| (const QBitArray & al, const QBitArray & a2)

Returns the OR result between the bit arrays al and a2.

See also QBitArray::operator|=() [p. 33].

QBitVal Class Reference

The QBitVal class is an internal class, used with QBitArray.

#include <gbitarray. h>

Public Members
m QBitVal (QBitArray * a, uint i)
m operator int ()

m QBitVal & operator= (const QBitVal & v)
m QBitVal & operator= (bool v)

Detailed Description

The QBitVal class is an internal class, used with QBitArray.
The QBitVal is required by the indexing [] operator on bit arrays. Don’t use it in any other context.

See also Collection Classes [p. 9].

Member Function Documentation

QBitVal::QBitVal (QBitArray * a, uint i)

Constructs a reference to element i in the QBitArray a. This is what QBitArray::operator[] constructs its return value
with.

QBitVal::operator int ()

Returns the value referenced by the QBitVal.

QBitVal & QBitVal::operator= (const QBitVal & v)

Sets the value referenced by the QBitVal to that referenced by QBitVal v.

36

QBitVal Class Reference

QBitVal & QBitVal::operator= (bool v)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the value referenced by the QBitVal to v.

37

QByteArray Class Reference

The QByteArray class provides an array of bytes.
#include <qcstring. h>

Inherits QMemArray [p. 126] <char>.

Inherited by QBitArray [p. 30] and QCString [p. 62].

Public Members

= QByteArray ()
m QByteArray (int size)

Detailed Description

The QByteArray class provides an array of bytes.

The QByteArray class provides an explicitly shared array of bytes. It is useful for manipulating memory areas with
custom data. QByteArray is implemented as QMemArray<char>. See the QMemArray documentation for further
information.

See also Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QByteArray::QByteArray ()

Constructs an empty QByteArray.

QByteArray::QByteArray (int size)

Constructs a QByteArray of size size.

38

QCache Class Reference

The QCache class is a template class that provides a cache based on QString keys.
#include <qcache. h>

Inherits QPtrCollection [p. 138].

Public Members

QCache (int maxCost = 100, int size = 17, bool caseSensitive = TRUE)
~QCache ()

int maxCost () const

int totalCost () const

void setMaxCost (int m)

virtual uint count () const

uint size () const

bool isEmpty () const

virtual void clear ()

bool insert (const QString & k, const type * d, intc = 1,intp = 0)
bool remove (const QString & k)

type * take (const QString & k)

type * find (const QString & k, bool ref = TRUE) const

type * operator[] (const QString & k) const

void statistics () const

Important Inherited Members
= bool autoDelete () const

= void setAutoDelete (bool enable)

Detailed Description

The QCache class is a template class that provides a cache based on QString keys.

A cache is a least recently used (LRU) list of cache items. Each cache item has a key and a certain cost. The sum of
item costs, totalCost(), never exceeds the maximum cache cost, maxCost(). If inserting a new item would cause the
total cost to exceed the maximum cost, the least recently used items in the cache are removed.

39

QCache Class Reference 40

QcCache is a template class. QCache<X> defines a cache that operates on pointers to X, or X*.

Apart from insert(), by far the most important function is find() (which also exists as operator[]()). This function looks
up an item, returns it, and by default marks it as being the most recently used item.

There are also methods to remove() or take() an object from the cache. Calling setAutoDelete(TRUE) for a cache tells
it to delete items that are removed. The default is to not delete items when they are removed (i.e., remove() and take()
are equivalent).

When inserting an item into the cache, only the pointer is copied, not the item itself. This is called a shallow copy. It is
possible to make the cache copy all of the item’s data (known as a deep copy) when an item is inserted. insert() calls
the virtual function QPtrCollection::newltem() for the item to be inserted. Inherit a cache and reimplement it if you
want deep copies.

When removing a cache item, the virtual function QPtrCollection::deleteltem() is called. The default implementation
deletes the item if auto-deletion is enabled, and does nothing otherwise.

There is a QCachelterator that can be used to traverse the items in the cache in arbitrary order.

In QCache, the cache items are accessed via QString keys, which are Unicode strings. If you want to use non-Unicode,
plain 8-bit char* keys, use the QAsciiCache template. A QCache has the same performace as a QAsciiCache.

See also QCachelterator [p. 44], QAsciiCache [p. 13], QIntCache [p. 92], Collection Classes [p. 9] and Non-GUI
Classes.

Member Function Documentation

QCache::QCache (int maxCost = 100, int size = 17, bool caseSensitive = TRUE)
Constructs a cache whose contents will never have a total cost greater than maxCost and which is expected to contain
less than size items.

size is actually the size of an internal hash array; it’s usually best to make it a prime number and at least 50% bigger
than the largest expected number of items in the cache.

Each inserted item has an associated cost. When inserting a new item, if the total cost of all items in the cache will
exceed maxCost, the cache will start throwing out the older (least recently used) items until there is enough room for
the new item to be inserted.

If caseSensitive is TRUE (the default), the cache keys are case sensitive; if it is FALSE, they are case-insensitive. Case-
insensitive comparison includes all letters in Unicode.

QCache::~QCache ()

Removes all items from the cache and destroys it. All iterators that access this cache will be reset.

bool QPtrCollection::autoDelete () const

Returns the setting of the auto-delete option. The default is FALSE.
See also setAutoDelete() [p. 140].

QCache Class Reference 41

void QCache::clear () [virtual]

Removes all items from the cache and deletes them if auto-deletion has been enabled.
All cache iterators that operate this on cache are reset.

See also remove() [p. 42] and take() [p. 43].

Reimplemented from QPtrCollection [p. 139].

uint QCache::count () const [virtual]

Returns the number of items in the cache.
See also totalCost() [p. 43].
Reimplemented from QPtrCollection [p. 139].

type * QCache::find (const QString & k, bool ref = TRUE) const
Returns the item associated with key k, or null if the key does not exist in the cache. If ref is TRUE (the default), the
item is moved to the front of the least recently used list.

If there are two or more items with equal keys, the one that was inserted last is returned.

bool QCache::insert (const QString & k, const type * d, intc = 1,intp = 0)

Inserts the item d into the cache with key k and cost c. Returns TRUE if it is successful and FALSE if it fails.

The cache’s size is limited, and if the total cost is too high, QCache will remove old, least recently used items until
there is room for this new item.

The parameter p is internal and should be left at the default value (0).

Warning: If this function returns FALSE you must delete d yourself. Additionally, be very careful about using d after
calling this function because any other insertions into the cache, from anywhere in the application or within Qt itself,
could cause the object to be discarded from the cache and the pointer to become invalid.

bool QCache::isEmpty () const

Returns TRUE if the cache is empty, or FALSE if there is at least one object in it.

int QCache::maxCost () const

Returns the maximum allowed total cost of the cache.

See also setMaxCost() [p. 42] and totalCost() [p. 43].

QCache Class Reference 42

type * QCache::operator[] (const QString & k) const

Returns the item associated with key k, or null if k does not exist in the cache, and moves the item to the front of the
least recently used list.

If there are two or more items with equal keys, the one that was inserted last is returned.

This is the same as find(k, TRUE).

See also find() [p. 411].

bool QCache::remove (const QString & k)

Removes the item associated with k, and returns TRUE if the item was present in the cache or FALSE if it was not.
The item is deleted if auto-deletion has been enabled, i.e., you have called setAutoDelete(TRUE).

If there are two or more items with equal keys, the one that was inserted last is removed.

All iterators that refer to the removed item are set to point to the next item in the cache’s traversal order.

See also take() [p. 43] and clear() [p. 41].

void QPtrCollection::setAutoDelete (bool enable)

Sets the collection to auto-delete its contents if enable is TRUE and to never delete them if enable is FALSE.

If auto-deleting is turned on, all the items in a collection are deleted when the collection itself is deleted. This is
convenient if the collection has the only pointer to the items.

The default setting is FALSE, for safety. If you turn it on, be careful about copying the collection - you might find
yourself with two collections deleting the same items.

Note that the auto-delete setting may also affect other functions in subclasses. For example, a subclass that has a
remove() function will remove the item from its data structure, and if auto-delete is enabled, will also delete the item.

See also autoDelete() [p. 139].
Examples: grapher/grapher.cpp, scribble/scribble.cpp and table/bigtable/main.cpp.

void QCache::setMaxCost (int m)

Sets the maximum allowed total cost of the cache to m. If the current total cost is greater than m, some items are
deleted immediately.

See also maxCost() [p. 41] and totalCost() [p. 43].

uint QCache::size () const

Returns the size of the hash array used to implement the cache. This should be a bit bigger than count() is likely to be.

QCache Class Reference 43

void QCache::statistics () const

A debug-only utility function. Prints out cache usage, hit/miss, and distribution information using qDebug(). This
function does nothing in the release library.

type * QCache::take (const QString & k)

Takes the item associated with k out of the cache without deleting it and returns a pointer to the item taken out, or
null if the key does not exist in the cache.

If there are two or more items with equal keys, the one that was inserted last is taken.

All iterators that refer to the taken item are set to point to the next item in the cache’s traversal order.

See also remove() [p. 42] and clear() [p. 411.

int QCache::totalCost () const

Returns the total cost of the items in the cache. This is an integer in the range 0 to maxCost().

See also setMaxCost() [p. 42].

QCachelterator Class Reference

The QCachelterator class provides an iterator for QCache collections.

#include <qcache. h>

Public Members

m QCachelterator (const QCache<type> & cache)

m QCachelterator (const QCachelterator<type> & ci)
m QCachelterator<type> & operator= (const QCachelterator<type> & ci)
= uint count () const

m bool isEmpty () const

= bool atFirst () const

= bool atLast () const

m type * toFirst ()

m type * toLast ()

operator type * () const

type * current () const

QString currentKey () const

type * operator() ()

type * operator++ ()

type * operator+ = (uint jump)

type * operator-- ()
e type * operator-= (uint jump)

Detailed Description

The QCachelterator class provides an iterator for QCache collections.

Note that the traversal order is arbitrary; you are not guaranteed any particular order. If new objects are inserted into
the cache while the iterator is active, the iterator may or may not see them.

Multiple iterators are completely independent, even when they operate on the same QCache. QCache updates all
iterators that refer an item when that item is removed.

QCachelterator provides an operator+ +(), and an operator+= () to traverse the cache. The current() and currentKey()
functions are used to access the current cache item and its key. The atFirst() and atLast() return TRUE if the iterator

44

QCachelterator Class Reference 45

points to the first or last item in the cache respectively. The isEmpty() function returns TRUE if the cache is empty, and
count() returns the number of items in the cache.

Note that atFirst() and atLast() refer to the iterator’s arbitrary ordering, not to the cache’s internal least recently used
list.

See also QCache [p. 39], Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QCachelterator::QCachelterator (const QCache<type> & cache)

Constructs an iterator for cache. The current iterator item is set to point to the first item in the cache.

QCachelterator::QCachelterator (const QCachelterator<type> & ci)

Constructs an iterator for the same cache as ci. The new iterator starts at the same item as ci.current(), but moves
independently from there on.

bool QCachelterator::atFirst () const

Returns TRUE if the iterator points to the first item in the cache. Note that this refers to the iterator’s arbitrary ordering,
not to the cache’s internal least recently used list.

See also toFirst() [p. 46] and atLast() [p. 45].
bool QCachelterator::atLast () const

Returns TRUE if the iterator points to the last item in the cache. Note that this refers to the iterator’s arbitrary ordering,
not to the cache’s internal least recently used list.

See also toLast() [p. 47] and atFirst() [p. 45].

uint QCachelterator::count () const

Returns the number of items in the cache on which this iterator operates.
See also isEmpty() [p. 46].

type * QCachelterator::current () const

Returns a pointer to the current iterator item.

QString QCachelterator::currentKey () const

Returns the key for the current iterator item.

QCachelterator Class Reference 46

bool QCachelterator::isEmpty () const

Returns TRUE if the cache is empty, i.e. count() == 0; otherwise it returns FALSE.
See also count() [p. 45].

QCachelterator::operator type * () const

Cast operator. Returns a pointer to the current iterator item. Same as current().

type * QCachelterator::operator() ()

Makes the succeeding item current and returns the original current item.

If the current iterator item was the last item in the cache or if it was null, null is returned.

type * QCachelterator::operator++ ()

Prefix++ makes the iterator point to the item just after current() and makes that the new current item for the iterator.
If current() was the last item, operator++ () returns O.

type * QCachelterator::operator+ = (uint jump)

Returns the item jump positions after the current item, or null if it is beyond the last item. Makes this the current item.

type * QCachelterator::operator-- ()

Prefix-- makes the iterator point to the item just before current() and makes that the new current item for the iterator.
If current() was the first item, operator--() returns O.

type * QCachelterator::operator-= (uint jump)

Returns the item jump positions before the current item, or null if it is before the first item. Makes this the current
item.

QCachelterator<type> & QCachelterator::operator= (const QCachelterator<type> & ci)

Makes this an iterator for the same cache as ci. The new iterator starts at the same item as ci.current(), but moves
independently thereafter.

type * QCachelterator::toFirst ()

Sets the iterator to point to the first item in the cache and returns a pointer to the item.

Sets the iterator to null and returns null if the cache is empty.

QCachelterator Class Reference

See also toLast() [p. 47] and isEmpty() [p. 46].

type * QCachelterator::toLast ()

Sets the iterator to point to the last item in the cache and returns a pointer to the item.
Sets the iterator to null and returns null if the cache is empty.

See also toFirst() [p. 46] and isEmpty() [p. 46].

47

QChar Class Reference

The QChar class provides a lightweight Unicode character.

#i ncl ude <gstring. h>

Public Members

QChar ()

QChar (char c)

QChar (uchar c)

QChar (uchar ¢, uchar r)

QChar (const QChar & ¢)

QChar (ushort rc)

QChar (short rc)

QChar (uint rc)

QChar (int rc)

enum Category { NoCategory, Mark NonSpacing, Mark SpacingCombining, Mark Enclosing,

Number DecimalDigit, Number Letter, Number Other, Separator Space, Separator Line, Separator Paragraph,
Other_Control, Other_Format, Other_Surrogate, Other_PrivateUse, Other NotAssigned, Letter_Uppercase,
Letter Lowercase, Letter Titlecase, Letter Modifier, Letter Other, Punctuation_Connector, Punctuation_Dash,
Punctuation Dask = Punctuation Dash, Punctuation Open, Punctuation Close, Punctuation InitialQuote,
Punctuation FinalQuote, Punctuation Other, Symbol Math, Symbol Currency, Symbol Modifier, Symbol Other
}

enum Direction { DirL, DirR, DirEN, DirES, DirET, DirAN, DirCS, DirB, DirS, DirWS, DirON, DirLRE, DirLRO,
DirAL, DirRLE, DirRLO, DirPDE, DirNSM, DirBN }

enum Decomposition { Single, Canonical, Font, NoBreak, Initial, Medial, Final, Isolated, Circle, Super, Sub,
Vertical, Wide, Narrow, Small, Square, Compat, Fraction }

enum Joining { OtherJoining, Dual, Right, Center }

enum CombiningClass { Combining BelowLeftAttached = 200, Combining BelowAttached = 202,

Combining BelowRightAttached = 204, Combining LeftAttached = 208, Combining RightAttached = 210,
Combining AbovelLeftAttached = 212, Combining AboveAttached = 214, Combining AboveRightAttached =
216, Combining BelowLeft = 218, Combining Below = 220, Combining BelowRight = 222, Combining Left =
224, Combining Right = 226, Combining AbovelLeft = 228, Combining Above = 230, Combining AboveRight
= 232, Combining DoubleBelow = 233, Combining DoubleAbove = 234, Combining IotaSubscript = 240 }
int digitValue () const

QChar lower () const

QChar upper () const

Category category () const

48

QChar Class Reference

Direction direction () const

Joining joining () const

bool mirrored () const

QChar mirroredChar () const

const QString & decomposition () const
Decomposition decompositionTag () const
unsigned char combiningClass () const
char latin1 () const

ushort unicode () const

ushort & unicode ()

operator char () const

bool isNull () const

bool isPrint () const

bool isPunct () const

bool isSpace () const

bool isMark () const

bool isLetter () const

bool isNumber () const

bool isLetterOrNumber () const

bool isDigit () const

bool isSymbol () const

uchar cell () const

uchar row () const

Static Public Members

bool networkOrdered ()

Related Functions

bool operator== (QChar c1, QChar c2)
bool operator== (char ch, QChar c)
bool operator== (QChar c, char ch)
int operator!= (QChar c1, QChar c2)
int operator!= (char ch, QChar c)

int operator!= (QChar c, char ch)

int operator<= (QChar c1, QChar c2)
int operator<= (QChar c, char ch)
int operator<= (char ch, QChar c)
int operator>= (QChar c1, QChar c2)
int operator>= (QChar c, char ch)
int operator>= (char ch, QChar c)
int operator< (QChar c1, QChar c2)
int operator< (QChar c, char ch)

49

QChar Class Reference 50

m int operator< (char ch, QChar c¢)
m int operator> (QChar c1, QChar c2)
m int operator> (QChar c, char ch)
e int operator> (char ch, QChar c)

Detailed Description

The QChar class provides a lightweight Unicode character.

Unicode characters are (so far) 16-bit entities without any markup or structure. This class represents such an entity.
It is lightweight, so it can be used everywhere. Most compilers treat it like a "short int." (In a few years it may be
necessary to make QChar 32-bit when more than 65536 Unicode code points have been defined and come into use.)

QcChar provides a full complement of testing/classification functions, converting to and from other formats, converting
from composed to decomposed Unicode, and trying to compare and case-convert if you ask it to.

The classification functions include functions like those in ctype.h, but operating on the full range of Unicode char-
acters. They all return TRUE if the character is a certain type of character; otherwise they return FALSE. These
classification functions are isNull() (returns TRUE if the character is U+0000), isPrint() (TRUE if the character is any
sort of printable character, including whitespace), isPunct() (any sort of punctation), isMark() (Unicode Mark), isLetter
(a letter), isNumber() (any sort of numeric character), isLetterOrNumber(), and isDigit() (decimal digits). All of these
are wrappers around category() which return the Unicode-defined category of each character.

QChar further provides direction(), which indicates the "natural" writing direction of this character. The joining()
function indicates how the character joins with its neighbors (needed mostly for Arabic) and finally mirrored(), which
indicates whether the character needs to be mirrored when it is printed in its "unnatural" writing direction.

Composed Unicode characters (like å) can be converted to decomposed Unicode ("a" followed by "ring above")
by using decomposition().

In Unicode, comparison is not necessarily possible and case conversion is very difficult at best. Unicode, covering the
"entire" world, also includes most of the world’s case and sorting problems. Qt tries, but not very hard: operator==
and friends will do comparison based purely on the numeric Unicode value (code point) of the characters, and upper()
and lower() will do case changes when the character has a well-defined upper/lower-case equivalent. There is no
provision for locale-dependent case folding rules or comparison; these functions are meant to be fast so they can be
used unambiguously in data structures.

The conversion functions include unicode() (to a scalar), latin1() (to scalar, but converts all non-Latinl characters to
0), row() (gives the Unicode row), cell() (gives the Unicode cell), digitValue() (gives the integer value of any of the
numerous digit characters), and a host of constructors.

More information can be found in the document About Unicode.

See also QString [p. 1841, QCharRef [p. 59] and Text Related Classes.

Member Type Documentation

QChar::Category
This enum maps the Unicode character categories. The following characters are normative in Unicode:

e QChar:: Mark_NonSpacing - Unicode class name Mn
e (QChar:: Mark_Spaci ngQonbi ni ng - Unicode class name Mc

QChar Class Reference 51

e QChar:: Mark_Encl osi ng - Unicode class name Me

e QChar:: Nunber Decimal Di git - Unicode class name Nd
e (Char:: Nunmber Letter - Unicode class name NI

e QChar:: Nunber O her - Unicode class name No

e (Char:: Separat or _Space - Unicode class name Zs

e QChar:: Separator_Line - Unicode class name Z1

e (Char: : Separat or _Paragr aph - Unicode class name Zp
e (Char::Qther_Control - Unicode class name Cc

e QChar:: Qther_Format - Unicode class name Cf

e (Char:: Ot her_Surrogat e - Unicode class name Cs

e QChar:: Qther_PrivateUse - Unicode class name Co

e (Char:: O her _Not Assigned - Unicode class name Cn

The following categories are informative in Unicode:

e (Char:: Letter_Uppercase - Unicode class name Lu

e QChar::Letter Lowercase - Unicode class name Ll

e QChar::Letter Titlecase - Unicode class name Lt

e (Char::Letter Mdifier - Unicode class name Lm

e QChar::Letter Q her - Unicode class name Lo

e (Char:: Punctuation_Qonnector - Unicode class name Pc
e QChar:: Punctuation_Dash - Unicode class name Pd

e (Char:: Punctuation_Qpen - Unicode class name Ps

e QChar:: Punctuation_Qd ose - Unicode class name Pe

e QChar::Punctuation_Initial Quote - Unicode class name Pi
e QChar:: Punctuation_F nal Quote - Unicode class name Pf
e QChar::Punctuation_Qher - Unicode class name Po

e (Char:: Synbol _Mat h - Unicode class name Sm

e QChar:: Synbol Currency - Unicode class name Sc

e (QChar:: Synbol Mbdifier - Unicode class name Sk

e (Char:: Synbol _Q her - Unicode class name So

There are two categories that are specific to Qt:
e (Char:: NoCat egory - used when Qt is dazed and confused and cannot make sense of anything.
e (Char:: Punctuation_Dask - old typo alias for Punctuation Dash
QChar::CombiningClass

This enum defines names for some of the combining classes defined in the Unicode standard. See the Unicode Standard
for a more detailed description.

QChar Class Reference 52

QChar::Decomposition

This enum type defines the Unicode decomposition attributes. See the Unicode Standard for a description of the values.

QChar::Direction

This enum type defines the Unicode direction attributes. See the Unicode Standard for a description of the values.

In order to conform to C/C++ naming conventions "Dir" is prepended to the codes used in the Unicode Standard.

QChar::Joining

This enum type defines the Unicode decomposition attributes. See the Unicode Standard for a description of the values.

Member Function Documentation

QChar::QChar ()

Constructs a null QChar (one that isNull()).

QChar::QChar (char c)

Constructs a QChar corresponding to ASCII/Latin1 character c.

QChar::QChar (uchar c)

Constructs a QChar corresponding to ASCII/Latinl character c.

QChar::QChar (uchar c, uchar r)

Constructs a QChar for Unicode cell ¢ in row r.

QChar::QChar (const QChar & c¢)

Constructs a copy of c¢. This is a deep copy, if such a lightweight object can be said to have deep copies.

QChar::QChar (ushort rc)

Constructs a QChar for the character with Unicode code point rc.

QChar::QChar (short rc)

Constructs a QChar for the character with Unicode code point rc.

QChar Class Reference 53

QChar::QChar (uint rc)

Constructs a QChar for the character with Unicode code point rc.

QChar::QChar (int rc)

Constructs a QChar for the character with Unicode code point rc.

Category QChar::category () const
Returns the character category.

See also Category [p. 50].

uchar QChar::cell () const

Returns the cell (least significant byte) of the Unicode character.

unsigned char QChar::combiningClass () const

Returns the combining class for the character as defined in the Unicode standard. This is mainly useful as a positioning
hint for marks attached to a base character.

The Qt text rendering engine uses this information to correctly position non spacing marks around a base character.

const QString & QChar::decomposition () const

Decomposes a character into its parts. Returns QString::null if no decomposition exists.

Decomposition QChar::decompositionTag () const

Returns the tag defining the composition of the character. Returns QChar::Single if no decomposition exists.

int QChar::digitValue () const

Returns the numeric value of the digit, or -1 if the character is not a digit.

Direction QChar::direction () const

Returns the character’s direction.

See also Direction [p. 52].

QChar Class Reference 54

bool QChar::isDigit () const

Returns whether the character is a decimal digit (Number DecimalDigit).

bool QChar::isLetter () const

Returns whether the character is a letter (Letter * categories).

bool QChar::isLetterOrNumber () const

Returns whether the character is a letter or number (Letter * or Number * categories).

bool QChar::isMark () const

Returns whether the character is a mark (Mark * categories).

bool QChar::isNull () const

Returns TRUE if the character is the Unicode character 0x0000, i.e., ASCII NUL.

bool QChar::isNumber () const

Returns whether the character is a number (of any sort - Number * categories).

See also isDigit() [p. 541.

bool QChar::isPrint () const

Returns whether the character is a printable character. This is any character not of category Cc or Cn. Note that this
gives no indication of whether the character is available in a particular font.

bool QChar::isPunct () const

Returns whether the character is a punctuation mark (Punctuation_* categories).

bool QChar::isSpace () const

Returns whether the character is a separator character (Separator_* categories).

bool QChar::isSymbol () const

Returns whether the character is a symbol (Symbol * categories)

QChar Class Reference 55

Joining QChar::joining () const
This function is not supported (it may change to use Unicode character classes).

Returns information about the joining properties of the character (needed for Arabic).

char QChar::latin1 () const

Returns a latin-1 copy of this character, if this character is in the latin-1 character set. If not, this function returns 0.

QChar QChar::lower () const

Returns the lowercase equivalent if the character is uppercase, otherwise returns the character itself.

bool QChar::mirrored () const

Returns whether the character is a mirrored character (one that should be reversed if the text direction is reversed).

QChar QChar::mirroredChar () const

Returns the mirrored char if this character is a mirrored char, otherwise returns the char itself.

bool QChar::networkOrdered () [static]

Returns TRUE if this character is in network byte order (MSB first), and FALSE if it is not. This is a platform-dependent
property, so we strongly advise against using this function in portable code.

QChar::operator char () const

Returns the Latin1 character equivalent to the QChar, or 0. This is mainly useful for non-internationalized software.
See also unicode() [p. 55].

uchar QChar::row () const

Returns the row (most significant byte) of the Unicode character.

ushort QChar::unicode () const

Returns the numeric Unicode value equal to the QChar. Normally, you should use QChar objects as they are equivalent,
but for some low-level tasks (e.g. indexing into an array of Unicode information), this function is useful.

QChar Class Reference 56

ushort & QChar::unicode ()

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a reference to the numeric Unicode value equal to the QChar.

QChar QChar::upper () const

Returns the uppercase equivalent if the character is lowercase, otherwise returns the character itself.

Related Functions

int operator!= (QChar c1, QChar c2)

Returns TRUE if c1 and c2 are not the same Unicode character.

int operator!= (char ch, QChar c)
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if c is not the ASCII/Latinl character ch.

int operator!= (QChar c, char ch)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if c is not the ASCII/Latinl character ch.

int operator< (QChar c1, QChar c2)

Returns TRUE if the numeric Unicode value of c1 is less than that of c2.

int operator< (QChar c, char ch)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if the numeric Unicode value of ¢ is less than that of the ASCII/Latinl character ch.

int operator< (char ch, QChar c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if the numeric Unicode value of the ASCII/Latinl character ch is less than that of c.

QChar Class Reference

int operator<= (QChar c1, QChar c2)

Returns TRUE if the numeric Unicode value of c1 is less than that of ¢2, or they are the same Unicode character.

int operator< = (QChar c, char ch)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if the numeric Unicode value of c is less than or equal to that of the ASCII/Latin1 character ch.

int operator< = (char ch, QChar c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if the numeric Unicode value of the ASCII/Latinl character ch is less than or equal to that of c.

bool operator== (QChar c1, QChar c2)

Returns TRUE if c1 and c2 are the same Unicode character.

bool operator== (char ch, QChar c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if c is the ASCII/Latinl character ch.

bool operator== (QChar c, char ch)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if c is the ASCII/Latinl character ch.

int operator> (QChar c1, QChar c2)

Returns TRUE if the numeric Unicode value of c1 is greater than that of c2.

int operator> (QChar c, char ch)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if the numeric Unicode value of c is greater than that of the ASCII/Latin1 character ch.

int operator> (char ch, QChar c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if the numeric Unicode value of the ASCII/Latin] character ch is greater than that of c.

57

QChar Class Reference 58

int operator>= (QChar c1, QChar c2)

Returns TRUE if the numeric Unicode value of c1 is greater than that of ¢2, or they are the same Unicode character.

int operator>= (QChar c, char ch)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if the numeric Unicode value of c is greater than or equal to that of the ASCII/Latinl character ch.

int operator> = (char ch, QChar c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if the numeric Unicode value of the ASCII/Latinl character ch is greater than or equal to that of c.

QCharRef Class Reference

The QCharRef class is a helper class for QString.

#i ncl ude <gstring. h>

Detailed Description

The QCharRef class is a helper class for QString.

When you get an object of type QCharRef, you can assign to it, which will operate on the character in the string from
which you got the reference. That is its whole purpose in life. The QCharRef becomes invalid once modifications are
made to the string: if you want to keep the character, copy it into a QChar.

Most of the QChar member functions also exist in QCharRef. However, they are not explicitly documented here.

See also QString::operator[]() [p. 204], QString::at() [p. 193], QChar [p. 48] and Text Related Classes.

59

QConstString Class Reference

The QConstString class provides string objects using constant Unicode data.

#include <gstring. h>

Public Members

m QConstString (const QChar * unicode, uint length)
m ~QConstString ()
» const QString & string () const

Detailed Description

The QConstString class provides string objects using constant Unicode data.

In order to minimize copying, highly optimized applications can use QConstString to provide a QString-compatible
object from existing Unicode data. It is then the programmer’s responsibility to ensure that the Unicode data exists for
the entire lifetime of the QConstString object.

A QConstString is created with the QConstString constructor. The string held by the object can be obtained by calling
string().

See also Text Related Classes.

Member Function Documentation

QConstString::QConstString (const QChar * unicode, uint length)

Constructs a QConstString that uses the first length Unicode characters in the array unicode. Any attempt to modify
copies of the string will cause it to create a copy of the data, thus it remains forever unmodified.

Note that unicode is not copied. The caller must be able to guarantee that unicode will not be deleted or modified. Since
that is generally not the case with const strings (they are references), this constructor demands a non-const pointer
even though it never modifies unicode.

QConstString::~QConstString ()

Destroys the QConstString, creating a copy of the data if other strings are still using it.

60

QConstString Class Reference

const QString & QConstString::string () const

Returns a constant string referencing the data passed during construction.

61

QCString Class Reference

The QCString class provides an abstraction of the classic C zero-terminated char array (char *).
#include <qcstring. h>

Inherits QByteArray [p. 38].

Public Members

m QCString ()

m QCString (int size)

m QCString (const QCString & s)

m QCString (const char * str)

m QCString (const char * str, uint maxsize)

m QCString & operator= (const QCString & s)

m QCString & operator= (const char * str)

m bool isNull () const

» bool isEmpty () const

m uint length () const

= bool resize (uint len)

m bool truncate (uint pos)

m bool fill (char ¢, int len = -1)

m QCString copy () const

m QCString & sprintf (const char * format, ...)

m int find (char c, int index = 0, bool cs = TRUE) const

m int find (const char * str, int index = 0, bool ¢s = TRUE) const
m int find (const QRegExp & rx, int index = 0) const

m int findRev (char ¢, int index = -1, bool ¢s = TRUE) const

m int findRev (const char * str, int index = -1, bool ¢cs = TRUE) const
m int findRev (const QRegExp & rx, int index = -1) const

= int contains (char c, bool cs = TRUE) const

= int contains (const char * str, bool cs = TRUE) const

m int contains (const QRegExp & rx) const

QCString left (uint len) const

m QCString right (uint len) const

m QCString mid (uint index, uint len = Oxffffffff) const

m QCString leftJustify (uint width, char fill = ’’, bool truncate = FALSE) const

62

QCString Class Reference

m QCString rightJustify (uint width, char fill = ’’, bool truncate = FALSE) const
m QCString lower () const

m QCString upper () const

m QCString stripWhiteSpace () const

m QCString simplifyWhiteSpace () const

m QCString & insert (uint index, const char * s)

m QCString & insert (uint index, char c¢)

m QCString & append (const char * str)

m QCString & prepend (const char * s)

m QCString & remove (uint index, uint len)

m QCString & replace (uint index, uint len, const char * str)
QCString & replace (const QRegExp & rx, const char * str)
m short toShort (bool * ok = 0) const

m ushort toUShort (bool * ok = 0) const

m int toInt (bool * ok = 0) const

= uint toUInt (bool * ok = 0) const

» long toLong (bool * ok = 0) const

ulong toULong (bool * ok = 0) const

float toFloat (bool * ok = 0) const

double toDouble (bool * ok = 0) const

QCString & setStr (const char * str)

QCString & setNum (short n)

QCString & setNum (ushort n)

m QCString & setNum (int n)

m QCString & setNum (uint n)

QCString & setNum (long n)

QCString & setNum (ulong n)

QCString & setNum (float n, char f =’g’, int prec = 6)
QCString & setNum (double n, char f = ’g’, int prec = 6)
bool setExpand (uint index, char c)

operator const char * () const

e QCString & operator+= (const char * str)
e QCString & operator+= (char c)

Related Functions

m void * gmemmove (void * dst, const void * src, uint len)
m char * gstrdup (const char * src)

char * gstrepy (char * dst, const char * src)

char * gstrnepy (char * dst, const char * src, uint len)
int gstremp (const char * strl, const char * str2)

int gstrnemp (const char * strl, const char * str2, uint len)

int gstricmp (const char * strl, const char * str2)
m int gstrnicmp (const char * strl, const char * str2, uint len)
m QDataStream & operator< < (QDataStream & s, const QCString & str)

QCString Class Reference 64

m QDataStream & operator>> ((QDataStream & s, QCString & str)
m bool operator== (const QCString & s1, const QCString & s2)

m bool operator== (const QCString & s1, const char * s2)

m bool operator== (const char * s1, const QCString & s2)

m bool operator!= (const QCString & s1, const QCString & s2)

m bool operator!= (const QCString & s1, const char * s2)

m bool operator!= (const char * s1, const QCString & s2)

m bool operator< (const QCString & s1, const char * s2)

m bool operator< (const char * s1, const QCString & s2)

m bool operator<= (const QCString & s1, const char * s2)

m bool operator<= (const char * s1, const QCString & s2)

m bool operator> (const QCString & s1, const char * s2)

m bool operator> (const char * s1, const QCString & s2)

m bool operator>= (const QCString & s1, const char * s2)

m bool operator>= (const char * s1, const QCString & s2)

m const QCString operator+ (const QCString & s1, const QCString & s2)
m const QCString operator+ (const QCString & s1, const char * s2)
m const QCString operator+ (const char * s1, const QCString & s2)
m const QCString operator+ (const QCString & s, char c)

e const QCString operator+ (char c, const QCString & s)

Detailed Description

The QCString class provides an abstraction of the classic C zero-terminated char array (char *).
QCString inherits QByteArray, which is defined as QMemArray <char>.
Since QCString is a QMemArray, it uses explicit sharing with a reference count.

You might use QCString for text that is never exposed to the user. For text the user sees, you should use QString (which
provides implicit sharing, Unicode and other internationalization support).

Note that QCString is one of the weaker classes in Qt; its design is flawed (it tries to behave like a more convenient
const char *) and as a result, algorithms that use QCString heavily all too often perform badly. For example, append()
is O(length()) since it scans for a null terminator, which makes many algorithms that use QCString scale badly.

Note that for the QCString methods that take a const char * parameter the results are undefined if the QCString is
not zero-terminated. It is legal for the const char * parameter to be 0.

A QCString that has not been assigned to anything is null, i.e. both the length and the data pointer is 0. A QCString
that references the empty string (", a single \0’ char) is empty. Both null and empty QCStrings are legal parameters
to the methods. Assigning const char * 0 to QCString gives a null QCString.

The length() function returns the length of the string; resize() resizes the string and truncate() truncates the string. A
string can be filled with a character using fill(). Strings can be left or right padded with characters using leftJustify()
and rightJustify(). Characters, strings and regular expressions can be searched for using find() and findRev(), and
counted using contains().

Strings and characters can be inserted with insert() and appended with append(). A string can be prepended with
prepend(). Characters can be removed from the string with remove() and replaced with replace().

QCString Class Reference 65

Portions of a string can be extracted using left(), right() and mid(). Whitespace can be removed using stripWhiteS-
pace() and simplifyWhiteSpace(). Strings can be converted to uppercase or lowercase with upper() and lower() re-
spectively.

Strings that contain numbers can be converted to numbers with toShort(), tolnt(), toLong(), toULong(), toFloat() and
toDouble(). Numbers can be converted to strings with setNum().

Many operators are overloaded to work with QCStrings. QCString also supports some more obscure functions, e.g.
sprintf(), setStr() and setExpand().

Note on Character Comparisons

In QCString the notion of uppercase and lowercase and of which character is greater than or less than another character
is locale dependent. This affects functions which support a case insensitive option or which compare or lowercase or
uppercase their arguments. Case insensitive operations and comparisons will be accurate if both strings contain only
ASCII characters. (If $LC CTYPE is set, most Unix systems do "the right thing".) Functions that this affects include
contains(), find(), findRev(), operator< (), operator<=(), operator>(), operator>=(), lower() and upper().

Performance note: The QCString methods for QRegExp searching are implemented by converting the QCString to a
QString and performing the search on that. This implies a deep copy of the QCString data. If you are going to perform
many QRegExp searches on a large QCString, you will get better performance by converting the QCString to a QString
yourself, and then searching in the QString.

See also Collection Classes [p. 91, Implicitly and Explicitly Shared Classes, Text Related Classes and Non-GUI Classes.

Member Function Documentation

QCString::QCString ()

Constructs a null string.

See also isNull() [p. 69].

QCString::QCString (int size)

Constructs a string with room for size characters, including the \0’-terminator. Makes a null string if size ==
If size > 0, then the first and last characters in the string are initialized to "\0’. All other characters are uninitialized.

See also resize() [p. 72] and isNull() [p. 69].

QCString::QCString (const QCString & s)
Constructs a shallow copy s.

See also assign() [p. 130].

QCString::QCString (const char * str)

Constructs a string that is a deep copy of str.

If str is 0 a null string is created.

QCString Class Reference 66

See also isNull() [p. 69].

QCString::QCString (const char * str, uint maxsize)

Constructs a string that is a deep copy of str, that is no more than maxsize bytes long including the "\O’-terminator.

Example:
QCString str("helloworld", 6); // assigns "hello" to str

If str contains a 0 byte within the first maxsize bytes, the resulting QCString will be terminated by this 0. If stris 0 a
null string is created.

See also isNull() [p. 69].

QCString & QCString::append (const char * str)

Appends string str to the string and returns a reference to the string. Equivalent to operator+=().

int QCString::contains (char ¢, bool cs = TRUE) const

Returns the number of times the character ¢ occurs in the string.
The match is case sensitive if cs is TRUE, or case insensitive if cs if FALSE.

See also Note on character comparisons [p. 65].

int QCString::contains (const char * str, bool cs = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the number of times str occurs in the string.

The match is case sensitive if cs is TRUE, or case insensitive if cs if FALSE.

This function counts overlapping substrings, for example, "banana" contains two occurrences of "ana".

See also findRev() [p. 67] and Note on character comparisons [p. 65].

int QCString::contains (const QRegExp & rx) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Counts the number of overlapping occurrences of rx in the string.

Example:
@String s = "banana and panama";
QRegExp r = QRegExp("a[nnja", TRUE, FALSE);
s.contains(r); // 4 matches

See also find() [p. 67] and findRev() [p. 67].

QCString Class Reference 67

QCString QCString::copy () const

Returns a deep copy of this string.

See also detach() [p. 131].

bool QCString::fill (char c, int len = -1)

Fills the string with len bytes of character c, followed by a "\0’-terminator.
If len is negative, then the current string length is used.

Returns FALSE is len is nonnegative and there is not enough memory to resize the string, otherwise TRUE is returned.

int QCString::find (char ¢, int index = 0, bool cs = TRUE) const

Finds the first occurrence of the character c, starting at position index.
The search is case sensitive if cs is TRUE, or case insensitive if cs is FALSE.
Returns the position of ¢, or -1 if ¢ could not be found.

See also Note on character comparisons [p. 65].

Example: network/networkprotocol/nntp.cpp.

int QCString::find (const char * str, int index = 0, bool cs = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Finds the first occurrence of the string str, starting at position index.

The search is case sensitive if cs is TRUE, or case insensitive if cs is FALSE.

Returns the position of str, or -1 if str could not be found.

See also Note on character comparisons [p. 65].

int QCString::find (const QRegExp & rx, int index = 0) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Finds the first occurrence of the regular expression rx, starting at position index.

Returns the position of the next match, or -1 if rx was not found.

int QCString::findRev (char c, int index = -1, bool cs = TRUE) const

Finds the first occurrence of the character c, starting at position index and searching backwards.
The search is case sensitive if cs is TRUE, or case insensitive if cs is FALSE.
Returns the position of ¢, or -1 if ¢ could not be found.

See also Note on character comparisons [p. 65].

QCString Class Reference 68

int QCString::findRev (const char * str, int index = -1, bool ¢s = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Finds the first occurrence of the string str, starting at position index and searching backwards.

The search is case sensitive if cs is TRUE, or case insensitive if cs is FALSE.

Returns the position of str, or -1 if str could not be found.

See also Note on character comparisons [p. 65].

int QCString::findRev (const QRegExp & rx, int index = -1) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Finds the first occurrence of the regular expression rx, starting at position index and searching backwards.

Returns the position of the next match (backwards), or -1 if rx was not found.

QCString & QCString::insert (uint index, char c)

Inserts character ¢ into the string at position index and returns a reference to the string.

If index is beyond the end of the string, the string is extended with spaces (ASCII 32) to length index and then c is
appended.

Example:

QCsString s = "Yes";
s.insert(3, "!"); Il s == "Yes!"

See also remove() [p. 71] and replace() [p. 711].

QCString & QCString::insert (uint index, const char * s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts string s into the string at position index.

If index is beyond the end of the string, the string is extended with spaces (ASCII 32) to length index and then s is
appended.

QCstring s = "I like fish";

s.insert(2, "don't "); // s =="I don't like fish"
s = "x"; /1 index 01234

s.insert(3, "yz"); Il's =="x yz"

bool QCString::isEmpty () const

Returns TRUE if the string is empty, i.e. if length() == 0. An empty string is not always a null string.

QCString Class Reference 69

See example in isNull().

See also isNull() [p. 69], length() [p. 69] and size() [p. 134].

bool QCString::isNull () const

Returns TRUE if the string is null, i.e. if data() == 0. A null string is also an empty string.
Example:
QCstring a; Il a.data() == 0, a.size() ==0, a.length() == 0
QCstring b ==""; /| b.data() =="", b.size() == 1, b.length() == 0
a.isNull(); Il TRUE, because a.data() ==
a.isEnpty(); Il TRUE, because a.length() == 0
b.isNull(); Il FALSE, because b.data() == ""
b.isEMty(); Il TRUE, because b.length() == 0

See also isEmpty() [p. 681, length() [p. 69] and size() [p. 134].

QCString QCString::left (uint len) const

Returns a substring that contains the len leftmost characters of the string.
The whole string is returned if len exceeds the length of the string.
Example:

QCString s = "Pineapple";
QCstring t = s.left(4); Il t == "Pine"

See also right() [p. 72] and mid() [p. 70].

Example: network/networkprotocol/nntp.cpp.

QCString QCString::leftJustify (uint width, char fill = ’’, bool truncate = FALSE) const

Returns a string of length width (plus one for the terminating '\0’) that contains this string and padded with the fill
character.

If the length of the string exceeds width and truncate is FALSE, then the returned string is a copy of the string. If the
length of the string exceeds width and truncate is TRUE, then the returned string is a left(width).

Example:

QCString s("apple");
QCstring t = s.leftJustify(8, "."); Il t =="apple..."

See also rightJustify() [p. 721.

uint QCString::length () const

Returns the length of the string, excluding the *\0’-terminator. Equivalent to calling strl en(data()).

QCString Class Reference 70

Null strings and empty strings have zero length.
See also size() [p. 134], isNull() [p. 69] and isEmpty() [p. 68].

Example: network/networkprotocol/nntp.cpp.

QCString QCString::lower () const

Returns a new string that is a copy of this string converted to lower case.

Example:

QCsString s("Credit");
QCstring t = s.lower(); Il t =="credit"

See also upper() [p. 76] and Note on character comparisons [p. 65].

QCString QCString::mid (uint index, uint len = Oxffffffff) const

Returns a substring that contains len characters of this string, starting at position index.

Returns a null string if the string is empty or if index is out of range. Returns the whole string from index if index+len
exceeds the length of the string.

Example:
QCString s = "Two pi neappl es";
QCstringt =s.md(4, 3); Il t =="pin"

See also left() [p. 691 and right([p. 72].

Example: network/networkprotocol/nntp.cpp.

QCString::operator const char * () const

Returns the string data.

QCString & QCString::operator+ = (const char * str)

Appends string str to the string and returns a reference to the string.

QCString & QCString::operator+= (char c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Appends character c to the string and returns a reference to the string.

QCString & QCString::operator= (const QCString & s)

Assigns a shallow copy of s to this string and returns a reference to this string.

QCString Class Reference 71

QCString & QCString::operator= (const char * str)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Assigns a deep copy of str to this string and returns a reference to this string.
If str is 0 a null string is created.

See also isNull() [p. 69].

QCString & QCString::prepend (const char * s)

Prepend s to the string. Equivalent to insert(0,s).

See also insert() [p. 68].

QCString & QCString::remove (uint index, uint len)

Removes len characters starting at position index from the string and returns a reference to the string.

If index is out of range, nothing happens. If index is valid, but index + len is larger than the length of the string, the
string is truncated at position index.

QCString s = "Mntreal ";
s.remove(1, 4);
Il s == "Meal"

See also insert() [p. 68] and replace() [p. 711.

Example: network/networkprotocol/nntp.cpp.

QCString & QCString::replace (uint index, uint len, const char * str)

Replaces len characters starting at position index from the string with str, and returns a reference to the string.

If index is out of range, nothing is removed and str is appended at the end of the string. If index is valid, but index +
len is larger than the length of the string, str replaces the rest of the string from position index.

QCstring s = "Say yes!";
s.replace(4, 3, "NO'); Il s == "Say NO"

See also insert() [p. 68] and remove() [p. 71].

QCString & QCString::replace (const QRegExp & rx, const char * str)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Replaces every occurrence of rx in the string with str. Returns a reference to the string.

Example:

QCString Class Reference 72

QString s = "banana";

s.replace(QRegExp("a.*a"), ""); Il beconmes "b"

S = "panana";

s.replace(QRegExp("~[bn]a"), " "); /'l becones " nana"
s = "banana";

s.replace(QRegExp("~[bn]a"), ""); /1 NOTE! becomes ""

The last example may be surprising. The semantics are that the regex is applied to the string repeatedly, so first the
leading "ba" is removed, then the "na", then the final "na" leaving an empty string.

bool QCString::resize (uint len)

Extends or shrinks the string to len bytes, including the "\0’-terminator.
A\O'-terminator is set at position | en - 1 unless|en ==
Example:

QCString s = "resize this string";
s.resize(7); Il s == "resize'

See also truncate() [p. 76].
Example: network/networkprotocol/nntp.cpp.
QCString QCString::right (uint len) const

Returns a substring that contains the len rightmost characters of the string.

The whole string is returned if len exceeds the length of the string.

Example:
QCString s = "Pineapple";
QCsString t = s.right(5); Il t == "apple"

See also left() [p. 69] and mid() [p. 70].

Example: network/networkprotocol/nntp.cpp.

QCString QCString::rightJustify (uint width, char fill = ’’, bool truncate = FALSE) const
Returns a string of length width (plus one for the terminating *\0’) that contains the fill character followed by this
string.

If the length of the string exceeds width and truncate is FALSE, then the returned string is a copy of the string. If the
length of the string exceeds width and truncate is TRUE, then the returned string is a left(width).

Example:

QCstring s("pie");
QCString t = s.rightJustify(8, '."); It ="..... pi e"

QCString Class Reference 73

See also leftJustify() [p. 69].

bool QCString::setExpand (uint index, char c)

Sets the character at position index to ¢ and expands the string if necessary, filling with spaces.

Returns FALSE if index was out of range and the string could not be expanded, otherwise TRUE.

QCString & QCString::setNum (double n, char f = ’g’, int prec = 6)

Sets the string to the string representation of the number n and returns a reference to the string.

The format of the string representation is specified by the format character f, and the precision (number of digits after
the decimal point) is specified with prec.

The valid formats for f are ’e’, ’E’, ’f’, ’¢’ and 'G’. The formats are the same as for sprintf(); they are explained in
QString::arg().

QCString & QCString::setNum (short n)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the string representation of the number n and returns a reference to the string.

QCString & QCString::setNum (ushort n)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the string representation of the number n and returns a reference to the string.

QCString & QCString::setNum (int n)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the string representation of the number n and returns a reference to the string.

QCString & QCString::setNum (uint n)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the string representation of the number n and returns a reference to the string.

QCString & QCString::setNum (long n)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the string to the string representation of the number n and returns a reference to the string.

QCString Class Reference 74

QCString & QCString::setNum (ulong n)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the string representation of the number n and returns a reference to the string.

QCString & QCString::setNum (float n, char f =’g’, int prec = 6)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QCString & QCString::setStr (const char * str)

Makes a deep copy of str. Returns a reference to the string.

QCString QCString::simplifyWhiteSpace () const

Returns a new string that has white space removed from the start and the end, plus any sequence of internal white
space replaced with a single space (ASCII 32).

White space means the decimal ASCII codes 9, 10, 11, 12, 13 and 32.

QCstring s =" lots\t of\nwhite space "
QCString t = s.sinplifyWiteSpace(); // t == "lots of white space"

See also stripWhiteSpace() [p. 75].

QCString & QCString::sprintf (const char * format, ...)

Implemented as a call to the native vsprintf() (see the manual for your C library).

If the string is shorter than 256 characters, this sprintf() calls resize(256) to decrease the chance of memory corruption.
The string is resized back to its actual length before sprintf() returns.

Example:
QCstring s;
s.sprintf("% - %", 1, "first"); Il result < 256 chars
QCString big(25000); Il very long string
big.sprintf("% - %", 2, longString); Il result < 25000 chars

Warning: All vsprintf() implementations will write past the end of the target string (*this) if the format specification
and arguments happen to be longer than the target string, and some will also fail if the target string is longer than
some arbitrary implementation limit.

Giving user-supplied arguments to sprintf() is asking for trouble. Sooner or later someone wi | | paste a 3000-character
line into your application.

QCString Class Reference

QCString QCString::stripWhiteSpace () const

Returns a new string that has white space removed from the start and the end.
White space means the decimal ASCII codes 9, 10, 11, 12, 13 and 32.

Example:

n

QCstring s = " space “;
QCString t = s.stripWiteSpace(); Il t == "space

n

See also simplifyWhiteSpace() [p. 74].

double QCString::toDouble (bool * ok = 0) const

Returns the string converted to a doubl e value.

If ok is nonnull, *ok is set to FALSE if the string is not a number, or if it has trailing garbage;

TRUE.

float QCString::toFloat (bool * ok = 0) const

Returns the string converted to a f | oat value.

If ok is nonnull, *ok is set to FALSE if the string is not a number, or if it has trailing garbage;

TRUE.

int QCString::tolnt (bool * ok = 0) const

Returns the string converted to a i nt value.

If ok is nonnull, *ok is set to FALSE if the string is not a number, or if it has trailing garbage;

TRUE.

long QCString::toLong (bool * ok = 0) const

Returns the string converted to a | ong value.

If ok is nonnull, *ok is set to FALSE if the string is not a number, or if it has trailing garbage;

TRUE.

short QCString::toShort (bool * ok = 0) const

Returns the string converted to a short value.

If ok is nonnull, *ok is set to FALSE if the string is not a number, or if it has trailing garbage;

TRUE.

75

otherwise *ok is set to

otherwise *ok is set to

otherwise *ok is set to

otherwise *ok is set to

otherwise *ok is set to

QCString Class Reference 76

uint QCString::toUInt (bool * ok = 0) const

Returns the string converted to an unsi gned i nt value.

If ok is nonnull, *ok is set to FALSE if the string is not a number, or if it has trailing garbage; otherwise *ok is set to
TRUE.

ulong QCString::toULong (bool * ok = 0) const

Returns the string converted to an unsi gned | ong value.

If ok is nonnull, *ok is set to FALSE if the string is not a number, or if it has trailing garbage; otherwise *ok is set to
TRUE.

ushort QCString::toUShort (bool * ok = 0) const

Returns the string converted to an unsi gned short value.

If ok is nonnull, *ok is set to FALSE if the string is not a number, or if it has trailing garbage; otherwise *ok is set to
TRUE.

bool QCString::truncate (uint pos)

Truncates the string at position pos.
Equivalent to calling r esi ze(pos+1).

Example:

QCString s = "truncate this string";
s.truncate(5); Il's == "trunc"

See also resize() [p. 72].

QCString QCString::upper () const

Returns a new string that is a copy of this string converted to upper case.

Example:

QCString s("Debit");
QCString t = s.upper(); Il t =="DEBIT"

See also lower() [p. 70] and Note on character comparisons [p. 65].
Related Functions

bool operator!= (const QCString & s1, const QCString & s2)

Returns TRUE if s1 and s2 are different; otherwise returns FALSE.

QCString Class Reference

Equivalent to gstrcmp(s1, s2) != 0.

bool operator!= (const QCString & s1, const char * s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 and s2 are different; otherwise returns FALSE.

Equivalent to gstremp(s1, s2) != 0.

bool operator!= (const char * s1, const QCString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 and s2 are different; otherwise returns FALSE.

Equivalent to gstrcmp(s1, s2) != 0.

const QCString operator+ (const QCString & s1, const QCString & s2)

Returns a string which consists of the concatenation of s1 and s2.

const QCString operator+ (const QCString & s1, const char * s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a string which consists of the concatenation of s1 and s2.

const QCString operator+ (const char * s1, const QCString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a string which consists of the concatenation of s1 and s2.

const QCString operator+ (const QCString & s, char c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a string which consists of the concatenation of s and c.

const QCString operator+ (char ¢, const QCString & s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a string which consists of the concatenation of ¢ and s.

77

QCString Class Reference

bool operator< (const QCString & s1, const char * s2)

Returns TRUE if s1 is less than s2; otherwise returns FALSE.
Equivalent to gstremp(s1, s2) < O.

See also Note on character comparisons [p. 65].

bool operator< (const char * s1, const QCString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 is less than s2; otherwise returns FALSE.
Equivalent to gstrcmp(s1, s2) < 0.

See also Note on character comparisons [p. 65].

QDataStream & operator<< (QDataStream & s, const QCString & str)

Writes string str to the stream s.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

bool operator<= (const QCString & s1, const char * s2)

Returns TRUE if s1 is less than or equal to s2; otherwise returns FALSE.
Equivalent to gstremp(s1, s2) <= 0.

See also Note on character comparisons [p. 65].

bool operator<= (const char * s1, const QCString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 is less than or equal to s2; otherwise returns FALSE.
Equivalent to gstremp(s1, s2) <= 0.

See also Note on character comparisons [p. 65].

bool operator== (const QCString & s1, const QCString & s2)

Returns TRUE if s1 and s2 are equal; otherwise returns FALSE.

Equivalent to gstremp(s1, s2) ==

bool operator== (const QCString & s1, const char * s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

78

QCString Class Reference

Returns TRUE if s1 and s2 are equal; otherwise returns FALSE.

Equivalent to gstrcmp(s1, s2) == 0.

bool operator== (const char * s1, const QCString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 and s2 are equal; otherwise returns FALSE.
Equivalent to gstrcmp(s1, s2) ==
bool operator> (const QCString & s1, const char * s2)

Returns TRUE if s1 is greater than s2; otherwise returns FALSE.
Equivalent to gstrcmp(s1, s2) > O.

See also Note on character comparisons [p. 65].

bool operator> (const char * s1, const QCString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 is greater than s2; otherwise returns FALSE.
Equivalent to gstrcmp(s1, s2) > O.

See also Note on character comparisons [p. 65].

bool operator>= (const QCString & s1, const char * s2)

Returns TRUE if s1 is greater than or equal to s2; otherwise returns FALSE.
Equivalent to gstremp(s1, s2) >= 0.

See also Note on character comparisons [p. 65].

bool operator>= (const char * s1, const QCString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 is greater than or equal to s2; otherwise returns FALSE.
Equivalent to gstrcmp(s1, s2) >= 0.

See also Note on character comparisons [p. 65].

QDataStream & operator>> (QDataStream & s, QCString & str)

Reads a string into str from the stream s.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

79

QCString Class Reference 80

void * gmemmove (void * dst, const void * src, uint len)

This function is normally part of the C library. Qt implements memmove() for platforms that do not provide it.

memmove() copies len bytes from src into dst. The data is copied correctly even if src and dst overlap.

int gstrcmp (const char * strl, const char * str2)

A safe stremp() function.

Compares strl and str2. Returns a negative value if strl is less than str2, 0 if str]1 is equal to str2 or a positive value if
strl is greater than str2.

Special case I: Returns O if str1 and str2 are both null.
Special case II: Returns a random nonzero value if str1 is null or str2 is null (but not both).

See also gstrncmp() [p. 801, gstricmp() [p. 801, gstrnicmp() [p. 81] and Note on character comparisons [p. 65].

char * gstrcepy (char * dst, const char * src)

A safe strepy() function.

Copies all characters up to and including the \0’ from src into dst and returns a pointer to dst.

char * gstrdup (const char * src)

Returns a duplicate string.
Allocates space for a copy of src, copies it, and returns a pointer to the copy. If src is null, it immediately returns O.

The returned string has to be deleted using del et e[].

int gstricmp (const char * str1, const char * str2)

A safe stricmp() function.

Compares strl and str2 ignoring the case.

Returns a negative value if strl is less than str2, 0 if str1 is equal to str2 or a positive value if strl is greater than str2.
Special case I: Returns O if str1 and str2 are both null.

Special case II: Returns a random nonzero value if str1 is null or str2 is null (but not both).

See also gstremp() [p. 801, gstrncmp() [p. 801, gstrnicmp() [p. 81] and Note on character comparisons [p. 65].

int gstrncmp (const char * strl, const char * str2, uint len)

A safe strncmp() function.
Compares str] and str2 up to len bytes.

Returns a negative value if strl is less than str2, 0 if str1 is equal to str2 or a positive value if str] is greater than str2.

QCString Class Reference 81

Special case I: Returns O if str1 and str2 are both null.
Special case II: Returns a random nonzero value if str1 is null or str2 is null (but not both).

See also gstremp() [p. 801, gstricmp() [p. 801, gstrnicmp() [p. 81] and Note on character comparisons [p. 65].

char * gstrncpy (char * dst, const char * src, uint len)

A safe strnepy() function.

Copies all characters up to len bytes from src (or less if src is shorter) into dst and returns a pointer to dst. Guarantees
that dst is \O’-terminated. If src or dst is null, returns O immediately.

See also gstrepy() [p. 801.

int gstrnicmp (const char * str1, const char * str2, uint len)

A safe strnicmp() function.

Compares strl and str2 up to len bytes ignoring the case.

Returns a negative value if strl is less than str2, 0 if str1 is equal to str2 or a positive value if strl is greater than str2.
Special case I: Returns 0 if str1 and str2 are both null.

Special case II: Returns a random nonzero value if str1 is null or str2 is null (but not both).

See also gstremp() [p. 801, gstrncmp() [p. 801, gstricmp() [p. 80] and Note on character comparisons [p. 65].

QDict Class Reference

The QDict class is a template class that provides a dictionary based on QString keys.
#include <qdict.h>
Inherits QPtrCollection [p. 138].

Public Members

m QDict (int size = 17, bool caseSensitive = TRUE)

m QDict (const QDict<type> & dict)

m ~QDict ()

m QDict<type> & operator= (const QDict<type> & dict)
virtual uint count () const

uint size () const

bool isEmpty () const

void insert (const QString & key, const type * item)

void replace (const QString & key, const type * item)

m bool remove (const QString & key)

m type * take (const QString & key)

type * find (const QString & key) const

type * operator[] (const QString & key) const
virtual void clear ()

void resize (uint newsize)
void statistics () const

Important Inherited Members

= bool autoDelete () const
= void setAutoDelete (bool enable)

Protected Members

m virtual QDataStream & read (QDataStream & s, QPtrCollection::Item & item)
m virtual QDataStream & write (QDataStream & s, QPtrCollection::Item) const

82

QDict Class Reference 83

Detailed Description

The QDict class is a template class that provides a dictionary based on QString keys.

QDict is implemented as a template class. Define a template instance QDict<X> to create a dictionary that operates
on pointers to X (X*).

A dictionary is a collection of key-value pairs. The key is a QString used for insertion, removal and lookup. The value
is a pointer. Dictionaries provide very fast insertion and lookup.

If you want to use non-Unicode, plain 8-bit char * keys, use the QAsciiDict template. A QDict has the same performance
as a QAsciiDict. If you want to have a dictionary that maps QStrings to QStrings use QMap.

The size() of the dictionary is very important. In order to get good performance, you should use a suitably large prime
number. Suitable means equal to or larger than the maximum expected number of dictionary items. Size is set in the
constructor but may be changed with resize().

Items are inserted with insert(), and removed with remove(). All the items in a dictionary can be removed with clear().
The number of items in the dictionary is returned by count(). If the dictionary contains no items isEmpty() returns
TRUE. You can change an item’s value with replace(). Items are looked up with operator[](), or with find() which
return a pointer to the value or 0 if the given key does not exist. You can take an item out of the dictionary with take().

Calling setAutoDelete(TRUE) for a dictionary tells it to delete items that are removed. The default behaviour is not to
delete items when they are removed.

QDict is implemented by QGDict as a hash array with a fixed number of entries. Each array entry points to a singly
linked list of buckets, in which the dictionary items are stored. When an item is inserted with a key, the key is converted
(hashed) to an integer index into the hash array. The item is inserted before the first bucket in the list of buckets.

Looking up an item is normally very fast. The key is again hashed to an array index. Then QDict scans the list of
buckets and returns the item found or null if the item was not found. You cannot insert null pointers into a dictionary.

Items with equal keys are allowed. When inserting two items with the same key, only the last inserted item will be
visible (last in, first out) until it is removed.

The QDictlterator class can traverse the dictionary, but only in an arbitrary order. Multiple iterators may independently
traverse the same dictionary.

When inserting an item into a dictionary, only the pointer is copied, not the item itself, i.e. a shallow copy is made. It
is possible to make the dictionary copy all of the item’s data (a deep copy) when an item is inserted. insert() calls the
virtual function QPtrCollection::newltem() for the item to be inserted. Inherit a dictionary and reimplement it if you
want deep copies.

When removing a dictionary item, the virtual function QPtrCollection::deleteltem() is called. QDict’s default imple-
mentation is to delete the item if auto-deletion is enabled.

Example #1:

Q@ict fields;
fields.insert("forenane", new QuineEdit(this));
fields.insert("surname", new QLineEdit(this));

fields["forenane"]->set Text("Homer");
fields["surname"]->set Text("Sinmpson”);

Qictlterator it(extra); // See QDictlterator
for(; it.current(); ++it)

cout << it.currentKey() <<
cout << endl;

n.oon

<< it.current()->text() << endl;

QDict Class Reference 84

if (fields["forename"] && fields["surname"])
cout <text() << " "
<text() << endl; // Prints "Homer Sinpson"

fields.renove("forenane"); // Does not delete the line edit
if (! fields["forename"])
cout << "forenanme is not in the dictionary" << endl;

In this example we use a dictionary to keep track of the line edits we’re using. We insert each line edit into the
dictionary with a unique name and then access the line edits via the dictionary.

Example #2:

QStringList stylelist = QStyleFactory::styles();
styleList.sort();
Qict letterDict(17, FALSE);
for (QStringList::lterator it = styleList.begin(); it != styleList.end(); ++t) {
@String styleNane = *it;
@String styleAccel = styl eNang;
if (letterDict[styleAccel.left(1)]) {
for (‘uint i =0; i < styleAccel.length(); i++) {
if (! letterDict[styleAccel.md(i, 1)]) {
styl eAccel = styleAccel.insert(i, '&);
letterDict.insert(styleAccel.md(i, 1), (const int *)1);

br eak;
}
}
} else {
styleAccel = "&" + styleAccel;

letterDict.insert(styleAccel.left(1), (const int *)1);

}
(void) new QAction(styleName, QconSet(), styleAccel, parent);

In the example we are using the dictionary to provide fast random access to the keys, and we don’t care what the
values are. The example is used to generate a menu of QStyles, each with a unique accelerator key (or no accelerator
if there are no unused letters left).

We first obtain the list of available styles, then sort them so that the menu items will be ordered alphabetically. Next
we create a dictionary of int pointers. The keys in the dictionary are each one character long, representing letters that
have been used for accelerators. We iterate through our list of style names. If the first letter of the style name is in
the dictionary, i.e. has been used, we iterate over all the characters in the style name to see if we can find a letter that
hasn’t been used. If we find an unused letter we put the accelerator ampersand (&) in front of it and add that letter to
the dictionary. If we can’t find an unused letter the style will simply have no accelerator. If the first letter of the style
name is not in the dictionary we use it for the accelerator and add it to the dictionary. Finally we create a QAction for
each style.

See also QDictlterator [p. 89], QAsciiDict [p. 21], QIntDict [p. 1001, QPtrDict [p. 141], Collection Classes [p. 9] and
Non-GUI Classes.

QDict Class Reference 85

Member Function Documentation

QDict::QDict (int size = 17, bool caseSensitive = TRUE)

Constructs a dictionary optimized for less than size entries.

We recommend setting size to a suitably large prime number (e.g. a prime that’s slightly larger than the expected
number of entries). This makes the hash distribution better which will lead to faster lookup.

If caseSensitive is TRUE (the default), keys which differ only in case are considered different.

QDict::QDict (const QDict<type> & dict)

Constructs a copy of dict.

Each item in dict is inserted into this dictionary. Only the pointers are copied (shallow copy).

QDict::~QDict ()
Removes all items from the dictionary and destroys it. If setAutoDelete() is TRUE each value is deleted. All iterators
that access this dictionary will be reset.

See also setAutoDelete() [p. 140].

bool QPtrCollection::autoDelete () const

Returns the setting of the auto-delete option. The default is FALSE.
See also setAutoDelete() [p. 140].

void QDict::clear () [virtual]

Removes all items from the dictionary.

The removed items are deleted if auto-deletion is enabled.

All dictionary iterators that operate on the dictionary are reset.

See also remove() [p. 871, take() [p. 88] and setAutoDelete() [p. 140].
Reimplemented from QPtrCollection [p. 139].

uint QDict::count () const [virtual]

Returns the number of items in the dictionary.
See also isEmpty() [p. 86].
Reimplemented from QPtrCollection [p. 139].

Dict Class Reference 86
Q

type * QDict::find (const QString & key) const

Returns the item with key key, or null if the key does not exist in the dictionary.
If there are two or more items with equal keys, then the last item that was inserted will be found.
Equivalent to the [] operator.

See also operator[]() [p. 86].

void QDict::insert (const QString & key, const type * item)

Inserts the key key with value item into the dictionary.
The key does not have to be unique. If multiple items are inserted with the same key, only the last item will be visible.
Null items are not allowed.

See also replace() [p. 871.

bool QDict::isEmpty () const

Returns TRUE if the dictionary is empty, i.e. count() == 0; otherwise returns FALSE.

See also count() [p. 85].

QDict<type> & QDict::operator= (const QDict<type> & dict)

Assigns dict to this dictionary and returns a reference to this dictionary.

This dictionary is first cleared, then each item in dict is inserted into this dictionary. Only the pointers are copied
(shallow copy), unless newltem() has been reimplemented().

type * QDict::operator[] (const QString & key) const

Returns the item with key key, or null if the key does not exist in the dictionary.

If there are two or more items with equal keys, then the last item that was inserted will be found.
Equivalent to the find() function.

See also find() [p. 86].

QDataStream & QDict::read (QDataStream & s,
QPtrCollection::Item & item) [virtual protected]

Reads a dictionary item from the stream s and returns a reference to the stream.
The default implementation sets item to O.

See also write() [p. 88].

QDict Class Reference 87

bool QDict::remove (const QString & key)

Removes the item with key from the dictionary. Returns TRUE if successful, or FALSE if the key does not exist in the
dictionary.

If there are two or more items with equal keys, then the last item that was inserted will be removed.

The removed item is deleted if auto-deletion is enabled.

All dictionary iterators that refer to the removed item will be set to point to the next item in the dictionary traversing
order.

See also take() [p. 881, clear() [p. 85] and setAutoDelete() [p. 140].

void QDict::replace (const QString & key, const type * item)

Replaces the value of the key, key with item.
If the item does not already exist, it will be inserted.
Null items are not allowed.

Equivalent to:
Q@i ct dict;

if (dict.find(key))
dict.remove(key);
dict.insert(key, item);
If there are two or more items with equal keys, then the last item that was inserted will be replaced.

See also insert() [p. 86].

void QDict::resize (uint newsize)

Changes the size of the hashtable the newsize. The contents of the dictionary are preserved, but all iterators on the
dictionary become invalid.

void QPtrCollection::setAutoDelete (bool enable)

Sets the collection to auto-delete its contents if enable is TRUE and to never delete them if enable is FALSE.

If auto-deleting is turned on, all the items in a collection are deleted when the collection itself is deleted. This is
convenient if the collection has the only pointer to the items.

The default setting is FALSE, for safety. If you turn it on, be careful about copying the collection - you might find
yourself with two collections deleting the same items.

Note that the auto-delete setting may also affect other functions in subclasses. For example, a subclass that has a
remove() function will remove the item from its data structure, and if auto-delete is enabled, will also delete the item.

See also autoDelete() [p. 139].
Examples: grapher/grapher.cpp, scribble/scribble.cpp and table/bigtable/main.cpp.

QDict Class Reference 88

uint QDict::size () const

Returns the size of the internal hash array (as specified in the constructor).

See also count() [p. 85].

void QDict::statistics () const

Debugging-only function that prints out the dictionary distribution using gDebug().

type * QDict::take (const QString & key)

Takes the item with key out of the dictionary without deleting it (even if auto-deletion is enabled).

If there are two or more items with equal keys, then the last item that was inserted will be taken.

Returns a pointer to the item taken out, or null if the key does not exist in the dictionary.

All dictionary iterators that refer to the taken item will be set to point to the next item in the dictionary traversal order.

See also remove() [p. 871, clear() [p. 85] and setAutoDelete() [p. 140].

QDataStream & QDict::write (QDataStream & s, QPtrCollection::Item)
const [virtual protected]

Writes a dictionary item to the stream s and returns a reference to the stream.

See also read() [p. 86].

QDictlIterator Class Reference

The QDictlterator class provides an iterator for QDict collections.

#include <qdict.h>

Public Members

m QDictlterator (const QDict<type> & dict)
m ~QDictlterator ()

uint count () const

bool isEmpty () const

type * toFirst ()

operator type * () const

type * current () const

m QString currentKey () const

m type * operator() ()
e type * operator++ ()

Detailed Description

The QDictlterator class provides an iterator for QDict collections.

QDictlterator is implemented as a template class. Define a template instance QDictlterator<X> to create a dictionary
iterator that operates on QDict<X> (dictionary of X*).

The traversal order is arbitrary; when we speak of the "first", "last" and "next" item we are talking in terms of this
arbitrary order.

Multiple iterators may independently traverse the same dictionary. A QDict knows about all iterators that are operating
on the dictionary. When an item is removed from the dictionary, QDict update all iterators that are referring to the
removed item to point to the next item in the traversal order.

Example:
Q@ict fields;
fields.insert("forenane", new QuineEdit(this));

fields.insert("surname", new QineEdit(this));
fields.insert("age", new QineEdit(this));

89

QDictlterator Class Reference 90

fields["forenane"]->set Text("Honer");
fields["surname"]->set Text("Sinmpson");
fields["age"]->set Text("45");

Qictlterator it(extra);
for(; it.current(); ++it)

cout << it.currentKey() <<
cout << endl;

n.oon

<< it.current()->text() << endl;

/1 Qutput (random order):
/1 age: 45

/1 surnane: Sinpson

/I forenane: Homer

In the example we insert some line edits into a dictionary, then iterate over the dictionary printing the strings associated
with those line edits.

See also QDict [p. 821, Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QDictlterator::QDictlterator (const QDict<type> & dict)

Constructs an iterator for dict. The current iterator item is set to point to the first item in the dictionary, dict. First in
this context means first in the arbitrary traversal order.

QDictIterator::~QDictlIterator ()

Destroys the iterator.

uint QDictlIterator::count () const
Returns the number of items in the dictionary over which the iterator is operating.

See also isEmpty() [p. 90].

type * QDictlterator::current () const

Returns a pointer to the current iterator item’s value.

QString QDictlIterator::currentKey () const

Returns the current iterator item’s key.

bool QDictlterator::isEmpty () const

Returns TRUE if the dictionary is empty, i.e. count() == 0; otherwise returns FALSE.

QDictlterator Class Reference 91
See also count() [p. 90].

QDictlterator::operator type * () const

Cast operator. Returns a pointer to the current iterator item. Same as current().

type * QDictlterator::operator() ()

Makes the next item current and returns the original current item.

If the current iterator item was the last item in the dictionary or if it was 0, 0 is returned.

type * QDictlterator::operator++ ()

Prefix ++ makes the next item current and returns the new current item.

If the current iterator item was the last item in the dictionary or if it was 0, 0 is returned.

type * QDictlterator::toFirst ()

Resets the iterator, making the first item the first current item. First in this context means first in the arbitrary traversal
order. Returns a pointer to this item.

If the dictionary is empty it sets the current item to O and returns 0.

QIntCache Class Reference

The QIntCache class is a template class that provides a cache based on long keys.

#incl ude <qi nt cache. h>

Public Members

m QIntCache (int maxCost = 100, int size = 17)
~QIntCache ()

int maxCost () const

int totalCost () const

void setMaxCost (int m)

virtual uint count () const

uint size () const

bool isEmpty () const

bool insert (long k, const type * d, intc =1, intp = 0)
bool remove (long k)

type * take (long k)

virtual void clear ()

type * find (long k, bool ref = TRUE) const
type * operator[] (long k) const

void statistics () const

Detailed Description

The QIntCache class is a template class that provides a cache based on long keys.

QIntCache is implemented as a template class. Define a template instance QIntCache<X> to create a cache that
operates on pointers to X, or X*,

A cache is a least recently used (LRU) list of cache items, accessed via | ong keys. Each cache item has a cost. The sum
of item costs, totalCost(), will not exceed the maximum cache cost, maxCost(). If inserting a new item would cause
the total cost to exceed the maximum cost, the least recently used items in the cache are removed.

Apart from insert(), by far the most important function is find() (which also exists as operator[]). This function looks
up an item, returns it, and by default marks it as being the most recently used item.

There are also methods to remove() or take() an object from the cache. Calling setAutoDelete(TRUE) for a cache tells
it to delete items that are removed. The default is to not delete items when they are removed (i.e. remove() and take()
are equivalent).

92

QIntCache Class Reference 93

When inserting an item into the cache, only the pointer is copied, not the item itself. This is called a shallow copy. It is
possible to make the dictionary copy all of the item’s data (known as a deep copy) when an item is inserted. insert()
calls the virtual function QPtrCollection::newltem() for the item to be inserted. Inherit a dictionary and reimplement
it if you want deep copies.

When removing a cache item if auto-deletion is enabled the item will be automatically deleted.
There is a QIntCachelterator which may be used to traverse the items in the cache in arbitrary order.

See also QIntCachelterator [p. 96], QCache [p. 39], QAsciiCache [p. 13], Collection Classes [p. 9] and Non-GUI
Classes.

Member Function Documentation

QIntCache::QIntCache (int maxCost = 100, int size = 17)
Constructs a cache whose contents will never have a total cost greater than maxCost and which is expected to contain
less than size items.

size is actually the size of an internal hash array; it’s usually best to make it prime and at least 50% bigger than the
largest expected number of items in the cache.

Each inserted item is associated with a cost. When inserting a new item, if the total cost of all items in the cache will
exceed maxCost, the cache will start throwing out the older (least recently used) items until there is enough room for
the new item to be inserted.

QIntCache::~QIntCache ()

Removes all items from the cache and then destroys the int cache. If auto-deletion is enabled the cache’s items are
deleted. All iterators that access this cache will be reset.

void QIntCache::clear () [virtual]

Removes all items from the cache, and deletes them if auto-deletion has been enabled.
All cache iterators that operate this on cache are reset.

See also remove() [p. 94] and take() [p. 95].

uint QIntCache::count () const [virtual]

Returns the number of items in the cache.

See also totalCost() [p. 95].

type * QIntCache::find (long k, bool ref = TRUE) const

Returns the item associated with k, or null if the key does not exist in the cache. If ref is TRUE (the default), the item
is moved to the front of the LRU list.

If there are two or more items with equal keys, the one that was inserted last is returned.

QIntCache Class Reference 94

bool QIntCache::insert (long k, const type * d, intc = 1, int p = 0)

Inserts the item d into the cache with key k and cost ¢ (default 1). Returns TRUE if it succeeds and FALSE if it fails.

The cache’s size is limited, and if the total cost is too high, QIntCache will remove old, least-used items until there is
room for this new item.

The parameter p is internal and should be left at the default value (0).

Warning: If this function returns FALSE, you must delete d yourself. Additionally, be very careful about using d after
calling this function. Any other insertions into the cache, from anywhere in the application or within Qt itself, could
cause the object to be discarded from the cache and the pointer to become invalid.

bool QIntCache::isEmpty () const

Returns TRUE if the cache is empty; otherwise returns FALSE.

int QIntCache::maxCost () const

Returns the maximum allowed total cost of the cache.

See also setMaxCost() [p. 94] and totalCost() [p. 95].

type * QIntCache::operator[] (long k) const

Returns the item associated with k, or null if k does not exist in the cache, and moves the item to the front of the LRU
list.

If there are two or more items with equal keys, the one that was inserted last is returned.

This is the same as find(k, TRUE).

See also find() [p. 93].

bool QIntCache::remove (long k)

Removes the item associated with k, and returns TRUE if the item was present in the cache or FALSE if it was not.
The item is deleted if auto-deletion has been enabled, i.e. if you have called setAutoDelete(TRUE).

If there are two or more items with equal keys, the one that was inserted last is removed.

All iterators that refer to the removed item are set to point to the next item in the cache’s traversal order.

See also take() [p. 95] and clear() [p. 93].

void QIntCache::setMaxCost (int m)

Sets the maximum allowed total cost of the cache to m. If the current total cost is above m, some items are removed
immediately.

See also maxCost() [p. 94] and totalCost() [p. 95].

QIntCache Class Reference 95

uint QIntCache::size () const

Returns the size of the hash array used to implement the cache. This should be a bit larger than count() is likely to be.

void QIntCache::statistics () const

A debug-only utility function. Prints out cache usage, hit/miss, and distribution information using qDebug(). This
function does nothing in the release library.

type * QIntCache::take (long k)

Takes the item associated with k out of the cache without deleting it, and returns a pointer to the item taken out or
null if the key does not exist in the cache.

If there are two or more items with equal keys, the one that was inserted last is taken.

All iterators that refer to the taken item are set to point to the next item in the cache’s traversal order.

See also remove() [p. 941 and clear() [p. 93].

int QIntCache::totalCost () const

Returns the total cost of the items in the cache. This is an integer in the range 0 to maxCost().

See also setMaxCost() [p. 941.

QIntCachelterator Class Reference

The QIntCachelterator class provides an iterator for QIntCache collections.

#incl ude <qi nt cache. h>

Public Members

» QIntCachelterator (const QIntCache<type> & cache)

m QIntCachelterator (const QIntCachelterator <type> & ci)
m QIntCachelterator<type> & operator= (const QIntCachelterator<type> & ci)
= uint count () const

m bool isEmpty () const

= bool atFirst () const

= bool atLast () const

m type * toFirst ()

m type * toLast ()

operator type * () const

type * current () const

long currentKey () const

type * operator() ()

type * operator++ ()

type * operator+ = (uint jump)

type * operator-- ()
e type * operator-= (uint jump)

Detailed Description

The QIntCachelterator class provides an iterator for QIntCache collections.

Note that the traversal order is arbitrary; you are not guaranteed any particular order. If new objects are inserted into
the cache while the iterator is active, the iterator may or may not see them.

Multiple iterators are completely independent, even when they operate on the same QIntCache. QIntCache updates all
iterators that refer an item when that item is removed.

QIntCachelterator provides an operator++(), and an operator+=() to traverse the cache; current() and currentKey()
to access the current cache item and its key; atFirst() atLast(), which return TRUE if the iterator points to the first/last

96

QIntCachelterator Class Reference 97

item in the cache; isEmpty(), which returns TRUE if the cache is empty; and count(), which returns the number of
items in the cache.

Note that atFirst() and atLast() refer to the iterator’s arbitrary ordering, not to the cache’s internal LRU list.

See also QIntCache [p. 92], Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QIntCachelterator::QIntCachelterator (const QIntCache<type> & cache)

Constructs an iterator for cache. The current iterator item is set to point to the first item in the cache (or rather, the first
item is defined to be the item at which this constructor sets the iterator to point).

QIntCachelterator::QIntCachelterator (const QIntCachelterator<type> & ci)

Constructs an iterator for the same cache as ci. The new iterator starts at the same item as ci.current(), but moves
independently from there on.

bool QIntCachelterator::atFirst () const

Returns TRUE if the iterator points to the first item in the cache; otherwise returns FALSE. Note that this refers to the
iterator’s arbitrary ordering, not to the cache’s internal LRU list.

See also toFirst() [p. 98] and atLast() [p. 971.

bool QIntCachelterator::atLast () const

Returns TRUE if the iterator points to the last item in the cache; otherwise returns FALSE. Note that this refers to the
iterator’s arbitrary ordering, not to the cache’s internal LRU list.

See also toLast() [p. 99] and atFirst() [p. 971.

uint QIntCachelterator::count () const

Returns the number of items in the cache on which this iterator operates.
See also isEmpty() [p. 98].

type * QIntCachelterator::current () const

Returns a pointer to the current iterator item.

long QIntCachelterator::currentKey () const

Returns the key for the current iterator item.

QIntCachelterator Class Reference 98

bool QIntCachelterator::isEmpty () const

Returns TRUE if the cache is empty; otherwise returns FALSE.
See also count() [p. 971.

QIntCachelterator::operator type * () const

Cast operator. Returns a pointer to the current iterator item. Same as current().

type * QIntCachelterator::operator() ()

Makes the succeeding item current and returns the original current item.

If the current iterator item was the last item in the cache or if it was null, null is returned.

type * QIntCachelterator::operator++ ()

Prefix ++ makes the iterator point to the item just after current(), and makes it the new current item for the iterator.
If current() was the last item, operator--() returns 0.

type * QIntCachelterator::operator+= (uint jump)

Returns the item jump positions after the current item, or null if it is beyond the last item. Makes this the current item.

type * QIntCachelterator::operator-- ()

Prefix — makes the iterator point to the item just before current(), and makes it the new current item for the iterator.
If current() was the first item, operator--() returns O.

type * QIntCachelterator::operator-= (uint jump)

Returns the item jump positions before the current item, or null if it is beyond the first item. Makes this the current
item.

QIntCachelterator<type> & QIntCachelterator::operator=
(const QIntCachelterator<type> & ci)

Makes this an iterator for the same cache as ci. The new iterator starts at the same item as ci.current(), but moves
independently thereafter.

type * QIntCachelterator::toFirst ()

Sets the iterator to point to the first item in the cache and returns a pointer to the item.

QIntCachelterator Class Reference

Sets the iterator to null and returns null if if the cache is empty.

See also toLast() [p. 99] and isEmpty() [p. 98].

type * QIntCachelterator::toLast ()

Sets the iterator to point to the last item in the cache and returns a pointer to the item.

Sets the iterator to null and returns null if if the cache is empty.

See also toFirst() [p. 98] and isEmpty() [p. 98].

99

QIntDict Class Reference

The QIntDict class is a template class that provides a dictionary based on long keys.
#include <qgintdict.h>
Inherits QPtrCollection [p. 138].

Public Members

m QIntDict (int size = 17)

m QIntDict (const QIntDict<type> & dict)

m ~QIntDict ()

m QIntDict<type> & operator= (const QIntDict<type> & dict)
virtual uint count () const

uint size () const

bool isEmpty () const

void insert (long key, const type * item)

void replace (long key, const type * item)

m bool remove (long key)

m type * take (long key)

type * find (long key) const

type * operator[] (long key) const

virtual void clear ()

void resize (uint newsize)
void statistics () const

Important Inherited Members

= bool autoDelete () const
= void setAutoDelete (bool enable)

Protected Members

m virtual QDataStream & read (QDataStream & s, QPtrCollection::Item & item)
m virtual QDataStream & write (QDataStream & s, QPtrCollection::Item) const

100

QIntDict Class Reference 101

Detailed Description

The QIntDict class is a template class that provides a dictionary based on long keys.

QIntDict is implemented as a template class. Define a template instance QIntDict<X> to create a dictionary that
operates on pointers to X (X*).

A dictionary is a collection of key-value pairs. The key is an | ong used for insertion, removal and lookup. The value is
a pointer. Dictionaries provide very fast insertion and lookup.

Example:
QntDict fields;

for (int i =0; 1 <3; i++)

fields.insert(i, new QLineEdit(this));
fields[0]->set Text("Homer");
fields[1]->set Text("Sinmpson”);
fields[2]->set Text("45");

QntDictlterator it(fields); // See QntDictlterator

for (; it.current(); ++it)

cout << it.currentKey() << ": " << it.current()->text() << endl;
for (inti =0; 1 <3; i++)

cout <text() << " "; [/ Prints "Homer Sinpson 45"

cout << endl;

fields.renove(1); // Does not delete the line edit

)
for (int i =0; i <3; i++)
if (fields[i])
cout <text() << " "; /] Prints "Homer 45"

See QDict for full details, including the choice of dictionary size, and how deletions are handled.

See also QIntDictlterator [p. 106], QDict [p. 82], QAsciiDict [p. 211, QPtrDict [p. 141], Collection Classes [p. 9],
Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QIntDict::QIntDict (int size = 17)

Constructs a dictionary using an internal hash array of size size.

Setting size to a suitably large prime number (equal to or greater than the expected number of entries) makes the hash
distribution better and hence the lookup faster.

QIntDict::QIntDict (const QIntDict<type> & dict)

Constructs a copy of dict.

Each item in dict is inserted into this dictionary. Only the pointers are copied (shallow copy).

QIntDict Class Reference

QIntDict:: ~QIntDict ()

Removes all items from the dictionary and destroys it.
All iterators that access this dictionary will be reset.

See also setAutoDelete() [p. 140].

bool QPtrCollection::autoDelete () const

Returns the setting of the auto-delete option. The default is FALSE.
See also setAutoDelete() [p. 140].

void QIntDict::clear () [virtual]

Removes all items from the dictionary.

The removed items are deleted if auto-deletion is enabled.

All dictionary iterators that access this dictionary will be reset.

See also remove() [p. 103], take() [p. 105] and setAutoDelete() [p. 140].
Reimplemented from QPtrCollection [p. 139].

uint QIntDict::count () const [virtual]

Returns the number of items in the dictionary.
See also isEmpty() [p. 103].
Reimplemented from QPtrCollection [p. 139].

type * QIntDict::find (long key) const

Returns the item associated with key, or null if the key does not exist in the dictionary.

This function uses an internal hashing algorithm to optimize lookup.

If there are two or more items with equal keys, then the last inserted of these will be found.

Equivalent to the [] operator.
See also operator[]() [p. 103].
Example: table/bigtable/main.cpp.

void QIntDict::insert (long key, const type * item)

Insert item item into the dictionary using key key.

102

The key does not have to be unique. If multiple items are inserted with the same key, only the last item will be visible.

Null items are not allowed.

QIntDict Class Reference 103

See also replace() [p. 104].
Example: scribble/scribble.cpp.

bool QIntDict::isEmpty () const

Returns TRUE if the dictionary is empty; otherwise returns FALSE.

See also count() [p. 102].

QIntDict<type> & QIntDict::operator= (const QIntDict<type> & dict)

Assigns dict to this dictionary and returns a reference to this dictionary.

This dictionary is first cleared and then each item in dict is inserted into this dictionary. Only the pointers are copied
(shallow copy), unless newltem() has been reimplemented.

type * QIntDict::operator[] (long key) const

Returns the item associated with key, or null if the key does not exist in the dictionary.

This function uses an internal hashing algorithm to optimize lookup.

If there are two or more items with equal keys, then the last inserted of these will be found.
Equivalent to the find() function.

See also find() [p. 102].

QDataStream & QIntDict::read (QDataStream & s,
QPtrCollection::Item & item) [virtual protected]

Reads a dictionary item from the stream s and returns a reference to the stream.
The default implementation sets item to O.

See also write() [p. 105].

bool QIntDict::remove (long key)

Removes the item associated with key from the dictionary. Returns TRUE if successful; otherwise returns FALSE, e.g. if
the key does not exist in the dictionary.

If there are two or more items with equal keys, then the last inserted of these will be removed.

The removed item is deleted if auto-deletion is enabled.

All dictionary iterators that refer to the removed item will be set to point to the next item in the dictionary’s traversing
order.

See also take() [p. 105], clear() [p. 102] and setAutoDelete() [p. 140].
Example: table/bigtable/main.cpp.

QIntDict Class Reference 104

void QIntDict::replace (long key, const type * item)
If the dictionary has key key, this key’s item is replaced with item. If the dictionary doesn’t contain key key, item is
inserted into the dictionary using key key.
Null items are not allowed.
Equivalent to:

QntDict dict;

...

if (dict.find(key))

dict.remove(key);

dict.insert(key, item);
If there are two or more items with equal keys, then the last inserted of these will be replaced.
See also insert() [p. 102].
Example: table/bigtable/main.cpp.

void QIntDict::resize (uint newsize)

Changes the size of the hashtable to newsize. The contents of the dictionary are preserved, but all iterators on the
dictionary become invalid.

void QPtrCollection::setAutoDelete (bool enable)

Sets the collection to auto-delete its contents if enable is TRUE and to never delete them if enable is FALSE.

If auto-deleting is turned on, all the items in a collection are deleted when the collection itself is deleted. This is
convenient if the collection has the only pointer to the items.

The default setting is FALSE, for safety. If you turn it on, be careful about copying the collection - you might find
yourself with two collections deleting the same items.

Note that the auto-delete setting may also affect other functions in subclasses. For example, a subclass that has a
remove() function will remove the item from its data structure, and if auto-delete is enabled, will also delete the item.

See also autoDelete() [p. 139].
Examples: grapher/grapher.cpp, scribble/scribble.cpp and table/bigtable/main.cpp.

uint QIntDict::size () const

Returns the size of the internal hash array (as specified in the constructor).
See also count() [p. 102].

void QIntDict::statistics () const

Debugging-only function that prints out the dictionary distribution using gDebug().

QIntDict Class Reference 105

type * QIntDict::take (long key)

Takes the item associated with key out of the dictionary without deleting it (even if auto-deletion is enabled).
If there are two or more items with equal keys, then the last inserted of these will be taken.
Returns a pointer to the item taken out, or null if the key does not exist in the dictionary.

All dictionary iterators that refer to the taken item will be set to point to the next item in the dictionary’s traversing
order.

See also remove() [p. 103], clear() [p. 102] and setAutoDelete() [p. 140].
QDataStream & QIntDict::write (QDataStream & s, QPtrCollection::Item)
const [virtual protected]

Writes a dictionary item to the stream s and returns a reference to the stream.

See also read() [p. 103].

QIntDictIterator Class Reference

The QIntDictlterator class provides an iterator for QIntDict collections.

#include <qgintdict.h>

Public Members

s QIntDictlterator (const QIntDict<type> & dict)
m ~QIntDictIterator ()

uint count () const

bool isEmpty () const

type * toFirst ()

operator type * () const

type * current () const

m long currentKey () const

m type * operator() ()

m type * operator++ ()

m type * operator+= (uint jump)

Detailed Description

The QIntDictlterator class provides an iterator for QIntDict collections.

QIntDictlterator is implemented as a template class. Define a template instance QIntDictlterator<X> to create a
dictionary iterator that operates on QIntDict<X> (dictionary of X*).

Example:
QntDict fields;

for (int i =0; i <3; i++)

fields.insert(i, new QLineEdit(this));
fields[0]->set Text("Homer");
fields[1]->set Text("Sinmpson");
fields[2]->set Text("45");
QntDictlterator it(fields);
for (; it.current(); ++t)

106

QIntDictIterator Class Reference 107

n.oon

cout << it.currentKey() << << it.current()->text() << endl;

/1 Qutput (random order):

/1 0: Honer
[l 1. Sinpson
[l 2. 45

Note that the traversal order is arbitrary; you are not guaranteed the order above.

Multiple iterators may independently traverse the same dictionary. A QIntDict knows about all the iterators that are
operating on the dictionary. When an item is removed from the dictionary, QIntDict updates all iterators that refer the
removed item to point to the next item in the traversing order.

See also QIntDict [p. 100], Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QIntDictlterator::QIntDictIterator (const QIntDict<type> & dict)

Constructs an iterator for dict. The current iterator item is set to point to the *first’ item in the dict. The first item refers
to the first item in the dictionary’s arbitrary internal ordering.

QIntDictIterator::~QIntDictlIterator ()

Destroys the iterator.

uint QIntDictlIterator::count () const

Returns the number of items in the dictionary this iterator operates over.
See also isEmpty() [p. 107].

type * QIntDictIterator::current () const

Returns a pointer to the current iterator item.

long QIntDictlterator::currentKey () const

Returns the key for the current iterator item.

bool QIntDictlterator::isEmpty () const

Returns TRUE if the dictionary is empty; otherwise eturns FALSE.

See also count() [p. 107].

QIntDictlterator Class Reference 108

QIntDictlterator::operator type * () const

Cast operator. Returns a pointer to the current iterator item. Same as current().

type * QIntDictIterator::operator() ()

Makes the succeeding item current and returns the original current item.

If the current iterator item was the last item in the dictionary or if it was null, null is returned.

type * QIntDictIterator::operator++ ()

Prefix ++ makes the succeeding item current and returns the new current item.

If the current iterator item was the last item in the dictionary or if it was null, null is returned.

type * QIntDictIterator::operator+= (uint jump)

Sets the current item to the item jump positions after the current item, and returns a pointer to that item.

If that item is beyond the last item or if the dictionary is empty, it sets the current item to null and returns null.

type * QIntDictIterator::toFirst ()

Sets the current iterator item to point to the first item in the dictionary and returns a pointer to the item. The first item
refers to the first item in the dictionary’s arbitrary internal ordering. If the dictionary is empty it sets the current item
to null and returns null.

QMap Class Reference

The QMap class is a value-based template class that provides a dictionary.

#i ncl ude <gmap. h>

Public Members

m typedef Key key_type

» typedef T mapped_type

m typedef QPair<const key_type, mapped_type> value_type
m typedef value type * pointer

typedef const value_type * const_pointer

typedef value type & reference

typedef const value_type & const_reference

typedef size t size_type

» typedef QMaplterator <Key, T> iterator

» typedef QMapConstlterator<Key, T> const_iterator

= QMap ()

m QMap (const QMap<Key, T> & m)

QMap (const std::map<Key, T> & m)

~QMap ()

QMap<Key, T> & operator= (const QMap<Key, T> & m)
QMap<Key, T> & operator= (const std::map<Key, T> & m)
iterator begin ()

iterator end ()

m const_iterator begin () const

m const_iterator end () const

iterator replace (const Key & k, const T & v)

size_type size () const

bool empty () const

QPair<iterator, bool> insert (const value type & x)

void erase (iterator it)

void erase (const key type & k)

size_type count (const key type & k) const

m T & operator[] (const Key & k)

m void clear ()

109

Map Class Reference 110
QMap

typedef QMaplterator<Key, T> Iterator

typedef QMapConstlterator <Key, T> Constlterator

typedef T ValueType

iterator find (const Key & k)

const_iterator find (const Key & k) const

const T & operator[] (const Key & k) const

m bool contains (const Key & k) const

m size type count () const

m bool isEmpty () const

m iterator insert (const Key & key, const T & value, bool overwrite = TRUE)

e void remove (iterator it)
e void remove (const Key & k)

Protected Members

m void detach ()

Related Functions

m QDataStream & operator>> ((QDataStream & s, QMap<Key, T> & m)
m QDataStream & operator< < ((QDataStream & s, const QMap<Key, T> & m)

Detailed Description

The QMap class is a value-based template class that provides a dictionary.

QMap is a Qt implementation of an STL-like map container. It can be used in your application if the standard map is
not available. QMap is part of the Qt Template Library.

QMap<Key, Data> defines a template instance to create a dictionary with keys of type Key and values of type Data.
QMap does not store pointers to the members of the map; instead, it holds a copy of every member. For that reason,
QMap is value-based, whereas QPtrList and QDict are pointer-based.

QMap contains and manages a collection of objects of type Data with associated key values of type Key and provides
iterators that allow the contained objects to be addressed. QMap owns the contained items.

Some classes cannot be used within a QMap. For example everything derived from QObject and thus all classes that
implement widgets. Only values can be used in a QMap. To qualify as a value, the class must provide

e A copy constructor
e An assignment operator

e A default constructor, i.e. a constructor that does not take any arguments.

Note that C++ defaults to field-by-field assignment operators and copy constructors if no explicit version is supplied.
In many cases, this is sufficient.

The class used for the key requires that the oper at or < is implemented to define ordering of the keys.

Map Class Reference 111
QMap

QMap’s function naming is consistent with the other Qt classes (e.g., count(), isEmpty()). QMap also provides extra
functions for compatibility with STL algorithms, such as size() and empty(). Programmers already familiar with the
STL map can use these functions instead.

Example:

#include <gstring. h>
#incl ude <gmap. h>
#include <gstring. h>

cl ass Enpl oyee
{
public:
Enpl oyee(): sn(0) {}
Enpl oyee(const QString& forenanme, const QString& surnane, int salary)
. fn(forename), sn(surnane), sal(salary)
{}

@String forename() const { return fn; }
QString surnane() const { return sn; }

int salary() const { return sal; }

void setSalary(int salary) { sal = salary; }

private:
QString fn;
QString sn;
int sal;
int main(int argc, char **argv)

QApplication app(argc, argv);

typedef Qvap Enpl oyeeMap;
Enpl oyeeMap map;

map[" JDO01"] = Enpl oyee("John", "Doe", 50000);
map[" JD002"] = Enpl oyee("Jane", "WIlians", 80000);
map[“TJO01"] = Enpl oyee("Tont', "Jones", 60000);

Enpl oyee sasha("Sasha", "Hi nd", 50000);
map[" SHO01"] = sasha
sasha. set Sal ary(40000);

Enpl oyeeMap: : Iterator it;
for (it = map.begin(); it !'= map.end(); ++it) {
printf("%: %, % earns %l\n"

it.key().latinl()
it.data().surname().latinl(),
it.data().forenane().latinl(),
it.data().salary());

}

return 0;

Map Class Reference 112
QMap

Program output:

JD001: Doe, John earns 50000
JW002: W I liams, Jane earns 80000
SHO01: Hind, Sasha earns 50000
TJOOL1: Jones, Tom earns 60000

The latest changes to Sasha’s salary did not affect the value in the list because the map created a copy of Sasha’s entry.
In addition, notice that the items are sorted alphabetically (by key) when iterating over the map.

There are several ways to find items in a map. The begin() and end() functions return iterators to the beginning
and end of the map. The advantage of using an iterator is that you can move forward or backward by increment-
ing/decrementing the iterator. The iterator returned by end() points to the element which is one past the last element
in the container. The past-the-end iterator is still associated with the map it belongs to, however it is not dereference-
able; operator*() will not return a well-defined value. If the map is empty, the iterator returned by begin() will equal
the iterator returned by end().

Another way to find an element in the map is by using the find() function. This returns an iterator pointing to the
desired item or to the end() iterator if no such element exists.

Another approach uses the operator[]. But be warned: if the map does not contain an entry for the element you are
looking for, operator[] inserts a default value. If you do not know that the element you are searching for is really in
the list, you should not use operator[]. The following example illustrates this:

Qvap map;

map[“"Cinton"] = "Bill";

str << map["Cinton"] << map["Bush"] << endl;
The code fragment will print out "Clinton", ", Since the value associated with the "Bush" key did not exist, the map
inserted a default value (in this case, an empty string). If you are not sure whether a certain element is in the map,
you should use find() and iterators instead.

If you just want to know whether a certain key is contained in the map, use the contains() function. In addition,
count() tells you how many keys there are currently in the map.

It is safe to have multiple iterators at the same time. If some member of the map is removed, only iterators pointing to
the removed member become invalid; inserting in the map does not invalidate any iterators.

Since QMap is value-based, there is no need to be concerned about deleting items in the map. The map holds its own
copies and will free them if the corresponding member or the map itself is deleted.

QMap is implicitly shared. This means you can just make copies of the map in time O(1). If multiple QMap instances
share the same data and one is modifying the map’s data, this modifying instance makes a copy and modifies its private
copy; it thus does not affect other instances. From a developer’s point of view you can think that a QMap and a copy of
this map have nothing to do with each other. If a QMap is being used in a multi-threaded program, you must protect
all access to the map. See QMutex.

There are several ways of inserting new items into the map. One uses the insert() method; the other one uses operator|[]
like this:

Qvep nap;
map["Clinton"] = "Bill";
map. i nsert(gMakePair("Bush", "George"));

Items can also be removed from the map in several ways. The first is to pass an iterator to remove(). The other is to
pass a key value to remove(), which will delete the entry with the requested key. In addition you can clear the entire
map using the clear() method.

Map Class Reference 113
QMap

See also QMaplterator [p. 122], Qt Template Library Classes, Implicitly and Explicitly Shared Classes and Non-GUI
Classes.

Member Type Documentation

QMap::Constlterator

The map’s const iterator type, Qt style.

QMap::Iterator

The map’s iterator type, Qt style.

QMap::ValueType

Corresponds to QPair<key type, mapped_type>, Qt style.

QMap::const_iterator

The map’s const iterator type.

QMap::const_pointer

Const pointer to value_type.

QMap::const_reference

Const reference to value_type.

QMap::iterator

The map’s iterator type.

QMap::key type

The map’s key type.

QMap::mapped_type

The map’s data type.

QMap Class Reference 114

QMap::pointer

Pointer to value_type.

QMap::reference

Reference to value_type.

QMap::size_type

An unsigned integral type, used to represent various sizes.

QMap::value_type

Corresponds to QPair<key_type, mapped_type>.

Member Function Documentation

QMap::QMap ()

Constructs an empty map.

QMap::QMap (const QMap<Key, T> & m)

Constructs a copy of m.

This operation costs O(1) time because QMap is implicitly shared. The first instance of applying modifications to a
shared map will create a copy that takes in turn O(n) time. However, returning a QMap from a function is very fast.

QMap::QMap (const std::map<Key, T> & m)

Constructs a copy of m.

QMap::~QMap ()
Destroys the map. References to the values in the map and all iterators of this map become invalidated. Since QMap

is highly tuned for performance you won’t see warnings if you use invalid iterators, because it is not possible for an
iterator to check whether it is valid or not.

iterator QMap::begin ()

Returns an iterator pointing to the first element in the map. This iterator equals end() if the map is empty.

The items in the map are traversed in the order defined by operator < (Key, Key).

Map Class Reference 115
QMap

See also end() [p. 116] and QMaplterator [p. 122].

const_iterator QMap::begin () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

See also end() [p. 116] and QMapConstlterator [p. 119].

void QMap::clear ()

Removes all items from the map.

See also remove() [p. 118].

bool QMap::contains (const Key & k) const

Returns TRUE if the map contains an item with key k; otherwise returns FALSE.

size_type QMap::count (const key type & k) const

Returns the number of items whose key is k. Since QMap does not allow duplicate keys, the return value is always 0
or 1.

This function is provided for STL compatibility.

size type QMap::count () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the number of items in the map.

See also isEmpty() [p. 117].

void QMap::detach () [protected]

If the map does not share its data with another QMap instance, nothing happens; otherwise the function creates a new
copy of this map and detaches from the shared one. This function is called whenever the map is modified. The implicit
sharing mechanism is implemented this way.

bool QMap::empty () const

Returns TRUE if the map contains zero items; otherwise returns FALSE.
This function is provided for STL compatibility. It is equivalent to isSEmpty().
See also size() [p. 118].

QMap Class Reference 116

iterator QMap::end ()

The iterator returned by end() points to the element which is one past the last element in the container. The past-the-
end iterator is still associated with the map it belongs to, however it is not dereferenceable; operator* () will not return
a well-defined value.

This iterator equals begin() if the map is empty.

See also begin() [p. 114] and QMaplterator [p. 122].

const_iterator QMap::end () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

The iterator returned by end() points to the element which is one past the last element in the container. The past-the-
end iterator is still associated with the map it belongs to, however it is not dereferenceable; operator* () will not return
a well-defined value.

This iterator equals begin() if the map is empty.

See also begin() [p. 114] and QMapConstlterator [p. 119].

void QMap::erase (iterator it)

Removes the item associated with the iterator it from the map.
This function is provided for STL compatibility. It is equivalent to remove().

See also clear() [p. 115].

void QMap::erase (const key_type & k)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Removes the item with the key k from the map.

iterator QMap::find (const Key & k)

Returns an iterator pointing to the element with key k in the map.
Returns end() if no key matched.

See also QMaplterator [p. 122].

const_iterator QMap::find (const Key & k) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns an iterator pointing to the element with key k in the map.
Returns end() if no key matched.

See also QMapConstlterator [p. 119].

QMap Class Reference 117

iterator QMap::insert (const Key & key, const T & value, bool overwrite = TRUE)

Inserts the value with key. If there is already a value associated with key, it is replaced, unless overwrite is FALSE (it is
TRUE by default).

QPair<iterator, bool> QMap::insert (const value_type & x)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Inserts the (key, value) pair x into the map. x is a QPair whose first element is a key to be inserted and whose
second element is the associated value to be inserted. Returns a pair whose fi r st element is an iterator pointing to the
inserted item and whose second element is a bool indicating TRUE if x was inserted and FALSE if it was not inserted
because it was already present.

bool QMap::isEmpty () const

Returns TRUE if the map contains zero items; otherwise returns FALSE.

See also count() [p. 115].

QMap<Key, T> & QMap::operator= (const QMap<Key, T> & m)

Assigns m to this map and returns a reference to this map.

All iterators of the current map become invalidated by this operation. The cost of such an assignment is O(1), because
QMap is implicitly shared.
QOMap<Key, T> & QMap::operator= (const std::map<Key, T> & m)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Assigns m to this map and returns a reference to this map.

All iterators of the current map become invalidated by this operation.

T & QMap::operator[] (const Key & k)

Returns the value associated with the key k. If no such key is present, an empty item is inserted with this key and a
reference to the item is returned.

You can use this operator both for reading and writing:

Qvep map;
map["Clinton"] = "Bill";
stream << map["dinton"];

const T & QMap::operator[] (const Key & k) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QMap Class Reference 118

Warning: This function differs from the non-const version of the same function. It will not insert an empty value if
the key k does not exist. This may lead to logic errors in your program. You should check if the element exists before
calling this function.

Returns the value associated with the key k. If no such key is present, a reference to an empty item is returned.
void QMap::remove (iterator it)

Removes the item associated with the iterator it from the map.

See also clear() [p. 115].

void QMap::remove (const Key & k)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Removes the item with the key k from the map.

iterator QMap::replace (const Key & k, const T & v)

Replaces the value with key k from the map if possible, and inserts the new value v with key k in the map.

See also insert() [p. 117] and remove() [p. 118].

size_type QMap::size () const

Returns the number of items in the map.
This function is provided for STL compatibility. It is equivalent to count().

See also empty() [p. 115].

Related Functions

QDataStream & operator<< (QDataStream & s, const QMap<Key, T> & m)

Writes the map m to the stream s. The types Key and T must implement the streaming operator as well.

QDataStream & operator>> (QDataStream & s, QMap<Key, T> & m)

Reads the map m from the stream s. The types Key and T must implement the streaming operator as well.

QMapConstlterator Class Reference

The QMapConstlterator class provides an iterator for QMap.

#i ncl ude <gmap. h>

Public Members

m typedef std::bidirectional iterator tag iterator_category

m typedef T value_type

m typedef const T * pointer

m typedef const T & reference

» QMapConstlterator ()

» QMapConstlIterator (QMapNode<K, T> * p)

s QMapConstIterator (const QMapConstlterator<K, T> & it)

m QMapConstlterator (const QMaplterator<K, T> & it)

m bool operator== (const QMapConstlterator<K, T> & it) const
m bool operator!= (const QMapConstlterator<K, T> & it) const
m const T & operator* () const

» const K & key () const

m const T & data () const

m QMapConstlterator<K, T> & operator++ ()

m QMapConstlterator<K, T> operator++ (int)

m QMapConstlterator<K, T> & operator-- ()

e QMapConstlterator<K, T> operator-- (int)

Detailed Description

The QMapConstlterator class provides an iterator for QMap.

In contrast to QMaplterator, this class is used to iterate over a const map. It does not allow you to modify the values of
the map because this would break the const semantics.

For more information on QMap iterators, see QMaplterator. and the QMap example.

See also QMap [p. 1091, QMaplterator [p. 122], Qt Template Library Classes and Non-GUI Classes.

119

QMapConstlterator Class Reference 120

Member Type Documentation

QMapConstlterator::iterator_category

The type of iterator category, std: : bi directional _iterator_tag.

QMapConstlterator::pointer

Const pointer to value_type.

QMapcConstlterator::reference

Const reference to value_type.

QMapConstlterator::value_type

The type of const value.

Member Function Documentation
QMapConstlterator::QMapConstlterator ()

Constructs an uninitialized iterator.

QMapConstlterator::QMapConstiterator (QMapNode<K, T> * p)

Constructs an iterator starting at node p.

QMapConstlterator::QMapConstlterator (const QMapConstlterator<K, T> & it)

Constructs a copy of the iterator, it.

QMapConstlterator::QMapConstiterator (const QMaplterator<K, T> & it)

Constructs a copy of the iterator, it.

const T & QMapConstlterator::data () const

Returns a const reference to the data of the current item.

QMapConstlterator Class Reference 121

const K & QMapConstlterator::key () const

Returns a const reference to the current key.

bool QMapConstlterator::operator!= (const QMapConstlIterator<K, T> & it) const

Compares the iterator to the it iterator and returns FALSE if they point to the same item; otherwise returns TRUE.

const T & QMapConstlterator::operator* () const

Dereference operator. Returns a const reference to the current item. The same as data().

QMapConstlterator<K, T> & QMapConstlterator::operator++ ()

Prefix ++ makes the succeeding item current and returns an iterator pointing to the new current item. The iterator
cannot check whether it reached the end of the map. Incrementing the iterator returned by end() causes undefined
results.

QMapConstlterator<K, T> QMapConstlterator::operator++ (int)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Postfix ++4 makes the succeeding item current and returns an iterator pointing to the new current item. The iterator
cannot check whether it reached the end of the map. Incrementing the iterator returned by end() causes undefined
results.

QMapConstlterator<K, T> & QMapConstlterator::operator-- ()

Prefix — makes the previous item current and returns an iterator pointing to the new current item. The iterator cannot
check whether it reached the beginning of the map. Decrementing the iterator returned by begin() causes undefined
results.

QMapConstlterator<K, T> QMapConstlterator::operator-- (int)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Postfix — makes the previous item current and returns an iterator pointing to the new current item. The iterator cannot
check whether it reached the beginning of the map. Decrementing the iterator returned by begin() causes undefined
results.

bool QMapConstlterator::operator== (const QMapConstlterator<K, T> & it) const

Compares the iterator to the it iterator and returns TRUE if they point to the same item; otherwise returns FALSE.

QMaplterator Class Reference

The QMaplterator class provides an iterator for QMap.

#i ncl ude <gmap. h>

Public Members

m typedef std::bidirectional iterator tag iterator_category
m typedef T value_type

m typedef T * pointer

m typedef T & reference

QMaplterator ()

QMaplterator (QMapNode<K, T> * p)

QMaplterator (const QMaplterator<K, T> & it)

bool operator== (const QMaplterator<K, T> & it) const
m bool operator!= (const QMaplterator<K, T> & it) const
m T & operator* ()

m const T & operator* () const

» const K & key () const

m T & data ()

m const T & data () const

m QMaplterator<K, T> & operator++ ()

m QMaplterator<K, T> operator++ (int)

m QMaplterator<K, T> & operator-- ()

e QMaplterator<K, T> operator-- (int)

Detailed Description

The QMaplterator class provides an iterator for QMap.

You cannot create an iterator by yourself. Instead, you have to ask a map to give you one. An iterator is as big as
a pointer; on 32-bit machines that means 4 bytes, on 64-bit ones 8 bytes. That makes copying them very fast. They
resemble the semantics of pointers as much as possible, and they are almost as fast as usual pointers. See the QMap
example [p. 111].

The only way to traverse a map is to use iterators. QMap is highly optimized for performance and memory usage.
On the other hand this means that you have to be a bit more careful with what you are doing. QMap does not know

122

QMaplterator Class Reference 123

about all its iterators, and the iterators don’t even know to which map they belong. That makes things fast but a bit
dangerous because it is up to you to make sure that the iterators you are using are still valid. QDictIterator will be able
to give warnings, whereas QMaplterator may end up in an undefined state.

For every Iterator there is also a Constlterator. You have to use the Constlterator to access a QMap in a const envi-
ronment or if the reference or pointer to the map is itself const. Its semantics are the same, but it returns only const
references to the item it points to.

See also QMap [p. 109], QMapConstlterator [p. 119], Qt Template Library Classes and Non-GUI Classes.

Member Type Documentation

QMaplterator::iterator_category

The type of iterator category, st d: : bi directional _iterator_tag.

QMaplterator::pointer

Pointer to value_type.

QMaplterator::reference

Reference to value_type.

QMaplterator::value_type

The type of value.

Member Function Documentation

QMaplterator::QMaplterator ()

Creates an uninitialized iterator.

QMaplterator::QMaplterator (QMapNode<K, T> * p)

Constructs an iterator starting at node p.

QMaplterator::QMaplterator (const QMaplterator<K, T> & it)

Constructs a copy of the iterator, it.

QMaplterator Class Reference 124

T & QMaplterator::data ()

Returns a reference to the current item.

const T & QMaplterator::data () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns a const reference to the data of the current item.

const K & QMaplterator::key () const

Returns a const reference to the data of the current key.

bool QMaplterator::operator! = (const QMaplterator<K, T> & it) const

Compares the iterator to the it iterator and returns FALSE if they point to the same item; otherwise returns TRUE.

T & QMaplterator::operator* ()

Dereference operator. Returns a reference to the current item. The same as data().

const T & QMaplterator::operator* () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Dereference operator. Returns a const reference to the current item. The same as data().

QMaplterator<K, T> & QMaplterator::operator++ ()

Prefix ++ makes the succeeding item current and returns an iterator pointing to the new current item. The iterator
cannot check whether it reached the end of the map. Incrementing the iterator returned by end() causes undefined
results.

QMaplterator<K, T> QMaplterator::operator++ (int)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Postfix ++ makes the succeeding item current and returns an iterator pointing to the new current item. The iterator
cannot check whether it reached the end of the map. Incrementing the iterator returned by end() causes undefined
results.

QMaplterator<K, T> & QMaplterator::operator-- ()

Prefix — makes the previous item current and returns an iterator pointing to the new current item. The iterator cannot
check whether it reached the beginning of the map. Decrementing the iterator returned by begin() causes undefined

QMaplterator Class Reference 125
results.

QMaplterator<K, T> QMaplterator::operator-- (int)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Postfix — makes the previous item current and returns an iterator pointing to the new current item. The iterator cannot
check whether it reached the beginning of the map. Decrementing the iterator returned by begin() causes undefined
results.

bool QMaplterator::operator== (const QMaplterator<K, T> & it) const

Compares the iterator to the it iterator and returns TRUE if they point to the same item; otherwise returns FALSE.

QMemArray Class Reference

The QMemArray class is a template class that provides arrays of simple types.

#incl ude <gnemarray. h>

Inherited by QByteArray [p. 38] and QPointArray [Graphics with Qt].

Public Members

typedef type * Iterator

typedef const type * Constlterator

QMemArray ()

QMemArray (int size)

QMemArray (const QMemArray<type> & a)

~QMemArray ()

QMemArray<type> & operator= (const QMemArray<type> & a)
type * data () const

uint nrefs () const

uint size () const

uint count () const

bool isEmpty () const

bool isNull () const

bool resize (uint size)

bool truncate (uint pos)

bool fill (const type & v, int size = -1)

virtual void detach ()

QMemArray<type> copy () const

QMemArray<type> & assign (const QMemArray<type> & a)
QMemArray<type> & assign (const type * data, uint size)
QMemArray <type> & duplicate (const QMemArray<type> & a)
QMemArray<type> & duplicate (const type * data, uint size)
QMemArray<type> & setRawData (const type * data, uint size)
void resetRawData (const type * data, uint size)

int find (const type & v, uint index = 0) const

int contains (const type & v) const

void sort ()

int bsearch (const type & v) const

126

MemArray Class Reference 127
Q y

type & operator[] (int index) const

type & at (uint index) const

operator const type * () const

bool operator== (const QMemArray<type> & a) const
bool operator!= (const QMemArray<type> & a) const
Iterator begin ()

e Iterator end ()

e Constlterator begin () const

o Constlterator end () const

Protected Members

m QMemArray (int, int)

Related Functions

m Q UINT16 qChecksum (const char * data, uint len)
m QDataStream & operator<< (QDataStream & s, const QByteArray & a)
m QDataStream & operator>> ((QDataStream & s, QByteArray & a)

Detailed Description

The QMemArray class is a template class that provides arrays of simple types.

QMemArray is implemented as a template class. Define a template instance QMemArray<X> to create an array that
contains X items.

QMemArray stores the array elements directly in the array. It can deal only with simple types (i.e. C++ types, structs,
and classes that have no constructors, destructors, or virtual functions). QMemArray uses bitwise operations to copy
and compare array elements.

The QPtrVector collection class is also a kind of array. Like most collection classes, it has pointers to the contained
items.

QMemArray uses explicit sharing with a reference count. If more than one array share common data and one array is
modified, all arrays will be modified.

The benefit of sharing is that a program does not need to duplicate data when it is not required, which results in less
memory usage and less copying of data.

Example:

#incl ude <qmemarray. h>
#i ncl ude

Qvemrray fib(int num) // returns fibonacci array
{

Q ASSERT(num > 2);

QvemArray f(num); // array of ints

MemArray Class Reference 128
Q y

f[0] =f[1] = 1;
for (int i =2; 1 <num i++)
fli] = fli-1] + f[i-2];
return f;
}
int main()
{
Qvemdrray a = fib(6); // get 6 first fibonaccis
for (int i =0; i <a.size(); i++)
qDebug("%: %", i, a[i]);
qDebug("1 is found 9% tines", a.contains(1l));
qDebug("5 is found at index %", a.find(5));
return 0;
}

Program output:

found 2 tines

0
1
2:
3:
4
5
1
5 found at index 4

1
1
2
3
5
8
S
S

Note about using QMemArray for manipulating structs or classes: Compilers will often pad the size of structs of
odd sizes up to the nearest word boundary. This will then be the size QMemArray will use for its bitwise element
comparisons. Because the remaining bytes will typically be uninitialized, this can cause find() etc. to fail to find the
element. Example:

/1 MyStruct nay be padded to 4 or 8 bytes
struct MyStruct

{
short i; // 2 bytes
char c¢; // 1 byte

b

QemArray a(1);

a[0].i =5;

a[0].c ="t’";

MStruct x;

X.i =5,

X.c ="t

int i =a.find(x); // my return -1 if the pad bytes differ

To work around this, make sure that you use a struct where sizeof() returns the same as the sum of the sizes of the
members either by changing the types of the struct members or by adding dummy members.

MemArray Class Reference 129
Q y

QMemArray data can be traversed by iterators (see begin() and end()). The number of items is returned by count().
The array can be resized with resize() and filled using fill().

You can make a shallow copy of the array with assign() (or operator=()) and a deep copy with duplicate().
Search for values in the array with find() and contains(). For sorted arrays (see sort()) you can search using bsearch().
You can set the data directly using setRawData() and resetRawData(), although this requires care.

See also Shared Classes [Programming with Qt] and Non-GUI Classes.

Member Type Documentation

QMemArray::Constlterator

A const QMemArray iterator.

See also begin() [p. 130] and end() [p. 132].

QMemArray::Iterator

A QMemArray iterator.
See also begin() [p. 130] and end() [p. 132].

Member Function Documentation

QMemArray::QMemArray (int, int) [protected]

Constructs an array without allocating array space. The arguments should be (0, 0). Use at your own risk.

QMemArray::QMemArray ()

Constructs a null array.

See also isNull() [p. 132].

QMemArray::QMemArray (int size)

Constructs an array with room for size elements. Makes a null array if size == 0.
The elements are left uninitialized.

See also resize() [p. 134] and isNull() [p. 132].

QMemArray::QMemArray (const QMemArray<type> & a)

Constructs a shallow copy of a.

QMemArray Class Reference 130
See also assign() [p. 130].

QMemArray::~QMemArray ()

Dereferences the array data and deletes it if this was the last reference.

QMemArray<type> & QMemArray::assign (const QMemArray<type> & a)

Shallow copy. Dereferences the current array and references the data contained in a instead. Returns a reference to
this array.

See also operator=() [p. 133].

QMemArray<type> & QMemArray::assign (const type * data, uint size)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Shallow copy. Dereferences the current array and references the array data data, which contains size elements. Returns
a reference to this array.

Do not delete data later; QMemArray will take care of it.

type & QMemArray::at (uint index) const

Returns a reference to the element at position index in the array.
This can be used to both read and set an element.

See also operator[]() [p. 133].

Iterator QMemArray::begin ()

Returns an iterator pointing at the beginning of this array. This iterator can be used in the same way as the iterators of
QValueList and QMabp, for example. In fact, not only does it behave like a usual pointer, it is a pointer.

Constlterator QMemArray::begin () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a const iterator pointing at the beginning of this array. This iterator can be used in the same way as the iterators
of QValueList and QMap, for example. In fact, not only does it behave like a usual pointer, it is a pointer.

int QMemArray::bsearch (const type & v) const

In a sorted array, finds the first occurrence of v by using binary search. For a sorted array this is generally much faster
than find(), which does a linear search.

Returns the position of v, or -1 if v could not be found.

QMemArray Class Reference 131

See also sort() [p. 135] and find() [p. 132].

int QMemArray::contains (const type & v) const

Returns the number of times v occurs in the array.

See also find() [p. 132].

QMemArray<type> QMemArray::copy () const

Returns a deep copy of this array.

See also detach() [p. 131] and duplicate() [p. 131].

uint QMemArray::count () const

Returns the same as size().
See also size() [p. 134].
Example: scribble/scribble.cpp.

type * QMemArray::data () const

Returns a pointer to the actual array data.
The array is a null array if data() == 0 (null pointer).
See also isNull() [p. 132].

Examples: fileiconview/qfileiconview.cpp and network/networkprotocol/nntp.cpp.

void QMemArray::detach () [virtual]

Detaches this array from shared array data; i.e. it makes a private, deep copy of the data.
Copying will be performed only if the reference count is greater than one.

See also copy() [p. 1311.

Reimplemented in QBitArray.

QMemArray<type> & QMemArray::duplicate (const QMemArray<type> & a)

Deep copy. Dereferences the current array and obtains a copy of the data contained in a instead. Returns a reference
to this array.

See also copy() [p. 131].

QMemArray Class Reference 132

QMemArray<type> & QMemArray::duplicate (const type * data, uint size)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Deep copy. Dereferences the current array and obtains a copy of the array data data instead. Returns a reference to
this array. The size of the array is given by size.

See also copy() [p. 131].

Iterator QMemArray::end ()

Returns an iterator pointing behind the last element of this array. This iterator can be used in the same way as the
iterators of QValueList and QMap, for example. In fact, not only does it behave like a usual pointer, it is a pointer.

Constlterator QMemArray::end () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a const iterator pointing behind the last element of this array. This iterator can be used in the same way as the
iterators of QValueList and QMap, for example. In fact, not only does it behave like a usual pointer, it is a pointer.

bool QMemArray::fill (const type & v, int size = -1)

Fills the array with the value v. If size is specified as different from -1, then the array will be resized before being filled.
Returns TRUE if successful, or FALSE if the memory cannot be allocated (only when size != -1).

See also resize() [p. 134].

int QMemArray::find (const type & v, uint index = 0) const

Finds the first occurrence of v, starting at position index.
Returns the position of v, or -1 if v could not be found.

See also contains() [p. 131].

bool QMemArray::isEmpty () const

Returns TRUE if the array is empty; otherwise returns FALSE.
isEmpty() is equivalent to isNull() for QMemArray (unlike QString).
bool QMemArray::isNull () const

Returns TRUE if the array is null; otherwise returns FALSE.

A null array has size() == 0 and data() == 0.

QMemArray Class Reference 133

uint QMemArray::nrefs () const

Returns the reference count for the shared array data. This reference count is always greater than zero.

QMemArray::operator const type * () const

Cast operator. Returns a pointer to the array.

See also data() [p. 1311].

bool QMemArray::operator!= (const QMemArray<type> & a) const

Returns TRUE if this array is different from a; otherwise returns FALSE.
The two arrays are compared bitwise.

See also operator==() [p. 133].

QMemArray<type> & QMemArray::operator= (const QMemArray<type> & a)

Assigns a shallow copy of a to this array and returns a reference to this array.

Equivalent to assign(a).

bool QMemArray::operator== (const QMemArray<type> & a) const

Returns TRUE if this array is equal to a; otherwise returns FALSE.
The two arrays are compared bitwise.

See also operator!=() [p. 133].

type & QMemArray::operator[] (int index) const

Returns a reference to the element at position index in the array.
This can be used to both read and set an element. Equivalent to at().

See also at() [p. 130].

void QMemArray::resetRawData (const type * data, uint size)

Resets raw data that was set using setRawData().
The arguments must be the data and length, size, that were passed to setRawData(). This is for consistency checking.

See also setRawData() [p. 134].

MemArray Class Reference 134
Q y

bool QMemArray::resize (uint size)

Resizes (expands or shrinks) the array to size elements. The array becomes a null array if size == 0.
Returns TRUE if successful, or FALSE if the memory cannot be allocated.

New elements will not be initialized.

See also size() [p. 134].

Example: fileiconview/qfileiconview.cpp.

QMemArray<type> & QMemArray::setRawData (const type * data, uint size)

Sets raw data and returns a reference to the array.

Dereferences the current array and sets the new array data to data and the new array size to size. Do not attempt to
resize or re-assign the array data when raw data has been set. Call resetRawData(data, size) to reset the array.

Setting raw data is useful because it sets QMemArray data without allocating memory or copying data.

Example I (intended use):

static char bindata[] = { 231, 1, 44, ... };

ByteArray a;

a.set RawbDat a(bindata, sizeof (bindata)); Il a points to bindata
QataStreams(a, 10 ReadOnly); Il open on a's data

s >> /1 read raw bindata

a.reset Rawbat a(bi ndata, sizeof(bindata)); // finished
Example I (you don’t want to do this):
static char bindata[] = { 231, 1, 44, ... };

ByteArray a, b;
a.set RawbDat a(bindata, sizeof (bindata)); Il a points to bindata

a.resize(8); Il will crash
b = a; Il will crash
a[2] = 123; /'l mght crash

/] forget to resetRawData: will crash

Warning: If you do not call resetRawData(), QMemArray will attempt to deallocate or reallocate the raw data, which
might not be too good. Be careful.

See also resetRawData() [p. 133].

uint QMemArray::size () const

Returns the size of the array (max number of elements).
The array is a null array if size() ==

See also isNull() [p. 132] and resize() [p. 134].

QMemArray Class Reference 135

void QMemArray::sort ()

Sorts the array elements in ascending order, using bitwise comparison (memcmp()).

See also bsearch() [p. 130].

bool QMemArray::truncate (uint pos)

Truncates the array at position pos.
Returns TRUE if successful, or FALSE if the memory cannot be allocated.
Equivalent to resize(pos).

See also resize() [p. 134].

Related Functions

QDataStream & operator<< (QDataStream & s, const QByteArray & a)
Writes byte array a to the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].
QDataStream & operator>> (QDataStream & s, QByteArray & a)

Reads a byte array into a from the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

Q _UINT16 qChecksum (const char * data, uint len)

Returns the CRC-16 checksum of len bytes starting at data.

The checksum is independent of the byte order (endianness).

QPair Class Reference

The QPair class is a value-based template class that provides a pair of elements.

#include <qgpair.h>

Public Members

m typedef T1 first_type

m typedef T2 second_type

= QPair ()

m QPair (const T1 & t1, const T2 & t2)

Detailed Description

The QPair class is a value-based template class that provides a pair of elements.

QPair is a Qt implementation of an STL-like pair. It can be used in your application if the standard pair<> is not
available.

QPair<T1, T2> defines a template instance to create a pair of values that contains two values of type T1 and T2.
Please note that QPair does not store pointers to the two elements; it holds a copy of every member. This is why these
kinds of classes are called value based. If you're interested in pointer based classes see, for example, QPtrList and QDict.

QPair holds one copy of type T1 and one copy of type T2, but does not provide iterators to access these elements.
Rather, the two elements (first and second) are public member variables of the pair. QPair owns the contained
elements. For more relaxed ownership semantics, see QPtrCollection and friends which are pointer-based containers.

Some classes cannot be used within a QPair: for example, all classes derived from QObject and thus all classes that
implement widgets. Only "values" can be used in a QPair. To qualify as a value the class must provide:

e A copy constructor
e An assignment operator

e A constructor that takes no argument

Note that C++ defaults to field-by-field assignment operators and copy constructors if no explicit version is supplied.
In many cases this is sufficient.

QPair uses an STL-like syntax to manipulate and address the objects it contains. See the QTL documentation for more
information.

136

QPair Class Reference 137

Functions that need to return two values can use a QPair. The gMakePair() convenience function makes it easy to
create QPair objects.

See also Qt Template Library Classes, Implicitly and Explicitly Shared Classes and Non-GUI Classes.

Member Type Documentation
QPair::first_type

The type of the first element in the pair.

QPair::second_type

The type of the second element in the pair.

Member Function Documentation

QPair::QPair ()

Constructs an empty pair. The first and second elements are default constructed.

QPair::QPair (const T1 & t1, const T2 & t2)

Constructs a pair and initializes the first element with t1 and the second element with t2.

QPtrCollection Class Reference

The QPtrCollection class is the base class of most pointer-based Qt collections.
#include <qgptrcollection. h>

Inherited by QAsciiDict [p. 21], QCache [p. 391, QDict [p. 82], QIntDict [p. 100], QPtrList [p. 1501, QPtrDict [p. 141]
and QPtrVector [p. 175].

Public Members

bool autoDelete () const
m void setAutoDelete (bool enable)

virtual uint count () const
virtual void clear ()
typedef void * Item

Protected Members

= QPtrCollection ()

m QPtrCollection (const QPtrCollection & source)
m virtual ~QPtrCollection ()

m virtual Item newltem (Item d)

virtual void deleteltem (Item d)

Detailed Description

The QPtrCollection class is the base class of most pointer-based Qt collections.

The QPtrCollection class is an abstract base class for the Qt collection classes QDict, QPtrList, etc. Qt also includes
value based collections, e.g. QValueList, QMap, etc.

A QPtrCollection only knows about the number of objects in the collection and the deletion strategy (see setAu-
toDelete()).

A collection is implemented using the Item (generic collection item) type, which is a voi d*. The template classes that
create the real collections cast the Item to the required type.

See also Collection Classes [p. 9] and Non-GUI Classes.

138

QPtrCollection Class Reference 139

Member Type Documentation

QPtrCollection::Item

This type is the generic "item" in a QPtrCollection.

Member Function Documentation

QPtrCollection::QPtrCollection () [protected]

Constructs a collection. The constructor is protected because QPtrCollection is an abstract class.

QPtrCollection::QPtrCollection (const QPtrCollection & source) [protected]

Constructs a copy of source with autoDelete() set to FALSE. The constructor is protected because QPtrCollection is an
abstract class.

Note that if source has autoDelete turned on, copying it will risk memory leaks, reading freed memory, or both.

QPtrCollection::~QPtrCollection () [virtual protected]

Destroys the collection. The destructor is protected because QPtrCollection is an abstract class.

bool QPtrCollection::autoDelete () const

Returns the setting of the auto-delete option. The default is FALSE.

See also setAutoDelete() [p. 140].

void QPtrCollection::clear () [virtuall

Removes all objects from the collection. The objects will be deleted if auto-delete has been enabled.
See also setAutoDelete() [p. 140].
Reimplemented in QAsciiDict, QCache, QDict, QIntDict, QPtrList, QPtrDict and QPtrVector.

uint QPtrCollection::count () const [virtual]
Returns the number of objects in the collection.

Reimplemented in QAsciiDict, QCache, QDict, QIntDict, QPtrList, QPtrDict and QPtrVector.

void QPtrCollection::deleteltem (Item d) [virtual protected]

Reimplement this function if you want to be able to delete items.

QPtrCollection Class Reference 140

Deletes an item that is about to be removed from the collection.

This function has to reimplemented in the collection template classes, and should only delete item d if auto-delete has
been enabled.

Warning: If you reimplement this function you must also reimplement the destructor and call the virtual function
clear() from your destructor. This is due to the way virtual functions and destructors work in C++: Virtual functions in
derived classes cannot be called from a destructor. If you do not do this, your deleteltem() function will not be called
when the container is destroyed.

See also newltem() [p. 140] and setAutoDelete() [p. 140].

Item QPtrCollection::newltem (Item d) [virtual protected]

Virtual function that creates a copy of an object that is about to be inserted into the collection.
The default implementation returns the d pointer, i.e. no copy is made.

This function is seldom reimplemented in the collection template classes. It is not common practice to make a copy of
something that is being inserted.

See also deleteltem() [p. 139].

void QPtrCollection::setAutoDelete (bool enable)

Sets the collection to auto-delete its contents if enable is TRUE and to never delete them if enable is FALSE.

If auto-deleting is turned on, all the items in a collection are deleted when the collection itself is deleted. This is
convenient if the collection has the only pointer to the items.

The default setting is FALSE, for safety. If you turn it on, be careful about copying the collection - you might find
yourself with two collections deleting the same items.

Note that the auto-delete setting may also affect other functions in subclasses. For example, a subclass that has a
remove() function will remove the item from its data structure, and if auto-delete is enabled, will also delete the item.

See also autoDelete() [p. 139].
Examples: grapher/grapher.cpp, scribble/scribble.cpp and table/bigtable/main.cpp.

QPtrDict Class Reference

The QPtrDict class is a template class that provides a dictionary based on void* keys.
#incl ude <qgptrdict.h>
Inherits QPtrCollection [p. 138].

Public Members

m QPtrDict (int size = 17)

m QPtrDict (const QPtrDict<type> & dict)

m ~QPtrDict ()

m QPtrDict<type> & operator= (const QPtrDict<type> & dict)
virtual uint count () const

uint size () const

bool isEmpty () const

void insert (void * key, const type * item)

void replace (void * key, const type * item)

m bool remove (void * key)

m type * take (void * key)

type * find (void * key) const

type * operator[] (void * key) const

virtual void clear ()

void resize (uint newsize)
void statistics () const

Important Inherited Members

= bool autoDelete () const
= void setAutoDelete (bool enable)

Protected Members

m virtual QDataStream & read (QDataStream & s, QPtrCollection::Item & item)
m virtual QDataStream & write (QDataStream & s, QPtrCollection::Item) const

141

QPtrDict Class Reference 142

Detailed Description

The QPtrDict class is a template class that provides a dictionary based on void* keys.

QPtrDict is implemented as a template class. Define a template instance QPtrDict<X> to create a dictionary that
operates on pointers to X (X*).

A dictionary is a collection of key-value pairs. The key is a void* used for insertion, removal and lookup. The value is
a pointer. Dictionaries provide very fast insertion and lookup.

Example:

QPtrDict extra;

QineEdit *lel = new QLineEdit(this);
| el->set Text (" Sinmpson”);

QineEdit *le2 = new QLineEdit(this);
| e2->set Text ("Homer");

QineEdit *le3 = new QineEdit(this);
| e3->set Text ("45");

extra.insert(lel, "Surnane");
extra.insert(le2, "Forename");
extra.insert(le3, "Age");

QPtrDictlterator it(extra); // See QPtrDictlterator

for(; it.current(); ++it)
cout << it.current() << endl;
cout << endl;

if (extra[lel]) // Prints "Surname: Sinpson"

cout << extra[lel] << ": " <text() << endl;
if (extra[le2]) // Prints "Forenanme: Homer"
cout << extra[le2] << ": " <text() << endl;

extra.remove(lel); // Renoves lel fromthe dictionary

cout <text() << endl; // Prints "Sinpson"
In this example we use a dictionary to add an extra property (a char*) to the line edits we’re using.
See QDict for full details, including the choice of dictionary size, and how deletions are handled.

See also QPtrDictlterator [p. 1471, QDict [p. 82], QAsciiDict [p. 21], QIntDict [p. 100], Collection Classes [p. 9],
Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QPtrDict::QPtrDict (int size = 17)

Constructs a dictionary using an internal hash array with the size size.

Setting size to a suitably large prime number (equal to or greater than the expected number of entries) makes the hash
distribution better and hence the lookup faster.

QPtrDict Class Reference

QPtrDict::QPtrDict (const QPtrDict<type> & dict)

Constructs a copy of dict.

Each item in dict is inserted into this dictionary. Only the pointers are copied (shallow copy).

QPtrDict:: ~QPtrDict ()

Removes all items from the dictionary and destroys it.
All iterators that access this dictionary will be reset.

See also setAutoDelete() [p. 140].

bool QPtrCollection::autoDelete () const

Returns the setting of the auto-delete option. The default is FALSE.

See also setAutoDelete() [p. 140].

void QPtrDict::clear () [virtual]

Removes all items from the dictionary.

The removed items are deleted if auto-deletion is enabled.

All dictionary iterators that access this dictionary will be reset.

See also remove() [p. 144], take() [p. 146] and setAutoDelete() [p. 140].
Reimplemented from QPtrCollection [p. 139].

uint QPtrDict::count () const [virtual]

Returns the number of items in the dictionary.
See also isEmpty() [p. 1441.
Reimplemented from QPtrCollection [p. 139].

type * QPtrDict::find (void * key) const

Returns the item associated with key, or null if the key does not exist in the dictionary.

This function uses an internal hashing algorithm to optimize lookup.

If there are two or more items with equal keys, then the last item that was inserted will be found.

Equivalent to the [] operator.

See also operator[]() [p. 144].

143

QPtrDict Class Reference 144

void QPtrDict::insert (void * key, const type * item)

Inserts the key with the item into the dictionary.

The key does not have to be a unique dictionary key. If multiple items are inserted with the same key, only the last item
will be visible.

Null items are not allowed.

See also replace() [p. 145].

bool QPtrDict::isEmpty () const

Returns TRUE if the dictionary is empty; otherwise returns FALSE.

See also count() [p. 143].

QPtrDict<type> & QPtrDict::operator= (const QPtrDict<type> & dict)

Assigns dict to this dictionary and returns a reference to this dictionary.

This dictionary is first cleared and then each item in dict is inserted into the dictionary. Only the pointers are copied
(shallow copy), unless newltem() has been reimplemented.

type * QPtrDict::operator[] (void * key) const

Returns the item associated with key, or null if the key does not exist in the dictionary.

This function uses an internal hashing algorithm to optimize lookup.

If there are two or more items with equal keys, then the last item that was inserted will be found.
Equivalent to the find() function.

See also find() [p. 143].

QDataStream & QPtrDict::read (QDataStream & s,
QPtrCollection::Item & item) [virtual protected]

Reads a dictionary item from the stream s and returns a reference to the stream.
The default implementation sets item to O.

See also write() [p. 146].

bool QPtrDict::remove (void * key)

Removes the item associated with key from the dictionary. Returns TRUE if successful, or FALSE if the key does not
exist in the dictionary.

If there are two or more items with equal keys, then the last item that was inserted of will be removed.

The removed item is deleted if auto-deletion is enabled.

QPtrDict Class Reference 145

All dictionary iterators that refer to the removed item will be set to point to the next item in the dictionary traversal
order.

See also take() [p. 146], clear() [p. 143] and setAutoDelete() [p. 140].

void QPtrDict::replace (void * key, const type * item)

If the dictionary has key key, this key’s item is replaced with item. If the dictionary doesn’t contain key key, item is
inserted into the dictionary using key key.

Null items are not allowed.

Equivalent to
QPtrDict dict;

if (dict.find(key))
dict.remove(key);
dict.insert(key, item);
If there are two or more items with equal keys, then the last inserted of these will be replaced.

See also insert() [p. 144].

void QPtrDict::resize (uint newsize)

Changes the size of the hash table to newsize. The contents of the dictionary are preserved, but all iterators on the
dictionary become invalid.

void QPtrCollection::setAutoDelete (bool enable)

Sets the collection to auto-delete its contents if enable is TRUE and to never delete them if enable is FALSE.

If auto-deleting is turned on, all the items in a collection are deleted when the collection itself is deleted. This is
convenient if the collection has the only pointer to the items.

The default setting is FALSE, for safety. If you turn it on, be careful about copying the collection - you might find
yourself with two collections deleting the same items.

Note that the auto-delete setting may also affect other functions in subclasses. For example, a subclass that has a
remove() function will remove the item from its data structure, and if auto-delete is enabled, will also delete the item.

See also autoDelete() [p. 139].
Examples: grapher/grapher.cpp, scribble/scribble.cpp and table/bigtable/main.cpp.

uint QPtrDict::size () const

Returns the size of the internal hash table (as specified in the constructor).

See also count() [p. 143].

QPtrDict Class Reference 146

void QPtrDict::statistics () const

Debugging-only function that prints out the dictionary distribution using gDebug().

type * QPtrDict::take (void * key)

Takes the item associated with key out of the dictionary without deleting it (even if auto-deletion is enabled).

If there are two or more items with equal keys, then the last item that was inserted of will be removed.

Returns a pointer to the item taken out, or null if the key does not exist in the dictionary.

All dictionary iterators that refer to the taken item will be set to point to the next item in the dictionary traversal order.

See also remove() [p. 1441, clear() [p. 143] and setAutoDelete() [p. 140].

QDataStream & QPtrDict::write (QDataStream & s, QPtrCollection::Item)
const [virtual protected]

Writes a dictionary item to the stream s and returns a reference to the stream.

See also read() [p. 1441].

QPtrDictIterator Class Reference

The QPtrDictIterator class provides an iterator for QPtrDict collections.

#incl ude <qgptrdict.h>

Public Members

m QPtrDictlterator (const QPtrDict<type> & dict)
m ~QPtrDictlterator ()

uint count () const

bool isEmpty () const

type * toFirst ()

operator type * () const

type * current () const

m void * currentKey () const

m type * operator() ()

m type * operator++ ()

m type * operator+= (uint jump)

Detailed Description

The QPtrDictIterator class provides an iterator for QPtrDict collections.

QPtrDictIterator is implemented as a template class. Define a template instance QPtrDictlterator<X> to create a
dictionary iterator that operates on QPtrDict<X> (dictionary of X*).

Example:

QPtrDict extra;

QineEdit *lel = new QLineEdit(this);
| el->set Text ("Sinmpson”);

QineEdit *le2 = new QLineEdit(this);
| e2->set Text ("Homer");

QineEdit *1e3 = new QLineEdit(this);
| e3->set Text ("45");

extra.insert(lel, "Surnane");

147

QPtrDictlterator Class Reference 148
extra.insert(le2, "Forename");
extra.insert(le3, "Age");
QPtrDictlterator it(extra);
for(; it.current(); ++it) {

QineEdit *le = (QineEdit)it.currentKey();
cout << it.current() << ": " <text() << endl;

}

cout << endl;

/1 Qutput (random order):
/1 Forenane: Homer

/1 Age: 45

/1 Surnane: Sinpson

In the example we insert some line edits into a dictionary, then iterate over the dictionary printing the strings associated
with those line edits.

Multiple iterators may independently traverse the same dictionary. A QPtrDict knows about all iterators that are
operating on the dictionary. When an item is removed from the dictionary, QPtrDict updates all iterators that refer the
removed item to point to the next item in the traversing order.

See also QPtrDict [p. 141], Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QPtrDictIterator::QPtrDictlterator (const QPtrDict<type> & dict)

Constructs an iterator for dict. The current iterator item is set to point on the first item in the dict.

QPtrDictlIterator:: ~QPtrDictlIterator ()

Destroys the iterator.

uint QPtrDictlterator::count () const

Returns the number of items in the dictionary this iterator operates on.

See also isEmpty() [p. 149].

type * QPtrDictlterator::current () const

Returns a pointer to the current iterator item.

void * QPtrDictlterator::currentKey () const

Returns the key for the current iterator item.

QPtrDictlterator Class Reference 149

bool QPtrDictlterator::isEmpty () const
Returns TRUE if the dictionary is empty; otherwise returns FALSE.

See also count() [p. 148].

QPtrDictIterator::operator type * () const

Cast operator. Returns a pointer to the current iterator item. Same as current().

type * QPtrDictlterator::operator() ()

Makes the succeeding item current and returns the original current item.

If the current iterator item was the last item in the dictionary or if it was null, null is returned.
type * QPtrDictlterator::operator++ ()

Prefix ++ makes the succeeding item current and returns the new current item.

If the current iterator item was the last item in the dictionary or if it was null, null is returned.

type * QPtrDictlterator::operator+= (uint jump)

Sets the current item to the item jump positions after the current item and returns a pointer to that item.

If that item is beyond the last item or if the dictionary is empty, it sets the current item to null and returns null.
type * QPtrDictlterator::toFirst ()

Sets the current iterator item to point to the first item in the dictionary and returns a pointer to the item. If the
dictionary is empty, it sets the current item to null and returns null.

QPtrList Class Reference

The QPtrList class is a template class that provides doubly-linked lists.

#include <qgptrlist.h>

Inherits QPtrCollection [p. 138].

Inherited by QSortedList and QStrList [p. 223].

Public Members

m QPtrList (const QPtrList<type> & list)

QPtrList ()

~QPtrList ()

QPtrList<type> & operator= (const QPtrList<type> & list)
bool operator== (const QPtrList<type> & list) const

virtual uint count () const
bool isEmpty () const

bool insert (uint index, const type * item)

void inSort (const type * item)
void prepend (const type * item)
void append (const type * item)
bool remove (uint index)

bool remove ()

bool remove (const type * item)
bool removeRef (const type * item)
void removeNode (QLNode * node)
bool removeFirst ()

bool removeLast ()

type * take (uint index)

type * take ()

type * takeNode (QLNode * node)
virtual void clear ()

void sort ()

int find (const type * item)

int findNext (const type * item)

int findRef (const type * item)

int findNextRef (const type * item)

150

QpPtrList Class Reference 151

uint contains (const type * item) const
uint containsRef (const type * item) const
type * at (uint index)

int at () const

type * current () const

QLNode * currentNode () const

m type * getFirst () const

m type * getLast () const

m type * first ()

m type * last ()

e type * next ()

e type * prev ()

e void toVector (QGVector * vec) const

Important Inherited Members

= bool autoDelete () const
= void setAutoDelete (bool enable)

Protected Members

m virtual int compareltems (QPtrCollection::Item item1, QPtrCollection::Item item2)
m virtual QDataStream & read (QDataStream & s, QPtrCollection::Item & item)
m virtual QDataStream & write (QDataStream & s, QPtrCollection::Item item) const

Detailed Description

The QPtrList class is a template class that provides doubly-linked lists.
Define a template instance QPtrList<X> to create a list that operates on pointers to X (X*).

The list class is indexable and has a current index and a current item. The first item corresponds to index 0. The
current index is -1 if the current item is null.

Items are inserted with prepend(), insert() or append(). Items are removed with remove(), removeRef(), removeFirst()
and removeLast(). You can search for an item using find (), findNext(), findRef() or findNextRef(). The list can be sorted
with sort(). You can count the number of occurrences of an item with contains() or containsRef(). You can get a pointer
to the current item with current(), to an item at a particular index position in the list with at() or to the first or last
item with getFirst() and getLast(). You can also iterate over the list with first(), last(), next() and prev() (which all
update current()). The list’s deletion property is set with setAutoDelete().

Example:

cl ass Enpl oyee

{
public:

Enmpl oyee() : sn(0) {}

QpPtrList Class Reference 152

Enpl oyee(const QString& forenane, const QString& surnane, int salary)
: fn(forename), sn(surname), sal(salary)

{}

void setSalary(int salary) { sal = salary; }

@String forename() const { return fn; }
@String surname() const { return sn; }
int salary() const { return sal; }

private:
QString fn;
QString sn;
int sal;

}s

QPtrList list;
list.setAutoDelete(TRUE); // the list owns the objects

|'ist.append(new Enpl oyee("John", "Doe", 50000))
|'ist.append(new Enpl oyee("Jane", "WIIlians", 80000))
|'ist.append(new Enpl oyee("Tont', "Jones", 60000))

Enpl oyee *enpl oyee;
for (enployee = list.first(); enployee; enployee = list.next())
" earns

n n

cout <surname().latinl() << ", <forename().latinl() <<
cout << endl

n

<sal ary() << endl

[l very inefficient for big lists
for (‘uint i =0; i <list.count(); ++i)
if (list.at(i))
cout << list.at(i)->surname().latinl() << endl

The output is

Doe, John earns 50000
WIlianms, Jane earns 80000
Jones, Tom earns 60000

Doe
WIlians
Jones

QPtrList has several member functions for traversing the list, but using a QPtrListIterator can be more practical. Multi-
ple list iterators may traverse the same list, independently of each other and of the current list item.

In the example above we make the call setAutoDelete(TRUE). Enabling auto-deletion tells the list to delete items that
are removed from the list. The default is to not delete items when they are removed but that would cause a memory
leak in our example because we have no other references to the list items.

List items are stored as voi d* in an internal QLNode, which also holds pointers to the next and previous list items.
The functions currentNode(), removeNode(), and takeNode() operate directly on the QLNode, but they should be used
with care. The data component of the node is available through QLNode::getData().

When inserting an item into a list only the pointer is copied, not the item itself, i.e. we make a shallow copy. It

QpPtrList Class Reference 153

is possible to make the list copy all of the item’s data (deep copy) when an item is inserted. insert(), inSort() and
append() call the virtual function QPtrCollection::newItem() for the item to be inserted. Inherit a list and reimplement
it if you want deep copies.

When removing an item from a list, the virtual function QPtrCollection::deleteltem() is called. QPtrList’s default
implementation is to delete the item if auto-deletion is enabled.

The virtual function compareltems() can be reimplemented to compare two list items. This function is called from all
list functions that need to compare list items, for instance remove(const type*). If you only want to deal with pointers,
there are functions that compare pointers instead, for instance removeRef(const type*). These functions are somewhat
faster than those that call compareltems().

The QStrList class defined in gstrlist.h is a list of char *. It reimplements newltem(), deleteltem() and compareltems().

See also QPtrListIterator [p. 163], Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QPtrList::QPtrList ()

Constructs an empty list.

QPtrList::QPtrList (const QPtrList<type> & list)

Constructs a copy of list.

Each item in list is appended to this list. Only the pointers are copied (shallow copy).

QPtrList:: ~QPtrList ()

Removes all items from the list and destroys the list.
All list iterators that access this list will be reset.

See also setAutoDelete() [p. 140].

void QPtrList::append (const type * item)

Inserts the item at the end of the list.

The inserted item becomes the current list item. This is equivalent to i nsert(count(), item).
The item must not be a null pointer.

See also insert() [p. 1571, current() [p. 155] and prepend() [p. 158].

Examples: customlayout/border.cpp, customlayout/card.cpp, customlayout/flow.cpp, grapher/grapher.cpp,
listviews/listviews.cpp, listviews/listviews.h and qwerty/qwerty.cpp.

type * QPtrList::at (uint index)

Returns a pointer to the item at position index in the list, or null if the index is out of range.

QpPtrList Class Reference 154

Sets the current list item to this item if index is valid. The valid range is 0. . (count () - 1) inclusive.

This function is very efficient. It starts scanning from the first item, last item, or current item, whichever is closest to
index.

See also current() [p. 155].

Examples: customlayout/border.cpp, customlayout/card.cpp, customlayout/flow.cpp, dirview/dirview.cpp,
fileiconview/qfileiconview.cpp, mdi/application.cpp and qwerty/qwerty.cpp.

int QPtrList::at () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the index of the current list item. The returned value is -1 if the current item is null.

See also current() [p. 155].

bool QPtrCollection::autoDelete () const

Returns the setting of the auto-delete option. The default is FALSE.
See also setAutoDelete() [p. 140].

void QPtrList::clear () [virtuall

Removes all items from the list.

The removed items are deleted if auto-deletion is enabled.

All list iterators that access this list will be reset.

See also remove() [p. 159], take() [p. 161] and setAutoDelete() [p. 140].
Reimplemented from QPtrCollection [p. 139].

int QPtrList::compareltems (QPtrCollection::Item item1,
QPtrCollection::Item item2) [virtual protected]

This virtual function compares two list items.

Returns:

e zero if item]l == item2

e nonzero if item1 1= item2

This function returns int rather than bool so that reimplementations can return three values and use it to sort by:

e 0 if iteml == item2
e > 0 (positive integer) if item1 > item2

e < 0 (negative integer) if item1 < item2

QpPtrList Class Reference 155

inSort() requires that compareltems() is implemented as described here.
This function should not modify the list because some const functions call compareltems().

The default implementation compares the pointers.

uint QPtrList::contains (const type * item) const

Counts and returns the number of occurrences of item in the list.

The compareltems() function is called when looking for the item in the list. If compareltems() is not reimplemented,
it is more efficient to call containsRef().

This function does not affect the current list item.

See also containsRef() [p. 155] and compareltems() [p. 154].

uint QPtrList::containsRef (const type * item) const

Counts and returns the number of occurrences of item in the list.

Calling this function is much faster than contains() because contains() compares item with each list item using com-
pareltems(). This function only compares the pointers.

This function does not affect the current list item.

See also contains() [p. 155].

uint QPtrList::count () const [virtual]

Returns the number of items in the list.
See also isEmpty() [p. 1571.

Examples: customlayout/border.cpp, customlayout/card.cpp, customlayout/flow.cpp, fileiconview/qfileiconview.cpp,
grapher/grapher.cpp, mdi/application.cpp and qwerty/qwerty.cpp.

Reimplemented from QPtrCollection [p. 139].

type * QPtrList::current () const

Returns a pointer to the current list item. The current item may be null (implies that the current index is -1).

See also at() [p. 153].

QLNode * QPtrList::currentNode () const

Returns a pointer to the current list node.

The node can be kept and removed later using removeNode(). The advantage is that the item can be removed directly
without searching the list.

Warning: Do not call this function unless you are an expert.

See also removeNode() [p. 160], takeNode() [p. 162] and current() [p. 155].

QpPtrList Class Reference 156

int QPtrList::find (const type * item)

Finds the first occurrence of item in the list.

If the item is found, the list sets the current item to point to the found item and returns the index of this item. If the
item is not found, the list sets the current item to null, the current index to -1, and returns -1.

The compareltems() function is called when searching for the item in the list. If compareltems() is not reimplemented,
it is more efficient to call findRef().

See also findNext() [p. 156], findRef() [p. 156], compareltems() [p. 154] and current() [p. 155].

int QPtrList::findNext (const type * item)

Finds the next occurrence of item in the list, starting from the current list item.

If the item is found, the list sets the current item to point to the found item and returns the index of this item. If the
item is not found, the list sets the current item to null, the current index to -1, and returns -1.

The compareltems() function is called when searching for the item in the list. If compareltems() is not reimplemented,
it is more efficient to call findNextRef().

See also find() [p. 1561, findNextRef() [p. 1561, compareltems() [p. 154] and current() [p. 155].

int QPtrList::findNextRef (const type * item)

Finds the next occurrence of item in the list, starting from the current list item.

If the item is found, the list sets the current item to point to the found item and returns the index of this item. If the
item is not found, the list sets the current item to null, the current index to -1, and returns -1.

Calling this function is much faster than findNext() because findNext() compares item with each list item using com-
pareltems(). This function only compares the pointers.

See also findRef() [p. 1561, findNext() [p. 156] and current() [p. 155].

int QPtrList::findRef (const type * item)

Finds the first occurrence of item in the list.

If the item is found, the list sets the current item to point to the found item and returns the index of this item. If the
item is not found, the list sets the current item to null, the current index to -1, and returns -1.

Calling this function is much faster than find() because find() compares item with each list item using compareltems().
This function only compares the pointers.

See also findNextRef() [p. 1561, find() [p. 156] and current() [p. 155].

type * QPtrList::first ()

Returns a pointer to the first item in the list and makes this the current list item, or null if the list is empty.
See also getFirst() [p. 1571, last() [p. 158], next() [p. 158], prev() [p. 158] and current() [p. 155].

Examples: grapher/grapher.cpp, listviews/listviews.h and showimg/showimg.cpp.

QpPtrList Class Reference 157

type * QPtrList::getFirst () const

Returns a pointer to the first item in the list, or null if the list is empty.
This function does not affect the current list item.

See also first() [p. 156] and getLast() [p. 157].

type * QPtrList::getLast () const

Returns a pointer to the last item in the list, or null if the list is empty.
This function does not affect the current list item.

See also last() [p. 158] and getFirst() [p. 157].

void QPtrList::inSort (const type * item)

Inserts the item at its sorted position in the list.

The sort order depends on the virtual compareltems() function. All items must be inserted with inSort() to maintain
the sorting order.

The inserted item becomes the current list item.
The item must not be a null pointer.

Please note that inSort() is slow. If you want to insert lots of items in a list and sort after inserting, you should use
sort(). inSort() takes up to O(n) compares. That means inserting n items in your list will need O(n"2) compares
whereas sort() only needs O(n*log n) for the same task. So use inSort() only if you already have a presorted list and
want to insert just a few additional items.

See also insert() [p. 1571, compareltems() [p. 154], current() [p. 155] and sort() [p. 161].

bool QPtrList::insert (uint index, const type * item)

Inserts the item at the position index in the list.

Returns TRUE if successful or FALSE if index is out of range. The valid range is 0 to count() (inclusively). The item is
appended if index == count().

The inserted item becomes the current list item.
The item must not be a null pointer.

See also append() [p. 153] and current() [p. 155].

bool QPtrList::isEmpty () const

Returns TRUE if the list is empty; otherwise returns FALSE.

See also count() [p. 155].

QpPtrList Class Reference 158

type * QPtrList::last ()

Returns a pointer to the last item in the list and makes this the current list item, or null if the list is empty.

See also getLast() [p. 1571, first() [p. 1561, next() [p. 158], prev() [p. 158] and current() [p. 155].

type * QPtrList::next ()
Returns a pointer to the item succeeding the current item. Returns null if the current item is null or equal to the last
item.

Makes the succeeding item current. If the current item before this function call was the last item, the current item will
be set to null. If the current item was null, this function does nothing.

See also first() [p. 1561, last() [p. 1581, prev() [p. 158] and current() [p. 155].

Examples: grapher/grapher.cpp, listviews/listviews.h and showimg/showimg.cpp.

QPtrList<type> & QPtrList::operator= (const QPtrList<type> & list)

Assigns list to this list and returns a reference to this list.

This list is first cleared and then each item in list is appended to this list. Only the pointers are copied (shallow copy)
unless newItem() has been reimplemented().

bool QPtrList::operator== (const QPtrList<type> & list) const

Compares this list with list. Returns TRUE if the lists contain the same data; otherwise returns FALSE.

void QPtrList::prepend (const type * item)

Inserts the item at the start of the list.
The inserted item becomes the current list item. This is equivalent to i nsert(0, item).
The item must not be a null pointer.

See also append() [p. 153], insert() [p. 157] and current() [p. 155].

type * QPtrList::prev ()
Returns a pointer to the item preceding the current item. Returns null if the current item is null or equal to the first
item.

Makes the preceding item current. If the current item before this function call was the first item, the current item will
be set to null. If the current item was null, this function does nothing.

See also first() [p. 1561, last() [p. 158], next() [p. 158] and current() [p. 155].

QpPtrList Class Reference 159

QDataStream & QPtrList::read (QDataStream & s,
QPtrCollection::Item & item) [virtual protected]

Reads a list item from the stream s and returns a reference to the stream.
The default implementation sets item to 0.

See also write() [p. 162].

bool QPtrList::remove (uint index)

Removes the item at position index in the list.
Returns TRUE if successful, or FALSE if index is out of range. The valid range is 0. . (count () - 1) inclusive.
The removed item is deleted if auto-deletion is enabled.

The item after the removed item becomes the new current list item if the removed item is not the last item in the list.
If the last item is removed, the new last item becomes the current item.

All list iterators that refer to the removed item will be set to point to the new current item.

See also take() [p. 161], clear() [p. 1541, setAutoDelete() [p. 1401, current() [p. 155] and removeRef() [p. 160].

bool QPtrList::remove ()

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Removes the current list item.

Returns TRUE if successful, or FALSE if the current item is null.

The removed item is deleted if auto-deletion is enabled.

The item after the removed item becomes the new current list item if the removed item is not the last item in the list. If
the last item is removed, the new last item becomes the current item. The current item is set to null if the list becomes

empty.
All list iterators that refer to the removed item will be set to point to the new current item.

See also take() [p. 161], clear() [p. 154], setAutoDelete() [p. 1401, current() [p. 155] and removeRef() [p. 160].

bool QPtrList::remove (const type * item)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Removes the first occurrence of item from the list.

Returns TRUE if successful, or FALSE if the item could not be found in the list.

The removed item is deleted if auto-deletion is enabled.

The compareltems() function is called when searching for the item in the list. If compareltems() is not reimplemented,
it is more efficient to call removeRef().

The item after the removed item becomes the new current list item if the removed item is not the last item in the list. If
the last item is removed, the new last item becomes the current item. The current item is set to null if the list becomes

empty.

QpPtrList Class Reference 160

All list iterators that refer to the removed item will be set to point to the new current item.

See also removeRef() [p. 160], take() [p. 161], clear() [p. 1541, setAutoDelete() [p. 140], compareltems() [p. 154]
and current() [p. 155].

bool QPtrList::removeFirst ()

Removes the first item from the list. Returns TRUE if successful, or FALSE if the list is empty.

The removed item is deleted if auto-deletion is enabled.

The first item in the list becomes the new current list item. The current item is set to null if the list becomes empty.
All list iterators that refer to the removed item will be set to point to the new current item.

See also removeLast() [p. 160], setAutoDelete() [p. 1401, current() [p. 155] and remove() [p. 159].

bool QPtrList::removeLast ()

Removes the last item from the list. Returns TRUE if successful, or FALSE if the list is empty.

The removed item is deleted if auto-deletion is enabled.

The last item in the list becomes the new current list item. The current item is set to null if the list becomes empty.
All list iterators that refer to the removed item will be set to point to the new current item.

See also removeFirst() [p. 160], setAutoDelete() [p. 140] and current() [p. 155].

void QPtrList::removeNode (QLNode * node)

Removes the node from the list.

This node must exist in the list, otherwise the program may crash.

The removed item is deleted if auto-deletion is enabled.

The first item in the list will become the new current list item. The current item is set to null if the list becomes empty.

All list iterators that refer to the removed item will be set to point to the item succeeding this item or to the preceding
item if the removed item was the last item.

Warning: Do not call this function unless you are an expert.

See also takeNode() [p. 162], currentNode() [p. 155], remove() [p. 159] and removeRef() [p. 160].

bool QPtrList::removeRef (const type * item)

Removes the first occurrence of item from the list.

Returns TRUE if successful, or FALSE if the item cannot be found in the list.
The removed item is deleted if auto-deletion is enabled.

The list is scanned until the pointer item is found. It is removed if it is found.

Equivalent to:

QpPtrList Class Reference 161

if (list.findRef(item) !=-1)
list.remve();

The item after the removed item becomes the new current list item if the removed item is not the last item in the list. If
the last item is removed, the new last item becomes the current item. The current item is set to null if the list becomes

empty.
All list iterators that refer to the removed item will be set to point to the new current item.

See also remove() [p. 159], clear() [p. 1541, setAutoDelete() [p. 140] and current() [p. 155].

void QPtrCollection::setAutoDelete (bool enable)

Sets the collection to auto-delete its contents if enable is TRUE and to never delete them if enable is FALSE.

If auto-deleting is turned on, all the items in a collection are deleted when the collection itself is deleted. This is
convenient if the collection has the only pointer to the items.

The default setting is FALSE, for safety. If you turn it on, be careful about copying the collection - you might find
yourself with two collections deleting the same items.

Note that the auto-delete setting may also affect other functions in subclasses. For example, a subclass that has a
remove() function will remove the item from its data structure, and if auto-delete is enabled, will also delete the item.

See also autoDelete() [p. 139].
Examples: grapher/grapher.cpp, scribble/scribble.cpp and table/bigtable/main.cpp.

void QPtrList::sort ()

Sorts the list by the result of the virtual compareltems() function.

The Heap-Sort algorithm is used for sorting. It sorts n items with O(n*log n) comparisons. This is the asymptotic
optimal solution of the sorting problem.

If the items in your list support operator< and operator==, you might be better off with QSortedList because it
implements the compareltems() function for you using these two operators.

See also inSort() [p. 157].

type * QPtrList::take (uint index)

Takes the item at position index out of the list without deleting it (even if auto-deletion is enabled).

Returns a pointer to the item taken out of the list, or null if the index is out of range. The valid range is 0. . (count ()
- 1) inclusive.

The item after the removed item becomes the new current list item if the removed item is not the last item in the list. If
the last item is removed, the new last item becomes the current item. The current item is set to null if the list becomes

empty.
All list iterators that refer to the taken item will be set to point to the new current item.
See also remove() [p. 1591, clear() [p. 154] and current() [p. 155].

Examples: customlayout/border.cpp, customlayout/card.cpp and customlayout/flow.cpp.

QpPtrList Class Reference 162

type * QPtrList::take ()

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Takes the current item out of the list without deleting it (even if auto-deletion is enabled). Returns a pointer to the
item taken out of the list, or null if the current item is null.

The item after the removed item becomes the new current list item if the removed item is not the last item in the list. If
the last item is removed, the new last item becomes the current item. The current item is set to null if the list becomes

empty.
All list iterators that refer to the taken item will be set to point to the new current item.

See also remove() [p. 1591, clear() [p. 154] and current() [p. 155].

type * QPtrList::takeNode (QLNode * node)

Takes the node out of the list without deleting its item (even if auto-deletion is enabled). Returns a pointer to the item
taken out of the list.

This node must exist in the list, otherwise the program may crash.

The first item in the list becomes the new current list item.

All list iterators that refer to the taken item will be set to point to the item succeeding this item or to the preceding
item if the taken item was the last item.

Warning: Do not call this function unless you are an expert.

See also removeNode() [p. 160] and currentNode() [p. 155].

void QPtrList::toVector (QGVector * vec) const

Stores all list items in the vector vec.

The vector must be have the same item type, otherwise the result will be undefined.

QDataStream & QPtrList::write (QDataStream & s, QPtrCollection::Item item)
const [virtual protected]

Writes a list item, item to the stream s and returns a reference to the stream.
The default implementation does nothing.

See also read() [p. 159].

QPtrListIterator Class Reference

The QPtrListlterator class provides an iterator for QPtrList collections.
#include <qgptrlist.h>
Inherited by QStrListlIterator [p. 225].

Public Members

m QPtrListIterator (const QPtrList<type> & list)
» ~QPtrListIterator ()

uint count () const

bool isEmpty () const

bool atFirst () const

bool atLast () const

type * toFirst ()

type * toLast ()

operator type * () const

type * operator* ()

type * current () const

type * operator() ()

m type * operator++ ()

m type * operator+= (uint jump)

m type * operator-- ()

m type * operator-= (uint jump)

QPtrListIterator <type> & operator= (const QPtrListIterator<type> & it)

Detailed Description

The QPtrListIterator class provides an iterator for QPtrList collections.
Define a template instance QPtrListIterator<X> to create a list iterator that operates on QPtrList<X> (list of X*).

The following example is similar to the example in the QPtrList class documentation, but it uses QPtrListIterator. The
class Employee is defined there.

QPtrList list;

163

QpPtrListlterator Class Reference 164

|'ist.append(new Enpl oyee("John", "Doe", 50000))
l'ist.append(new Enpl oyee("Jane", "WIIlians", 80000));
l'ist.append(new Enpl oyee("Tont', "Jones", 60000));

QPtrListlterator it(list);
Enpl oyee *enpl oyee;
while ((enployee = it.current()) !'=0) {
++it;
cout <surname().latinl() << ", " <forename().latinl() <<

n n

earns " <salary() << endl;

The output is

Doe, John earns 50000
WIlianms, Jane earns 80000
Jones, Tom earns 60000

Using a list iterator is a more robust way of traversing the list than using the QPtrList member functions first(), next(),
current(), etc., as many iterators can traverse the same list independently.

An iterator has its own current list item and can get the next and previous list items. It doesn’t modifies the list in any
way.

When an item is removed from the list, all iterator that points to that item are updated to point to QPtrList::current()
instead to avoid dangling references.

See also QPtrList [p. 150], Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QPtrListlterator::QPtrListIterator (const QPtrList<type> & list)

Constructs an iterator for list. The current iterator item is set to point on the first item in the list.

QPtrListlIterator:: ~QPtrListIterator ()

Destroys the iterator.

bool QPtrListIterator::atFirst () const

Returns TRUE if the current iterator item is the first list item; otherwise returns FALSE.
See also toFirst() [p. 166] and atLast() [p. 164].

bool QPtrListIterator::atLast () const

Returns TRUE if the current iterator item is the last list item; otherwise returns FALSE.

See also toLast() [p. 166] and atFirst() [p. 164].

QpPtrListlterator Class Reference

uint QPtrListIterator::count () const

Returns the number of items in the list this iterator operates on.
See also isEmpty() [p. 165].

Example: customlayout/card.cpp.

type * QPtrListlterator::current () const

Returns a pointer to the current iterator item.

Examples: customlayout/card.cpp and customlayout/flow.cpp.

bool QPtrListlterator::isEmpty () const

Returns TRUE if the list is empty; otherwise returns FALSE.

See also count() [p. 165].

QPtrListIterator::operator type * () const

Cast operator. Returns a pointer to the current iterator item. Same as current().

type * QPtrListIterator::operator() ()

Makes the succeeding item current and returns the original current item.

If the current iterator item was the last item in the list or if it was null, null is returned.

type * QPtrListIterator::operator* ()

Asterix operator. Returns a pointer to the current iterator item. Same as current().

type * QPtrListlterator::operator++ ()

Prefix ++ makes the succeeding item current and returns the new current item.

If the current iterator item was the last item in the list or if it was null, null is returned.

type * QPtrListlterator::operator+= (uint jump)

Sets the current item to the item jump positions after the current item and returns a pointer to that item.

If that item is beyond the last item or if the dictionary is empty, it sets the current item to null and returns null

165

QpPtrListlterator Class Reference 166

type * QPtrListIterator::operator-- ()

Prefix - makes the preceding item current and returns the new current item.

If the current iterator item was the first item in the list or if it was null, null is returned.

type * QPtrListlterator::operator-= (uint jump)

Returns the item jump positions before the current item or null if it is beyond the first item. Makes this the current
item.

QPtrListIterator<type> & QPtrListlterator::operator= (const QPtrListIterator<type> & it)

Assignment. Makes a copy of the iterator it and returns a reference to this iterator.

type * QPtrListlterator::toFirst ()

Sets the current iterator item to point to the first list item and returns a pointer to the item. Sets the current item to
null and returns null if the list is empty.

See also toLast() [p. 166] and atFirst() [p. 164].

type * QPtrListlterator::toLast ()

Sets the current iterator item to point to the last list item and returns a pointer to the item. Sets the current item to
null and returns null if the list is empty.

See also toFirst() [p. 166] and atLast() [p. 164].

QPtrQueue Class Reference

The QPtrQueue class is a template class that provides a queue.

#incl ude <gptrqueue. h>

Public Members

m QPtrQueue ()

m QPtrQueue (const QPtrQueue<type> & queue)
~QPtrQueue ()

QPtrQueue<type> & operator= (const QPtrQueue<type> & queue)
bool autoDelete () const

void setAutoDelete (bool enable)

uint count () const

m bool isEmpty () const

m void enqueue (const type * d)

type * dequeue ()

bool remove ()

void clear ()

type * head () const

operator type * () const

type * current () const

Protected Members
m virtual QDataStream & read (QDataStream & s, QPtrCollection::Item & item)

m virtual QDataStream & write (QDataStream & s, QPtrCollection::Item item) const

Detailed Description

The QPtrQueue class is a template class that provides a queue.
A template instance QPtrQueue<X> is a queue that operates on pointers to X (X*).

A queue is a first in, first out structure. Items are added to the tail of the queue with enqueue() and retrieved from the
head with dequeue(). You can peek at the head item without dequeing it using head().

167

QPtrQueue Class Reference 168

You can control the queue’s deletion policy with setAutoDelete().
For compatibility with the QPtrCollection classes, current() and remove() are provided; both operate on the head().

See also QPtrList [p. 1501, QPtrStack [p. 1711, Collection Classes [p. 91 and Non-GUI Classes.

Member Function Documentation

QPtrQueue::QPtrQueue ()

Creates an empty queue with autoDelete() set to FALSE.

QPtrQueue::QPtrQueue (const QPtrQueue<type> & queue)

Creates a queue from queue.

Only the pointers are copied; the items are not. The autoDelete() flag is set to FALSE.
QPtrQueue::~QPtrQueue ()

Destroys the queue. Items in the queue are deleted if autoDelete() is TRUE.

bool QPtrQueue::autoDelete () const

Returns the setting of the auto-delete option. The default is FALSE.
See also setAutoDelete() [p. 170].

void QPtrQueue::clear ()

Removes all items from the queue, and deletes them if autoDelete() is TRUE.

See also remove() [p. 170].

uint QPtrQueue::count () const

Returns the number of items in the queue.

See also isEmpty() [p. 169].

type * QPtrQueue::current () const

Returns a reference to the head item in the queue. The queue is not changed.

See also dequeue() [p. 169] and isEmpty() [p. 169].

QPtrQueue Class Reference 169

type * QPtrQueue::dequeue ()

Takes the head item from the queue and returns a pointer to it.

See also enqueue() [p. 169] and count() [p. 168].

void QPtrQueue::enqueue (const type * d)

Adds item d to the tail of the queue.

See also count() [p. 168] and dequeue() [p. 169].

type * QPtrQueue::head () const

Returns a reference to the head item in the queue. The queue is not changed.

See also dequeue() [p. 169] and isEmpty() [p. 169].

bool QPtrQueue::isEmpty () const

Returns TRUE if the queue is empty; otherwise returns FALSE.
See also count() [p. 1681, dequeue() [p. 169] and head() [p. 169].

QPtrQueue::operator type * () const

Returns a reference to the head item in the queue. The queue is not changed.

See also dequeue() [p. 169] and isEmpty() [p. 169].

QPtrQueue<type> & QPtrQueue::operator= (const QPtrQueue<type> & queue)

Assigns queue to this queue and returns a reference to this queue.
This queue is first cleared and then each item in queue is enqueued to this queue. Only the pointers are copied.

Note that the autoDelete() flag is not modified. If it it TRUE for both queue and this queue, deleting the two lists will
cause double-deletion of the items.

QDataStream & QPtrQueue::read (QDataStream & s,
QPtrCollection::Item & item) [virtual protected]

Reads a queue item, item, from the stream s and returns a reference to the stream.
The default implementation sets item to O.

See also write() [p. 170].

QPtrQueue Class Reference 170

bool QPtrQueue::remove ()

Removes the head item from the queue, and returns TRUE if there was an item or FALSE if the queue was empty.
The item is deleted if autoDelete() is TRUE.
See also head() [p. 169], isEmpty() [p. 169] and dequeue() [p. 169].

void QPtrQueue::setAutoDelete (bool enable)

Sets the queue to auto-delete its contents if enable is TRUE and not to delete them if enable is FALSE.

If auto-deleting is turned on, all the items in a queue are deleted when the queue itself is deleted. This can be quite
convenient if the queue has the only pointer to the items.

The default setting is FALSE, for safety. If you turn it on, be careful about copying the queue: you might find yourself
with two queues deleting the same items.

See also autoDelete() [p. 168].

QDataStream & QPtrQueue::write (QDataStream & s, QPtrCollection::Item item)
const [virtual protected]

Writes a queue item, item, to the stream s and returns a reference to the stream.
The default implementation does nothing.

See also read() [p. 169].

QPtrStack Class Reference

The QPtrStack class is a template class that provides a stack.

#incl ude <qgptrstack. h>

Public Members

QPtrStack ()

QPtrStack (const QPtrStack<type> & s)
~QPtrStack ()

QPtrStack<type> & operator= (const QPtrStack<type> & s)
bool autoDelete () const

void setAutoDelete (bool enable)

uint count () const

bool isEmpty () const

void push (const type * d)

type * pop ()

bool remove ()

void clear ()

type * top () const

operator type * () const

type * current () const

Protected Members

virtual QDataStream & read (QDataStream & s, QPtrCollection::Item & item)
virtual QDataStream & write (QDataStream & s, QPtrCollection::Item item) const

Detailed Description

The QPtrStack class is a template class that provides a stack.

Define a template instance QPtrStack<X> to create a stack that operates on pointers to X, (X*).

A stack is a last in, first out (LIFO) structure. Items are added to the top of the stack with push() and retrieved from
the top with pop(). Use top() to get a reference to the top element without changing the stack.

171

QPtrStack Class Reference 172

You can control the stack’s deletion policy with setAutoDelete().
For compatibility with the QPtrCollection classes current() and remove() are provided; they both operate on the top().

See also QPtrList [p. 1501, QPtrQueue [p. 167] and Non-GUI Classes.

Member Function Documentation

QPtrStack::QPtrStack ()

Creates an empty stack.

QPtrStack::QPtrStack (const QPtrStack<type> & s)

Creates a stack by making a shallow copy of another stack s.

QPtrStack::~QPtrStack ()

Destroys the stack. All items will be deleted if autoDelete() is TRUE.

bool QPtrStack::autoDelete () const

The same as QPtrCollection::autoDelete().

See also setAutoDelete() [p. 173].

void QPtrStack::clear ()

Removes all items from the stack, deleting them if autoDelete() is TRUE.

See also remove() [p. 173].

uint QPtrStack::count () const

Returns the number of items in the stack.

See also isEmpty() [p. 172].

type * QPtrStack::current () const

Returns a reference to the top item on the stack (most recently pushed). The stack is not changed.

bool QPtrStack::isEmpty () const

Returns TRUE is the stack contains no elements to be popped; otherwise returns FALSE.

QPtrStack Class Reference 173

QPtrStack::operator type * () const

Returns a reference to the top item on the stack (most recently pushed). The stack is not changed.

QPtrStack<type> & QPtrStack::operator= (const QPtrStack<type> & s)

Sets the contents of this stack by making a shallow copy of another stack s. Elements currently in this stack will be
deleted if autoDelete() is TRUE.

type * QPtrStack::pop ()

Removes the top item from the stack and returns it.

void QPtrStack::push (const type * d)

Adds an element d to the top of the stack. Last in, first out.

QDataStream & QPtrStack::read (QDataStream & s,
QPtrCollection::Item & item) [virtual protected]

Reads a stack item, item, from the stream s and returns a reference to the stream.
The default implementation sets item to O.

See also write() [p. 1741.

bool QPtrStack::remove ()

Removes the top item from the stack and deletes it if autoDelete() is TRUE. Returns TRUE if there was an item to pop;
otherwise returns FALSE.

See also clear() [p. 172].

void QPtrStack::setAutoDelete (bool enable)

Defines whether this stack auto-deletes its contents. The same as QPtrCollection::setAutoDelete().
If enable is TRUE the stack auto-deletes its contents; if enable is FALSE the stack does not delete its contents.

See also autoDelete() [p. 172].

type * QPtrStack::top () const

Returns a reference to the top item on the stack (most recently pushed). The stack is not changed.

QPtrStack Class Reference 174

QDataStream & QPtrStack::write (QDataStream & s, QPtrCollection::Item item)
const [virtual protected]
Writes a stack item, item, to the stream s and returns a reference to the stream.

The default implementation does nothing.

See also read() [p. 173].

QPtrVector Class Reference

The QPtrVector class is a template collection class that provides a vector (array).
#incl ude <gptrvector.h>

Inherits QPtrCollection [p. 138].

Public Members

m QPtrVector ()

m QPtrVector (uint size)

m QPtrVector (const QPtrVector<type> & v)

m ~QPtrVector ()

QPtrVector<type> & operator= (const QPtrVector<type> & v)
bool operator== (const QPtrVector<type> & v) const

type ** data () const

uint size () const

virtual uint count () const

m bool isEmpty () const

m bool isNull () const

bool resize (uint size)

bool insert (uint i, const type * d)
bool remove (uint i)

type * take (uint i)

virtual void clear ()

bool fill (const type * d, int size = -1)

void sort ()

m int bsearch (const type * d) const

m int findRef (const type * d, uinti = 0) const
int find (const type * d, uinti = 0) const
uint containsRef (const type * d) const

uint contains (const type * d) const

type * operator[] (inti) const
type * at (uint i) const
void toList (QGList * list) const

175

QPtrVector Class Reference 176

Important Inherited Members

= bool autoDelete () const
m void setAutoDelete (bool enable)

Protected Members

m virtual int compareltems (QPtrCollection::Item d1, QPtrCollection::Item d2)
m virtual QDataStream & read (QDataStream & s, QPtrCollection::Item & item)
m virtual QDataStream & write (QDataStream & s, QPtrCollection::Item item) const

Detailed Description

The QPtrVector class is a template collection class that provides a vector (array).

QPtrVector is implemented as a template class. Defines a template instance QPtrVector<X> to create a vector that
contains pointers to X (X*).

A vector is the same as an array. The main difference between QPtrVector and QMemArray is that QPtrVector stores
pointers to the elements, whereas QMemArray stores the elements themselves (i.e. QMemArray is value-based and
QPtrVector is pointer-based).

Items are added to the vector using insert() or fill(). Items are removed with remove(). You can get a pointer to an
item at a particular index position using at().

Unless otherwise stated, all functions that remove items from the vector will also delete the element pointed to if
auto-deletion is enabled. By default, auto-deletion is disabled; see setAutoDelete(). This behaviour can be changed in
a subclass by reimplementing the virtual function deleteltem().

Functions that compare items (find() and sort() for example) will do so using the virtual function compareltems(). The
default implementation of this function only compares the pointer values. Reimplement compareltems() in a subclass
to get searching and sorting based on the item contents. You can perform a linear search for a pointer in the vector
using findRef(), or a binary search (of a sorted vector) using bsearch(). You can count the number of times an item
appears in the vector with contains() or containsRef().

See also QMemArray [p. 126] and Non-GUI Classes.

Member Function Documentation

QPtrVector::QPtrVector ()

Constructs a null vector.

See also isNull() [p. 179].

QPtrVector::QPtrVector (uint size)

Constructs an vector with room for size items. Makes a null vector if size == 0.

QPtrVector Class Reference 177

All size positions in the vector are initialized to O.

See also size() [p. 181], resize() [p. 180] and isNull() [p. 179].

QPtrVector::QPtrVector (const QPtrVector<type> & v)

Constructs a copy of v. Only the pointers are copied (i.e. shallow copy).

QPtrVector::~QPtrVector ()

Removes all items from the vector, and destroys the vector itself.

See also clear() [p. 1771].

type * QPtrVector::at (uint i) const

Returns the item at position i, or 0 if there is no item at that position. i must be less than size().

bool QPtrCollection::autoDelete () const

Returns the setting of the auto-delete option. The default is FALSE.

See also setAutoDelete() [p. 140].

int QPtrVector::bsearch (const type * d) const

In a sorted array, finds the first occurrence of d using a binary search. For a sorted array, this is generally much faster
than find(), which does a linear search.

Returns the position of d, or -1 if d could not be found. d may not be 0.

Compares items using the virtual function compareltems().

See also sort() [p. 181] and find() [p. 179].

void QPtrVector::clear () [virtual]

Removes all items from the vector, and destroys the vector itself.
The vector becomes a null vector.

See also isNull() [p. 179].

Reimplemented from QPtrCollection [p. 139].

int QPtrVector::compareltems (QPtrCollection::Item d1,
QPtrCollection::Item d2) [virtual protected]

This virtual function compares two list items.

QPtrVector Class Reference 178

Returns:

e zeroifdl ==

e nonzero if d1 '= d2

This function returns int rather than bool so that reimplementations can return one of three values and use it to sort
by:

e 0ifdl ==

e > 0 (positive integer) if d1 > d2

e < 0 (negative integer) if d1 < d2

The sort() and bsearch() functions require that compareltems() is implemented as described here.

This function should not modify the vector because some const functions call compareltems().

uint QPtrVector::contains (const type * d) const

Returns the number of occurrences of item d in the vector.
Compares items using the virtual function compareltems().

See also containsRef() [p. 178].

uint QPtrVector::containsRef (const type * d) const

Returns the number of occurrences of the item pointer d in the vector.
This function does not use compareltems() to compare items.

See also findRef() [p. 179].

uint QPtrVector::count () const [virtual]

Returns the number of items in the vector. The vector is empty if count() ==
See also isEmpty() [p. 179] and size() [p. 181].
Reimplemented from QPtrCollection [p. 139].

JORCN

type ** QPtrVector::data () const

Returns a pointer to the actual vector data, which is an array of type*.
The vector is a null vector if data() == 0 (null pointer).

See also isNull() [p. 179].

QPtrVector Class Reference 179

bool QPtrVector::fill (const type * d, int size = -1)

Inserts item d in all positions in the vector. Any existing items are removed. If d is 0, the vector becomes empty.
If size >= 0, the vector is first resized to size. By default, size is -1.
Returns TRUE if successful, or FALSE if the memory cannot be allocated (only if a resize has been requested).

See also resize() [p. 1801, insert() [p. 179] and isEmpty() [p. 179].

int QPtrVector::find (const type * d, uint i = 0) const

Finds the first occurrence of item d in the vector using a linear search. The search starts at position i, which must be
less than size(). i is by default 0; i.e. the search starts at the start of the vector.

Returns the position of d, or -1 if d could not be found.

Compares items using the virtual function compareltems().

Use the much faster bsearch() to search a sorted vector.

See also findRef() [p. 179] and bsearch() [p. 177].

int QPtrVector::findRef (const type * d, uinti = 0) const

Finds the first occurrence of the item pointer d in the vector using a linear search. The search starts at position i, which
must be less than size(). i is by default 0; i.e. the search starts at the start of the vector.

Returns the position of d, or -1 if d could not be found.

This function does not use compareltems() to compare items.

Use the much faster bsearch() to search a sorted vector.

See also find() [p. 179] and bsearch() [p. 1771.

bool QPtrVector::insert (uint i, const type * d)

Sets position i in the vector to contain the item d. i must be less than size(). Any previous element in position i is
removed.

See also at() [p. 177].

bool QPtrVector::isEmpty () const

Returns TRUE if the vector is empty; otherwise returns FALSE.
See also count() [p. 178].

bool QPtrVector::isNull () const

Returns TRUE if the vector is null; otherwise returns FALSE.

A null vector has size() == 0 and data() == 0.

QPtrVector Class Reference 180

See also size() [p. 181].

QPtrVector<type> & QPtrVector::operator= (const QPtrVector<type> & v)

Assigns v to this vector and returns a reference to this vector.

This vector is first cleared and then all the items from v are copied into the vector. Only the pointers are copied (i.e.
shallow copy).

See also clear() [p. 1771].

bool QPtrVector::operator== (const QPtrVector<type> & v) const

Returns TRUE if this vector and v are equal; otherwise returns FALSE.

type * QPtrVector::operator[] (int i) const

Returns the item at position i, or 0 if there is no item at that position. i must be less than size().
Equivalent to at(i).

See also at() [p. 177].

QDataStream & QPtrVector::read (QDataStream & s,
QPtrCollection::Item & item) [virtual protected]

Reads a vector item, item, from the stream s and returns a reference to the stream.
The default implementation sets item to 0.

See also write() [p. 181].

bool QPtrVector::remove (uint i)

Removes the item at position i in the vector, if there is one. i must be less than size().
Returns TRUE unless i is out of range.

See also take() [p. 181] and at() [p. 177].

bool QPtrVector::resize (uint size)

Resizes (expands or shrinks) the vector to size elements. The array becomes a null array if size ==
Any items at position size or beyond in the vector are removed. New positions are initialized O.
Returns TRUE if successful, or FALSE if the memory cannot be allocated.

See also size() [p. 181] and isNull() [p. 179].

QPtrVector Class Reference 181

void QPtrCollection::setAutoDelete (bool enable)

Sets the collection to auto-delete its contents if enable is TRUE and to never delete them if enable is FALSE.

If auto-deleting is turned on, all the items in a collection are deleted when the collection itself is deleted. This is
convenient if the collection has the only pointer to the items.

The default setting is FALSE, for safety. If you turn it on, be careful about copying the collection - you might find
yourself with two collections deleting the same items.

Note that the auto-delete setting may also affect other functions in subclasses. For example, a subclass that has a
remove() function will remove the item from its data structure, and if auto-delete is enabled, will also delete the item.

See also autoDelete() [p. 139].
Examples: grapher/grapher.cpp, scribble/scribble.cpp and table/bigtable/main.cpp.

uint QPtrVector::size () const

Returns the size of the vector, i.e. the number of vector positions. This is also the maximum number of items the vector
can hold.
The vector is a null vector if size() ==

See also isNull() [p. 179], resize() [p. 180] and count() [p. 178].

void QPtrVector::sort ()

Sorts the items in ascending order. Any empty positions will be put last.
Compares items using the virtual function compareltems().

See also bsearch() [p. 1771].

type * QPtrVector::take (uint i)

Returns the item at position i in the vector, and removes that item from the vector. i must be less than size(). If there
is no item at position i, 0 is returned.

In contrast to remove(), this function does not call deleteltem() for the removed item.

See also remove() [p. 180] and at() [p. 177].

void QPtrVector::toList (QGList * list) const

Copies all items in this vector to the list list. list is first cleared and then all items are appended to list.

See also QPtrList [p. 150], QPtrStack [p. 171] and QPtrQueue [p. 167].

QDataStream & QPtrVector::write (QDataStream & s, QPtrCollection::Item item)
const [virtual protected]

Writes a vector item, item, to the stream s and returns a reference to the stream.

QPtrVector Class Reference 182

The default implementation does nothing.

See also read() [p. 180].

QStrIList Class Reference

The QStrIList class provides a doubly-linked list of char* with case-insensitive comparison.
#include <gstrlist.h>

Inherits QStrList [p. 223].

Public Members

m QStrlList (bool deepCopies = TRUE)
m ~QStrIList ()

Detailed Description

The QStrlIList class provides a doubly-linked list of char* with case-insensitive comparison.
This class is a QPtrList<char> instance (a list of char®).

QStriList is identical to QStrList except that the virtual compareltems() function is reimplemented to compare strings
case-insensitively. The inSort() function inserts strings in a sorted order. In general it is fastest to insert the strings as
they come and sort() at the end; inSort() is useful when you just have to add a few extra strings to an already sorted
list.

The QStrListIterator class works for QStrIList.

See also Collection Classes [p. 9] and Non-GUI Classes.

Member Function Documentation

QStriList::QStrIList (bool deepCopies = TRUE)

Constructs a list of strings. Will make deep copies of all inserted strings if deepCopies is TRUE, or use shallow copies if
deepCopies is FALSE.

QStriIList::~QStrIList ()

Destroys the list. All strings are removed.

183

QString Class Reference

The QString class provides an abstraction of Unicode text and the classic C null-terminated char array.

#include <gstring. h>

Public Members

m QString ()

m QString (QChar ch)

m QString (const QString & s)

m QString (const QByteArray & ba)

m QString (const QChar * unicode, uint length)

m QString (const char * str)

m ~QString ()

m QString & operator= (const QString & s)

m QString & operator= (const char * str)

m QString & operator= (const QCString & cs)

m QString & operator= (QChar c)

m QString & operator= (char c)

m bool isNull () const

m bool isEmpty () const

m uint length () const

m void truncate (uint newLen)

m QString & fill (QChar c, intlen = -1)

m QString copy () const (obsolete)

m QString arg (long a, int fieldwidth = 0, int base = 10) const
m QString arg (ulong a, int fieldwidth = 0, int base = 10) const
m QString arg (int a, int fieldwidth = 0, int base = 10) const

m QString arg (uint a, int fieldwidth = 0, int base = 10) const
m QString arg (short a, int fieldwidth = 0, int base = 10) const
m QString arg (ushort a, int fieldwidth = 0, int base = 10) const
m QString arg (char a, int fieldwidth = 0) const

m QString arg (QChar a, int fieldwidth = 0) const

m QString arg (const QString & a, int fieldwidth = 0) const

m QString arg (double a, int fieldwidth = 0, char fmt = ’g’, int prec = -1) const
m QString & sprintf (const char * cformat, ...)

184

QString Class Reference 185

int find (QChar c, int index = 0, bool cs = TRUE) const

int find (char c, int index = 0, bool cs = TRUE) const

int find (const QString & str, int index = 0, bool cs = TRUE) const
int find (const QRegExp & rx, int index = 0) const

int find (const char * str, int index = 0) const

int findRev (QChar ¢, int index = -1, bool ¢s = TRUE) const

int findRev (char ¢, int index = -1, bool ¢s = TRUE) const

int findRev (const QString & str, int index = -1, bool ¢s = TRUE) const
int findRev (const QRegExp & rx, int index = -1) const

int findRev (const char * str, int index = -1) const

int contains (QChar c, bool ¢s = TRUE) const

int contains (char ¢, bool cs = TRUE) const

int contains (const char * str, bool cs = TRUE) const

int contains (const QString & str, bool cs = TRUE) const

int contains (const QRegExp & rx) const

enum SectionFlags { SectionDefault = 0x00, SectionSkipEmpty = 0x01, SectionIncludeLeadingSep = 0x02,
SectionIncludeTrailingSep = 0x04, SectionCaselnsensitiveSeps = 0x08 }

QString section (QChar sep, int start, int end = Oxffffffff, int flags = SectionDefault) const
QString section (char sep, int start, int end = Oxffffffff, int flags = SectionDefault) const
QString section (const char * sep, int start, int end = Oxffffffff, int flags = SectionDefault) const
QString section (const QString & sep, int start, int end = Oxffffffff, int flags = SectionDefault) const
QString section (const QRegExp & reg, int start, int end = Oxffffffff, int flags = SectionDefault) const
QString left (uint len) const

QString right (uint len) const

QString mid (uint index, uint len = Oxffffffff) const

QString leftJustify (uint width, QChar fill = ’’, bool truncate = FALSE) const

QString rightJustify (uint width, QChar fill = ’’, bool truncate = FALSE) const

QString lower () const

QString upper () const

QString stripWhiteSpace () const

QString simplifyWhiteSpace () const

QString & insert (uint index, const QString & s)

QString & insert (uint index, const QChar * s, uint len)

QString & insert (uint index, QChar c)

QString & insert (uint index, char c)

QString & append (char ch)

QString & append (QChar ch)

QString & append (const QString & str)

QString & prepend (char ch)

QString & prepend (QChar ch)

QString & prepend (const QString & s)

QString & remove (uint index, uint len)

QString & replace (uint index, uint len, const QString & s)

QString & replace (uint index, uint len, const QChar * s, uint slen)

QString & replace (const QRegExp & rx, const QString & str)

short toShort (bool * ok = 0, int base = 10) const

QString Class Reference 186

ushort toUShort (bool * ok = 0, int base = 10) const
int toInt (bool * ok = 0, int base = 10) const

uint toUInt (bool * ok = 0, int base = 10) const
long toLong (bool * ok = 0, int base = 10) const
ulong toULong (bool * ok = 0, int base = 10) const
float toFloat (bool * ok = 0) const

= double toDouble (bool * ok = 0) const

m QString & setNum (short n, int base = 10)

QString & setNum (ushort n, int base = 10)
QString & setNum (int n, int base = 10)

QString & setNum (uint n, int base = 10)

QString & setNum (long n, int base = 10)

QString & setNum (ulong n, int base = 10)

QString & setNum (float n, char f =’g’, int prec = 6)
m QString & setNum (double n, char f =g, int prec = 6)
m void setExpand (uint index, QChar ¢) (obsolete)

m QString & operator+ = (const QString & str)
QString & operator+= (QChar c)

QString & operator+= (char c)

QChar at (uint i) const

QChar operator[] (inti) const

QCharRef at (uint i)

QCharRef operator[] (inti)

m QChar constref (uint i) const

m QChar & ref (uint i)

const QChar * unicode () const

const char * ascii () const (obsolete)

const char * latin1 () const

QCString utf8 () const

QCString local8Bit () const

bool operator! () const

operator const char * () const

m QString & setUnicode (const QChar * unicode, uint len)
m QString & setUnicodeCodes (const ushort * unicode_as_ushorts, uint len)
e QString & setLatin1 (const char * str, int len = -1)

e int compare (const QString & s) const

e int localeAwareCompare (const QString & s) const

e void compose ()

e const char * data () const (obsolete)

e bool startsWith (const QString & s) const

e bool endsWith (const QString & s) const

e void setLength (uint newLen)

QString Class Reference 187

Static Public Members

m QString number (long n, int base = 10)

m QString number (ulong n, int base = 10)

m QString number (int n, int base = 10)

m QString number (uint n, int base = 10)

m QString number (double n, char f =’g’, int prec = 6)

m QString fromLatin1 (const char * chars, int len = -1)

m QString fromUtf8 (const char * utf8, int len = -1)

m QString fromLocal8Bit (const char * local8Bit, int len = -1)

m int compare (const QString & s1, const QString & s2)

m int localeAwareCompare (const QString & s1, const QString & s2)

Related Functions

m bool operator== (const QString & s1, const QString & s2)

m bool operator== (const QString & s1, const char * s2)

m bool operator== (const char * s1, const QString & s2)

m bool operator!= (const QString & s1, const QString & s2)

m bool operator!= (const QString & s1, const char * s2)

m bool operator!= (const char * s1, const QString & s2)

m bool operator< (const QString & s1, const char * s2)

m bool operator< (const char * s1, const QString & s2)

m bool operator<= (const QString & s1, const char * s2)

m bool operator<= (const char * s1, const QString & s2)

m bool operator> (const QString & s1, const char * s2)

m bool operator> (const char * s1, const QString & s2)

m bool operator>= (const QString & s1, const char * s2)

m bool operator>= (const char * s1, const QString & s2)

m const QString operator+ (const QString & s1, const QString & s2)
m const QString operator+ (const QString & s1, const char * s2)
m const QString operator+ (const char * s1, const QString & s2)
m const QString operator+ (const QString & s, char c)

m const QString operator+ (char c, const QString & s)

m QDataStream & operator< < (QDataStream & s, const QString & str)
e QDataStream & operator>> (QDataStream & s, QString & str)

Detailed Description

The QString class provides an abstraction of Unicode text and the classic C null-terminated char array.
QString uses implicit sharing, which makes it very efficient and easy to use.

In all of the QString methods that take const char * parameters, the const char * is interpreted as a classic C-style
O-terminated ASCII string. It is legal for the const char * parameter to be 0. If the const char * is not O-terminated,

QString Class Reference 188

the results are undefined. Functions that copy classic C strings into a QString will not copy the terminating O character.
The QChar array of the QString (as returned by unicode()) is generally not terminated by a null.

A QString that has not been assigned to anything is null, i.e., both the length and data pointer is 0. A QString that
references the empty string (", a single \0’ char) is empty. Both null and empty QStrings are legal parameters to
the methods. Assigning (const char *) 0 to QString gives a null QString. For convenience, QString::null is a null
QString.

Note that if you find that you are mixing usage of QCString, QString, and QByteArray, this causes lots of unnecessary
copying and might indicate that the true nature of the data you are dealing with is uncertain. If the data is O-terminated
8-bit data, use QCString; if it is unterminated (i.e. contains Os) 8-bit data, use QByteArray; if it is text, use QString.

Lists of strings are handled by the QStringList class. You can split a string into a list of strings using QStringList::split(),
and join a list of strings into a single string with an optional separator using QStringList::join(). You can obtain a list of
strings from a string list that contain a particular substring or that match a particular regex using QStringList::grep().

Note for C programmers

Due to C++’s type system and the fact that QString is implicitly shared, QStrings may be treated like ints or other
simple base types. For example:

@String bool ToString(bool b))

{
QString result;
if (b)
result = "True";
el se
result = "Fal se";
return result;
}

The variable, result, is an auto variable allocated on the stack. When return is called, because we’re returning by value,
The copy constructor is called and a copy of the string is returned. (No actual copying takes place thanks to the implicit
sharing, see below.)

Throughout Qt’s source code you will encounter QString usages like this:

@String func(const QStringé& input)

{
QString output = input;
Il process output
return output;

}

The ’copying’ of input to output is almost as fast as copying a pointer because behind the scenes copying is achieved
by incrementing a reference count. QString operates on a copy-on-write basis, only copying if an instance is actually
changed.

See also QChar [p. 48], QCString [p. 62], QByteArray [p. 38], QConstString [p. 601, Implicitly and Explicitly Shared
Classes, Text Related Classes and Non-GUI Classes.

QString Class Reference 189

Member Type Documentation

QString::SectionFlags

e (String:: SectionDefault - Empty fields are counted, leading and trailing separators are not included, and the
separator is compared case sensitively.

e QString:: SectionSkipEnpty - Treat empty fields as if they don’t exist, i.e. they are not considered as far as start
and end are oncerned.

e QString:: SectionlncludelLeadi ngSep - Include the leading separator (if any) in the result string.
e (Btring:: SectionlncludeTrailingSep - Include the trailing separator (if any) in the result string.
e (Gtring:: SectionCasel nsensitiveSeps - Compare the separator case-insensitively.

Any of the last four values can be OR-ed together to form a flag.

See also section() [p. 207].

Member Function Documentation

QString::QString ()

Constructs a null string. This is a string that has not been assigned to anything, i.e. both the length and data pointer is
0.

See also isNull() [p. 199].

QString::QString (QChar ch)

Constructs a string giving it a length of one character, assigning it the character ch.

QString::QString (const QString & s)

Constructs an implicitly shared copy of s. This is instantaneous, since reference counting is used.

QString::QString (const QByteArray & ba)

Constructs a string that is a deep copy of ba interpreted as a classic C string.

QString::QString (const QChar * unicode, uint length)

Constructs a string that is a deep copy of the first length characters in the QChar array.
If unicode and length are O, then a null string is created.

If only unicode is 0, the string is empty but has length characters of space preallocated - QString expands automatically
anyway, but this may speed up some cases a little. We recommend using the plain constructor and setLength() for this
purpose since it will result in more readable code.

QString Class Reference 190
See also isNull() [p. 199] and setLength() [p. 209].

QString::QString (const char * str)

Constructs a string that is a deep copy of str, interpreted as a classic C string.
If str is 0, then a null string is created.

This is a cast constructor, but it is perfectly safe: converting a Latinl const char* to QString preserves all the informa-
tion. You can disable this constructor by defining QT NO_CAST_ ASCII when you compile your applications. You can
also make QString objects by using setlLatin1(), fromLatin1(), fromLocal8Bit(), and fromUtf8(). Or whatever encoding
is appropriate for the 8-bit data you have.

See also isNull() [p. 199].
QString::~QString ()

Destroys the string and frees the "real" string if this is the last copy of that string.

QString & QString::append (const QString & str)
Appends str to the string and returns a reference to the result.

string = "Test";
string.append("ing"); /] string == "Testing"

Equivalent to operator+=().
Example: dirview/dirview.cpp.
QString & QString::append (char ch)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Appends character ch to the string and returns a reference to the result.

Equivalent to operator+=().

QString & QString::append (QChar ch)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Appends character ch to the string and returns a reference to the result.

Equivalent to operator+=().

QString QString::arg (const QString & a, int fieldwidth = 0) const

This function will return a string that replaces the lowest occurrence of % (i being’1’ or’2’ or ... or ’9’) with a.

QString Class Reference 191

The fieldwidth value specifies the minimum amount of space that a is padded to. A positive value will produce right-
aligned text, whereas a negative value will produce left-aligned text.

QString firstName("Joe");

QString lastName("Bl oggs");

@String ful | Name;

full Name = QString("First nane is "', last name is "% ")
.arg(firstName)
.arg(lastName);

{1 full Name == First name is 'Joe', last name is Bl oggs’

Warning: If you use arg() to construct "real" sentences like the one shown in the examples above, then this may cause
problems with translation (when you use the tr() function).

If there is no % pattern, a warning message (qWarning()) is outputted and the text is appended at the end of the
string. This is error recovery done by the function and should not occur in correct code.

See also QObject::tr() [Additional Functionality with Qt].

QString QString::arg (long a, int fieldwidth = 0, int base = 10) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

The fieldwidth value specifies the minimum amount of space that a is padded to. A positive value will produce a
right-aligned number, whereas a negative value will produce a left-aligned number.

a is expressed in base base, which is 10 by default and must be between 2 and 36.

@String str;

str = Qtring("Decimal 63 is 9% in hexadeciml")
.arg(63, 0, 16);

Il str == "Decimal 63 is 3f in hexadecinal"

QString QString::arg (ulong a, int fieldwidth = 0, int base = 10) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

a is expressed in base base, which is 10 by default and must be between 2 and 36.

QString QString::arg (int a, int fieldwidth = 0, int base = 10) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
a is expressed in base base, which is 10 by default and must be between 2 and 36.

QString QString::arg (uint a, int fieldwidth = 0, int base = 10) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

a is expressed in base base, which is 10 by default and must be between 2 and 36.

QString Class Reference 192

QString QString::arg (short a, int fieldwidth = 0, int base = 10) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

a is expressed in base base, which is 10 by default and must be between 2 and 36.

QString QString::arg (ushort a, int fieldwidth = 0, int base = 10) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

a is expressed in base base, which is 10 by default and must be between 2 and 36.

QString QString::arg (char a, int fieldwidth = 0) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

a is assumed to be in the Latinl character set.

QString QString::arg (QChar a, int fieldwidth = 0) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QString QString::arg (double a, int fieldwidth = 0, char fmt = ’g’, int prec = -1) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Argument a is formatted according to the fmt format specified, which is g by default and can be any of the following:

e e - format as [-]19.9e[+|-1999

e E - format as [-]9.9E[+ |-]999

e f - format as [-]9.9

e g -usee or f format, whichever is the most concise

e G- use Eorf format, whichever is the most concise
In all cases the number of digits after the decimal point is equal to the precision specified in prec.

double d = 12. 34,

QString ds = QString("'E format, precision 3, gives %")
.arg(d, 0, "E, 3);

/] ds == "1.234E+001"

const char * QString::ascii () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
This function simply calls latin1 () and returns the result.

Example: network/networkprotocol/nntp.cpp.

QString Class Reference 193

QChar QString::at (uint i) const
Returns the character at index i, or 0 if i is beyond the length of the string.

const QString string("abcdefgh");
QChar ch = string.at(4);
[l ch=="¢

If the QString is not const (i.e. const QString) or const& (i.e. const QString &), then the non-const overload of at() will
be used instead.

QCharRef QString::at (uint i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

The function returns a reference to the character at index i. The resulting reference can then be assigned to, or used
immediately, but it will become invalid once further modifications are made to the original string.

If i is beyond the length of the string then the string is expanded with QChar::null.

int QString::compare (const QString & s1, const QString & s2) [static]
Lexically compares s1 with s2 and returns an integer less than, equal to, or greater than zero if s1 is less than, equal to,
or greater than s2.

The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what
a human would expect. Consider sorting user-interface strings with QString::localeAwareCompare().

int a = QString::conpare("def", "abc"); Il a>0
int b = QString::conpare("abc", "def"); Il b<0
int ¢ = QString::conpare(" abc", "abc"); Il ¢ ==

int QString::compare (const QString & s) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Lexically compares this string with s and returns an integer less than, equal to, or greater than zero if it is less than,
equal to, or greater than s.

void QString::compose ()

Note that this function is not supported in Qt 3.0 and is merely for experimental and illustrative purposes. It is mainly
of interest to those experimenting with Arabic and other composition-rich texts.

Applies possible ligatures to a QString. Useful when composition-rich text requires rendering with glyph-poor fonts,
but it also makes compositions such as QChar(0x0041) (CA) and QChar(0x0308) (Unicode accent diaresis), giving
QChar(0x00c4) (German A Umlaut).

QString Class Reference

QChar QString::constref (uint i) const

Returns the QChar at index i by value.
Equivalent to at(i).

See also ref() [p. 205].

int QString::contains (QChar c, bool cs = TRUE) const

Returns the number of times the character ¢ occurs in the string.

If cs is TRUE then the match is case sensitive. If cs is FALSE, then the match is case insensitive.

QString string("Trolltech and @");
int i =string.contains('t', FALSE); [/ i ==

Examples: fileiconview/qfileiconview.cpp and mdi/application.cpp.

int QString::contains (char c, bool ¢s = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

int QString::contains (const char * str, bool cs = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the number of times the string str occurs in the string.

If cs is TRUE then the match is case sensitive. If cs is FALSE, then the match is case insensitive.

int QString::contains (const QString & str, bool cs = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the number of times str occurs in the string.
The match is case sensitive if cs is TRUE or case insensitive if cs if FALSE.

This function counts overlapping strings, so in the example below, there are two instances of "ana" in "bananas".

QString str("bananas");
int i =str.contains("ana"); [/ i ==

See also findRev() [p. 196].

int QString::contains (const QRegExp & rx) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the number of times the regexp, rx, occurs in the string.

194

QString Class Reference 195

This function counts overlapping occurrences, so in the example below, there are four instances of "ana" or "ama".

QString str = "banana and panama";
QRegExp rxp = QRegExp("a[nna", TRUE, FALSE);
int i =str.contains(rxp); i ==

See also find() [p. 195] and findRev() [p. 196].

QString QString::copy () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

In Qt 2.0 and later, all calls to this function are needless. Just remove them.

o

const char * QString::data () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Returns a pointer to a O-terminated classic C string.

In Qt 1.x, this returned a char* allowing direct manipulation of the string as a sequence of bytes. In Qt 2.x where
QString is a Unicode string, char* conversion constructs a temporary string, and hence direct character operations are
meaningless.

bool QString::endsWith (const QString & s) const

Returns TRUE if the string ends with s; otherwise it returns FALSE.

See also startsWith() [p. 212].

QString & QString::fill (QChar c, int len = -1)

Fills the string with len characters of value ¢, and returns a reference to the string.

If len is negative (the default), the current string length is used.

@tring str;
str.fill('g, 5); Il string == "gggggg"

int QString::find (const QRegExp & rx, int index = 0) const

Finds the first occurrence of the constant regular expression rx, starting at position index. If index is -1, the search starts
at the last character; if -2, at the next to last character and so on. (See findRev() for searching backwards.)

Returns the position of the first occurrence of rx or -1 if rx was not found.

QString string("bananas");
int i =string.find(QRegExp("an"), 0); i ==

QString Class Reference 196

See also findRev() [p. 196], replace() [p. 206] and contains() [p. 1941].

Example: network/mail/smtp.cpp.

int QString::find (QChar c, int index = 0, bool cs = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Finds the first occurrence of the character c, starting at position index. If index is -1, the search starts at the last
character; if -2, at the next to last character and so on. (See findRev() for searching backwards.)

If cs is TRUE, then the search is case sensitive. If cs is FALSE, then the search is case insensitive.

Returns the position of ¢ or -1 if ¢ could not be found.

int QString::find (char c, int index = 0, bool cs = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Find character c starting from position index. If cs is TRUE then the match is case sensitive. If cs is FALSE, then the
match is case insensitive.

int QString::find (const QString & str, int index = 0, bool cs = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Finds the first occurrence of the string str, starting at position index. If index is -1, the search starts at the last character,
if it is -2, at the next to last character and so on. (See findRev() for searching backwards.)

The search is case sensitive if cs is TRUE or case insensitive if cs is FALSE.

Returns the position of str or -1 if str could not be found.

int QString::find (const char * str, int index = 0) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Equivalent to find (QString(str), index).

int QString::findRev (const char * str, int index = -1) const

Equivalent to findRev(QString(str), index).

int QString::findRev (QChar c, int index = -1, bool ¢s = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Finds the first occurrence of the character c, starting at position index and searching backwards. If the index is -1, the
search starts at the last character, if it is -2, at the next to last character and so on.

Returns the position of ¢ or -1 if ¢ could not be found.

QString Class Reference 197

If ¢s is TRUE then the search is case sensitive. If ¢s is FALSE then the search is case insensitive.

QString string("bananas");
int i =string.findRev("a); i ==

int QString::findRev (char c, int index = -1, bool cs = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Find character c starting from position index and working backwards. If c¢s is TRUE then the match is case sensitive. If
¢s is FALSE, then the match is case insensitive.

int QString::findRev (const QString & str, int index = -1, bool cs = TRUE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Finds the first occurrence of the string str, starting at position index and searching backwards. If the index is -1, the
search starts at the last character, if it is -2, at the next to last character and so on.

Returns the position of str or -1 if str could not be found.

If cs is TRUE then the search is case sensitive. If cs is FALSE then the search is case insensitive.

@String string("bananas");
int i = string.findRev("ana"); i ==

int QString::findRev (const QRegExp & rx, int index = -1) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Finds the first occurrence of the regexp rx, starting at position index and searching backwards. If the index is -1, the
search starts at the last character, if it is -2, at the next to last character and so on. (See findRev() for searching
backwards.)

Returns the position of rx or -1 if rx could not be found.

@String string("bananas");
int i =string.findRev(QRegExp("an")); Il i ==

See also find() [p. 195].

QString QString::fromLatin1 (const char * chars, int len = -1) [static]

Returns the unicode string decoded from the first len characters of chars, ignoring the rest of chars. If len is -1 then the
length of chars is used. If len is bigger than the length of chars then it will use the length of chars.

This is the same as the QString(const char*) constructor, but you can make that constructor invisible if you compile
with the define QT _NO_CAST ASCII, in which case you can explicitly create a QString from Latin-1 text using this
function.

QString Class Reference 198

@String str = QString::fromatinl("123456789", 5)
[l str == "12345"

Examples: listbox/listbox.cpp and network/mail/smtp.cpp.

QString QString::fromLocal8Bit (const char * local8Bit, int len = -1) [static]

Returns the unicode string decoded from the first len characters of local8Bit, ignoring the rest of local8Bit. If len is -1
then the length of local8Bit is used. If len is bigger than the length of local8Bit then it will use the length of local8Bit.

QString str = QString::fromocal 8Bit("123456789", 5);
Il str == "12345"

local8Bit is assumed to be encoded in a locale-specific format.

See QTextCodec for more diverse coding/decoding of Unicode strings.

QString QString::fromUtf8 (const char * utf8, int len = -1) [static]

Returns the unicode string decoded from the first len characters of utf8, ignoring the rest of utf8. If len is -1 then the
length of utf8 is used. If len is bigger than the length of utf8 then it will use the length of utf8.

QString str = QString::fromktf8("123456789", 5);
[l str == "12345"

See QTextCodec for more diverse coding/decoding of Unicode strings.

Example: fonts/simple-qfont-demo/viewer.cpp.

QString & QString::insert (uint index, const QString & s)

Inserts s into the string before position index.

If index is beyond the end of the string, the string is extended with spaces to length index and s is then appended and
returns a reference to the string.

QString string("I like fish");
str = string.insert(2, "don't ");
[l str == "| don't like fish"

See also remove() [p. 205] and replace() [p. 206].

Example: xform/xform.cpp.

QString & QString::insert (uint index, const QChar * s, uint len)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Inserts the character in s into the string before the position index len number of times and returns a reference to the
string.

QString Class Reference 199

QString & QString::insert (uint index, QChar c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Insert c into the string at (before) position index and returns a reference to the string.

If index is beyond the end of the string, the string is extended with spaces (ASCII 32) to length index and c is then
appended.

QString & QString::insert (uint index, char c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Insert character c at position index.

bool QString::isEmpty () const

Returns TRUE if the string is empty, i.e., if length() == 0. Thus, null strings are empty strings.

tring a("");
a.isEnpty(); Il TRUE
a.isNull(); Il FALSE
QString b;

b.isEMty(); Il TRUE
b.isNull(); Il TRUE

See also isNull() [p. 199] and length() [p. 200].

Examples: addressbook/mainwindow.cpp, hello/main.cpp, helpviewer/helpwindow.cpp, mdi/application.cpp,
network/networkprotocol/nntp.cpp, qmag/qmag.cpp and qwerty/qwerty.cpp.

bool QString::isNull () const

Returns TRUE if the string is null. A null string is always empty.

Qtring a; Il a.unicode() == 0, a.length() ==
a.isNull(); /'l TRUE, because a.unicode() ==
a.i sEnpty(); Il TRUE

See also isEmpty() [p. 199] and length() [p. 200].
Examples: i18n/main.cpp and qdir/qdir.cpp.

const char * QString::latin1 () const

Returns a Latin-1 representation of the string. Note that the returned value is undefined if the string contains non-
Latin-1 characters. If you want to convert strings into formats other than Unicode, see the QTextCodec classes.

This function is mainly useful for boot-strapping legacy code to use Unicode.

String Class Reference 200
QString

The result remains valid so long as one unmodified copy of the source string exists.
See also utf8() [p. 214] and local8Bit() [p. 200].

Examples: fileiconview/qfileiconview.cpp and network/networkprotocol/nntp.cpp.

QString QString::left (uint len) const

Returns a substring that contains the len leftmost characters of the string.

The whole string is returned if len exceeds the length of the string.

Qstring s
QString t

"Pi neappl e";
s.left(4); Il t == "Pine"

See also right() [p. 206], mid() [p. 201] and isEmpty() [p. 199].

QString QString::leftJustify (uint width, QChar fill = ’’, bool truncate = FALSE) const

Returns a string of length width that contains this string padded by the fill character.
If truncate is FALSE and the length of the string is more than width, then the returned string is a copy of the string.

If truncate is TRUE and the length of the string is more than width, then any characters in a copy of the string after
length width are removed, and the copy is returned.

QString s("apple");
QString t = s.leftJustify(8, '."); Il t =="apple..."

See also rightJustify() [p. 207].

uint QString::length () const

Returns the length of the string.
Null strings and empty strings have zero length.
See also isNull() [p. 199] and isEmpty() [p. 199].

Examples: fileiconview/qfileiconview.cpp, network/networkprotocol/nntp.cpp and rot13/rot13.cpp.

QCString QString::local8Bit () const

Returns the string encoded in a locale-specific format. On X11, this is the QTextCodec::codecForLocale(). On Windows,
it is a system-defined encoding.

See QTextCodec for more diverse coding/decoding of Unicode strings.

See also QString::fromLocal8Bit() [p. 1981, latin1() [p. 199] and utf8() [p. 214].

String Class Reference 201
QString

int QString::localeAwareCompare (const QString & s1, const QString & s2) [static]

Compares s1 with s2 and returns an integer less than, equal to, or greater than zero if sI is less than, equal to, or
greater than s2.

The comparison is performed in a locale- and also platform-dependent manner. Use this function to present sorted lists
of strings to the user.

Bugs and limitations:
e This function is only implemented on Windows. Elsewhere, it is a synonym for QString::compare().

See also QString::compare() [p. 193] and QTextCodec::locale() [Accessibility and Internationalization with Qt].

int QString::localeAwareCompare (const QString & s) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Compares this string with s.

QString QString::lower () const

Returns a string that is the string converted to lowercase.

@tring string("TROItECH');
str = string.lower(); // str == "trolltech"

See also upper() [p. 2141.
Example: scribble/scribble.cpp.

QString QString::mid (uint index, uint len = Oxffffffff) const

Returns a string that contains the len characters of this string, starting at position index.

Returns a null string if the string is empty or index is out of range. Returns the whole string from index if index+len
exceeds the length of the string.

Qstring s("Five pineapples");
QStringt =s.md(5 4); Il t == "pine"

See also left() [p. 200] and right() [p. 206].
Examples: network/mail/smtp.cpp and gqmag/qmag.cpp.
QString QString::number (long n, int base = 10) [static]

A convenience function that returns a string equivilant of the number n to base base, which is 10 by default and must
be between 2 and 36.

String Class Reference 202
QString

long a = 63;
String str = QString::nunber(a, 16); [l str == "3f"
@String str = QString::nunber(a, 16). upper(); [l str == "3F"

See also setNum() [p. 209].

Examples: action/application.cpp, application/application.cpp, fonts/simple-qfont-demo/viewer.cpp,
helpviewer/helpwindow.cpp, mdi/application.cpp and sql/overview/extract/main.cpp.

QString QString::number (ulong n, int base = 10) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

See also setNum() [p. 209].

QString QString::number (int n, int base = 10) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

See also setNum() [p. 209].

QString QString::number (uint n, int base = 10) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

A convenience factory function that returns a string representation of the number n to the base base, which is 10 by
default and must be between 2 and 36.

See also setNum() [p. 209].

QString QString::number (double n, char f = ’g’, int prec = 6) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Argument n is formatted according to the f format specified, which is g by default, and can be any of the following:

e ¢ - format as [-]9.9¢e[+]-1999

e E- format as [-]19.9E[+]-1999

e f - format as [-]9.9

e g -use e or f format, whichever is the most concise

e G-use Eorf format, whichever is the most concise
In all cases the number of digits after the decimal point is equal to the precision specified in prec.
double d = 12. 34,
QString ds = QString("'E format, precision 3, gives ")
.arg(d, 0, "E, 3);
Il ds == "1.234E+001"

See also setNum() [p. 209].

String Class Reference 203
QString

QString::operator const char * () const
Returns latin1(). Be sure to see the warnings documented there. Note that for new code which you wish to be strictly
Unicode-clean, you can define the macro QT _NO_ASCII_CAST when compiling your code to hide this function so that

automatic casts are not done. This has the added advantage that you catch the programming error described under
operator!().

bool QString::operator! () const
Returns TRUE if it is a null string; otherwise FALSE.
QString name = get Nane();
if (!'nane)
name = "Rodney";
Note that if you say
QString name = get Nane();
if (name)

doSonet hi ngW t h(nane) ;

It will call "operator const char*()", which is inefficent; you may wish to define the macro QT_NO_ASCII_CAST when
writing code which you wish to remain Unicode-clean.

When you want the above semantics, use:
QString name = get Nane();

if (!'nanme.isNull())
doSonet hi ngW t h(nane) ;

QString & QString::operator+= (const QString & str)

Appends str to the string and returns a reference to the string.

QString & QString::operator+= (QChar c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Appends c to the string and returns a reference to the string.

QString & QString::operator+= (char c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Appends c to the string and returns a reference to the string.

QString & QString::operator= (QChar c)

Sets the string to contain just the single character c.

QString Class Reference 204

QString & QString::operator= (const QString & s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Assigns a shallow copy of s to this string and returns a reference to this string. This is very fast because the string isn’t
actually copied.

QString & QString::operator= (const char * str)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Assigns a deep copy of str, interpreted as a classic C string to this string and returns a reference to this string.
If str is 0, then a null string is created.

See also isNull() [p. 199].

QString & QString::operator= (const QCString & cs)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Assigns a deep copy of cs, interpreted as a classic C string, to this string and returns a reference to this string.

QString & QString::operator= (char c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the string to contain just the single character c.

QChar QString::operator[] (int i) const

Returns the character at index i, or QChar::null if i is beyond the length of the string.

If the QString is not const (i.e., const QString) or const& (i.e., const QString&), then the non-const overload of opera-
tor[] will be used instead.

QCharRef QString::operator[] (inti)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

The function returns a reference to the character at index i. The resulting reference can then be assigned to, or used
immediately, but it will become invalid once further modifications are made to the original string.

If i is beyond the length of the string then the string is expanded with QChar::nulls, so that the QCharRef references a
valid (null) character in the string.

The QCharRef internal class can be used much like a constant QChar, but if you assign to it, you change the original
string (which will detach itself because of QString’s copy-on-write semantics). You will get compilation errors if you
try to use the result as anything but a QChar.

String Class Reference 205
QString

QString & QString::prepend (const QString & s)

Inserts s at the beginning of the string and returns a reference to the string.
Equivalent to insert(0, s).
QString string = "42";

string.prepend("The answer is ");
[l string == "The answer is 42"

See also insert() [p. 198].

QString & QString::prepend (char ch)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts ch at the beginning of the string and returns a reference to the string.
Equivalent to insert(0, ch).

See also insert() [p. 198].

QString & QString::prepend (QChar ch)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts ch at the beginning of the string and returns a reference to the string.
Equivalent to insert(0, ch).

See also insert() [p. 198].

QChar & QString::ref (uint i)
Returns the QChar at index i by reference, expanding the string with QChar::null if necessary. The resulting reference
can be assigned to, or otherwise used immediately, but becomes invalid once furher modifications are made to the

string.

QString string("ABCDEF");
QChar ch = string.ref(3); [l ¢ch="D

See also constref() [p. 1941.

QString & QString::remove (uint index, uint len)

Removes len characters starting at position index from the string and returns a reference to the string.
If index is beyond the length of the string, nothing happens. If index is within the string, but index plus len is beyond
the end of the string, the string is truncated at position index.

QString string("Mntreal");
string.remove(1, 4); Il string == "Meal"

QString Class Reference 206

See also insert() [p. 198] and replace() [p. 206].

QString & QString::replace (uint index, uint len, const QString & s)

Replaces len characters starting at position index from the string with s, and returns a reference to the string.

If index is beyond the length of the string, nothing is deleted and s is appended at the end of the string. If index is valid,
but index plus len is beyond the end of the string, the string is truncated at position index, then s is appended at the
end.

QString string("Say yes!");
string = string.replace(4, 3, "NO');
/] string == "Say NO"

See also insert() [p. 198] and remove() [p. 205].

Examples: listviews/listviews.cpp, network/networkprotocol/nntp.cpp and gmag/qmag.cpp.

QString & QString::replace (uint index, uint len, const QChar * s, uint slen)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Replaces len characters starting at position index by slen characters of QChar data from s, and returns a reference to
the string.

See also insert() [p. 198] and remove() [p. 205].

QString & QString::replace (const QRegExp & rx, const QString & str)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Replaces every occurrence of the regexp rx in the string with str. Returns a reference to the string.

@String string = "banana";
string = string.replace(QRegExp("an"),

nn

); Il string == "ba"

See also find() [p. 195] and findRev() [p. 196].

QString QString::right (uint len) const

Returns a string that contains the len rightmost characters of the string.

If len is greater than the length of the string then the whole string is returned.

@String string("Pineapple");
String t =string.right(5); Il t == "apple"

See also left() [p. 200], mid() [p. 201] and isEmpty() [p. 199].

Example: fileiconview/qfileiconview.cpp.

QString Class Reference 207

QString QString::rightJustify (uint width, QChar fill = ’’, bool truncate = FALSE) const

Returns a string of length width that contains the fill character followed by the string.
If truncate is FALSE and the length of the string is more than width, then the returned string is a copy of the string.

If truncate is TRUE and the length of the string is more than width, then the resulting string is truncated at position
width.

QString string("apple");
QString t = string.rightJustify(8, '."); [/ t ="... apple"

See also leftJustify() [p. 200].

QString QString::section (QChar sep, int start, int end = Oxffffffff, int flags =
SectionDefault) const

This function returns a section of the string.

This string is treated as a sequence of fields separated by the character, sep. The returned string consists of the fields
from position start to position end inclusive. If end is not specified, all fields from position start to the end of the string
are included.

The flags argument can be used to affect some aspects of the function’s behaviour, e.g. whether to be case sensitive,
whether to skip empty fields and how to deal with leading and trailing separators; see SectionFlags.

@string csv("forename, ni ddl enane, sur name, phone");
String s = csv.section(',", 2, 2); [/ s == "surname"

@String path("/usr/local/bin/nyapp"); // First field is enpty

QString s = path.section(/', 3, 4); [/ s == "bin/nyapp"
QString s = path.section('/', 3, 3, SectionSkipEnpty); // s == "nyapp"

If start or end is negative, we count fields from the right of the string, the right-most field being -1, the one from
right-most field being -2, and so on.

@String csv("forename, ni ddl enane, sur nare, phone");
@String s = csv.section(',", -3, -2); [/ s == "niddl enane, surname"

@String path("/usr/local/bin/nyapp"); // First field is enpty
QString s = path.section('/', -1); /] s == "nyapp"

See also QStringList::split() [p. 222].

QString QString::section (char sep, int start, int end = Oxffffffff, int flags = SectionDefault)
const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QString Class Reference 208

QString QString::section (const char * sep, int start, int end = Oxffffffff, int flags =
SectionDefault) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QString QString::section (const QString & sep, int start, int end = Oxffffffff, int flags =
SectionDefault) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This function returns a section of the string.

This string is treated as a sequence of fields separated by the string, sep. The returned string consists of the fields from
position start to position end inclusive. If end is not specified, all fields from position start to the end of the string are
included.

The flags argument can be used to affect some aspects of the function’s behaviour, e.g. whether to be case sensitive,
whether to skip empty fields and how to deal with leading and trailing separators; see SectionFlags.

QString data("forenane**n ddl enane**sur nane**phone");
String s = data.section("**", 2, 2); // s == "surname"

If start or end is negative, we count fields from the right of the string, the right-most field being -1, the one from
right-most field being -2, and so on.

QString data("forenane**n ddl enane**sur nane**phone");
QString s = data.section("**", -3, -2); [/ s == "m ddl ename**sur nane"

See also QStringList::split() [p. 222].

QString QString::section (const QRegExp & reg, int start, int end = Oxffffffff, int flags =
SectionDefault) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This function returns a section of the string.

This string is treated as a sequence of fields separated by the regular expression, reg. The returned string consists of
the fields from position start to position end inclusive. If end is not specified, all fields from position start to the end of
the string are included.

The flags argument can be used to affect some aspects of the function’s behaviour, e.g. whether to be case sensitive,
whether to skip empty fields and how to deal with leading and trailing separators; see SectionFlags.

Qtring line("forenane\tniddl ename surname \t \t phone");
QRegExp sep("\s+");
QString s = line.section(sep, 2, 2); // s == "surnane"

If start or end is negative, we count fields from the right of the string, the right-most field being -1, the one from
right-most field being -2, and so on.

QString Class Reference 209

QString line("forenane\tniddl enane surname \t \t phone")
QRegExp sep("\\s+");
String s = line.section(sep, -3, -2); // s == "niddl ename surnane"
Warning: Section on QRegExp is much more expensive than the overloaded string and character versions.

See also QStringList::split() [p. 222] and simplifyWhiteSpace() [p. 2111].

void QString::setExpand (uint index, QChar c)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Sets the character at position index to ¢ and expands the string if necessary, filling with spaces.

This method is redundant in Qt 3.x, because operator[] will expand the string as necessary.

QString & QString::setLatin1 (const char * str, int len = -1)

Sets this string to str, interpreted as a classic Latinl C string. If len is -1 (the default), then it is set to strlen(str).

m

If str is 0 a null string is created. If str is

See also isNull() [p. 199] and isEmpty() [p. 199].

, an empty string is created.

void QString::setLength (uint newLen)

Ensures that at least newLen characters are allocated to the string, and sets the length of the string to newLen. Any new
space allocated contains arbitrary data.

If newLen is 0, then the string becomes empty, unless the string is null, in which case it remains null.

This function always detaches the string from other references to the same data.

This function is useful for code that needs to build up a long string and wants to avoid repeated reallocation. In this

example, we want to add to the string until some condition is true, and we’re fairly sure that size is big enough:

QString result;
int resultlLength = 0;
result.setlLength(newLen) // allocate some space
while (...) {
result[resultlength++] = ... /] fill (part of) the space with data
}

result.truncate[resultLength]; // and get rid of the undefined junk

If newLen is an underestimate, the worst that will happen is that the loop will slow down.

See also truncate() [p. 2141, isNull() [p. 1991, isEmpty() [p. 1991 and length() [p. 200].

QString & QString::setNum (long n, int base = 10)

Sets the string to the printed value of n in base base and returns a reference to the string.

The base is 10 by default and must be between 2 and 36.

String Class Reference 210
QString

QString string;
string = string.setNun(1234); [l string == "1234"

QString & QString::setNum (short n, int base = 10)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the printed value of n in base base and returns a reference to the string.

The base is 10 by default and must be between 2 and 36.

QString & QString::setNum (ushort n, int base = 10)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the printed value of n in base base and returns a reference to the string.

The base is 10 by default and must be between 2 and 36.

QString & QString::setNum (int n, int base = 10)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the printed value of n in base base and returns a reference to the string.

The base is 10 by default and must be between 2 and 36.

QString & QString::setNum (uint n, int base = 10)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the printed value of n in base base and returns a reference to the string.

The base is 10 by default and must be between 2 and 36.

QString & QString::setNum (ulong n, int base = 10)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the printed value of n in base base and returns a reference to the string.

The base is 10 by default and must be between 2 and 36.

QString & QString::setNum (float n, char f = ’g’, int prec = 6)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the printed value of n, formatted in format f with precision prec, and returns a reference to the string.

The format f can be 'f’, 'F’, ’e’, 'E’, ’g’ or 'G’. See arg() for an explanation of the formats.

String Class Reference 211
QString

QString & QString::setNum (double n, char f =’g’, int prec = 6)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the string to the printed value of n, formatted in format f with precision prec, and returns a reference to the string.

The format f can be ’f’, ’F’, ’e’, ’F’, ’g’ or 'G’. See arg() for an explanation of the formats.

QString & QString::setUnicode (const QChar * unicode, uint len)
Resizes the string to len characters and copies unicode into the string. If unicode is null, nothing is copied, but the string

is still resized to len. If len is zero, then the string becomes a null string.

See also setlLatin1() [p. 209] and isNull() [p. 199].

QString & QString::setUnicodeCodes (const ushort * unicode as_ushorts, uint len)
Resizes the string to len characters and copies unicode_as_ushorts into the string (on some X11 client platforms this will
involve a byte-swapping pass).

If unicode_as_ushorts is null, nothing is copied, but the string is still resized to len. If len is zero, the string becomes a
null string.

See also setLatin1() [p. 209] and isNull() [p. 199].

QString QString::simplifyWhiteSpace () const
Returns a string that has whitespace removed from the start and the end of the string, and any sequence of internal
whitespace is replaced with a single space.

Whitespace means any character for which QChar::isSpace() returns TRUE. This includes UNICODE characters with
decimal values 9 (TAB), 10 (LF), 11 (VT), 12 (FF), 13 (CR), and 32 (Space).

QString string =" lots\t of\nwhite space ";
QString t = string.sinplifyWiteSpace();
/I 't =="lots of white space"

See also stripWhiteSpace() [p. 212].

QString & QString::sprintf (const char * cformat, ...)

Safely builds a formatted string from the format string cformat and an arbitrary list of arguments. The format string
supports all the escape sequences of printf() in the standard C library.

The %s escape sequence expects a utf8() encoded string. The format string cformat is expected to be in latinl. If you
need a unicode format string, use arg() instead. For typesafe string building, with full Unicode support, you can use
QTextOStream like this:

@tring str;

QString s = ...;

int x =...;

Qlext CStrean(&str) << s << " : " << X;

String Class Reference 212
QString

For translations, especially if the strings contains more than one escape sequence, you should consider using the arg()
function instead. This allows the order of the replacements to be controlled by the translator, and has Unicode support.

See also arg() [p. 190].

Examples: dclock/dclock.cpp, forever/forever.cpp, layout/layout.cpp, qmag/qmag.cpp, scrollview/scrollview.cpp,
tooltip/tooltip.cpp and xform/xform.cpp.

bool QString::startsWith (const QString & s) const

Returns TRUE if the string starts with s; otherwise it returns FALSE.

@String string("Bananas");
bool a = string.startsWth("Ban"); Il a == TRUE

See also endsWith() [p. 195].

QString QString::stripWhiteSpace () const

Returns a string that has whitespace removed from the start and the end.

Whitespace means any character for which QChar::isSpace() returns TRUE. This includes UNICODE characters with
decimal values 9 (TAB), 10 (LF), 11 (VT), 12 (FF), 13 (CR) and 32 (Space), and may also include other Unicode
characters.

" n

QString string = white space ;
@String s = string.stripWiteSpace(); Il s == "white space"

See also simplifyWhiteSpace() [p. 211].

double QString::toDouble (bool * ok = 0) const

Returns the string converted to a doubl e value.

If a conversion error occurs, *ok is set to FALSE (unless ok is null, the default) and 0 is returned. Otherwise, *ok is set
to true.

QString string("1234.56");
doubl e a = string.toDouble(); // a == 1234.56

See also number() [p. 201].

float QString::toFloat (bool * ok = 0) const

Returns the string converted to a f| oat value.

If a conversion error occurs, *ok is set to FALSE (unless ok is null, the default) and 0 is returned. Otherwise, *ok is set
to true.

See also number() [p. 201].

QString Class Reference 213

int QString::toInt (bool * ok = 0, int base = 10) const

Returns the string converted to an i nt value to the base base, which is 10 by default and must be between 2 and 36.

If *ok is nonnull, and is TRUE then there have been no errors in the conversion. If *ok is nonnull, and is FALSE, then
the string is not a number at all or it has invalid characters at the end.

QString str("FF");

bool ok;
int hex = str.tolnt(&k, 16); /'l hex == 255, ok == TRUE
int dec = str.tolnt(&k, 10); /1 dec == 0, ok == FALSE

See also number() [p. 201].

long QString::toLong (bool * ok = 0, int base = 10) const

Returns the string converted to a | ong value to the base base, which is 10 by default and must be between 2 and 36.

If a conversion error occurs, *ok is set to FALSE (unless ok is null, the default) and O is returned. Otherwise, *ok is set
to true.

See also number() [p. 201].

short QString::toShort (bool * ok = 0, int base = 10) const

Returns the string converted to a short value to the base base, which is 10 by default and must be between 2 and 36.

If a conversion error occurs, *ok is set to FALSE (unless ok is null, the default) and O is returned. Otherwise, *ok is set
to true.

uint QString::toUInt (bool * ok = 0, int base = 10) const
Returns the string converted to an unsi gned i nt value to the base base, which is 10 by default and must be between 2
and 36.

If a conversion error occurs, *ok is set to FALSE (unless ok is null, the default) and O is returned. Otherwise, *ok is set
to true.

See also number() [p. 201].

ulong QString::toULong (bool * ok = 0, int base = 10) const
Returns the string converted to an unsi gned | ong value to the base base, which is 10 by default and must be between
2 and 36.

If a conversion error occurs, *ok is set to FALSE (unless ok is null, the default) and O is returned. Otherwise, *ok is set
to true.

See also number() [p. 201].

QString Class Reference 214

ushort QString::toUShort (bool * ok = 0, int base = 10) const

Returns the string converted to an unsi gned short value to the base base, which is 10 by default and must be between
2 and 36.

If a conversion error occurs, *ok is set to FALSE (unless ok is null, the default) and O is returned. Otherwise, *ok is set
to true.

void QString::truncate (uint newLen)

If newLen is less than the length of the string, then the string is truncated at position newLen. Otherwise nothing will
happen.

In Qt 1.x, it was possible to "truncate" a string to a longer length. This is no longer possible; use setLength() if you
need to extend the length of a string.

@String s = "truncate this string";
s.truncate(5); Il s == "trunc"

See also setLength() [p. 209].
Example: network/mail/smtp.cpp.
const QChar * QString::unicode () const

Returns the Unicode representation of the string. The result remains valid until the string is modified.

QString QString::upper () const
Returns a string that is the string converted to uppercase.

QString string("Text");
str = string. upper(); /] t == "TEXT"

See also lower() [p. 201].

Examples: scribble/scribble.cpp and sql/overview/custom1/main.cpp.

QCString QString::utf8 () const

Returns the string encoded in UTF8 format.
See QTextCodec for more diverse coding/decoding of Unicode strings.

See also QString::fromUtf8() [p. 1981, local8Bit() [p. 200] and latin1() [p. 199].

String Class Reference 215
QString

Related Functions

bool operator!= (const QString & s1, const QString & s2)

Returns TRUE if s1 is not equal to s2 or FALSE if they are equal. Note that a null string is not equal to an empty string
which is nonnull.

Equivalent to compare(s1, s2) != 0.

bool operator!= (const QString & s1, const char * s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 is not equal to s2 or FALSE if they are equal. Note that a null string is not equal to an empty string
which is nonnull.

Equivalent to compare(s1, s2) != 0.

bool operator!= (const char * s1, const QString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 is not equal to s2 or FALSE if they are equal. Note that a null string is not equal to an empty string
which is nonnull.

Equivalent to compare(s1, s2) != 0.

const QString operator+ (const QString & s1, const QString & s2)

Returns a string which is the result of concatenating the string s1 and the string s2.

Equivalent to s1.append(s2).

const QString operator+ (const QString & s1, const char * s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns a string which is the result of concatenating the string s1 and character s2.

Equivalent to s1.append(s2).

const QString operator+ (const char * s1, const QString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a string which is the result of concatenating the character s1 and string s2.

const QString operator+ (const QString & s, char c¢)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QString Class Reference 216

Returns a string which is the result of concatenating the string s and character c.

Equivalent to s.append(c).

const QString operator+ (char c, const QString & s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns a string which is the result of concatenating the character ¢ and string s.

Equivalent to s.prepend(c).

bool operator< (const QString & s1, const char * s2)
Returns TRUE if s1 is lexically less than s2 or FALSE if it is not. The comparison is case sensitive. Note that a null string
is not equal to an empty string which is nonnull.

Equivalent to compare(s1, s2) < O.

bool operator< (const char * s1, const QString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 is lexically less than s2 or FALSE if it is not. The comparison is case sensitive. Note that a null string
is not equal to an empty string which is nonnull.

Equivalent to compare(s1, s2) < 0.

QDataStream & operator<< (QDataStream & s, const QString & str)

Writes the string str to the stream s.

See also Format of the QDataStream operators [Input/Output and Networking with Qt]

bool operator<= (const QString & s1, const char * s2)
Returns TRUE if s1 is lexically less than or equal to s2 or FALSE if it is not. The comparison is case sensitive. Note that
a null string is not equal to an empty string which is nonnull.

Equivalent to compare(s1,s2) <= 0.

bool operator<= (const char * s1, const QString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 is lexically less than or equal to s2 or FALSE if it is not. The comparison is case sensitive. Note that
a null string is not equal to an empty string which is nonnull.

Equivalent to compare(s1, s2) <= 0.

QString Class Reference 217

bool operator== (const QString & s1, const QString & s2)
Returns TRUE if s1 is equal to s2 or FALSE if they are different. Note that a null string is not equal to a nonnull empty
string.

Equivalent to compare(s1, s2) != 0.

bool operator== (const QString & s1, const char * s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 is equal to s2 or FALSE if they are different. Note that a null string is not equal to an empty string
which is nonnull.

Equivalent to compare(s1, s2) == 0.

bool operator== (const char * s1, const QString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 is equal to s2 or FALSE if they are different. Note that a null string is not equal to an empty string
which is nonnull.

Equivalent to compare(s1, s2) ==

bool operator> (const QString & s1, const char * s2)

Returns TRUE if s1 is lexically greater than s2 or FALSE if it is not. The comparison is case sensitive. Note that a null
string is not equal to an empty string which is nonnull.

Equivalent to compare(s1, s2) > O.

bool operator> (const char * s1, const QString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if s1 is lexically greater than s2 or FALSE if it is not. The comparison is case sensitive. Note that a null
string is not equal to an empty string which is nonnull.

Equivalent to compare(s1, s2) > 0.

bool operator>= (const QString & s1, const char * s2)

Returns TRUE if s1 is lexically greater than or equal to s2 or FALSE if it is not. The comparison is case sensitive. Note
that a null string is not equal to an empty string which is nonnull.

Equivalent to compare(s1, s2) >= 0.

bool operator>= (const char * s1, const QString & s2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QString Class Reference 218

Returns TRUE if s1 is lexically greater than or equal to s2 or FALSE if it is not. The comparison is case sensitive. Note
that a null string is not equal to an empty string which is nonnull.

Equivalent to compare(s1, s2) >= 0.

QDataStream & operator>> (QDataStream & s, QString & str)

Reads a string from the stream s into string str.

See also Format of the QDataStream operators [Input/Output and Networking with Qt]

QStringList Class Reference

The QStringList class provides a list of strings.
#include <gstringlist.h>

Inherits QValueList [p. 226] <QString>.

Public Members

m QStringList ()

m QStringList (const QStringList & 1)

m QStringList (const QValueList<QString> & 1)

m QStringList (const QString & i)

m QStringList (const char * i)

= void sort ()

m QString join (const QString & sep) const

m QStringList grep (const QString & str, bool cs = TRUE) const
m QStringList grep (const QRegExp & expr) const

Static Public Members

m QStringList fromStrList (const QStrList & ascii)

m QStringList split (const QString & sep, const QString & str, bool allowEmptyEntries = FALSE)
m QStringList split (const QChar & sep, const QString & str, bool allowEmptyEntries = FALSE)

m QStringList split (const QRegExp & sep, const QString & str, bool allowEmptyEntries = FALSE)

Detailed Description

The QStringList class provides a list of strings.

It is used to store and manipulate strings that logically belong together. Basically QStringList is a QValueList of QString
objects. As opposed to QStrList, which stores pointers to characters, QStringList deals with real QString objects. It is
the class of choice whenever you work with Unicode strings. QStringList is part of the Qt Template Library.

Like QString itself, QStringList objects are implicitly shared. Passing them around as value-parameters is both fast and
safe.

Strings can be added to a list using append(), operator+=() or operator<<(), e.g.

219

QStringList Class Reference 220

QStringList fonts;

fonts.append("Tinmes");

fonts += "Courier";

fonts += "Courier New';

fonts << "Helvetica [Cronyx]" << "Helvetica [Adobe]";

String lists have an iterator, QStringList::Iterator(), e.g.
for (QStringList::Iterator it = fonts.begin(); it !=fonts.end(); ++it) {
cout << *jit << "M
}
cout << endl;
/'l Qutput:
/1 Times: Courier:Courier New Helvetica [Cronyx]:Helvetica [Adobe]:

You can concatenate all the strings in a string list into a single string (with an optional separator) using join(), e.g.

QString allFonts = fonts.join(", ");
cout << allFonts << endl;
/1 Qutput:

/I Times, Courier, Courier New, Helvetica [Cronyx], Helvetica [Adobe]

You can sort the list with sort(), and extract a new list which contains only those strings which contain a particular
substring (or match a particular regular expression) using the grep() functions, e.g.

fonts.sort();

cout << fonts.join(", ") << endl;

/1 Qutput:

/I Courier, Courier New, Helvetica [Adobe], Helvetica [Cronyx], Tines

QStringList helveticas = fonts.grep("Helvetica");
cout << helveticas.join(", ") << endl;

/1 Qutput:
/1 Helvetica [Adobe], Helvetica [Cronyx]

Existing strings can be split into string lists with character, string or regular expression separators, e.g.
String s = "Red\t G een\t Bl ue";
@StringList colors = QStringList::split("\t", s);
cout << colors.join(", ") << endl;

/'l Qutput:
/! Red, Geen, Blue

See also Implicitly and Explicitly Shared Classes, Text Related Classes and Non-GUI Classes.

Member Function Documentation

QStringList::QStringList ()

Creates an empty string list.

QStringList Class Reference 221

QStringList::QStringList (const QStringList & 1)

Creates a copy of the list [. This function is very fast because QStringList is implicitly shared. However, for the
programmer this is the same as a deep copy. If this list or the original one or some other list referencing the same
shared data is modified, the modifying list first makes a copy, i.e. copy-on-write.

QStringList::QStringList (const QValueList<QString> & 1)

Constructs a new string list that is a copy of L.

QStringList::QStringList (const QString & i)
Constructs a string list consisting of the single string i. Longer lists are easily created as follows:

QStringList itens;
items << "Buy" << "Sell" << "Update" << "Value";

QStringList::QStringList (const char * i)

Constructs a string list consisting of the single latin-1 string i.

QStringList QStringList::fromStrList (const QStrList & ascii) [static]

Converts from an ASCII-QStrList ascii to a QStringList (Unicode).

QStringList QStringList::grep (const QString & str, bool ¢s = TRUE) const

Returns a list of all strings containing the substring str.

If cs is TRUE, the grep is done case-sensitively; otherwise case is ignored.

QStringList QStringList::grep (const QRegExp & expr) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns a list of all the strings that contain a substring that matches the regular expression expr.

QString QStringList::join (const QString & sep) const

Joins the string list into a single string with each element separated by the string sep.

See also split() [p. 222].

QStringList Class Reference 222

void QStringList::sort ()

Sorts the list of strings in ascending case-sensitive order.

Sorting is very fast. It uses the Qt Template Library’s efficient HeapSort implementation that has a time complexity of
O(n*log n).

If you want to sort your strings in an arbitrary order consider using a QMap. For example you could use a
QMap<QString,QString> to create a case-insensitive ordering (e.g. mapping the lowercase text to the text), or a
QMap<int,QString> to sort the strings by some integer index, etc.

QStringList QStringList::split (const QRegExp & sep, const QString & str,
bool allowEmptyEntries = FALSE) [static]
Splits the string str into strings wherever the regular expression sep occurs, and returns the list of those strings.

If allowEmptyEntries is TRUE, an empty string is inserted in the list wherever the separator matches twice without
intervening text.

For example, if you split the string "a,,b,c" on commas, split() returns the three-item list "a", "b", "c" if allowEmptyEntries
is FALSE (the default), and the four-item list "a", ", "b", "¢" if allowEmptyEntries is TRUE.

If sep does not match anywhere in str, split() returns a list consisting of the single string str.
See also join() [p. 221] and QString::section() [p. 2071].
Examples: dirview/dirview.cpp and network/httpd/httpd.cpp.

QStringList QStringList::split (const QString & sep, const QString & str,

bool allowEmptyEntries = FALSE) [static]
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This version of the function uses a QString as separator, rather than a regular expression.

If sep is an empty string, the return value is a list of one-character strings: split(QString("), "mfc") returns the
three-item list, "m", "f", "c".

If allowEmptyEntries is TRUE, an empty string is inserted in the list wherever the separator matches twice without
intervening text.

See also join() [p. 221] and QString::section() [p. 207].

QStringList QStringList::split (const QChar & sep, const QString & str,

bool allowEmptyEntries = FALSE) [static]
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This version of the function uses a QChar as separator, rather than a regular expression.

See also join() [p. 221] and QString::section() [p. 2071.

QStrList Class Reference

The QStrList class provides a doubly-linked list of char*.
#include <gstrlist.h>

Inherits QPtrList [p. 150] <char>.

Inherited by QStrIList [p. 183].

Public Members

m QStrList (bool deepCopies = TRUE)

m QStrList (const QStrList & list)

m ~QStrList ()

m QStrList & operator= (const QStrList & list)

Detailed Description

)

The QStrList class provides a doubly-linked list of char*.
If you want a string list of QStrings use QStringList.
This class is a QPtrList<char> instance (a list of char*).

QStrList can make deep or shallow copies of the strings that are inserted.

A deep copy means that memory is allocated for the string and then the string data is copied into this memory. A
shallow copy is just a copy of the pointer value and not of the string data itself.

The disadvantage of shallow copies is that because a pointer can be deleted only once, the program must put all strings
in a central place and know when it is safe to delete them (i.e. when the strings are no longer referenced by other parts
of the program). This can make the program more complex. The advantage of shallow copies is that shallow copies
consume far less memory than deep copies. It is also much faster to copy a pointer (typically 4 or 8 bytes) than to copy
string data.

A QStrList that operates on deep copies will, by default, turn on auto-deletion (see setAutoDelete()). Thus, by default
QStrList will deallocate any string copies it allocates.

The virtual compareltems() function is reimplemented and does a case-sensitive string comparison. The inSort()
function will insert strings in a sorted order. In general it is fastest to insert the strings as they come and sort() at the
end; inSort() is useful when you just have to add a few extra strings to an already sorted list.

The QStrListIterator class is an iterator for QStrList.

223

QStrList Class Reference 224

See also Collection Classes [p. 9], Text Related Classes and Non-GUI Classes.

Member Function Documentation

QStrList::QStrList (bool deepCopies = TRUE)

Constructs an empty list of strings. Will make deep copies of all inserted strings if deepCopies is TRUE, or use shallow
copies if deepCopies is FALSE.

QStrList::QStrList (const QStrList & list)

Constructs a copy of list.

If list has deep copies, this list will also get deep copies. Only the pointers are copied (shallow copy) if the other list
does not use deep copies.

QStrList::~QStrList ()

Destroys the list. All strings are removed.

QStrList & QStrList::operator= (const QStrList & list)

Assigns list to this list and returns a reference to this list.

If list has deep copies, this list will also get deep copies. Only the pointers are copied (shallow copy) if the other list
does not use deep copies.

QStrListIterator Class Reference

The QStrListIterator class is an iterator for the QStrList and QStrIList classes.
#include <gstrlist.h>

Inherits QPtrListIterator [p. 163]<char>.

Detailed Description

The QStrListIterator class is an iterator for the QStrList and QStrIList classes.
This class is a QPtrListIterator <char> instance. It can traverse the strings in the QStrList and QStrIList classes.

See also Non-GUI Classes.

225

QValuelList Class Reference

The QValuelist class is a value-based template class that provides doubly linked lists.
#include <qval uelist.h>

Inherited by QCanvasltemList [Graphics with Qt], QStringList [p. 219] and QValueStack [p. 246].

Public Members

» typedef QValueListlterator<T> iterator

m typedef QValueListConstlterator<T> const_iterator
m typedef T value_type

typedef value_type * pointer

typedef const value_type * const_pointer

typedef value type & reference

typedef const value_type & const_reference

typedef size t size_type

QValuelList ()

m QValueList (const QValueList<T> & 1)

m QValueList (const std::list<T> & 1)

~QValuelList ()

QValueList<T> & operator= (const QValueList<T> & 1)
QValueList<T> & operator= (const std::list<T> & 1)
bool operator== (const std::list<T> & 1) const

bool operator== (const QValueList<T> & 1) const
bool operator!= (const QValueList<T> & 1) const
iterator begin ()

m const_iterator begin () const

m iterator end ()

const_iterator end () const

iterator insert (iterator it, const T & x)

uint remove (const T & x)

void clear ()

QValueList<T> & operator<< (const T & x)
size_type size () const

= bool empty () const

m void push_front (const T & x)

226

QValueList Class Reference

void push_back (const T & x)

iterator erase (iterator it)

iterator erase (iterator first, iterator last)

reference front ()

const_reference front () const

reference back ()

const_reference back () const

void pop_front ()

void pop_back ()

void insert (iterator pos, size type n, const T & x)
QValueList<T> operator+ (const QValueList<T> & 1) const
QValueList<T> & operator+= (const QValueList<T> & 1)
iterator fromLast ()

const_iterator fromLast () const

bool isEmpty () const

iterator append (const T & x)

iterator prepend (const T & x)

iterator remove (iterator it)

T & first ()

const T & first () const

T & last)

const T & last () const

T & operator[] (size_typei)

const T & operator[] (size typei) const

iterator at (size_type i)

const_iterator at (size type i) const

iterator find (const T & x)

const_iterator find (const T & x) const

iterator find (iterator it, const T & x)

const_iterator find (const_iterator it, const T & x) const
int findIndex (const T & x) const

size_type contains (const T & x) const

size_type count () const

QValuelist<T> & operator+= (const T & x)
typedef QValueListIterator<T> Iterator

typedef QValueListConstlterator <T> ConstIterator

Related Functions

m QDataStream & operator< < ((QDataStream & s, const QValueList<T> & 1)

QDataStream & operator>> (QDataStream & s, QValueList<T> & 1)

227

QValueList Class Reference 228

Detailed Description

The QValuelist class is a value-based template class that provides doubly linked lists.

QValuelList is a Qt implementation of an STL-like list container. It can be used in your application if the standard | i st
is not available. QValuelList is part of the Qt Template Library.

QValueList<T> defines a template instance to create a list of values that all have the class T. Note that QValueList does
not store pointers to the members of the list; it holds a copy of every member. This is why these kinds of classes are
called "value based"; QPtrList and QDict are "pointer based".

QValuelList contains and manages a collection of objects of type T and provides iterators that allow the contained objects
to be addressed. QValueList owns the contained items. For more relaxed ownership semantics, see QPtrCollection and
friends which are pointer-based containers.

Some classes cannot be used within a QValueList, for example, all classes derived from QObject and thus all classes
that implement widgets. Only values can be used in a QValueList. To qualify as a value the class must provide:

e A copy constructor
e An assignment operator
e A default constructor, i.e. a constructor that does not take any arguments.

Note that C++ defaults to field-by-field assignment operators and copy constructors if no explicit version is supplied.
In many cases this is sufficient.

QValuelList’s function naming is consistent with the other Qt classes (e.g., count(), isEmpty()). QMap also provides
extra functions for compatibility with STL algorithms, such as size() and empty(). Programmers already familiar with
the STL | i st can use these functions instead.

Example:

cl ass Enpl oyee

{
public:
Enpl oyee(): sn(0) {}
Enpl oyee(const QStringé& forenane, const QString& surnane, int salary)
: fn(forenane), sn(surnane), sal(salary)
{}
QString forename() const { return fn; }
@String surnane() const { return sn; }
int salary() const { return sal; }
void setSalary(int salary) { sal = salary; }
private:
QString fn;
QString sn;
int sal;
b

typedef Qval uelLi st Enpl oyeeli st;
Enpl oyeeList |ist;

l'ist.append(Enployee("John", "Doe", 50000));
l'ist.append(Enployee("Jane", "WIliams", 80000));

QValueList Class Reference 229

|'ist.append(Enployee("Ton', "Jones", 60000));

Enpl oyee mary("Mary", "Hawthorne", 90000);
l'ist.append(mary);
mary. set Sal ary(100000);

Enpl oyeeList::iterator it;
for (it =1list.begin(); it !=1list.end(); ++it)
cout << (*it).surname().latinl() << ", " <<
(*it).forename().latinl() << " earns " <<

(*it).salary() << endl;

/1 Qutput:

/1 Doe, John earns 50000

Il WIlians, Jane earns 80000
/1 Hawt horne, Mary earns 90000
/1 Jones, Tom earns 60000

Notice that the latest changes to Mary’s salary did not affect the value in the list because the list created a copy of
Mary’s entry.

There are several ways to find items in the list. The begin() and end() functions return iterators to the beginning and
end of the list. The advantage of getting an iterator is that you can move forward or backward from this position
by incrementing/decrementing the iterator. The iterator returned by end() points to the item which is one past the
last item in the container. The past-the-end iterator is still associated with the list it belongs to, however it is not
dereferenceable; operator* () will not return a well-defined value. If the list is empty(), the iterator returned by begin()
will equal the iterator returned by end().

Another way to find an item in the list is by using the qFind() algorithm. For example:

Qval ueList list;

Qval ueList::iterator it = qFind(list.begin(), list.end(), 3);
if (it !=list.end())
Il it points to the found item

It is safe to have multiple iterators on the list at the same time. If some member of the list is removed, only iter-
ators pointing to the removed member become invalid. Inserting into the list does not invalidate any iterator. For
convenience, the function last() returns a reference to the last item in the list, and first() returns a reference to the
the first item. If the list is empty(), both last() and first() have undefined behavior (your application will crash or do
unpredictable things). Use last() and first() with caution, for example:

Qval ueList list;
list.append(1);
list.append(2);
list.append(3)

if ('list.empty()) {
Il OK, nodify the first item
int&i =1list.first();
i = 18;

QValueList Class Reference 230

Qval ueLi st dlist;
double d = dlist.last(); // undefined

Because QValueList is value-based there is no need to be careful about deleting items in the list. The list holds its own
copies and will free them if the corresponding member or the list itself is deleted. You can force the list to free all of its
items with clear().

QValuelList is shared implicitly, which means it can be copied in constant time. If multiple QValueList instances share
the same data and one needs to modify its contents, this modifying instance makes a copy and modifies its private
copy; therefore it not affect the other instances. This is often called "copy on write". If a QValuelList is being used in a
multi-threaded program, you must protect all access to the list. See QMutex.

There are several ways to insert items into the list. The prepend() and append() functions insert items at the beginning
and the end of the list respectively. The insert() function comes in several flavors and can be used to add one or more
items at specific positions within the list.

Items can be also be removed from the list in several ways. There are several variants of the remove() function, which
removes a specific item from the list. The remove() function will find and remove items according to a specific item
value.

Lists can be also sorted with the sort() function, or can be sorted using the Qt Template Library. For example with
qHeapSort():

Example:

Qval uelLi st

| . append(5
| . append(8
| . append(3
| . append(4);
qHeapSort(|);

):
)
).
)

See also QValuelListIterator [p. 243], Qt Template Library Classes, Implicitly and Explicitly Shared Classes and
Non-GUI Classes.

Member Type Documentation

QValuelList::Constlterator

This iterator is an instantiation of QValueListConstIterator for the same type as this QValueList. In other words, if
you instantiate QValueList, Constlterator is a QValueListConstIterator. Several member function use it, such as QVval-
uelList::begin(), which returns an iterator pointing to the first item in the list.

Functionally, this is almost the same as Iterator. The only difference is you cannot use Constlterator for non-const
operations, and that the compiler often can generate better code if you use Constlterator.

See also QValuelListIterator [p. 243] and Iterator [p. 230].

QValuelList::Iterator

This iterator is an instantiation of QValueListlterator for the same type as this QValueList. In other words, if you
instantiate QValuelList, Iterator is a QValueListIterator. Several member function use it, such as QValueList::begin(),
which returns an iterator pointing to the first item in the list.

QValueList Class Reference 231

Functionally, this is almost the same as ConstIterator. The only difference is you cannot use ConstIterator for non-const
operations, and that the compiler often can generate better code if you use Constlterator.

See also QValueListIterator [p. 243] and Constlterator [p. 230].

QValuelList::const_iterator

The list’s const iterator type, QValueListConstIterator.

QValuelList::const_pointer

The const pointer to T type.

QValuelList::const_reference

The const reference to T type.

QValuelList::iterator

The list’s iterator type, QValueListIterator.

QValuelList::pointer

The pointer to T type.

QValuelList::reference

The reference to T type.

QValuelist::size_type

An unsigned integral type, used to represent various sizes.

QValuelList::value_type

The type of the object stored in the list, T.

Member Function Documentation

QValueList::QValueList ()

Constructs an empty list.

QValueList Class Reference 232

QValueList::QValueList (const QValueList<T> & 1)

Constructs a copy of L.
This operation takes O(1) time because QValuelList is shared implicitly.

The first modification to a list will take O(n) time.

QValuelList::QValueList (const std::list<T> & 1)

Contructs a copy of L.

This constructor is provided for compatibility with STL containers.

QValueList::~QValueList ()

Destroys the list. References to the values in the list and all iterators of this list become invalidated. Note that it is
impossible for an iterator to check whether or not it is valid - QValueList is highly tuned for performance, not for error
checking.

iterator QValueList::append (const T & x)

Inserts x at the end of the list.
See also insert() [p. 236] and prepend() [p. 238].

Examples: checklists/checklists.cpp and fonts/simple-qfont-demo/viewer.cpp.

const_iterator QValueList::at (size_type i) const

Returns an iterator pointing to the item at position i in the list, or end() if the index is out of range.

Warning: This function uses a linear search and can be extremely slow for large lists. QValueList is not optimized for
random item access. If you need random access use a different container, such as QValueVector.

iterator QValueList::at (size_type i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns an iterator pointing to the item at position i in the list, or end() if the index is out of range.

reference QValueList::back ()

Returns a reference to the last item. If the list contains no last item (i.e. empty() returns TRUE), the return value is
undefined.

This function is provided for STL compatibility. It is equivalent to last().

See also front() [p. 236].

QValueList Class Reference 233

const_reference QValueList::back () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

const_iterator QValueList::begin () const

Returns an iterator pointing to the first item in the list. This iterator equals end() if the list is empty.
See also first() [p. 235] and end() [p. 233].

Examples: checklists/checklists.cpp, dirview/dirview.cpp, fonts/simple-qfont-demo/viewer.cpp,
network/ftpclient/ftpmainwindow.cpp, network/ftpclient/ftpview.cpp and sql/overview/insert/main.cpp.

iterator QValuelList::begin ()

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns an iterator pointing to the first item in the list. This iterator equals end() if the list is empty.

See also first() [p. 235] and end() [p. 233].

void QValuelList::clear ()

Removes all items from the list.
See also remove() [p. 238].

size_type QValueList::contains (const T & x) const

Returns the number of occurrences of the value x in the list.

size_type QValueList::count () const

Returns the number of items in the list.

See also isEmpty() [p. 236].

bool QValueList::empty () const

Returns TRUE if the list contains no items; otherwise returns FALSE.
See also size() [p. 239].

iterator QValueList::end ()

Returns an iterator pointing behind the last item in the list. This iterator equals begin() if the list is empty.

See also last() [p. 236] and begin() [p. 233].

QValueList Class Reference 234

Examples: checklists/checklists.cpp, dirview/dirview.cpp, fonts/simple-qfont-demo/viewer.cpp,
network/ftpclient/ftpmainwindow.cpp, network/ftpclient/ftpview.cpp and sql/overview/insert/main.cpp.

const_iterator QValueList::end () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns an iterator pointing behind the last item in the list. This iterator equals begin() if the list is empty.

See also last() [p. 236] and begin() [p. 233].

iterator QValueList::erase (iterator it)

Removes the item pointed to by it from the list. No iterators other than it or other iterators pointing at the same item
as it are invalidated. Returns an iterator to the next item after it, or end() if there is no such item.

This function is provided for STL compatibility. It is equivalent to remove().

iterator QValueList::erase (iterator first, iterator last)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Deletes all items from first to last (not including last). No iterators are invalidated, except those pointing to the removed
items themselves. Returns last.

iterator QValueList::find (const T & x)

Returns an iterator pointing to the first occurrence of x in the list.

Returns end() is no item matched.

const_iterator QValueList::find (const T & x) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns an iterator pointing to the first occurrence of x in the list.

Returns end() is no item matched.

iterator QValueList::find (iterator it, const T & x)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Finds the first occurrence of x in the list starting at the position given by it.

Returns end() if no item matched.

const_iterator QValueList::find (const_iterator it, const T & x) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QValueList Class Reference 235
Finds the first occurrence of x in the list starting at the position given by it. Returns end() if no item matched.

int QValueList::findIndex (const T & x) const

Returns the index of the first occurrence of the value x. Returns -1 if no item matched.

T & QValueList::first ()

Returns a reference to the first item. If the list contains no first item (i.e. isSEmpty() returns TRUE), the return value is
undefined.

See also last() [p. 236].

Example: network/mail/smtp.cpp.

const T & QValueList::first () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

const_iterator QValueList::fromLast () const

Returns an iterator to the last item in the list, or end() if there is no last item.

Use the end() function instead. For example:

Qval ueLi st |;

Qval ueList::iterator it =1.end();
--it;
if (it !=-end())

...

iterator QValueList::fromLast ()

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns an iterator to the last item in the list, or end() if there is no last item.

Use the end() function instead. For example:

Qval ueLi st |;

Qval ueList::iterator it =1.end();
--it;
if (it !=-end())

...

QValueList Class Reference 236

reference QValueList::front ()

Returns a reference to the first item. If the list contains no first item (i.e. empty() returns TRUE), the return value is
undefined.

This function is provided for STL compatibility. It is equivalent to first().

See also back() [p. 232].

const_reference QValueList::front () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

iterator QValueList::insert (iterator it, const T & x)

Inserts the value x in front of the iterator it.
Returns an iterator pointing at the inserted item.

See also append() [p. 232] and prepend() [p. 238].

void QValueList::insert (iterator pos, size_type n, const T & x)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Inserts n copies of x before position pos.

bool QValueList::isEmpty () const

Returns TRUE if the list contains no items; otherwise returns FALSE.

See also count() [p. 233].

Examples: fonts/simple-qfont-demo/viewer.cpp, network/ftpclient/ftpmainwindow.cpp and network/mail/smtp.cpp.

T & QValueList::last ()

Returns a reference to the last item. If the list contains no last item (i.e. empty() returns TRUE), the return value is
undefined.

const T & QValuelList::last () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

bool QValueList::operator!= (const QValueList<T> & 1) const

Compares both lists.

Returns TRUE if this list and [are unequal; otherwise returns FALSE.

QValueList Class Reference 237

QValueList<T> QValuelList::operator+ (const QValueList<T> & 1) const

Creates a new list and fills it with the items of this list. Then the items of [are appended. Returns the new list.

QValueList<T> & QValueList::operator+= (const QValueList<T> & 1)

Appends the items of [to this list. Returns a reference to this list.

QValueList<T> & QValueList::operator+= (const T & x)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Appends the value x to the list. Returns a reference to the list.

QValueList<T> & QValueList::operator<< (const T & x)

Adds the value x to the end of the list.

Returns a reference to the list.

QValueList<T> & QValuelList::operator= (const QValueList<T> & 1)

Assigns [to this list and returns a reference to this list.

All iterators of the current list become invalidated by this operation. The cost of such an assignment is O(1) since
QValuelist is implicitly shared.

QValueList<T> & QValueList::operator= (const std::list<T> & 1)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Assigns the contents of [to the list.

All iterators of the current list become invalidated by this operation.

bool QValueList::operator== (const QValueList<T> & 1) const
Compares both lists.

Returns TRUE if this list and [are equal; otherwise returns FALSE.

bool QValueList::operator== (const std::list<T> & 1) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns TRUE if this list and [are equal; otherwise returns FALSE.

This operator is provided for compatibility with STL containers.

QValueList Class Reference 238

const T & QValueList::operator[] (size_type i) const

Returns a const reference to the item with index i in the list. It is up to you to check whether this item really exists.
You can do that easily with the count() function. However this operator does not check whether i is in range and will
deliver undefined results if it does not exist.

Warning: This function uses a linear search and can be extremely slow for large lists. QValueList is not optimized for
random item access. If you need random access use a different container, such as QValueVector.

T & QValueList::operator[] (size_type i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a non-const reference to the item with index i.
void QValuelList::pop_back ()
Removes the last item. If there is no last item, this operation is undefined.

This function is provided for STL compatibility.

void QValuelList::pop_front ()

Removes the first item. If there is no first item, this operation is undefined.

This function is provided for STL compatibility.

iterator QValuelList::prepend (const T & x)

Inserts x at the beginning of the list.

See also insert() [p. 236] and append() [p. 232].

void QValueList::push_back (const T & x)

Inserts x at the end of the list.

This function is provided for STL compatibility. It is equivalent to append().
void QValueList::push_front (const T & x)

Inserts x at the beginning of the list.

This function is provided for STL compatibility. It is equivalent to prepend().

iterator QValueList::remove (iterator it)

Removes the item pointed to by it from the list. No iterators other than it or other iterators pointing at the same item
as it are invalidated. Returns an iterator to the next item after it, or end() if there is no such item.

QValueList Class Reference 239
See also clear() [p. 233].

uint QValueList::remove (const T & x)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Removes all items that have value x and returns the number of removed items.

size_type QValuelist::size () const

Returns the number of items in the list.
This function is provided for STL compatibility. It is equivalent to count().
See also empty() [p. 233].

Example: network/ftpclient/ftpview.cpp.

Related Functions

QDataStream & operator<< (QDataStream & s, const QValueList<T> & 1)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes a list, [, to the stream s. The type T stored in the list must implement the streaming operator, too.

QDataStream & operator>> (QDataStream & s, QValueList<T> & 1)

Reads a list, [, from the stream s. The type T stored in the list must implement the streaming operator, too.

QValueListConstIterator Class Reference

The QValueListConstlterator class provides a const iterator for QValueList.

#include <qval uelist.h>

Public Members

typedef T value_type

typedef const T * pointer

m typedef const T & reference

m QValueListConstlterator ()

m QValuelListConstlterator (const QValueListConstIterator<T> & it)
m QValueListConstlterator (const QValueListlterator<T> & it)

m bool operator== (const QValueListConstIterator<T> & it) const
m bool operator!= (const QValueListConstIterator<T> & it) const

m const T & operator* () const

m QValueListConstlterator <T> & operator++ ()
m QValueListConstlterator<T> operator++ (int)
m QValueListConstlterator<T> & operator-- ()

m QValueListConstlterator <T> operator-- (int)

Detailed Description

The QValueListConstlterator class provides a const iterator for QValueList.

In contrast to QValueListlterator, this class is used to iterate over a const list. It does not allow modification of the
values of the list since that would break const semantics.

You can create the appropriate const iterator type by using the const _i t erat or typedef provided by QValuelList.
For more information on QValueList iterators, see QValueListIterator.

See also QValueListIterator [p. 243], QValueList [p. 226], Qt Template Library Classes and Non-GUI Classes.

240

QValueListConstIterator Class Reference 241

Member Type Documentation

QValueListConstIterator::pointer

Pointer to value_type.

QValueListConstlterator::reference

Reference to value_type.

QValueListConstlterator::value_type

The type of value.

Member Function Documentation

QValueListConstIterator::QValueListConstIterator ()

Creates un uninitialized iterator.

QValueListConstIterator::QValueListConstlIterator (const QValueListConstlterator<T> & it)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Constructs a copy of the iterator it.

QValueListConstlterator::QValueListConstIterator (const QValueListIterator<T> & it)

Constructs a copy of the iterator it.

bool QValueListConstlterator::operator! = (const QValueListConstIterator<T> & it) const

Compares this iterator with it and returns TRUE if they point to different items; otherwise returns FALSE.

const T & QValueListConstlterator::operator* () const

Asterisk operator. Returns a reference to the current iterator item.

QValueListConstlterator<T> & QValueListConstlterator::operator++ ()

Prefix ++ makes the succeeding item current and returns an iterator pointing to the new current item. The iterator
cannot check whether it reached the end of the list. Incrementing the iterator as returned by end() causes undefined
results.

QValueListConstIterator Class Reference 242

QValueListConstlterator<T> QValueListConstIterator::operator++ (int)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Postfix ++ makes the succeeding item current and returns an iterator pointing to the new current item. The iterator
cannot check whether it reached the end of the list. Incrementing the iterator as returned by end() causes undefined
results.

QValueListConstlterator<T> & QValueListConstlterator::operator-- ()

Prefix — makes the previous item current and returns an iterator pointing to the new current item. The iterator cannot
check whether it reached the beginning of the list. Decrementing the iterator as returned by begin() causes undefined
results.

QValueListConstIterator<T> QValueListConstlterator::operator-- (int)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Postfix — makes the previous item current and returns an iterator pointing to the new current item. The iterator cannot
check whether it reached the beginning of the list. Decrementing the iterator as returned by begin() causes undefined
results.

bool QValueListConstlterator::operator== (const QValueListConstlterator<T> & it) const

Compares this iterator with it and returns TRUE if they point to the same item; otherwise returns FALSE.

QValuelListIterator Class Reference

The QValuelistlterator class provides an iterator for QValueList.

#include <qval uelist.h>

Public Members

typedef T value_type

typedef T * pointer

m typedef T & reference

m QValuelListIterator ()

m QValuelistIterator (const QValueListIterator<T> & it)

m bool operator== (const QValueListIterator<T> & it) const

m bool operator!= (const QValueListlterator<T> & it) const
m const T & operator* () const

s T & operator* ()

m QValueListIterator<T> & operator++ ()

m QValueListIterator<T> operator++ (int)

m QValuelListIterator<T> & operator-- ()

m QValueListlterator<T> operator-- (int)

Detailed Description

The QValuelListIterator class provides an iterator for QValueList.

An iterator is a class for accessing the items of a container classes - a generalization of the index in an array. A pointer
into a "const char *" and an index into an "int[]" are both iterators, and the general idea is to provide that functionality
for any data structure.

The QValuelListlterator class is an iterator for QValueList instantiations. You can create the appropriate iterator type by
using the it erat or typedef provided by QValuelList.

The only way to access the items in a QValuelist is to use an iterator.
Example (see QValueList for the complete code):
Enpl oyeelist::iterator it

for (it =list.begin(); it !'=1list.end(); ++it)
cout << (*it).surname().latinl() << ", " <<

243

QValueListIterator Class Reference 244

(*it).forename().latinl() << " earns " <<
(*it).salary() << endl;

/1 Qutput:

/1 Doe, John earns 50000

/1 WIliams, Jane earns 80000

/1 Hawt horne, Mary earns 90000
/1 Jones, Tom earns 60000

QValuelList is highly optimized for performance and memory usage. This means that you must be careful: QValueList
does not know about all its iterators and the iterators don’t know to which list they belong. This makes things very
fast, but if you're not careful, you can get spectacular bugs. Always make sure iterators are valid before dereferencing
them or using them as parameters to generic algorithms in the STL or the QTL.

Using an invalid iterator is undefined (your application will probably crash).

For every Iterator there is a Constlterator. When accessing a QValueList in a const environment or if the reference or
pointer to the list is itself const, then you must use the ConstIterator. Its semantics are the same as the Iterator, but it
returns only const references.

See also QValueList [p. 226], QValueListConstIterator [p. 240], Qt Template Library Classes and Non-GUI Classes.

Member Type Documentation

QValuelListIterator::pointer

Pointer to value_type.

QValuelListIterator::reference

Reference to value_type.

QValuelListIterator::value_type

The type of value, T.

Member Function Documentation

QValuelistIterator::QValueListIterator ()

Creates un uninitialized iterator.

QValuelListIterator::QValueListIterator (const QValueListIterator<T> & it)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Constructs a copy of the iterator it.

QValueListIterator Class Reference 245

bool QValueListIterator::operator!= (const QValueListIterator<T> & it) const

Compares this iterator and it and returns TRUE if they point to different items; otherwise returns FALSE.

T & QValueListlterator::operator* ()

Asterisk operator. Returns a reference to the current iterator item.

const T & QValuelListIterator::operator* () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Asterisk operator. Returns a reference to the current iterator item.

QValuelListIterator<T> & QValueListIterator::operator++ ()

Prefix ++ makes the succeeding item current and returns an iterator pointing to the new current item. The iterator
cannot check whether it reached the end of the list. Incrementing the iterator as returned by end() causes undefined
results.

QValuelListlterator<T> QValueListIterator::operator++ (int)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Postfix ++ makes the succeeding item current and returns an iterator pointing to the new current item. The iterator
cannot check whether it reached the end of the list. Incrementing the iterator as returned by end() causes undefined
results.

QValuelListlterator<T> & QValueListlterator::operator-- ()

Prefix — makes the previous item current and returns an iterator pointing to the new current item. The iterator cannot
check whether it reached the beginning of the list. Decrementing the iterator as returned by begin() causes undefined
results.

QValuelListlterator<T> QValueListIterator::operator-- (int)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Postfix — makes the previous item current and returns an iterator pointing to the new current item. The iterator cannot
check whether it reached the beginning of the list. Decrementing the iterator as returned by begin() causes undefined
results.

bool QValuelListIterator::operator== (const QValueListIterator<T> & it) const

Compares this iterator and it and returns TRUE if they point to the same item; otherwise returns FALSE.

QValueStack Class Reference

The QValueStack class is a value-based template class that provides a stack.
#incl ude <qval uestack. h>

Inherits QValuelList [p. 226] <T>.

Public Members

QValueStack ()
~QValueStack ()

void push (const T & d)
T pop O

T&top ()

const T & top () const

Detailed Description

The QValueStack class is a value-based template class that provides a stack.

Define a template instance QValueStack<X> to create a stack of values that all have the class X. QValueStack is part of
the Qt Template Library.

Note that QValueStack does not store pointers to the members of the stack; it holds a copy of every member. That is
why these kinds of classes are called "value based"; QPtrStack, QPtrList, and QDict are "reference based".

A stack is a last in, first ut (LIFO) structure. Items are added to the top of the stack with push() and retrieved from the
top with pop(). Furthermore, top() provides access to the topmost item without removing it.

Example:

Qval ueSt ack stack;
stack. push(1);
stack. push(2);
stack. push(3);
while (! stack.isEnpty())
cout << "Item " << stack.pop() << endl;

/1 Qutput:
/[l 1tem 3
[l ltem 2

246

QValueStack Class Reference 247

[l lTtem 1

QValueStack is a specialized QValueList provided for convenience. All of QValueList’s functionality also applies to
QPtrStack, for example the facility to iterate over all elements using QValueStack::Iterator. See QValueListIterator for
further details.

Some classes cannot be used within a QValueStack, for example everything derived from QObject and thus all classes
that implement widgets. Only values can be used in a QValueStack. To qualify as a value, the class must provide

e A copy constructor
e An assignment operator

e A default constructor, i.e. a constructor that does not take any arguments.

Note that C++ defaults to field-by-field assignment operators and copy constructors if no explicit version is supplied.
In many cases this is sufficient.

See also Qt Template Library Classes, Implicitly and Explicitly Shared Classes and Non-GUI Classes.

Member Function Documentation

QValueStack::QValueStack ()

Constructs an empty stack.

QValueStack::~QValueStack ()

Destroys the stack. References to the values in the stack and all iterators of this stack become invalidated. Because
QValueStack is highly tuned for performance, you won’t see warnings if you use invalid iterators because it is impossible
for an iterator to check whether or not it is valid.

T QValueStack::pop ()

Removes the top item from the stack and returns it.

See also top() [p. 247] and push() [p. 247].

void QValueStack::push (const T & d)

Adds element, d, to the top of the stack. Last in, first out.
This function is equivalent to append().

See also pop() [p.- 247] and top() [p. 2471].

T & QValueStack::top ()

Returns a reference to the top item of the stack or the item referenced by end() if no such item exists. Note that you
must not change the value the end() iterator points to.

QValueStack Class Reference 248

This function is equivalent to last().

See also pop() [p. 2471, push() [p. 247] and QValuelList::fromLast() [p. 235].

const T & QValueStack::top () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns a reference to the top item of the stack or the item referenced by end() if no such item exists.
This function is equivalent to last().

See also pop() [p. 2471, push([p. 247] and QValuelList::fromLast() [p. 235].

QValueVector Class Reference

The QValueVector class is a value-based template class that provides a dynamic array.

#incl ude <qval uevector. h>

Public Members

m typedef T value_type

typedef value_type * pointer

typedef const value_type * const_pointer
typedef value type * iterator

typedef const value_type * const_iterator
typedef value type & reference

typedef const value type & const_reference

m typedef size t size_type

m typedef ptrdiff t difference_type

QValueVector ()

QValueVector (const QValueVector<T> & v)

QValueVector (size_typen, const T & val = T ())
QValueVector (std::vector<T> & V)

~QValueVector ()

QValueVector<T> & operator= (const QValueVector<T> & v)
QValueVector<T> & operator= (const std::vector<T> & v)
m size_type size () const

= bool empty () const

size_type capacity () const

iterator begin ()

const_iterator begin () const

iterator end ()

const_iterator end () const

reference at (size_type i, bool * ok = 0)

m const_reference at (size_type i, bool * ok = 0) const
m reference operator[] (size typei)

m const_reference operator[] (size type i) const

m reference front ()

m const_reference front () const

249

QValueVector Class Reference 250

reference back ()

const_reference back () const

void push_back (const T & x)

void pop_back ()

iterator insert (iterator pos, const T & x)

iterator insert (iterator pos, size type n, const T & x)
m void reserve (size typen)

m void resize (size typen, const T & val =T ())

m void clear ()

m iterator erase (iterator pos)

e iterator erase (iterator first, iterator last)

bool operator== (const QValueVector<T> & x)

Protected Members

m void detach ()

Detailed Description

The QValueVector class is a value-based template class that provides a dynamic array.

QValueVector is a Qt implementation of an STL-like vector container. It can be used in your application if the standard
vect or is not available. QValueVector is part of the Qt Template Library.

QValueVector<T> defines a template instance to create a vector of values that all have the class T. Please note that
QValueVector does not store pointers to the members of the vector; it holds a copy of every member. QValueVector is
said to be value based; in contrast, QPtrList and QDict are pointer based.

QValueVector contains and manages a collection of objects of type T and provides random access iterators that allow the
contained objects to be addressed. QValueVector owns the contained elements. For more relaxed ownership semantics,
see QPtrCollection and friends which are pointer-based containers.

QValueVector provides good performance if you append or remove elements from the end of the vector. If you insert or
remove elements from anywhere but the end, performance is very bad. The reason for this is that elements will need
to be copied into new positions.

Some classes cannot be used within a QValueVector - for example, all classes derived from QObject and thus all classes
that implement widgets. Only values can be used in a QValueVector. To qualify as a value the class must provide:

e A copy constructor
e An assignment operator

e A default constructor, i.e., a constructor that does not take any arguments.

Note that C++ defaults to field-by-field assignment operators and copy constructors if no explicit version is supplied.
In many cases this is sufficient.

QValueVector uses an STL-like syntax to manipulate and address the objects it contains. See this document for more
information.

Example:

QValueVector Class Reference 251

#i ncl ude <qval uevector. h>
#incl ude <gstring. h>
#incl ude

class Enpl oyee
{
public:
Enpl oyee(): s(0) {}
Enpl oyee(const QString& name, int salary)
n(nane), s(salary)
{}

QString name() const { return n; }

i nt sal ary() const { returns; }

voi d setSalary(int salary) { s =salary; }
private:

QString n;

i nt S;

}s

int main()
{
typedef Qval ueVector Enpl oyeeVect or
Enpl oyeeVector vec(4); /1 vector of 4 Enployees

vec[0]
vec[1]
vec[2]

Enpl oyee("Bi 1", 50000);
Enpl oyee(" St eve", 80000) ;
Enpl oyee("Ron", 60000);

Enpl oyee joe("Joe", 50000);
vec. push_back(joe);
j oe.set Salary(4000);

Enpl oyeeVector::iterator it;
for(it = vec.begin(); it !'=vec.end(); ++it)
printf("% earns %\n", (*it).nane().latinl(), (*it).salary())

return 0;

}

Program output:

Bill earns 50000
St eve earns 80000
Ron earns 60000
Joe earns 50000

As you can see, the latest changes to Joe’s salary did not affect the value in the vector because the vector created a
copy of Joe’s entry.

There are several ways to find items in the vector. The begin() and end() functions return iterators to the beginning
and end of the vector. The advantage of getting an iterator is that you can now move forward or backward from this
position by incrementing/decrementing the iterator. The iterator returned by end() points to the element which is one
past the last element in the container. The past-the-end iterator is still associated with the vector it belongs to, however

QValueVector Class Reference 252

it is not dereferenceable; operator* () will not return a well-defined value. If the vector is empty(), the iterator returned
by begin() will equal the iterator returned by end().

The fastest way to access an element of a vector is by using operator[]. This function provides random access and
will return a reference to the element located at the specified index. Thus, you can access every element directly, in
constant time, providing you know the location of the element. It is undefined to access an element that does not exist
(your application will probably crash). For example:

Qval ueVector vecl; // an enpty vector
vecl[10] = 4; [/ WARNING undefined, probably a crash

Qval ueVector vec2(25); // initialize with 25 el ements
vec2[10] = "Dave"; [/ K

Whenever inserting, removing or referencing elements in a vector, always make sure you are referring to valid positions.
For example:

voi d func(Qval ueVector& vec)
{
if (vec.size() > 10) {
vec[9] =99; /] X
}

¥

The iterators provided by vector are random access iterators, therefore you can use them with many generic algorithms,
for example, algorithms provided by the STL or the QTL.

Another way to find an element in the vector is by using the std::find() or qFind() algorithms. For example:

Qval ueVect or vec;

Qval ueVector::const_iterator it = gFind(vec.begin(), vec.end(), 3);
if (it !'=vector.end())
/I "it’ points to the found el ement

It is safe to have multiple iterators on the vector at the same time. Since QValueVector manages memory dynamically,
all iterators can become invalid if a memory reallocation occurs. For example, if some member of the vector is removed,
iterators that point to the removed element and to all following elements become invalidated. Inserting into the middle
of the vector will invalidate all iterators. For convenience, the function back() returns a reference to the last element
in the vector, and front() one for the first. If the vector is empty(), both back() and front() have undefined behavior
(your application will crash or do unpredictable things). Use back() and front() with caution, for example:

Qval ueVector vec(3);
vec. push_back(1);
vec. push_back(2);
vec. push_back(3);

if ('vec.empty()) {
[l OK: nodify the first el enent
int&i = vec.front();
i = 18;

QValueVector Class Reference 253

Qval ueVect or dvec;
doubl e d = dvec. back(); // undefined behavi or

Because QValueVector manages memory dynamically, it is recommended to contruct a vector with an initial size.
Inserting and removing elements happens fastest when:

e Inserting or removing elements happens at the end() of the vector

e The vector does not need to allocate additional memory

By creating a QValueVector with a sufficiently large initial size, there will be less memory allocations. Do not use an
initial size that is too big, since it will still take time to construct all the empty entries, and the extra space may be
wasted if it is never used.

Because QValueVector is value-based there is no need to be careful about deleting elements in the vector. The vector
holds its own copies and will free them if the corresponding member or the vector itself is deleted. You can force the
vector to free all of its items with clear().

QValueVector is shared implicitly, which means it can be copied in constant time. If multiple QValueVector instances
share the same data and one needs to modify its contents, this modifying instance makes a copy and modifies its private
copy; it thus does not affect the other instances. This is often called "copy on write". If a QValueVector is being used in
a multi-threaded program, you must protect all access to the vector. See QMutex.

There are several ways to insert elements into the vector. The push_back() function insert elements into the end of the
vector. The insert() can be used to add elements at specific positions within the vector (normally, inserting elements at
the end() of the vector is fastest).

Items can be also be removed from the vector in several ways. There are several variants of the erase() function which
removes a specific element, or range of elements, from the vector.

Vectors can be also sorted with various STL algorithms , or it can be sorted using the Qt Template Library. For example
with gBubbleSort():

Example:

Qval ueVect or
v. push_back
v. push_back

v(4);

(5

(8

v. push_back(3
(4

(v

)
);
);
).
)

v. push_back
qBubbl eSort

QValueVector stores its elements in contiguous memory. This means that you can use a QValueVector in any situation
that requires an array.

See also Qt Template Library Classes, Implicitly and Explicitly Shared Classes and Non-GUI Classes.

Member Type Documentation

QValueVector::const_iterator

The vector’s const iterator type.

QValueVector Class Reference 254

QValueVector::const_pointer

The const pointer to T type.

QValueVector::const_reference

The const reference to T type.

QValueVector::difference_type

A signed integral type used to represent the distance between two iterators.

QValueVector::iterator

The vector’s iterator type.

QValueVector::pointer

The pointer to T type.

QValueVector::reference

The reference to T type.

QValueVector::size type

An unsigned integral type, used to represent various sizes.

QValueVector::value_type

The type of the object stored in the vector.

Member Function Documentation

QValueVector::QValueVector ()

Constructs an empty vector without any elements. To create a vector which reserves an initial amount of space for
elements, use Qval ueVect or (si ze_type n).

QValueVector Class Reference 255

QValueVector::QValueVector (const QValueVector<T> & v)

Constructs a copy of v.
This operation costs O(1) time because QValueVector is shared implicitly.

The first modification to the vector does however take O(n) time.

QValueVector::QValueVector (size_type n, const T & val =T ())

Constructs a vector with an initial size of n elements. Each element is initialized with the value of val.

QValueVector::QValueVector (std::vector<T> & v)

Constructs a copy of v.
This operation costs O(1) time because QValueVector is shared implicitly.

The first modification to the vector does however take O(n) time.

QValueVector::~QValueVector ()

Destroys the vector, destroying all elements and freeing the memory. References to the values in the vector and all
iterators of this vector become invalidated. Note that it is impossible for an iterator to check whether or not it is valid
- QValueVector is tuned for performance, not error checking.

reference QValueVector::at (size_type i, bool * ok = 0)

Returns a reference to the element with index i. If ok is non-null, and the index i is out of range, * <en>ok</ en® is set
to FALSE and the returned reference is undefined. If the index i is within the range of the vector, and ok is non-null,
*<empok</ enP is set to TRUE and the returned reference is well defined.

const_reference QValueVector::at (size_type i, bool * ok = 0) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a const reference to the element with index i. If ok is non-null, and the index i is out of range, *<enpok</ en® is
set to FALSE and the returned reference is undefined. If the index i is within the range of the vector, and ok is non-null,
*<enpok</ en® is set to TRUE and the returned reference is well defined.

reference QValueVector::back ()

Returns a reference to the last element in the vector. If there is no last element, this function has undefined behavior.

const_reference QValueVector::back () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QValueVector Class Reference 256

Returns a const reference to the last element in the vector. If there is no last element, this function has undefined
behavior.

iterator QValueVector::begin ()

Returns an iterator pointing to the beginning of the vector. If the vector is empty(), the returned iterator will equal
end().

const_iterator QValueVector::begin () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a const iterator pointing to the beginning of the vector. If the vector is empty(), the returned iterator will equal
end().

size_type QValueVector::capacity () const

Returns the maximum number of elements possible without memory reallocation. If memory reallocation takes place,
some or all iterators may become invalidated.

void QValueVector::clear ()

Removes all elements from the vector.

void QValueVector::detach () [protected]

If the vector does not share its data with another QValueVector instance, nothing happens. Otherwise the function
creates a new copy of this data and detaches from the shared one. This function is called whenever the vector is
modified. The implicit sharing mechanism is implemented this way.

bool QValueVector::empty () const

Returns TRUE if the vector is empty, otherwise FALSE. Equivalent to size() ==0, but is faster.

iterator QValueVector::end ()

Returns an iterator pointing behind the last element of the vector.

const_iterator QValueVector::end () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a const iterator pointing behind the last element of the vector.

QValueVector Class Reference 257

iterator QValueVector::erase (iterator pos)

Removes the element at position pos and returns the position of the next element.

iterator QValueVector::erase (iterator first, iterator last)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Removes all elements from first up to but not including last and returns the position of the next element.

reference QValueVector::front ()

Returns a reference to the first element in the vector. If there is no first element, this function has undefined behavior.

const_reference QValueVector::front () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a const reference to the first element in the vector. If there is no first element, this function has undefined
behavior.

iterator QValueVector::insert (iterator pos, const T & x)

Inserts a copy of x at the position immediately before pos.

iterator QValueVector::insert (iterator pos, size_type n, const T & x)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Inserts n copies of x immediately before position x.

QValueVector<T> & QValueVector::operator= (const QValueVector<T> & v)

Assigns v to this vector and returns a reference to this vector.

All iterators of the current vector become invalidated by this operation. The cost of such an assignment is O(1) since
QValueVector is implicitly shared.

QValueVector<T> & QValueVector::operator= (const std::vector<T> & v)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Assigns v to this vector and returns a reference to this vector.

All iterators of the current vector become invalidated by this operation. The cost of such an assignment is O(1) since
QValueVector is implicitly shared.

QValueVector Class Reference 258

bool QValueVector::operator== (const QValueVector<T> & x)

Returns TRUE if each element in this vector equals each corresponding element in x, otherwise FALSE is returned.

reference QValueVector::operator[] (size_type i)

Returns a reference to the element at index i. If i is out of range, this function has undefined behavior.

const_reference QValueVector::operator[] (size_type i) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a const reference to the element at index i. If i is out of range, this function has undefined behavior.

void QValueVector::pop_back ()

Removes the last element from the vector.

void QValueVector::push_back (const T & x)

Appends a copy of x to the end of the vector.

void QValueVector::reserve (size_type n)

Increases the vector’s capacity. If n is less than or equal to capacity(), nothing happens. Otherwise, additional memory
is allocated so that capacity() will be increased to a value greater than or equal to n. All iterators will then become
invalidated. Note that the vector’s size() and the values of existing elements remain unchanged.

void QValueVector::resize (size_type n, const T & val = T ())

Changes the size of the vector to n. If n is greater than the current size(), elements are added to the end and initialized
with the value of val. If n is less than size(), elements are removed from the end. If n is equal to size() nothing happens.

size_type QValueVector::size () const

Returns the number of elements in the vector.

QVariant Class Reference

The QVariant class acts like a union for the most common Qt data types.

#incl ude <qvariant. h>

Public Members

m enum Type { Invalid, Map, List, String, StringList, Font, Pixmap, Brush, Rect, Size, Color, Palette, ColorGroup,
IconSet, Point, Image, Int, Ulnt, Bool, Double, CString, PointArray, Region, Bitmap, Cursor, SizePolicy, Date,
Time, DateTime, ByteArray, BitArray, KeySequence }

m QVariant ()

m ~QVariant ()

m QVariant (const QVariant & p)

m QVariant (QDataStream & s)

m QVariant (const QString & val)

m QVariant (const QCString & val)

m QVariant (const char * val)

m QVariant (const QStringList & val)
m QVariant (const QFont & val)

m QVariant (const QPixmap & val)

m QVariant (const QImage & val)

= QVariant (const QBrush & val)

m QVariant (const QPoint & val)

m QVariant (const QRect & val)

m QVariant (const QSize & val)

= QVariant (const QColor & val)

m QVariant (const QPalette & val)

m QVariant (const QColorGroup & val)
= QVariant (const QIconSet & val)

m QVariant (const QPointArray & val)
m QVariant (const QRegion & val)

m QVariant (const QBitmap & val)

m QVariant (const QCursor & val)

m QVariant (const QDate & val)

m QVariant (const QTime & val)

m QVariant (const QDateTime & val)
m QVariant (const QByteArray & val)

259

QVariant Class Reference

QVariant (const QBitArray & val)

QVariant (const QKeySequence & val)
QVariant (const QValueList<QVariant> & val)
QVariant (const QMap <QString, QVariant> & val)
QVariant (int val)

QVariant (uint val)

QVariant (bool val, int)

QVariant (double val)

QVariant (QSizePolicy val)

QVariant & operator= (const QVariant & variant)
bool operator== (const QVariant & v) const
bool operator!= (const QVariant & v) const
Type type () const

const char * typeName () const

bool canCast (Type t) const

bool cast (Type t)

bool isValid () const

void clear ()

const QString toString () const

const QCString toCString () const

const QStringList toStringList () const

const QFont toFont () const

const QPixmap toPixmap () const

const QImage toImage () const

const QBrush toBrush () const

const QPoint toPoint () const

const QRect toRect () const

const QSize toSize () const

const QColor toColor () const

const QPalette toPalette () const

const QColorGroup toColorGroup () const
const QIconSet tolconSet () const

const QPointArray toPointArray () const
const QBitmap toBitmap () const

const QRegion toRegion () const

const QCursor toCursor () const

const QDate toDate () const

const QTime toTime () const

const QDateTime toDateTime () const

const QByteArray toByteArray () const

const QBitArray toBitArray () const

const QKeySequence toKeySequence () const
int toInt (bool * ok = 0) const

uint toUInt (bool * ok = 0) const

bool toBool () const

double toDouble (bool * ok = 0) const

260

QVariant Class Reference 261

m const QValueList<QVariant> toList () const

m const QMap<QString, QVariant> toMap () const

m QSizePolicy toSizePolicy () const

m QValueListConstlIterator <QString> stringListBegin () const
m QValueListConstlterator <QString> stringListEnd () const
m QValueListConstIterator <QVariant> listBegin () const

m QValueListConstlterator<QVariant> listEnd () const

m QMapConstlterator<QString, QVariant> mapBegin () const
m QMapConstlterator <QString, QVariant> mapEnd () const
m QMapConstlterator <QString, QVariant> mapFind (const QString & key) const
m QString & asString ()

m QCString & asCString ()

m QStringList & asStringList ()

m QFont & asFont ()

m QPixmap & asPixmap ()

m QImage & asImage ()

m QBrush & asBrush ()

m QPoint & asPoint ()

m QRect & asRect ()

m QSize & asSize ()

= QColor & asColor ()

m QPalette & asPalette ()

m QColorGroup & asColorGroup ()

m QIconSet & asIconSet ()

m QPointArray & asPointArray ()

m QBitmap & asBitmap ()

m QRegion & asRegion ()

m QCursor & asCursor ()

m QDate & asDate ()

m QTime & asTime ()

m QDateTime & asDateTime ()

e QByteArray & asByteArray ()

e QBitArray & asBitArray ()

QKeySequence & asKeySequence ()

int & asInt ()

uint & asUInt ()

bool & asBool ()

double & asDouble ()

QValueList<QVariant> & asList ()

e QMap<QString, QVariant> & asMap ()

e QSizePolicy & asSizePolicy ()

Static Public Members

m const char * typeToName (Type typ)
m Type nameToType (const char * name)

QVariant Class Reference 262

Detailed Description

The QVariant class acts like a union for the most common Qt data types.

Because C++ forbids unions from including types that have non-default constructors or destructors, most interesting
Qt classes cannot be used in unions. This is a problem when using QObject::property(), among other things.

This class provides union functionality for property() and most other needs that might be solved by a union including
e.g. QWidget.

A QVariant object can hold any one type() at a time. For example, you can find out what type, T, it holds, convert it
to a different type using one of the asT() functions, e.g. asSize(), get its value using one of the toT() functions, e.g.
toSize(), and check whether the type can be converted to a particular type using canCast().

The methods named toT() (for any supported T, see the Type documentation for a list) are const. If you ask for the
stored type, they return a copy of the stored object. If you ask for a type that can be generated from the stored type,
toT() copies and converts and leaves the object itself unchanged. If you ask for a type that cannot be generated from
the stored type, the result depends on the type (see the function documentation for details).

Note that three data types supported by QVariant are explicitly shared, namely QImage, QPointArray, and QCString,
and in these cases the toT() methods return a shallow copy. In almost all cases you must make a deep copy of the
returned values before modifying them.

The asT() functions are not const. They do conversion like the toT() methods, set the variant to hold the converted
value, and return a reference to the new contents of the variant.

Here is example code to demonstrate the use of QVariant:

QDat aStream out (...);

Qvariant v(123); /'l The variant now contains an int
int x =v.tolnt(); Il x =123
out << v; Il Wites a type tag and an int to out
v = Quariant("hello"); /1 The variant now contains a QCString
v = Quariant(tr("hello"));// The variant now contains a QString
inty=v.tolnt(); Il 'y =0 since v cannot be converted to an int
Qtring s = v.toString(); // s =tr("hello") (see Qvject::tr())
out << v; Il Wites a type tag and a QString to out
QataStreamin(...); Il (opening the previously witten stream
in>>v; Il Reads an Int variant
int z =v.tolnt(); Il z =123
qDebug(" Type is %", Il prints "Type is int"

v.typeName());
v.aslnt() += 100; Il The variant now hold the val ue 223.

v = Qvariant(QStringList());
v.asStringList().append("Hello");

You can even have store QValueLists and QMaps in a variant, so you can easily construct arbitrarily complex data
structures of arbitrary types. This is very powerful and versatile, but may prove less memory and speed efficient than
storing specific types in standard data structures. (See the Collection Classes.)

See also Miscellaneous Classes and Object Model.

QVariant Class Reference 263

Member Type Documentation

QVariant::Type

This enum type defines the types of variable that a QVariant can contain. The supported enum values and the associated
types are

e QVariant::lnvalid -no type

e Qvariant::List -aQValueList

e QVariant::Mp -aQMap

e QVariant::String -a QString

e Qvariant::Stringlist -a QStringList
e Qvariant::Font - a QFont

e Qvariant::Pixmap - a QPixmap

e QVariant::Brush - a QBrush

e Qvariant::Rect -a QRect

e Qvariant::Size -a QSize

e Qvariant:: Col or - a QColor

e QVariant::Palette-a QPalette

e Qvariant:: Col or G oup - a QColorGroup
e Qvariant::lconSet -a QIconSet

e QVariant::Point -a QPoint

e QVariant::|mge - a Qlmage

e QVariant::Int -anint

e QVariant:: U nt - an unsigned int

e Qvariant::Bool -abool

e Qvariant::Doubl e -a double

e QVariant::CString-a QCString

e Qvariant:: PointArray - a QPointArray
e QVariant::Region - a QRegion

e Qvariant::Bitmp - a QBitmap

e QVariant::Cursor -a QCursor

e Qvariant::Date -a QDate

e QVariant::Tine-a QTime

e QVariant::DateTine - a QDateTime

e Qvariant::ByteArray - a QByteArray
e QVariant::BitArray - a QBitArray

e QVariant:: SizePolicy - a QSizePolicy
e QVariant:: KeySequence - a QKeySequence

Note that Qt’s definition of bool depends on the compiler. qglobal.h has the system-dependent definition of bool.

QVariant Class Reference 264

Member Function Documentation

QVariant::QVariant ()

Constructs an invalid variant.

QVariant::QVariant (const QVariant & p)

Constructs a copy of the variant, p, passed as the argument to this constructor. Usually this is a deep copy, but a shallow
copy is made if the stored data type is explicitly shared, as e.g. QImage is.

QVariant::QVariant (QDataStream & s)

Reads the variant from the data stream, s.

QVariant::QVariant (const QString & val)

Constructs a new variant with a string value, val.

QVariant::QVariant (const QCString & val)

Constructs a new variant with a C-string value, val.

If you want to modify the QCString after you've passed it to this constructor, we recommend passing a deep copy (see
QCString::copy()).

QVariant::QVariant (const char * val)

Constructs a new variant with a C-string value of val if val is non-null. The variant creates a deep copy of val.

If val is null, the resulting variant has type Invalid.

QVariant::QVariant (const QStringList & val)

Constructs a new variant with a string list value, val.

QVariant::QVariant (const QFont & val)

Constructs a new variant with a font value, val.

QVariant::QVariant (const QPixmap & val)

Constructs a new variant with a pixmap value, val.

QVariant Class Reference 265

QVariant::QVariant (const QImage & val)

Constructs a new variant with an image value, val.

Because QImage is explicitly shared, you may need to pass a deep copy to the variant using QImage::copy(), e.g. if you
intend changing the image you've passed later on.

QVariant::QVariant (const QBrush & val)

Constructs a new variant with a brush value, val.

QVariant::QVariant (const QPoint & val)

Constructs a new variant with a point value, val.

QVariant::QVariant (const QRect & val)

Constructs a new variant with a rect value, val.

QVariant::QVariant (const QSize & val)

Constructs a new variant with a size value, val.

QVariant::QVariant (const QColor & val)

Constructs a new variant with a color value, val.

QVariant::QVariant (const QPalette & val)

Constructs a new variant with a color palette value, val.

QVariant::QVariant (const QColorGroup & val)

Constructs a new variant with a color group value, val.

QVariant::QVariant (const QIconSet & val)

Constructs a new variant with an icon set value, val.

QVariant::QVariant (const QPointArray & val)

Constructs a new variant with a point array value, val.

QVariant Class Reference 266

Because QPointArray is explicitly shared, you may need to pass a deep copy to the variant using QPointArray::copy(),
e.g. if you intend changing the point array you've passed later on.

QVariant::QVariant (const QRegion & val)

Constructs a new variant with a region value, val.

QVariant::QVariant (const QBitmap & val)

Constructs a new variant with a bitmap value, val.

QVariant::QVariant (const QCursor & val)

Constructs a new variant with a cursor value, val.

QVariant::QVariant (const QDate & val)

Constructs a new variant with a date value, val.

QVariant::QVariant (const QTime & val)

Constructs a new variant with a time value, val.

QVariant::QVariant (const QDateTime & val)

Constructs a new variant with a date/time value, val.

QVariant::QVariant (const QByteArray & val)

Constructs a new variant with a bytearray value, val.

QVariant::QVariant (const QBitArray & val)

Constructs a new variant with a bitarray value, val.

QVariant::QVariant (const QKeySequence & val)

Constructs a new variant with a key sequence value, val.

QVariant::QVariant (const QValueList<QVariant> & val)

Constructs a new variant with a list value, val.

QVariant Class Reference 267

QVariant::QVariant (const QMap <QString, QVariant> & val)

Constructs a new variant with a map of QVariants, val.

QVariant::QVariant (int val)

Constructs a new variant with an integer value, val.

QVariant::QVariant (uint val)

Constructs a new variant with an unsigned integer value, val.

QVariant::QVariant (bool val, int)

Constructs a new variant with a boolean value, val. The integer argument is a dummy, necessary for compatibility with
some compilers.

QVariant::QVariant (double val)

Constructs a new variant with a floating point value, val.

QVariant::QVariant (QSizePolicy val)

Constructs a new variant with a size policy value, val.

QVariant::~QVariant ()

Destroys the QVariant and the contained object.

Note that subclasses that reimplement clear() should reimplement the destructor to call clear(). This destructor calls
clear(), but because it is the destructor, QVariant::clear() is called rather than a subclass’s clear().

QBitArray & QVariant::asBitArray ()

Tries to convert the variant to hold a QBitArray value. If that is not possible then the variant is set to an empty bitarray.
Returns a reference to the stored bitarray.

See also toBitArray() [p. 274].

QBitmap & QVariant::asBitmap ()

Tries to convert the variant to hold a bitmap value. If that is not possible the variant is set to a null bitmap.
Returns a reference to the stored bitmap.

See also toBitmap() [p. 274].

QVariant Class Reference 268

bool & QVariant::asBool ()

Returns the variant’s value as bool reference.

QBrush & QVariant::asBrush ()

Tries to convert the variant to hold a brush value. If that is not possible the variant is set to a default black brush.
Returns a reference to the stored brush.

See also toBrush() [p. 274].

QByteArray & QVariant::asByteArray ()

Tries to convert the variant to hold a QByteArray value. If that is not possible then the variant is set to an empty
bytearray.

Returns a reference to the stored bytearray.

See also toByteArray() [p. 274].

QCString & QVariant::asCString ()

Tries to convert the variant to hold a string value. If that is not possible the variant is set to an empty string.
Returns a reference to the stored string.

See also toCString() [p. 2741].

QColor & QVariant::asColor ()

Tries to convert the variant to hold a QColor value. If that is not possible the variant is set to an invalid color.
Returns a reference to the stored color.

See also toColor() [p. 274] and QColor::isValid() [Graphics with Qt].

QColorGroup & QVariant::asColorGroup ()

Tries to convert the variant to hold a QColorGroup value. If that is not possible the variant is set to a color group with
all colors set to black.
Returns a reference to the stored color group.

See also toColorGroup() [p. 275].

QCursor & QVariant::asCursor ()

Tries to convert the variant to hold a QCursor value. If that is not possible the variant is set to a default arrow cursor.

Returns a reference to the stored cursor.

QVariant Class Reference 269

See also toCursor() [p. 275].

QDate & QVariant::asDate ()

Tries to convert the variant to hold a QDate value. If that is not possible then the variant is set to an invalid date.
Returns a reference to the stored date.

See also toDate() [p. 275].

QDateTime & QVariant::asDateTime ()

Tries to convert the variant to hold a QDateTime value. If that is not possible then the variant is set to an invalid
date/time.

Returns a reference to the stored date/time.

See also toDateTime() [p. 275].

double & QVariant::asDouble ()

Returns the variant’s value as double reference.

QFont & QVariant::asFont ()

Tries to convert the variant to hold a QFont. If that is not possible the variant is set to a default font.
Returns a reference to the stored font.

See also toFont() [p. 275].

QIconSet & QVariant::asIconSet ()

Tries to convert the variant to hold a QIconSet value. If that is not possible the variant is set to an empty iconset.
Returns a reference to the stored iconset.

See also toIconSet() [p. 275].

QImage & QVariant::asImage ()

Tries to convert the variant to hold an image value. If that is not possible the variant is set to a null image.
Returns a reference to the stored image.

See also toImage() [p. 276].

int & QVariant::asInt ()

Returns the variant’s value as int reference.

QVariant Class Reference 270

QKeySequence & QVariant::asKeySequence ()

Tries to convert the variant to hold a QKeySequence value. If that is not possible then the variant is set to an empty
key sequence.

Returns a reference to the stored key sequence.

See also toKeySequence() [p. 276].

QValueList<QVariant> & QVariant::asList ()

Returns the variant’s value as variant list reference.

QMap<QString, QVariant> & QVariant::asMap ()

Returns the variant’s value as variant map reference.

QPalette & QVariant::asPalette ()

Tries to convert the variant to hold a QPalette value. If that is not possible the variant is set to a palette with black
colors only.

Returns a reference to the stored palette.

See also toString() [p. 2771.

QPixmap & QVariant::asPixmap ()

Tries to convert the variant to hold a pixmap value. If that is not possible the variant is set to a null pixmap.
Returns a reference to the stored pixmap.

See also toPixmap() [p. 276].

QPoint & QVariant::asPoint ()

Tries to convert the variant to hold a point value. If that is not possible the variant is set to a null point.
Returns a reference to the stored point.

See also toPoint() [p. 277].

QPointArray & QVariant::asPointArray ()

Tries to convert the variant to hold a QPointArray value. If that is not possible the variant is set to an empty point array.
Returns a reference to the stored point array.

See also toPointArray() [p. 2771.

QVariant Class Reference 271

QRect & QVariant::asRect ()

Tries to convert the variant to hold a rectangle value. If that is not possible the variant is set to an empty rectangle.
Returns a reference to the stored rectangle.

See also toRect() [p. 2771.

QRegion & QVariant::asRegion ()

Tries to convert the variant to hold a QRegion value. If that is not possible the variant is set to a null region.
Returns a reference to the stored region.

See also toRegion() [p. 2771.

QSize & QVariant::asSize ()

Tries to convert the variant to hold a QSize value. If that is not possible the variant is set to an invalid size.
Returns a reference to the stored size.

See also toSize() [p. 277] and QSize::isValid() [Graphics with Qt].

QSizePolicy & QVariant::asSizePolicy ()

Tries to convert the variant to hold a QSizePolicy value. If that fails, the variant is set to an arbitrary size policy.

QString & QVariant::asString ()

Tries to convert the variant to hold a string value. If that is not possible the variant is set to an empty string.
Returns a reference to the stored string.

See also toString() [p. 2771.

QStringList & QVariant::asStringList ()

Tries to convert the variant to hold a QStringList value. If that is not possible the variant is set to an empty string list.
Returns a reference to the stored string list.

See also toStringList() [p. 277].

QTime & QVariant::asTime ()

Tries to convert the variant to hold a QTime value. If that is not possible then the variant is set to an invalid time.
Returns a reference to the stored time.

See also toTime() [p. 278].

QVariant Class Reference 272

uint & QVariant::asUlInt ()

Returns the variant’s value as unsigned int reference.

bool QVariant::canCast (Type t) const

Returns TRUE if the variant’s type can be cast to the requested type, t. Such casting is done automatically when calling
the toInt(), toBool(), ... or asInt(), asBool(), ... methods.

The following casts are done automatically:

e Bool => Double, Int, Ulnt

e CString => String

e Date => String

e DateTime => String, Date, Time

e Double => String, Int, Bool, Ulnt

e Int => String, Double, Bool, Ulnt

e List => StringList (if the list contains strings or something that can be cast to a string)
e String => CString, Int, Uint, Double, Date, Time, DateTime

e Stringlist => List

e Time => String

e Ulnt => String, Double, Bool, Int

bool QVariant::cast (Type t)

Casts the variant to the requested type. If the cast cannot be done, the variant is set to the default value of the requested
type (e.g. an empty string if the requested type t is QVariant::String, an empty point array if the requested type t is
QVariant::PointArray, etc). Returns TRUE if the current type of the variant was successfully casted; otherwise returns
FALSE.

See also canCast() [p. 272].

void QVariant::clear ()

Convert this variant to type Invalid and free up any resources used.

bool QVariant::isValid () const

Returns TRUE if the storage type of this variant is not QVariant::Invalid; otherwise returns FALSE.

QValueListConstlterator<QVariant> QVariant::listBegin () const

Returns an iterator to the first item in the list if the variant’s type is appropriate, or else a null iterator.

QVariant Class Reference 273

QValueListConstIterator<QVariant> QVariant::listEnd () const

Returns the end iterator for the list if the variant’s type is appropriate, or else a null iterator.

QMapConstlterator<QString, QVariant> QVariant::mapBegin () const

Returns an iterator to the first item in the map, if the variant’s type is appropriate, or else a null iterator.

QMapConstlterator<QString, QVariant> QVariant::mapEnd () const

Returns the end iterator for the map, if the variant’s type is appropriate, or else a null iterator.

QMapConstlterator <QString, QVariant> QVariant::mapFind (const QString & key) const

Returns an iterator to the item in the map with key as key, if the variant’s type is appropriate and key is a valid key, or
else a null iterator.

Type QVariant::nameToType (const char * name) [static]

Converts the string representation of the storage type gven in name, to its enum representation.

If the string representation cannot be converted to any enum representation, the variant is set to Invalid.
bool QVariant::operator!= (const QVariant & v) const

Compares this QVariant with v and returns TRUE if they are not equal; otherwise returns FALSE.

QVariant & QVariant::operator= (const QVariant & variant)

Assigns the value of the variant variant to this variant.

This is a deep copy of the variant, but note that if the variant holds an explicitly shared type such as QImage, a shallow
copy is performed.

bool QVariant::operator== (const QVariant & v) const

Compares this QVariant with v and returns TRUE if they are equal; otherwise returns FALSE.

QValueListConstlterator<QString> QVariant::stringListBegin () const

Returns an iterator to the first string in the list if the variant’s type is StringList, or else a null iterator.

QVariant Class Reference 274

QValuelListConstIterator<QString> QVariant::stringListEnd () const

Returns the end iterator for the list if the variant’s type is StringList, or else a null iterator.

const QBitArray QVariant::toBitArray () const

Returns the variant as a QBitArray if the variant has type() BitArray, or an empty bitarray otherwise.

See also asBitArray() [p. 267].

const QBitmap QVariant::toBitmap () const

Returns the variant as a QBitmap if the variant has type() Bitmap, or a null QBitmap otherwise.

See also asBitmap() [p. 267].

bool QVariant::toBool () const

Returns the variant as a bool if the variant has type() Bool.
Returns TRUE if the variant has type Int, UInt or Double and its value is non-zero; otherwise returns FALSE.

See also asBool() [p. 268].
const QBrush QVariant::toBrush () const
Returns the variant as a QBrush if the variant has type() Brush, or a default brush (with all black colors) otherwise.

See also asBrush() [p. 268].

const QByteArray QVariant::toByteArray () const

Returns the variant as a QByteArray if the variant has type() ByteArray, or an empty bytearray otherwise.

See also asByteArray() [p. 268].

const QCString QVariant::toCString () const

Returns the variant as a QCString if the variant has type() CString or String, or a 0 otherwise.
See also asCString() [p. 268].

const QColor QVariant::toColor () const

Returns the variant as a QColor if the variant has type() Color, or an invalid color otherwise.

See also asColor() [p. 268].

QVariant Class Reference 275

const QColorGroup QVariant::toColorGroup () const

Returns the variant as a QColorGroup if the variant has type() ColorGroup, or a completely black color group otherwise.

See also asColorGroup() [p. 268].

const QCursor QVariant::toCursor () const

Returns the variant as a QCursor if the variant has type() Cursor, or the default arrow cursor otherwise.

See also asCursor() [p. 268].

const QDate QVariant::toDate () const

Returns the variant as a QDate if the variant has type() Date, DateTime or String, or an invalid date otherwise.

Note that if the type() is String an invalid date will be returned if the string cannot be parsed as an Qt::ISODate format
date.

See also asDate() [p. 269].

const QDateTime QVariant::toDateTime () const

Returns the variant as a QDateTime if the variant has type() DateTime or String, or an invalid date/time otherwise.

Note that if the type() is String an invalid date/time will be returned if the string cannot be parsed as an Qt::ISODate
format date/time.

See also asDateTime() [p. 269].

double QVariant::toDouble (bool * ok = 0) const

Returns the variant as a double if the variant has type() String, CString, Double, Int, Ulnt, or Bool; or 0.0 otherwise.
If ok is non-null, *ok is set to TRUE if the value could be converted to a double and FALSE otherwise.

See also asDouble() [p. 269].

const QFont QVariant::toFont () const

Returns the variant as a QFont if the variant has type() Font, or the default font otherwise.

See also asFont() [p. 269].

const QIconSet QVariant::tolconSet () const

Returns the variant as a QIconSet if the variant has type() IconSet, or an icon set of null pixmaps otherwise.

See also asIconSet() [p. 269].

QVariant Class Reference 276

const QImage QVariant::toIlmage () const

Returns the variant as a QImage if the variant has type() Image, or a null image otherwise.

See also asImage() [p. 269].

int QVariant::tolnt (bool * ok = 0) const

Returns the variant as an int if the variant has type() String, CString, Int, Ulnt, Double, Bool or KeySequence; or 0
otherwise.

If ok is non-null, *ok is set to TRUE if the value could be converted to an int and FALSE otherwise.

See also asInt() [p. 269] and canCast() [p. 272].

const QKeySequence QVariant::toKeySequence () const

Returns the variant as a QKeySequence if the variant has type() KeySequence, Int or String, or an empty key sequence
otherwise.

Note that not all Ints and Strings are valid key sequences and in such cases an empty key sequence will be returned.

See also asKeySequence() [p. 270].

const QValueList<QVariant> QVariant::toList () const

Returns the variant as a QValueList if the variant has type() List or StringList, or an empty list otherwise.

See also asList() [p. 270].
const QMap<QString, QVariant> QVariant::toMap () const
Returns the variant as a QMap if the variant has type() Map, or an empty map otherwise.

See also asMap() [p. 270].

const QPalette QVariant::toPalette () const

Returns the variant as a QPalette if the variant has type() Palette, or a completely black palette otherwise.

See also asPalette() [p. 270].

const QPixmap QVariant::toPixmap () const

Returns the variant as a QPixmap if the variant has type() Pixmap, or a null pixmap otherwise.

See also asPixmap() [p. 270].

QVariant Class Reference 277

const QPoint QVariant::toPoint () const

Returns the variant as a QPoint if the variant has type() Point, or a point (0, 0) otherwise.

See also asPoint() [p. 270].

const QPointArray QVariant::toPointArray () const

Returns the variant as a QPointArray if the variant has type() PointArray, or an empty QPointArray otherwise.

See also asPointArray() [p. 270].

const QRect QVariant::toRect () const

Returns the variant as a QRect if the variant has type() Rect, or an empty rectangle otherwise.

See also asRect() [p. 271].

const QRegion QVariant::toRegion () const

Returns the variant as a QRegion if the variant has type() Region, or an empty QRegion otherwise.

See also asRegion() [p. 271].

const QSize QVariant::toSize () const

Returns the variant as a QSize if the variant has type() Size, or an invalid size otherwise.

See also asSize() [p. 271].

QSizePolicy QVariant::toSizePolicy () const

Returns the variant as a QSizePolicy if the variant has type() SizePolicy, or an undefined (but legal) size policy other-
wise.

const QString QVariant::toString () const

Returns the variant as a QString if the variant has type() String, CString, ByteArray, Int, Uint, Bool, Double, Date, Time,
or DateTime, or QString::null otherwise.

See also asString() [p. 2711.

const QStringList QVariant::toStringList () const

Returns the variant as a QStringList if the variant has type() StringList or List of a type that can be converted to QString,
or an empty list otherwise.

See also asStringList() [p. 271].

QVariant Class Reference 278

const QTime QVariant::toTime () const

Returns the variant as a QTime if the variant has type() Time, DateTime or String, or an invalid time otherwise.

Note that if the type() is String an invalid time will be returned if the string cannot be parsed as an Qt::ISODate format
time.

See also asTime() [p. 271].

uint QVariant::toUlInt (bool * ok = 0) const

Returns the variant as an unsigned int if the variant has type() String, CString, Ulnt, Int, Double, or Bool; or O
otherwise.

If ok is non-null, *ok is set to TRUE if the value could be converted to a uint and FALSE otherwise.

See also asUInt() [p. 272].

Type QVariant::type () const

Returns the storage type of the value stored in the variant. Usually it’s best to test with canCast() whether the variant
can deliver the data type you are interested in.

const char * QVariant::typeName () const

Returns the name of the type stored in the variant. The returned strings describe the C+ + datatype used to store the
data: for example, "QFont", "QString", or "QValueList". An Invalid variant returns O.

const char * QVariant::typeToName (Type typ) [static]

Converts the enum representation of the storage type, typ, to its string representation.

Index

append()
QCString, 66
QPtrList, 153
QString, 190
QValuelList, 232
arg()
QString, 190-192
asBitArray()
QVariant, 267
asBitmap()
QVariant, 267
asBool()
QVariant, 268
asBrush()
QVariant, 268
asByteArray()
QVariant, 268
ascii()
QString, 192
asColor()
QVariant, 268
asColorGroup()
QVariant, 268
asCString()
QVariant, 268
asCursor()
QVariant, 268
asDate()
QVariant, 269
asDateTime()
QVariant, 269
asDouble()
QVariant, 269
asFont()
QVariant, 269
asIconSet()
QVariant, 269
asImage()
QVariant, 269
asInt()
QVariant, 269
asKeySequence()
QVariant, 270
asList()
QVariant, 270
asMap()

QVariant, 270
asPalette()

QVariant, 270
asPixmap()

QVariant, 270
asPoint()

QVariant, 270
asPointArray()

QVariant, 270
asRect()

QVariant, 271
asRegion()

QVariant, 271
assign()

QMemArray, 130
asSize()

QVariant, 271
asSizePolicy()

QVariant, 271
asString()

QVariant, 271
asStringList()

QVariant, 271
asTime()

QVariant, 271
asUInt()

QVariant, 272
at()

QBitArray, 32

QMemArray, 130

QPtrList, 153, 154

QPtrVector, 177

QString, 193

QValuelList, 232

QValueVector, 255
atFirst()

QAsciiCachelterator, 18

QCachelterator, 45

QIntCachelterator, 97

QPtrListlterator, 164
atLast()

QAsciiCachelterator, 18

QCachelterator, 45

QIntCachelterator, 97

QPtrListlterator, 164
autoDelete()

279

QPtrCollection, 23, 40, 85, 102, 139,

143, 154, 177
QPtrQueue, 168
QPtrStack, 172

back()
QValuelList, 232, 233
QValueVector, 255
begin()
QMap, 114, 115
QMemArray, 130
QValuelList, 233
QValueVector, 256
bsearch()
QMemArray, 130
QPtrVector, 177

canCast()
QVariant, 272
capacity()
QValueVector, 256
cast()
QVariant, 272
Category
QChar, 50
category()
QChar, 53
cellO
QChar, 53
clear()
QAsciiCache, 14
QAsciiDict, 23
QCache, 41
QDict, 85
QIntCache, 93
QIntDict, 102
QMap, 115
QpPtrCollection, 139
QPtrDict, 143
QPtrList, 154
QPtrQueue, 168
QPtrStack, 172
QPtrVector, 177
QValuelList, 233
QValueVector, 256
QVariant, 272

Index

clearBit()

QBitArray, 32
collection classes, 9
CombiningClass

QChar, 51
combiningClass()

QChar, 53
compare()

QString, 193
compareltems()

QPtrList, 154

QPtrVector, 177
compose()

QString, 193
Constlterator

QMap, 113

QMemArray, 129

QValuelist, 230
constref()

QString, 194
contains()

QCString, 66

QMap, 115

QMemArray, 131

QPtrList, 155

QPtrVector, 178

QString, 194

QValuelist, 233
containsRef()

QPtrList, 155

QPtrVector, 178
copy()

QBitArray, 32

QCString, 67

QMemArray, 131

QString, 195
count()

QAsciiCache, 15

QAsciiCachelterator, 18

QAsciiDict, 23
QAsciiDictlterator, 28
QCache, 41
QCachelterator, 45
QDict, 85
QDictIterator, 90
QIntCache, 93
QIntCachelterator, 97
QIntDict, 102
QIntDictlterator, 107
QMap, 115
QMemArray, 131
QPtrCollection, 139
QPtrDict, 143
QPtrDictlterator, 148
QPtrList, 155
QPtrListIterator, 165
QPtrQueue, 168
QPtrStack, 172

QPtrVector, 178
QValuelist, 233
current()

QAsciiCachelterator, 18

QAsciiDictlterator, 28
QCachelterator, 45
QDictIterator, 90
QIntCachelterator, 97
QIntDictlterator, 107
QPtrDictlterator, 148
QPtrList, 155
QPtrListlterator, 165
QPtrQueue, 168
QPtrStack, 172
currentKey()

QAsciiCachelterator, 18

QAsciiDictlterator, 28
QCachelterator, 45
QDictlterator, 90
QIntCachelterator, 97
QIntDictlterator, 107
QPtrDictlterator, 148
currentNode()
QPtrList, 155

data()

QMapConstlterator, 120

QMaplterator, 124

QMemArray, 131

QPtrVector, 178

QString, 195
Decomposition

QChar, 52
decomposition()

QChar, 53
decompositionTag()

QChar, 53
deleteltem()

QpPtrCollection, 139
dequeue()

QPtrQueue, 169
detach()

QBitArray, 32

QMap, 115

QMemArray, 131

QValueVector, 256
digitvalue()

QChar, 53
Direction

QcChar, 52
direction()

QChar, 53
duplicate()

QMemArray, 131, 132

empty()
QMap, 115
QValuelList, 233
QValueVector, 256

end()
QMap, 116
QMemArray, 132
QValuelList, 233, 234
QValueVector, 256
endsWith()
QString, 195
enqueue()
QPtrQueue, 169
erase()
QMap, 116
QValueList, 234
QValueVector, 257

fillQ
QBitArray, 32
QCString, 67
QMemArray, 132
QPtrVector, 179
QString, 195
find()
QAsciiCache, 15
QAsciiDict, 23
QCache, 41
QCString, 67
QDict, 86
QIntCache, 93
QIntDict, 102
QMap, 116
QMemArray, 132
QPtrDict, 143
QPtrList, 156
QPtrVector, 179
QString, 195, 196
QValuelList, 234
findIndex()
QValuelList, 235
findNext()
QPtrList, 156
findNextRef()
QPtrList, 156
findRef()
QPtrList, 156
QPtrVector, 179
findRev()
QCString, 67, 68
QString, 196, 197
first()
QPtrList, 156
QValuelist, 235
fromLast()
QValuelList, 235
fromLatinl ()
QString, 197
fromLocal8Bit()
QString, 198
fromStrList()
QStringList, 221

280

Index 281

fromUtf8() QValuelist, 236 length()
QString, 198 isLetter() QCString, 69
front() QChar, 54 QString, 200
QValuelList, 236 isLetterOrNumber() listBegin()
QValueVector, 257 QChar, 54 QVariant, 272
) isMark() listEnd ()
getFirst() QChar, 54 QVariant, 273
QPtrList, 157 isNull(local8Bit()
getlast() QChar, 54 QString, 200
QPtrList, 157 QCString, 69 localeAwareCompare()
grep() QMemArray, 132 QString, 201
QStringList, 221 QPtrVector, 179 lower()
QString, 199 QChar, 55
head(isNumber() QCString, 70
QPtrQueue, 169 QChar, 54 QString, 201
. isPrint()
lnser'[(S)AsciiCaChe 15 QChar, 54 mapBegin()
e isPunct() QVariant, 273
82:121}11]21(}1 * QChar, 54 mapEnd()
QCString, 68 isSpace() QVariant, 273
QDict, 86 ~ QChar, 54 mapFind()
QIntCache, 94 isSymbol() QVariant, 273
QIntDict, 102 QChar, 54 maxCost()
QMa 1’17 isvalid) QAsciiCache, 15
QPtr]I;’i ct. 144 QVariant, 272 QCache, 41
QPtrList, 157 Item QIntCache, 94
; QPtrCollection, 139 mid()
QPtrYector, 179 Iterator OCString, 70
QString, 198, 199 -
QValueList, 236 QMap, 113 QString, 201
QValueVecéor 257 QMemArray, 129 mirrored()
inSort() ? QValuelList, 230 QChar, 55
OPtrList, 157 iterator mirroredChar()
ISDlgltO ’ QMap> 113 QChar, 55
QChar, 54 QValuelList, 231
. ’ QValueVector, 254
isEmpty() nameToTyPe 0]
QAsciiCache, 15 join0 QVariant, 273
QASC@%Cz'icheIterator, 19 QStringList, 221 networkOrdered()
QAsciiDict, 24 Joining QChar, 55
QAsciiDictlterator, 28 newltem()
QChar, 52 .
QCache, 41 joining() QPtrCollection, 140
QCachelterator, 46 QChar, 55 next()
QCString, 68 ’ QPtrList, 158
QDict, 86 key(nrefs()
QDictlterator, 90 QMapConstlterator, 121 QMemArray, 133
QIntCache, 94 QMaplterator, 124 number().
QIntCachelterator, 98 QString, 201, 202
QIntDict, 103 last()
QIntDictIterator, 107 QPtrList, 158 operator
QMap, 117 QValuelist, 236 0
QMemArray, 132 latin1() QString, 203
QPtrDict, 144 QcChar, 55 =0

QPtrDictlterator, 149
QPtrList, 157
QPtrListIterator, 165
QPtrQueue, 169
QPtrStack, 172
QPtrVector, 179
QString, 199

QString, 199
left()

QCString, 69

QString, 200
leftJustify()

QCString, 69

QString, 200

QMapConstlterator, 121
QMaplterator, 124
QMemArray, 133
QValueList, 236
QValueListConstlterator, 241
QValueListIterator, 245
QVariant, 273

Index

operator char()

QChar, 55

operator const char *()

QCString, 70
QString, 203

operator const type *()

QMemArray, 133

operator int()

QBitVal, 36

operator type *()

QAsciiCachelterator, 19
QAsciiDictlterator, 29
QCachelterator, 46
QDictlterator, 91
QIntCachelterator, 98
QIntDictlterator, 108
QPtrDictIterator, 149
QPtrListIterator, 165
QPtrQueue, 169
QPtrStack, 173

operator*()

QMapConstlterator, 121
QMaplterator, 124
QPtrListIterator, 165
QValueListConstlIterator, 241
QValuelistlterator, 245

operator+()

QValuelist, 237

operator++()

QAsciiCachelterator, 19
QAsciiDictlterator, 29
QCachelterator, 46
QDictlterator, 91
QIntCachelterator, 98
QIntDictlterator, 108
QMapConstlterator, 121
QMaplterator, 124
QPtrDictIterator, 149
QPtrListIterator, 165

QValueListConstlterator, 241, 242

QValuelistlterator, 245

operator+=()

QAsciiCachelterator, 19
QAsciiDictIterator, 29
QCachelterator, 46
QCString, 70
QIntCachelterator, 98
QIntDictlterator, 108
QPtrDictIterator, 149
QPtrListIterator, 165
QString, 203
QValuelList, 237

operator-=()

QAsciiCachelterator, 19
QCachelterator, 46
QIntCachelterator, 98
QPtrListIterator, 166

operator=()

QAsciiCachelterator, 19
QAsciiDict, 24
QBitArray, 33
QBitVal, 36, 37
QcCachelterator, 46
QCstring, 70, 71
QDict, 86
QIntCachelterator, 98
QIntDict, 103
QMap, 117
QMemArray, 133
QPtrDict, 144
QPtrList, 158
QPtrlListiterator, 166
QPtrQueue, 169
QPtrStack, 173
QPtrVector, 180
QString, 203, 204
QStrList, 224
QValuelist, 237
QValueVector, 257
QVariant, 273

operator==()

QMapConstlterator, 121
QMaplterator, 125
QMemArray, 133

QPtrList, 158

QPtrVector, 180

QValuelist, 237
QValueListConstIterator, 242
QValuelListIterator, 245
QValueVector, 258

QVariant, 273

operator[]()

QAsciiCache, 15
QAsciiDict, 24
QBitArray, 33
QCache, 42
QDict, 86
QIntCache, 94
QIntDict, 103
QMap, 117
QMemArray, 133
QPtrDict, 144
QPtrVector, 180
QString, 204
QValuelList, 238
QValueVector, 258

operator&=()

QBitArray, 32

operator--()

QAsciiCachelterator, 19
QCachelterator, 46
QIntCachelterator, 98
QMapConstlterator, 121
QMaplterator, 124, 125
QPtrListlterator, 166
QValuelListConstlterator, 242

QValuelListIterator, 245
operator< < ()

QValuelist, 237
operator ™ =()

QBitArray, 33
operator—~()

QBitArray, 34

pointer
QMap, 114
QMapConstlterator, 120
QMaplterator, 123
QValuelList, 231

QValueListConstlterator, 241

QValuelListIterator, 244

QValueVector, 254
pop0

QpPtrStack, 173

QValueStack, 247
pop_back()

QValuelist, 238

QValueVector, 258
pop_front()

QValuelList, 238
prepend()

QCString, 71

QPtrList, 158

QString, 205

QValuelist, 238
prev()

QPtrList, 158
push()

QpPtrStack, 173

QValueStack, 247
push_back()

QValuelist, 238

QValueVector, 258
push_front()

QValuelList, 238

QString::null, 188

read()
QAsciiDict, 24
QDict, 86
QIntDict, 103
QPtrDict, 144
QPtrList, 159
QPtrQueue, 169
QpPtrStack, 173
QPtrVector, 180
ref()
QString, 205
reference
QMap, 114
QMapConstlterator, 120
QMaplterator, 123
QValueList, 231

QValueListConstlterator, 241

282

Index

QValuelListlterator, 244

QValueVector, 254
remove()
QAsciiCache, 15
QAsciiDict, 25
QCache, 42
QCString, 71
QDict, 87
QIntCache, 94
QIntDict, 103
QMap, 118
QPtrDict, 144
QPtrList, 159
QPtrQueue, 170
QPtrStack, 173
QPtrVector, 180
QString, 205

QValuelist, 238, 239

removeFirst()
QPtrList, 160
removelLast()
QPtrList, 160
removeNode()
QPtrList, 160
removeRef()
QPtrList, 160
replace()
QAsciiDict, 25
QCString, 71
QDict, 87
QIntDict, 104
QMap, 118
QPtrDict, 145
QString, 206
reserve()
QValueVector, 258
resetRawDatal()
QMemArray, 133
resize()
QAsciiDict, 25
QBitArray, 34
QCString, 72
QDict, 87
QIntDict, 104
QMemArray, 134
QPtrDict, 145
QPtrVector, 180
QValueVector, 258
right()
QCString, 72
QString, 206
rightJustify ()
QCString, 72
QString, 207
row()
QChar, 55

section()

QString, 207, 208
SectionFlags

QString, 189
setAutoDelete()

QPtrCollection, 25, 42, 87, 104, 140,

145, 161, 181
QPtrQueue, 170
QPtrStack, 173

setBit()
QBitArray, 34
setExpand()
QCString, 73
QString, 209
setLatinl ()
QString, 209
setLength()
QString, 209
setMaxCost()
QAsciiCache, 16
QcCache, 42
QIntCache, 94
setNum()
QCString, 73, 74
QString, 209-211
setRawData()
QMemArray, 134
setStr()
QCString, 74
setUnicode()
QString, 211
setUnicodeCodes()
QString, 211
simplifyWhiteSpace ()
QCString, 74
QString, 211
size()
QAsciiCache, 16
QAsciiDict, 26
QBitArray, 34
QCache, 42
QDict, 88
QIntCache, 95
QIntDict, 104
QMap, 118
QMemArray, 134
QPtrDict, 145
QPtrVector, 181
QValuelist, 239
QValueVector, 258
sort()
QMemArray, 135
QPtrList, 161
QPtrVector, 181
QStringList, 222
split()
QStringList, 222
sprintf()
QCString, 74

QString, 211
startsWith()
QString, 212
statistics()
QAsciiCache, 16
QAsciiDict, 26
QCache, 43
QDict, 88
QIntCache, 95
QIntDict, 104
QPtrDict, 146
string()
QConstString, 61
stringListBegin()
QVariant, 273
stringListEnd()
QVariant, 274
stripWhiteSpace()
QCString, 75
QString, 212

take()
QAsciiCache, 16
QAsciiDict, 26
QCache, 43
QDict, 88
QIntCache, 95
QIntDict, 105
QPtrDict, 146
QPtrList, 161, 162
QPtrVector, 181
takeNode()
QPtrList, 162
testBit()
QBitArray, 35
toBitArray()
QVariant, 274
toBitmap()
QVariant, 274
toBool()
QVariant, 274
toBrush()
QVariant, 274
toByteArray()
QVariant, 274
toColor()
QVariant, 274
toColorGroup()
QVariant, 275
toCString()
QVariant, 274
toCursor()
QVariant, 275
toDate()
QVariant, 275
toDateTime()
QVariant, 275
toDouble()

283

Index

QCString, 75

QString, 212

QVariant, 275
toFirst()

QAsciiCachelterator, 19

QAsciiDictIterator, 29

QCachelterator, 46

QDictlterator, 91

QIntCachelterator, 98

QIntDictlterator, 108

QPtrDictIterator, 149

QPtrListIterator, 166
toFloat()

QCString, 75

QString, 212
toFont()

QVariant, 275
toggleBit()

QBitArray, 35
tolconSet()

QVariant, 275
tolmage()

QVariant, 276
tolnt()

QCString, 75

QString, 213

QVariant, 276
toKeySequence()

QVariant, 276
toLast()

QAsciiCachelterator, 20

QCachelterator, 47

QIntCachelterator, 99

QPtrListlterator, 166
toList()

QPtrVector, 181

QVariant, 276
toLong()

QCString, 75

QString, 213

toMap()
QVariant, 276
top()
QpPtrStack, 173
QValueStack, 247, 248
toPalette()
QVariant, 276
toPixmap()
QVariant, 276
toPoint()
QVariant, 277
toPointArray()
QVariant, 277
toRect()
QVariant, 277
toRegion()
QVariant, 277
toShort()
QCString, 75
QString, 213
toSize()
QVariant, 277
toSizePolicy()
QVariant, 277
toString()
QVariant, 277
toStringList()
QVariant, 277
totalCost()
QAsciiCache, 16
QCache, 43
QIntCache, 95
toTime()
QVariant, 278
toUInt()
QCString, 76
QString, 213
QVariant, 278
toULong()
QCString, 76

QString, 213
toUShort()
QCString, 76
QString, 214
toVector()
QPtrList, 162
truncate()
QCString, 76
QMemArray, 135
QString, 214
Type
QVariant, 263
type()
QVariant, 278
typeName()
QVariant, 278
typeToName()
QVariant, 278

unicode()
QChar, 55, 56
QString, 214
upper()
QChar, 56
QCString, 76
QString, 214
utf8()
QString, 214

ValueType
QMap, 113

write()
QAsciiDict, 26
QDict, 88
QIntDict, 105
QPtrDict, 146
QPtrList, 162
QPtrQueue, 170
QPtrStack, 174
QPtrVector, 181

284

