Events, Actions, Layouts and Styles with Qt

Ot 3.0

Copyright (© 2001 Trolltech AS. All rights reserved.

TROLLTECH, Qt and the Trolltech logo are registered trademarks of Trolltech AS. Linux is a registered trademark
of Linus Torvalds. UNIX is a registered trademark of X/Open Company Ltd. Mac is a registered trademark of Apple
Computer Inc. MS Windows is a registered trademark of Microsoft Corporation. All other products named are
trademarks of their respective owners.

The definitive Qt documentation is provided in HTML format supplied with Qt, and available online at http://doc.trolltech.com.
This PDF file was generated automatically from the HTML source as a convenience to users, although PDF is not an official Qt
documentation format.

Contents

Events and Event Filters L e e e e 4
Writing your own layout manager o i i it i e e e e e e e e e e e e 6
Style OVEIVIEW L e e e e e e e e e e e e e e e e 10
QAccel Class Reference i i i it e e e e e e e e e e e e 13
QAction Class Reference o v v i i i i i i et e e e e e e e e e e e e 19
QActionGroup Class Reference i i it e e e 28
QAquaStyle Class Reference i i i e e e e e e e e e 33
QBoxLayout Class Reference i i i i it i e e e e e e e e e 34
QCDEStyle Class Reference i i ittt e e e e e 41
QChildEvent Class Reference @ i i i i i it et e e e e e e e e 42
QCloseEvent Class Reference @ i i i i i it e e e e e e e e e 44
QColorDrag Class Reference i i e e e e e e 46
QCommonStyle Class Reference e 48
QContextMenuEvent Class Reference. i i i i i it e e e e 49
QCustomEvent Class Reference i i i i i i e e e e e e e 53
QDragEnterEvent Class Reference it ittt e e e 55
QDragLeaveEvent Class Reference i i ittt et e e 56
QDragMoveEvent Class Reference ittt e 57
QDragObject Class Reference i i i ittt i e e e e e e e e e e 59
QDropEvent Class Reference. i i e e e e e e e e e 63
QEvent Class Reference. i i i i i i i e e e e e e e e e e e e e e e 67
QFocusEvent Class Reference i i i i i i it e e e e e e e e e e 71
QGLayoutlIterator Class Reference it e 73
QGrid Class Reference i i i i i i et e e e e e e e 75
QGridLayout Class Reference e e e 77
QHBox Class Reference i e e e e e e e e e 84
QHBoxLayout Class Reference i i i e e e e e e e 86
QHideEvent Class Reference i i i it e e e e e e e e 88
QIconDrag Class Reference i i i i e e e e e e e e e e 89
QIconDragltem Class Reference i i i it it e e e e e e e e 91

Contents 3

QImageDrag Class Reference i i i e e e e 93
QKeyEvent Class Reference i i i e e e e 95
QKeySequence Class Reference i i i i i ittt et e e e 98
QLayout Class Reference i i e e e e e e e 101
QLayoutItem Class Reference e e 108
QLayoutlterator Class Reference it ittt e e e e 112
QMotifPlusStyle Class Reference i i e e 115
QMotifStyle Class Reference i i i e e e e e e e e e 116
QMouseEvent Class Reference v v v v i i i i e e e e e e e e e e e e e 118
QMoveEvent Class Reference i i i i i i e e e e e e e e e e 122
QObjectCleanupHandler Class Reference i 123
QPaintEvent Class Reference i i i i e e e 125
QPlatinumStyle Class Reference e e e 127
QResizeEvent Class Reference i i i i e e e e e e 129
QSGIStyle Class Reference i i e e e e e e e e 130
QShowEvent Class Reference i i i i i e e e e e e 131
QStoredDrag Class Reference i i i i it it e e e e e e e 132
QStyle Class Reference e e e e e e 134
QStyleSheet Class Reference L L e e e 154
QStyleSheetltem Class Reference i ittt it et e e e e 159
QTextDrag Class Reference. i i i i i it e e e e e e e e e e e 168
QTimerEvent Class Reference i i i i it it i e e e e e e e e e e 170
QUriDrag Class Reference i i i i ittt i e e e e e e e e e e 171
QVBoxLayout Class Reference e e e 174
QWheelEvent Class Reference i i i i i it it et e e e e e e e e e 176
QWindowsStyle Class Reference i e e 179

Events and Event Filters

In Qt, an event is an object that inherits QEvent. Events are delivered to objects that inherit QObject through calling
QObject::event(). Event delivery means that an event has occurred, the QEvent indicates precisely what, and the
QObject needs to respond. Most events are specific to QWidget and its subclasses, but there are important events
that aren’t related to graphics, for example, socket activation, which is the event used by QSocketNotifier for its
work.

Some events come from the window system, e.g. QMouseEvent, some from other sources, e.g. QTimerEvent, and
some come from the application program. Qt is symmetric, as usual, so you can send events in exactly the same
ways as Qt’s own event loop does.

Most events types have special classes, most commonly QResizeEvent, QPaintEvent, QMouseEvent, QKeyEvent and
QCloseEvent. There are many others, perhaps forty or so, but most are rather odd.

Each class subclasses QEvent and adds event-specific functions; see, for example, QResizeEvent. In the case of
QResizeEvent, QResizeEvent::size() and QResizeEvent::oldSize() are added.

Some classes support more than one event type. QMouseEvent supports mouse moves, presses, shift-presses, drags,
clicks, right-presses, etc.

Since programs need to react in varied and complex ways, Qt’s event delivery mechanisms are flexible. The
documentation for QApplication::notify() concisely tells the whole story, here we will explain enough for 99% of
applications.

The normal way for an event to be delivered is by calling a virtual function. For example, QPaintEvent is deliv-
ered by calling QWidget::paintEvent(). This virtual function is responsible for reacting appropriately, normally by
repainting the widget.

Occasionally there isn’t such an event-specific function, or the event-specific function isn’t sufficient. The most
common example is tab key presses. Normally, those are interpreted by QWidget to move the keyboard focus, but
a few widgets need the tab key for themselves.

These objects can reimplement QObject::event(), the general event handler, and either do their event handling
before or after the usual handling, or replace it completely. A very unusual widget that both interprets tab and has
an application-specific custom event might contain:

bool M/C ass:event(QEvent * e) {
if (e->type() == QEvent::KeyPress) {
XeyEvent * ke = (KeyEvent*) e;
if (ke->key() == Key_Tab) {
Il special tab handling here
k->accept ();
return TRUE;
}
} else if (e->type() >= Qevent::User) {
QQCustonkvent * ¢ = (QCustonkEvent*) e;
/1 custom event handling here
return TRUE;

}
QN dget::event(e);

Events and Event Filters 5

More commonly, an object needs to look at another’s events. Qt supports this using QObject::installEventFilter()
(and the corresponding remove). For example, dialogs commonly want to filter key presses for some widgets, e.g.
to modify Return-key handling.

An event filter gets to process events before the target object does. The filter’s QObject::eventFilter() implemen-
tation is called, and can accept or reject the filter, and allow or deny further processing of the event. If all the
event filters allow further processing of an event, the event is sent to the target object itself. If one of them stops
processing, the target and any later event filters don’t get to see the event at all.

It’s also possible to filter all events for the entire application, by installing an event filter on QApplication. This is
what QToolTip does in order to see all the mouse and keyboard activity. This is very powerful, but it also slows
down event delivery of every single event in the entire application, so it’s best avoided.

The global event filters are called before the object-specific filters.
Finally, many applications want to create and send their own events.

Creating an event of a built-in type is very simple: create an object of the relevant type, and then call QApplica-
tion::sendEvent() or QApplication::postEvent().

sendEvent() processes the event immediately - when sendEvent() returns, (the event filters and) the object have
already processed the event. For many event classes there is a function called isAccepted() that tells you whether
the event was accepted or rejected by the last handler that was called.

postEvent() posts the event on a queue for later dispatch. The next time Qt’s main event loop runs, it dispatches
all posted events, with some optimization. For example, if there are several resize events, they are are compacted
into one. The same applies to paint events: QWidget::update() calls postEvent(), which minimizes flickering and
increases speed by avoiding multiple repaints.

postEvent() is also often used during object initialization, since the posted event will typically be dispatched very
soon after the initialization of the object is complete.

To create events of a custom type, you need to define an event number, which must be greater than QEvent::User,
and probably you also need to subclass QCustomEvent in order to pass characteristics about your custom event.
See the documentation to QCustomEvent for details.

Writing your own layout manager

Here we present an example in detail. The class CardLayout is inspired by the Java layout manager of the same
name. It lays out the items (widgets or nested layouts) on top of each other, each item offset by QLayout::spacing().

To write your own layout class, you must define the following:

e A data structure to store the items handled by the layout. Each item is a QLayoutltem. We will use a QPtrList
in this example.

e addItem(), how to add items to the layout.
e setGeometry(), how to perform the layout.
e sizeHint(), the preferred size of the layout.

e iterator(), how to iterate over the layout.

In most cases, you will also implement minimumSize().

card.h

#i fndef CARD H
#define CARD H

#include <qgl ayout. h>
#include <gptrlist.h>

class CardLayout : public Q.ayout
{
public:
CardLayout (QN dget *parent, int dist)
Q.ayout (parent, 0, dist) { }
CardLayout (QLayout* parent, int dist)
Q.ayout (parent, dist) { }
CardLayout (int dist)
Q.ayout(dist) { }
~Car dLayout () ;

voi d addltem(QLayoutltem *iten);

QSi ze sizeHint() const;

QSi ze ninimunSi ze() const;
Q.ayoutlterator iterator();

voi d set Geometry(const QRect &rect);

private:
QPtrList list;
b

Writing your own layout manager 7

#endi f

card.cpp

#i ncl ude "card. h"

First we define an iterator over the layout. Layout iterators are used internally by the layout system to handle
deletion of widgets. They are also available for application programmers.

There are two different classes involved: QLayoutlterator is the class that is visible to application programmers,
it is explicitly shared. The QLayoutlterator contains a QGLayoutlterator that does all the work. We must create a
subclass of QGLayoutlterator that knows how to iterate over our layout class.

In this case, we choose a simple implementation: we store an integer index into the list and a pointer to the list.
Every QGLayoutlterator subclass must implement current(), next() and takeCurrent(), as well as a constructor. In
our example we do not need a destructor.

class CardLayoutlterator : public QGayoutlterator

{
public:
CardLayout Iterator(QPtrList *I)
idx(0), list(1) {}

Q.ayoutItem *current ()
{ returnidx count()) ? list->at(idx) : 0, }

Q.ayout I tem *next ()
{ idx++; return current(); }

Q.ayout I tem *takeCurrent ()
{ return list->take(idx); }

private:
int idx;
QPtrList *list;
b

We must implement QLayout:iterator() to return a QLayoutlterator over this layout.

Q.ayout I terator CardLayout::iterator()
{

}

return QLayoutlterator(new CardLayoutlterator(&ist))

addItem() implements the default placement strategy for layout items. It must be implemented. It is used by
QLayout::add(), by the QLayout constructor that takes a layout as parent, and it is used to implement the auto-add
feature. If your layout has advanced placement options that require parameters, you will must provide extra access
functions such as QGridLayout::addMultiCell ().

voi d CardLayout::addlten{ Q.ayoutltem*item)
{

}

list.append(item);

Writing your own layout manager

The layout takes over responsibility of the items added. Since QLayoutltem does not inherit QObject, we must
delete the items manually. The function QLayout::deleteAllltems() uses the iterator we defined above to delete all

the items in the layout.

CardLayout : : ~Car dLayout ()

{
}

The setGeometry() function actually performs the layout. The rectangle supplied as an argument does not include

del eteAll Itens();

margin(). If relevant, use spacing() as the distance between items.

voi d CardLayout:: set Geonetry(const QRect &rect)

{

sizeHint() and minimumSize() are normally very similar in implementation. The sizes returned by both functions

Q.ayout : : set Georetry(rect);
QPtrListlterator it(list);
if (it.count() == 0)

return;

QLayout I tem *o;

int i =0;
int w=rect.width() - (list.count() - 1) * spacing();
int h =rect.height() - (list.count() - 1) * spacing();

while ((o =it.current()) '=0) {
++it;

QRect geon(rect.x() + i * spacing(), rect.y() + i * spacing(),

w, h);
0- >set Geonetry(geom);
+4i

should include spacing(), but not margin().

(Si ze CardLayout::sizeHint() const

{

}

QGize s(0, 0);
int n=1list.count();
if (n>0)

s = (Size(100, 70); // start with a nice default size
QPtrListlterator it(list);
Qayout I tem *o;
while ((o =it.current()) '=0) {
++it;
s = s.expandedTo(o->m ni nunSi ze());
}

return s + n * Size(spacing(), spacing());

Si ze CardLayout: : m ni munSi ze() const

{

Writing your own layout manager 9

Size s(0, 0);

int n=1list.count();

QPtrListlterator it(list);

QLayout I tem *o;

while ((o =it.current()) '=0) {
+4it;
s = s.expandedTo(o->mi ni nunSi ze());

}

return s + n * Size(spacing(), spacing());

Further Notes

This layout does not implement heightForWidth().
We ignore QLayoutltem::isEmpty(), this means that the layout will treat hidden widgets as visible.

For complex layouts, speed can be greatly increased by caching calculated values. In that case, implement QLay-
outltem::invalidate() to mark the cached data as dirty.

Calling QLayoutltem::sizeHint(), etc. may be expensive, so you should store the value in a local variable if you
need it again later in the same function.

You should not call QLayoutltem::setGeometry() twice on the same item in the same function. That can be very
expensive if the item has several child widgets, because it will have to do a complete layout every time. Instead,
calculate the geometry and then set it. (This doesn’t only apply to layouts, you should do the same if you implement
your own resizeEvent().)

Style overview

A style in Qt implements the look and feel found in GUIs on different platforms. For instance the Windows style
used in Windows and the Motif style that are common on many Unix platforms.

This is a short guide that describes the steps that are necessary to get started creating and using custom styles with
the style API in Qt 3.x. First, we go through the steps necessary to create a style: 1) picking a base style to inherit
from and 2) re-implementing the necessary functions in the derived class. Then we show how to use the new style
from within your own applications, or as a plugin together with existing Qt applications.

Creating a custom style

1. Pick a base style to inherit from.

The first step is to pick one of the base styles provided with Qt to build your custom style on. Which of the available
styles to start from does of course depend on what look & feel you want. Basically you should choose from the
QWindowsStyle derived classes or the QMotifStyle derived classes. These are the two base look & feel classes in the
Qt style engine. Inheriting directly from QCommonStyle is also an option if you want to start almost from scratch
when implementing your style. In this simple example we will inherit from QWindowsStyle.

2. Re-implement the necessary functions in your derived class.

Depending on which parts of the base style you want to change, you have to re-implement the functions that are
used to draw those parts of the interface. If you take a look at the QStyle documentation, you will find a list of
the different primitives, controls and complex controls. You will also find an illustration that shows where the
different primitives, controls and complex controls are used. In this example we will first change the look of the
standard arrows that are used in the QWindowsStyle. The arrows are PrimitiveElements that are drawn in the
drawPrimitive() function, therefore we need to re-implement that function. We get the following class declaration:

#incl ude <qw ndowsstyl e. h>

class CustonBStyle : public QN ndowsStyle {
Q OBJECT

public:
Custonttyl e();
~CustonBtyl e();

void drawPrimtive(PrinmitiveEl ement pe,
QPainter *p,
const QRect & r,
const QCol orGroup & cg,
SFlags flags = Style Default,
const QStyleOption & = QStyleCOption::Default) const;

private:

/1 Disabled copy constructor and operator=
Custonttyl e(const Custonftyle &);

10

Style overview 11

Cust onttyl e& operator=(const Custonftyle &);
b

Note that we disable the copy constructor and the ’=’ operator for our style. QObject is the base class for all style
classes in Qt, and a QObject inherently cannot be copied; there are some aspects of it that are not copyable.

From the QStyle docs we see that PE_ArrowUp, PE_ArrowDown, PE_ArrowLeft and PE_ArrowRight are the primi-
tives we need to do something with. We get the following in our drawPrimitive() function:

Custonttyl e: : Cust onBtyl e()

{
}

Cust onttyl e: : ~Custontt yl ()

{
}

void CustonBtyle::drawPrimitive(PrinitiveEl ement pe,
QPainter * p,
const QRect & r,
const QCol orGroup & cg,
SFl ags flags,
const QStyleQption & opt) const

/] we are only interested in the arrows

if (pe >= PE_Arrowlp && pe <= PE_Arrowleft) {
QPointArray pa(3);
Il make the arrow cover half the area it is supposed to be
Il painted on

int x =r.x();

inty =r.y();

int w=r.wdth() / 2
int h=r.height() / 2
X += (r.width() - w / 2
y += (r.height() - h) /2;

switch(pe) {

case PE_ArrowDown:
pa.setPoint(0, x, y);
pa.setPoint(1, x +w, y);
pa.setPoint(2, x +w/ 2, y + h);
br eak;

case PE_Arrowlp:
pa.setPoint(0, X, y + h);
pa.setPoint(1, x +w, y + h);
pa.setPoint(2, x +w/ 2, y);
br eak;

case PE ArrowLeft:

pa.setPoint(0, x +w, y);
pa.setPoint(1, x +w, y + h);
pa.setPoint(2, x, y +h/ 2);

br eak;

case PE_ArrowRi ght:
pa.setPoint(0, x, y);
pa.setPoint(1, x, y + h);
pa.setPoint(2, x +w, y +h/ 2);
br eak;

defaul t: break;

Style overview 12

}

Il use different colors to indicate that the arrowis
/'l enabl ed/ di sabl ed
if (flags & Style Enabled) {

p->setPen(cg.md());

p->set Brush(cg. brush(QCol or G oup: : ButtonText));
} else {

p->set Pen(cg.buttonText());

p->set Brush(cg. brush(QCol orGoup::Md));

}
p- >dr awPol ygon(pa);
} else {

Il let the base style handle the other primtives
QN ndowsStyle::drawPrinitive(pe, p, r, cg, flags, data);

Using a custom style

There are several ways of using a custom style in a Qt application. The easiest and most simple way is to include
the following lines of code in the application’s main() function:

#include "custonstyle.h"

int min(int argc, char ** argv)

{
Application::setStyle(new CustonBtyle());

/1 do the usual routine on creating your QApplication object etc.

Note that you also have to include the cust onstyl e. h and cust onst yl e. cpp files in your project.
2. Creating and using a pluggable style

You may want to use your custom style in a Qt application that you don’t want to, or have the opportunity to
recompile. The Qt Plugin system makes it possible to create styles as plugins. Styles created as plugins are loaded
as shared objects at runtime by Qt itself. Please refer to the Qt Plugin documentation for more information on how
to go about creating a style plugin.

Compile your plugin and put it into $QTDIR/plugins/styles. We now have a pluggable style that Qt can load
automatically. To use your new style with existing applications, simply start the application with the following
argument:

.lapplication -style custom

The application should appear with the look & feel from the custom style you implemented.

QAccel Class Reference

The QAccel class handles keyboard accelerator and shortcut keys.
#include <qgaccel . h>

Inherits QObject [Additional Functionality with Qt].

Public Members

m QAccel (QWidget * parent, const char * name = 0)

® QAccel (QWidget * watch, QObject * parent, const char * name = 0)

m ~QAccel)

= bool isEnabled () const

void setEnabled (bool enable)

uint count () const

int insertItem (const QKeySequence & key, int id = -1)

void removeltem (int id)

void clear ()

m QKeySequence key (int id)

m int findKey (const QKeySequence & key) const

bool isltemEnabled (int id) const

void setltemEnabled (int id, bool enable)

bool connectItem (int id, const QObject * receiver, const char * member)
bool disconnectItem (int id, const QObject * receiver, const char * member)
void repairEventFilter ()

void setWhatsThis (int id, const QString & text)

e QString whatsThis (int id) const

Signals

= void activated (int id)

Static Public Members

m QKeySequence shortcutKey (const QString & str)
m QString keyToString (QKeySequence k) (obsolete)
m QKeySequence stringToKey (const QString & s) (obsolete)

13

QAcecel Class Reference 14

Protected Members

m virtual bool eventFilter (QObject * 0, QEvent * e)

Detailed Description

The QAccel class handles keyboard accelerator and shortcut keys.

A keyboard accelerator triggers an action when a certain key combination is pressed. The accelerator handles all
keyboard activity for all children of one top-level widget, so it is not affected by the keyboard focus.

In most cases, you will not need to use this class directly. Use the QAction class to create actions with accelerators
that can be used in both menus and toolbars. If you're only interested in menus use QMenuData::insertItem()
or QMenuData::setAccel() to make accelerators for operations that are also available on menus. Many widgets
automatically generate accelerators, such as QButton, QGroupBox, QLabel (with QLabel::setBuddy()), QMenuBar
and QTabBar. Example:

QPushButton p("&Exit", parent); //automatic shortcut ALT+Key E
QPopupMenu *fileMenu = new fil eMenu(parent);
fileMenu->insertlten{ "Undo", parent, SLOT(undo()), CTRL+Key Z):

A QAccel contains a list of accelerator items that can be manipulated using insertltem(), removeltem(), clear(),
key() and findKey().

Each accelerator item consists of an identifier and a QKeySequence. A single key sequence consists of a key-
board code combined with modifiers (SHIFT, CTRL, ALT or UNICODE_ACCEL). For example, CTRL + Key_P could
be a shortcut for printing a document. The key codes are listed in qnamespace.h. As an alternative, use UNI-
CODE_ACCEL with the unicode code point of the character. For example, UNCODE_ACCEL + 'A' gives the same
accelerator as Key A.

When an accelerator key is pressed, the accelerator sends out the signal activated() with a number that identifies
this particular accelerator item. Accelerator items can also be individually connected, so that two different keys
will activate two different slots (see connectIltem() and disconnectltem()).

Use setEnabled() to enable/disable all items in the accelerator, or setltemEnabled() to enable/disable individual
items. An item is active only when the QAccel is enabled and the item itself is.

The function setWhatsThis() specifies a help text that appears when the user presses an accelerator key in What'’s
This mode.

A QAccel object handles key events to the QWidget::topLevelWidget() containing parent, and hence to any child
widgets of that window. The accelerator will be deleted when parent is deleted, and will consume relevant key
events until then.

Example:
QAccel *a = new QAccel (myW ndow); Il create accels for myW ndow
a->connectlten(a->insertltenKey P+CTRL), // adds Ctrl+P accel erator
myW ndow, /'l connected to myWndow s
SLOT(printDoc())); Il printDoc() slot

See also QKeyEvent [p. 95], QWidget::keyPressEvent() [Widgets with Qt], QMenuData::setAccel() [Dialogs and
Windows with Qt], QButton::accel [Widgets with Qt], QLabel::setBuddy() [Widgets with Qt], GUI Design
Handbook: Keyboard Shortcuts and Miscellaneous Classes.

QAcecel Class Reference 15

Member Function Documentation

QAccel::QAccel (QWidget * parent, const char * name = 0)

Constructs a QAccel object with parent parent and name name. The accelerator operates on parent.

QAccel::QAccel (QWidget * watch, QObject * parent, const char * name = 0)
Constructs a QAccel object that operates on watch, but is a child of parent. The object is called name.

This constructor is not needed for normal application programming.

QAccel:: ~QAccel ()

Destroys the accelerator object and frees all allocated resources.

void QAccel::activated (int id) [signal]

This signal is emitted when an accelerator key is pressed. id is a number that identifies this particular accelerator
item.

void QAccel::clear ()

Removes all accelerator items.

bool QAccel::connectItem (int id, const QObject * receiver, const char * member)

Connects the accelerator item id to the slot member of receiver.
a->connectlten{ 201, mainView, SLOT(quit()));

Of course, you can also send a signal as member.
See also disconnectltem() [p. 15].

Example: t14/gamebrd.cpp.

uint QAccel::count () const

Returns the number of accelerator items in this accelerator.

bool QAccel::disconnectItem (int id, const QObject * receiver, const char * member)

Disconnects an accelerator item with id id from the function called member in the receiver object.

See also connectltem() [p. 15].

QAcecel Class Reference 16

bool QAccel::eventFilter (QObject * o, QEvent * e) [virtual protected]

Processes accelerator events intended for the top level widget. e is the event that occurred on object o.

Reimplemented from QObject [Additional Functionality with Qt].

int QAccel::findKey (const QKeySequence & key) const

Returns the identifier of the accelerator item with the key code key, or -1 if the item cannot be found.

int QAccel::insertItem (const QKeySequence & key, int id = -1)

Inserts an accelerator item and returns the item’s identifier.

key is a key code plus a combination of SHIFT, CTRL and ALT. id is the accelerator item id.

If id is negative, then the item will be assigned a unique negative identifier less than -1.
QAccel *a = new QAccel (myW ndow); Il create accels for myW ndow
a->insertlten(Key_P + CTRL, 200); [l Ctrl+P to print document
a->insertliten Key_X + ALT , 201); [l Alt+X to quit

a->insertltem UNICODE ACCEL + 'q', 202); // Unicode 'q to quit
a->insertitem Key D); Il gets a unique negative id insertliten Key P + CTRL + SH

Example: t14/gamebrd.cpp.

bool QAccel::isEnabled () const

Returns TRUE if the accelerator is enabled, or FALSE if it is disabled.
See also setEnabled() [p. 17] and isItemEnabled() [p. 16].

bool QAccel::isItemEnabled (int id) const
Returns TRUE if the accelerator item with the identifier id is enabled. Returns FALSE if the item is disabled or
cannot be found.

See also setltemEnabled() [p. 17] and isEnabled() [p. 16].

QKeySequence QAccel::key (int id)

Returns the key code of the accelerator item with the identifier id, or zero if the id cannot be found.

QString QAccel::keyToString (QKeySequence k) [static]
This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Creates an accelerator string for the key k. For instance CTRL+Key O gives "Ctrl4+0O". The "Ctrl" etc. are translated
(using QObject::tr()) in the "QAccel" scope.

The function is superfluous. Cast the QKeySequence k to a QString for the same effect.

See also stringToKey() [p. 17].

QAcecel Class Reference 17

void QAccel::removeltem (int id)

Removes the accelerator item with the identifier id.

void QAccel::repairEventFilter ()

Makes sure that the accelerator is watching the correct event filter. This function is called automatically; you should
not need to call it in application code.

void QAccel::setEnabled (bool enable)

Enables the accelerator if enable is TRUE, or disables it if enable is FALSE.

Individual keys can also be enabled or disabled using setltemEnabled(). To work, a key must be an enabled item
in an enabled QAccel.

See also isEnabled() [p. 16] and setltemEnabled() [p. 17].

void QAccel::setitemEnabled (int id, bool enable)

Enables the accelerator item with the identifier id if enable is TRUE, and disables id if enable is FALSE.
To work, an item must be enabled and be in an enabled QAccel.

See also isItemEnabled() [p. 16] and isEnabled() [p. 16].

void QAccel::setWhatsThis (int id, const QString & text)

Sets a What'’s This help for the accelerator item id to text.
The text will be shown when the application is in What’s This mode and the user hits the accelerator key.
To set What’s This help on a menu item (with or without an accelerator key), use QMenuData::setWhatsThis().

See also whatsThis() [p. 18], QWhatsThis::inWhatsThisMode() [Widgets with Qt], QMenuData::setWhatsThis()
[Dialogs and Windows with Qt] and QAction::whatsThis [p. 27].

QKeySequence QAccel::shortcutKey (const QString & str) [static]

Returns the shortcut key for str, or 0 if str has no shortcut sequence.

For example, shortcutKey("E&xit") returns ALT+Key X, shortcutKey("&Exit") returns ALT+Key E and short-
cutKey("Exit") returns 0. (In code that does not inherit the Qt namespace class, you need to write e.g.
Qt::ALT+Qt::Key X.)

We provide a list of common accelerators in English. At the time of this writing, Microsoft and The Open Group do
not appear to have issued equivalent recommendations for other languages.

QKeySequence QAccel::stringToKey (const QString & s) [static]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

QAcecel Class Reference 18

Returns an accelerator code for the string s. For example "Ctrl+0Q" gives CTRL+UNICODE_ACCEL+’Q’. The strings
"Ctrl", "Shift", "Alt" are recognized, as well as their translated equivalents in the "QAccel" scope (using QOb-
ject::tr()). Returns O if s is not recognized.

This function is typically used with tr(), so that accelerator keys can be replaced in translations:

QPopupMenu *file = new QPopupMenu(this);
file->insertliten pl, tr("&>en..."), this, SLOT(open()),
QAccel ::stringToKey(tr("Cirl+0', "File|OCpen")));

Notice the "Fi | e| Open" translator comment. It is by no means necessary, but it provides some context for the
human translator.

The function is superfluous. Construct a QKeySequence from the string s for the same effect.

See also QObject::tr() [Additional Functionality with Qt] and Internationalization with Qt [Accessibility and
Internationalization with Qt].

Example: i18n/mywidget.cpp.
QString QAccel::whatsThis (int id) const

Returns the What’s This help text for the specified item id or QString::null if no text has been defined yet.
See also setWhatsThis() [p. 171.

QAction Class Reference

The QAction class provides an abstract user interface action that can appear both in menus and tool bars.
#include <gaction. h>

Inherits QObject [Additional Functionality with Qt].

Inherited by QActionGroup [p. 28].

Public Members

m QAction (QObject * parent, const char * name = 0, bool toggle = FALSE)
m QAction (const QString & text, const QIconSet & icon, const QString & menuText, QKeySequence accel,
QObject * parent, const char * name = 0, bool toggle = FALSE)

m QAction (const QString & text, const QString & menuText, QKeySequence accel, QObject * parent,
const char * name = 0, bool toggle = FALSE)

m ~QAction ()

m virtual void setIconSet (const QIconSet &)
= QIconSet iconSet () const

m virtual void setText (const QString &)

m QString text () const

virtual void setMenuText (const QString &)

QString menuText () const

virtual void setToolTip (const QString &)

QString toolTip () const

virtual void setStatusTip (const QString &)
QString statusTip () const

» virtual void setWhatsThis (const QString &)

m QString whatsThis () const

virtual void setAccel (const QKeySequence & key)

QKeySequence accel () const

virtual void setToggleAction (bool)

bool isToggleAction () const

bool isOn () const

bool isEnabled () const

virtual bool addTo (QWidget * w)

e virtual bool removeFrom (QWidget * w)

19

QAction Class Reference 20

Public Slots

m void toggle ()
m virtual void setOn (bool)
m virtual void setEnabled (bool)

Signals

m void activated ()
» void toggled (bool)

Properties

m QKeySequence accel — the action’s accelerator key

m bool enabled — whether the action is enabled

m QIconSet iconSet — the action’s icon

m QString menuText — the action’s menu text

m bool on — whether a toggle action is on

m QString statusTip — the action’s status tip

m QString text — the action’s descriptive text

m bool toggleAction — whether the action is a toggle action
m QString toolTip — the action’s tool tip

» QString whatsThis — the action’s "What’s This?" help text

Protected Members

m virtual void addedTo (QWidget * actionWidget, QWidget * container)
m virtual void addedTo (int index, QPopupMenu * menu)

Detailed Description

The QAction class provides an abstract user interface action that can appear both in menus and tool bars.

In GUI applications many commands can be invoked via a menu option, a toolbar button and a keyboard acceler-
ator. Since the same action must be performed regardless of how the action was invoked and since the menu and
toolbar should be kept in sync it is useful to represent a command as an action. An action can be added to a menu
and a toolbar and will automatically be kept in sync, for example, if the user presses a Bold toolbar button the Bold
menu item will be checked.

A QAction may contain an icon, a menu text, an accelerator, a status text, a whats this text and a tool tip. Most of
these can be set in the constructor. They can all be set independently with setlconSet(), setText(), setMenuText(),
setToolTip(), setStatusTip(), setWhatsThis() and setAccel().

An action may be a toggle action e.g. a Bold toolbar button, or a command action, e.g. ’Open File’ which invokes
an open file dialog. Toggle actions emit the toggled() signal when their state changes. Both command and toggle
actions emit the activated() signal when they are invoked. Use setToggleAction() to set an action’s toggled status.
To see if an action is a toggle action use isToggleAction(). A toggle action may be "on", isOn() returns TRUE, or
"off", isOn() returns FALSE.

Actions are added to widgets (menus or toolbars) using addTo(), and removed using removeFrom().

QAction Class Reference 21

Once a QAction has been created it should be added to the relevant menu and toolbar and then connected to the
slot which will perform the action. For example:

fileSaveAction = new QAction("Save File", QPixmap(filesave),
"&Save", CTRL+Key S, this, "save");
connect (fileSaveAction, SIGNAL(activated()) , this, SLOT(save()));

We create a "Save File" action with a menu text of "&Save" and Ctrl+S as the keyboard accelerator. We connect
the fileSaveAction’s activated () signal to our save() slot. Note that at this point there is no menu or toolbar action,
we’ll add them next:

Qrool Bar * fileTools = new Qlool Bar(this, "file operations");
fileSaveAction->addTo(fileTools);

QPopupMenu * file = new QPopupMenu(this);
menuBar ()->i nsertltem("&File", file);

fil eSaveAction->addTo(file);
We create a toolbar and add our fileSaveAction to it. Similarly we create a menu, add a top-level menu item, and
add our fileSaveAction.

(See the Simple Application Walkthrough featuring QAction for a detailed example.)

We recommend that actions are created as children of the window that they are used in. In most cases actions will
be children of the application’s main window.

To prevent recursion don’t create an action as a child of a widget that the action is later added to.

See also Main Window and Related Classes and Basic Widgets.

Member Function Documentation

QAction::QAction (QObject * parent, const char * name = 0, bool toggle = FALSE)

Constructs an action with parent parent and name name.
If toggle is TRUE the action will be a toggle action otherwise it will be a command action.
If parent is a QActionGroup, the new action inserts itself into parent.

Note: for accelerators and status tips to work, parent must be a widget.

QAction::QAction (const QString & text, const QIconSet & icon,
const QString & menuText, QKeySequence accel, QObject * parent,
const char * name = 0, bool toggle = FALSE)

This constructor creates an action with the following properties: the description text, the icon or iconset icon, the
menu text menuText and keyboard accelerator accel. It is a child of parent and named name. If toggle is TRUE the
action will be a toggle action otherwise it will be a command action.

The parent should be a widget for accelerators and status tips to work.
If parent is a QActionGroup, the action automatically becomes a member of it.

The text and accel will be used for tool tips and status tips unless you provide specific text for these using set-
ToolTip() and setStatusTip().

QAction Class Reference 22

QAction::QAction (const QString & text, const QString & menuText, QKeySequence accel,
QObject * parent, const char * name = 0, bool toggle = FALSE)

This constructor results in an iconless action with the description text, the menu text menuText and the keyboard
accelerator accel. Its parent is parent and its name name. If toggle is TRUE the action will be a toggle action
otherwise it will be a command action.

The action automatically becomes a member of parent if parent is a QActionGroup.
The parent should be a widget for accelerators and status tips to work.

The text and accel will be used for tool tips and status tips unless you provide specific text for these using set-
ToolTip() and setStatusTip().

QAction::~QAction ()

Destroys the object and frees allocated resources.

QKeySequence QAction::accel () const

Returns the action’s accelerator key. See the "accel" [p. 25] property for details.

void QAction::activated () [signal]

This signal is emitted when an action is activated by the user, i.e. when the user clicks a menu option or a toolbar
button or presses an action’s accelerator key combination.

Connect to this signal for command actions. Connect to the toggled() signal for toggle actions.

Example: action/application.cpp.

bool QAction::addTo (QWidget * w) [virtual]

Adds this action to widget w.
Currently actions may be added to QToolBar and QPopupMenu widgets.

An action added to a tool bar is automatically displayed as a tool button; an action added to a pop up menu appears
as a menu option.

addTo() returns TRUE if the action was added successfully and FALSE otherwise. (If w is not a QToolBar or
QPopupMenu the action will not be added and FALSE will be returned.)

See also removeFrom() [p. 23].
Examples: action/application.cpp, action/toggleaction/toggleaction.cpp and textedit/textedit.cpp.

Reimplemented in QActionGroup.
void QAction::addedTo (QWidget * actionWidget,
QWwidget * container) [virtual protected]

This function is called from the addTo() function when it created a widget (actionWidget) for the action in the
container.

QAction Class Reference 23

void QAction::addedTo (int index, QPopupMenu * menu) [virtual protected]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This function is called from the addTo() function when it created a menu item at the index index in the popup
menu menu.

QIconSet QAction::iconSet () const

Returns the action’s icon. See the "iconSet" [p. 25] property for details.

bool QAction::isEnabled () const

Returns TRUE if the action is enabled; otherwise returns FALSE. See the "enabled" [p. 25] property for details.

bool QAction::isOn () const

Returns TRUE if a toggle action is on; otherwise returns FALSE. See the "on" [p. 26] property for details.

bool QAction::isToggleAction () const

Returns TRUE if the action is a toggle action; otherwise returns FALSE. See the "toggleAction" [p. 26] property for
details.

QString QAction::menuText () const

Returns the action’s menu text. See the "menuText" [p. 26] property for details.

bool QAction::removeFrom (QWidget * w) [virtual]

Removes the action from widget w.
Returns TRUE if the action was removed successfully, FALSE otherwise.

See also addTo() [p. 22].

void QAction::setAccel (const QKeySequence & key) [virtual]

Sets the action’s accelerator key to key. See the "accel" [p. 25] property for details.

void QAction::setEnabled (bool) [virtual slot]

Sets whether the action is enabled. See the "enabled" [p. 25] property for details.

void QAction::setlconSet (const QIconSet &) [virtual]

Sets the action’s icon. See the "iconSet" [p. 25] property for details.

QAction Class Reference

void QAction::setMenuText (const QString &) [virtual]

Sets the action’s menu text. See the "menuText" [p. 26] property for details.

void QAction::setOn (bool) [virtual slot]

Sets whether a toggle action is on. See the "on" [p. 26] property for details.

void QAction::setStatusTip (const QString &) [virtual]

Sets the action’s status tip. See the "statusTip" [p. 26] property for details.

void QAction::setText (const QString &) [virtual]

Sets the action’s descriptive text. See the "text" [p. 26] property for details.

void QAction::setToggleAction (bool) [virtual]

Sets whether the action is a toggle action. See the "toggleAction" [p. 26] property for details.

void QAction::setToolTip (const QString &) [virtual]

Sets the action’s tool tip. See the "toolTip" [p. 27] property for details.

void QAction::setWhatsThis (const QString &) [virtual]

Sets the action’s "What’s This?" help text. See the "whatsThis" [p. 27] property for details.

QString QAction::statusTip () const

Returns the action’s status tip. See the "statusTip" [p. 26] property for details.

QString QAction::text () const

Returns the action’s descriptive text. See the "text" [p. 26] property for details.

void QAction::toggle () [slot]

Toggles the state of a toggle action.

See also on [p. 26], toggled() [p. 24] and toggleAction [p. 26].

void QAction::toggled (bool) [signal]

This signal is emitted when a toggle action changes state; command actions and QActionGroups don’t emit tog-

gled).

QAction Class Reference 25

The argument denotes the new state; i.e. TRUE if the toggle action was switched on and FALSE if it was switched
off.

To trigger a user command depending on whether a toggle action has been switched on or off connect it to a slot
that takes a bool to indicate the state, e.g.

Qvai nW ndow * wi ndow = new Qvai nW ndow;
QAction * |abel onof faction = new QAction(w ndow, "labelonoff", TRUE);

Qvj ect : : connect (| abel onof faction, SIGNAL(toggl ed(bool)),
wi ndow, SLOT(setUsesTextLabel (bool)));

See also activated() [p. 22], toggleAction [p. 26] and on [p. 26].

Example: action/toggleaction/toggleaction.cpp.

QString QAction::toolTip () const

Returns the action’s tool tip. See the "toolTip" [p. 27] property for details.

QString QAction::whatsThis () const

Returns the action’s "What’s This?" help text. See the "whatsThis" [p. 27] property for details.

Property Documentation

QKeySequence accel

This property holds the action’s accelerator key.
The keycodes can be found in Qt::Key and Qt::Modifier. There is no default accelerator key.

Set this property’s value with setAccel() and get this property’s value with accel().

bool enabled

This property holds whether the action is enabled.

Disabled actions can’t be chosen by the user. They don’t disappear from the menu/tool bar but are displayed in a
way which indicates that they are unavailable, e.g. they might be displayed greyed out.

What's this? help on disabled actions is still available provided the QAction::whatsThis property is set.

Set this property’s value with setEnabled() and get this property’s value with isEnabled ().

QIconSet iconSet

This property holds the action’s icon.
The icon is used as tool button icon and in the menu to the left of the menu text. There is no default icon.
(See the action/toggleaction/toggleaction.cpp example.)

Set this property’s value with setlconSet() and get this property’s value with iconSet().

QAction Class Reference 26

QString menuText

This property holds the action’s menu text.

If the action is added to a menu the menu option will consist of the icon (if there is one), the menu text and the
accelerator (if there is one). If the menu text is not explicitly set in the constructor or using setMenuText() the
action’s description text will be used as the menu text. There is no default menu text.

See also text [p. 26].

Set this property’s value with setMenuText() and get this property’s value with menuText().

bool on

This property holds whether a toggle action is on.

This property is always on for command actions and QActionGroups. setOn() has no effect on them. This property’s
default is FALSE.

See also toggleAction [p. 26].

Set this property’s value with setOn() and get this property’s value with isOn().

QString statusTip

This property holds the action’s status tip.

The statusTip is displayed on all status bars that the toplevel widget parenting this action provides.
If no status tip is defined, the action uses the tool tip text.

There is no default tooltip text.

See also statusTip [p. 26] and toolTip [p. 27].

Set this property’s value with setStatusTip() and get this property’s value with statusTip().

QString text

This property holds the action’s descriptive text.

If QMainWindow::usesTextLabel is TRUE, the text appears as a label in the relevant toolbutton. It also serves as
the default text in menus and tips if these have not been specifically defined. There is no default text.

See also menuText [p. 26], toolTip [p. 27] and statusTip [p. 26].

Set this property’s value with setText() and get this property’s value with text().

bool toggleAction

This property holds whether the action is a toggle action.

A toggle action is one which has an on/off state. For example a Bold toolbar button is either on or off. An action
which is not a toggle action is a command action; a command action is simply executed. For example a file open
toolbar button would invoke a file open dialog. This property’s default is FALSE.

For exclusive toggling, add toggle actions to a QActionGroup with the QActionGroup::exclusive property set to
TRUE.

Set this property’s value with setToggleAction() and get this property’s value with isToggleAction().

QAction Class Reference 27

QString toolTip

This property holds the action’s tool tip.

This text is used for the tool tip. If no status tip has been set the tool tip will be used for the status tip.
If no tool tip is specified the action’s text and accelerator description are used as a default tool tip.
There is no default tool tip text.

See also statusTip [p. 26] and accel [p. 25].

Set this property’s value with setToolTip() and get this property’s value with toolTip().

QString whatsThis

This property holds the action’s "What’s This?" help text.

The whats this text is used to provide a brief description of the action. The text may contain rich text (i.e. HTML
tags — see QStyleSheet for the list of supported tags). There is no default "What’s This" text.

See also QWhatsThis [Widgets with Qt].

Set this property’s value with setWhatsThis() and get this property’s value with whatsThis().

QActionGroup Class Reference

The QActionGroup class groups actions together.
#i ncl ude <qaction. h>

Inherits QAction [p. 19].

Public Members

m QActionGroup (QObject * parent, const char * name = 0, bool exclusive = TRUE)
m ~QActionGroup ()

m void setExclusive (bool)

= bool isExclusive () const

m void add (QAction * action)

void addSeparator ()

virtual bool addTo (QWidget * w)

void setUsesDropDown (bool enable)

bool usesDropDown () const

void insert (QAction * a) (obsolete)

Signals

= void selected (QAction *)

Properties
m bool exclusive — whether the action group does exclusive toggling

m bool usesDropDown — whether the group’s actions are displayed in a subwidget of the widgets the action
group is added to

Protected Members

» virtual void addedTo (QWidget * actionWidget, QWidget * container, QAction * a)
» virtual void addedTo (int index, QPopupMenu * menu, QAction * a)

28

QActionGroup Class Reference 29

Detailed Description

The QActionGroup class groups actions together.

In some situations it is useful to group actions together. For example, if you have a left justify action, a right justify
action and a center action, only one of these actions should be active at any one time, and one simple way of
achieving this is to group the actions together in an action group and setExclusive(TRUE).

An action group can also be added to a menu or a toolbar as a single unit, with all the actions within the action
group appearing as separate menu options and toolbar buttons.

Here’s an example from examples/textedit:

QActionGoup *grp = new QActionGoup(this);
gr p- >set Excl usi ve(TRUE);
connect (grp, SIGNAL(selected(QAction*)), this, SLOT(textAlign(QAction*)));

We create a new action group, call setExclusive() to ensure that only one of the actions in the group is ever active
at any one time. We then connect the group to our textAlign() slot.

actionAlignLeft = new QAction(tr("Left"), QPixmap("textleft.xpm'), tr("&Left"), CTRL + Key_
actionAlignLeft->addTo(tbh);

actionAlignLeft->addTo(menu);

actionAlignLeft->set Toggl eAction(TRUE);

We create a left align action, add it to the toolbar and the menu and make it a toggle action. We create center and
right align actions in exactly the same way.

The actions in an action group emit their activated() (and for toggle actions, toggled()) signals as usual.

The setExclusive() function is used to ensure that only one action is active at any one time: it should be used with
actions which have their toggleAction set to TRUE.

Action group actions appear as individual menu options and toolbar buttons. For exclusive action groups use
setUsesDropDown() to display the actions in a subwidget of any widget the action group is added to. For example,
the actions would appear in a combobox in a toolbar or as a submenu in a menu.

Actions can be added to an action group using add (), but normally they are added by creating the action with the
action group as parent. Actions can have separators dividing them using addSeparator(). Action groups are added
to widgets with addTo().

See also Main Window and Related Classes and Basic Widgets.

Member Function Documentation

QActionGroup::QActionGroup (QObject * parent, const char * name = 0, bool exclusive
= TRUE)

Constructs an action group with parent parent and name name.

If exclusive is TRUE only one toggle action in the group will ever be active.

QActionGroup::~QActionGroup ()

Destroys the object and frees allocated resources.

QActionGroup Class Reference 30

void QActionGroup::add (QAction * action)

Adds action action to this group.
Normally an action is added to a group by creating it with the group as parent, so this function is not usually used.

See also addTo() [p. 30].

void QActionGroup::addSeparator ()

Adds a separator to the group.

bool QActionGroup::addTo (QWidget * w) [virtual]

Adds this action group to the widget w.

If usesDropDown() is TRUE and exclusive is TRUE (see setExclusive()) the actions are presented in a combobox if
w is a toolbar and as a submenu if w is a menu. Otherwise (the default) the actions within the group are added to
the widget individually, for example if the widget is a menu the actions will appear as individual menu options and
if the widget is a toolbar the actions will appear as toolbar buttons.

It is recommended that actions is action groups, especially where usesDropDown() is TRUE, have their menuText()
or text() property set.

All actions should be added to the action group before the action group is added to the widget. If actions are added
to the action group after the action group has been added to the widget these later actions will not appear.

See also exclusive [p. 31], usesDropDown [p. 32] and removeFrom() [p. 23].
Example: action/actiongroup/editor.cpp.

Reimplemented from QAction [p. 22].

void QActionGroup::addedTo (QWidget * actionWidget, QWidget * container,
QAction * a) [virtual protected]

This function is called from the addTo() function when it created a widget (actionWidget) for the child action a in
the container.

void QActionGroup::addedTo (int index, QPopupMenu * menu,
QAction * a) [virtual protected]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This function is called from the addTo() function when it created a menu item for the child action at the index
index in the popup menu menu.

void QActionGroup::insert (QAction * a)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use add() instead, or better still create the action with the action group as its parent.

QActionGroup Class Reference 31

bool QActionGroup::isExclusive () const

Returns TRUE if the action group does exclusive toggling; otherwise returns FALSE. See the "exclusive" [p. 31]
property for details.

void QActionGroup::selected (QAction *) [signal]

This signal is emitted from exclusive groups when toggle actions change state.

The argument is the action whose state changed to "on".
QActionGoup * colors = new QActi onGroup(this, "colors", TRUE);

QCbj ect::connect(colors, SIGNAL(selected(QAction *)),
this, SLOT(setFontColor(QAction *)));

In this example we connect the selected() signal to our setFontColor() slot, passing the QAction so that we know
which action was chosen by the user.

(See the QActionGroup Walkthrough.)
See also exclusive [p. 31] and on [p. 26].

Examples: action/actiongroup/editor.cpp and textedit/textedit.cpp.

void QActionGroup::setExclusive (bool)

Sets whether the action group does exclusive toggling. See the "exclusive" [p. 31] property for details.

void QActionGroup::setUsesDropDown (bool enable)

Sets whether the group’s actions are displayed in a subwidget of the widgets the action group is added to to enable.
See the "usesDropDown" [p. 32] property for details.

bool QActionGroup::usesDropDown () const

Returns TRUE if the group’s actions are displayed in a subwidget of the widgets the action group is added to;
otherwise returns FALSE. See the "usesDropDown" [p. 32] property for details.

Property Documentation

bool exclusive

This property holds whether the action group does exclusive toggling.

If exclusive is TRUE only one toggle action in the action group can ever be active at any one time. If the user
chooses another toggle action in the group the one they chose becomes active and the one that was active becomes
inactive. By default this property is FALSE.

See also QAction::toggleAction [p. 26].

Set this property’s value with setExclusive() and get this property’s value with isExclusive().

QActionGroup Class Reference 32

bool usesDropDown
This property holds whether the group’s actions are displayed in a subwidget of the widgets the action group is
added to.

Exclusive action groups added to a toolbar display their actions in a combobox with the action’s QAction::text
and QAction::iconSet properties shown. Non-exclusive groups are represented by a tool button showing their
QAction::iconSet and — depending on QMainWindow::usesTextLabel() — text() property.

In a popup menu the member actions are displayed in a submenu.
Changing usesDropDown effects subsequent calls to addTo() only.
This property’s default is FALSE.

Set this property’s value with setUsesDropDown() and get this property’s value with usesDropDown().

QAquaStyle Class Reference

The QAquaStyle class implements the aqua 'Look and Feel’.
#incl ude <gaquastyle. h>

Inherits QWindowsStyle [p. 179].

Public Members

m QAquaStyle ()

Detailed Description

The QAquaStyle class implements the aqua 'Look and Feel’.

This class implements the Aqua look and feel. It’s an experimental class that tries to resemble a Macintosh-like GUI
style with the QStyle system. The emulation is far from being perfect.

Note that the functions provided by QAquaStyle are reimplementations of QStyle functions; see QStyle for their
documentation.

See also Widget Appearance and Style.

Member Function Documentation

QAquaStyle::QAquasStyle ()

Constructs a QAquaStyle object.

33

QBoxLayout Class Reference

The QBoxLayout class lines up child widgets horizontally or vertically.
#i ncl ude <ql ayout. h>

Inherits QLayout [p. 101].

Inherited by QHBoxLayout [p. 86] and QVBoxLayout [p. 174].

Public Members

m enum Direction { LeftToRight, RightToLeft, TopToBottom, BottomToTop, Down = TopToBottom, Up =
BottomToTop }

QBoxLayout (QWidget * parent, Direction d, int margin = 0, int spacing = -1, const char * name = 0)
QBoxLayout (QLayout * parentLayout, Direction d, int spacing = -1, const char * name = 0)
QBoxLayout (Direction d, int spacing = -1, const char * name = 0)

~QBoxLayout ()

virtual void addItem (QLayoutltem * item)

m Direction direction () const

= void setDirection (Direction direction)

void addSpacing (int size)

void addStretch (int stretch = 0)

void addWidget (QWidget * widget, int stretch = 0, int alignment = 0)
void addLayout (QLayout * layout, int stretch = 0)

void addStrut (int size)

void insertSpacing (int index, int size)

void insertStretch (int index, int stretch = 0)

» void insertWidget (int index, QWidget * widget, int stretch = 0, int alignment = 0)
» void insertLayout (int index, QLayout * layout, int stretch = 0)

bool setStretchFactor (QWidget * w, int stretch)

bool setStretchFactor (QLayout * 1, int stretch)

virtual QSize sizeHint () const

virtual QSize minimumSize () const

virtual QSize maximumSize () const

virtual bool hasHeightForWidth () const

m virtual int heightForWidth (int w) const

m virtual QSizePolicy::ExpandData expanding () const
m virtual void invalidate ()

m virtual void setGeometry (const QRect & 1)

e int findWidget (QWidget * w)

34

QBoxLayout Class Reference 35

Protected Members

» void insertItem (int index, QLayoutltem * item)

Detailed Description

The QBoxLayout class lines up child widgets horizontally or vertically.

QBoxLayout takes the space it gets (from its parent layout or from the mainWidget()), divides it up into a row of
boxes, and makes each managed widget fill one box.

If the QBoxLayout’s orientation is Horizontal the boxes are placed in a row, with suitable sizes. Each widget (or
other box) will get at least its minimum size and at most its maximum size. Any excess space is shared according
to the stretch factors (more about that below).

If the QBoxLayout’s orientation is Vertical, the boxes are placed in a column, again with suitable sizes.

The easiest way to create a QBoxLayout is to use one of the convenience classes, e.g. QHBoxLayout (for Horizontal
boxes) or QVBoxLayout (for Vertical boxes). You can also use the QBoxLayout constructor directly, specifying its
direction as LeftToRight, Down, RightToLeft or Up.

If the QBoxLayout is not the top-level layout (i.e. it is not managing all of the widget’s area and children), you
must add it to its parent layout before you can do anything with it. The normal way to add a layout is by calling
parentLayout->addLayout().

Once you have done this, you can add boxes to the QBoxLayout using one of four functions:

e addWidget() to add a widget to the QBoxLayout and set the widget’s stretch factor. (The stretch factor is
along the row of boxes.)

e addSpacing() to create an empty box; this is one of the functions you use to create nice and spacious dialogs.
See below for ways to set margins.

e addStretch() to create an empty, stretchable box.

e addLayout() to add a box containing another QLayout to the row and set that layout’s stretch factor.

Use insertWidget(), insertSpacing(), insertStretch() or insertLayout() to insert a box at a specified position in the
layout.

QBoxLayout also includes two margin widths:

e setMargin() sets the width of the outer border. This is the width of the reserved space along each of the
QBoxLayout’s four sides.

e setSpacing() sets the width between neighboring boxes. (You can use addSpacing() to get more space at a
peculiar spot.)

The margin defaults to O; the spacing defaults to the same as the margin width for a top-level layout, or otherwise
to the same as the parent layout. Both are parameters to the constructor.

To remove a widget from a layout, either delete it or reparent it with QWidget::reparent(). Hiding a widget with
QWidget::hide() also effectively removes the widget from the layout, until QWidget::show() is called.

You will almost always want to use QVBoxLayout and QHBoxLayout rather than QBoxLayout because of their
convenient constructors.

See also Layout Overview [Programming with Qt], Widget Appearance and Style and Layout Management.

QBoxLayout Class Reference 36

Member Type Documentation

QBoxLayout::Direction

This type is used to determine the direction of a box layout. The possible values are the following:

e (BoxLayout:: Left ToRi ght - Horizontal, from left to right
e (BoxLayout:: Ri ght ToLeft - Horizontal, from right to left
e (BoxLayout:: TopToBott om- Vertical, from top to bottom
e (BoxLayout : : Down - The same as TopToBottom

e (BoxLayout : : Bot t onifoTop - Vertical, from bottom to top
e (BoxLayout: : Up - The same as BottomToTop

Member Function Documentation

QBoxLayout::QBoxLayout (QWidget * parent, Direction d, int margin = 0, int spacing =
-1, const char * name = 0)
Constructs a new QBoxLayout with direction d and main widget parent. parent may not be 0.

The margin is the number of pixels between the edge of the widget and its managed children. The spacing is the
default number of pixels between neighboring children. If spacing is -1 the value of margin is used for spacing.

name is the internal object name.

See also direction() [p. 371.
QBoxLayout::QBoxLayout (QLayout * parentLayout, Direction d, int spacing = -1,
const char * name = 0)

Constructs a new QBoxLayout with direction d and name name and inserts it into parentLayout.

The spacing is the default number of pixels between neighboring children. If spacing is -1, this QBoxLayout will
inherit its parent’s spacing().

QBoxLayout::QBoxLayout (Direction d, int spacing = -1, const char * name = 0)
Constructs a new QBoxLayout with direction d and name name.

If spacing is -1, this QBoxLayout will inherit its parent’s spacing(); otherwise spacing is used.

You have to insert this box into another layout.

QBoxLayout::~QBoxLayout ()

Destroys this box layout.

void QBoxLayout::addItem (QLayoutltem * item) [virtual]

Adds item to the end of this box layout.

Reimplemented from QLayout [p. 103].

QBoxLayout Class Reference 37

void QBoxLayout::addLayout (QLayout * layout, int stretch = 0)

Adds layout to the end of the box, with serial stretch factor stretch.
See also insertLayout() [p. 38], setAutoAdd() [p. 106], addWidget() [p. 37] and addSpacing() [p. 371.

Examples: fonts/simple-qfont-demo/viewer.cpp, listbox/listbox.cpp and tictac/tictac.cpp.

void QBoxLayout::addSpacing (int size)

Adds a non-stretchable space with size size to the end of this box layout. QBoxLayout gives default margin and
spacing. This function adds additional space.

See also insertSpacing() [p. 38] and addStretch() [p. 371.

Example: listbox/listbox.cpp.

void QBoxLayout::addStretch (int stretch = 0)

Adds a stretchable space with zero minimum size and stretch factor stretch to the end of this box layout.
See also addSpacing() [p. 371.
Examples: layout/layout.cpp, listbox/listbox.cpp and t13/gamebrd.cpp.

void QBoxLayout::addStrut (int size)

Limits the perpendicular dimension of the box (e.g. height if the box is LeftToRight) to a minimum of size. Other
constraints may increase the limit.

void QBoxLayout::addWidget (QWidget * widget, int stretch = 0, int alignment = 0)

Adds widget to the end of this box layout, with a stretch factor of stretch and alignment alignment.

The stretch factor applies only in the direction of the QBoxLayout, and is relative to the other boxes and widgets in
this QBoxLayout. Widgets and boxes with higher stretch factor grow more.

If the stretch factor is 0 and nothing else in the QBoxLayout has a stretch factor greater than zero, the space is
distributed according to the QWidget:sizePolicy() of each widget that’s involved.

Alignment is specified by alignment which is a bitwise OR of Qt::AlignmentFlags values. The default alignment is
0, which means that the widget fills the entire cell.

Note: The alignment parameter is interpreted more aggressively than in previous versions of Qt. A non-default
alignment now indicates that the widget should not grow to fill the available space, but should be sized according
to sizeHint().

See also insertWidget() [p. 391, setAutoAdd() [p. 106], addLayout() [p. 37] and addSpacing() [p. 371.

Examples: checklists/checklists.cpp, fonts/simple-qfont-demo/viewer.cpp, layout/layout.cpp,
lineedits/lineedits.cpp, listbox/listbox.cpp, t13/gamebrd.cpp and t13/lcdrange.cpp.

Direction QBoxLayout::direction () const

Returns the direction of the box. addWidget() and addSpacing() work in this direction; the stretch stretches in this
direction.

See also QBoxLayout::Direction [p. 36], addWidget() [p. 37] and addSpacing() [p. 37].

QBoxLayout Class Reference 38

QSizePolicy::ExpandData QBoxLayout::expanding () const [virtual]

Returns the expansiveness of this layout.

Reimplemented from QLayout [p. 104].

int QBoxLayout::findWidget (QWidget * w)

Searches for widget w in this layout (not including child layouts).

Returns the index of w, or -1 if w is not found.

bool QBoxLayout::hasHeightForWidth () const [virtual]

Returns TRUE if this layout’s preferred height depends on its width; otherwise returns FALSE.

Reimplemented from QLayoutltem [p. 109].

int QBoxLayout::heightForWidth (int w) const [virtual]

Returns the layout’s preferred height when it is w pixels wide.

Reimplemented from QLayoutltem [p. 109].

void QBoxLayout::insertIltem (int index, QLayoutltem * item) [protected]

Inserts item in this box layout at position index. If index is negative, the item is added at the end.
Warning: Does not call QLayout::insertChildLayout() if item is a QLayout.
See also addItem() [p. 36] and findWidget() [p. 38].

void QBoxLayout::insertLayout (int index, QLayout * layout, int stretch = 0)

Inserts layout at position index, with stretch factor stretch. If index is negative, the layout is added at the end.

See also setAutoAdd() [p. 106], insertWidget() [p. 39] and insertSpacing() [p. 38].

void QBoxLayout::insertSpacing (int index, int size)

Inserts a non-stretchable space at position index, with size size. If index is negative the space is added at the end.
The box layout has default margin and spacing. This function adds additional space.

See also insertStretch() [p. 38].

void QBoxLayout::insertStretch (int index, int stretch = 0)

Inserts a stretchable space at position index, with zero minimum size and stretch factor stretch. If index is negative
the space is added at the end.

See also insertSpacing() [p. 38].

QBoxLayout Class Reference 39

void QBoxLayout::insertWidget (int index, QWidget * widget, int stretch = 0,
int alignment = 0)

Inserts widget at position index, with stretch factor stretch and alignment alignment. If index is negative, the widget
is added at the end.

The stretch factor applies only in the direction of the QBoxLayout, and is relative to the other boxes and widgets in
this QBoxLayout. Widgets and boxes with higher stretch factors grow more.

If the stretch factor is 0 and nothing else in the QBoxLayout has a stretch factor greater than zero, the space is
distributed according to the QWidget:sizePolicy() of each widget that’s involved.

Alignment is specified by alignment, which is a bitwise OR of Qt::AlignmentFlags values. The default alignment is
0, which means that the widget fills the entire cell.

Note: The alignment parameter is interpreted more aggressively than in previous versions of Qt. A non-default
alignment now indicates that the widget should not grow to fill the available space, but should be sized according
to sizeHint().

See also setAutoAdd() [p. 106], insertLayout() [p. 38] and insertSpacing() [p. 38].

void QBoxLayout::invalidate () [virtual]

Resets cached information.

Reimplemented from QLayout [p. 104].

QSize QBoxLayout::maximumSize () const [virtual]

Returns the maximum size needed by this box layout.

Reimplemented from QLayout [p. 105].

QSize QBoxLayout::minimumSize () const [virtual]
Returns the minimum size needed by this box layout.
Reimplemented from QLayout [p. 105].

void QBoxLayout::setDirection (Direction direction)

Sets the direction of this layout to direction.

void QBoxLayout::setGeometry (const QRect & r) [virtual]

Resizes managed widgets within the rectangle r.

Reimplemented from QLayout [p. 106].

bool QBoxLayout::setStretchFactor (QWidget * w, int stretch)

Sets the stretch factor for widget w to stretch and returns TRUE, if w is found in this layout (not including child
layouts).

Returns FALSE if w is not found.

QBoxLayout Class Reference 40

bool QBoxLayout::setStretchFactor (QLayout * 1, int stretch)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the stretch factor for the layout [to stretch and returns TRUE, if [is found in this layout (not including child
layouts).

Returns FALSE if [is not found.

QSize QBoxLayout::sizeHint () const [virtual]

Returns the preferred size of this box layout.

Reimplemented from QLayoutltem [p. 111].

QCDEStyle Class Reference

The QCDEStyle class provides a CDE look and feel.
#incl ude <qcdestyle. h>

Inherits QMotifStyle [p. 116].

Public Members

m QCDEStyle (bool useHighlightCols = FALSE)
m virtual ~QCDEStyle ()

Detailed Description

The QCDEStyle class provides a CDE look and feel.

This style provides a slightly improved Motif look similar to some versions of the Common Desktop Environment
(CDE). The main differences are thinner frames and more modern radio buttons and check boxes. Together with a
dark background and a bright text/foreground color, the style looks quite attractive (at least for Motif fans).

Note that the functions provided by QCDEStyle are reimplementations of QStyle functions; see QStyle for their
documentation.

See also Widget Appearance and Style.

Member Function Documentation

QCDEStyle::QCDEStyle (bool useHighlightCols = FALSE)

Constructs a QCDEStyle.

If useHighlightCols is FALSE (the default), then the style will polish the application’s color palette to emulate the
Motif way of highlighting, which is a simple inversion between the base and the text color.

QCDEStyle::~QCDEStyle () [virtual]

Destroys the style.

41

QChildEvent Class Reference

The QChildEvent class contains event parameters for child object events.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

» QChildEvent (Type type, QObject * child)
= QObject * child () const

= bool inserted () const

= bool removed () const

Detailed Description

The QChildEvent class contains event parameters for child object events.

Child events are sent to objects when children are inserted or removed.

A ChildRemoved event is sent immediately, but a ChildInserted event is posted (with QApplication::postEvent()).

Note that if a child is removed immediately after it is inserted, the ChildInserted event may be suppressed, but the
ChildRemoved event will always be sent. In this case there will be a ChildRemoved event without a corresponding

ChildInserted event.
The handler for these events is QObject::childEvent().

See also Event Classes.

Member Function Documentation

QChildEvent::QChildEvent (Type type, QObject * child)

Constructs a child event object. The child is the object that is to be removed or inserted.

The type parameter must be either QEvent::ChildInserted or QEvent::ChildRemoved.

QObject * QChildEvent::child () const

Returns the child widget that was inserted or removed.

42

QChildEvent Class Reference

bool QChildEvent::inserted () const

Returns TRUE if the widget received a new child; otherwise returns FALSE.

bool QChildEvent::removed () const

Returns TRUE if the object lost a child; otherwise returns FALSE.

43

QCloseEvent Class Reference

The QCloseEvent class contains parameters that describe a close event.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

= QCloseEvent ()

m bool isAccepted () const
m void accept ()

m void ignore ()

Detailed Description

The QCloseEvent class contains parameters that describe a close event.

Close events are sent to widgets that the user wants to close, usually by choosing "Close" from the window menu.
They are also sent when you call QWidget::close() to close a widget programmatically.

Close events contain a flag that indicates whether the receiver wants the widget to be closed or not. When a widget
accepts the close event, it is hidden (and destroyed if it was created with the WDestructiveClose flag). If it refuses
to accept the close event nothing happens. (Under X11 it is possible that the window manager will forcibly close
the window; but at the time of writing we are not aware of any window manager that does this.)

The main widget of the application - QApplication::mainWidget() - is a special case. When it accepts the close
event, Qt leaves the main event loop and the application is immediately terminated (i.e., it returns from the call to
QApplication::exec() in the main() function).

The event handler QWidget::closeEvent() receives close events. The default implementation of this event handler
accepts the close event. If you do not want your widget to be hidden, or want some special handing, you should
reimplement the event handler.

The closeEvent() in the Application Walkthrough shows a close event handler that asks whether to save a document
before closing.

If you want the widget to be deleted when it is closed, simply create it with the WDestructiveClose widget flag.
This is very useful for independent top-level windows in a multi-window application.

QObject emits the destroyed() signal when it is deleted.
If the last top-level window is closed, the QApplication::lastWindowClosed() signal is emitted.

The isAccepted () function returns TRUE if the event’s receiver has agreed to close the widget; call accept() to agree
to close the widget and call ignore() if the receiver of this event does not want the widget to be closed.

44

QCloseEvent Class Reference 45

See also QWidget::close() [Widgets with Qt], QWidget::hide() [Widgets with Qt], QObject::destroyed()
[Additional Functionality with Qt], QApplication::setMainWidget() [Additional Functionality with Qt],
QApplication::lastWindowClosed () [Additional Functionality with Qt], QApplication::exec() [Additional
Functionality with Qt], QApplication::quit() [Additional Functionality with Qt] and Event Classes.

Member Function Documentation

QCloseEvent::QCloseEvent ()

Constructs a close event object with the accept parameter flag set to FALSE.

See also accept() [p. 45].

void QCloseEvent::accept ()

Sets the accept flag of the close event object.
Setting the accept flag indicates that the receiver of this event agrees to close the widget.
The accept flag is not set by default.

If you choose to accept in QWidget::closeEvent(), the widget will be hidden. If the widget’s WDestructiveClose flag
is set, it will also be destroyed.

See also ignore() [p. 45] and QWidget::hide() [Widgets with Qt].
Examples: action/application.cpp, application/application.cpp, popup/popup.cpp and qwerty/qwerty.cpp.

void QCloseEvent::ignore ()

Clears the accept flag of the close event object.

Clearing the accept flag indicates that the receiver of this event does not want the widget to be closed.
The close event is constructed with the accept flag cleared.

See also accept() [p. 45].

Examples: action/application.cpp, application/application.cpp and qwerty/qwerty.cpp.

bool QCloseEvent::isAccepted () const

Returns TRUE if the receiver of the event has agreed to close the widget; otherwise returns FALSE.

See also accept() [p. 45] and ignore() [p. 45].

QColorDrag Class Reference

The QColorDrag class provides a drag and drop object for transferring colors.
#i ncl ude <qdragobj ect. h>
Inherits QStoredDrag [p. 132].

Public Members

m QColorDrag (const QColor & col, QWidget * dragsource = 0, const char * name = 0)
m QColorDrag (QWidget * dragsource = 0, const char * name = 0)
m void setColor (const QColor & col)

Static Public Members

= bool canDecode (QMimeSource * e)
= bool decode (QMimeSource * e, QColor & col)

Detailed Description

The QColorDrag class provides a drag and drop object for transferring colors.

This class provides a drag object which can be used to transfer data about colors for drag and drop and over the
clipboard. For example, it is used in the QColorDialog.

The color is set in the constructor but can be changed with setColor().
For more information about drag and drop, see the QDragObject class and the drag and drop documentation.

See also Drag And Drop Classes.

Member Function Documentation

QColorDrag::QColorDrag (const QColor & col, QWidget * dragsource = 0,
const char * name = 0)

Constructs a color drag object with the color col. Passes dragsource and name to the QStoredDrag constructor.

46

QColorDrag Class Reference 47

QColorDrag::QColorDrag (QWidget * dragsource = 0, const char * name = 0)

Constructs a color drag object with a white color Passes dragsource and name to the QStoredDrag constructor.

bool QColorDrag::canDecode (QMimeSource * e) [static]

Returns TRUE if the color drag object can decode the mime source e.

bool QColorDrag::decode (QMimeSource * e, QColor & col) [static]

Decodes the mime source e and sets the decoded values to col.

void QColorDrag::setColor (const QColor & col)

Sets the color of the color drag to col.

QCommonStyle Class Reference

The QCommonStyle class encapsulates the common Look and Feel of a GUI.
#i ncl ude <gcomonstyl e. h>

Inherits QStyle [p. 134].

Inherited by QWindowsStyle [p. 179] and QMotifStyle [p. 116].

Public Members

» QCommonStyle ()

Detailed Description

The QCommonStyle class encapsulates the common Look and Feel of a GUI.

This abstract class implements some of the widget’s look and feel that is common to all GUI styles provided and
shipped as part of Qt.

All the functions are documented in QStyle.

See also Widget Appearance and Style.

Member Function Documentation

QCommonStyle::QCommonsStyle ()

Constructs a QCommonStyle.

48

QContextMenuEvent Class Reference

The QContextMenuEvent class contains parameters that describe a context menu event.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

m enum Reason { Mouse, Keyboard, Other }

= QContextMenuEvent (Reason reason, const QPoint & pos, const QPoint & globalPos, int state)
= QContextMenuEvent (Reason reason, const QPoint & pos, int state)

int x () const

int y () const

int globalX () const

int globalY () const

const QPoint & pos () const

const QPoint & globalPos () const
= ButtonState state () const

m bool isAccepted () const

bool isConsumed () const

void consume ()

void accept ()

void ignore ()

Reason reason () const

Detailed Description

The QContextMenuEvent class contains parameters that describe a context menu event.

Context events are sent to widgets when a user triggers a menu. What triggers this is platform dependent. On
windows, for example, pressing the menu button or releasing the right mouse button will cause this event to be
sent. It is customary to use this to show a QPopupMenu when this event is triggered if you have a relevant context
menu.

ContextMenu events contain a special accept flag that indicates whether the receiver accepted the contextMenu. If
the event handler does not accept the event, then whatever triggered the event will be handled as a regular input
event if possible.

See also QPopupMenu [Dialogs and Windows with Qt] and Event Classes.

49

QContextMenuEvent Class Reference 50

Member Type Documentation

QContextMenuEvent::Reason
This enum describes the reason the ContextMenuEvent was sent. The values are:

e (Cont ext MenuEvent : : Muse - The mouse caused the event to be sent. Normally this means the right mouse
button was clicked, but this is platform specific.

e (Cont ext MenuEvent : : Keyboard - The keyboard caused this event to be sent. On windows this means the
menu button was pressed.

e QCont ext MenuEvent :: G her - The event was sent by some other means (i.e. not by the mouse or keyboard).

Member Function Documentation

QContextMenuEvent::QContextMenuEvent (Reason reason, const QPoint & pos,
const QPoint & globalPos, int state)

Constructs a context event object with the accept parameter flag set to FALSE.
The reason parameter must be QContextMenuEvent::Mouse or QContextMenuEvent::Keyboard.

The pos parameter specifies the mouse position relative to the receiving widget. globalPos is the mouse position in
absolute coordinates. state is the ButtonState at the time of the event.

QContextMenuEvent::QContextMenuEvent (Reason reason, const QPoint & pos,
int state)

Constructs a context event object with the accept parameter flag set to FALSE.
The reason parameter must be QContextMenuEvent::Mouse or QContextMenuEvent::Keyboard.

The pos parameter specifies the mouse position relative to the receiving widget. state is the ButtonState at the time
of the event.

The globalPos() is initialized to QCursor::pos(), which may not be appropriate. Use the other constructor to specify
the global position explicitly.

void QContextMenuEvent::accept ()

Sets the accept flag of the context event object.

Setting the accept flag indicates that the receiver of this event has processed the event. Processing the event means
you did something with it and it will be implicitly consume().

The accept flag is not set by default.

See also ignore() [p. 51] and consume() [p. 50].

void QContextMenuEvent::consume ()

Sets the consume flag of the context event object.

Setting the consume flag indicates that the receiver of this event asked that the event not be propagated further (to
parent classes).

QContextMenuEvent Class Reference 51

The consumed flag is not set by default.

See also ignore() [p. 51] and accept() [p. 50].

const QPoint & QContextMenuEvent::globalPos () const

Returns the global position of the mouse pointer at the time of the event.

See also x() [p. 521, yO [p. 52] and pos() [p. 511].

int QContextMenuEvent::globalX () const

Returns the global X position of the mouse pointer at the time of the event.

See also globalY() [p. 51] and globalPos() [p. 51].

int QContextMenuEvent::globalY () const

Returns the global Y position of the mouse pointer at the time of the event.

See also globalX() [p. 51] and globalPos() [p. 511].

void QContextMenuEvent::ignore ()

Clears the accept flag of the context event object.

Clearing the accept flag indicates that the receiver of this event does not need to show a context menu. This will
implicitly remove the consumed flag as well.

The accept flag is not set by default.

See also accept() [p. 50] and consume() [p. 50].

bool QContextMenuEvent::isAccepted () const

Returns TRUE if the receiver has processed the event; otherwise returns FALSE.

See also accept() [p. 50], ignore() [p. 51] and consume() [p. 50].

bool QContextMenuEvent::isConsumed () const

Returns TRUE (which stops propagation of the event) if the receiver has blocked the event; otherwise returns
FALSE.

See also accept() [p. 501, ignore() [p. 51] and consume() [p. 50].

const QPoint & QContextMenuEvent::pos () const

Returns the position of the mouse pointer relative to the widget that received the event.

See also x() [p. 521, yO [p. 52] and globalPos() [p. 51].

QContextMenuEvent Class Reference 52

Reason QContextMenuEvent::reason () const

Returns the reason for this context event.

ButtonState QContextMenuEvent::state () const

Returns the button state (a combination of mouse buttons and keyboard modifiers), i.e., what buttons and keys
were being pressed immediately before the event was generated.

The returned value is LeftButton, RightButton, MidButton, ShiftButton, ControlButton and AltButton OR’ed to-
gether.

int QContextMenuEvent::x () const

Returns the X position of the mouse pointer, relative to the widget that received the event.
See also y() [p. 52] and pos() [p. 51].

int QContextMenuEvent::y () const

Returns the Y position of the mouse pointer, relative to the widget that received the event.

See also x() [p. 52] and pos() [p. 511.

QCustomEvent Class Reference

The QCustomEvent class provides support for custom events.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

= QCustomEvent (int type)

m QCustomEvent (Type type, void * data)
= void * data () const

m void setData (void * data)

Detailed Description

The QCustomEvent class provides support for custom events.

QCustomEvent is a generic event class for user-defined events. User defined events can be sent to widgets or other
QObject instances using QApplication::postEvent() or QApplication::sendEvent(). Subclasses of QWidget can easily
receive custom events by implementing the QWidget::customEvent() event handler function.

QCustomEvent objects should be created with a type id that uniquely identifies the event type. To avoid clashes
with the Qt-defined events types, the value should be at least as large as the value of the "User" entry in the
QEvent::Type enum.

QCustomEvent contains a generic void* data member that may be used for transferring event-specific data to the
receiver. Note that since events are normally delivered asynchronously, the data pointer, if used, must remain valid
until the event has been received and processed.

QCustomEvent can be used as-is for simple user-defined event types, but normally you will want to make a subclass
of it for your event types. In a subclass, you can add data members that are suitable for your event type.

Example:

class Col or ChangeEvent : public QCustonEvent
{
public:
Col or ChangeEvent (QCol or col or)
QQust onkvent (346798), c(color) {};
QCol or color() const { return c; };
private
ol or c;
b

Il To send an event of this customevent type:

53

QCustomEvent Class Reference 54

Col or ChangeEvent* ce = new Col or ChangeEvent (bl ue);
QApplication:: postEvent(receiver, ce); [/ Q@ wll delete it when done

Il To receive an event of this customevent type:

voi d MyWdget:: custonEvent (QCustonEvent * e)

{
if (e->type() == 346798) { // It nmust be a Col or ChangeEvent
Col or ChangeEvent * ce = (Col or ChangeEvent *)e;
newCol or = ce->col or();
}
}

See also QWidget::customEvent() [Additional Functionality with Qt], QApplication::notify() [Additional
Functionality with Qt] and Event Classes.

Member Function Documentation

QCustomEvent::QCustomEvent (int type)

Constructs a custom event object with event type type. The value of type must be at least as large as QEvent::User.
The data pointer is set to 0.

QCustomEvent::QCustomEvent (Type type, void * data)

Constructs a custom event object with the event type type and a pointer to data. (Note that any int value may safely
be cast to QEvent:: Type).

void * QCustomEvent::data () const

Returns a pointer to the generic event data.

See also setData() [p. 54].

void QCustomEvent::setData (void * data)

Sets the generic data pointer to data.

See also data() [p. 541.

QDragEnterEvent Class Reference

The QDragEnterEvent class provides an event which is sent to the widget when a drag and drop first drags onto
the widget.

#include <gevent. h>

Inherits QDragMoveEvent [p. 57].

Public Members

m QDragEnterEvent (const QPoint & pos)

Detailed Description

The QDragEnterEvent class provides an event which is sent to the widget when a drag and drop first drags onto
the widget.

This event is always immediately followed by a QDragMoveEvent, so you only need to respond to one or the
other event. This class inherits most of its functionality from QDragMoveEvent, which in turn inherits most of its
functionality from QDropEvent.

See also QDragleaveEvent [p. 56], QDragMoveEvent [p. 57], QDropEvent [p. 63], Drag And Drop Classes and
Event Classes.

Member Function Documentation

QDragEnterEvent::QDragEnterEvent (const QPoint & pos)

Constructs a QDragEnterEvent entering at the given point, pos.

Do not create a QDragEnterEvent yourself since these objects rely on Qt’s internal state.

55

QDraglLeaveEvent Class Reference

The QDragleaveEvent class provides an event which is sent to the widget when a drag and drop leaves the widget.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

m QDragLeaveEvent ()

Detailed Description

The QDragleaveEvent class provides an event which is sent to the widget when a drag and drop leaves the widget.

This event is always preceded by a QDragEnterEvent and a series of QDragMoveEvents. It is not sent if a
QDropEvent is sent instead.

See also QDragEnterEvent [p. 55], QDragMoveEvent [p. 57], QDropEvent [p. 63], Drag And Drop Classes and
Event Classes.

Member Function Documentation

QDragLeaveEvent::QDragLeaveEvent ()

Constructs a QDragleaveEvent.

Do not create a QDragleaveEvent yourself since these objects rely on Qt’s internal state.

56

QDragMoveEvent Class Reference

The QDragMoveFEvent class provides an event which is sent while a drag-and-drop is in progress.
#include <gevent. h>

Inherits QDropEvent [p. 63].

Inherited by QDragEnterEvent [p. 55].

Public Members

m QDragMoveEvent (const QPoint & pos, Type type = DragMove)
m QRect answerRect () const

m void accept (const QRect & 1)

m void ignore (const QRect & 1)

Detailed Description

The QDragMoveEvent class provides an event which is sent while a drag-and-drop is in progress.

When a widget accepts drop events, it will receive this event repeatedly while the drag is within the widget’s
boundaries. The widget should examine the event to see what data it provides, and accept() the drop if appropriate.

Note that this class inherits most of its functionality from QDropEvent.

See also Drag And Drop Classes and Event Classes.

Member Function Documentation

QDragMoveEvent::QDragMoveEvent (const QPoint & pos, Type type = DragMove)

Creates a QDragMoveEvent for which the mouse is at point pos, and the event is of type type.

Do not create a QDragMoveEvent yourself since these objects rely on Qt’s internal state.

void QDragMoveEvent::accept (const QRect & r)

The same as accept(), but also notifies that future moves will also be acceptable if they remain within the rectangle
r on the widget: this can improve performance, but may also be ignored by the underlying system.

If the rectangle is empty, then drag move events will be sent continuously. This is useful if the source is scrolling in
a timer event.

57

QDragMoveEvent Class Reference 58

QRect QDragMoveEvent::answerRect () const

Returns the rectangle for which the acceptance of the move event applies.

void QDragMoveEvent::ignore (const QRect & r)

The opposite of accept(const QRect&), i.e. says that moves within rectangle r are not acceptable (will be ignored).

Example: dirview/dirview.cpp.

QDragObject Class Reference

The QDragObject class encapsulates MIME-based data transfer.

#i ncl ude <qdragobj ect. h>

Inherits QObject [Additional Functionality with Qt] and QMimeSource [Input/Output and Networking with Qt].
Inherited by QStoredDrag [p. 132], QTextDrag [p. 168], QImageDrag [p. 93] and QIconDrag [p. 89].

Public Members

m QDragObject (QWidget * dragSource = 0, const char * name = 0)
m virtual ~QDragObject ()

m bool drag ()

m bool dragMove ()

» void dragCopy ()

m void dragLink ()

m virtual void setPixmap (QPixmap pm)

virtual void setPixmap (QPixmap pm, const QPoint & hotspot)
QPixmap pixmap () const

QPoint pixmapHotSpot () const

QWidget * source ()

enum DragMode { DragDefault, DragCopy, DragMove, DragLink, DragCopyOrMove }

Static Public Members

» QWidget * target ()

Protected Members

m virtual bool drag (DragMode mode)

Detailed Description
The QDragObject class encapsulates MIME-based data transfer.

QDragObject is the base class for all data that needs to be transferred between and within applications, both for
drag and drop and for the clipboard.

59

QDragObject Class Reference 60

See the Drag-and-drop documentation [Programming with Qt] for an overview of how to provide drag and drop in
your application.

See the QClipboard [Input/Output and Networking with Qt] documentation for an overview of how to provide
cut-and-paste in your application.

The drag() function is used to start a drag operation. You can specify the DragMode in the call or use one of
the convenience functions dragCopy(), dragMove() or dragLink(). The drag source where the data originated is
retrieved with source(). If the data was dropped on a widget within the application target() will return a pointer
to that widget. Specify the pixmap to display during the drag with setPixmap().

See also Drag And Drop Classes.

Member Type Documentation

QDragObject::DragMode
This enum describes the possible drag modes.

e (DragQbj ect:: DragDefaul t - The mode is determined heuristically.

e (DragQhj ect:: DragCopy - The data is copied, never moved.

e (DragQbj ect: : DragMove - The data is moved, if dragged at all.

e (DragQhj ect:: Draglink - The data is linked, if dragged at all.

e (DragQbj ect: : DragCopyOr Move - The user chooses the mode by using a control key to switch from the default.

Member Function Documentation

QDragObject::QDragObject (QWidget * dragSource = 0, const char * name = 0)

Constructs a drag object called name, which is a child of dragSource.

Note that the drag object will be deleted when dragSource is deleted.

QDragObject::~QDragObject () [virtual]

Destroys the drag object, canceling any drag and drop operation in which it is involved, and frees up the storage
used.

bool QDragObject::drag ()

Starts a drag operation using the contents of this object, using DragDefault mode.
The function returns TRUE if the caller should delete the original copy of the dragged data (but see target()).

If the drag contains references to information (eg. file names in a QUriDrag are references) then the return value
should always be ignored, as the target is expected to manipulate the referred-to content directly. On X11 the
return value should always be correct anyway, but on Windows this is not necessarily the case (eg. the file manager
starts a background process to move files, so the source must not delete the files!)

Example: dirview/dirview.cpp.

QDragObject Class Reference 61

bool QDragObject::drag (DragMode mode) [virtual protected]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Starts a drag operation using the contents of this object.

At this point, the object becomes owned by Qt, not the application. You should not delete the drag object nor
anything it references. The actual transfer of data to the target application will be done during future event
processing - after that time the drag object will be deleted.

Returns TRUE if the dragged data was dragged as a move, indicating that the caller should remove the original
source of the data (the drag object must continue to have a copy).

The mode specifies the drag mode (see QDragObject::DragMode.) Normally one of the simpler drag(), dragMove(),
or dragCopy() functions would be used instead.

Warning: in Qt 1.x, drag operations all return FALSE.

void QDragObject::dragCopy ()

Starts a drag operation using the contents of this object, using DragCopy mode. Be sure to read the constraints
described in drag().

See also drag() [p. 60], dragMove() [p. 61] and dragLink() [p. 61].

void QDragObject::dragLink ()

Starts a drag operation using the contents of this object, using DragLink mode. Be sure to read the constraints
described in drag().

See also drag() [p. 60], dragCopy() [p. 61] and dragMove() [p. 61].

bool QDragObject::dragMove ()

Starts a drag operation using the contents of this object, using DragMove mode. Be sure to read the constraints
described in drag().

See also drag() [p. 60], dragCopy() [p. 61] and dragLink() [p. 61].

QPixmap QDragObject::pixmap () const

Returns the currently set pixmap (which isNull() if none is set).

QPoint QDragObject::pixmapHotSpot () const

Returns the currently set pixmap hotspot.

void QDragObject::setPixmap (QPixmap pm, const QPoint & hotspot) [virtual]

Set the pixmap pm to display while dragging the object. The platform-specific implementation will use this where it
can - so provide a small masked pixmap, and do not assume that the user will actually see it. For example, cursors
on Windows 95 are of limited size.

The hotspot is the point on (or off) the pixmap that should be under the cursor as it is dragged. It is relative to the
top-left pixel of the pixmap.

QDragObject Class Reference 62
Example: fileiconview/qfileiconview.cpp.

void QDragObject::setPixmap (QPixmap pm) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Uses a hotspot that positions the pixmap below and to the right of the mouse pointer. This allows the user to clearly
see the point on the window which they are dragging the data onto.

QWidget * QDragObject::source ()

Returns a pointer to the drag source where this object originated.

QWidget * QDragObject::target () [static]

After the drag completes, this function will return the QWidget which received the drop, or O if the data was
dropped on another application.

This can be useful for detecting the case where drag and drop is to and from the same widget.

QDropEvent Class Reference

The QDropEvent class provides an event which is sent when a drag and drop is completed.
#include <gevent. h>

Inherits QEvent [p. 67] and QMimeSource [Input/Output and Networking with Qt].
Inherited by QDragMoveEvent [p. 57].

Public Members

m QDropEvent (const QPoint & pos, Type typ = Drop)
m const QPoint & pos () const

m bool isAccepted () const

m void ignore ()

m bool isActionAccepted () const

m void acceptAction (bool y = TRUE)

» enum Action { Copy, Link, Move, Private, UserAction = 100 }
void setAction (Action a)

Action action () const

QWidget * source () const

virtual const char * format (int n = 0) const

virtual QByteArray encodedData (const char * format) const
virtual bool provides (const char * mimeType) const

m QByteArray data (const char * f) const (obsolete)

e void setPoint (const QPoint & np)

Detailed Description

The QDropEvent class provides an event which is sent when a drag and drop is completed.

When a widget accepts drop events, it will receive this event if it has accepted the most recent QDragEnterEvent or
QDragMoveEvent sent to it.

The widget should use data() to extract data in an appropriate format.

See also Drag And Drop Classes and Event Classes.

63

QDropEvent Class Reference 64

Member Type Documentation

QDropEvent::Action
This enum describes the action which a source requests that a target perform with dropped data.

e (DropEvent: : Copy - The default action. The source simply uses the data provided in the operation.
e (DropEvent:: Li nk - The source should somehow create a link to the location specified by the data.

e (DropEvent: : Move - The source should somehow move the object from the location specified by the data to
a new location.

e (DropEvent:: Privat e - The target has special knowledge of the MIME type, which the source should respond
to in a similar way to a Copy.

e (DropEvent:: User Action - The source and target can co-operate using special actions. This feature is not
supported in Qt at this time.

The Link and Move actions only makes sense if the data is a reference, for example, text/uri-list file lists (see

QUriDrag).

Member Function Documentation

QDropEvent::QDropEvent (const QPoint & pos, Type typ = Drop)

Constructs a drop event that drops a drop of type typ on point pos.

void QDropEvent::acceptAction (bool y = TRUE)

Call this to indicate that the action described by action() is accepted (i.e. if y is TRUE which is the default), not
merely the default copy action. If you call acceptAction(TRUE), there is no need to also call accept(TRUE).

Examples: dirview/dirview.cpp and fileiconview/qfileiconview.cpp.

Action QDropEvent::action () const

Returns the Action which the target is requesting to be performed with the data. If your application understands
the action and can process the supplied data, call acceptAction(); if your application can process the supplied data
but can only perform the Copy action, call accept().

Examples: dirview/dirview.cpp and fileiconview/qfileiconview.cpp.

QByteArray QDropEvent::data (const char * f) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use QDropEvent::encodedData().

QByteArray QDropEvent::encodedData (const char * format) const [virtual]

Returns a byte array containing the payload data of this drag, in format.

QDropEvent Class Reference 65

data() normally needs to get the data from the drag source, which is potentially very slow, so it’s advisable to call
this function only if you're sure that you will need the data in format.

The resulting data will have a size of 0 if the format was not available.
See also format() [p. 65] and QByteArray::size() [Datastructures and String Handling with Qt].

Reimplemented from QMimeSource [Input/Output and Networking with Qt].

const char * QDropEvent::format (int n = 0) const [virtual]

Returns a string describing one of the available data types for this drag. Common examples are "text/plain" and
"image/gif". If n is less than zero or greater than the number of available data types, format() returns O.

This function is provided mainly for debugging. Most drop targets will use provides().
See also data() [p. 64] and provides() [p. 65].
Example: iconview/main.cpp.

Reimplemented from QMimeSource [Input/Output and Networking with Qt].
void QDropEvent::ignore ()

The opposite of accept(), i.e. you have ignored the drop event.

Example: fileiconview/qfileiconview.cpp.

bool QDropEvent::isAccepted () const

Returns TRUE if the drop target accepts the event; otherwise returns FALSE.

bool QDropEvent::isActionAccepted () const

Returns TRUE if the drop action was accepted by the drop site; otherwise returns FALSE.

const QPoint & QDropEvent::pos () const

Returns the position where the drop was made.

Example: dirview/dirview.cpp.

bool QDropEvent::provides (const char * mimeType) const [virtual]

Returns TRUE if this event provides format mimeType or FALSE if it does not.
See also data() [p. 64].
Example: fileiconview/qfileiconview.cpp.

Reimplemented from QMimeSource [Input/Output and Networking with Qt].

QDropEvent Class Reference 66

void QDropEvent::setAction (Action a)

Sets the action to a. This is used internally, you should not need to call this in your code - the source decides the
action, not the target.

void QDropEvent::setPoint (const QPoint & np)

Sets the drop to happen at point np. You do not normally need to use this as it will be set internally before your
widget receives the drop event.

QWidget * QDropEvent::source () const

If the source of the drag operation is a widget in this application, this function returns that source, otherwise it
returns 0. The source of the operation is the first parameter to to drag object subclass.

This is useful if your widget needs special behavior when dragging to itself, etc.

See QDragObject::QDragObject() and subclasses.

QEvent Class Reference

The QEvent class is the base class of all event classes. Event objects contain event parameters.
#include <gevent. h>
Inherits Qt [Additional Functionality with Qt].

Inherited by QTimerEvent [p. 170], QMouseEvent [p. 118], QWheelEvent [p. 176], QTabletEvent, QKeyEvent
[p- 951, QFocusEvent [p. 71], QPaintEvent [p. 125], QMoveEvent [p. 122], QResizeEvent [p. 129], QCloseEvent
[p. 441, QShowEvent [p. 131], QHideEvent [p. 88], QContextMenuEvent [p. 49], QIMEvent [Accessibility and
Internationalization with Qt], QDropEvent [p. 63], QDragLeaveEvent [p. 56], QChildEvent [p. 42] and
QCustomEvent [p. 53].

Public Members

m enum Type { None = 0, Timer = 1, MouseButtonPress = 2, MouseButtonRelease = 3, MouseButtonDbIClick
= 4, MouseMove = 5, KeyPress = 6, KeyRelease = 7, FocusIn = 8, FocusOut = 9, Enter = 10, Leave = 11,
Paint = 12, Move = 13, Resize = 14, Create = 15, Destroy = 16, Show = 17, Hide = 18, Close = 19, Quit
= 20, Reparent = 21, ShowMinimized = 22, ShowNormal = 23, WindowActivate = 24, WindowDeactivate
= 25, ShowToParent = 26, HideToParent = 27, ShowMaximized = 28, ShowFullScreen = 29, Accel = 30,
Wheel = 31, AccelAvailable = 32, CaptionChange = 33, IconChange = 34, ParentFontChange = 35,
ApplicationFontChange = 36, ParentPaletteChange = 37, ApplicationPaletteChange = 38, PaletteChange =
39, Clipboard = 40, Speech = 42, SockAct = 50, AccelOverride = 51, DeferredDelete = 52, DragEnter =
60, DragMove = 61, Dragleave = 62, Drop = 63, DragResponse = 64, ChildInserted = 70, ChildRemoved
= 71, LayoutHint = 72, ShowWindowRequest = 73, ActivateControl = 80, DeactivateControl = 81,
ContextMenu = 82, IMStart = 83, IMCompose = 84, IMEnd = 85, Accessibility = 86, Tablet = 87, User =
1000, MaxUser = 65535 } (obsolete)

= QEvent (Type type)
= Type type () const
» bool spontaneous () const

Detailed Description

The QEvent class is the base class of all event classes. Event objects contain event parameters.

The main event loop of Qt (QApplication::exec()) fetches native window system events from the event queue,
translates them into QEvents and sends the translated events to QObjects.

Generally, events come from the underlying window system (spontaneous() returns TRUE) but it is also pos-
sible to manually send events through the QApplication class using QApplication::sendEvent() and QApplica-
tion::postEvent() (spontaneous() returns FALSE).

QObjects receive events by having their QObject::event() function called. The function can be reimplemented in
subclasses to customize event handling and add additional event types. QWidget::event() is a notable example.

67

QEvent Class Reference 68

By default, events are dispatched to event handlers like QObject::timerEvent() and QWidget::mouseMoveEvent().
QObject::installEventFilter() allows an object to intercept events to another object.

The basic QEvent contains only an event type parameter. Subclasses of QEvent contain additional parameters that
describe the particular event.

See also QObject::event() [Additional Functionality with Qt], QObject::installEventFilter() [Additional
Functionality with Qt], QWidget::event() [Widgets with Qt], QApplication::sendEvent() [Additional Functionality
with Qt], QApplication::postEvent() [Additional Functionality with Qt], QApplication::processEvents()
[Additional Functionality with Qt], Environment Classes and Event Classes.

Member Type Documentation

QEvent::Type

This enum type defines the valid event types in Qt. The currently defined event types and the specialized classes
for each type are:

e (Event:: None - Not an event.

e (Event:: Accessibhility - Accessibility information is requested
e (Event::Tiner - Regular timer events, QTimerEvent.

e (Event:: MuseButtonPress - Mouse press, QMouseEvent.

e (Event:: MuseButtonRel ease - Mouse release, QMouseEvent.

e (Event:: MuseButtonDbl O ick - Mouse press again, QMouseEvent.
e (Event:: MuseMyve - Mouse move, QMouseEvent.

e (Event:: KeyPress - Key press (including Shift, for example), QKeyEvent.
e (Event:: KeyRel ease - Key release, QKeyEvent.

e (Event::IMstart - The start of input method composition.

e (Event:: | Mlonpose - Input method composition is taking place.
e (Event::|MEnd - The end of input method composition.

e (Event:: Focusl n - Widget gains keyboard focus, QFocusEvent.

e (Event:: FocusQut - Widget loses keyboard focus, QFocusEvent.
e (Event::Enter - Mouse enters widget’s boundaries.

e (Event::Leave - Mouse leaves widget’s boundaries.

e (Event::Paint - Screen update necessary, QPaintEvent.

e (Event:: Mve - Widget’s position changed, QMoveEvent.

e (Event:: Resize - Widget’s size changed, QResizeEvent.

e (QEvent:: Show- Widget was shown on screen, QShowEvent.

e (Event:: H de - Widget was hidden, QHideEvent.

e (Event:: ShowToParent - A child widget has been shown.

e (Event:: H deToParent - A child widget has been hidden.

e (Event:: C ose - Widget was closed (permanently), QCloseEvent.
e (Event: : ShowNor mal - Widget should be shown normally.

e (Event:: ShowMaxi m zed - Widget should be shown maximized.

e (Event:: ShowM ni m zed - Widget should be shown minimized.

e (Event:: Showrul | Screen - Widget should be shown full-screen.

QEvent Class Reference

e (Event:: ShowW ndowRequest - Widget’s window should be shown. This type is obsolete

keep old source working. We strongly advise against using it in new code.

e (Event::
e (Event:
e (Event:
e (Event::
e (Event:
e (Event:
e (Event:
e (Event:
e (Event::
e (Event::
e (Event::
e (Event:
e (Event::
e (Event::
e (Event:
e (Event::
e (Event::
e (Event::
e (Event::
e (Event::
e (Event::
e (Event::
e (Event::
e (Event::
e (Event::
e (Event:
e (Event::
e (Event::
e (Event::
e (Event::
e (Event::
e (Event::
e (Event:
e (Event::
e (Event::

Def erredDel et e - The object will be deleted after it has cleaned up.
: Accel - Key press in child for shortcut key handling, QKeyEvent.
: Wheel - Mouse wheel rolled, QWheelEvent.

Cont ext Menu - context popup menu, QContextMenuEvent

: Accel Avai | abl e - Internal event used by Qt on some platforms.

- W ndowAct i vat e - Window was activated.
- W ndowDeact i vat e - Window was deactivated.

Capt i onChange - Widget’s caption changed.
| conChange - Widget’s icon changed.
Par ent Font Change - Font of the parent widget changed.

: Appl i cati onFont Change - Default application font changed.

Pal et t eChange - Palette of the widget changed.
Par ent Pal et t eChange - Palette of the parent widget changed.

: Appl i cationPal ett eChange - Default application palette changed.

C i pboard - Clipboard contents have changed.

SockAct - Socket activated, used to implement QSocketNotifier.
DragEnt er - A drag-and-drop enters widget, QDragEnterEvent.
Draghbve - A drag-and-drop is in progress, QDragMoveEvent.
DraglLeave - A drag-and-drop leaves widget, QDragLeaveEvent.
Dr op - A drag-and-drop is completed, QDropEvent.

Dr agResponse - Internal event used by Qt on some platforms.
Chi I dl nserted - Object gets a child, QChildEvent.

Chi | dRenmoved - Object loses a child, QChildEvent.

Layout Hi nt - Widget child has changed layout properties.

:ActivateControl - Internal event used by Qt on some platforms.

Deactivat eControl - Internal event used by Qt on some platforms.
Qui t - Reserved.

Creat e - Reserved.

Destroy - Reserved.

Repar ent - Reserved.

Speech - Reserved for speech input.

: Tabl et - Wacom Tablet event.

User - User defined event.
MaxUser - Last user event id.

User events should have values between User and MaxUser inclusive.

Member Function Documentation

QEvent::QEvent (Type type)

Contructs an event object of type type.

69

. It is provided to

: Accel Overri de - Key press in child, for overriding shortcut key handling, QKeyEvent.

QEvent Class Reference

bool QEvent::spontaneous () const

Returns TRUE if the event originated outside the application, i.e. it is a system event; otherwise returns FALSE.

Type QEvent::type () const

Returns the event type.

70

QFocusEvent Class Reference

The QFocusEvent class contains event parameters for widget focus events.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

= QFocusEvent (Type type)

m bool gotFocus () const

= bool lostFocus () const

m enum Reason { Mouse, Tab, Backtab, ActiveWindow, Popup, Shortcut, Other }

Static Public Members

m Reason reason ()
m void setReason (Reason reason)
m void resetReason ()

Detailed Description

The QFocusEvent class contains event parameters for widget focus events.

Focus events are sent to widgets when the keyboard input focus changes. Focus events occur due to mouse actions,
keypresses (e.g. Tab or Backtab), the window system, popup menus, keyboard shortcuts or other application
specific reasons. The reason for a particular focus event is returned by reason() in the appropriate event handler.

The event handlers QWidget::focusInEvent() and QWidget::focusOutEvent() receive focus events.

Use setReason() to set the reason for all focus events, and resetReason() to set the reason for all focus events to
the reason in force before the last setReason() call.

See also QWidget::setFocus() [Widgets with Qt], QWidget::focusPolicy [Widgets with Qt] and Event Classes.

Member Type Documentation

QFocusEvent::Reason

This enum specifies why the focus changed:

71

QFocusEvent Class Reference 72

e QFocusEvent: : Mouse - because of a mouse action.

e QFocusEvent:: Tab - because of a Tab press

e QFocusEvent:: Backt ab - because of a Backtab press (possibly including Shift/Control, e.g. Shift+Tab).
e (QFocusEvent:: Acti veWndow - because the window system made this window (in)active.

e QFocusEvent: : Popup - because the application opened/closed a popup that grabbed/released focus.

e QFocusEvent:: Shortcut - because of a keyboard shortcut.

e QFocusEvent:: O her - any other reason, usually application-specific.

See the keyboard focus [Programming with Qt] overview for more about focus.

Member Function Documentation

QFocusEvent::QFocusEvent (Type type)

Constructs a focus event object.

The type parameter must be either QEvent::FocusIn or QEvent::FocusOut.
bool QFocusEvent::gotFocus () const

Returns TRUE if the widget received the text input focus; otherwise returns FALSE.

bool QFocusEvent::lostFocus () const

Returns TRUE if the widget lost the text input focus; otherwise returns FALSE.

Reason QFocusEvent::reason () [static]

Returns the reason for this focus event.

See also setReason() [p. 72].

void QFocusEvent::resetReason () [static]

Resets the reason for all future focus events to the value before the last setReason() call.

See also reason() [p. 72] and setReason() [p. 72].

void QFocusEvent::setReason (Reason reason) [static]

Sets the reason for all future focus events to reason.

See also reason() [p. 72] and resetReason() [p. 72].

QGLayoutlterator Class Reference

The QGLayoutlterator class is an abstract base class of internal layout iterators.

#i ncl ude <ql ayout. h>

Public Members

virtual ~QGLayoutlterator ()

virtual QLayoutltem * next ()

virtual QLayoutltem * current ()
virtual QLayoutltem * takeCurrent ()

Detailed Description

The QGLayoutlterator class is an abstract base class of internal layout iterators.
(This class is not OpenGL related, it just happens to start with the letters QGL...)

Subclass this class to create a custom layout. The functions that must be implemented are next(), current(), and
takeCurrent().

The QGLayoutlterator implements the functionality of QLayoutlterator. Each subclass of QLayout needs a QGLay-
outlterator subclass.

See also Widget Appearance and Style and Layout Management.

Member Function Documentation

QGLayoutlIterator:: ~QGLayoutlterator () [virtual]

Destroys the iterator

QLayoutltem * QGLayoutlterator::current () [virtual]

Implemented in subclasses to return the current item, or O if there is no current item.

Examples: customlayout/border.cpp, customlayout/card.cpp and customlayout/flow.cpp.

QLayoutltem * QGLayoutlterator::next () [virtual]

Implemented in subclasses to move the iterator to the next item and return that item, or 0 if there is no next item.

73

QGLayoutlterator Class Reference 74

Examples: customlayout/border.cpp, customlayout/card.cpp and customlayout/flow.cpp.

QLayoutltem * QGLayoutlterator::takeCurrent () [virtual]

Implemented in subclasses to remove the current item from the layout without deleting it, move the iterator to the
next item and return the removed item, or O if no item was removed.

Examples: customlayout/border.cpp, customlayout/card.cpp and customlayout/flow.cpp.

QGrid Class Reference

The QGrid widget provides simple geometry management of its children.
#include <qgrid. h>
Inherits QFrame [Widgets with Qt].

Public Members

» QGrid (int n, QWidget * parent = 0, const char * name = 0, WFlags f = 0)
» QGrid (int n, Orientation orient, QWidget * parent = 0, const char * name = 0, WFlags f = 0)
m void setSpacing (int space)

Detailed Description

The QGrid widget provides simple geometry management of its children.

The grid places its widgets either in a single column or in a single row. If you want a multi-column, multi-row grid
use QGridLayout.

The number of rows or columns is defined in the constructor. All the grid’s children will be placed and sized in
accordance with their sizeHint() and sizePolicy().

Use setMargin() to add space around the grid itself, and setSpacing() to add space between the widgets.

One | Twao

Three |Four

Five

See also QVBox [Widgets with Qt], QHBox [p. 84], Widget Appearance and Style and Layout Management.

Member Function Documentation

QGrid::QGrid (int n, QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs a grid widget with parent parent and name name. n specifies the number of columns. The widget flags
f are passed to the QFrame constructor.

75

QGrid Class Reference 76

QGrid::QGrid (int n, Orientation orient, QWidget * parent = 0, const char * name = 0,
WFlags f = 0)

Constructs a grid widget with parent parent and name name. If orient is Horizontal, n specifies the number of

columns. If orient is Vertical, n specifies the number of rows. The widget flags f are passed to the QFrame construc-
tor.

void QGrid::setSpacing (int space)

Sets the spacing between the child widgets to space.

QGridLayout Class Reference

The QGridLayout class lays out widgets in a grid.
#i ncl ude <ql ayout. h>

Inherits QLayout [p. 101].

Public Members

m QGridLayout (QWidget * parent, int nRows = 1, int nCols = 1, int margin = 0, int space = -1,
const char * name = 0)

» QGridLayout (int nRows = 1, int nCols = 1, int spacing = -1, const char * name = 0)

m QGridLayout (QLayout * parentLayout, int nRows = 1, int nCols = 1, int spacing = -1, const char * name
=0)

m ~QGridLayout ()

m virtual QSize sizeHint () const

m virtual QSize minimumSize () const

m virtual QSize maximumSize () const

m virtual void setRowStretch (int row, int stretch)

m virtual void setColStretch (int col, int stretch)

int rowStretch (int row) const

int colStretch (int col) const

int numRows () const

int numCols () const

m QRect cellGeometry (int row, int col) const

m virtual bool hasHeightForWidth () const

m virtual int heightForWidth (int w) const

m virtual QSizePolicy::ExpandData expanding () const

virtual void invalidate ()

virtual void addItem (QLayoutltem * item)

void addItem (QLayoutltem * item, int row, int col)

void addMultiCell (QLayoutltem * item, int fromRow, int toRow, int fromCol, int toCol, int alignment = 0)

void addWidget (QWidget * w, int row, int col, int alignment = 0)

void addMultiCellWidget (QWidget * w, int fromRow, int toRow, int fromCol, int toCol, int alignment = 0)

» void addLayout (QLayout * layout, int row, int col)

» void addMultiCellLayout (QLayout * layout, int fromRow, int toRow, int fromCol, int toCol, int alignment
=0)

= void addRowSpacing (int row, int minsize)

» void addColSpacing (int col, int minsize)

» void expand (int nRows, int nCols)

m enum Corner { TopLeft, TopRight, BottomLeft, BottomRight }

77

QGridLayout Class Reference 78

m void setOrigin (Corner c)
e Corner origin () const
e virtual void setGeometry (const QRect & r)

Protected Members

m bool findWidget (QWidget * w, int * row;, int * col)
» void add (QLayoutltem * item, int row, int col)

Detailed Description

The QGridLayout class lays out widgets in a grid.

QGridLayout takes the space it gets (from its parent layout or from the mainWidget()), divides it up into rows and
columns, and puts each widget it manages into the correct cell.

Columns and rows behave identically; we will discuss columns, but there are equivalent functions for rows.

Each column has a minimum width and a stretch factor. The minimum width is the greatest of that set using add-
ColSpacing() and the minimum width of each widget in that column. The stretch factor is set using setColStretch()
and determines how much of the available space the column will get over and above its necessary minimum.

Normally, each managed widget or layout is put into a cell of its own using addWidget(), addLayout() or by the
auto-add facility; but you can also put widgets into multiple cells using addMultiCellWidget(). If you do this,
QGridLayout will guess how to distribute the size over the columns/rows (based on the stretch factors).

To remove a widget from a layout, either delete it or reparent it with QWidget::reparent(). Hiding a widget with
QWidget::hide() also effectively removes the widget from the layout, until QWidget::show() is called.

This illustration shows a fragment of a dialog with a five-column, three-row grid (the grid is shown overlaid in
magenta):

[Eont [Fant style [Size
Times Roman 10
Helvetica Italic 12 j
Courier Obligue 14
Falatino 16
Gill Sans T A |8 £

Columns 0, 2 and 4 in this dialog fragment are made up of a QLabel, a QLineEdit, and a QListBox. Columns 1 and
3 are placeholders made with addColSpacing(). Row 0 consists of three QLabel objects, row 1 of three QLineEdit
objects and row 2 of three QListBox objects. We used placeholder columns (1 and 3) to get the right amount of
space between the columns.

Note that the columns and rows are not equally wide or tall. If you want two columns to have the same width, you
must set their minimum widths and stretch factors to be the same yourself. You do this using addColSpacing() and
setColStretch().

If the QGridLayout is not the top-level layout (i.e. does not manage all of the widget’s area and children), you must
add it to its parent layout when you create it, but before you do anything with it. The normal way to add a layout
is by calling parentLayout->addLayout().

Once you have added your layout you can start putting widgets and other layouts into the cells of your grid layout
using addWidget(), addLayout() and addMultiCellWidget().

QGridLayout also includes two margin widths: the border and the spacing. The border is the width of the reserved
space along each of the QGridLayout’s four sides. The spacing is the width of the automatically allocated spacing
between neighboring boxes.

QGridLayout Class Reference 79

Both the border and the spacing are parameters of the constructor and default to O.

See also Layout Overview [Programming with Qt], Widget Appearance and Style and Layout Management.

Member Type Documentation

QGridLayout::Corner

This enum identifies which corner is the origin (0, 0) of the layout.

e QGridLayout:: TopLeft - the top-left corner

e GidLayout:: TopRi ght - the top-right corner

e GidLayout::Bottonleft -the bottom-left corner

e QGidLayout::BottonR ght - the bottom-right corner

Member Function Documentation

QGridLayout::QGridLayout (QWidget * parent, int nRows = 1, int nCols = 1, int margin
= 0, int space = -1, const char * name = 0)

Constructs a new QGridLayout with nRows rows, nCols columns with parent widget, parent. parent may not be 0.
The grid layout is called name.

margin is the number of pixels between the edge of the widget and its managed children. space is the default
number of pixels between cells. If space is -1, the value of margin is used.

QGridLayout::QGridLayout (int nRows = 1, int nCols = 1, int spacing = -1,
const char * name = 0)

Constructs a new grid with nRows rows and nCols columns. If spacing is -1, this QGridLayout inherits its parent’s
spacing(); otherwise spacing is used. The grid layout is called name.

You must insert this grid into another layout. You can insert widgets and layouts into this layout at any time, but
layout will not be performed before this is inserted into another layout.

QGridLayout::QGridLayout (QLayout * parentLayout, int nRows = 1, int nCols = 1,
int spacing = -1, const char * name = 0)

Constructs a new grid that is placed inside parentLayout with nRows rows and nCols columns. If spacing is -1, this
QGridLayout inherits its parent’s spacing(); otherwise spacing is used. The grid layout is called name.

This grid is placed according to parentLayout’s default placement rules.

QGridLayout::~QGridLayout ()

Destroys the grid layout. Geometry management is terminated if this is a top-level grid.

void QGridLayout::add (QLayoutItem * item, int row, int col) [protected]

Adds item at position row, col. The layout takes ownership of the item.

QGridLayout Class Reference 80

void QGridLayout::addColSpacing (int col, int minsize)

Sets the minimum width of column col to minsize pixels.

void QGridLayout::addItem (QLayoutltem * item, int row, int col)

Adds item at position row, col. The layout takes ownership of the item.

void QGridLayout::addItem (QLayoutltem * item) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Adds item to the next free position of this layout.

Reimplemented from QLayout [p. 103].

void QGridLayout::addLayout (QLayout * layout, int row, int col)

Places the layout at position (row, col) in the grid. The top-left position is (0, 0).

Examples: listbox/listbox.cpp, progressbar/progressbar.cpp, t10/main.cpp and t13/gamebrd.cpp.

void QGridLayout::addMultiCell (QLayoutltem * item, int fromRow, int toRow,
int fromCol, int toCol, int alignment = 0)

Adds the item to the cell grid, spanning multiple rows/columns.

The cell will span from fromRow, fromCol to toRow, toCol. Alignment is specified by alignment, which is a bitwise
OR of Qt::AlignmentFlags values. The default alignment is 0, which means that the widget fills the entire cell.

void QGridLayout::addMultiCellLayout (QLayout * layout, int fromRow;, int toRow,
int fromCol, int toCol, int alignment = 0)

Adds the layout layout to the cell grid, spanning multiple rows/columns. The cell will span from fromRow, fromCol
to toRow, toCol.

Alignment is specified by alignment, which is a bitwise OR of Qt::AlignmentFlags values. The default alignment is
0, which means that the widget fills the entire cell.

A non-zero alignment indicates that the layout should not grow to fill the available space but should be sized
according to sizeHint().

void QGridLayout::addMultiCellWidget (QWidget * w, int fromRow, int toRow,
int fromCol, int toCol, int alignment = 0)

Adds the widget w to the cell grid, spanning multiple rows/columns. The cell will span from fromRow, fromCol to
toRow, toCol.

Alignment is specified by alignment, which is a bitwise OR of Qt::AlignmentFlags values. The default alignment is
0, which means that the widget fills the entire cell.

A non-zero alignment indicates that the widget should not grow to fill the available space but should be sized
according to sizeHint().

QGridLayout Class Reference 81

Examples: cursor/cursor.cpp, layout/layout.cpp and progressbar/progressbar.cpp.

void QGridLayout::addRowSpacing (int row, int minsize)

Sets the minimum height of row row to minsize pixels.

void QGridLayout::addWidget (QWidget * w, int row, int col, int alignment = 0)

Adds the widget w to the cell grid at row, col. The top-left position is (0, 0) by default.
Alignment is specified by alignment, which is a bitwise OR of Qt::AlignmentFlags values. The default alignment is
0, which means that the widget fills the entire cell.

e You should not call this if you have enabled the auto-add facility of the layout.

e The alignment parameter is interpreted more aggressively than in previous versions of Qt. A non-default
alignment now indicates that the widget should not grow to fill the available space, but should be sized
according to sizeHint().

Examples: addressbook/centralwidget.cpp, layout/layout.cpp, rot13/rot13.cpp, sql/overview/form1/main.cpp,
sql/overview/form2/main.cpp, t14/gamebrd.cpp and t8/main.cpp.

QRect QGridLayout::cellGeometry (int row, int col) const

Returns the geometry of the cell with row row and column col in the grid. Returns an invalid rectangle if row or col
is outside the grid.

Warning: in the current version of Qt this function does not return valid results until setGeometry() has been
called, i.e. after the mainWidget() is visible.

int QGridLayout::colStretch (int col) const

Returns the stretch factor for column col.

See also setColStretch() [p. 83].

void QGridLayout::expand (int nRows, int nCols)

Expands this grid so that it will have nRows rows and nCols columns. Will not shrink the grid. You should not need
to call this function because QGridLayout expands automatically as new items are inserted.

QSizePolicy::ExpandData QGridLayout::expanding () const [virtual]

Returns the expansiveness of this layout.

Reimplemented from QLayout [p. 104].

bool QGridLayout::findWidget (QWidget * w, int * row, int * col) [protected]

Searches for widget w in this layout (not including child layouts). If w is found, it sets *<enmprow</ en> and
*<empcol </ en to the row and column and returns TRUE. If w is not found, FALSE is returned.

Note: if a widget spans multiple rows/columns, the top-left cell is returned.

QGridLayout Class Reference

bool QGridLayout::hasHeightForWidth () const [virtual]

Returns TRUE if this layout’s preferred height depends on its width; otherwise returns FALSE.
Reimplemented from QLayoutltem [p. 109].

int QGridLayout::heightForWidth (int w) const [virtual]

Returns the layout’s preferred height when it is w pixels wide.

Reimplemented from QLayoutItem [p. 109].

void QGridLayout::invalidate () [virtual]

Resets cached information.

Reimplemented from QLayout [p. 104].

QSize QGridLayout::maximumsSize () const [virtual]

Returns the maximum size needed by this grid.

Reimplemented from QLayout [p. 105].

QSize QGridLayout::minimumsSize () const [virtual]
Returns the minimum size needed by this grid.

Reimplemented from QLayout [p. 105].

int QGridLayout::numCols () const

Returns the number of columns in this grid.

int QGridLayout::numRows () const

Returns the number of rows in this grid.

Corner QGridLayout::origin () const

Returns which of the four corners of the grid corresponds to (0, 0).

int QGridLayout::rowStretch (int row) const

Returns the stretch factor for row row.

See also setRowStretch() [p. 83].

QGridLayout Class Reference 83

void QGridLayout::setColStretch (int col, int stretch) [virtual]

Sets the stretch factor of column col to stretch. The first column is number 0.

The stretch factor is relative to the other columns in this grid. Columns with a higher stretch factor take more of
the available space.

The default stretch factor is 0. If the stretch factor is 0 and no other column in this table can grow at all, the column
may still grow.

See also colStretch() [p. 811, addColSpacing() [p. 80] and setRowStretch() [p. 83].
Examples: layout/layout.cpp, t14/gamebrd.cpp and t8/main.cpp.

void QGridLayout::setGeometry (const QRect & r) [virtual]

Resizes managed widgets within the rectangle r.

Reimplemented from QLayout [p. 106].

void QGridLayout::setOrigin (Corner c)

Sets which of the four corners of the grid corresponds to (0, 0) to c.

void QGridLayout::setRowStretch (int row, int stretch) [virtual]

Sets the stretch factor of row row to stretch. The first row is number 0.

The stretch factor is relative to the other rows in this grid. Rows with a higher stretch factor take more of the
available space.

The default stretch factor is 0. If the stretch factor is 0 and no other row in this table can grow at all, the row may
still grow.

See also rowStretch() [p. 82], addRowSpacing() [p. 81] and setColStretch() [p. 83].

Example: addressbook/centralwidget.cpp.

QSize QGridLayout::sizeHint () const [virtual]

Returns the preferred size of this grid.

Reimplemented from QLayoutltem [p. 111].

QHBox Class Reference

The QHBox widget provides horizontal geometry management for its children.
#incl ude <ghbox. h>

Inherits QFrame [Widgets with Qt].

Inherited by QVBox [Widgets with Qt].

Public Members

» QHBox (QWidget * parent = 0, const char * name = 0, WFlags f = 0)
» void setSpacing (int space)
m bool setStretchFactor (QWidget * w, int stretch)

Protected Members

= QHBox (bool horizontal, QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Detailed Description

The QHBox widget provides horizontal geometry management for its children.
All the horizontal box’s children will be placed alongside each other and sized according to their sizeHint()s.

Use setMargin() to add space around the edge, and use setSpacing() to add space between the widgets. Use
setStretchFactor () if you want the widgets to be different sizes in proportion to one another.

|One|Two|Three | Four| Five

See also QHBoxLayout [p. 86], QVBox [Widgets with Qt], QGrid [p. 75], Widget Appearance and Style, Layout
Management and Organizers.

Member Function Documentation

QHBox::QHBox (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

Constructs an hbox widget with parent parent and name name. The parent, name and widget flags, f, are passed
to the QFrame constructor.

84

QHBox Class Reference 85

QHBox::QHBox (bool horizontal, QWidget * parent = 0, const char * name = 0, WFlags f
= 0) [protected]

Constructs a horizontal hbox if horizontal is TRUE, otherwise constructs a vertical hbox (also known as a vbox).
This constructor is provided for the QVBox class. You should never need to use it directly.

The parent, name and widget flags, f, are passed to the QFrame constructor.

void QHBox::setSpacing (int space)

Sets the spacing between the child widgets to space.

Examples: i18n/mywidget.cpp, listboxcombo/listboxcombo.cpp, network/ftpclient/ftpmainwindow.cpp,
qdir/qdir.cpp, tabdialog/tabdialog.cpp, wizard/wizard.cpp and xform/xform.cpp.

bool QHBox::setStretchFactor (QWidget * w, int stretch)

Sets the stretch factor of widget w to stretch.

See also QBoxLayout::setStretchFactor() [p. 39].

QHBoxLayout Class Reference

The QHBoxLayout class lines up widgets horizontally.
#i ncl ude <ql ayout. h>

Inherits QBoxLayout [p. 34].

Public Members

s QHBoxLayout (QWidget * parent, int margin = 0, int spacing = -1, const char * name = 0)
= QHBoxLayout (QLayout * parentLayout, int spacing = -1, const char * name = 0)

= QHBoxLayout (int spacing = -1, const char * name = 0)

= ~QHBoxLayout ()

Detailed Description

The QHBoxLayout class lines up widgets horizontally.
This class is used to construct horizontal box layout objects. See QBoxLayout for more details.
The simplest way to use this class is like this:

BoxLayout * | = new QHBoxLayout(wi dget);

| - >set Aut oAdd(TRUE);

new QSomeW dget (wi dget);

new QSomeCt her W dget (wi dget);
new QAnot her W dget (wi dget);

or like this:
BoxLayout * | = new QHBoxLayout(wi dget);
| ->addW dget (exi stingChildOf Wdget);
| - >addW dget (anot her Chi | dOF W dget) ;

See also QVBoxLayout [p. 1741, QGridLayout [p. 771, the Layout overview [Programming with Qt], Widget
Appearance and Style and Layout Management.

Member Function Documentation

QHBoxLayout::QHBoxLayout (QWidget * parent, int margin = 0, int spacing = -1,
const char * name = 0)

Constructs a new top-level horizontal box with parent parent and name name.

86

QHBoxLayout Class Reference 87

The margin is the number of pixels between the edge of the widget and its managed children. The spacing is the
default number of pixels between neighboring children. If spacing is -1 the value of margin is used for spacing.

QHBoxLayout::QHBoxLayout (QLayout * parentLayout, int spacing = -1,
const char * name = 0)

Constructs a new horizontal box with the name name and adds it to parentLayout.

The spacing is the default number of pixels between neighboring children. If spacing is -1, this QHBoxLayout will
inherit its parent’s spacing().

QHBoxLayout::QHBoxLayout (int spacing = -1, const char * name = 0)

Constructs a new horizontal box with the name name. You must add it to another layout.

The spacing is the default number of pixels between neighboring children. If spacing is -1, this QHBoxLayout will
inherit its parent’s spacing().

QHBoxLayout::~QHBoxLayout ()

Destroys this box layout.

QHideEvent Class Reference

The QHideEvent class provides an event which is sent after a widget is hidden.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

m QHideEvent ()

Detailed Description

The QHideEvent class provides an event which is sent after a widget is hidden.

This event is sent just before QWidget::hide() returns, and also when a top-level window has been hidden (iconi-
fied) by the user.

If spontaneous() is TRUE the event originated outside the application, i.e. the user hid the window using the
window manager controls, either by iconifying the window or by switching to another virtual desktop where
the window isn’t visible. The window will become hidden but not withdrawn. If the window was iconified,
QWidget::isMinimized () returns TRUE.

See also QShowEvent [p. 131] and Event Classes.

Member Function Documentation

QHideEvent::QHideEvent ()

Constructs a QHideEvent.

88

QIconDrag Class Reference

The QIconDrag class supports drag and drop operations within a QIconView.
This class is part of the iconview module.
#i ncl ude <qgi convi ew. h>

Inherits QDragObject [p. 59].

Public Members

m virtual ~QIconDrag ()
m void append (const QIconDragltem & i, const QRect & pr, const QRect & tr)
m virtual QByteArray encodedData (const char * mime) const

Static Public Members

= bool canDecode (QMimeSource * e)

Detailed Description

The QIconDrag class supports drag and drop operations within a QIconView.

A QIconDrag object is used to maintain information about the positions of dragged items and data associated with
the dragged items. QIconViews are able to use this information to paint the dragged items in the correct positions.
Internally QIconDrag stores the data associated with drag items in QIconDragltem objects.

If you want to use the extended drag-and-drop functionality of QIconView create a QIconDrag object in a reim-
plementation of QIlconView::dragObject(). Then create a QIconDragltem for each item which should be dragged,
set the data it represents with QIconDragltem::setData(), and add each QIconDragltem to the drag object using

append().

The data in QIconDragltems is stored in a QByteArray and is mime-typed (see QMimeSource and the Drag and
Drop overview). If you want to use your own mime-types derive a class from QIconDrag and reimplement format(),
encodedData() and canDecode().

The fileiconview example program demonstrates the use of the QIconDrag class including subclass-
ing and reimplementing dragObject(), format(), encodedData() and canDecode(). See the files
gt/ exanpl es/ fileiconview gfileiconview h and qt/exanpl es/fil ei convi ew gfi | ei convi ew. cpp.

See also QMimeSource::format() [Input/Output and Networking with Qt] and Drag And Drop Classes.

89

QIconDrag Class Reference 90

Member Function Documentation

QIconDrag::~QIconDrag () [virtual]

Destructor.

void QIconDrag::append (const QIconDragltem & i, const QRect & pr, const QRect & tr)

Append the QIconDragltem, i, to the QIconDrag object’s list of items. You must also supply the geometry of the
pixmap, pr, and of the textual caption, tr.
See also QIconDragltem [p. 91].

Example: fileiconview/qfileiconview.cpp.

bool QIconDrag::canDecode (QMimeSource * e) [static]

Returns TRUE if e can be decoded by the QIconDrag, otherwise return FALSE.

Example: fileiconview/qfileiconview.cpp.

QByteArray QIconDrag::encodedData (const char * mime) const [virtual]

Returns the encoded data of the drag object if mime is application/x-giconlist.
Example: fileiconview/qfileiconview.cpp.

Reimplemented from QMimeSource [Input/Output and Networking with Qt].

QIconDragltem Class Reference

The QIconDragltem class encapsulates a drag item.
This class is part of the iconview module.

#i ncl ude <qgi convi ew. h>

Public Members

QIconDragltem ()

virtual ~QIconDragltem ()

virtual QByteArray data () const

virtual void setData (const QByteArray & d)

Detailed Description

The QIconDragltem class encapsulates a drag item.
The QIconDrag class uses a list of QIconDragltems to support drag and drop operations.

In practice a QIconDragltem object (or an object of a class derived from QIconDragltem) is created for each icon
view item which is dragged. Each of these QlconDragltems is stored in a QlconDrag object.

See QIconView::dragObject() for more information.
See the fileiconview/qfileiconview.cpp and iconview/simple_dd/main.cpp examples.

See also Drag And Drop Classes.

Member Function Documentation

QIconDragltem::QIconDragltem ()

Constructs a QIconDragltem with no data.

QIconDragltem::~QIconDragltem () [virtual]

Destructor.

91

QIconDragltem Class Reference

QByteArray QIconDragltem::data () const [virtual]

Returns the data contained in the QIconDragltem.

void QIconDragltem::setData (const QByteArray & d) [virtual]

Sets the data for the QIconDragltem to the data stored in the QByteArray d.

Example: fileiconview/qfileiconview.cpp.

92

QImageDrag Class Reference

The QImageDrag class provides a drag and drop object for transferring images.
#i ncl ude <qdragobj ect. h>
Inherits QDragObject [p. 59].

Public Members

m QImageDrag (QImage image, QWidget * dragSource = 0, const char * name = 0)
m QImageDrag (QWidget * dragSource = 0, const char * name = 0)
m ~QImageDrag ()
m virtual void setlmage (QImage image)
Static Public Members
= bool canDecode (const QMimeSource * e)

m bool decode (const QMimeSource * e, QImage & img)
m bool decode (const QMimeSource * e, QPixmap & pm)

Detailed Description

The QImageDrag class provides a drag and drop object for transferring images.
Images are offered to the receiving application in multiple formats, determined by the output formats in Qt.
For more information about drag and drop, see the QDragObject class and the drag and drop documentation.

See also Drag And Drop Classes.

Member Function Documentation

QImageDrag::QImageDrag (QImage image, QWidget * dragSource = 0,
const char * name = 0)

Constructs an image drag object and sets it to image. dragSource must be the drag source; name is the object name.

QImageDrag::QImageDrag (QWidget * dragSource = 0, const char * name = 0)

Constructs a default text drag object. dragSource must be the drag source; name is the object name.

93

QImageDrag Class Reference 94

QImageDrag::~QImageDrag ()

Destroys the image drag object and frees up all allocated resources.

bool QImageDrag::canDecode (const QMimeSource * e) [static]

Returns TRUE if the information in mime source e can be decoded into an image.
See also decode() [p. 941.
Example: desktop/desktop.cpp.

bool QImageDrag::decode (const QMimeSource * e, QImage & img) [static]

Attempts to decode the dropped information in mime source e into img. Returns TRUE if successful; otherwise
returns FALSE.

See also canDecode() [p. 941].

Example: desktop/desktop.cpp.

bool QImageDrag::decode (const QMimeSource * e, QPixmap & pm) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Attempts to decode the dropped information in mime source e into pixmap pm. Returns TRUE if successful;
otherwise returns FALSE.

This is a convenience function that converts to pm via a QImage.

See also canDecode() [p. 94].

void QImageDrag::setlmage (QImage image) [virtual]

Sets the image to be dragged to image. You will need to call this if you did not pass the image during construction.

QKeyEvent Class Reference

The QKeyEvent class contains describes a key event.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

m QKeyEvent (Type type, int key, int ascii, int state, const QString & text = QString::null, bool autorep =
FALSE, ushort count = 1)

m int key () const

m int ascii () const

= ButtonState state () const

m ButtonState stateAfter () const

m bool isAccepted () const

QString text () const

bool isAutoRepeat () const

int count () const

void accept ()

void ignore ()

Detailed Description

The QKeyEvent class contains describes a key event.
Key events occur when a key is pressed or released when a widget has keyboard input focus.

A key event contains a special accept flag that indicates whether the receiver wants the key event. You should call
QKeyEvent::ignore() if the key press or release event is not handled by your widget. A key event is propagated up
the parent widget chain until a widget accepts it with QKeyEvent::accept() or an event filter consumes it.

The QWidget::setEnable() function can be used to enable or disable mouse and keyboard events for a widget.
The event handlers QWidget::keyPressEvent() and QWidget::keyReleaseEvent() receive key events.
See also QFocusEvent [p. 71], QWidget::grabKeyboard () [Widgets with Qt] and Event Classes.

95

QKeyEvent Class Reference 96

Member Function Documentation

QKeyEvent::QKeyEvent (Type type, int key, int ascii, int state, const QString & text =
QString::null, bool autorep = FALSE, ushort count = 1)
Constructs a key event object.

The type parameter must be QEvent::KeyPress or QEvent::KeyRelease. If key is O the event is not a result of a
known key (e.g. it may be the result of a compose sequence or keyboard macro). ascii is the ASCII code of the key
that was pressed or released. state holds the keyboard modifiers. text is the Unicode text that the key generated. If
autorep is TRUE, isAutoRepeat () will be TRUE. count is the number of single keys.

The accept flag is set to TRUE.

void QKeyEvent::accept ()

Sets the accept flag of the key event object.

Setting the accept parameter indicates that the receiver of the event wants the key event. Unwanted key events are
sent to the parent widget.

The accept flag is set by default.
See also ignore() [p. 96].

int QKeyEvent::ascii () const

Returns the ASCII code of the key that was pressed or released. We recommend using text() instead.
See also text() [p. 971.

Example: picture/picture.cpp.

int QKeyEvent::count () const

Returns the number of single keys for this event. If text() is not empty, this is simply the length of the string.

However, Qt also compresses invisible keycodes such as BackSpace. For those, count() returns the number of key
presses/repeats this event represents.

See also QWidget::setKeyCompression() [Widgets with Qt].

void QKeyEvent::ignore ()

Clears the accept flag parameter of the key event object.

Clearing the accept parameter indicates that the event receiver does not want the key event. Unwanted key events
are sent to the parent widget.

The accept flag is set by default.
See also accept() [p. 96].

bool QKeyEvent::isAccepted () const

Returns TRUE if the receiver of the event wants to keep the key; otherwise returns FALSE

QKeyEvent Class Reference 97

bool QKeyEvent::isAutoRepeat () const

Returns TRUE if this event comes from an auto-repeating key and FALSE if it comes from an initial key press.

Note that if the event is a multiple-key compressed event that is partly due to auto-repeat, this function could
return either TRUE or FALSE indeterminately.

int QKeyEvent::key () const

Returns the code of the key that was pressed or released.
See Qt::Key for the list of keyboard codes. These codes are independent of the underlying window system.

Key code 0 means that the event is not a result of a known key (e.g. it may be the result of a compose sequence or
keyboard macro).

Example: fileiconview/qfileiconview.cpp.

ButtonState QKeyEvent::state () const

Returns the keyboard modifier flags that existed immediately before the event occurred.
The returned value is ShiftButton, ControlButton and AltButton OR’ed together.
See also stateAfter() [p. 971.

Example: fileiconview/qfileiconview.cpp.

ButtonState QKeyEvent::stateAfter () const

Returns the keyboard modifier flags that existed immediately after the event occurred.
Warning: This function cannot be trusted.

See also state() [p. 971.

QString QKeyEvent::text () const

Returns the Unicode text that this key generated.

See also QWidget::setKeyCompression() [Widgets with Qt].

QKeySequence Class Reference

The QKeySequence class encapsulates a key sequence as used by accelerators.
#i ncl ude <gkeysequence. h>

Inherits Qt [Additional Functionality with Qt].

Public Members

m QKeySequence ()

m QKeySequence (const QString & key)

= QKeySequence (int key)

= operator QString () const

m operator int () const

= QKeySequence (const QKeySequence & keysequence)

m QKeySequence & operator= (const QKeySequence & keysequence)
m ~QKeySequence ()

m bool operator== (const QKeySequence & keysequence) const

m bool operator!= (const QKeySequence & keysequence) const

Related Functions

m QDataStream & operator< < (QDataStream & s, const QKeySequence & keysequence)
m QDataStream & operator>> (QDataStream & s, QKeySequence & keysequence)

Detailed Description

The QKeySequence class encapsulates a key sequence as used by accelerators.

A key sequence consists of a keyboard code, optionally combined with modifiers, e.g. SHIFT, CTRL, ALT or UNI-
CODE_ACCEL. For example, CTRL + Key_P might be a sequence used as a shortcut for printing a document. The
key codes are listed in qnamespace.h. As an alternative, use UNICODE_ACCEL with the unicode code point of the
character. For example, UN CODE_ACCEL + ' A" gives the same key sequence as Key A.

Key sequences can be constructed either from an integer key code, or from a human readable translatable string. A
key sequence can be cast to a QString to obtain a human readable translated version of the sequence. Translations
are done in the "QAccel" scope.

See also QAccel [p. 13] and Miscellaneous Classes.

98

QKeySequence Class Reference 99

Member Function Documentation

QKeySequence::QKeySequence ()

Constructs an empty key sequence.

QKeySequence::QKeySequence (const QString & key)

Creates a key sequence from the string key. For example "Ctrl+ 0" gives CTRL+UNICODE_ACCEL+’0O’. The strings
"Ctrl", "Shift" and "Alt" are recognized, as well as their translated equivalents in the "QAccel" scope (using QOb-
ject::itr()).

This contructor is typically used with tr(), so that accelerator keys can be replaced in translations:
QPopupMenu *file = new QPopupMenu(this);
file->insertliten tr("&pen..."), this, SLOT(open()),
KeySequence(tr("Crl+0", "File|Qpen")));

Note the "Fi | e| Open" translator comment. It is by no means necessary, but it provides some context for the human
translator.

QKeySequence::QKeySequence (int key)

Constructs a key sequence from the keycode key.

The key codes are listed in gnamespace.h and can be combined with modifiers, e.g. with SHIFT, CTRL, ALT or
UNICODE_ACCEL.

QKeySequence::QKeySequence (const QKeySequence & keysequence)

Copy constructor. Makes a copy of keysequence.

QKeySequence::~QKeySequence ()

Destroys the key sequence.

QKeySequence::operator QString () const

Creates an accelerator string for the key sequence. For instance CTRL+Key O gives "Ctrl4+O". The strings, "Ctrl",
"Shift", etc. are translated (using QObject::tr()) in the "QAccel" scope.

QKeySequence::operator int () const

For backward compatibility: returns the keycode as integer.

If QKeySequence ever supports more than one keycode, this function will return the first one.
bool QKeySequence::operator! = (const QKeySequence & keysequence) const

Returns TRUE if keysequence is not equal to this key sequence; otherwise returns FALSE.

QKeySequence Class Reference 100

QKeySequence & QKeySequence::operator= (const QKeySequence & keysequence)

Assignment operator. Assigns keysequence to this object.

bool QKeySequence::operator== (const QKeySequence & keysequence) const

Returns TRUE if keysequence is equal to this key sequence; otherwise returns FALSE.

Related Functions

QDataStream & operator<< (QDataStream & s, const QKeySequence & keysequence)

Writes the key sequence keysequence to the stream s.

Format of the QDataStream operators

QDataStream & operator>> (QDataStream & s, QKeySequence & keysequence)

Reads a key sequence from the stream s into the key sequence keysequence.

QLayout Class Reference

The QLayout class is the base class of geometry managers.

#i ncl ude <ql ayout. h>

Inherits QObject [Additional Functionality with Qt] and QLayoutltem [p. 108].
Inherited by QGridLayout [p. 77] and QBoxLayout [p. 34].

Public Members

m QLayout (QWidget * parent, int margin = 0, int spacing = -1, const char * name = 0)
m QLayout (QLayout * parentLayout, int spacing = -1, const char * name = 0)
QLayout (int spacing = -1, const char * name = 0)

m int margin () const

» int spacing () const

m virtual void setMargin (int)

» virtual void setSpacing (int)

enum ResizeMode { FreeResize, Minimum, Fixed }
void setResizeMode (ResizeMode)

ResizeMode resizeMode () const

virtual void setMenuBar (QMenuBar * w)
QMenuBar * menuBar () const

QWidget * mainWidget ()

m bool isTopLevel () const

m virtual void setAutoAdd (bool b)

bool autoAdd () const

virtual void invalidate ()

bool activate ()

void add (QWidget * w)

virtual void addItem (QLayoutltem * item)

virtual QSizePolicy::ExpandData expanding () const
virtual QSize minimumSize () const

m virtual QSize maximumSize () const

m virtual void setGeometry (const QRect & 1)
» virtual QLayoutlterator iterator ()

m virtual bool isEmpty () const

m bool supportsMargin () const

e void setEnabled (bool enable)

e bool isEnabled () const

101

QLayout Class Reference 102

Properties

m int margin — the width of the outside border of the layout
m ResizeMode resizeMode — the resize mode of the layout
m int spacing — the spacing between widgets inside the layout

Protected Members

void addChildLayout (QLayout * 1)

void deleteAllltems ()

void setSupportsMargin (bool b)

QRect alignmentRect (const QRect & r) const

Detailed Description

The QLayout class is the base class of geometry managers.
This is an abstract base class inherited by the concrete classes, QBoxLayout and QGridLayout.

For users of QLayout subclasses or of QMainWindow there is seldom any need to use the basic functions provided
by QLayout, such as resizeMode or setMenuBar(). See the layout overview page for more information.

To make your own layout manager, subclass QGLayoutlterator and implement the functions addItem(), sizeHint(),
setGeometry(), and iterator(). You should also implement minimumSize() to ensure your layout isn’t resized
to zero size if there is too little space. To support children whose height depend on their widths, implement
hasHeightForWidth() and heightForWidth(). See the custom layout page [p. 6] for an in-depth description.

Geometry management stops when the layout manager is deleted.

See also Widget Appearance and Style and Layout Management.

Member Type Documentation

QLayout::ResizeMode
The possible values are:

e QlLayout:: Fi xed - The main widget’s size is set to sizeHint(); it cannot be resized at all.
e QLayout:: M ni num- The main widget’s minimum size is set to minimumSize(); it cannot be smaller.
e QLayout: : FreeResi ze - The widget is not constrained.

Member Function Documentation

QLayout::QLayout (QWidget * parent, int margin = 0, int spacing = -1,
const char * name = 0)

Constructs a new top-level QLayout with main widget parent, and name name. parent may not be 0.

The margin is the number of pixels between the edge of the widget and the managed children. The spacing sets the
value of spacing(), which gives the spacing between the managed widgets. If spacing is -1 (the default), spacing is
set to the value of margin.

QLayout Class Reference 103

There can be only one top-level layout for a widget. It is returned by QWidget::layout()

QLayout::QLayout (QLayout * parentLayout, int spacing = -1, const char * name = 0)

Constructs a new child QLayout called name, and places it inside parentLayout by using the default placement
defined by addItem().

If spacing is -1, this QLayout inherits parentLayout’s spacing(), otherwise the value of spacing is used.

QLayout::QLayout (int spacing = -1, const char * name = 0)
Constructs a new child QLayout called name. If spacing is -1, this QLayout inherits its parent’s spacing(); otherwise
the value of spacing is used.

This layout has to be inserted into another layout before geometry management will work.

bool QLayout::activate ()
Redoes the layout for mainWidget(). You should generally not need to call this because it is automatically called at
the most appropriate times.

However, if you set up a QLayout for a visible widget without resizing that widget, you will need to call this function
in order to lay it out.

See also QWidget::updateGeometry() [Widgets with Qt].

Examples: layout/layout.cpp, popup/popup.cpp, scrollview/scrollview.cpp and sql/overview/form1/main.cpp.

void QLayout::add (QWidget * w)

Adds widget w to this layout in a manner specific to the layout. This function uses addItem.

Examples: customlayout/border.cpp and customlayout/main.cpp.

void QLayout::addChildLayout (QLayout * 1) [protected]

This function is called from addLayout() functions in subclasses to add layout [as a sublayout.

void QLayout::addItem (QLayoutltem * item) [virtual]

Implemented in subclasses to add an item. How it is added is specific to each subclass.
The ownership of item is transferred to the layout, and it’s the layout’s responsibility to delete it.
Examples: customlayout/border.cpp, customlayout/card.cpp and customlayout/flow.cpp.

Reimplemented in QGridLayout and QBoxLayout.

QRect QLayout::alignmentRect (const QRect & r) const [protected]

Returns the rectangle that should be covered when the geometry of this layout is set to r, provided that this layout
supports setAlignment().

The result is derived from sizeHint() and expanding(). It is never larger than r.

QLayout Class Reference 104

bool QLayout::autoAdd () const

Returns TRUE if this layout automatically grabs all new mainWidget()’s new children and adds them as defined by
addItem(); otherwise returns FALSE. This has effect only for top-level layouts, i.e. layouts that are direct children
of their mainWidget().

autoAdd() is disabled by default.
See also setAutoAdd() [p. 106].

void QLayout::deleteAllltems () [protected]

Removes and deletes all items in this layout.

QSizePolicy::ExpandData QLayout::expanding () const [virtual]

Returns whether this layout can make use of more space than sizeHint(). A value of Vertical or Horizontal means
that it wants to grow in only one dimension, whereas BothDirections means that it wants to grow in both dimen-
sions.

The default implementation returns BothDirections.
Examples: customlayout/border.cpp and customlayout/flow.cpp.
Reimplemented from QLayoutltem [p. 109].

Reimplemented in QGridLayout and QBoxLayout.

void QLayout::invalidate () [virtual]

Invalidates cached information. Reimplementations must call this.
Reimplemented from QLayoutItem [p. 110].

Reimplemented in QGridLayout and QBoxLayout.

bool QLayout::isEmpty () const [virtual]

Returns TRUE if this layout is empty. The default implementation returns FALSE.
Reimplemented from QLayoutltem [p. 110].

bool QLayout::isEnabled () const

Returns TRUE if the layout is enabled; otherwise returns FALSE.

See also setEnabled() [p. 106].

bool QLayout::isTopLevel () const

Returns TRUE if this layout is a top-level layout, i.e., not a child of another layout; otherwise returns FALSE.

QLayout Class Reference 105

QLayoutlterator QLayout::iterator () [virtual]

Implemented in subclasses to return an iterator that iterates over the children of this layout.

A typical implementation will be:

Q.ayout I terator MyLayout::iterator()
{

GLayout I terator *i = new MyLayoutlterator(internal _data);
return QLayoutlterator(i);

}

where MyLayoutlterator is a subclass of QGLayoutlterator.
Examples: customlayout/border.cpp, customlayout/card.cpp and customlayout/flow.cpp.

Reimplemented from QLayoutltem [p. 110].

QWidget * QLayout::mainWidget ()

Returns the main widget (parent widget) of this layout, or O if this layout is a sub-layout that is not yet inserted.

int QLayout::margin () const

Returns the width of the outside border of the layout. See the "margin" [p. 107] property for details.

QSize QLayout::maximumSize () const [virtual]

Returns the maximum size of this layout. This is the largest size that the layout can have while still respecting the
specifications. Does not include what’s needed by margin() or menuBar().

The default implementation allows unlimited resizing.

Reimplemented from QLayoutItem [p. 110].

Reimplemented in QGridLayout and QBoxLayout.

QMenuBar * QLayout::menuBar () const

Returns the menu bar set for this layout, or a null pointer if no menu bar is set.

QSize QLayout::minimumSize () const [virtual]

Returns the minimum size of this layout. This is the smallest size that the layout can have while still respecting the
specifications. Does not include what’s needed by margin() or menuBar().

The default implementation allows unlimited resizing.

Examples: customlayout/border.cpp, customlayout/card.cpp and customlayout/flow.cpp.

Reimplemented from QLayoutltem [p. 110].

Reimplemented in QGridLayout and QBoxLayout.

QLayout Class Reference 106

ResizeMode QLayout::resizeMode () const

Returns the resize mode of the layout. See the "resizeMode" [p. 107] property for details.

void QLayout::setAutoAdd (bool b) [virtual]

If b is TRUE auto-add is enabled; otherwise auto-add is disabled.
See also autoAdd() [p. 104].

Example: i18n/main.cpp.

void QLayout::setEnabled (bool enable)

Enables this layout if enable is TRUE, otherwise disables it.

An enabled layout adjusts dynamically to changes; a disabled layout acts as if it did not exist.
By default all layouts are enabled.

See also isEnabled() [p. 104].

void QLayout::setGeometry (const QRect & r) [virtual]

This function is reimplemented in subclasses to perform layout.

The default implementation maintains the geometry() information given by rect r. Reimplementors must call this
function.

Examples: customlayout/border.cpp, customlayout/card.cpp and customlayout/flow.cpp.
Reimplemented from QLayoutltem [p. 111].

Reimplemented in QGridLayout and QBoxLayout.

void QLayout::setMargin (int) [virtual]

Sets the width of the outside border of the layout. See the "margin" [p. 107] property for details.

void QLayout::setMenuBar (QMenuBar * w) [virtual]

Makes the geometry manager take account of the menu bar w. All child widgets are placed below the bottom edge
of the menu bar.

A menu bar does its own geometry management: never do addWidget() on a QMenuBar.
Examples: layout/layout.cpp and scrollview/scrollview.cpp.
void QLayout::setResizeMode (ResizeMode)

Sets the resize mode of the layout. See the "resizeMode" [p. 107] property for details.

void QLayout::setSpacing (int) [virtual]

Sets the spacing between widgets inside the layout. See the "spacing" [p. 107] property for details.

QLayout Class Reference 107

void QLayout::setSupportsMargin (bool b) [protected]
Sets the value returned by supportsMargin(). If b is TRUE, margin() handling is implemented by the subclass. If b
is FALSE (the default), QLayout will add margin() around top-level layouts.

If b is TRUE, margin handling needs to be implemented in setGeometry(), maximumsSize(), minimumSize(), size-
Hint() and heightForWidth().

See also supportsMargin() [p. 107].

int QLayout::spacing () const

Returns the spacing between widgets inside the layout. See the "spacing" [p. 107] property for details.

bool QLayout::supportsMargin () const

Returns TRUE if this layout supports QLayout::margin on non-top-level layouts; otherwise returns FALSE.

See also margin [p. 107].

Property Documentation

int margin

This property holds the width of the outside border of the layout.

For some layout classes this property has an effect only on top-level layouts; QBoxLayout and QGridLayout support
margins for child layouts. The default value is 0.

See also spacing [p. 107].

Set this property’s value with setMargin() and get this property’s value with margin().

ResizeMode resizeMode

This property holds the resize mode of the layout.
The default mode is Minimum for top-level widgets and FreeResize for all others.
See also QLayout::ResizeMode [p. 102].

Set this property’s value with setResizeMode() and get this property’s value with resizeMode().

int spacing

This property holds the spacing between widgets inside the layout.
The default value is -1, which signifies that the layout’s spacing should not override the widget’s spacing.
See also margin [p. 107].

Set this property’s value with setSpacing() and get this property’s value with spacing().

QLayoutltem Class Reference

The QLayoutltem class provides an abstract item that a QLayout manipulates.
#i ncl ude <ql ayout. h>

Inherited by QLayout [p. 101], QSpacerltem [Widgets with Qt] and QWidgetItem [Widgets with Qt].

Public Members

QLayoutltem (int alignment = 0)

m virtual ~QLayoutltem ()

m virtual QSize sizeHint () const

m virtual QSize minimumsSize () const

m virtual QSize maximumsSize () const
virtual QSizePolicy::ExpandData expanding () const
virtual void setGeometry (const QRect & r)
virtual QRect geometry () const

virtual bool isEmpty () const

virtual bool hasHeightForWidth () const
virtual int heightForWidth (int w) const

m virtual void invalidate ()

m virtual QWidget * widget ()

virtual QLayoutlterator iterator ()

virtual QLayout * layout ()

virtual QSpaceritem * spacerltem ()

int alignment () const

virtual void setAlignment (int a)

Detailed Description

The QLayoutltem class provides an abstract item that a QLayout manipulates.
This is used by custom layouts.

See also QLayout [p. 101], Widget Appearance and Style and Layout Management.

108

QLayoutltem Class Reference 109

Member Function Documentation

QLayoutltem::QLayoutltem (int alignment = 0)

Constructs a layout item with an alignment that is a bitwise OR of the Qt::AlignmentFlags. Not all subclasses
support alignment.

QLayoutltem::~QLayoutItem () [virtual]

Destroys the QLayoutItem.

int QLayoutItem::alignment () const

Returns the alignment of this item.

QSizePolicy::ExpandData QLayoutltem::expanding () const [virtual]

Implemented in subclasses to return whether this item "wants" to expand.

Reimplemented in QLayout, QSpacerltem and QWidgetItem.

QRect QLayoutltem::geometry () const [virtual]

Returns the rectangle covered by this layout item.

Example: customlayout/border.cpp.

bool QLayoutItem::hasHeightForWidth () const [virtual]

Returns TRUE if this layout’s preferred height depends on its width; otherwise returns FALSE. The default imple-
mentation returns FALSE.

Reimplement this function in layout managers that support height for width.

See also heightForWidth() [p. 109] and QWidget::heightForWidth() [Widgets with Qt].

Examples: customlayout/border.cpp and customlayout/flow.cpp.

Reimplemented in QGridLayout and QBoxLayout.

int QLayoutItem::heightForWidth (int w) const [virtual]

Returns the preferred height for this layout item, given the width w.

The default implementation returns -1, indicating that the preferred height is independent of the width of the item.
Using the function hasHeightForWidth() will typically be much faster than calling this function and testing for -1.

Reimplement this function in layout managers that support height for width. A typical implementation will look
like this:

int MyLayout:: hei ght ForWwdth(int w) const

{
if (cache_dirty || cached_width !'=w) {

QLayoutltem Class Reference 110

Il not all C++ conpilers support "nutable"
M/Layout *that = (MyLayout*)this;

int h = cal cul at eHei ght ForWdth(w);

t hat - >cached_hfw = h;

return h;

}

return cached _hfw

}

Caching is strongly recommended; without it layout will take exponential time.
See also hasHeightForWidth() [p. 109].
Example: customlayout/flow.cpp.

Reimplemented in QGridLayout and QBoxLayout.

void QLayoutltem::invalidate () [virtual]

Invalidates any cached information in this layout item.

Reimplemented in QLayout.

bool QLayoutlItem::isEmpty () const [virtual]

Implemented in subclasses to return whether this item is empty, i.e. whether it contains any widgets.

Reimplemented in QLayout, QSpacerltem and QWidgetItem.

QLayoutlterator QLayoutltem::iterator () [virtual]

Returns an iterator over this item’s QLayoutltem children. The default implementation returns an empty iterator.
Reimplement this function in subclasses that can have children.

Reimplemented in QLayout.

QLayout * QLayoutItem::layout () [virtual]

If this item is a QLayout, return it as a QLayout; otherwise return 0. This function provides type-safe casting.

QSize QLayoutItem::maximumSize () const [virtual]

Implemented in subclasses to return the maximum size of this item.

Reimplemented in QLayout, QSpacerltem and QWidgetItem.

QSize QLayoutltem::minimumsSize () const [virtual]

Implemented in subclasses to return the minimum size of this item.
Examples: customlayout/border.cpp, customlayout/card.cpp and customlayout/flow.cpp.

Reimplemented in QLayout, QSpacerltem and QWidgetItem.

QLayoutltem Class Reference 111

void QLayoutltem::setAlignment (int a) [virtual]

Sets the alignment of this item to a, which is a bitwise OR of the Qt::AlignmentFlags. Not all subclasses support
alignment.

void QLayoutltem::setGeometry (const QRect & r) [virtual]

Implemented in subclasses to set this item’s geometry to r.
Examples: customlayout/border.cpp, customlayout/card.cpp and customlayout/flow.cpp.

Reimplemented in QLayout, QSpacerltem and QWidgetItem.

QSize QLayoutItem::sizeHint () const [virtual]

Implemented in subclasses to return the preferred size of this item.
Examples: customlayout/border.cpp, customlayout/card.cpp and customlayout/flow.cpp.

Reimplemented in QSpacerltem, QWidgetltem, QGridLayout and QBoxLayout.

QSpacerltem * QLayoutltem::spacerltem () [virtual]

If this item is a QSpacerltem, return it as a QSpacerltem; otherwise return 0. This function provides type-safe
casting.

QWidget * QLayoutItem::widget () [virtual]

If this item is a QWidgetltem, the managed widget is returned. The default implementation returns O.

Reimplemented in QWidgetItem.

QLayoutlterator Class Reference

The QLayoutlterator class provides iterators over QLayoutltem.

#i ncl ude <ql ayout. h>

Public Members

= QLayoutlterator (QGLayoutlterator * gi)

» QLayoutlterator (const QLayoutlterator & i)

» ~QLayoutlIterator ()

= QLayoutlterator & operator= (const QLayoutlterator & i)
m QLayoutltem * operator++ ()

m QLayoutltem * current ()

m QLayoutltem * takeCurrent ()

m void deleteCurrent ()

Detailed Description

The QLayoutlterator class provides iterators over QLayoutltem.
Use QLayoutltem::iterator() to create an iterator over a layout.

QLayoutlterator uses explicit sharing with a reference count. If an iterator is copied and one of the copies is
modified, both iterators will be modified.

A QLayoutlterator is not protected against changes in its layout. If the layout is modified or deleted the iterator
will become invalid. It is not possible to test for validity. It is safe to delete an invalid layout; any other access may
lead to an illegal memory reference and the abnormal termination of the program.

Calling takeCurrent() or deleteCurrent() leaves the iterator in a valid state, but may invalidate any other iterators
that access the same layout.

The following code will draw a rectangle for each layout item in the layout structure of the widget.

static void paintlLayout(QPainter *p, QLayoutltem*lay)

{
QLayout Iterator it = lay->iterator();
Q.ayoutItem *child
while ((child =it.current()) !'=0) {
pai nt Layout (p, child);
it.next();
}
p->drawRect (| ay- >geonetry());
}

112

QLayoutlterator Class Reference 113

voi d Exanpl eW dget: : pai ntEvent (QPaint Event *)

{
QPainter p(this);
if (layout())
pai nt Layout (&p, layout());

}

All the functionality of QLayoutlterator is implemented by subclasses of QGLayoutIterator. QLayoutlterator itself is
not designed to be subclassed.

See also Widget Appearance and Style and Layout Management.

Member Function Documentation

QLayoutlterator::QLayoutlIterator (QGLayoutIterator * gi)

Constructs an iterator based on gi. The constructed iterator takes ownership of gi and will delete it.

This constructor is provided for layout implementors. Application programmers should use QLayoutItem::iterator()
to create an iterator over a layout.

QLayoutlterator::QLayoutlterator (const QLayoutlterator & i)

Creates a shallow copy of i, i.e. if the copy is modified, then the original will also be modified.

QLayoutlterator::~QLayoutlterator ()

Destroys the iterator.

QLayoutltem * QLayoutlterator::current ()

Returns the current item, or O if there is no current item.

void QLayoutlterator::deleteCurrent ()

Removes and deletes the current child item from the layout and moves the iterator to the next item. This iterator
will still be valid, but any other iterator over the same layout may become invalid.

QLayoutltem * QLayoutlterator::operator++ ()

Moves the iterator to the next child item and returns that item, or O if there is no such item.

QLayoutlterator & QLayoutlterator::operator= (const QLayoutlterator & i)

Assigns i to this iterator and returns a reference to this iterator.

QLayoutlterator Class Reference 114

QLayoutltem * QLayoutlterator::takeCurrent ()

Removes the current child item from the layout without deleting it and moves the iterator to the next item. Returns
the removed item, or O if there was no item to be removed. This iterator will still be valid, but any other iterator
over the same layout may become invalid.

QMotifPlusStyle Class Reference

The QMotifPlusStyle class provides a more sophisticated Motif-ish look and feel.
#include <gnotifplusstyle. h>

Inherits QMotifStyle [p. 116].

Public Members

m QMotifPlusStyle (bool hoveringHighlight = FALSE)

Detailed Description

The QMotifPlusStyle class provides a more sophisticated Motif-ish look and feel.

This class implements a Motif-ish look and feel with more sophisticated bevelling as used by the GIMP Toolkit
(GTK+) for Unix/X11.

See also Widget Appearance and Style.

Member Function Documentation

QMotifPlusStyle::QMotifPlusStyle (bool hoveringHighlight = FALSE)

Constructs a QMotifPlusStyle

If hoveringHighlight is FALSE (the default), then the style will not highlight push buttons, checkboxes, radiobuttons,
comboboxes, scrollbars or sliders.

115

QMotifStyle Class Reference

The QMotifStyle class provides Motif look and feel.

#include <gnotifstyle.h>

Inherits QCommonsStyle [p. 48].

Inherited by QCDEStyle [p. 411, QMotifPlusStyle [p. 115] and QSGIStyle [p. 130].

Public Members

m QMotifStyle (bool useHighlightCols = FALSE)
m void setUseHighlightColors (bool arg)
m bool useHighlightColors () const

Detailed Description

The QMotifStyle class provides Motif look and feel.

This class implements the Motif look and feel. It closely resembles the original Motif look as defined by the Open
Group, with the addition of some minor improvements. The Motif style is Qt’s default GUI style on UNIX platforms.

See also Widget Appearance and Style.

Member Function Documentation

QMotifStyle::QMotifStyle (bool useHighlightCols = FALSE)

Constructs a QMotifStyle.

If useHighlightCols is FALSE (the default), the style will polish the application’s color palette to emulate the Motif
way of highlighting, which is a simple inversion between the base and the text color.

void QMotifStyle::setUseHighlightColors (bool arg)
If arg is FALSE, the style will polish the application’s color palette to emulate the Motif way of highlighting, which
is a simple inversion between the base and the text color.

The effect will show up the next time an application palette is set via QApplication::setPalette(). The current color
palette of the application remains unchanged.

See also QStyle::polish() [p. 149].

116

QMotifStyle Class Reference 117

bool QMotifStyle::useHighlightColors () const

Returns TRUE if the style treats the highlight colors of the palette in a Motif-like manner, which is a simple inversion
between the base and the text color; otherwise returns FALSE. The default is FALSE.

QMouseEvent Class Reference

The QMouseEvent class contains parameters that describe a mouse event.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

= QMouseEvent (Type type, const QPoint & pos, int button, int state)
» QMouseEvent (Type type, const QPoint & pos, const QPoint & globalPos, int button, int state)
m const QPoint & pos () const

const QPoint & globalPos () const

int x () const

int y () const

int globalX () const

int globalY () const

ButtonState button () const

= ButtonState state () const

m ButtonState stateAfter () const

m bool isAccepted () const

m void accept ()

e void ignore ()

Detailed Description

The QMouseEvent class contains parameters that describe a mouse event.

Mouse events occur when a mouse button is pressed or released inside a widget or when the mouse cursor is
moved.

Mouse move events will occur only when a mouse button is pressed down, unless mouse tracking has been enabled
with QWidget::setMouseTracking().

Qt automatically grabs the mouse when a mouse button is pressed inside a widget; the widget will continue to
receive mouse events until the last mouse button is released.

A mouse event contains a special accept flag that indicates whether the receiver wants the event. You should call
QMouseEvent::ignore() if the mouse event is not handled by your widget. A mouse event is propagated up the
parent widget chain until a widget accepts it with QMousEvent::accept() or an event filter consumes it.

The functions pos(), x() and y() give the cursor position relative to the widget that receives the mouse event. If you
move the widget as a result of the mouse event, use the global position returned by globalPos() to avoid a shaking
motion.

118

QMouseEvent Class Reference 119

The QWidget::setEnable() function can be used to enable or disable mouse and keyboard events for a widget.

The event handlers QWidget::mousePressEvent(), QWidget::mouseReleaseEvent(), Qwid-
get::mouseDoubleClickEvent() and QWidget::mouseMoveEvent() receive mouse events.

See also QWidget::mouseTracking [Widgets with Qt], QWidget::grabMouse() [Widgets with Qt], QCursor::pos()
[Graphics with Qt] and Event Classes.

Member Function Documentation

QMouseEvent::QMouseEvent (Type type, const QPoint & pos, int button, int state)

Constructs a mouse event object.

The type parameter must be one of QEvent::MouseButtonPress, QEvent::MouseButtonRelease,
QEvent::MouseButtonDblClick or QEvent::MouseMove.

The pos parameter specifies the position relative to the receiving widget. button specifies the ButtonState of the
button that caused the event, which should be 0 if type is MouseMove. state is the ButtonState at the time of the
event.

The globalPos() is initialized to QCursor::pos(), which may not be appropriate. Use the other constructor to specify
the global position explicitly.

QMouseEvent::QMouseEvent (Type type, const QPoint & pos, const QPoint & globalPos,
int button, int state)

Constructs a mouse event object.

The type parameter must be QEvent::MouseButtonPress, QEvent::MouseButtonRelease,
QEvent::MouseButtonDbIClick or QEvent::MouseMove.

The pos parameter specifies the position relative to the receiving widget. globalPos is the position in absolute
coordinates. button specifies the ButtonState of the button that caused the event, which should be 0 if type is
MouseMove. state is the ButtonState at the time of the event.

void QMouseEvent::accept ()

Sets the accept flag of the mouse event object.

Setting the accept parameter indicates that the receiver of the event wants the mouse event. Unwanted mouse
events are sent to the parent widget.

The accept flag is set by default.
See also ignore() [p. 120].

Example: dirview/dirview.cpp.

ButtonState QMouseEvent::button () const

Returns the button that caused the event.
Possible return values are LeftButton, RightButton, MidButton and NoButton.
Note that the returned value is always NoButton for mouse move events.

See also state() [p. 121].

QMouseEvent Class Reference 120

Examples: dclock/dclock.cpp, life/life.cpp and t14/cannon.cpp.

const QPoint & QMouseEvent::globalPos () const

Returns the global position of the mouse pointer at the time of the event. This is important on asynchronous
window systems like X11. Whenever you move your widgets around in response to mouse events, globalPos() may
differ a lot from the current pointer position QCursor::pos(), and from QWidget::mapToGlobal(pos()).

See also globalX() [p. 120] and globalY() [p. 120].
Example: aclock/aclock.cpp.

int QMouseEvent::globalX () const

Returns the global X position of the mouse pointer at the time of the event.

See also globalY() [p. 120] and globalPos() [p. 120].

int QMouseEvent::globalY () const

Returns the global Y position of the mouse pointer at the time of the event.

See also globalX() [p. 120] and globalPos() [p. 120].

void QMouseEvent::ignore ()

Clears the accept flag parameter of the mouse event object.

Clearing the accept parameter indicates that the event receiver does not want the mouse event. Unwanted mouse
events are sent to the parent widget.

The accept flag is set by default.
See also accept() [p. 119].

bool QMouseEvent::isAccepted () const

Returns TRUE if the receiver of the event wants to keep the key; otherwise returns FALSE.

const QPoint & QMouseEvent::pos () const

Returns the position of the mouse pointer relative to the widget that received the event.

If you move the widget as a result of the mouse event, use the global position returned by globalPos() to avoid a
shaking motion.

See also x() [p. 1211, y() [p- 121] and globalPos() [p. 120].

Examples: drawlines/connect.cpp, life/life.cpp, popup/popup.cpp, qmag/qmag.cpp, scribble/scribble.cpp,
t14/cannon.cpp and tooltip/tooltip.cpp.

QMouseEvent Class Reference 121

ButtonState QMouseEvent::state () const
Returns the button state (a combination of mouse buttons and keyboard modifiers), i.e. what buttons and keys
were being pressed immediately before the event was generated.

Note that this means that for QEvent::MouseButtonPress and QEvent::MouseButtonDbIClick, the flag for the but-
ton() itself will not be set in the state, whereas for QEvent::MouseButtonRelease it will.

This value is mainly interesting for QEvent::MouseMove; for the other cases, button() is more useful.

The returned value is LeftButton, RightButton, MidButton, ShiftButton, ControlButton and AltButton OR’ed to-
gether.

See also button() [p. 119] and stateAfter() [p. 121].
Examples: popup/popup.cpp and showimg/showimg.cpp.

ButtonState QMouseEvent::stateAfter () const

Returns the state of buttons after the event.

See also state() [p. 121].

int QMouseEvent::x () const

Returns the X position of the mouse pointer, relative to the widget that received the event.
See also y() [p. 121] and pos() [p. 120].

Example: showimg/showimg.cpp.

int QMouseEvent::y () const

Returns the Y position of the mouse pointer, relative to the widget that received the event.
See also x() [p- 121] and pos() [p. 120].

Example: showimg/showimg.cpp.

QOMoveEvent Class Reference

The QMoveEvent class contains event parameters for move events.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

= QMoveEvent (const QPoint & pos, const QPoint & oldPos)
= const QPoint & pos () const
m const QPoint & oldPos () const

Detailed Description

The QMoveEvent class contains event parameters for move events.
Move events are sent to widgets that have been moved to a new position relative to their parent.
The event handler QWidget::moveEvent() receives move events.

See also QWidget::pos [Widgets with Qt], QWidget::geometry [Widgets with Qt] and Event Classes.

Member Function Documentation

QMoveEvent::QMoveEvent (const QPoint & pos, const QPoint & oldPos)

Constructs a move event with the new and old widget positions, pos and oldPos respectively.

const QPoint & QMoveEvent::0ldPos () const

Returns the old position of the widget.

const QPoint & QMoveEvent::pos () const

Returns the new position of the widget, excluding window frame for top level widgets.

122

QObjectCleanupHandler Class Reference

The QObjectCleanupHandler class watches the lifetime of multiple QObjects.
#i ncl ude <qobj ect cl eanuphandl er. h>

Inherits QObject [Additional Functionality with Qt].

Public Members

= QObjectCleanupHandler ()

m ~QObjectCleanupHandler ()

= QObject * add (QObject * object)
» void remove (QObject * object)
» bool isEmpty () const

m void clear ()

Detailed Description

The QObjectCleanupHandler class watches the lifetime of multiple QObjects.

A QObjectCleanupHandler is useful whenever you need to know when a number of QObjects that are owned by
someone else has been deleted. This is e.g. important when referencing memory in an application that has been
allocated in a shared library.

Example:

cl ass FactoryConponent : public Factorylnterface, public Q.ibrarylnterface

{
public:

Qbj ect *createject();

bool init();

voi d cl eanup();

bool canUnl oad() const;
private:

Qbj ect A eanupHandl er obj ects;
¥

Il allocate a new object, and add it to the cleanup handl er
QObj ect *Fact or yConponent : : cr eat eQbj ect ()

{

123

QObjectCleanupHandler Class Reference 124

return objects.add(new Qbject());
}

Il Qibrarylnterface inplementation
bool Fact oryConponent::init()

{
return TRUE
}
voi d Fact oryConponent :: cl eanup()
{
}

Il it is only safe to unload the library when all Qbject’s have been destroyed
bool Fact oryConponent: : canUnl oad() const

{
}

return objects.isEnpty();

See also Object Model.

Member Function Documentation

QObjectCleanupHandler::QObjectCleanupHandler ()

Constructs an empty QObjectCleanupHandler.

QObjectCleanupHandler::~QObjectCleanupHandler ()

Destroys the cleanup handler. All objects in this cleanup handler will be deleted.

QObject * QObjectCleanupHandler::add (QObject * object)

Adds object to this cleanup handler and returns the pointer to the object.

void QObjectCleanupHandler::clear ()

Deletes all objects in this cleanup handler. The cleanup handler becomes empty.

bool QObjectCleanupHandler::isEmpty () const

Returns TRUE if this cleanup handler is empty or all objects in this cleanup handler have been destroyed, otherwise
return FALSE.

void QObjectCleanupHandler::remove (QObject * object)

Removes the object from this cleanup handler. The object will not be destroyed.

QPaintEvent Class Reference

The QPaintEvent class contains event parameters for paint events.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

» QPaintEvent (const QRegion & paintRegion, bool erased = TRUE)
m QPaintEvent (const QRect & paintRect, bool erased = TRUE)

m const QRect & rect () const

m const QRegion & region () const

m bool erased () const

Detailed Description

The QPaintEvent class contains event parameters for paint events.

Paint events are sent to widgets that need to update themselves, for instance when part of a widget is exposed
because an overlying widget is moved.

The event contains a region() that needs to be updated, and a rect() that is the bounding rectangle of that region.
Both are provided because many widgets can’'t make much use of region(), and rect() can be much faster than
region().boundingRect(). Painting is clipped to region() during processing of a paint event.

The erased() function returns TRUE if the region() has been cleared to the widget’s background (see QWid-
get::backgroundMode()), and FALSE if the region’s contents are arbitrary.

See also QPainter [Graphics with Qt], QWidget::update() [Widgets with Qt], QWidget::repaint() [Widgets with
Qt], QWidget::paintEvent() [Widgets with Qt], QWidget::backgroundMode [Widgets with Qt], QRegion [Graphics
with Qt] and Event Classes.

Member Function Documentation

QPaintEvent::QPaintEvent (const QRegion & paintRegion, bool erased = TRUE)

Constructs a paint event object with the region that should be updated. The region is given by paintRegion. If
erased is TRUE the region will be cleared before repainting.

125

QPaintEvent Class Reference 126

QPaintEvent::QPaintEvent (const QRect & paintRect, bool erased = TRUE)

Constructs a paint event object with the rectangle that should be updated. The region is given by paintRect. If
erased is TRUE the region will be cleared before repainting.

bool QPaintEvent::erased () const

Returns whether the paint event region (or rectangle) has been erased with the widget’s background.

const QRect & QPaintEvent::rect () const

Returns the rectangle that should be updated.
See also region() [p. 126] and QPainter::setClipRect() [Graphics with Qt].

Examples: life/life.cpp, qfd/fontdisplayer.cpp, showimg/showimg.cpp, t10/cannon.cpp, t11/cannon.cpp,
t13/cannon.cpp and tooltip/tooltip.cpp.

const QRegion & QPaintEvent::region () const

Returns the region that should be updated.
See also rect() [p. 126] and QPainter::setClipRegion() [Graphics with Qt].
Examples: qfd/fontdisplayer.cpp and scribble/scribble.cpp.

QPlatinumStyle Class Reference

The QPlatinumStyle class provides Mac/Platinum look and feel.
#incl ude <qgpl ati numstyl e. h>

Inherits QWindowsStyle [p. 179].

Public Members

m QPlatinumStyle ()

Protected Members
= QColor mixedColor (const QColor & c1, const QColor & c¢2) const

m void drawRiffles (QPainter * p, int X, int y, int w, int h, const QColorGroup & g, bool horizontal) const

Detailed Description

The QPlatinumStyle class provides Mac/Platinum look and feel.

This class implements the Platinum look and feel. It’s an experimental class that tries to resemble a Macinosh-like
GUI style with the QStyle system. The emulation is, however, far from being perfect yet.

See also Widget Appearance and Style.

Member Function Documentation

QPlatinumStyle::QPlatinumStyle ()

Constructs a QPlatinumStyle

void QPlatinumStyle::drawRiffles (QPainter * p, int x, int y, int w, int h,
const QColorGroup & g, bool horizontal) const [protected]

Draws the nifty Macintosh decoration used on sliders using painter p and colorgroup g. x, y, w, h and horizontal
specify the geometry and orientation of the riffles.

127

QPlatinumStyle Class Reference 128

QColor QPlatinumStyle::mixedColor (const QColor & c1, const QColor & c2)
const [protected]

Mixes two colors cI and c2 to a new color.

QResizeEvent Class Reference

The QResizeEvent class contains event parameters for resize events.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

m QResizeEvent (const QSize & size, const QSize & oldSize)
m const QSize & size () const
m const QSize & oldSize () const

Detailed Description

The QResizeEvent class contains event parameters for resize events.
Resize events are sent to widgets that have been resized.
The event handler QWidget::resizeEvent() receives resize events.

See also QWidget::size [Widgets with Qt], QWidget::geometry [Widgets with Qt] and Event Classes.

Member Function Documentation

QResizeEvent::QResizeEvent (const QSize & size, const QSize & oldSize)

Constructs a resize event with the new and old widget sizes, size and oldSize respectively.

const QSize & QResizeEvent::oldSize () const

Returns the old size of the widget.

const QSize & QResizeEvent::size () const

Returns the new size of the widget, which is the same as QWidget::size().

Example: life/life.cpp.

129

QSGIStyle Class Reference

The QSGIStyle class provides SGI/Irix look and feel.
#incl ude <gsgistyle. h>
Inherits QMotifStyle [p. 116].

Public Members
m QSGIStyle (bool useHighlightCols = FALSE)

m virtual ~QSGIStyle ()

Detailed Description

The QSGIStyle class provides SGI/Irix look and feel.
This class implements the SGI look and feel. It resembles the SGI/Irix Motif GUI style as closely as QStyle allows.
See also Widget Appearance and Style.

Member Function Documentation

QSGIStyle::QSGIStyle (bool useHighlightCols = FALSE)

Constructs a QSGIStyle.

If useHighlightCols is FALSE (default value), the style will polish the application’s color palette to emulate the Motif
way of highlighting, which is a simple inversion between the base and the text color.

See also QMotifStyle::useHighlightColors() [p. 117].

QSGIStyle:: ~QSGIStyle () [virtual]

Destroys the style.

130

QShowEvent Class Reference

The QShowEvent class provides an event which is sent when a widget is shown.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

= QShowEvent ()

Detailed Description

The QShowEvent class provides an event which is sent when a widget is shown.

There are two kinds of show events: spontaneous show events by the window system and internal show events.
Spontaneous show events are sent just after the window system shows the window, including after a top-level
window has been shown (un-iconified) by the user. Internal show events are delivered just before the widget
becomes visible.

See also QHideEvent [p. 88] and Event Classes.

Member Function Documentation

QShowEvent::QShowEvent ()

Constructs a QShowEvent.

131

QStoredDrag Class Reference

The QStoredDrag class provides a simple stored-value drag object for arbitrary MIME data.
#i ncl ude <qdragobj ect. h>

Inherits QDragObject [p. 59].

Inherited by QUriDrag [p. 171] and QColorDrag [p. 46].

Public Members

QStoredDrag (const char * mimeType, QWidget * dragSource = 0, const char * name = 0)
~QStoredDrag ()

virtual void setEncodedData (const QByteArray & encodedData)

virtual QByteArray encodedData (const char * m) const

Detailed Description

The QStoredDrag class provides a simple stored-value drag object for arbitrary MIME data.
When a block of data has only one representation, you can use a QStoredDrag to hold it.
For more information about drag and drop, see the QDragObject class and the drag and drop documentation.

See also Drag And Drop Classes.

Member Function Documentation

QStoredDrag::QStoredDrag (const char * mimeType, QWidget * dragSource = 0,
const char * name = 0)

Constructs a QStoredDrag. The dragSource and name are passed to the QDragObject constructor, and the format is
set to mimeType.

The data will be unset. Use setEncodedData() to set it.

QStoredDrag::~QStoredDrag ()

Destroys the drag object and frees up all allocated resources.

132

QStoredDrag Class Reference 133

QByteArray QStoredDrag::encodedData (const char * m) const [virtual]

Returns the stored data. m contains the data’s format.
See also setEncodedData() [p. 133].

Reimplemented from QMimeSource [Input/Output and Networking with Qt].

void QStoredDrag::setEncodedData (const QByteArray & encodedData) [virtual]

Sets the encoded data of this drag object to encodedData. The encoded data is what’s delivered to the drop sites. It
must be in a strictly defined and portable format.

The drag object can’t be dropped (by the user) until this function has been called.

QStyle Class Reference

The QStyle class specifies the look and feel of a GUI.

#include <gstyle.h>

Inherits QObject [Additional Functionality with Qt].

Inherited by QCommonStyle [p. 48].

Public Members

QStyle ()

virtual ~QStyle ()

virtual void polish (QWidget *)

virtual void unPolish (QWidget *)

virtual void polish (QApplication *)

virtual void unPolish (QApplication *)

virtual void polish (QPalette &)

virtual void polishPopupMenu (QPopupMenu *)

virtual QRect itemRect (QPainter * p, const QRect & r, int flags, bool enabled, const QPixmap * pixmap,
const QString & text, int len = -1) const

virtual void drawltem (QPainter * p, const QRect & 1, int flags, const QColorGroup & g, bool enabled,
const QPixmap * pixmap, const QString & text, int len = -1, const QColor * penColor = 0) const

enum PrimitiveElement { PE_ButtonCommand, PE_ButtonDefault, PE_ButtonBevel, PE_ButtonTool,
PE_ButtonDropDown, PE_FocusRect, PE_ArrowUp, PE_ArrowDown, PE_ArrowRight, PE_ArrowlLeft,
PE_SpinWidgetUp, PE_SpinWidgetDown, PE_SpinWidgetPlus, PE_SpinWidgetMinus, PE_Indicator,

PE IndicatorMask, PE Exclusivelndicator, PE_ExclusivelndicatorMask, PE DockWindowHandle,
PE_DockWindowSeparator, PE_DockWindowResizeHandle, PE_Splitter, PE_Panel, PE_PanelPopup,
PE_PanelMenuBar, PE_PanelDockWindow, PE_TabBarBase, PE_HeaderSection, PE_HeaderArrow,
PE_StatusBarSection, PE_GroupBoxFrame, PE_Separator, PE_SizeGrip, PE_CheckMark,
PE_ScrollBarAddLine, PE ScrollBarSubLine, PE ScrollBarAddPage, PE_ScrollBarSubPage,
PE_ScrollBarSlider, PE ScrollBarFirst, PE_ScrollBarLast, PE_ProgressBarChunk, PE_CustomBase =
0xf000000 }

enum StyleFlags { Style Default = 0x00000000, Style Enabled = 0x00000001, Style Raised =
0x00000002, Style Sunken = 0x00000004, Style Off = 0x00000008, Style NoChange = 0x00000010,
Style On = 0x00000020, Style Down = 0x00000040, Style Horizontal = 0x00000080, Style HasFocus =
0x00000100, Style Top = 0x00000200, Style Bottom = 0x00000400, Style FocusAtBorder = 0x00000800,
Style AutoRaise = 0x00001000, Style MouseOver = 0x00002000, Style Up = 0x00004000, Style Selected
= 0x00008000, Style Active = 0x00010000, Style ButtonDefault = 0x00020000 }

virtual void drawPrimitive (PrimitiveElement pe, QPainter * p, const QRect & r, const QColorGroup & cg,
SFlags flags = Style Default, const QStyleOption & opt = QStyleOption::Default) const

enum ControlElement { CE_PushButton, CE_PushButtonLabel, CE_CheckBox, CE_CheckBoxLabel,
CE_RadioButton, CE_RadioButtonLabel, CE_TabBarTab, CE_TabBarLabel, CE_ProgressBarGroove,
CE_ProgressBarContents, CE_ProgressBarLabel, CE_PopupMenultem, CE_MenuBarltem,
CE_ToolButtonLabel, CE_CustomBase = 0xf0000000 }

134

QStyle Class Reference 135

m virtual void drawControl (ControlElement element, QPainter * p, const QWidget * widget, const QRect & r,
const QColorGroup & cg, SFlags how = Style Default, const QStyleOption & opt = QStyleOption::Default)
const

m virtual void drawControlMask (ControlElement element, QPainter * p, const QWidget * widget,
const QRect & 1, const QStyleOption & opt = QStyleOption::Default) const

m enum SubRect { SR_PushButtonContents, SR_PushButtonFocusRect, SR_CheckBoxIndicator,
SR_CheckBoxContents, SR_CheckBoxFocusRect, SR_RadioButtonIndicator, SR_RadioButtonContents,
SR_RadioButtonFocusRect, SR_ComboBoxFocusRect, SR_SliderFocusRect, SR_DockWindowHandleRect,
SR_ProgressBarGroove, SR_ProgressBarContents, SR_ProgressBarLabel, SR_ToolButtonContents,
SR_CustomBase = 0xf0000000 }

m virtual QRect subRect (SubRect subrect, const QWidget * widget) const

» enum ComplexControl { CC_SpinWidget, CC_ComboBox, CC_ScrollBar, CC_Slider, CC_ToolButton,
CC _TitleBar, CC_ListView, CC_CustomBase = 0xf0000000 }

» enum SubControl { SC None = 0x00000000, SC_ScrollBarAddLine = 0x00000001, SC_ScrollBarSubLine
= 0x00000002, SC_ScrollBarAddPage = 0x00000004, SC_ScrollBarSubPage = 0x00000008,
SC_ScrollBarFirst = 0x00000010, SC_ScrollBarLast = 0x00000020, SC_ScrollBarSlider = 0x00000040,
SC_ScrollBarGroove = 0x00000080, SC_SpinWidgetUp = 0x00000001, SC_SpinWidgetDown =
0x00000002, SC_SpinWidgetFrame = 0x00000004, SC_SpinWidgetEditField = 0x00000008,
SC_SpinWidgetButtonField = 0x00000010, SC_ComboBoxFrame = 0x00000001, SC_ComboBoxEditField
= 0x00000002, SC_ComboBoxArrow = 0x00000004, SC_SliderGroove = 0x00000001, SC_SliderHandle =
0x00000002, SC_SliderTickmarks = 0x00000004, SC_ToolButton = 0x00000001, SC_ToolButtonMenu =
0x00000002, SC_TitleBarLabel = 0x00000001, SC_TitleBarSysMenu = 0x00000002, SC_TitleBarMinButton
= 0x00000004, SC_TitleBarMaxButton = 0x00000008, SC_TitleBarCloseButton = 0x00000010,
SC_TitleBarNormalButton = 0x00000020, SC_TitleBarShadeButton = 0x00000040,
SC_TitleBarUnshadeButton = 0x00000080, SC_ListView = 0x00000001, SC_ListViewBranch =
0x00000002, SC_ListViewExpand = 0x00000004, SC_AIl = Oxffffffff }

» virtual void drawComplexControl (ComplexControl control, QPainter * p, const QWidget * widget,
const QRect & 1, const QColorGroup & cg, SFlags how = Style Default, SCFlags sub = SC_All,

SCFlags subActive = SC_None, const QStyleOption & opt = QStyleOption::Default) const

» virtual void drawComplexControlMask (ComplexControl control, QPainter * p, const QWidget * widget,
const QRect & 1, const QStyleOption & opt = QStyleOption::Default) const

m virtual QRect querySubControlMetrics (ComplexControl control, const QWidget * widget,

SubControl subcontrol, const QStyleOption & opt = QStyleOption::Default) const

m virtual SubControl querySubControl (ComplexControl control, const QWidget * widget,
const QPoint & pos, const QStyleOption & opt = QStyleOption::Default) const

» enum PixelMetric { PM_ButtonMargin, PM_ButtonDefaultIndicator, PM_MenuButtonIndicator,
PM_ButtonShiftHorizontal, PM_ButtonShiftVertical, PM_DefaultFrameWidth, PM_SpinBoxFrameWidth,
PM_MaximumDragDistance, PM_ScrollBarExtent, PM_ScrollBarSliderMin, PM_SliderThickness,
PM_SliderControlThickness, PM_SliderLength, PM_SliderTickmarkOffset, PM_SliderSpaceAvailable,

PM DockWindowSeparatorExtent, PM DockWindowHandleExtent, PM DockWindowFrameWidth,
PM MenuBarFrameWidth, PM_TabBarTabOverlap, PM TabBarTabHSpace, PM_TabBarTabVSpace,
PM_TabBarBaseHeight, PM_TabBarBaseOverlap, PM_ProgressBarChunkWidth, PM_SplitterWidth,
PM_TitleBarHeight, PM_IndicatorWidth, PM_IndicatorHeight, PM_ExclusivelndicatorWidth,
PM_ExclusiveIndicatorHeight, PM_CustomBase = 0xf0000000 }

m virtual int pixelMetric (PixelMetric metric, const QWidget * widget = 0) const

m enum ContentsType { CT PushButton, CT_CheckBox, CT_RadioButton, CT_ToolButton, CT_ComboBox,
CT_Splitter, CT_DockWindow, CT ProgressBar, CT PopupMenultem, CT _CustomBase = 0xf0000000 }

m virtual QSize sizeFromContents (ContentsType contents, const QWidget * widget,
const QSize & contentsSize, const QStyleOption & opt = QStyleOption::Default) const

m enum StyleHint { SH_EtchDisabledText, SH_GUIStyle, SH_ScrollBar BackgroundMode,

SH_ScrollBar MiddleClickAbsolutePosition, SH_ScrollBar ScrollWhenPointerLeavesControl,
SH_TabBar_SelectMouseType, SH _TabBar Alignment, SH Header ArrowAlignment,

SH_Slider SnapToValue, SH_Slider SloppyKeyEvents, SH ProgressDialog CenterCancelButton,
SH_ProgressDialog TextLabelAlignment, SH PrintDialog RightAlignButtons,

SH MainWindow_SpaceBelowMenuBar, SH FontDialog SelectAssociatedText,

QStyle Class Reference 136

SH_PopupMenu_AllowActiveAndDisabled, SH PopupMenu_SpaceActivatesitem,
SH_PopupMenu_SubMenuPopupDelay, SH_ScrollView FrameOnlyAroundContents,
SH MenuBar_ AltKeyNavigation, SH ComboBox_ListMouseTracking, SH PopupMenu MouseTracking,
SH MenuBar MouseTracking, SH ItemView ChangeHighlightOnFocus, SH Widget ShareActivation,
SH Workspace FillSpaceOnMaximize, SH ComboBox Popup, SH CustomBase = 0xf0000000 }

m virtual int styleHint (StyleHint stylehint, const QWidget * widget = 0, const QStyleOption & opt =
QStyleOption::Default, QStyleHintReturn * returnData = 0) const

m enum StylePixmap { SP_TitleBarMinButton, SP_TitleBarMaxButton, SP_TitleBarCloseButton,
SP_TitleBarNormalButton, SP_TitleBarShadeButton, SP_TitleBarUnshadeButton,
SP_DockWindowCloseButton, SP_MessageBoxInformation, SP_ MessageBoxWarning,
SP_MessageBoxCritical, SP_CustomBase = 0xf0000000 }

» virtual QPixmap stylePixmap (StylePixmap stylepixmap, const QWidget * widget = 0,
const QStyleOption & opt = QStyleOption::Default) const

m int defaultFrameWidth () const (obsolete)

e void tabbarMetrics (const QWidget * t, int & hf, int & vf, int & ov) const (obsolete)

QSize scrollBarExtent () const (obsolete)

Static Public Members

m QRect visualRect (const QRect & logical, const QWidget * w)
m QRect visualRect (const QRect & logical, const QRect & bounding)

Detailed Description

The QStyle class specifies the look and feel of a GUI.

A large number of GUI elements are common to many widgets. The QStyle class allows the look of these elements to
be modified across all widgets that use the QStyle functions. It also provides two feel options: Motif and Windows.

Although it is not possible to fully enumerate the look of graphic elements and the feel of widgets in a GUI, QStyle
provides a considerable amount of control and customisability.

In Qt 1.x the look and feel option for widgets was specified by a single value - the GUIStyle. Starting with Qt 2.0,
this notion has been expanded to allow the look to be specified by virtual drawing functions.

Derived classes may reimplement some or all of the drawing functions to modify the look of all widgets that use
those functions.

Languages written from right to left (such as Arabic and Hebrew) usually also mirror the whole layout of widgets.
If you design a style, you should take special care when drawing asymmetric elements to make sure that they also
look correct in a mirrored layout. You can start your application with -reverse to check the mirrored layout. Also
notice, that for a reversed layout, the light usually comes from top right instead of top left.

The actual reverse layout is performed automatically when possible. However, for the sake of flexibility, the trans-
lation cannot be performed everywhere. The documentation for each function in the QStyle API states whether
the function expects/returns logical or screen coordinates. Using logical coordinates (in ComplexControls, for ex-
ample) provides great flexibility in controlling the look of a widget. Use visualRect() when necessary to translate
logical coordinates into screen coordinates for drawing.

In Qt versions prior to 3.0 if you wanted a low level route into changing the appearance of a widget you would
reimplement polish(). With the new 3.0 style engine the recommended approach is to reimplement the draw func-
tions, for example drawltem(), drawPrimitive(), drawControl(), drawControlMask(), drawComplexControl() and
drawComplexControlMask(). Each of these functions is called with a range of parameters that provide information
that you can use to determine how to draw them, e.g. style flags, rectangle, color group, etc.

For information on changing elements of an existing style or creating your own style see the Style overview.

QStyle Class Reference 137

Styles can also be created as plugins.

See also Widget Appearance and Style.

Member Type Documentation

QStyle::ComplexControl

This enum represents a ComplexControl. ComplexControls have different behaviour depending upon where the
user clicks on them or which keys are pressed.

o (Style::
e (Style::
o (Style::
e (Style::
e (Style::
o (Style::
e (Style::

o (Style::

CC_Spi nW dget
CC_ConboBox
CC Scrol | Bar
CC Slider

CC Tool Button
CC TitleBar
CC ListView

CC CustonBase - base value for custom ControlElements. All values above this are reserved for

custom use. Therefore, custom values must be greater than this value.

See also SubControl [p. 143] and drawComplexControl() [p. 145].

QStyle::ContentsType

This enum represents a ContentsType. It is used to calculate sizes for the contents of various widgets.

o (Style::
o (Style::
e (Style::
o (Style::
e (Style::
o (Style::
e (Style::
o (Style::
o (Style::

e (Style::

CT_PushBut ton
CT_CheckBox
CT_Radi oButton
CT _Tool Button
CT_ConboBox

CT Splitter
CT_DockW ndow
CT_ProgressBar
CT_PopupMenul t em

CT_CustonBase - base value for custom ControlElements. All values above this are reserved for

custom use. Therefore, custom values must be greater than this value.

See also sizeFromContents() [p. 151].

QStyle Class Reference 138

QStyle::ControlElement

This enum represents a ControlElement. A ControlElement is part of a widget that performs some action or display
information to the user.

e (Style::
e (Style::

e (Style::
o (Style::

o (Style::
o (Style::

o (Style::
e (Style::

e (Style::
e (Style::
o (Style::

o (Style::

o (Style::
o (Style::

o (Style::

CE_PushBut t on - the bevel and default indicator of a QPushButton.
CE_PushBut t onLabel - the label (iconset with text or pixmap) of a QPushButton.

CE_CheckBox - the indicator of a QCheckBox.
CE_CheckBoxLabel - the label (text or pixmap) of a QCheckBox.

CE_Radi oBut ton - the indicator of a QRadioButton.
CE_Radi oBut tonLabel - the label (text or pixmap) of a QRadioButton.

CE _TabBar Tab - the tab within a QTabBar (a QTab).
CE_TabBar Label - the label within a QTab.

CE_ProgressBar G oove - the groove where the progress indicator is drawn in a QProgressBar.
CE_ProgressBar Content s - the progress indicator of a QProgressBar.
CE_ProgressBar Label - the text label of a QProgressBar.

CE_PopupMenul t em- a menu item in a QPopupMenu.

CE_MenuBar I tem- a menu item in a QMenuBar.
CE_Tool Butt onLabel - a tool button’s label.

CE_CustonBase - base value for custom ControlElements. All values above this are reserved for

custom use. Therefore, custom values must be greater than this value.

See also drawControl() [p. 146].

QStyle::PixelMetric

This enum represents a PixelMetric. A PixelMetric is a style dependent size represented as a single pixel value.

e (Style::
e (Style::
o (Style::
e (Style::
o (Style::

e (Style::
o (Style::

o (Style::

PM But t onMar gi n - amount of whitespace between pushbutton labels and the frame.

PM But t onDefaul t I ndi cat or - width of the default-button indicator frame.

PM MenuBut t onl ndi cat or - width of the menu button indicator proportional to the widget height.
PM But t onShift Hori zont al - horizontal contents shift of a button when the button is down.

PM ButtonShiftVertical - vertical contents shift of a button when the button is down.

PM Def aul t FrameW dt h - default frame width, usually 2.
PM Spi nBoxFrameW dt h - frame width of a spin box.

PM Maxi munDragDi st ance - Some feels require the scrollbar or other sliders to jump back to the

original position when the mouse pointer is too far away while dragging. A value of -1 disables this behavior.

e (Style::

PM Scrol | BarExt ent - width of a vertical scrollbar and the height of a horizontal scrollbar.

QStyle Class Reference 139

o (Style::

PM Scrol I BarSli derM n - the minimum height of a vertical scrollbar’s slider and the minimum

width of a horiztonal scrollbar slider.

e (Style::
e (Style::
e (Style::
o (Style::
o (Style::

o (Style::

PM Sl i der Thi ckness - total slider thickness.

PM Sl i der Control Thi ckness - thickness of the slider handle.

PM Sl i derLengt h - length of the slider.

PM Sl i der Ti ckmar kOf f set - the offset between the tickmarks and the slider.
PM Sl i der SpaceAvai | abl e - the available space for the slider to move.

PM DockW ndowSepar at or Ext ent - width of a separator in a horiztonal dock window and the height

of a separator in a vertical dock window.

e (Style::

PM DockW ndowHand| eExt ent - width of the handle in a horizontal dock window and the height of

the handle in a vertical dock window.

e (Style::
e (Style::

e (Style::
e (Style::
o (Style::
o (Style::
e (Style::

o (Style::

o (Style::
o (Style::
e (Style::
e (Style::
o (Style::
o (Style::

o (Style::

PM DockW ndowFr ameW dt h - frame width of a dock window.
PM MenuBar FrameW dt h - frame width of a menubar.

PM TabBar TabOver | ap - number of pixels the tabs should overlap.

PM TabBar TabHSpace - extra space added to the tab width.

PM TabBar TabVSpace - extra space added to the tab height.

PM TabBar BaseHei ght - height of the area between the tab bar and the tab pages.
PM TabBar BaseOver | ap - number of pixels the tab bar overlaps the tab bar base.

PM Pr ogr essBar ChunkW dt h - width of a chunk in a progress bar indicator.

PM SplitterWdth - width of a splitter.

PM Ti t| eBar Hei ght - height of the title bar.

PM I ndi cat orW dt h - width of a check box indicator.

PM I ndi cat orHei ght - height of a checkbox indicator.

PM Excl usi vel ndi cat or W dt h - width of a radio button indicator.
PM Excl usi vel ndi cat or Hei ght - height of a radio button indicator.

PM Cust onBase - base value for custom ControlElements. All values above this are reserved for

custom use. Therefore, custom values must be greater than this value.

See also pixelMetric() [p. 149].

QStyle::PrimitiveElement

This enum represents the PrimitiveElements of a style. A PrimitiveElement is a common GUI element, such as a
checkbox indicator or pushbutton bevel.

e (Style::
e (Style::
e (Style::
o (Style::
o (Style::

example,

PE Butt onCommand - button used to initiate an action, for example, a QPushButton.
PE_But t onDefaul t - this button is the default button, e.g. in a dialog.

PE_But t onBevel - generic button bevel.

PE ButtonTool - tool button, for example, a QToolButton.

PE_But t onDr opDown - drop down button, for example, a tool button that displays a popup menu, for
QPopupMenu.

QStyle Class Reference 140

e (Style::PE FocusRect - generic focus indicator.

e (Style::PE_Arrowlp - up arrow.

e (Styl e:: PE_ArrowDown - down arrow.
o (Style::PE_ArrowRi ght - right arrow.
e (Style::PE Arrowleft - left arrow.

e (Style::PE_Spi nW dget Up - up symbol for a spin widget, for example a QSpinBox.
e (Style:: PE_Spi nW dget Down - down symbol for a spin widget.

e (Style::PE_Spi nW dget Pl us - increase symbol for a spin widget.

e (Style:: PE_Spi nW dget M nus - decrease symbol for a spin widget.

e (Style::PE Indicator - on/off indicator, for example, a QCheckBox.

e (Style::PE_IndicatorMsk - bitmap mask for an indicator.

e (Style::PE_Exclusivelndicator - exclusive on/off indicator, for example, a QRadioButton.
e (Style:: PE Exclusivel ndi cat or Mask - bitmap mask for an exclusive indicator.

e (Style:: PE_DockW ndowHand! e - tear off handle for dock windows and toolbars, for example QDockWindows
and QToolBars.

e (Style:: PE_DockW ndowSepar at or - item separator for dock window and toolbar contents.
e (Style:: PE DockW ndowResi zeHandl e - resize handle for dock windows.
e (Style::PE_Splitter - splitter handle; see also QSplitter.

e (Style::PE_Panel - generic panel frame; see also QFrame.

e (Styl e:: PE_Panel Popup - panel frame for popup windows/menus; see also QPopupMenu.
e (Style:: PE Panel MenuBar - panel frame for menu bars.

e (Styl e:: PE_Panel DockW ndow - panel frame for dock windows and toolbars.

e (Style:: PE_TabBar Base - area below tabs in a tab widget, for example, QTab.

e (Style:: PE Header Secti on - section of a list or table header; see also QHeader.
e (Style:: PE_Header Arrow - arrow used to indicate sorting on a list or table header
e (Style::PE StatusBarSection - section of a status bar; see also QStatusBar.

e (Style:: PE_G oupBoxFrane - frame around a group box; see also QGroupBox.
e (Style::PE Separator - generic separator.

e (Style::PE SizeGip - window resize handle; see also QSizeGrip.

e (Style::PE _CheckMark - generic check mark; see also QCheckBox.

e (Style::PE Scrol |l BarAddLi ne - scrollbar line increase indicator (i.e. scroll down); see also QScrollBar.
e (Style::PE Scroll BarSubLine - scrollbar line decrease indicator (i.e. scroll up).

e (Style::PE_Scrol | BarAddPage - scolllbar page increase indicator (i.e. page down).

e (Style::PE_Scrol | Bar SubPage - scrollbar page decrease indicator (i.e. page up).

e (Style::PE ScrollBarSlider -scrollbar slider

e (Style::PE Scrol |l BarFirst - scrollbar first line indicator (i.e. home).

QStyle Class Reference 141

e (Style::PE ScrollBarlLast - scrollbar last line indicator (i.e. end).
e (Style:: PE_ProgressBar Chunk - section of a progress bar indicator; see also QProgressBar.

e (Style::PE CustonBase - base value for custom ControlElements. All values above this are reserved for
custom use. Therefore, custom values must be greater than this value.

See also drawPrimitive() [p. 148].

QStyle::StyleFlags

This enum represents flags for drawing PrimitiveElements. Not all primitives use all of these flags. Note that these
flags may mean different things to different primitives. For an explanation of the relationship between primitives
and their flags, as well as the different meanings of the flags, see the Style overview.

o (Style::Style Default

e (Style::Style_Enabled

e (Style::Style Raised

e (Gtyle::Style Sunken

e (Style::Style Of

e (Style::Style_NoChange

e (Style::Style_On

e (Style::Style Down

e (Style::Style Horizontal

e (Style::Style HasFocus

e (Style::Style Top

e (Style::Style Bottom

e (Style::Styl e FocusA Border
e (Style::Style AutoRaise

e (Style::Style MuseOrer

e (Style::Style _Up

e (Style::Style Selected

e (Style::Style HasFocus

e (Style::Style Active

e (Style::Style ButtonDefault

See also drawPrimitive() [p. 148].

QStyle::StyleHint
This enum represents a StyleHint. A StyleHint is a general look and/or feel hint.

e (Style::SH EtchDi sahl edText - disabled text is "etched" like Windows.
e (Style::SH GU Styl e - the GUI style to use.

e (Style::SH Scrol | Bar_BackgroundMbde - the background mode for a QScrollBar. Possible values are any of
those in the BackgroundMode enum.

QStyle Class Reference 142

e (Style::SH Scrol | Bar_M ddl ed i ckAbsol ut ePosi ti on - a boolean value. If TRUE, middle clicking on a
scrollbar causes the slider to jump to that position. If FALSE, the middle clicking is ignored.

e (Style::SH Scrol | Bar_Scrol | WienPoi nt er LeavesControl - a boolean value. If TRUE, when clicking a
scrollbar SubControl, holding the mouse button down and moving the pointer outside the SubControl, the
scrollbar continues to scroll. If FALSE, the scollbar stops scrolling when the pointer leaves the SubControl.

e (Style::SH TabBar_Ali gnnment - the alignment for tabs in a QTabWidget. Possible values are Qt::AlignLeft,
Qt::AlignCenter and Qt::AlignRight.

e (Style::SH Header ArrowAl i gnment - the placement of the sorting indicator may appear in list or table
headers. Possible values are Qt::Left or Qt::Right.

e (Style::SH Slider_SnapToVal ue - sliders snap to values while moving, like Windows

e (Style::SH Slider_SloppyKeyEvents - key presses handled in a sloppy manner, i.e. left on a vertical slider
subtracts a line.

e (Style::SH ProgressDO al og_Cent er Cancel Butt on - center button on progress dialogs, like Motif, otherwise
right aligned.

e (Style::SH ProgressD al og_Text Label Ali gnnent - Qt::AlignmentFlags — text label alignment in progress
dialogs; Center on windows, Auto | VCenter otherwise.

e (Style::SH PrintDialog_Ri ght Ali gnButtons - right align buttons in the print dialog, like Windows.

e (Style::SH Mai nW ndow_SpaceBel owenuBar - 1 or 2 pixel space between the menubar and the dockarea,
like Windows.

e (Style::SH FontDi al og_Sel ect Associ at edText - select the text in the line edit, or when selecting an item
from the listbox, or when the line edit receives focus, like Windows.

e (Style::SH PopupMenu Al | owAct i veAndDi sabl ed - allows disabled menu items to be active.
e (Style::SH PopupMenu_SpaceAct i vat esl t em- pressing Space activates the item, like Motif.

e (Style:: SH PopupMenu_SubMenuPopupDel ay - the number of milliseconds to wait before opening a submenu;
256 on windows, 96 on Motif.

e (Style::SH Scrol | Vi ew FrameOnl yAroundCont ent s - whether scrollviews draw their frame only around con-
tents (like Motif), or around contents, scrollbars and corner widgets (like Windows).

e (Style::SH MenuBar _Al t KeyNavi gati on - menubars items are navigable by pressing Alt, followed by using
the arrow keys to select the desired item.

e (Style::SH ConmboBox_Li st MouseTr acki ng - mouse tracking in combobox dropdown lists.

e (Style::SH PopupMenu MouseTracki ng - mouse tracking in popup menus.

e (Style::SH MenuBar _MuseTracki ng - mouse tracking in menubars.

e (Style::SH ItenVi ew ChangeHi ghli ght OnFocus - gray out selected items when losing focus.

e (Style::SH Wdget _ShareActivation - turn on sharing activation with floating modeless dialogs.

e (Style::SH TabBar _Sel ect MouseType - which type of mouse event should cause a tab to be selected.
e (Style:: SH ComboBox_Popup - allows popups as a combobox dropdown menu.

e (Style::SH Wrkspace Fill SpaceOnMaxi mi ze - the workspace should maximize the client area.

e (Style::SH CustonBase - base value for custom ControlElements. All values above this are reserved for
custom use. Therefore, custom values must be greater than this value.

See also styleHint() [p. 151].

QStyle::StylePixmap

This enum represents a StylePixmap. A StylePixmap is a pixmap that can follow some existing GUI style or guide-
line.

QStyle Class Reference 143

o (Style::
o (Style::
e (Style::
o (Style::
e (Style::
o (Style::
e (Style::
e (Style::
o (Style::

e (Style::

e (Style::

SP_Titl eBar M nButton - minimize button on titlebars. For example, in a QWorkspace.
SP_Ti t| eBar MaxBut t on - maximize button on titlebars.

SP Titl eBard oseButton - close button on titlebars.

SP_Ti t1 eBar Normal Butt on - normal (restore) button on titlebars.

SP_Tit| eBar ShadeButt on - shade button on titlebars.

SP_Ti t 1 eBar lhshadeBut t on - unshade button on titlebars.

SP_MessageBox| nf or mati on - the ’information’ icon.

SP_MessageBoxWar ni ng - the 'warning’ icon.

SP_MessageBoxCritical - the ’critical’ icon.

SP_DockW ndowCl oseBut t on - close button on dock windows; see also QDockWindow.

SP_Cust onBase - base value for custom ControlElements. All values above this are reserved for

custom use. Therefore, custom values must be greater than this value.

See also stylePixmap() [p. 151].

QStyle::SubControl

This enum represents a SubControl within a ComplexControl.

e (Style::

o (Style::
e (Style::
o (Style::
e (Style::
e (Style::
o (Style::
e (Style::
o (Style::

move.

o (Style::
e (Style::
o (Style::
e (Style::
e (Style::

o (Style::
e (Style::
o (Style::

o (Style::
e (Style::
o (Style::

SC_None - special value that matches no other SubControl.

SC Scrol | BarAddLi ne - scrollbar add line (i.e. down/right arrow); see also QScrollbar.
SC_Scrol | BarSubLi ne - scrollbar sub line (i.e. up/left arrow).

SC_Scrol | BarAddPage - scrollbar add page (i.e. page down).

SC Scrol | Bar SubPage - scrollbar sub page (i.e. page up).

SC Scrol | BarFirst - scrollbar first line (i.e. home).

SC Scrol | BarLast - scrollbar last line (i.e. end).

SC Scrol I BarSli der - scrollbar slider handle.

SC Scrol | BarGroove - special subcontrol which contains the area in which the slider handle may

SC_Spi nW dget Up - spinwidget up/increase; see also QSpinBox.
SC _Spi nW dget Down - spinwidget down/decrease.

SC_Spi nW dget Frame - spinwidget frame.

SC Spi nW dget Edi t Fi el d - spinwidget edit field.

SC_Spi nW dget But t onFi el d - spinwidget button field.

SC ConboBoxHli t Fi el d - combobox edit field; see also QComboBox.
SC_ConboBoxAr r ow - combobox arrow
SC _ConboBoxFr ame - combobox frame

SC_Sli der Groove - special subcontrol which contains the area in which the slider handle may move.
SC Sli der Handl e - slider handle.
SC SliderTickmarks - slider tickmarks.

QStyle Class Reference 144

o (Style::
o (Style::

e (Style::
o (Style::
e (Style::
o (Style::
e (Style::
e (Style::
o (Style::
e (Style::

o (Style::
e (Style::
o (Style::

o (Style::

SC Tool Butt on - tool button; see also QToolbutton.
SC _Tool But t onMenu - subcontrol for opening a popup menu in a tool button; see also QPopupMenu.

SC_Ti t | eBar SysMenu - system menu button (i.e. restore, close, etc.).
SC TitleBarMnButton - minimize button.

SC Titl eBar MaxBut t on - maximize button.

SC Titl eBard oseButton - close button.

SC Titl eBarLabel - window title label.

SC Titl eBar Nor mal Butt on - normal (restore) button.

SC Titl eBar ShadeBut t on - shade button.

SC Titl eBar ULhshadeBut t on - unshade button.

SC Li st Vi ew- (internal)
SC Li st ViewBranch - (internal)
SC_Li st Vi ewExpand - expand item (i.e. show/hide child items).

SC_All - special value that matches all SubControls.

See also ComplexControl [p. 137].

QStyle::SubRect

This enum represents a sub-area of a widget. Style implementations would use these areas to draw the different
parts of a widget.

e (Style::
o (Style::
e (Style::
o (Style::
o (Style::

e (Style::
o (Style::
e (Style::

o (Style::
o (Style::
e (Style::

o (Style::
e (Style::
o (Style::

o (Style::

e (Style::

SR_PushButt onCont ent s - area containing the label (iconset with text or pixmap).

SR _PushBut t onFocusRect - area for the focus rect (usually larger than the contents rect).
SR_CheckBoxI ndi cat or - area for the state indicator (e.g. check mark).

SR _CheckBoxont ent s - area for the label (text or pixmap).

SR _CheckBoxFocusRect - area for the focus indicator.

SR _Radi oBut tonl ndi cat or - area for the state indicator.
SR Radi oBut tonCont ent s - area for the label.
SR Radi oBut tonFocusRect - area for the focus indicator.

SR _ConhboBoxFocusRect - area for the focus indicator.
SR Sli der FocusRect - area for the focus indicator.
SR DockW ndowHandl eRect - area for the tear-off handle.

SR _ProgressBar G oove - area for the groove.
SR_ProgressBar Cont ent s - area for the progress indicator.
SR _ProgressBar Label - area for the text label.

SR Tool Butt onCont ent s - area for the tool button’s label.

SR Cust onBase - base value for custom ControlElements. All values above this are reserved for

custom use. Therefore, custom values must be greater than this value.

See also subRect() [p. 152].

QStyle Class Reference 145

Member Function Documentation

QStyle::QStyle ()

Constructs a QStyle.

QStyle::~QStyle () [virtual]

Destroys the style and frees all allocated resources.

int QStyle::defaultFrameWidth () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

void QStyle::drawComplexControl (ComplexControl control, QPainter * p,
const QWidget * widget, const QRect & r, const QColorGroup & cg, SFlags how =
Style Default, SCFlags sub = SC_All, SCFlags subActive = SC_None,
const QStyleOption & opt = QStyleOption::Default) const [virtual]

Draws the ComplexControl control using the painter p in the area r. Colors are used from the color group cg. The
sub argument specifies which SubControls to draw. Multiple SubControls can be OR’ed together. The subActive
argument specifies which SubControl is active.

The rect r should be in logical coordinates. Reimplementations of this function should use visualRect() to change
the logical coordinates into screen coordinates when using drawPrimitive() and drawControl().

The how argument is used to control how the ComplexControl is drawn. Multiple flags can OR’ed together. See the
table below for an explanation of which flags are used with the various ComplexControls.

The widget argument is a pointer to a QWidget or one of its subclasses. The widget can be cast to the appropriate
type based on the value of control. The opt argument can be used to pass extra information required when drawing
the ComplexControl. Note that opt may be the default value even for ComplexControls that can make use of the
extra options. See the table below for the appropriate widget and opt usage:

4_]
olyItT HdeULub S>et 11 ﬁhtﬂ‘CU-UIULlLLUU 1Id5 lllpul IULle
Sty}e BOVVII Set If t'he tOOlbttttOII ISﬁQW@[)[lC lllUubC UuLLUll Ul bl)dLC plebCu)
Styie_ell Set I‘f dle t()()lbtttt()%ﬂﬁ hUgSlC UULLUU auu lb LUBSLCU Ull.

b |
S 1 LlLUI\cUbC DCL IT UIT UYIUL[LLUII lldb dLlLU J.dle ClldUlCU

CC_ListView(const ! QLIStVleW) Style Enabled Set 1f ahe t1tlebar is enabled QStyleOptlon (QLlstV1eWItem *item)
arrow, t

is the

arrow’s

opt.listViewItem()

tvpe
item 1S the 1tem that needs branches drawn

See also ComplexControl [p. 137] and SubControl [p. 143].

Examples: themes/metal.cpp and themes/wood.cpp.

QStyle Class Reference 146

void QStyle::drawComplexControlMask (ComplexControl control, QPainter * p,
const QWidget * widget, const QRect & r, const QStyleOption & opt =
QStyleOption::Default) const [virtual]

Draw a bitmask for the ComplexControl control using the painter p in the area r. See drawComplexControl() for
an explanation of the use of the widget and opt arguments.

The rect r should be in logical coordinates. Reimplementations of this function should use visualRect() to change
the logical corrdinates into screen coordinates when using drawPrimitive() and drawControl().

See also drawComplexControl() [p. 145] and ComplexControl [p. 137].

Example: themes/wood.cpp.

void QStyle::drawControl (ControlElement element, QPainter * p,
const QWidget * widget, const QRect & r, const QColorGroup & cg, SFlags how =
Style Default, const QStyleOption & opt = QStyleOption::Default) const [virtual]

Draws the ControlElement element using the painter p in the area r. Colors are used from the color group cg.
The rect r should be in screen coordinates.

The how argument is used to control how the ControlElement is drawn. Multiple flags can be OR’ed together. See
the table below for an explanation of which flags are used with the various ControlElements.

The widget argument is a pointer to a QWidget or one of its subclasses. The widget can be cast to the appropriate
type based on the value of element. The opt argument can be used to pass extra information required when drawing
the ControlElement. Note that opt may be the default value even for ControlElements that can make use of the
extra options. See the table below for the appropriate widget and opt usage:

Qi1 Qal 1 Q F¥ed Ltdﬁ 1 1 1
OLyIT_STITTITU ST LI IEILAD IS UIT TULITIIU tdD.

QTid
CE_ProgressBarConggﬁItlg(const QProgressBar *)
rawn.
and

CE_ProgressBarLabel(const QProgressBar *) Style Enabled Set if the progressbar is enabled.

Style—HasFocus Setif theprogressbar-has-inputfocus:
St;yle Enabled Set if the menuitem is enabled.
CE_PopupMenultem(const —

QPopupMenu *) opt.menultem ()
opt.tabWidth()

opt.maxIconWidth()

mi is the menu item being drawn. QMenultem is currently an internal class.

Style_Active Set if the menuitem is the current item. tabwidth is the width of the tab column where key accelerators
are drawn.

Style Down Set if the menuitem is down (i.e., the mouse button or space bar is pressed). maxpmwidth is the
maximum width of the check column where checkmarks and iconsets are drawn.

Style Enabled Set if the menuitem is enabled
CE_MenuBarItem(const -

OMenubBiatéth ()

QStyle Class Reference 147

mi is the

menu . . - . .
ﬁg{_ﬁe_Actlve Set if the menuitem is the current item.

being
StulepDown Set if the menuitem is down (i.e., a mouse button or the space bar is pressed).

Style HasFocus Set if the menubar has input focus.

Style_Enabled Set if the toolbutton is enabled.
CE_ToolButtonLabel(const ~

SealRbEl)

When

tool
ggae(:; $lasFocus Set if the toolbutton has input focus.

ont
§(§¥i;\ai9§)wn Set if the toolbutton is down (i.e., a mouse button or the space is pressed).

Stybev,Qn Set if the toolbutton is a toggle button and is toggled on.
is the

8E§0WAutoRaise Set if the toolbutton has auto-raise enabled.

type.

Style_MouseOver Set if the mouse pointer is over the toolbutton.

Style_Raised Set if the button is not down, not on and doesn’t contain the mouse when auto-raise is enabled.

See also ControlElement [p. 138] and StyleFlags [p. 141].

Examples: themes/metal.cpp and themes/wood.cpp.

void QStyle::drawControlMask (ControlElement element, QPainter * p,
const QWidget * widget, const QRect & r, const QStyleOption & opt =
QStyleOption::Default) const [virtual]

Draw a bitmask for the ControlElement element using the painter p in the area \r. See drawControl() for an
explanation of the use of the widget and opt arguments.

The rect r should be in screen coordinates.

See also drawControl() [p. 146] and ControlElement [p. 138].

Example: themes/wood.cpp.

void QStyle::drawltem (QPainter * p, const QRect & r, int flags, const QColorGroup & g,
bool enabled, const QPixmap * pixmap, const QString & text, int len = -1,
const QColor * penColor = 0) const [virtual]

Draws the text or pixmap in rectangle r using painter p and color group g. The pen color is specified with penColor.
The enabled bool indicates whether or not the item is enabled; when reimplementing this bool should influence
how the item is drawn. If len is -1 (the default) all the text is drawn; otherwise only the first len characters of text
are drawn. The text is aligned and wrapped according to the alignment flags (see Qt::AlignmentFlags).

By default, if both the text and the pixmap are not null, the pixmap is drawn and the text is ignored.

QStyle Class Reference 148

void QStyle::drawPrimitive (PrimitiveElement pe, QPainter * p, const QRect & r,
const QColorGroup & cg, SFlags flags = Style_Default, const QStyleOption & opt =
QStyleOption::Default) const [virtual]

Draws the style PrimitiveElement pe using the painter p in the area r. Colors are used from the color group cg.
The rect r should be in screen coordinates.

The flags argument is used to control how the PrimitiveElement is drawn. Multiple flags can be OR’ed together.
For example, a pressed button would be drawn with the flags Style Enabled and Style Down.

The opt argument can be used to control how various PrimitiveElements are drawn. Note that opt may be the
default value even for PrimitiveElements that make use of extra options. When opt is non-default, it is used as
follows:

1 c 1.7 - 1 1. 1.1 C 1 o 1 1
tinewidth isthe time-width for drawing the panet:
midtimewidth is the mid-time width for drawing the panet:

PE_PanelPopup
opt.lineWidth()

opt.midLineWidth()

linewidth is the line width for drawing the panel.

midlinewidth is the mid-line width for drawing the panel.

PE_PanelMenuBar
opt.lineWidth ()

opt.midLineWidth()

linewidth is the line width for drawing the panel.

midlinewidth is the mid-line width for drawing the panel.

PE PanelDockWindow
opt.lineWidth()

opt.midLineWidth()

linewidth is the line width for drawing the panel.

midlinewidth is the mid-line width for drawing the panel.

PE_GroupBoxFrame
opt.lineWidth()

opt.midLineWidth()
opt.frameShape()

opt.frameShadow()

linewidth is the line width for the group box.

midlinewidth is the mid-line width for the group box.

QStyle Class Reference 149

shape is the frame shape for the group box.

shadow is the frame shadow for the group box.

For all other PrimitiveElements, opt is unused.
See also StyleFlags [p. 141].

Examples: themes/metal.cpp and themes/wood.cpp.

QRect QStyle::itemRect (QPainter * p, const QRect & r, int flags, bool enabled,
const QPixmap * pixmap, const QString & text, int len = -1) const [virtual]

Returns the appropriate area (see below) within rectangle r in which to draw the text or pixmap using painter p.
If len is -1 (the default) all the text is drawn; otherwise only the first len characters of text are drawn. The text is
aligned in accordance with the alignment flags (see Qt::AlignmentFlags). The enabled bool indicates whether or
not the item is enabled.

If r is larger than the area needed to render the text the rectangle that is returned will be offset within r in
accordance with the alignment flags. For example if flags is AlignCenter the returned rectangle will be centered
within r. If r is smaller than the area needed the rectangle that is returned will be larger than r (the smallest
rectangle large enough to render the text or pixmap).

By default, if both the text and the pixmap are not null, the the text is ignored.

int QStyle::pixelMetric (PixelMetric metric, const QWidget * widget = 0) const [virtual]

Returns the pixel metric for metric. The widget argument is a pointer to a QWidget or one of its subclasses. The
widget can be cast to the appropriate type based on the value of metric. Note that widget may be zero even for
PixelMetrics that can make use of widget. See the table below for the appropriate widget casts:

PixelMetric Widget Cast
PM_SliderControlThickness (const QSlider *)
PM_SliderLength (const QSlider *)
PM_SliderTickmarkOffset (const QSlider *)
PM_SliderSpaceAvailable (const QSlider *)
PM_TabBarTabOverlap (const QTabBar *)
PM_TabBarTabHSpace (const QTabBar *)
PM_TabBarTabVSpace (const QTabBar *)
PM_TabBarBaseHeight (const QTabBar *)
PM_TabBarBaseOverlap (const QTabBar *)

Example: themes/metal.cpp.

void QStyle::polish (QWidget *) [virtual]

Initializes the appearance of a widget.

This function is called for every widget at some point after it has been fully created but just before it is shown the
very first time.

Reasonable actions in this function might be to call QWidget::setBackgroundMode for the widget. An example
of highly unreasonable use would be setting the geometry! Reimplementing this function gives you a backdoor

QStyle Class Reference 150

through which you can change the appearance of a widget. With Qt 3.0’s style engine you will rarely need to write
your own polish(); instead reimplement drawltem(), drawPrimitive(), etc.

The QWidget::inherits() function may provide enough information to allow class-specific customizations. But be
careful not to hard-code things too much because new QStyle subclasses will be expected to work reasonably with
all current and future widgets.

See also unPolish() [p. 153].

Examples: themes/metal.cpp and themes/wood.cpp.

void QStyle::polish (QApplication *) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Late initialization of the QApplication object.

See also unPolish() [p. 153].

void QStyle::polish (QPalette &) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

The style may have certain requirements for color palettes. In this function it has the chance to change the palette
according to these requirements.

See also QPalette [Graphics with Qt] and QApplication::setPalette() [Additional Functionality with Qt].

void QStyle::polishPopupMenu (QPopupMenu *) [virtual]

Polishes the popup menu according to the GUI style. This usually means setting the mouse tracking (QPopup-
Menu::setMouseTracking()) and whether the menu is checkable by default (QPopupMenu::setCheckable()).

SubControl QStyle::querySubControl (ComplexControl control, const QWidget * widget,
const QPoint & pos, const QStyleOption & opt = QStyleOption::Default)
const [virtual]

Returns the SubControl for widget at the point pos. The widget argument is a pointer to a QWidget or one of its
subclasses. The widget can be casted to the appropriate type based on the value of control. The opt argument can be
used to pass extra information required when drawing the ComplexControl. Note that opt may be the default value
even for ComplexControls that can make use of the extra options. See drawComplexControl() for an explanation
of the widget and opt arguments.

Note that pos is passed in screen coordinates. When using querySubControlMetrics() to check for hits and misses,
use visualRect() to change the logical coordinates into screen coordinates.

See also drawComplexControl() [p. 145], ComplexControl [p. 137], SubControl [p. 143] and
querySubControlMetrics() [p. 150].

QRect QStyle::querySubControlMetrics (ComplexControl control,
const QWidget * widget, SubControl subcontrol, const QStyleOption & opt =
QStyleOption::Default) const [virtual]

Returns the rect for the SubControl subcontrol for widget in logical coordinates.

QStyle Class Reference 151

The widget argument is a pointer to a QWidget or one of its subclasses. The widget can be cast to the appropriate
type based on the value of control. The opt argument can be used to pass extra information required when drawing
the ComplexControl. Note that opt may be the default value even for ComplexControls that can make use of the
extra options. See drawComplexControl() for an explanation of the widget and opt arguments.

See also drawComplexControl() [p. 145], ComplexControl [p. 137] and SubControl [p. 143].

Example: themes/wood.cpp.

QSize QStyle::scrollBarExtent () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

QSize QStyle::sizeFromContents (ContentsType contents, const QWidget * widget,
const QSize & contentsSize, const QStyleOption & opt = QStyleOption::Default)
const [virtual]

Returns the size of widget based on the contents size contentsSize.

The widget argument is a pointer to a QWidget or one of its subclasses. The widget can be cast to the appropriate
type based on the value of contents. The opt argument can be used to pass extra information required when
calculating the size. Note that opt may be the default value even for ContentsTypes that can make use of the extra
options. See the table below for the appropriate widget and opt usage:

ContentsType Widget Cast Options Notes
CT_PushButton (const QPushButton *) Unused.
CT_CheckBox (const QCheckBox *) Unused.
CT_RadioButton (const QRadioButton *) Unused.
CT_ToolButton (const QToolButton *) Unused.
CT_ComboBox (const QComboBox *) Unused.
CT_Splitter (const QSplitter *) Unused.
CT_DockWindow (const QDockWindow *) Unused.
CT ProgressBar (const QProgressBar *) Unused.

CT_PopupMenultem

(const QPopupMenu *)

QStyleOption (
QMenultem *mi)

opt.menultem()

mi is the menu
item to use when
calculating the
size. QMenultem
is currently an
internal class.

int QStyle::styleHint (StyleHint stylehint, const QWidget * widget = 0,
const QStyleOption & opt = QStyleOption::Default, QStyleHintReturn * returnData
= 0) const [virtual]

Returns the style hint stylehint for widget. Currently, widget, opt, and returnData are unused, and are provided only
for future development considerations.

For an explanation of the return value see StyleHint.

QPixmap QStyle::stylePixmap (StylePixmap stylepixmap, const QWidget * widget = 0,
const QStyleOption & opt = QStyleOption::Default) const [virtual]

Returns a pixmap for stylepixmap.

QStyle Class Reference 152

The opt argument can be used to pass extra information required when drawing the ControlElement. Note that opt
may be the default value even for StylePixmaps that can make use of the extra options. Currently, the opt argument
is unused.

The widget argument is a pointer to a QWidget or one of its subclasses. The widget can be cast to the appropriate
type based on the value of stylepixmap. See the table below for the appropriate widget casts:

StylePixmap Widget Cast
SP_TitleBarMinButton (const QWidget *)
SP_TitleBarMaxButton (const QWidget *)
SP_TitleBarCloseButton (const QWidget *)
SP_TitleBarNormalButton (const QWidget *)
SP_TitleBarShadeButton (const QWidget *)
SP_TitleBarUnshadeButton (const QWidget *)
SP_DockWindowCloseButton (const QDockWindow *)

See also StylePixmap [p. 142].

QRect QStyle::subRect (SubRect subrect, const QWidget * widget) const [virtual]

Returns the sub-area subrect for the widget in logical coordinates.

The widget argument is a pointer to a QWidget or one of its subclasses. The widget can be cast to the appropriate
type based on the value of subrect. See the table below for the appropriate widget casts:

SubRect

Widget Cast

SR_PushButtonContents

(const QPushButton *)

SR_PushButtonFocusRect

(const QPushButton *)

SR_CheckBoxIndicator

(const QCheckBox *)

SR_CheckBoxContents

(const QCheckBox *)

SR_CheckBoxFocusRect

(const QCheckBox *)

SR_RadioButtonIndicator

(const QRadioButton *)

SR_RadioButtonContents

(const QRadioButton *)

SR_RadioButtonFocusRect

(const QRadioButton *)

SR_ComboBoxFocusRect

(const QComboBox *)

SR_DockWindowHandleRect

(const QWidget *)

SR_ProgressBarGroove

(const QProgressBar *)

SR_ProgressBarContents

(const QProgressBar *)

SR _ProgressBarLabel

(const QProgressBar *)

The tear-off handle (SR_DockWindowHandleRect) for QDockWindow is a private class. Use QWidget::parentWidget()

to access the QDockWindow:

if (!'widget->parentWdget())

return;

const QDockW ndow *dw = (const QDockW ndow *) wi dget - >par ent W dget () ;

See also SubRect [p. 144].

Example: themes/wood.cpp.

void QStyle::tabbarMetrics (const QWidget * t, int & hf, int & vf, int & ov) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

QStyle Class Reference 153

void QStyle::unPolish (QWidget *) [virtual]

Undoes the initialization of a widget’s appearance.

This function is the counterpart to polish. It is called for every polished widget when the style is dynamically
changed. The former style has to unpolish its settings before the new style can polish them again.

See also polish() [p. 149].

Examples: themes/metal.cpp and themes/wood.cpp.

void QStyle::unPolish (QApplication *) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Undoes the application polish.

See also polish() [p. 149].

QRect QStyle::visualRect (const QRect & logical, const QWidget * w) [static]
Returns the rect logical in screen coordinates. The bounding rect for widget w is used to perform the translation.
This function is provided to aid style implementors in supporting right-to-left mode.

See also QApplication::reverseLayout() [Additional Functionality with Qt].

QRect QStyle::visualRect (const QRect & logical, const QRect & bounding) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the rect logical in screen coordinates. The rect bounding is used to perform the translation. This function
is provided to aid style implementors in supporting right-to-left mode.

See also QApplication::reverseLayout() [Additional Functionality with Qt].

QStyleSheet Class Reference

The QStyleSheet class is a collection of styles for rich text rendering and a generator of tags.
#incl ude <gstyl esheet. h>

Inherits QObject [Additional Functionality with Qt].

Public Members

m QStyleSheet (QObject * parent = 0, const char * name = 0)
virtual ~QStyleSheet ()

QStyleSheetltem * item (const QString & name)

const QStyleSheetItem * item (const QString & name) const

virtual QTextCustomItem * tag (const QString & name, const QMap<QString, QString> & attr,
const QString & context, const QMimeSourceFactory & factory, bool emptyTag, QTextDocument * doc) const

virtual void scaleFont (QFont & font, int logicalSize) const
m virtual void error (const QString & msg) const

Static Public Members

m QStyleSheet * defaultSheet ()

m void setDefaultSheet (QStyleSheet * sheet)

m QString escape (const QString & plain)

m QString convertFromPlainText (const QString & plain, QStyleSheetltem::WhiteSpaceMode mode =
QStyleSheetItem::WhiteSpacePre)

m bool mightBeRichText (const QString & text)

Detailed Description

The QStyleSheet class is a collection of styles for rich text rendering and a generator of tags.

By creating QStyleSheetltem objects for a style sheet you build a definition of a set of tags. This definition will
be used by the internal rich text rendering system to parse and display text documents to which the style sheet
applies. Rich text is normally visualized in a QTextView or a QTextBrowser. However, QLabel, QWhatsThis and
QMessageBox also support it, and other classes are likely to follow. With QSimpleRichText it is possible to use the
rich text renderer for custom widgets as well.

The default QStyleSheet object has the following style bindings, sorted by structuring bindings, anchors, character
style bindings (i.e. inline styles), special elements such as horizontal lines or images, and other tags. In addition,
rich text supports simple HTML tables.

The structuring tags are

154

QStyleSheet Class Reference 155

e <qt>...</ gt > - A Qt rich text document. It understands the following attributes:

— title - The caption of the document. This attribute is easily accessible with QTextView::documentTitle().

- type - The type of the document. The default type is page . It indicates that the document is displayed
in a page of its own. Another style is detai |, which can be used to explain certain expressions in
more detail in a few sentences. The QTextBrowser will then keep the current page and display the new
document in a small popup similar to QWhatsThis. Note that links will not work in documents with <qt
type="detail">. ..</qgt>.

— bgcolor - The background color, for example bgcol or ="yel | ow' or bgcol or =" #0000FF".

- background - The background pixmap, for example backgr ound="grani t.xpnf'. The pixmap name will
be resolved by a QMimeSourceFactory().

— text - The default text color, for example t ext ="red".
— link - The link color, for example | i nk="green".

e <hl>...</hl> - A top-level heading.
e <h2>...</h2> - A sublevel heading.
e <h3>...</h3> - A sub-sublevel heading.

e <p>...</p> - A left-aligned paragraph. Adjust the alignment with the al i gn attribute. Possible values are
left,right and center.

e <center>...</center> - A centered paragraph.
e <bl ockquot e>. .. </ bl ockquot e> - An indented paragraph that is useful for quotes.

e ...-An unordered list. You can also pass a type argument to define the bullet style. The default
is t ype=di sc; other types are ci rcl e and square.

e <0l >...- An ordered list. You can also pass a type argument to define the enumeration label style. The
default is t ype="1"; other types are "a" and "A".

e _-Alistitem. This tag can be used only within the context of ol or ul .

e <pre>...</pre>- For larger junks of code. Whitespaces in the contents are preserved. For small bits of code
use the inline-style code.

Anchors and links are done with a single tag:

e <a> .. - An anchor or link. The reference target is defined in the href attribute of the tag as in . .. </ a>. You can also specify an additional anchor within the specified target document,
for example . .. </ a>. If a is meant to be an anchor, the reference source is given
in the name attribute.

The default character style bindings are

e <emp. .. </ enp - Emphasized. By default this is the same as <i >. .. </i > (italic).

e ... - Strong. By default this is the same as . .. </ b> (bold).
e <i> .. </i>-TItalic font style.

e ...-Bold font style.

e <u>...</u> - Underlined font style.

e <hig>...</big>- A larger font size.

e <smal | >...</small>- A smaller font size.

e <code>...</code> - Indicates code. By default this is the same as <tt>...</tt> (typewriter). For larger
junks of code use the block-tag pre.

e <tt> ..</tt> - Typewriter font style.

e ... - Customizes the font size, family and text color. The tag understands the following
attributes:

QStyleSheet Class Reference 156

color - The text color, for example col or ="red" or col or =" #FF0000".

size - The logical size of the font. Logical sizes 1 to 7 are supported. The value may either be absolute
(for example, si ze=3) or relative (si ze=- 2). In the latter case the sizes are simply added.

face - The family of the font, for example f ace=t i mes.

Special elements are:

e <inp> - An image. The image name for the mime source factory is given in the source attribute, for example

<ing

src="qt.xpm' > The image tag also understands the attributes wi dt h and hei ght that determine the

size of the image. If the pixmap does not fit the specified size it will be scaled automatically (by using
QImage::smoothScale()).

The al i gn attribute determines where the image is placed. By default, an image is placed inline just like a
normal character. Specify | eft orri ght to place the image at the respective side.

e <hr>

e <hr>

- A horizonal line.
- A line break.

Another tag not in any of the above cathegories is

e <nobr>... </ nobr> - No break. Prevents word wrap.

In addition, rich text supports simple HTML tables. A table consists of one or more rows each of which contains
one or more cells. Cells are either data cells or header cells, depending on their content. Cells which span rows
and columns are supported.

e <tabl

e <tr>,

e <th>.

o <td>.

e>...</tabl e> - A table. Tables support the following attributes:

bgcolor - The background color.

width - The table width. This is either an absolute pixel width or a relative percentage of the table’s
width, for example wi dt h=80%

border - The width of the table border. The default is 0 (= no border).
cellspacing - Additional space around the table cells. The default is 2.
cellpadding - Additional space around the contents of table cells. The default is 1.

.. <ltr>- A table row. This is only valid within a t abl e. Rows support the following attribute:
bgcolor - The background color.

.. </th>- A table header cell. Similar to t d, but defaults to center alignment and a bold font.

.. </td> - A table data cell. This is only valid within a t r. Cells support the following attributes:

bgcolor - The background color.

width - The cell width. This is either an absolute pixel width or a relative percentage of table’s width,
for example wi dt h=50%

colspan - Specifies how many columns this cell spans. The default is 1.
rowspan - Specifies how many rows this cell spans. The default is 1.

align - Alignment; possible values are | eft, ri ght, and cent er. The default is left.

See also Graphics Classes, Help System and Text Related Classes.

QStyleSheet Class Reference 157

Member Function Documentation

QStyleSheet::QStyleSheet (QObject * parent = 0, const char * name = 0)
Creates a style sheet with parent parent and name name. Like any QObject it will be deleted when its parent is
destroyed (if the child still exists).

By default the style sheet has the tag definitions defined above.

QStyleSheet::~QStyleSheet () [virtual]

Destroys the style sheet. All styles inserted into the style sheet will be deleted.

QString QStyleSheet::convertFromPlainText (const QString & plain,
QStyleSheetItem::WhiteSpaceMode mode =
QStyleSheetItem::WhiteSpacePre) [static]

Auxiliary function. Converts the plain text string plain to a rich text formatted paragraph while preserving its look.

mode defines the whitespace mode. Possible values are QStyleSheetltem::WhiteSpacePre (no wrapping, all whites-
paces preserved) and QStyleSheetItem::WhiteSpaceNormal (wrapping, simplified whitespaces).

See also escape() [p. 1571.

QStyleSheet * QStyleSheet::defaultSheet () [static]

Returns the application-wide default style sheet. This style sheet is used by rich text rendering classes such as
QSimpleRichText, QWhatsThis and QMessageBox to define the rendering style and available tags within rich text
documents. It serves also as initial style sheet for the more complex render widgets QTextEdit and QTextBrowser.

See also setDefaultSheet() [p. 158].

void QStyleSheet::error (const QString & msg) const [virtual]

This virtual function is called when an error occurs when processing rich text. Reimplement it if you need to catch
error messages.

Errors might occur if some rich text strings contain tags that are not understood by the stylesheet, if some tags are
nested incorrectly, or if tags are not closed properly.

msg is the error message.
QString QStyleSheet::escape (const QString & plain) [static]

Auxiliary function. Converts the plain text string plain to a rich text formatted string with any HTML meta-
characters escaped.

See also convertFromPlainText() [p. 157].

QStyleSheetltem * QStyleSheet::item (const QString & name)

Returns the style with name name or 0 if there is no such style.

QStyleSheet Class Reference 158

const QStyleSheetItem * QStyleSheet::item (const QString & name) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the style with name name or 0 if there is no such style (const version)

bool QStyleSheet::mightBeRichText (const QString & text) [static]

Returns TRUE if the string text is likely to be rich text; otherwise returns FALSE.

Note: The function uses a fast and therefore simple heuristic. It mainly checks whether there is something that
looks like a tag before the first line break. Although the result may be correct for most common cases, there is no
guarantee.

void QStyleSheet::scaleFont (QFont & font, int logicalSize) const [virtual]

Scales the font font to the appropriate physical point size corresponding to the logical font size logicalSize.
When calling this function, font has a point size corresponding to the logical font size 3.
Logical font sizes range from 1 to 7, with 1 being the smallest.

See also QStyleSheetltem::logicalFontSize() [p. 164], QStyleSheetltem::logicalFontSizeStep() [p. 164] and
QFont::setPointSize() [Additional Functionality with Qt].

void QStyleSheet::setDefaultSheet (QStyleSheet * sheet) [static]

Sets the application-wide default style sheet to sheet, deleting any style sheet previously set. The ownership is
transferred to QStyleSheet.

See also defaultSheet() [p. 157].

QTextCustomlItem * QStyleSheet::tag (const QString & name,
const QMap<QString, QString> & attr, const QString & context,
const QMimeSourceFactory & factory, bool emptyTag, QTextDocument * doc)
const [virtual]

This function is under development and is subject to change.

Generates an internal object for the tag called name, given the attributes attr, and using additional information
provided by the mime source factory factory.

context is the optional context of the document, i.e. the path to look for relative links. This becomes important if the
text contains relative references, for example within image tags. QSimpleRichText always uses the default mime
source factory (see QMimeSourceFactory::defaultFactory()) to resolve these references. The context will then be
used to calculate the absolute path. See QMimeSourceFactory::makeAbsolute() for details.

emptyTag and doc are for internal use only.

This function should not (yet) be used in application code.

QStyleSheetltem Class Reference

The QStyleSheetItem class provides an encapsulation of a set of text styles.
#incl ude <gstyl esheet. h>

Inherits Qt [Additional Functionality with Qt].

Public Members

m QStyleSheetItem (QStyleSheet * parent, const QString & name)

m QStyleSheetItem (const QStyleSheetItem & other)

m ~QStyleSheetltem ()

m QString name () const

m QStyleSheet * styleSheet ()

m const QStyleSheet * styleSheet () const

enum DisplayMode { DisplayBlock, Displaylnline, DisplayListltem, DisplayNone }
DisplayMode displayMode () const

void setDisplayMode (DisplayMode m)

int alignment () const

void setAlignment (int f)

enum VerticalAlignment { VAlignBaseline, VAlignSub, VAlignSuper }
VerticalAlignment verticalAlignment () const

» void setVerticalAlignment (VerticalAlignment valign)
m int fontWeight () const

m void setFontWeight (int w)

m int logicalFontSize () const

m void setLogicalFontSize (int s)

m int logicalFontSizeStep () const

void setLogicalFontSizeStep (int s)

int fontSize () const

void setFontSize (int s)

QString fontFamily () const

void setFontFamily (const QString & fam)
int numberOfColumns () const (obsolete)
void setNumberOfColumns (int ncols) (obsolete)
QColor color () const

void setColor (const QColor & ¢)

= bool fontltalic () const

m void setFontltalic (bool italic)

m bool definesFontItalic () const

= bool fontUnderline () const

159

QStyleSheetltem Class Reference 160

void setFontUnderline (bool underline)

bool definesFontUnderline () const

bool isAnchor () const

void setAnchor (bool anc)

enum WhiteSpaceMode { WhiteSpaceNormal, WhiteSpacePre, WhiteSpaceNoWrap }

WhiteSpaceMode whiteSpaceMode () const

m void setWhiteSpaceMode (WhiteSpaceMode m)

» enum Margin { MarginLeft, MarginRight, MarginTop, MarginBottom, MarginFirstLine, MarginAll,
MarginVertical, MarginHorizontal }

» int margin (Margin m) const

» void setMargin (Margin m, int v)

enum ListStyle { ListDisc, ListCircle, ListSquare, ListDecimal, ListLowerAlpha, ListUpperAlpha }
ListStyle listStyle () const

void setListStyle (ListStyle s)

QString contexts () const

void setContexts (const QString & ¢)

bool allowedInContext (const QStyleSheetItem * s) const

e bool selfNesting () const

e void setSelfNesting (bool nesting)

e void setLineSpacing (int Is)
e int lineSpacing () const

Detailed Description

The QStyleSheetItem class provides an encapsulation of a set of text styles.

A style sheet item consists of a name and a set of attributes that specifiy its font, color, etc. When used in a style
sheet (see styleSheet()), items define the name() of a rich text tag and the display property changes associated
with it.

The display mode attribute indicates whether the item is a block, an inline element or a list element; see setDis-
playMode(). The treatment of whitespace is controlled by the white space mode; see setWhiteSpaceMode(). An
item’s margins are set with setMargin(), and line spacing is set with setLineSpacing(). In the case of list items, the
list style is set with setListStyle(). An item may be a hypertext link anchor; see setAnchor(). Other attributes are
set with setAlignment(), setVerticalAlignment(), setFontFamily(), setFontSize(), setFontWeight(), setFontltalic(),
setFontUnderline() and setColor().

See also Text Related Classes.

Member Type Documentation

QStyleSheetItem::DisplayMode
This enum type defines the way adjacent elements are displayed. The possible values are:

e (StyleSheet!tem: DisplayBl ock - elements are displayed as a rectangular block (e.g. <p>. .. </ p>).

e (Styl eSheet|tem: Displaylnline - elements are displayed in a horizontally flowing sequence (e.g. <en». . . </ enp).
e (StyleSheet|tem: DisplayListltem- elements are displayed in a vertical sequence (e.g. ...</1i>).

e (Styl eSheet|tem: Di spl ayNone - elements are not displayed at all.

QStyleSheetltem Class Reference 161

QStyleSheetltem::ListStyle
This enum type defines how the items in a list are prefixed when displayed. The currently defined values are:

e (StyleSheetltem: ListDisc - afilled circle (i.e. a bullet)

e (StyleSheetltem: ListCircle -an unfilled circle

e (StyleSheet|tem: ListSquare - a filled square

e (StyleSheetltem:ListDecimal -an integer in base 10: 1, 2, 3, ...
e (StyleSheet!tem:ListLowerAl pha - a lowercase letter: a, b, c, ...

e (Styl eSheet!tem: ListUpperAl pha - an uppercase letter: A, B, C, ...

QStyleSheetItem::Margin

o (StyleSheetltem: MarginLeft - left margin

e (Styl eSheet!tem: Margi nRi ght - right margin

e (StyleSheetltem: MarginTop - top margin

e (StyleSheet!tem: Margi nBottom- bottom margin

e (StyleSheetltem: MarginAll - all margins (left, right, top and bottom)
o (StyleSheet|tem: MarginVertical -top and bottom margins

e (StyleSheetltem: MarginHorizontal - left and right margins

e (Styl eSheet!tem: MarginFirstLine - margin (indentation) of the first line of a paragarph (in addition to
the MarginLeft of the paragraph)

QStyleSheetltem::VerticalAlignment

This enum type defines the way elements are aligned vertically. This is supported for text elements only. The
possible values are:

e (StyleSheetltem: VAlignBaseline - align the baseline of the element (or the bottom, if the element doesn’t
have a baseline) with the baseline of the parent

e (StyleSheetltem: VA gnSub - subscript the element
e (StyleSheetItem: VAlignSuper - superscript the element

QStyleSheetItem::WhiteSpaceMode
This enum defines the ways in which QStyleSheet can treat whitespace. There are three values at present:

e (StyleSheet|tem: \WiteSpaceNormal - any sequence of whitespace (including line-breaks) is equivalent to
a single space.

e (Styl eSheet|tem : WiteSpacePre - whitespace must be output exactly as given in the input.

e (StyleSheet!tem: WiteSpaceNoW ap - multiple spaces are collapsed as with WhiteSpaceNormal, but no
automatic line-breaks occur. To break lines manually, use the
 tag.

QStyleSheetltem Class Reference 162

Member Function Documentation

QStyleSheetltem::QStyleSheetItem (QStyleSheet * parent, const QString & name)

Constructs a new style named name for the stylesheet parent.

All properties in QStyleSheetItem are initially in the "do not change" state, except display mode, which defaults to
DisplayInline.

QStyleSheetItem::QStyleSheetItem (const QStyleSheetltem & other)

Copy constructor. Constructs a copy of other that is not bound to any style sheet.

QStyleSheetItem:: ~QStyleSheetItem ()

Destroys the style. Note that QStyleSheetItem objects become owned by QStyleSheet when they are created.

int QStyleSheetItem::alignment () const

Returns the alignment of this style. Possible values are AlignAuto, AlignLeft, AlignRight, AlignCenter and AlignJus-
tify.

See also setAlignment() [p. 165] and Qt::AlignmentFlags [Additional Functionality with Qt].

bool QStyleSheetItem::allowedInContext (const QStyleSheetltem * s) const

Returns TRUE if this style can be nested into an element of style s; otherwise returns FALSE.

See also contexts() [p. 162] and setContexts() [p. 165].

QColor QStyleSheetItem::color () const

Returns the text color of this style or an invalid color if no color has been set.

See also setColor() [p. 165] and QColor::isValid() [Graphics with Qt].

QString QStyleSheetItem::contexts () const

Returns a space-separated list of names of styles that may contain elements of this style. If nothing has been set,
contexts() returns an empty string, which indicates that this style can be nested everywhere.

See also setContexts() [p. 165].

bool QStyleSheetItem::definesFontltalic () const

Returns whether the style defines a font shape. A style does not define any shape until setFontltalic() is called.

See also setFontltalic() [p. 165] and fontltalic() [p. 163].

QStyleSheetltem Class Reference 163

bool QStyleSheetItem::definesFontUnderline () const

Returns whether the style defines a setting for the underline property of the font. A style does not define this until
setFontUnderline() is called.

See also setFontUnderline() [p. 166] and fontUnderline() [p. 163].

DisplayMode QStyleSheetItem::displayMode () const

Returns the display mode of the style.
See also setDisplayMode() [p. 165].

QString QStyleSheetItem::fontFamily () const

Returns the font family setting of the style. This is either a valid font family or QString::null if no family has been
set.

See also setFontFamily() [p. 165], QFont::family() [Additional Functionality with Qt] and QFont::setFamily()
[Additional Functionality with Qt].

bool QStyleSheetItem::fontltalic () const

Returns TRUE if the style sets an italic font; otherwise returns FALSE.
See also setFontItalic() [p. 165] and definesFontItalic() [p. 162].

int QStyleSheetItem::fontSize () const

Returns the font size setting of the style. This is either a valid point size or QStyleSheetItem::Undefined.

See also setFontSize() [p. 165], QFont::pointSize() [Additional Functionality with Qt] and QFont::setPointSize()
[Additional Functionality with Qt].

bool QStyleSheetItem::fontUnderline () const

Returns TRUE if the style sets an underlined font; otherwise returns FALSE.

See also setFontUnderline() [p. 166] and definesFontUnderline() [p. 163].

int QStyleSheetltem::fontWeight () const

Returns the font weight setting of the style. This is either a valid QFont::Weight or the value QStyleSheetItem::Undefined.
See also setFontWeight() [p. 166] and QFont [Additional Functionality with Qt].

bool QStyleSheetItem::isAnchor () const

Returns whether this style is an anchor.

See also setAnchor() [p. 165].

QStyleSheetltem Class Reference 164

int QStyleSheetItem::lineSpacing () const

Returns the linespacing

ListStyle QStyleSheetItem::listStyle () const

Returns the list style of the style.
See also setListStyle() [p. 166] and ListStyle [p. 161].

int QStyleSheetItem::logicalFontSize () const

Returns the logical font size setting of the style. This is either a valid size between 1 and 7 or QStyleSheetItem::Undefined.

See also setlLogicalFontSize() [p. 166], setLogicalFontSizeStep() [p. 166], QFont::pointSize() [Additional
Functionality with Qt] and QFont::setPointSize() [Additional Functionality with Qt].

int QStyleSheetItem::logicalFontSizeStep () const

Returns the logical font size step of this style.
The default is 0. Tags such as bi g define +1; smal | defines - 1.
See also setLogicalFontSizeStep() [p. 166].

int QStyleSheetItem::margin (Margin m) const

Returns the width of margin m in pixels.

The margin, m, can be MarginLeft, MarginRight, MarginTop, MarginBottom, MarginAll, MarginVertical or Margin-
Horizontal.

See also setMargin() [p. 166] and Margin [p. 161].

QString QStyleSheetItem::name () const

Returns the name of the style item.

int QStyleSheetltem::numberOfColumns () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.
Returns the number of columns for this style.

See also setNumberOfColumns() [p. 166], displayMode() [p. 163] and setDisplayMode() [p. 165].

bool QStyleSheetItem::selfNesting () const

Returns TRUE if this style has self-nesting enabled; otherwise returns FALSE.
See also setSelfNesting() [p. 167].

QStyleSheetltem Class Reference 165

void QStyleSheetItem::setAlignment (int f)

Sets the alignment to f. This only makes sense for styles with a display mode of DisplayBlock. Possible values are
AlignAuto, AlignLeft, AlignRight, AlignCenter and AlignJustify.

See also alignment() [p. 162], displayMode() [p. 163] and Qt::AlignmentFlags [Additional Functionality with Qt].

void QStyleSheetItem::setAnchor (bool anc)

If anc is TRUE sets this style to be an anchor (hypertext link); otherwise sets it to not be an anchor. Elements in
this style have connections to other documents or anchors.

See also isAnchor() [p. 163].

void QStyleSheetItem::setColor (const QColor & c)

Sets the text color of this style to c.

See also color() [p. 162].

void QStyleSheetItem::setContexts (const QString & c)

Sets a space-separated list of names of styles that may contain elements of this style. If ¢ is empty, the style can be
nested everywhere.

See also contexts() [p. 162].

void QStyleSheetItem::setDisplayMode (DisplayMode m)

Sets the display mode of the style to m.
See also displayMode() [p. 163].

void QStyleSheetItem::setFontFamily (const QString & fam)

Sets the font family setting of the style to fam.

See also fontFamily() [p. 163], QFont::family() [Additional Functionality with Qt] and QFont::setFamily()
[Additional Functionality with Qt].

void QStyleSheetItem::setFontltalic (bool italic)

If italic is TRUE sets italic for the style; otherwise sets upright.

See also fontltalic() [p. 163] and definesFontItalic() [p. 162].

void QStyleSheetItem::setFontSize (int s)

Sets the font size setting of the style to s points.

See also fontSize() [p. 163], QFont::pointSize() [Additional Functionality with Qt] and QFont::setPointSize()
[Additional Functionality with Qt].

QStyleSheetltem Class Reference 166

void QStyleSheetItem::setFontUnderline (bool underline)

If underline is TRUE sets underline for the style; otherwise sets no underline.

See also fontUnderline() [p. 163] and definesFontUnderline() [p. 163].

void QStyleSheetItem::setFontWeight (int w)

Sets the font weight setting of the style to w. Valid values are those defined by QFont::Weight.

See also QFont [Additional Functionality with Qt] and fontWeight() [p. 163].

void QStyleSheetItem::setLineSpacing (int Is)

Sets the linespacing to be Is pixels

void QStyleSheetItem::setListStyle (ListStyle s)

Sets the list style of the style to s.
This is used by nested elements that have a display mode of DisplayListItem.

See also listStyle() [p. 164], DisplayMode [p. 160] and ListStyle [p. 161].

void QStyleSheetItem::setLogicalFontSize (int s)

Sets the logical font size setting of the style to s. Valid logical sizes are 1 to 7.

See also logicalFontSize() [p. 164], QFont::pointSize() [Additional Functionality with Qt] and
QFont::setPointSize() [Additional Functionality with Qt].

void QStyleSheetItem::setLogicalFontSizeStep (int s)

Sets the logical font size step of this style to s.

See also logicalFontSizeStep() [p. 164].

void QStyleSheetItem::setMargin (Margin m, int v)

Sets the width of margin m to v pixels.

The margin, m, can be MarginLeft, MarginRight, MarginTop, MarginBottom, MarginAll, MarginVertical or Margin-
Horizontal. The value v must be >= 0.

See also margin() [p. 164].

void QStyleSheetItem::setNumberOfColumns (int ncols)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Sets the number of columns for this style. Elements in the style are divided into columns.

This makes sense only if the style uses a block display mode (see QStyleSheetltem::DisplayMode).

QStyleSheetltem Class Reference 167
See also numberOfColumns() [p. 164].

void QStyleSheetItem::setSelfNesting (bool nesting)

Sets the self-nesting property for this style to nesting.

In order to support "dirty" HTML, paragraphs <p> and list items <| i > are not self-nesting. This means that starting
a new paragraph or list item automatically closes the previous one.

See also selfNesting() [p. 164].

void QStyleSheetItem::setVerticalAlignment (VerticalAlignment valign)

Sets the vertical alignment to valign. Possible values are VAlignBaseline, VAlignSub and VAlignSuper.
The vertical alignment property is not inherited.

See also verticalAlignment() [p. 167].

void QStyleSheetItem::setWhiteSpaceMode (WhiteSpaceMode m)

Sets the whitespace mode to m.

See also WhiteSpaceMode [p. 161].

QStyleSheet * QStyleSheetltem::styleSheet ()

Returns the style sheet this item is in.

const QStyleSheet * QStyleSheetltem::styleSheet () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the style sheet this item is in.

VerticalAlignment QStyleSheetItem::verticalAlignment () const

Returns the vertical alignment of the style. Possible values are VAlignBaseline, VAlignSub and VAlignSuper.
psa setVerticalAlignment()

WhiteSpaceMode QStyleSheetItem::whiteSpaceMode () const

Returns the whitespace mode.

See also setWhiteSpaceMode() [p. 167] and WhiteSpaceMode [p. 161].

QTextDrag Class Reference

The QTextDrag class is a drag and drop object for transferring plain and Unicode text.
#i ncl ude <qdragobj ect. h>
Inherits QDragObject [p. 59].

Public Members

m QTextDrag (const QString & text, QWidget * dragSource = 0, const char * name = 0)
QTextDrag (QWidget * dragSource = 0, const char * name = Q)

~QTextDrag ()

virtual void setText (const QString & text)

virtual void setSubtype (const QCString & st)

Static Public Members

= bool canDecode (const QMimeSource * e)
m bool decode (const QMimeSource * e, QString & str)
m bool decode (const QMimeSource * e, QString & str, QCString & subtype)

Detailed Description

The QTextDrag class is a drag and drop object for transferring plain and Unicode text.

Plain text is passed in a QString which may contain multiple lines (i.e. may contain newline characters).

Qt provides no built-in mechanism for delivering only single-line.

For more information about drag and drop, see the QDragObject class and the drag and drop documentation.

See also Drag And Drop Classes.

Member Function Documentation

QTextDrag::QTextDrag (const QString & text, QWidget * dragSource = 0,
const char * name = 0)

Constructs a text drag object and sets it to text. dragSource must be the drag source; name is the object name.

168

QTextDrag Class Reference 169

QTextDrag::QTextDrag (QWidget * dragSource = 0, const char * name = 0)

Constructs a default text drag object. dragSource must be the drag source; name is the object name.

QTextDrag::~QTextDrag ()

Destroys the text drag object and frees up all allocated resources.

bool QTextDrag::canDecode (const QMimeSource * e) [static]

Returns TRUE if the information in e can be decoded into a QString; otherwise returns FALSE.

See also decode() [p. 169].

bool QTextDrag::decode (const QMimeSource * e, QString & str) [static]

Attempts to decode the dropped information in e into str. Returns TRUE if successful; otherwise returns FALSE.

See also canDecode() [p. 169].

bool QTextDrag::decode (const QMimeSource * e, QString & str,
QCString & subtype) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Attempts to decode the dropped information in e into str. Returns TRUE if successful; otherwise returns FALSE. If
subtype is null, any text subtype is accepted; otherwise only the specified subtype is accepted.

See also canDecode() [p. 169].

void QTextDrag::setSubtype (const QCString & st) [virtual]

Sets the MIME subtype of the text being dragged to st. The default subtype is "plain", so the default MIME type of
the text is "text/plain". You might use this to declare that the text is "text/html" by calling setSubtype("html").

void QTextDrag::setText (const QString & text) [virtual]

Sets the text to be dragged to text. You will need to call this if you did not pass the text during construction.

QTimerEvent Class Reference

The QTimerEvent class contains parameters that describe a timer event.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

m QTimerEvent (int timerId)
m int timerld () const

Detailed Description

The QTimerEvent class contains parameters that describe a timer event.

Timer events are sent at regular intervals to objects that have started one or more timers. Each timer has a unique
identifier. A timer is started with QObject::startTimer().

The QTimer class provides a high-level programming interface that uses signals instead of events. It also provides
one-shot timers.

The event handler QObject::timerEvent() receives timer events.

See also QTimer [Additional Functionality with Qt], QObject::timerEvent() [Additional Functionality with Qt],
QObject::startTimer() [Additional Functionality with Qt], QObject::killTimer() [Additional Functionality with Qt],
QObject::killTimers() [Additional Functionality with Qt] and Event Classes.

Member Function Documentation

QTimerEvent::QTimerEvent (int timerld)

Constructs a timer event object with the timer identifier set to timerld.

int QTimerEvent::timerld () const

Returns the unique timer identifier, which is the same identifier as returned from QObject::startTimer().

Example: dclock/dclock.cpp.

170

QUriDrag Class Reference

The QUriDrag class provides a drag object for a list of URI references.
#i ncl ude <qdragobj ect. h>
Inherits QStoredDrag [p. 132].

Public Members

m QUriDrag (QStrList uris, QWidget * dragSource = 0, const char * name = 0)
QUriDrag (QWidget * dragSource = 0, const char * name = 0)

m ~QUriDrag ()

m void setFilenames (const QStringList & fnames) (obsolete)

m void setFileNames (const QStringList & fnames)

» void setUnicodeUris (const QStringList & uuris)

m virtual void setUris (QStrList uris)

Static Public Members

m QString uriToLocalFile (const char * uri)

m QCString localFileToUri (const QString & filename)

m QString uriToUnicodeUri (const char * uri)

m QCString unicodeUriToUri (const QString & uuri)

= bool canDecode (const QMimeSource * e)

m bool decode (const QMimeSource * e, QStrList & 1)

» bool decodeToUnicodeUris (const QMimeSource * e, QStringList & 1)
m bool decodeLocalFiles (const QMimeSource * e, QStringList & 1)

Detailed Description

The QUriDrag class provides a drag object for a list of URI references.

URIs are a useful way to refer to files that may be distributed across multiple machines. A URI will often refer to a
file on a machine local to both the drag source and the drop target, so the URI will be equivalent to passing a file
name but will be more extensible.

Use URIs in Unicode form so that the user can comfortably edit and view them. For use in HTTP or other protocols,
use the correctly escaped ASCII form.

You can convert a list of file names to file URIs using setFileNames(), or into human-readble for with setUni-
codeUris().

171

QUriDrag Class Reference 172

Static functions are provided to convert between filenames and URISs, e.g. uriToLocalFile() and localFileToUri(),
and to and from human-readable form, e.g. uriToUnicodeUri(), unicodeUriToUri(). You can also decode URIs from
a mimesource into a list with decodeLocalFiles() and decodeToUnicodeUris().

See also Drag And Drop Classes.

Member Function Documentation

QUriDrag::QUriDrag (QStrList uris, QWidget * dragSource = 0, const char * name = 0)

Constructs an object to drag the list of URIs in uris. The dragSource and name arguments are passed on to QStored-
Drag. Note that URIs are always in escaped UTF8 encoding, as defined by the W3C.

QUriDrag::QUriDrag (QWidget * dragSource = 0, const char * name = 0)

Constructs a object to drag. You will need to call setUris() before you start the drag(). Passes dragSource and name
to the QStoredDrag constructor.

QUriDrag::~QUriDrag ()

Destroys the object.

bool QUriDrag::canDecode (const QMimeSource * e) [static]

Returns TRUE if decode() would be able to decode e; otherwise returns FALSE.

bool QUriDrag::decode (const QMimeSource * e, QStrList & 1) [static]

Decodes URIs from e, placing the result in [(which is first cleared).
Returns TRUE if the event contained a valid list of URIS; otherwise returns FALSE.

Examples: dirview/dirview.cpp and fileiconview/qfileiconview.cpp.

bool QUriDrag::decodeLocalFiles (const QMimeSource * e, QStringList & 1) [static]
Decodes URIs from the mime source event e, converts them to local files if they refer to local files, and places them
in [(which is first cleared).

Returns TRUE if contained a valid list of URIs; otherwise returns FALSE. The list will be empty if no URIs were local
files.

bool QUriDrag::decodeToUnicodeUris (const QMimeSource * e, QStringList & 1) [static]

Decodes URIs from the mime source event e, converts them to Unicode URIs (only useful for displaying to humans),
placing them in [(which is first cleared).

Returns TRUE if contained a valid list of URIs; otherwise returns FALSE.

QUriDrag Class Reference 173

QCString QUriDrag::localFileToUri (const QString & filename) [static]

Returns the URI equivalent to the absolute local file filename.

See also uriToLocalFile() [p. 173].

void QUriDrag::setFileNames (const QStringList & fnames)

Sets the URIs to be the local-file URIs equivalent to fnames.

See also localFileToUri() [p. 173] and setUris() [p. 173].

void QUriDrag::setFilenames (const QStringList & fnames)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use setFileNames() instead (notice the N).

void QUriDrag::setUnicodeUris (const QStringList & uuris)

Sets the URIs to be the Unicode URIs (only useful for displaying to humans) uuris.
See also localFileToUri() [p. 173] and setUris() [p. 173].

Example: dirview/dirview.cpp.

void QUriDrag::setUris (QStrList uris) [virtual]

Changes the list of uris to be dragged.

QCString QUriDrag::unicodeUriToUri (const QString & uuri) [static]

Returns the URI equivalent to the Unicode URI (only useful for displaying to humans) uuri.
See also uriToLocalFile() [p. 173].

QString QUriDrag::uriToLocalFile (const char * uri) [static]
Returns the name of a local file equivalent to uri or a null string if uri is not a local file.
See also localFileToUri() [p. 173].

QString QUriDrag::uriToUnicodeUri (const char * uri) [static]

Returns the Unicode URI (only useful for displaying to humans) equivalent to uri.

See also localFileToUri() [p. 173].

QVBoxLayout Class Reference

The QVBoxLayout class lines up widgets vertically.
#i ncl ude <ql ayout. h>

Inherits QBoxLayout [p. 34].

Public Members

m QVBoxLayout (QWidget * parent, int margin = 0, int spacing = -1, const char * name = 0)
m QVBoxLayout (QLayout * parentLayout, int spacing = -1, const char * name = 0)

» QVBoxLayout (int spacing = -1, const char * name = 0)

= ~QVBoxLayout ()

Detailed Description

The QVBoxLayout class lines up widgets vertically.
This class is used to construct vertical box layout objects. See QBoxLayout for more details.
The simplest way to use this class is like this:

BoxLayout * | = new QvBoxLayout(wi dget)

| ->addW dget (aW dget);
| - >addW dget (anot her W dget);

See also QHBoxLayout [p. 861, QGridLayout [p. 771, the Layout overview [Programming with Qt], Widget

Appearance and Style and Layout Management.

Member Function Documentation

QVBoxLayout::QVBoxLayout (QWidget * parent, int margin = 0, int spacing = -1,
const char * name = 0)

Constructs a new top-level vertical box with parent parent and name name.

The margin is the number of pixels between the edge of the widget and its managed children. The spacing is the
default number of pixels between neighboring children. If spacing is -1 the value of margin is used for spacing.

174

QVBoxLayout Class Reference 175
QVBoxLayout::QVBoxLayout (QLayout * parentLayout, int spacing = -1,
const char * name = 0)

Constructs a new vertical box with the name name and adds it to parentLayout.

The spacing is the default number of pixels between neighboring children. If spacing is -1, this QVBoxLayout will
inherit its parent’s spacing().

QVBoxLayout::QVBoxLayout (int spacing = -1, const char * name = 0)

Constructs a new vertical box with the name name. You must add it to another layout.

The spacing is the default number of pixels between neighboring children. If spacing is -1, this QVBoxLayout will
inherit its parent’s spacing().

QVBoxLayout::~QVBoxLayout ()

Destroys this box layout.

QWheelEvent Class Reference

The QWheelEvent class contains parameters that describe a wheel event.
#include <gevent. h>

Inherits QEvent [p. 67].

Public Members

= QWheelEvent (const QPoint & pos, int delta, int state, Orientation orient = Vertical)

» QWheelEvent (const QPoint & pos, const QPoint & globalPos, int delta, int state, Orientation orient =
Vertical)

m int delta () const

m const QPoint & pos () const

const QPoint & globalPos () const
int x () const

int y () const

int globalX () const

int globalY () const

ButtonState state () const

= Orientation orientation () const
m bool isAccepted () const

» void accept ()

e void ignore ()

Detailed Description

The QWheelEvent class contains parameters that describe a wheel event.

Wheel events occur when a mouse wheel is turned while the widget has focus. The rotation distance is provided
by delta(). The functions pos() and globalPos() return the mouse pointer location at the time of the event.

A wheel event contains a special accept flag that indicates whether the receiver wants the event. You should call
QWheelEvent::accept() if you handle the wheel event; otherwise it will be sent to the parent widget.

The QWidget::setEnable() function can be used to enable or disable mouse and keyboard events for a widget.
The event handler QWidget::wheelEvent() receives wheel events.

See also QMouseEvent [p. 118], QWidget::grabMouse() [Widgets with Qt] and Event Classes.

176

QWheelEvent Class Reference 177

Member Function Documentation

QWheelEvent::QWheelEvent (const QPoint & pos, int delta, int state, Orientation orient
= Vertical)

Constructs a wheel event object.

The globalPos() is initialized to QCursor::pos(), i.e. pos, which is usually (but not always) right. Use the other
constructor if you need to specify the global position explicitly. delta contains the rotation distance, state holds the
keyboard modifier flags at the time of the event and orient holds the wheel’s orientation.

See also pos() [p. 1781, delta() [p. 177] and state() [p. 178].

QWheelEvent::QWheelEvent (const QPoint & pos, const QPoint & globalPos, int delta,
int state, Orientation orient = Vertical)

Constructs a wheel event object. The position when the event occurred is given in pos and globalPos. delta contains
the rotation distance, state holds the keyboard modifier flags at the time of the event and orient holds the wheel’s
orientation.

See also pos() [p. 178], globalPos() [p. 177], delta() [p. 177] and state() [p. 178].

void QWheelEvent::accept ()

Sets the accept flag of the wheel event object.

Setting the accept parameter indicates that the receiver of the event wants the wheel event. Unwanted wheel
events are sent to the parent widget.

The accept flag is set by default.
See also ignore() [p. 178].

int QWheelEvent::delta () const

Returns the distance that the wheel is rotated expressed in multiples or divisions of WHEEL DELTA, which is
currently set at 120. A positive value indicates that the wheel was rotated forwards away from the user; a negative
value indicates that the wheel was rotated backwards toward the user.

The WHEEL DELTA constant was set to 120 by the wheel mouse vendors to allow building finer-resolution wheels
in the future, including perhaps a freely rotating wheel with no notches. The expectation is that such a device
would send more messages per rotation but with a smaller value in each message.

const QPoint & QWheelEvent::globalPos () const

Returns the global position of the mouse pointer at the time of the event. This is important on asynchronous
window systems such as X11; whenever you move your widgets around in response to mouse events, globalPos()
can differ a lot from the current pointer position QCursor::pos().

See also globalX() [p. 177] and globalY() [p. 178].

int QWheelEvent::globalX () const

Returns the global X position of the mouse pointer at the time of the event.

QWheelEvent Class Reference 178

See also globalY() [p. 178] and globalPos() [p. 177].

int QWheelEvent::globalY () const

Returns the global Y position of the mouse pointer at the time of the event.

See also globalX() [p. 177] and globalPos() [p. 177].

void QWheelEvent::ignore ()

Clears the accept flag parameter of the wheel event object.

Clearing the accept parameter indicates that the event receiver does not want the wheel event. Unwanted wheel
events are sent to the parent widget. The accept flag is set by default.

See also accept() [p. 177].

bool QWheelEvent::isAccepted () const

Returns TRUE if the receiver of the event handles the wheel event; otherwise returns FALSE.

Orientation QWheelEvent::orientation () const

Returns the wheel’s orientation.

const QPoint & QWheelEvent::pos () const

Returns the position of the mouse pointer, relative to the widget that received the event.
If you move your widgets around in response to mouse events, use globalPos() instead of this function.

See also x() [p. 1781, y() [p- 178] and globalPos() [p. 1771].

ButtonState QWheelEvent::state () const

Returns the keyboard modifier flags of the event.

The returned value is ShiftButton, ControlButton, and AltButton OR’ed together.

int QWheelEvent::x () const

Returns the X position of the mouse pointer, relative to the widget that received the event.
See also y() [p. 178] and pos() [p. 178].

int QWheelEvent::y () const

Returns the Y position of the mouse pointer, relative to the widget that received the event.

See also x() [p. 178] and pos() [p. 178].

QWindowsStyle Class Reference

The QWindowsStyle class provides a Microsoft Windows-like look and feel.
#incl ude <gqw ndowsstyl e. h>

Inherits QCommonsStyle [p. 48].

Inherited by QAquaStyle [p. 33] and QPlatinumStyle [p. 127].

Public Members

» QWindowsStyle ()

Detailed Description

The QWindowsStyle class provides a Microsoft Windows-like look and feel.
This style is Qt’s default GUI style on Windows.
See also Widget Appearance and Style.

Member Function Documentation

QWindowsStyle::QWindowsStyle ()

Constructs a QWindowsStyle

179

Index

accel
QAction, 25
accel()
QAction, 22
accept()
QCloseEvent, 45
QContextMenuEvent, 50
QDragMoveEvent, 57
QKeyEvent, 96
QMouseEvent, 119
QWheelEvent, 177
acceptAction()
QDropEvent, 64
Action
QDropEvent, 64
action()
QDropEvent, 64
activate()
QLayout, 103
activated()
QAccel, 15
QAction, 22
add()
QActionGroup, 30
QGridLayout, 79
QLayout, 103

QObjectCleanupHandler, 124

addChildLayout()
QLayout, 103
addColSpacing()
QGridLayout, 80
addedTo()
QAction, 22, 23
QActionGroup, 30
addItem()
QBoxLayout, 36
QGridLayout, 80
QLayout, 103
addLayout()
QBoxLayout, 37
QGridLayout, 80
addMultiCell()
QGridLayout, 80
addMultiCellLayout()
QGridLayout, 80
addMultiCellwidget()
QGridLayout, 80
addRowSpacing()
QGridLayout, 81
addSeparator()

QActionGroup, 30
addSpacing()

QBoxLayout, 37
addStretch()

QBoxLayout, 37
addStrut()

QBoxLayout, 37
addTo()

QAction, 22

QActionGroup, 30
addWidget()

QBoxLayout, 37

QGridLayout, 81
alignment()

QLayoutltem, 109

QStyleSheetltem, 162
alignmentRect()

QLayout, 103
allowedInContext()

QStyleSheetltem, 162
answerRect()

QDragMoveEvent, 58
append()

QIconDrag, 90
ascii()

QKeyEvent, 96
autoAdd()

QLayout, 104

button()
QMouseEvent, 119

canDecode()
QColorDrag, 47
QIconDrag, 90
QImageDrag, 94
QTextDrag, 169
QUriDrag, 172
cellGeometry()
QGridLayout, 81
child()
QChildEvent, 42
clear()
QAccel, 15

QObjectCleanupHandler, 124

color()

QStyleSheetltem, 162
colStretch()

QGridLayout, 81
ComplexControl

QStyle, 137

180

connectltem()

QAccel, 15
consume()

QContextMenuEvent, 50
ContentsType

QStyle, 137
contexts()

QStyleSheetltem, 162
ControlElement

QStyle, 138
convertFromPlainText()

QStyleSheet, 157
Corner

QGridLayout, 79
count()

QAccel, 15

QKeyEvent, 96
current()

QGLayoutlterator, 73

QLayoutlterator, 113

data()
QCustomEvent, 54
QDropEvent, 64
QIconDragltem, 92
decode()
QColorDrag, 47
QImageDrag, 94
QTextDrag, 169
QUriDrag, 172
decodeLocalFiles()
QUriDrag, 172
decodeToUnicodeUris()
QUriDrag, 172
defaultFrameWidth()
QStyle, 145
defaultSheet()
QStyleSheet, 157
definesFontItalic()
QStyleSheetltem, 162
definesFontUnderline()
QStyleSheetItem, 163
deleteAllltems()
QLayout, 104
deleteCurrent()
QLayoutlterator, 113
delta()
QWheelEvent, 177
Direction
QBoxLayout, 36
direction()

Index

QBoxLayout, 37
disconnectItem()

QAccel, 15
DisplayMode

QStyleSheetItem, 160
displayMode()

QStyleSheetItem, 163
drag()

QDragObject, 60, 61
dragCopy()

QDragObject, 61
dragLink()

QDragObject, 61
DragMode

QDragObject, 60
dragMove()

QDragObject, 61
drawComplexControl()

QStyle, 145
drawComplexControlMask()

QStyle, 146
drawControl()

QStyle, 146
drawControlMask()

QStyle, 147
drawltem()

QStyle, 147
drawPrimitive()

QStyle, 148
drawRiffles()

QPlatinumStyle, 127

enabled

QAction, 25
encodedData()

QDropEvent, 64

QlconDrag, 90

QStoredDrag, 133
erased()

QPaintEvent, 126
error()

QStyleSheet, 157
escape()

QStyleSheet, 157
eventFilter()

QAccel, 16
exclusive

QActionGroup, 31
expand()

QGridLayout, 81
expanding()

QBoxLayout, 38

QGridLayout, 81

QLayout, 104

QLayoutltem, 109

findKey()
QAccel, 16
findwidget()
QBoxLayout, 38
QGridLayout, 81
fontFamily()
QStyleSheetItem, 163

fontItalic()
QStyleSheetItem, 163
fontSize()
QStyleSheetltem, 163
fontUnderline()
QStyleSheetltem, 163
fontWeight()
QStyleSheetltem, 163
format()
QDropEvent, 65

geometry()
QLayoutltem, 109
globalPos()
QContextMenuEvent, 51
QMouseEvent, 120
QWheelEvent, 177
globalX()
QContextMenuEvent, 51
QMouseEvent, 120
QWheelEvent, 177
globalY()
QContextMenuEvent, 51
QMouseEvent, 120
QWheelEvent, 178
gotFocus()
QFocusEvent, 72

hasHeightForwidth()
QBoxLayout, 38
QGridLayout, 82
QLayoutltem, 109

heightForwidth()
QBoxLayout, 38
QGridLayout, 82
QLayoutltem, 109

iconSet

QAction, 25
iconSet()

QAction, 23
ignore()

QCloseEvent, 45

QContextMenuEvent, 51

QDragMoveEvent, 58

QDropEvent, 65

QKeyEvent, 96

QMouseEvent, 120

QWheelEvent, 178
insert()

QActionGroup, 30
inserted()

QcChildEvent, 43
insertltem()

QAccel, 16

QBoxLayout, 38
insertLayout()

QBoxLayout, 38
insertSpacing()

QBoxLayout, 38
insertStretch()

QBoxLayout, 38
insertWidget()

QBoxLayout, 39
invalidate()
QBoxLayout, 39
QGridLayout, 82
QLayout, 104
QLayoutltem, 110
isAccepted()
QCloseEvent, 45
QContextMenuEvent, 51
QDropEvent, 65
QKeyEvent, 96
QMouseEvent, 120
QWheelEvent, 178
isActionAccepted ()
QDropEvent, 65
isAnchor()
QStyleSheetItem, 163
isAutoRepeat()
QKeyEvent, 97
isConsumed()
QContextMenuEvent, 51
isEmpty ()
QLayout, 104
QLayoutltem, 110

QObjectCleanupHandler, 124

isEnabled()
QAccel, 16
QAction, 23
QLayout, 104
isExclusive ()
QActionGroup, 31
isltemEnabled()
QAccel, 16
isOn()
QAction, 23
isToggleAction()
QAction, 23
isTopLevel()
QLayout, 104
item()
QStyleSheet, 157, 158
itemRect()
QStyle, 149
iterator()
QLayout, 105
QLayoutltem, 110

key()
QAccel, 16
QKeyEvent, 97
keyToString()
QAccel, 16

layout()

QLayoutltem, 110
lineSpacing()

QStyleSheetltem, 164
ListStyle

QStyleSheetltem, 161
listStyle)

QStyleSheetltem, 164
localFileToUri()

QUriDrag, 173

181

Index

logicalFontSize ()
QStyleSheetltem, 164
logicalFontSizeStep()
QStyleSheetItem, 164
lostFocus()
QFocusEvent, 72

mainWidget()

QLayout, 105
Margin

QStyleSheetltem, 161
margin

QLayout, 107
margin()

QLayout, 105

QStyleSheetltem, 164
maximumSize()

QBoxLayout, 39

QGridLayout, 82

QLayout, 105

QLayoutltem, 110
menuBar()

QLayout, 105
menuText

QAction, 26
menuText()

QAction, 23
mightBeRichText()

QStyleSheet, 158
minimumSize()

QBoxLayout, 39

QGridLayout, 82

QLayout, 105

QLayoutltem, 110
mixedColor()

QPlatinumStyle, 128

name()

QStyleSheetltem, 164
next()

QGLayoutlterator, 73
numberOfColumns()

QStyleSheetltem, 164
numCols()

QGridLayout, 82
numRows()

QGridLayout, 82

oldPos()

QMoveEvent, 122
oldSize()

QResizeEvent, 129
on

QAction, 26
operator

=0

QKeySequence, 99

operator int()

QKeySequence, 99
operator QString()

QKeySequence, 99
operator++()

QLayoutlterator, 113

operator=()
QKeySequence, 100
QLayoutlterator, 113
operator==()
QKeySequence, 100
orientation()
QWheelEvent, 178
origin()
QGridLayout, 82

PixelMetric
QStyle, 138
pixelMetric()
QStyle, 149
pixmap()
QDragObject, 61
pixmapHotSpot()
QDragObject, 61
polish()
QStyle, 149, 150
polishPopupMenu()
QStyle, 150
pos()
QContextMenuEvent, 51
QDropEvent, 65
QMouseEvent, 120
QMoveEvent, 122
QWheelEvent, 178
PrimitiveElement
QStyle, 139
provides()
QDropEvent, 65

querySubControl ()
QStyle, 150

querySubControlMetrics()
QStyle, 150

Reason
QContextMenuEvent, 50
QFocusEvent, 71
reason()
QContextMenuEvent, 52
QFocusEvent, 72
rect()
QPaintEvent, 126
region()
QPaintEvent, 126
remove()

QObjectCleanupHandler, 124

removed()
QChildEvent, 43
removeFrom()
QAction, 23
removeltem()
QAccel, 17
repairEventFilter()
QAccel, 17
resetReason()
QFocusEvent, 72
ResizeMode
QLayout, 102
resizeMode

QLayout, 107
resizeMode()

QLayout, 106
rowStretch()

QGridLayout, 82

scaleFont()

QStyleSheet, 158
scrollBarExtent()

QStyle, 151
selected()

QActionGroup, 31
selfNesting()

QStyleSheetltem, 164
setAccel()

QAction, 23
setAction()

QDropEvent, 66
setAlignment()

QLayoutltem, 111

QStyleSheetltem, 165
setAnchor()

QStyleSheetltem, 165
setAutoAdd()

QLayout, 106
setColor()

QColorDrag, 47

QStyleSheetItem, 165
setColStretch()

QGridLayout, 83
setContexts()

QStyleSheetltem, 165
setData()

QCustomEvent, 54

QlconDragltem, 92
setDefaultSheet()

QStyleSheet, 158
setDirection()

QBoxLayout, 39
setDisplayMode()

QStyleSheetltem, 165
setEnabled()

QAccel, 17

QAction, 23

QLayout, 106
setEncodedData()

QStoredDrag, 133
setExclusive()

QActionGroup, 31
setFileNames()

QUriDrag, 173
setFilenames()

QUriDrag, 173
setFontFamily()

QStyleSheetItem, 165
setFontltalic()

QStyleSheetltem, 165
setFontSize()

QStyleSheetltem, 165
setFontUnderline()

QStyleSheetItem, 166
setFontWeight()

QStyleSheetItem, 166

182

Index

setGeometry()

QBoxLayout, 39

QGridLayout, 83

QLayout, 106

QLayoutltem, 111
setlconSet()

QAction, 23
setlmage()

QImageDrag, 94
setltemEnabled()

QAccel, 17
setLineSpacing()

QStyleSheetItem, 166
setListStyle()

QStyleSheetltem, 166
setLogicalFontSize ()

QStyleSheetItem, 166
setLogicalFontSizeStep()

QStyleSheetltem, 166
setMargin()

QLayout, 106

QStyleSheetItem, 166
setMenuBar()

QLayout, 106
setMenuText()

QAction, 24
setNumberOfColumns()

QStyleSheetItem, 166
setOn()

QAction, 24
setOrigin()

QGridLayout, 83
setPixmap()

QDragObject, 61, 62
setPoint()

QDropEvent, 66
setReason()

QFocusEvent, 72
setResizeMode()

QLayout, 106
setRowStretch()

QGridLayout, 83
setSelfNesting()

QStyleSheetltem, 167
setSpacing()

QGrid, 76

QHBox, 85

QLayout, 106
setStatusTip()

QAction, 24
setStretchFactor()

QBoxLayout, 39, 40

QHBox, 85
setSubtype()

QTextDrag, 169
setSupportsMargin()

QLayout, 107
setText()

QAction, 24

QTextDrag, 169
setToggleAction()

QAction, 24
setToolTip()

QAction, 24
setUnicodeUris()

QUriDrag, 173
setUris()

QUriDrag, 173
setUseHighlightColors()

QMotifStyle, 116
setUsesDropDown()

QActionGroup, 31
setVerticalAlignment()

QStyleSheetltem, 167
setWhatsThis()

QAccel, 17

QAction, 24
setWhiteSpaceMode()

QStyleSheetltem, 167
shortcutKey()

QAccel, 17
size()

QResizeEvent, 129
sizeFromContents()

QStyle, 151
sizeHint()

QBoxLayout, 40

QGridLayout, 83

QLayoutltem, 111
source()

QDragObject, 62

QDropEvent, 66
spacerltem()

QLayoutltem, 111
spacing

QLayout, 107
spacing()

QLayout, 107
spontaneous()

QEvent, 70
state()

QContextMenuEvent, 52

QKeyEvent, 97

QMouseEvent, 121

QWheelEvent, 178
stateAfter()

QKeyEvent, 97

QMouseEvent, 121
statusTip

QAction, 26
statusTip()

QAction, 24
stringToKey()

QAccel, 17
StyleFlags

QStyle, 141
StyleHint

QStyle, 141
styleHint()

QStyle, 151
StylePixmap

QStyle, 142
stylePixmap()

QStyle, 151
styleSheet()

QStyleSheetltem, 167

SubControl
QStyle, 143
SubRect
QStyle, 144
subRect()
QStyle, 152
supportsMargin()
QLayout, 107

tabbarMetrics()

QStyle, 152
tag()

QStyleSheet, 158
takeCurrent()

QGLayoutlterator, 74

QLayoutlterator, 114
target()

QDragObject, 62
text

QAction, 26
text()

QAction, 24

QKeyEvent, 97
timerId()

QTimerEvent, 170
toggle()

QAction, 24
toggleAction

QAction, 26
toggled()

QAction, 24
toolTip

QAction, 27
toolTip()

QAction, 25
Type

QEvent, 68
type()

QEvent, 70

unicodeUriToUri()
QUriDrag, 173
unPolish()
QStyle, 153
uriToLocalFile()
QUriDrag, 173
uriToUnicodeUri()
QUriDrag, 173
useHighlightColors()
QMotifStyle, 117
usesDropDown
QActionGroup, 32
usesDropDown()
QActionGroup, 31

VerticalAlignment
QStyleSheetltem, 161
verticalAlignment()
QStyleSheetltem, 167
visualRect()
QStyle, 153

whatsThis

Index

QAction, 27
whatsThis()

QAccel, 18

QAction, 25
WhiteSpaceMode

QStyleSheetltem, 161
whiteSpaceMode()

QStyleSheetItem, 167
widget()
QLayoutltem, 111

x()
QContextMenuEvent, 52
QMouseEvent, 121

yO

QWheelEvent, 178

QContextMenuEvent, 52
QMouseEvent, 121
QWheelEvent, 178

184

