Graphics with Qt

Ot 3.0

Copyright (© 2001 Trolltech AS. All rights reserved.

TROLLTECH, Qt and the Trolltech logo are registered trademarks of Trolltech AS. Linux is a registered trademark
of Linus Torvalds. UNIX is a registered trademark of X/Open Company Ltd. Mac is a registered trademark of Apple
Computer Inc. MS Windows is a registered trademark of Microsoft Corporation. All other products named are
trademarks of their respective owners.

The definitive Qt documentation is provided in HTML format supplied with Qt, and available online at http://doc.trolltech.com.
This PDF file was generated automatically from the HTML source as a convenience to users, although PDF is not an official Qt
documentation format.

Contents

The Coordinate System e e e e e e e 4
Canvas Module e e 8
WIndow GEOMELTY o i i e 10
Qt OpenGL 3D Graphics e e e e 12
QBitmap Class Reference i i e e e e e e 14
QBrush Class Reference i i i i it i e e e e e e e e e e e e e e 17
QBuffer Class Reference i i i i i i it e e e e e e e e e e 21
QCanvas Class Reference o v i i i v i it e e e e e e e e e e e e 24
QCanvasEllipse Class Reference e e e 33
QCanvasltem Class Reference i i i i i e e e e e 36
QCanvasltemList Class Reference e e 44
QCanvasLine Class Reference i i i e e e e e 45
QCanvasPixmap Class Reference i e 47
QCanvasPixmapArray Class Reference i e 49
QCanvasPolygon Class Reference i e e 52
QCanvasPolygonalltem Class Reference it iiee e 54
QCanvasRectangle Class Reference i i i i i it ittt e e e e e e e e e 58
QCanvasSpline Class Reference e e 61
QCanvasSprite Class Reference i it i e e e 63
QCanvasText Class Reference i i i i i it it it e e e e e et e e e e e e 68
QCanvasView Class Reference i i i i i i i i it e e e e e e e e e e 71
QColor Class REferenCe v v v v v i et e et e e e e e e e e e e e e e e 74
QColorGroup Class Reference e e e 84
QCursor Class Reference i i i e e e e e e 91
QGL Class Reference i i i i i e e e e e e e e e e e e 96
QGLColormap Class Reference i it e e e 98
QGLContext Class Reference i i i e e e e e e e 101
QGLFormat Class Reference i i i it e e e e e e e e 106
QGLWidget Class Reference i i i e e e e e e 114
QIconSet Class REferencCe v v v v i i e i e e e e e e e e e e e e e e 123

Contents 3

QImage Class Reference i i i e e e e e e 129
QImageConsumer Class Reference i ittt 147
QImageDecoder Class Reference i i i it ittt et e e e e 149
QImageFormat Class Reference i it e e 151
QImageFormatType Class Reference i i ittt iie e 152
QImagelO Class Reference i i i it i e e e e e e e e 154
QMovie Class Reference i i i i it i e e e e e e e e e e e e e e e e 161
QPNGImagePacker Class Reference i i i i i ittt et e e e e e e 168
QPaintDevice Class Reference i i i i i i e e e e e e e e 170
QPaintDeviceMetrics Class Reference i i i it e e e e 176
QPainter Class Reference i i i i i e e e e e e e e e e e 178
QPalette Class Reference o i i it e e e e e e e e e e e e 209
QPen Class ReferencCe i i i i e e e e e e e e e e e e e e 215
QPicture Class Reference i i i e e e e e e e e 220
QPixmap Class Reference e e e e e 225
QPixmapCache Class Reference e 239
QPoint Class Reference i i v i it e e s e e e e e e e e e 242
QPointArray Class Reference e e e 248
QPrinter Class Reference e e e 254
QRect Class Reference i i i it s e e e e e e e e e e e e 266
QRegion Class Reference i i i i i it i i e e e e e e e e e e e e 278
QSize Class Reference i i i i i e e e e e e e e e e e e e e e e 285
QWMatrix Class Reference i i i i it i et e e e e e e e e e e 291

The Coordinate System

A paint device in Qt is a drawable 2D surface. QWidget, QPixmap, QPicture and QPrinter are all paint devices. A
QPainter is an object which can draw on such devices.

The default coordinate system of a paint device has its origin at the top left corner. X increases to the right and Y
increases downwards. The unit is one pixel on pixel-based devices and one point on printers.

An Example

The illustration below shows a highly magnified portion of the top left corner of a paint device.

a
- []
- N

The rectangle and the line were drawn by this code (with the grid added and colors touched up in the illustration):

voi d MyW dget: : pai nt Event (QPai nt Event *)

{
QPainter p(this);
p.setPen(darkGay);
p.drawRect (1,2, 5,4);
p.setPen(lightGay);
p.drawtine(9,2, 7,7);
}

Note that all of the pixels drawn by drawRect() are inside the size specified (5*4 pixels). This is different from
some toolkits; in Qt the size you specify exactly encompasses the pixels drawn. This applies to all the relevant
functions in QPainter.

Similarly, the drawLine() call draws both endpoints of the line, not just one.
Here are the classes that relate most closely to the coordinate system:

e QPoint is a single 2D point in the coordinate system. Most functions in Qt that deal with points can accept
either a QPoint argument or two ints, for example QPainter::drawPoint().

The Coordinate System 5

e QSize is a single 2D vector. Internally, QPoint and QSize are the same, but a point is not the same as a size,
so both classes exist. Again, most functions accept either a QSize or two ints, for example QWidget::resize().

e QRect is a 2D rectangle. Most functions accept either a QRect or four ints, for example QWid-
get::setGeometry().

e QRegion is an arbitrary set of points, including all the normal set operations, e.g. QRegion::intersect(), and
also a less usual function to return a list of rectangles whose union is equal to the region. QRegion is used
e.g. by QPainter::setClipRegion(), QWidget::repaint() and QPaintEvent::region().

e QPainter is the class that paints. It can paint on any device with the same code. There are differences between
devices, QPrinter::newPage() is a good example, but QPainter works the same way on all devices.

e QPaintDevice is a device on which QPainter can paint. There are two internal devices, both pixel-based, and
two external devices, QPrinter and QPicture (which records QPainter commands to a file or other QIODevice,
and plays them back). Other devices can be defined.

Transformations

Although Qt’s default coordinate system works as described above, QPainter also supports arbitrary transforma-
tions.

This transformation engine is a three-step pipeline, closely following the model outlined in books such as Foley
& Van Dam and the OpenGL Programming Guide. Refer to those for in-depth coverage; here we give just a brief
overview and an example.

The first step uses the world transformation matrix. Use this matrix to orient and position your objects in your
model. Qt provides methods such as QPainter::rotate(), QPainter::scale(), QPainter::translate() and so on to oper-
ate on this matrix.

QPainter::save() and QPainter::restore() save and restore this matrix. You can also use QWMatrix objects,
QPainter::worldMatrix() and QPainter::setWorldMatrix() to store and use named matrices.

The second step uses the window. The window describes the view boundaries in model coordinates. The matrix
positions the objects and QPainter::setWindow() positions the window, deciding what coordinates will be visible.
(If you have 3D experience, the window is what’s usually called projection in 3D.)

The third step uses the viewport. The viewport too, describes the view boundaries, but in device coordinates. The
viewport and the windows describe the same rectangle, but in different coordinate systems.

On-screen, the default is the entire QWidget or QPixmap where you are drawing, which is usually appropriate. For
printing this function is vital, since very few printers can print over the entire physical page.

So each object to be drawn is transformed into model coordinates using QPainter::worldMatrix(), then clipped by
QPainter::window(), and finally positioned on the drawing device using QPainter::viewport().

It is perfectly possible to do without one or two of the stages. If, for example, your goal is to draw something
scaled, then using just QPainter::scale() makes perfect sense. If your goal is to use a fixed-size coordinate system,
QPainter::setWindow() is perfect. And so on.

Here is a short example that uses all three mechanisms: the function that draws the clock face in the
aclock/aclock.cpp example. We recommend compiling and running the example before you read any further.
In particular, try resizing the window to different shapes.

voi d Anal ogC ock:: drawC ock(QPainter *paint)
{

pai nt->save();

Firstly, we save the painter’s state, so that the calling function is guaranteed not to be disturbed by the transforma-
tions we’re going to use.

pai nt - >set Wndow(-500, -500, 1000, 1000);

The Coordinate System 6

We set the model coordinate system we want a 1000*1000 window where 0,0 is in the middle.

QRect v = paint->viewport();
int d=QUN v.width(), v.height());

The device may not be square and we want the clock to be, so we find its current viewport and compute its shortest
side.

pai nt->setViewport (v.left() + (v.width()-d)/2,
v.top() + (v.height()-d)/2, d, d);
Then we set a new square viewport, centered in the old one.

We’re now done with our view. From this point on, when we draw in a 1000*1000 area around 0,0, what we draw
will show up in the largest possible square that’ll fit in the output device.

Time to start drawing.
[l time = QTinme::currentTime();
QPointArray pts;

Since we’ll draw a clock, we’ll need to know the time. pts is just a utility variable to hold some points.

Next come three drawing blocks, one for the hour hand, one for the minute hand and finally one for the clock face
itself. First we draw the hour hand:

pai nt->save();
paint->rotate(30*(tine.hour()%2-3) + time.nmnute()/2);

We save the painter and then rotate it so that one axis points along the hour hand.

pts.setPoints(4, -20,0, 0,-20, 300,0, 0,20);
pai nt - >dr awConvexPol ygon(pts);

We set pts to a four-point polygon that looks like the hour hand at three o’clock, and draw it. Because of the
rotation, it’s drawn pointed in the right direction.

pai nt->restore();

We restore the saved painter, undoing the rotation. We could also call rotate(-30) but that might introduce
rounding errors, so it’s better to use save() and restore(). Next, the minute hand, drawn almost the same way:

pai nt->save();

paint->rotate((time.nminute()-15)*6);
pts.setPoints(4, -10,0, 0,-10, 400,0, 0,10);
pai nt - >dr awConvexPol ygon(pts);

pai nt->restore();

The only differences are how the rotation angle is computed and the shape of the polygon.
The last part to be drawn is the clock face itself.
for (int i=0; i<12; i++) {

pai nt - >drawlLi ne(440,0, 460,0);
paint->rotate(30);

The Coordinate System

Twelve short hour lines at thirty-degree intervals. At the end of that, the painter is rotated in a way which isn’t very
useful, but we're done with painting so that doesn’t matter.

pai nt->restore();

The final line of the function restores the painter, so that the caller won’t be affected by all the transformations
we've done.

Canvas Module

This module is part of the Qt Enterprise Edition.

The canvas module provides a highly optimized 2D graphic area called QCanvas. The canvas can contain an
arbitrary number of QCanvasltems. Canvas items can have an arbitrary shape, size and content, can be freely
moved around in the canvas, and can be checked for collisions. Canvas items can be set to move across the canvas
automatically and animated canvas items are supported with QCanvasSprite. (If you require 3D graphics see Qt’s
OpenGL module.)

The canvas module uses a document/view model. The QCanvasView class is used to show a particular view of
a canvas. Multiple views can operate on the same canvas at the same time. Every view can use an arbitrary
transformation matrix on the canvas which makes it easy to implement features such as zooming.

gl canvas - O X
File Edit Options Help

e

¥

Qt provides a number of predefined QCanvas items as listed below.

e QCanvasltem — An abstract base class for all canvas items.
e QCanvasEllipse — An ellipse or "pie segment".

e QCanvasline — A line segment.

e QCanvasPolygon — A polygon.

e QCanvasPolygonalltem — A base class for items that have a non-rectangular shape. Most canvas items derive
from this class.

e QCanvasRectangle — A rectangle. The rectangle cannot be tilted or rotated. Rotated rectangles can be drawn
using QCanvasPolygon.

e QCanvasSpline — A multi-bezier spline.
e QCanvasSprite — An animated pixmap.

e QCanvasText — A text string.

Canvas Module 9

The two classes QCanvasPixmap and QCanvasPixmapArray are used by QCanvasSprite to show animated and
moving pixmaps on the canvas.

More specialized items can be created by inheriting from one of the canvas item classes. It is easiest to inherit from
one of QCanvasltem’s derived classes (usually QCanvasPolygonalltem) rather than inherit QCanvasltem directly.

Window Geometry

Overview

QWidget provides several functions that deal with a widget’s geometry. Some of these functions operate on the pure
client area (i.e. the window excluding the window frame), others include the window frame. The differentiation
is done in a way that covers the most common usage transparently.

Including the window frame: x(), y(), frameGeometry(), pos() and move() Excluding the window frame: geome-
try(), width(), height(), rect() and size()

Note that the distinction only matters for decorated top-level widgets. For all child widgets, the frame geometry is
equal to the widget’s client geometry.

This diagram shows most of the functions in use:

geometryl). xi)
i

e g
geometryt).yt) @

Client Area

o

¥ ey

~AUIL|5\9LI'M§9UJ095A“{
- By Anewoane el - -

|._

frosemeeene width() / geometryt) widtht) -1
froeeeees frameGeometryt) width{) - ===]

Unix/X11 peculiarities

On Unix/X11, a window does not have a frame until the window manager decorates it. This happens asyn-
chronously at some point in time after calling show() and the first paint event the window receives - or it does
not happen at all. Bear in mind that X11 is policy-free (others call it flexible). Thus you cannot make any safe
assumption about the decoration frame your window will get. Basic rule: there’s always one user who uses a
window manager that breaks your assumption, and who will complain to you.

Furthermore, a toolkit cannot simply place windows on the screen. All Qt can do is to send certain hints to the
window manager. The window manager, a separate process, may either obey, ignore or misunderstand them. Due
to the partially unclear Inter-Client Communication Conventions Manual (ICCCM), window placement is handled
quite differently in existing window managers.

X11 provides no standard or easy way to get the frame geometry once the window is decorated. Qt solves this
problem with nifty heuristics and clever code that works on a wide range of window managers that exist today.
Don’t be surprised if you find one where frameGeometry() returns bogus results though.

10

Window Geometry 11

X11 also does not provide a way to maximize a window. The showMaximized() function in Qt therefore has to
emulate the feature. Its result depends totally on the result of frameGeometry() and the capability of the window
manager to do proper window placement, both of which cannot be guaranteed.

Restoring a Window’s Geometry

A common task in modern applications is to restore a window’s geometry in a later session. On Windows, this is
basically storing the result of geometry() and calling setGeometry() in the next session before doing show(). On
X11, this won’t work because an invisible window doesn’t have a frame yet. The window manager would decorate
the window later. When this happens, the window shifts towards the bottom/right corner of the screen depending
on the size of the decoration frame. X theoretically provides a way to avoid this shift. Our tests have shown,
though, that almost all window managers fail to implement this feature.

A workaround is to call setGeometry() after show(). This has the two disadvantages that the widget appears at
a wrong place for a millisecond (results in flashing) and that currently only every second window manager gets
it right. A safer solution is to store both pos() and size() and to restore the geometry using resize() and move()
before calling show(), as demonstrated in the following example:

MW dget* wi dget = new MyW dget

QPoint p = widget->pos(); // store position
Size s = widget->size(); // store size

wi dget = new MyW dget ;

wi dget - >resize(s); Il restore size
wi dget - >move(p); Il restore position
wi dget - >show() ; /'l show wi dget

This method works on both MS-Windows and most existing X11 window managers.

Qt OpenGL 3D Graphics

This module is part of the Qt Enterprise Edition.

Introduction

OpenGL is a standard API for rendering 3D graphics.

OpenGL only deals with 3D rendering and provides little or no support for GUI programming issues. The user
interface for an OpenGL* application must be created with another toolkit, such as Motif on the X platform,
Microsoft Foundation Classes (MFC) under Windows - or Qt on both platforms.

The Qt OpenGL module makes it easy to use OpenGL in Qt applications. It provides an OpenGL widget class that
can be used just like any other Qt widget, except that it opens an OpenGL display buffer where you can use the
OpenGL API to render the contents.

The Qt OpenGL module is implemented as a platform-independent Qt/C++ wrapper around the platform-
dependent GLX and WGL C APIs. The functionality provided is very similar to Mark Kilgard’s GLUT library, but
with much more non-OpenGL-specific GUI functionality, i.e. the whole Qt API.

Installation

When you install Qt for X11, the configure script will autodetect if OpenGL headers and libraries are installed
on your system, and if so, it will include the Qt OpenGL module in the Qt library. (If your OpenGL headers
or libraries are placed in a non-standard directory, you may need to change the SYSCONF_CXXFLAGS OPENGL
and/or SYSCONF_LFLAGS OPENGL in the config file for your system).

When you install Qt for Windows, the Qt OpenGL module is always included.

The Qt OpenGL module is not licensed for use with the Qt Professional Edition. Consider upgrading to the Qt
Enterprise Edition if you require OpenGL support.

Note about using Mesa on X11: Mesa versions earlier than 3.1 would use the name "MesaGL" and "MesaGLU"
for the libraries, instead of "GL" and "GLU". If you want to use a pre-3.1 version of Mesa, you must change the
Makefiles to use these library names instead. The easiest way to do this edit the SYSCONF_LIBS OPENGL line in
the config file you are using, changing "-IGL -IGLU" to "-IMesaGL -IMesaGLU"; then run "configure" again.

The QGL Classes

The OpenGL support classes in Qt are:

e QGLWidget: An easy-to-use Qt widget for rendering OpenGL scenes.
e QGLContext: Encapsulates an OpenGL rendering context.
e QGLFormat: Specifies the display format of a rendering context.

12

Qt OpenGL 3D Graphics 13

e QGLColormap: Handles indexed colormaps in GL-index mode.

Many applications only need the high-level QGIWidget class. The other QGL classes provide advanced features.

The QGL documentation assumes that you are familiar with OpenGL programming. If you're new to the subject a
good starting point is http://www.opengl.org/.

* OpenGL is a trademark of Silicon Graphics, Inc. in the United States and other countries.

QBitmap Class Reference

The QBitmap class provides monochrome (1-bit depth) pixmaps.
#i ncl ude <qgbit map. h>
Inherits QPixmap [p. 225].

Public Members

= QBitmap ()

» QBitmap (int w, int h, bool clear = FALSE, QPixmap::Optimization optimization =
QPixmap::DefaultOptim)

m QBitmap (const QSize & size, bool clear = FALSE, QPixmap::Optimization optimization =
QPixmap::DefaultOptim)

m QBitmap (int w, int h, const uchar * bits, bool isXbitmap = FALSE)

» QBitmap (const QSize & size, const uchar * bits, bool isXbitmap = FALSE)

m QBitmap (const QBitmap & bitmap)

» QBitmap (const QString & fileName, const char * format = 0)

m QBitmap & operator= (const QBitmap & bitmap)

m QBitmap & operator= (const QPixmap & pixmap)

m QBitmap & operator= (const QImage & image)

m QBitmap xForm (const QWMatrix & matrix) const

Detailed Description

The QBitmap class provides monochrome (1-bit depth) pixmaps.

The QBitmap class is a monochrome off-screen paint device used mainly for creating custom QCursor and QBrush
objects, in QPixmap::setMask() and for QRegion.

A QBitmap is a QPixmap with a QPixmap::depth() of 1. If a pixmap with a depth greater than 1 is assigned to a
bitmap, the bitmap will be dithered automatically. A QBitmap is guaranteed to always have the depth 1, unless it
is QPixmap::isNull() which has depth 0.

When drawing in a QBitmap (or QPixmap with depth 1), we recommend using the QColor objects @ :: col or0
and @ :: col or 1. Painting with col or 0 sets the bitmap bits to 0, and painting with col or 1 sets the bits to 1. For a
bitmap, 0-bits indicate background (or white) and 1-bits indicate foreground (or black). Using the bl ack and whi t e
QColor objects make no sense because the QColor::pixel() value is not necessarily O for black and 1 for white.

The QBitmap can be transformed (translated, scaled, sheared or rotated) using xForm().

Just like the QPixmap class, QBitmap is optimized by the use of implicit sharing, so it is very efficient to pass
QBitmap objects as arguments.

See also QPixmap [p. 225], QPainter::drawPixmap() [p. 190], bitBlt() [p. 175], Shared Classes [Programming
with Qt], Graphics Classes, Image Processing Classes and Implicitly and Explicitly Shared Classes.

14

QBitmap Class Reference 15

Member Function Documentation

QBitmap::QBitmap ()

Constructs a null bitmap.

See also QPixmap::isNull() [p. 233].

QBitmap::QBitmap (int w, int h, bool clear = FALSE,
QPixmap::Optimization optimization = QPixmap::DefaultOptim)
Constructs a bitmap with width w and height h.

The contents of the bitmap is uninitialized if clear is FALSE; otherwise it is filled with pixel value 0 (the QColor
Q::color0).

The optional optimization argument specifies the optimization setting for the bitmap. The default optimization
should be used in most cases. Games and other pixmap-intensive applications may benefit from setting this argu-
ment.

See also QPixmap::setOptimization() [p. 237] and QPixmap::setDefaultOptimization() [p. 236].

QBitmap::QBitmap (const QSize & size, bool clear = FALSE,

QPixmap::Optimization optimization = QPixmap::DefaultOptim)
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Constructs a bitmap with the size size.

The contents of the bitmap is uninitialized if clear is FALSE; otherwise it is filled with pixel value 0 (the QColor
Q::color0).

The optional optimization argument specifies the optimization setting for the bitmap. The default optimization
should be used in most cases. Games and other pixmap-intensive applications may benefit from setting this argu-
ment.

QBitmap::QBitmap (int w, int h, const uchar * bits, bool isXbitmap = FALSE)

Constructs a bitmap with width w and height h and sets the contents to bits.

The isXbitmap should be TRUE if bits was generated by the X11 bitmap program. The X bitmap bit order is little
endian. The QImage documentation discusses bit order of monochrome images.

Example (creates an arrow bitmap):

uchar arrow bits[] = { 0x3f, 0x1f, OxOf, Ox1f, Ox3b, 0x71, Oxe0, 0xcO };
QBitmap bn(8, 8, arrow bits, TRUE);

QBitmap::QBitmap (const QSize & size, const uchar * bits, bool isXbitmap = FALSE)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Constructs a bitmap with the size size and sets the contents to bits.

The isXbitmap should be TRUE if bits was generated by the X11 bitmap program. The X bitmap bit order is little
endian. The QImage documentation discusses bit order of monochrome images.

QBitmap Class Reference 16

QBitmap::QBitmap (const QBitmap & bitmap)

Constructs a bitmap that is a copy of bitmap.

QBitmap::QBitmap (const QString & fileName, const char * format = 0)
Constructs a pixmap from the file fileName. If the file does not exist or is of an unknown format, the pixmap
becomes a null pixmap.

The parameters fileName and format are passed on to QPixmap::load(). Dithering will be performed if the file
format uses more than 1 bit per pixel.

See also QPixmap::isNull() [p. 233], QPixmap::load() [p. 233], QPixmap::loadFromData() [p. 2341,
QPixmap::save() [p. 236] and QPixmap::imageFormat() [p. 233].

QBitmap & QBitmap::operator= (const QBitmap & bitmap)

Assigns the bitmap bitmap to this bitmap and returns a reference to this bitmap.

QBitmap & QBitmap::operator= (const QPixmap & pixmap)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Assigns the pixmap pixmap to this bitmap and returns a reference to this bitmap.

Dithering will be performed if the pixmap has a QPixmap::depth() greater than 1.

OQBitmap & QBitmap::operator= (const QIlmage & image)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Converts the image image to a bitmap and assigns the result to this bitmap. Returns a reference to the bitmap.

Dithering will be performed if the image has a QImage::depth() greater than 1.

QBitmap QBitmap::xForm (const QWMatrix & matrix) const

Returns a transformed copy of this bitmap by using matrix.
This function does exactly the same as QPixmap::xForm(), except that it returns a QBitmap instead of a QPixmap.

See also QPixmap::xForm() [p. 237].

QBrush Class Reference

The QBrush class defines the fill pattern of shapes drawn by a QPainter.
#include <gbrush. h>

Inherits Qt [Additional Functionality with Qt].

Public Members

= QBrush ()

m QBrush (BrushStyle style)

m QBrush (const QColor & color, BrushStyle style = SolidPattern)
m QBrush (const QColor & color, const QPixmap & pixmap)
= QBrush (const QBrush & b)

m ~QBrush ()

m QBrush & operator= (const QBrush & b)

m BrushStyle style () const

void setStyle (BrushStyle s)

const QColor & color () const

m void setColor (const QColor & c)

m QPixmap * pixmap () const

» void setPixmap (const QPixmap & pixmap)

m bool operator== (const QBrush & b) const

e bool operator!= (const QBrush & b) const

Related Functions

m QDataStream & operator< < ((QDataStream & s, const QBrush & b)
m QDataStream & operator>> (QDataStream & s, QBrush & b)

Detailed Description

The QBrush class defines the fill pattern of shapes drawn by a QPainter.
A brush has a style and a color. One of the brush styles is a custom pattern, which is defined by a QPixmap.

The brush style defines the fill pattern. The default brush style is NoBrush (depends on how you construct a brush).
This style tells the painter to not fill shapes. The standard style for filling is called SolidPattern.

The brush color defines the color of the fill pattern. The QColor documentation lists the predefined colors.

Use the QPen class for specifying line/outline styles.

17

QBrush Class Reference 18

Example:

QPainter painter;

@rush brush(yellow); /1 yellow solid pattern

pai nter. begi n(&nyPaintDevice); // paint something

pai nter. set Brush(brush); /] set the yellow brush

pai nter. set Pen(NoPen); /] do not draw outline

pai nter. drawRect (40,30, 200,100); // draw filled rectangle

pai nter.set Brush(NoBrush); /1 do not fill

pai nter.setPen(bl ack); /1 set black pen, 0 pixel width
pai nter.drawRect (10,10, 30,20); // draw rectangle outline

pai nter.end(); /] painting done

See the setStyle() [p. 19] function for a complete list of brush styles.

See also QPainter [p. 178], QPainter::setBrush() [p. 199], QPainter::setBrushOrigin() [p. 200], Graphics Classes,
Image Processing Classes and Implicitly and Explicitly Shared Classes.

Member Function Documentation

QBrush::QBrush ()

Constructs a default black brush with the style NoBrush (will not fill shapes).

QBrush::QBrush (BrushStyle style)

Constructs a black brush with the style style.

See also setStyle() [p. 19].

QBrush::QBrush (const QColor & color, BrushStyle style = SolidPattern)

Constructs a brush with the color color and the style style.

See also setColor() [p. 19] and setStyle() [p. 19].

QBrush::QBrush (const QColor & color, const QPixmap & pixmap)

Constructs a brush with the color color and a custom pattern stored in pixmap.
The color will only have an effect for monochrome pixmaps, i.e., QPixmap::depth() ==

See also setColor() [p. 19] and setPixmap() [p. 19].

QBrush::QBrush (const QBrush & b)

Constructs a brush that is a shallow copy of b.

QBrush::~QBrush ()

Destroys the brush.

QBrush Class Reference

const QColor & QBrush::color () const

Returns the brush color.

See also setColor() [p. 19].

bool QBrush::operator!= (const QBrush & b) const

Returns TRUE if the brush is different from b or FALSE if the brushes are equal.
Two brushes are different if they have different styles, colors or pixmaps.

See also operator==() [p. 19].

QBrush & QBrush::operator= (const QBrush & b)

Assigns b to this brush and returns a reference to this brush.

bool QBrush::operator== (const QBrush & b) const

Returns TRUE if the brush is equal to b, or FALSE if the brushes are different.
Two brushes are equal if they have equal styles, colors and pixmaps.

See also operator!=() [p. 19].

QPixmap * QBrush::pixmap () const

Returns a pointer to the custom brush pattern.
A null pointer is returned if no custom brush pattern has been set.

See also setPixmap() [p. 19].

void QBrush::setColor (const QColor & ¢)

Sets the brush color to c.

See also color() [p. 19] and setStyle() [p. 19].

Example: picture/picture.cpp.

void QBrush::setPixmap (const QPixmap & pixmap)

Sets the brush pixmap to pixmap. The style is set to CustomPattern.

The current brush color will only have an effect for monochrome pixmaps, i.e. QPixmap::depth() ==

See also pixmap() [p. 19] and color() [p. 19].

Example: richtext/richtext.cpp.

void QBrush::setStyle (BrushStyle s)

Sets the brush style to s.

19

QBrush Class Reference

The brush styles are:

e NoBrush will not fill shapes (default).

e SolidPattern solid (100%) fill pattern.

e DenselPattern 94% fill pattern.

e Dense2Pattern 88% fill pattern.

e Dense3Pattern 63% fill pattern.

e Dense4Pattern 50% fill pattern.

e Dense5Pattern 37% fill pattern.

e Dense6Pattern 12% fill pattern.

e Dense7Pattern 6% fill pattern.

e HorPattern horizontal lines pattern.

e VerPattern vertical lines pattern.

o CrossPattern crossing lines pattern.

e BDiagPattern diagonal lines (directed /) pattern.
e FDiagPattern diagonal lines (directed \) pattern.
e DiagCrossPattern diagonal crossing lines pattern.

e CustomPattern set when a pixmap pattern is being used.

See also style() [p. 20].

BrushStyle QBrush::style () const

Returns the brush style.

See also setStyle() [p. 19].

Related Functions

QDataStream & operator<< (QDataStream & s, const QBrush & b)

Writes the brush b to the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QDataStream & operator>> (QDataStream & s, QBrush & b)

Reads the brush b from the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

20

QBuffer Class Reference

The QBuffer class is an I/0 device that operates on a QByteArray.
#include <gbuffer.h>
Inherits QIODevice [Input/Output and Networking with Qt].

Public Members

= QBuffer ()

= QBuffer (QByteArray buf)

m ~QBuffer ()

m QByteArray buffer () const

m bool setBuffer (QByteArray buf)

m virtual Q_LONG writeBlock (const char * p, Q_ULONG len)
» Q LONG writeBlock (const QByteArray & data)

Detailed Description

The QBulffer class is an I/0 device that operates on a QByteArray.

QBuffer is used to read and write to a memory buffer. It is normally used with a QTextStream or a QDataStream.
QBuffer has an associated QByteArray which holds the buffer data. The size() of the buffer is automatically adjusted
as data is written.

The constructor QBuf f er (Byt eArray) creates a QBuffer with an existing byte array. The byte array can also be set
with setBuffer(). Writing to the QBuffer will modify the original byte array because QByteArray is explicitly shared.

Use open() to open the buffer before use and to set the mode (read-only, write-only, etc.). close() closes the buffer.
The buffer must be closed before reopening or calling setBuffer().

A common way to use QBuffer is through QDataStream or QTextStream, which have constructors that take a
QBuffer parameter. For convenience, there are also QDataStream and QTextStream constructors that take a
QByteArray parameter. These constructors create and open an internal QBuffer.

Note that QTextStream can also operate on a QString (a Unicode string); a QBuffer cannot.

You can also use QBuffer directly through the standard QIODevice functions readBlock(), writeBlock() readLine(),
at(), getch(), putch() and ungetch().

See also QFile [Input/Output and Networking with Qt], QDataStream [Input/Output and Networking with Qt],
QTextStream [Input/Output and Networking with Qt], QByteArray [Datastructures and String Handling with Qt],
Shared Classes [Programming with Qt], Collection Classes [Datastructures and String Handling with Qt] and
Input/Output and Networking.

21

QBuffer Class Reference 22

Member Function Documentation

QBuffer::QBuffer ()

Constructs an empty buffer.

QBuffer::QBuffer (QByteArray buf)
Constructs a buffer that operates on buf. If you open the buffer in write mode (I0_WriteOnly or I0O_ReadWrite)
and write something into the buffer, buf will be modified.
Example:
QCString str = "abc";
Quffer b(str);
b.open(1O WiteOnly);
b.at(3); // position at the 4th character (the terninating \0)
b.witeBlock("def", 4); // wite "def" including the termnating \0

b.cl ose();
/1 Now, str == "abcdef" with a terninating \0

See also setBuffer() [p. 22].

QBuffer:: ~QBuffer ()

Destroys the buffer.

QByteArray QBuffer::buffer () const

Returns this buffer’s byte array.
See also setBuffer() [p. 22].

bool QBuffer::setBuffer (QByteArray buf)

Replaces the buffer’s contents with buf.
This may not be done when isOpen() is TRUE.

Note that if you open the buffer in write mode (I0_WriteOnly or I0 ReadWrite) and write something into the
buffer, buf is also modified because QByteArray is an explicitly shared class.

See also buffer() [p. 22], open() [Input/Output and Networking with Qt] and close() [Input/Output and
Networking with Qt].

Q_LONG QBuffer::writeBlock (const char * p, Q ULONG len) [virtual]

Writes len bytes from p into the buffer at the current index, overwriting any characters there and extending the
buffer if necessary. Returns the number of bytes actually written.

Returns -1 if an error occurred.

See also readBlock() [Input/Output and Networking with Qt].

Reimplemented from QIODevice [Input/Output and Networking with Qt].

QBuffer Class Reference 23

Q_LONG QBuffer::writeBlock (const QByteArray & data)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This convenience function takes data and is the same as calling wri t eBl ock(data.data(), data.size()).

QCanvas Class Reference

The QCanvas class provides a 2D area that can contain QCanvasltem objects.
This class is part of the canvas module.
#i ncl ude <qcanvas. h>

Inherits QObject [Additional Functionality with Qt].

Public Members

m QCanvas (QObject * parent = 0, const char * name = 0)
m QCanvas (int w, int h)

QCanvas (QPixmap p, int h, int v, int tilewidth, int tileheight)
m virtual ~QCanvas ()

virtual void setTiles (QPixmap p, int h, int v, int tilewidth, int tileheight)
virtual void setBackgroundPixmap (const QPixmap & p)

QPixmap backgroundPixmap () const

virtual void setBackgroundColor (const QColor & c)

QColor backgroundColor () const

virtual void setTile (int x, int y, int tilenum)

int tile (int x, int y) const

n int tilesHorizontally () const

= int tilesVertically () const

int tileWidth () const

int tileHeight () const

virtual void resize (int w, int h)
int width () const

int height () const

QSize size () const

m QRect rect () const

m bool onCanvas (int x, int y) const

= bool onCanvas (const QPoint & p) const

bool validChunk (int x, int y) const

bool validChunk (const QPoint & p) const

int chunkSize () const

virtual void retune (int chunksze, int mxclusters = 100)
virtual void setAllChanged ()

virtual void setChanged (const QRect & area)

m virtual void setUnchanged (const QRect & area)
QCanvasltemList allltems ()

24

QCanvas Class Reference 25

m QCanvasItemlList collisions (const QPoint & p) const

m QCanvasltemList collisions (const QRect & r) const

m QCanvasItemlList collisions (const QPointArray & chunklist, const QCanvasltem * item, bool exact) const
m void drawArea (const QRect & clip, QPainter * painter, bool dbuf = FALSE)

m virtual void setAdvancePeriod (int ms)

virtual void setUpdatePeriod (int ms)

virtual void setDoubleBuffering (bool y)

Public Slots

m virtual void advance ()
m virtual void update ()

Signals

m void resized ()

Protected Members

m virtual void drawBackground (QPainter & painter, const QRect & clip)
m virtual void drawForeground (QPainter & painter, const QRect & clip)

Detailed Description

The QCanvas class provides a 2D area that can contain QCanvasltem objects.

The QCanvas class manages its 2D graphic area and all the canvas items the area contains. The canvas is displayed
on screen with a QCanvasView widget. Multiple QCanvasView widgets may be associated with a canvas to provide
multiple views of the same canvas.

The canvas is optimized for large numbers of items. Qt provides a rich set of canvas item classes, e.g. QCanvasEl-
lipse, QCanvasLine, QCanvasPolygon, QCanvasPolygonalltem, QCanvasRectangle, QCanvasSpline, QCanvasSprite
and QCanvasText. You can subclass to create your own canvas items; QCanvasPolygonalltem is the most common
base class used for this purpose.

Although a canvas may appear to be similar to a widget with child widgets, there are several notable differences:

e Canvas items are usually far faster to manipulate and redraw than child widgets, with the speed advantage
becoming especially great when there are many canvas items and non-rectangular items. In most situations
canvas items are also a lot more memory efficient than child widgets.

e It’s easy to detect overlapping items (collision detection).

e The canvas can be larger than a widget. A million-by-million canvas is perfectly possible. Although a widget
might be very inefficient at this size and some window systems might not support it at all, QCanvas scales
well. Even with a billion pixels and a million items finding a particular canvas item, detecting collisions, etc.
is still fast.

e Two or more QCanvasView objects can view the same canvas.

e An arbitrary transformation matrix can be set on each QCanvasView which makes it easy to zoom, rotate or
sheer the viewed canvas.

QCanvas Class Reference 26

e Widgets provide a lot more functionality, such as input (QKeyEvent, QMouseEvent etc.) and layout manage-
ment (QGridLayout etc.).

A canvas consists of a background, a number of canvas items organized by x, y and z coordinates, and a foreground.
A canvas item’s z coordinate may be treated as a layer number — canvas items with higher z coordinate will appear
in front of canvas items with a lower z coordinate.

The background is white by default, but can be set to a different color using setBackgroundColor(), or to a repeated
pixmap using setBackgroundPixmap() or to a mosaic of smaller pixmaps using setTiles(). Individual tiles can be
set with setTile(). As usual, there are corresponding get functions like backgroundColor().

Note that QCanvas does not inherit from QWidget, even though it has some functions which provide the same
functionality as those in QWidget. One of these is setBackgroundPixmap(); some others are resize(), size(), width()
and height(). QCanvasView is the widget used to display a canvas on the screen.

Canvas items are added to a canvas by constructing them and passing the canvas to the canvas item’s constructor.
An item can be moved to a different canvas using QCanvasltem::setCanvas().

Canvas items are movable (and in the case of QCanvasSprites, animated) objects that inherit QCanvasItem. Each
canvas item has a position on the canvas (%, y coordinates) and a height (z coordinate), all of which are held as
floating-point numbers. Moving canvas items also have x and y velocities. It’s possible for a canvas item to be
outside the canvas (for example QCanvasltem::x() is greater than width()). When a canvas item is off the canvas,
onCanvas() returns FALSE and the canvas disregards the item. (Canvas items off the canvas do not slow down any
common opererations on the canvas.)

Canvas items can be moved with QCanvasltem::move(). The advance() function moves all QCanva-
sItem::animated() canvas items and setAdvancePeriod() makes QCanvas move them by itself on a periodic ba-
sis. In the context of the QCanvas classes to ‘animate’ a canvas item is to set it in motion, i.e. using QCan-
vasltem::setVelocity(). Animation of a canvas item itself, i.e. items which change over time, is enabled by
calling QCanvasSprite::setFrameAnimation(), or more generally by subclassing and reimplementing QCanva-
sItem::advance(). To detect collisions use one of the QCanvasltem::collisions() functions.

The changed parts of the canvas are redrawn (if they are visible in a canvas view) whenever update() is called. You
can either call update() manually after having changed the contents of the canvas, or force periodic updates using
setUpdatePeriod(). If you have moving objects on the canvas, you need to call advance() every time the objects
should move one step further. Periodic calls to advance() can be forced using setAdvancePeriod(). The advance()
function will call QCanvasltem::advance() on every item that is QCanvasltem::animated() and trigger an update
of the affected areas afterwards. (A canvas item that is ‘animated’ is simply a canvas item that is in motion.)

QCanvas organizes its canvas items into chunks - areas on the canvas that are used to speed up most operations.
Many operations start by eliminating most chunks (i.e. those which haven’t changed) and then process only the
canvas items that are in the few interesting (i.e. changed) chunks. A valid chunk, validChunk(), is one which is on
the canvas.

The chunk size is a key factor to QCanvas’s speed: if there are too many chunks, the speed benefit of grouping
canvas items into chunks is reduced. If the chunks are too large, it takes too long to process each one. The
QCanvas constructor picks a hopefully suitable size, but you can call retune() to change it at any time. The
chunkSize() function returns the current chunk size.

The canvas items always make sure they’re in the right chunks; all you need to make sure of is that the canvas uses
the right chunk size. A good rule of thumb is that the size should be a bit smaller than the average canvas item
size. If you have moving objects, the chunk size should be a bit smaller than the average size of the moving items.

The foreground is normally nothing, but if you reimplement drawForeground(), you can draw things in front of all
canvas items.

Areas can be set as changed with setChanged() and set unchanged with setUnchanged(). The entire canvas can be
set as changed with setAllChanged(). A list of all the items on the canvas is returned by allltems().

An area can be copied (painted) to a QPainter with drawArea().
If the canvas is resized it emits the resized() signal.

The examples/canvas application and the 2D graphics page of the examples/demo application demonstrate many

QCanvas Class Reference 27

of QCanvas’s facilities.

See also QCanvasView [p. 71], QCanvasltem [p. 36], Abstract Widget Classes, Graphics Classes and Image
Processing Classes.

Member Function Documentation

QCanvas::QCanvas (QObject * parent = 0, const char * name = 0)

Create a QCanvas with no size. parent and name have the usual QObject meaning.

You must call resize() at some time after creation to be able to use the canvas.

QCanvas::QCanvas (int w, int h)

Constructs a QCanvas that is w pixels wide and h pixels high.

QCanvas::QCanvas (QPixmap p, int h, int v, int tilewidth, int tileheight)
Constructs a QCanvas which will be composed of h tiles horizontally and v tiles vertically. Each tile will be an image
tilewidth by tileheight pixels taken from pixmap p.

The pixmap p is a list of tiles, arranged left to right, (and in the case of pixmaps that have multiple rows of tiles,
top to bottom), with tile O in the top-left corner, tile 1 next to the right, and so on, e.g.

The QCanvas is initially sized to show exactly the given number of tiles horizontally and vertically. If it is resized
to be larger, the entire matrix of tiles will be repeated as much as necessary to cover the area. If it is smaller, tiles
to the right and bottom will not be visible.

See also setTiles() [p. 31].

QCanvas::~QCanvas () [virtual]

Destroys the canvas and all the canvas’s canvas items.

void QCanvas::advance () [virtual slot]

Moves all QCanvasltem::animated() canvas items on the canvas and refreshes all changes to all views of the canvas.
(An ‘animated’ item is an item that is in motion, see setVelocity().)

The advance is done in two phases. In phase 0, the QCanvasltem::advance() function of each QCanva-
sltem::animated () canvas item is called with paramater 0. Then all these canvas items are called again, with
parameter 1. In phase 0, the canvas items should not change position, merely examine other items on the canvas
for which special processing is required, such as collisions between items. In phase 1, all canvas items should
change positions, ignoring any other items on the canvas. This two-phase approach allows for considerations of
"fairness", though no QCanvasItem subclasses supplied with Qt do anything interesting in phase 0.

The canvas can be configured to call this function periodically with setAdvancePeriod ().

See also update() [p. 32].

QCanvas Class Reference 28

QCanvaslItemList QCanvas::allltems ()

Returns a list of all items in the canvas.

QColor QCanvas::backgroundColor () const

Returns the color set by setBackgroundColor(). By default, this is white.

Note that this function is not a reimplementation of QWidget::backgroundColor() (QCanvas is not a subclass of
QWidget), but all QCanvasViews that are viewing the canvas will set their backgrounds to this color.

See also setBackgroundColor() [p. 30] and backgroundPixmap() [p. 28].

QPixmap QCanvas::backgroundPixmap () const

Returns the pixmap set by setBackgroundPixmap(). By default, this is a null pixmap.

See also setBackgroundPixmap() [p. 30] and backgroundColor() [p. 28].

int QCanvas::chunkSize () const

Returns the chunk size of the canvas.

See also retune() [p. 30].

QCanvaslItemList QCanvas::collisions (const QPoint & p) const

Returns a list of canvas items that intersect with the point p. The list is ordered by z coordinates, from highest z
coordinate (front-most item) to lowest z coordinate (rear-most item).

QCanvasItemList QCanvas::collisions (const QRect & r) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a list of items which intersect with the rectangle r. The list is ordered by z coordinates, from highest z
coordinate (front-most item) to lowest z coordinate (rear-most item).

QCanvasItemList QCanvas::collisions (const QPointArray & chunklist,
const QCanvasltem * item, bool exact) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a list of canvas items which intersect with the chunks listed in chunklist, excluding item. If exact is TRUE,
only only those which actually QCanvasltem::collidesWith() item are returned, otherwise canvas items are included
just for being in the chunks.

This is a utility function mainly used to implement the simpler QCanvasltem::collisions() function.

void QCanvas::drawArea (const QRect & clip, QPainter * painter, bool dbuf = FALSE)

Paints all canvas items that are in the area clip to painter, using double-buffering if dbuf is TRUE.

eg. to print the canvas to a printer:

QCanvas Class Reference 29

QPrinter pr;

if (pr.setup())
QPai nter p(&pr)
canvas. dr awAr ea

}

{

’(canvas.rect(), &p);

void QCanvas::drawBackground (QPainter & painter,
const QRect & clip) [virtual protected]

This virtual function is called for all updates of the canvas. It renders any background graphics using the painter
painter, in the area clip. If the canvas has a background pixmap or a tiled background, that graphic is used,
otherwise the canvas is cleared using the background color.

If the graphics for an area change, you must explicitly call setChanged(const QRect&) for the result to be visible
when update() is next called.

See also setBackgroundColor() [p. 30], setBackgroundPixmap() [p. 30] and setTiles() [p. 31].

void QCanvas::drawForeground (QPainter & painter,
const QRect & clip) [virtual protected]

This virtual function is called for all updates of the canvas. It renders any foreground graphics using the painter
painter, in the area clip.

If the graphics for an area change, you must explicitly call setChanged(const QRect&) for the result to be visible
when update() is next called.

The default is to draw nothing.

int QCanvas::height () const

Returns the height of the canvas, in pixels.

bool QCanvas::onCanvas (int x, int y) const

Returns TRUE if the pixel position (x, ¥) is on the canvas; otherwise returns FALSE.

bool QCanvas::onCanvas (const QPoint & p) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns TRUE if the pixel position p is on the canvas; otherwise returns FALSE.

QRect QCanvas::rect () const

Returns a rectangle the size of the canvas.

void QCanvas::resize (int w, int h) [virtual]

Changes the size of the canvas to have a width of w and a height of h. This is a slow operation.

QCanvas Class Reference 30

void QCanvas::resized () [signal]

This signal is emitted whenever the canvas is resized. Each QCanvasView connects to this signal to keep the
scrollview size correct.

void QCanvas::retune (int chunksze, int mxclusters = 100) [virtual]
Change the efficiency tuning parameters to mxclusters clusters, each of size chunksze. This is a slow operation if
there are many objects on the canvas.

The canvas is divided into chunks which are rectangular areas of the canvas chunksze wide by chunksze high. Use
a chunk size which is about the average size of the canvas items. If you choose a chunk size which is too small it
will increase the amount of calculation required when drawing since each change will affect many chunks. If you
choose a chunk size which is too large the amount of drawing required will increase because for each change a lot
of drawing will be required because there will be many (unchanged) canvas items which are in the same chunk as
the changed canvas items.

Internally, a canvas uses a low-resolution "chunk matrix" to keep track of all the items in the canvas. A 64x64
chunk matrix is the default for a 1024x1024 pixel canvas, where each chunk collects canvas items in a 16x16 pixel
square. This default is also affected by setTiles(). You can tune this default with this function, for example if you
have a very large canvas and want to trade off speed for memory then you might set the chunk size to 32 or 64.

The mxclusters argument is the number of rectangular groups of chunks that will be separately drawn. If the canvas
has a large number of small, dispersed items, this should be about that number. Our testing suggests that a large
number of clusters is almost always best.

void QCanvas::setAdvancePeriod (int ms) [virtual]

Sets the canvas to call advance() every ms milliseconds. Any previous setting by setAdvancePeriod() or setUpdate-
Period() is overridden.

If ms is less than 0 advancing will be stopped.
void QCanvas::setAllChanged () [virtual]

Marks the whole canvas as changed. All views of the canvas will be entirely redrawn when update() is next called.

void QCanvas::setBackgroundColor (const QColor & c¢) [virtual]

Sets the solid background to be the color c.

See also backgroundColor() [p. 28], setBackgroundPixmap() [p. 30] and setTiles() [p. 31].

void QCanvas::setBackgroundPixmap (const QPixmap & p) [virtual]

Sets the solid background to be the pixmap p repeated as necessary to cover the entire canvas.

See also backgroundPixmap() [p. 28], setBackgroundColor() [p. 30] and setTiles() [p. 31].

void QCanvas::setChanged (const QRect & area) [virtual]

Marks area as changed. This area will be redrawn in all views showing it when update() is next called.

QCanvas Class Reference 31

void QCanvas::setDoubleBuffering (bool y) [virtual]

If y is TRUE (the default) double-buffering is switched on; otherwise double-buffering is switched off.

Turning off double-buffering causes the redrawn areas to flicker a bit also gives a (usually small) performance
improvement.

void QCanvas::setTile (int x, int y, int tilenum) [virtual]

Sets the tile at (x, y) to use tile number tilenum, which is an index into the tile pixmaps. The canvas will update
appropriately when update() is next called.

The images are taken from the pixmap set by setTiles() and are arranged left to right, (and in the case of pixmaps
that have multiple rows of tiles, top to bottom), with tile O in the top-left corner, tile 1 next to the right, and so on,

e.g.

See also tile() [p. 32] and setTiles() [p. 311].

void QCanvas::setTiles (QPixmap p, int h, int v, int tilewidth, int tileheight) [virtual]
Sets the QCanvas to be composed of h tiles horizontally and v tiles vertically. Each tile will be an image tilewidth
by tileheight pixels from pixmap p.

The pixmap p is a list of tiles, arranged left to right, (and in the case of pixmaps that have multiple rows of tiles,
top to bottom), with tile O in the top-left corner, tile 1 next to the right, and so on, e.g.

If the canvas is larger than the matrix of tiles, the entire matrix is repeated as necessary to cover the whole canvas.
If it is smaller, tiles to the right and bottom are not visible.

The width and height of p must be a multiple of tilewidth and tileheight. If they are not the function will return
without performing any action.

void QCanvas::setUnchanged (const QRect & area) [virtual]

Marks area as unchanged. The area will not be redrawn in the views for the next update(), unless it is marked a
changed again before the next call to update().

void QCanvas::setUpdatePeriod (int ms) [virtual]

Sets the canvas to call update() every ms milliseconds. Any previous setting by setAdvancePeriod() or setUpdate-
Period() is cancelled.

If ms is less than 0 automatic updating will be stopped.

QSize QCanvas::size () const

Returns the size of the canvas, in pixels.

QCanvas Class Reference 32

int QCanvas::tile (int x, int y) const

Returns the tile at position (x, y). Initially, all tiles are 0.

The parameters must be within range, i.e. 0 < x < tilesHorizontally() and 0 < y < tilesVertically().
See also setTile() [p. 31].

int QCanvas::tileHeight () const

Returns the height of each tile.

int QCanvas::tileWidth () const

Returns the width of each tile.

int QCanvas::tilesHorizontally () const

Returns the number of tiles horizontally.

int QCanvas::tilesVertically () const

Returns the number of tiles vertically.

void QCanvas::update () [virtual slot]

Repaints changed areas in all views of the canvas.

See also advance() [p. 27].

bool QCanvas::validChunk (int x, int y) const

Returns TRUE if the chunk position (x, y) is on the canvas; otherwise returns FALSE.

bool QCanvas::validChunk (const QPoint & p) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns whether the chunk position p is on the canvas.

int QCanvas::width () const

Returns the width of the canvas, in pixels.

QCanvasEllipse Class Reference

The QCanvasEllipse class provides an ellipse or ellipse segment on a QCanvas.
This class is part of the canvas module.
#i ncl ude <qcanvas. h>

Inherits QCanvasPolygonalltem [p. 54].

Public Members

m QCanvasEllipse (QCanvas * canvas)

m QCanvasEllipse (int width, int height, QCanvas * canvas)
m QCanvasEllipse (int width, int height, int startangle, int angle, QCanvas * canvas)
m ~QCanvasEllipse ()

m int width () const

m int height () const

» void setSize (int width, int height)

» void setAngles (int start, int length)

m int angleStart () const

m int angleLength () const

e virtual int rtti () const

Protected Members

m virtual void drawShape (QPainter & p)

Detailed Description

The QCanvasEllipse class provides an ellipse or ellipse segment on a QCanvas.

A canvas item that paints an ellipse or ellipse segment with a QBrush. The ellipse’s height, width, start angle and
angle length can be set at construction time. The size can be changed at runtime with setSize(), and the angles can
be changed (if you’re displaying an ellipse segment rather than a whole ellipse) with setAngles().

Note that angles are specified in 16ths of a degree.

33

QCanvasEllipse Class Reference 34

length angle a0

D

270

If a start angle and length angle are set then an ellipse segment will be drawn. The start angle is the angle that goes
from zero in a counter-clockwise direction (shown in green in the diagram). The length angle is the angle from the
start angle in a counter-clockwise direction (shown in blue in the diagram). The blue segment is the segment of
the ellipse that would be drawn. If no start angle and length angle are specified the entire ellipse is drawn.

The ellipse can be drawn on a painter with drawShape().

Like any other canvas item ellipses can be moved with move() and moveBy(), or by setting coordinates with setX(),
setY() and setZ().

See also Graphics Classes and Image Processing Classes.

Member Function Documentation

QCanvasEllipse::QCanvasEllipse (QCanvas * canvas)

Constructs a 32x32 ellipse, centered at (0, 0) on canvas.

QCanvasEllipse::QCanvasEllipse (int width, int height, QCanvas * canvas)

Constructs a width by height pixel ellipse, centered at (0,0) on canvas.

QCanvasEllipse::QCanvasEllipse (int width, int height, int startangle, int angle,
QCanvas * canvas)

Constructs a width by height pixel ellipse, centered at (0,0) on canvas. Only a segment of the ellipse is drawn,
starting at angle startangle, and extending for angle angle (the angle length).

Note that angles are specified in 1/16ths of a degree.

QCanvasEllipse::~QCanvasEllipse ()

Destroys the ellipse.

int QCanvasEllipse::angleLength () const

Returns the length angle (the extent of the ellipse segment) in 16ths of a degree. Initially this will be 360 * 16 (a
complete ellipse).

See also setAngles() [p. 35] and angleStart() [p. 35].

QCanvasEllipse Class Reference

int QCanvasEllipse::angleStart () const

Returns the start angle in 16ths of a degree. Initially this will be 0.
See also setAngles() [p. 35] and angleLength() [p. 34].

void QCanvasEllipse::drawShape (QPainter & p) [virtual protected]

Draws the ellipse, centered at x(), y() using the painter p.
Note that QCanvasEllipse does not support an outline (pen is always NoPen).

Reimplemented from QCanvasPolygonalltem [p. 56].

int QCanvasEllipse::height () const

Returns the height of the ellipse.

int QCanvasEllipse::rtti () const [virtual]

Returns 6 (QCanvasltem::Rtti_Ellipse).
See also QCanvasItem::rtti() [p. 41].

Reimplemented from QCanvasPolygonalltem [p. 56].

void QCanvasEllipse::setAngles (int start, int length)

35

Sets the angles for the ellipse. The start angle is start and the extent of the segment is length (the angle length)
from the start. The angles are specified in 16ths of a degree. By default the ellipse will start at 0 and have an angle

length of 360 * 16 (a complete ellipse).
See also angleStart() [p. 35] and angleLength() [p. 34].

void QCanvasEllipse::setSize (int width, int height)

Sets the width and height of the ellipse.

int QCanvasEllipse::width () const

Returns the width of the ellipse.

QCanvasItem Class Reference

The QCanvasltem class provides an abstract graphic object on a QCanvas.
This class is part of the canvas module.

#i ncl ude <qcanvas. h>

Inherits Qt [Additional Functionality with Qt].

Inherited by QCanvasSprite [p. 63], QCanvasPolygonalltem [p. 54] and QCanvasText [p. 68].

Public Members

m QCanvasItem (QCanvas * canvas)

m virtual ~QCanvaslItem ()

m double x () const

» double y () const

= double z () const

m virtual void moveBy (double dx, double dy)
void move (double x, double y)

void setX (double x)

void setY (double y)

void setZ (double z)

bool animated () const

virtual void setAnimated (bool y)

virtual void setVelocity (double vx, double vy)
m void setXVelocity (double vx)

» void setYVelocity (double vy)

double xVelocity () const

double yVelocity () const

virtual void advance (int phase)

virtual bool collidesWith (const QCanvasltem * other) const

QCanvasltemList collisions (bool exact) const

virtual void setCanvas (QCanvas * ¢)
m virtual void draw (QPainter & painter)
m void show ()

= void hide ()

virtual void setVisible (bool yes)

bool isVisible () const

virtual void setSelected (bool yes)

bool isSelected () const
virtual void setEnabled (bool yes)

36

QCanvasltem Class Reference 37

m bool isEnabled () const

virtual void setActive (bool yes)

bool isActive () const

bool visible () const (obsolete)

bool selected () const (obsolete)

bool enabled () const (obsolete)

= bool active () const (obsolete)

m enum RttiValues { Rtti Item = O, Rtti_Sprite = 1, Rtti Polygonalltem = 2, Rtti Text = 3, Rtti_Polygon = 4,
Rtti_Rectangle = 5, Rtti_Ellipse = 6, Rtti_Line = 7, Rtti_Spline = 8 }

m virtual int rtti () const

e virtual QRect boundingRect () const
e virtual QRect boundingRectAdvanced () const

QCanvas * canvas () const

Protected Members

m void update ()

Detailed Description

The QCanvasltem class provides an abstract graphic object on a QCanvas.

A variety of subclasses provide immediately usable behaviour; this class is a pure abstract superclass providing
the behaviour that is shared among all the concrete canvas item classes. QCanvasltem is not intended for direct
subclassing. It is much easier to subclass one of its subclasses, e.g. QCanvasPolygonalltem (the commonest base
class), QCanvasRectangle, QCanvasSprite, QCanvasEllipse or QCanvasText.

Canvas items are added to a canvas by constructing them and passing the canvas to the canvas item’s constructor.
An item can be moved to a different canvas using setCanvas().

A QCanvasltem object can be moved in the x(), y() and z() dimensions using functions such as move(), moveBy(),
setX(), setY() and setZ(). A canvas item can be set in motion, ‘animated’, using setAnimated() and given a velocity
in the x and y directions with setXVelocity() and setYVelocity() — the same effect can be achieved by calling
setVelocity(). Use the collidesWith() function to see if the canvas item will collide on the next advance(1) and use
collisions() to see what collisions have occurred.

Use QCanvasSprite or your own subclass of QCanvasSprite to create canvas items which are animated, i.e. which
change over time.

The size of a canvas item is given by boundingRect(). Use boundingRectAdvanced() to see what the size of the
canvas item will be after the next advance(1) call.

The rtti() function is used for identifying subclasses of QCanvasltem. The canvas() function returns a pointer to
the canvas which contains the canvas item.

QCanvasltem provides the show() and isVisible() functions like those in QWidget.

QCanvasltem also provides the setEnabled(), setActive() and setSelected() functions; these functions set the rele-
vant boolean and cause a repaint but the boolean values they set are not used in QCanvasltem itself. You can make
use of these booleans in your subclasses.

By default canvas items have no velocity, no size and are not in motion. The subclasses provided in Qt do not
change these defaults except where noted.

See also Graphics Classes and Image Processing Classes.

QCanvasltem Class Reference 38

Member Type Documentation

QCanvasltem::RttiValues
This enum is used to name the different types of canvas item.

e QCanvasltem:Riti _|tem- Canvas item abstract base class
e Canvaslitem:Rtti Ellipse

e (Canvasltem:Rtti_Line

e (Canvasltem:Rtti Pol ygon

e (Canvasitem:Riti _Pol ygonal Item

e (Canvasitem:Rtti _Rectangle

e Canvasltem:Rtti _Spline

e (Canvaslitem:Riti _Sprite

e Canvasltem:Rtti Text

Member Function Documentation

QCanvaslItem::QCanvasltem (QCanvas * canvas)

Constructs a QCanvasltem on canvas canvas.

See also setCanvas() [p. 411].

QCanvaslItem::~QCanvasItem () [virtual]

Destroys the QCanvasltem and removes it from its canvas.

bool QCanvasItem::active () const
This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use isActive() instead.

void QCanvasltem::advance (int phase) [virtual]
The default implementation moves the canvas item, if it is animated(), by the preset velocity if phase is 1, and does
nothing if phase is 0.

Note that if you reimplement this function, the reimplementation must not change the canvas in any way, for
example it must not add or remove items.

See also QCanvas::advance() [p. 27] and setVelocity() [p. 42].

Reimplemented in QCanvasSprite.

QCanvasltem Class Reference 39

bool QCanvasItem::animated () const

Returns TRUE is the canvas item is in motion; otherwise returns FALSE.

See also setVelocity() [p. 42] and setAnimated() [p. 41].

QRect QCanvaslItem::boundingRect () const [virtual]

Returns the bounding rectangle in pixels that the canvas item covers.
See also boundingRectAdvanced() [p. 39].

Reimplemented in QCanvasSprite, QCanvasPolygonalltem and QCanvasText.

QRect QCanvaslItem::boundingRectAdvanced () const [virtual]

Returns the bounding rectangle of pixels that the canvas item will cover after advance(1) is called.

See also boundingRect() [p. 391].

QCanvas * QCanvasltem::canvas () const

Returns the canvas containing the canvas item.

bool QCanvasItem::collidesWith (const QCanvasltem * other) const [virtual]
Returns TRUE if the canvas item will collide with the other item after they have moved by their current velocities;
otherwise returns FALSE.

See also collisions() [p. 39].

QCanvaslItemList QCanvaslItem::collisions (bool exact) const

Returns the list of canvas items that this canvas item has collided with.

A collision is generally defined as pixels of one item drawing on the pixels of another item, but not all subclasses
are so precise. Also, since pixel-wise collision detection can be slow, this function works in either exact or inexact
mode, according to the exact parameter.

If exact is TRUE, the canvas items returned have been accurately tested for collision with the canvas item.

If exact is FALSE, the canvas items returned are near the canvas item. You can test the canvas items returned using
collidesWith() if any are interesting collision candidates. By using this approach, you can ignore some canvas items
for which collisions are not relevant.

The returned list is a list of QCanvasItems, but often you will need to cast the items to their subclass types. The safe
way to do this is to use rtti() before casting. This provides some of the functionality of the standard C++ dynamic
cast operation even on compilers where dynamic casts are not available.

Note that a canvas item may be ‘on’ a canvas, e.g. it was created with the canvas as parameter, even though its
coordinates place it beyond the edge of the canvas’s area. Collision detection only works for canvas items which
are wholly or partly within the canvas’s area.

QCanvasltem Class Reference 40

void QCanvasItem::draw (QPainter & painter) [virtual]

This abstract virtual function draws the canvas item using painter.
Reimplemented in QCanvasSprite, QCanvasPolygonalltem and QCanvasText.
bool QCanvaslItem::enabled () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use isEnabled() instead.

void QCanvasltem::hide ()

Shorthand for setVisible (FALSE).

bool QCanvaslItem::isActive () const

Returns TRUE if the QCanvasltem is active; otherwise returns FALSE.

bool QCanvasItem::isEnabled () const

Returns TRUE if the QCanvasltem is enabled; otherwise returns FALSE.

bool QCanvaslItem::isSelected () const

Returns TRUE if the canvas item is selected; otherwise returns FALSE.

bool QCanvasltem::isVisible () const

Returns TRUE if the canvas item is visible otherwise returns FALSE.

Note that in this context TRUE does not mean that the canvas item is currently in a view, merely that if a view is
showing the area where the canvas item is positioned, and the item is not obscured by items with higher z values,
and the view is not obscured by overlaying windows, it would be visible.

See also setVisible() [p. 42] and z() [p. 43].

void QCanvasItem::move (double x, double y)

Moves the canvas item to the absolute position (x, y).

void QCanvasltem::moveBy (double dx, double dy) [virtual]

Moves the canvas item relative to its current position by (dx, dy).

QCanvasltem Class Reference 41

int QCanvaslItem::rtti () const [virtual]

Returns 0 (QCanvasltem::Rtti_Item).

Although often frowned upon by purists, Run Time Type Identification is very useful in these classes as it allows a
QCanvas to be an efficient indexed storage mechanism.

Make your derived classes return their own values for rtti(), so that you can distinguish between objects returned
by QCanvas::at(). You should use values greater than 1000 to allow extensions to this class.

Overuse of this functionality can damage it’s extensibility. For example, once you have identified a base class of a
QCanvasltem found by QCanvas::at(), cast it to that type and call meaningful methods rather than acting upon the
object based on its rtti value.

For example:

QCanvasltent item
[/ Find an item eg. with QCanvasltem:collisions().

if (item>rtti() == MWySprite::RTTI) {
M/Sprite* s = (MySprite*)item
if (s->isDanmagable()) s->IoseH tPoints(1000);
if (s->isHot()) nyself->loseHitPoints(1000);

Reimplemented in QCanvasSprite, QCanvasPolygonalltem and QCanvasText.

bool QCanvaslItem::selected () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use isSelected () instead.

void QCanvasltem::setActive (bool yes) [virtual]

Sets the active flag of the item to yes and causes it to be redrawn when QCanvas::update() is next called.

The QCanvas, QCanvasltem and the Qt-supplied QCanvasltem subclasses do not make use of this value. The
setActive() function is supplied because many applications need it, but it is up to you how you use the isActive()
value.

void QCanvasltem::setAnimated (bool y) [virtual]

Sets the canvas item to be in motion if y is TRUE, or not if y is FALSE. The speed and direction of the motion is set
with setVelocity(), or setXVelocity() and setYVelocity().

See also advance() [p. 38] and QCanvas::advance() [p. 27].

void QCanvasltem::setCanvas (QCanvas * c¢) [virtual]

Sets the QCanvas upon which the canvas item is to be drawn to c.

See also canvas() [p. 391.

QCanvasltem Class Reference 42

void QCanvasItem::setEnabled (bool yes) [virtual]

Sets the enabled flag of the item to yes and causes it to be redrawn when QCanvas::update() is next called.

The QCanvas, QCanvasltem and the Qt-supplied QCanvasItem subclasses do not make use of this value. The
setEnabled () function is supplied because many applications need it, but it is up to you how you use the isEnabled()
value.

void QCanvaslItem::setSelected (bool yes) [virtual]

Sets the selected flag of the item to yes and causes it to be redrawn when QCanvas::update() is next called.

The QCanvas, QCanvasltem and the Qt-supplied QCanvasltem subclasses do not make use of this value. The
setSelected () function is supplied because many applications need it, but it is up to you how you use the isSelected ()
value.

void QCanvasltem::setVelocity (double vx, double vy) [virtual]

Sets the canvas item to be in motion, moving by vx and vy pixels in the horizontal and vertical directions respec-
tively.

See also advance() [p. 38].

void QCanvaslItem::setVisible (bool yes) [virtual]

Makes the canvas item visible if yes is TRUE, or invisible if yes is FALSE. The change takes effect when QCan-
vas::update() is next called.

void QCanvaslItem::setX (double x)

Moves the canvas item so that its x-position is x.

See also x() [p. 43] and move() [p. 40].

void QCanvasltem::setXVelocity (double vx)

Sets the horizontal component of the canvas item’s velocity to vx.

void QCanvasltem::setY (double y)
Moves the canvas item so that its y-position is y.

See also y() [p. 43] and move() [p. 40].

void QCanvasItem::setYVelocity (double vy)

Sets the vertical component of the canvas item’s velocity to vy.

QCanvasltem Class Reference 43

void QCanvaslItem::setZ (double z)

Sets the z index of the canvas item to z. Higher-z items obscure (are in front of) lower-z items.
See also z() [p. 43] and move() [p. 40].

void QCanvasItem::show ()

Shorthand for setVisible(TRUE).

void QCanvasltem::update () [protected]

Call this function to repaint the canvas’s changed chunks.

bool QCanvaslItem::visible () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use isVisible() instead.

double QCanvasItem::x () const

Returns the horizontal position of the canvas item. Note that subclasses often have an origin other than the top-left
corner.

double QCanvasItem::xVelocity () const

Returns the horizontal velocity component of the canvas item.

double QCanvaslItem::y () const

Returns the vertical position of the canvas item. Note that subclasses often have an origin other than the top-left
corner.

double QCanvasItem::yVelocity () const

Returns the vertical velocity component of the canvas item.

double QCanvasItem::z () const

Returns the z index of the canvas item, which is used for visual order: higher-z items obscure (are in front of)
lower-z items.

QCanvasItemList Class Reference

The QCanvasltemList class is a list of QCanvasltems.
This class is part of the canvas module.
#i ncl ude <qcanvas. h>

Inherits QValueList [Datastructures and String Handling with Qt] <QCanvasltem * >.

Detailed Description

The QCanvasltemList class is a list of QCanvasltems.

QCanvasltemList is a QValueList of pointers to QCanvasItems. This class is used by some methods in QCanvas that
need to return a list of canvas items.

The QValueList documentation describes how to use this list.

See also Graphics Classes and Image Processing Classes.

44

QCanvasLine Class Reference

The QCanvasLine class provides a line on a QCanvas.
This class is part of the canvas module.
#i ncl ude <qcanvas. h>

Inherits QCanvasPolygonalltem [p. 54].

Public Members

m QCanvasLine (QCanvas * canvas)

m ~QCanvasLine ()

» void setPoints (int xa, int ya, int xb, int yb)
= QPoint startPoint () const

= QPoint endPoint () const

m virtual int rtti () const

Detailed Description

The QCanvasLine class provides a line on a QCanvas.

The line inherits functionality from QCanvasPolygonalltem, for example the setPen() function. The start and end
points of the line are set with setPoints().

Like any other canvas item lines can be moved with QCanvasitem::move() and QCanvasltem::moveBy(), or by
setting coordinates with QCanvasltem::setX(), QCanvasltem::setY() and QCanvasltem::setZ().

See also Graphics Classes and Image Processing Classes.

Member Function Documentation

QCanvasLine::QCanvasLine (QCanvas * canvas)

Constructs a line from (0,0) to (0,0) on canvas.

See also setPoints() [p. 46].

QCanvasLine::~QCanvasLine ()

Destroys the line.

45

QCanvasLine Class Reference

QPoint QCanvasLine::endPoint () const

Returns the end point of the line.

See also setPoints() [p. 46] and startPoint() [p. 46].

int QCanvasLine::rtti () const [virtual]

Returns 7 (QCanvasltem::Rtti_Line).
See also QCanvasltem::rtti() [p. 41].

Reimplemented from QCanvasPolygonalltem [p. 56].

void QCanvasLine::setPoints (int xa, int ya, int xb, int yb)

Sets the line’s start point to (xa, ya) and its end point to (xb, yb).

QPoint QCanvasLine::startPoint () const

Returns the start point of the line.

See also setPoints() [p. 46] and endPoint() [p. 46].

46

QCanvasPixmap Class Reference

The QCanvasPixmap class provides a pixmap in a QCanvas.
This class is part of the canvas module.
#i ncl ude <qcanvas. h>

Inherits QPixmap [p. 225].

Public Members

m QCanvasPixmap (const QString & datafilename)
m QCanvasPixmap (const QImage & image)
QCanvasPixmap (const QPixmap & pm, const QPoint & offset)

m ~QCanvasPixmap ()

m int offsetX () const

m int offsetY () const

» void setOffset (int x, int y)

Detailed Description

The QCanvasPixmap class provides a pixmap in a QCanvas.

The pixmap is a QPixmap and can only be set in the constructor. There are three different constructors, one taking
a QPixmap, one a QImage and one a file name that refers to a file in any supported file format (see QImagelO).

QCanvasPixmap can have a hotspot which is defined in terms of an (x, y) offset. When you create a QCanvasPixmap
from a PNG file or from a QImage that has a QImage::offset(), the offset() is initialized appropriately, otherwise
the constructor leaves it at (0, 0). You can set it later using setOffset(). When the QCanvasPixmap is used in a
QCanvasSprite, the offset position is the point at QCanvasltem::x() and QCanvasltem::y(), not the top-left corner
of the pixmap.

Note that for QCanvasPixmap objects created by a QCanvasSprite, the position of each QCanvasPixmap object is
set so that the hotspot stays in the same position.

Like any other canvas item canvas pixmaps can be moved with QCanvasltem::move() and QCanvasltem::moveBy(),
or by setting coordinates with QCanvasltem::setX(), QCanvasltem::setY() and QCanvasltem::setZ().

See also QCanvasPixmapArray [p. 49], QCanvasltem [p. 36], QCanvasSprite [p. 63], Graphics Classes and Image
Processing Classes.

47

QCanvasPixmap Class Reference

Member Function Documentation

QCanvasPixmap::QCanvasPixmap (const QString & datafilename)

Constructs a QCanvasPixmap that uses the image stored in datafilename.

QCanvasPixmap::QCanvasPixmap (const QImage & image)

Constructs a QCanvasPixmap from the image image.

QCanvasPixmap::QCanvasPixmap (const QPixmap & pm, const QPoint & offset)

Constructs a QCanvasPixmap from the pixmap pm using the offset offset.

QCanvasPixmap::~QCanvasPixmap ()

Destroys the pixmap.

int QCanvasPixmap::offsetX () const

Returns the X-offset of the pixmap’s hotspot.
See also setOffset() [p. 48].

int QCanvasPixmap::offsetY () const
Returns the Y-offset of the pixmap’s hotspot.
See also setOffset() [p. 48].

void QCanvasPixmap::setOffset (int x, int y)

Sets the offset of the pixmap’s hotspot to (x, y).

Note that you must not call this function if any QCanvasSprites are currently showing this pixmap.

48

QCanvasPixmapArray Class Reference

The QCanvasPixmapArray class provides an array of QCanvasPixmaps.
This class is part of the canvas module.

#i ncl ude <qcanvas. h>

Public Members

m QCanvasPixmapArray ()

m QCanvasPixmapArray (const QString & datafilenamepattern, int fc = 0)

m QCanvasPixmapArray (QPtrList <QPixmap> list, QPtrList<QPoint> hotspots) (obsolete)
m QCanvasPixmapArray (QValueList<QPixmap> list, QPointArray hotspots = QPointArray ())
m ~QCanvasPixmapArray ()

m bool readPixmaps (const QString & filenamepattern, int fc = 0)

m bool readCollisionMasks (const QString & filename)

m bool operator! () (obsolete)

m bool isValid () const

m QCanvasPixmap * image (int i) const

» void setImage (int i, QCanvasPixmap * p)

e uint count () const

Detailed Description

The QCanvasPixmapArray class provides an array of QCanvasPixmaps.

This class is used by QCanvasSprite to hold an array of pixmaps. It is used to implement animated sprites, i.e.

images that change over time, with each pixmap in the array holding one frame.

Depending on the constructor you use you can load multiple pixmaps into the array, either from a directory (spec-
ifying a wildcard pattern for the files), or from a list of QPixmaps. You can also read in a set of pixmaps after

construction using readPixmaps().

Individual pixmaps can be set with setimage() and retrieved with image(). The number of pixmaps in the array is

returned by count().

QCanvasSprite uses an image’s mask for collision detection. You can change this by reading in a separate set of

image masks using readCollisionMasks().

See also Graphics Classes and Image Processing Classes.

49

QCanvasPixmapArray Class Reference 50

Member Function Documentation

QCanvasPixmapArray::QCanvasPixmapArray ()

Constructs an invalid array (i.e. isValid() will return FALSE). You will need to call readPixmaps() before being able
to use it further.

QCanvasPixmapArray::QCanvasPixmapArray (const QString & datafilenamepattern,
intfc = 0)

Constructs a QCanvasPixmapArray from files.

The fc parameter sets the number of frames to be loaded for this image.

If fc is not 0, datafilenamepattern should contain "%1", e.g. "foo%1.png". The actual filenames are formed by
replacing the %1 with four-digit integers from O to (fc - 1), e.g. foo0000.png, foo0001.png, foo0002.png, etc.

If fc is O, datafilenamepattern is asssumed to be a filename, and the image contained in this file will be loaded as
the first (and only) frame.

If datafilenamepattern does not exist, is not readable, isn’t an image, or some other error occurs, the array ends up
empty and isValid() returns FALSE.

QCanvasPixmapArray::QCanvasPixmapArray (QPtrList<QPixmap> list,
QPtrList<QPoint> hotspots)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use QCanvasPixmapArray::QCanvasPixmapArray(QValueList, QPointArray) instead.

Constructs a QCanvasPixmapArray from the list of QPixmaps list. The hotspots list has to be of the same size as list.

QCanvasPixmapArray::QCanvasPixmapArray (QValueList<QPixmap> list,
QPointArray hotspots = QPointArray ())

Constructs a QCanvasPixmapArray from the list of QPixmaps in the list. Each pixmap will get a hotspot according
to the hotspots array. If no hotspots are specified, each one is set to be at position (0, 0).

If an error occurs, isValid() will return FALSE.

QCanvasPixmapArray::~QCanvasPixmapArray ()

Destroys the pixmap array and all the pixmaps it contains.

uint QCanvasPixmapArray::count () const

Returns the number of pixmaps in the array.

QCanvasPixmap * QCanvasPixmapArray::image (int i) const

Returns pixmap i in the array, if i is nonnegative and smaller than count(), and returns an unspecified value
otherwise.

QCanvasPixmapArray Class Reference 51

bool QCanvasPixmapArray::isValid () const

returns TRUE if the pixmap array is valid; otherwise returns FALSE.

bool QCanvasPixmapArray::operator! ()

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Use isValid() instead.

This returns FALSE if the array is valid, and TRUE if it is not.

bool QCanvasPixmapArray::readCollisionMasks (const QString & filename)

Reads new collision masks for the array.

By default, QCanvasSprite uses the image mask of a sprite to detect collisions. Use this function to set your own
collision image masks.

If count() is 1 filename must specify a real filename to read the mask from. If count() is greater than 1, the filename
must contain a "%1" that will get replaced by the number of the mask to be loaded, similar to QCanvasPixma-
pArray::readPixmaps().

All collision masks must be 1-bit images or this function call will fail.

If the file isn’t readable, contains the wrong number of images, or there is some other error, this function will return
FALSE, and the array will be flagged as invalid.

See also isValid() [p. 511].

bool QCanvasPixmapArray::readPixmaps (const QString & filenamepattern, int fc = 0)

Reads one or more pixmaps into the pixmap array.

If fc is not 0, filenamepattern should contain "%1", e.g. "foo%1.png". The actual filenames are formed by replacing
the %1 with four-digit integers from 0 to (fc - 1), e.g. f000000.png, foo0001.png, foo0002.png, etc.

If fc is O, filenamepattern is asssumed to be a filename, and the image contained in this file will be loaded as the
first (and only) frame.

If filenamepattern does not exist, is not readable, isn’t an image, or some other error occurs, this function will return
FALSE, and isValid () will return FALSE.

See also isValid() [p. 51].

void QCanvasPixmapArray::setlmage (int i, QCanvasPixmap * p)

Replaces the pixmap at index i with pixmap p.
The array takes ownership of p and will delete p when the array itself is deleted.

If i is beyond the end of the array the array is extended to at least i+1 elements, with elements count() to i-1 being
initialized to O.

QCanvasPolygon Class Reference

The QCanvasPolygon class provides a polygon on a QCanvas.
This class is part of the canvas module.

#i ncl ude <qcanvas. h>

Inherits QCanvasPolygonalltem [p. 54].

Inherited by QCanvasSpline [p. 61].

Public Members

= QCanvasPolygon (QCanvas * canvas)
~QCanvasPolygon ()

void setPoints (QPointArray pa)
QPointArray points () const

virtual QPointArray areaPoints () const
virtual int rtti () const

Protected Members

» virtual void drawShape (QPainter & p)

Detailed Description

The QCanvasPolygon class provides a polygon on a QCanvas.

Paints a polygon with a QBrush. The polygon’s points can be set in the constructor or set or changed later using
setPoints(). Use points() to retrieve the points, or areaPoints() to retrieve the points relative to the canvas’s origin.

The polygon can be drawn on a painter with drawShape().

Like any other canvas item polygons can be moved with QCanvasltem::move() and QCanvasltem::moveBy(), or by
setting coordinates with QCanvasltem::setX(), QCanvasltem::setY() and QCanvasltem::setZ().

See also Graphics Classes and Image Processing Classes.

52

QCanvasPolygon Class Reference 53

Member Function Documentation

QCanvasPolygon::QCanvasPolygon (QCanvas * canvas)

Constructs a point-less polygon on the canvas canvas. You should call setPoints() before using it further.

QCanvasPolygon::~QCanvasPolygon ()

Destroys the polygon.

QPointArray QCanvasPolygon::areaPoints () const [virtual]

Returns the vertices of the polygon translated by the polygon’s current x(), y() position, i.e. relative to the canvas’s
origin.
See also setPoints() [p. 53] and points() [p. 53].

Reimplemented from QCanvasPolygonalltem [p. 55].

void QCanvasPolygon::drawShape (QPainter & p) [virtual protected]

Draws the polygon using the painter p.
Note that QCanvasPolygon does not support an outline (pen is always NoPen).

Reimplemented from QCanvasPolygonalltem [p. 56].

QPointArray QCanvasPolygon::points () const

Returns the vertices of the polygon, not translated by the position.

See also setPoints() [p. 53] and areaPoints() [p. 53].

int QCanvasPolygon::rtti () const [virtual]

Returns 4 (QCanvasltem::Rtti Polygon).
See also QCanvasItem::rtti() [p. 41].
Reimplemented from QCanvasPolygonalltem [p. 56].

Reimplemented in QCanvasSpline.

void QCanvasPolygon::setPoints (QPointArray pa)

Sets the points of the polygon to be pa. These points will have their x and y coordinates automatically translated
by x(), y() as the polygon is moved.

QCanvasPolygonalltem Class Reference

The QCanvasPolygonalltem class provides a polygonal canvas item on a QCanvas.
This class is part of the canvas module.

#i ncl ude <qcanvas. h>

Inherits QCanvasltem [p. 36].

Inherited by QCanvasRectangle [p. 58], QCanvasPolygon [p. 52], QCanvasLine [p. 45] and QCanvasEllipse
[p. 33].

Public Members

» QCanvasPolygonalltem (QCanvas * canvas)

» virtual ~QCanvasPolygonalltem ()

virtual void setPen (QPen p)

virtual void setBrush (QBrush b)

QPen pen () const

QBrush brush () const

virtual QPointArray areaPoints () const

virtual QPointArray areaPointsAdvanced () const
m virtual QRect boundingRect () const

e virtual int rtti () const

Protected Members

virtual void draw (QPainter & p)
virtual void drawShape (QPainter & p)
bool winding () const

void setWinding (bool enable)

Detailed Description

The QCanvasPolygonalltem class provides a polygonal canvas item on a QCanvas.

The mostly rectangular classes, such as QCanvasSprite and QCanvasText, use the object’s bounding rectangle for
movement, repainting and collision calculation. However, for most other items, the bounding rectangle can be far
too large — a diagonal line being the worst case, but there are many other cases that are very bad. QCanvasPolyg-
onalltem provides polygon-based bounding rectangle handling, etc., much speeding up such cases.

54

QCanvasPolygonalltem Class Reference 55

Derived classes should try to define as small an area as possible to maximize efficiency, but the polygon must defi-
nitely be contained completely within the polygonal area. Calculating the exact requirements is usually difficult, but
if you allow a small overestimate it can be easy and quick, while still getting almost all of QCanvasPolygonalltem’s
speed.

Note that all subclasses must call hide() in their destructor since hide() needs to be able to access areaPoints().

Normally, QCanvasPolygonalltem uses the odd-even algorithm for determining whether an object intersects this
object. You can change this to the winding algorithm using setWinding().

The bounding rectangle is available using boundingRect(). The points bounding the polygonal item are retrieved
with areaPoints(). Use areaPointsAdvanced() to retrieve the bounding points the polygonal item will have after
QCanvasltem::advance(1) has been called.

By default, QCanvasPolygonalltem objects have a black pen and no brush (the default QPen and QBrush construc-
tors). You can change this with setPen() and setBrush(), but note that some QCanvasPolygonalltem subclasses only
use the brush, ignoring the pen setting.

The polygonal item can be drawn on a painter with draw(). Subclasses must reimplement drawShape() to draw
themselves.

Like any other canvas item polygonal items can be moved with QCanvasltem::move() and QCanvasltem::moveBy(),
or by setting coordinates with QCanvasltem::setX(), QCanvasltem::setY() and QCanvasltem::setZ().

See also Graphics Classes and Image Processing Classes.

Member Function Documentation

QCanvasPolygonalltem::QCanvasPolygonalltem (QCanvas * canvas)

Constructs a QCanvasPolygonalltem on the canvas canvas.

QCanvasPolygonalltem::~QCanvasPolygonalltem () [virtual]

Note that all subclasses must call hide() in their destructor since hide() needs to be able to access areaPoints().

QPointArray QCanvasPolygonalltem::areaPoints () const [virtual]

Returns the points bounding the shape. Note that the returned points are outside the object, not touching it.

Reimplemented in QCanvasPolygon.

QPointArray QCanvasPolygonalltem::areaPointsAdvanced () const [virtual]

Returns the points the polygonal item will have after QCanvasltem::advance(1) is called, i.e. what the points are
when advanced by the current xVelocity() and yVelocity().

QRect QCanvasPolygonalltem::boundingRect () const [virtual]

Returns the bounding rectangle of the polygonal item, based on areaPoints().

Reimplemented from QCanvasItem [p. 39].

QCanvasPolygonalltem Class Reference 56

QBrush QCanvasPolygonalltem::brush () const

Returns the QBrush used to fill the item, if filled.

See also setBrush() [p. 56].

void QCanvasPolygonalltem::draw (QPainter & p) [virtual protected]

Reimplemented from QCanvasltem [p. 36], this draws the polygonal item by setting the pen and brush for the item
on the painter p and calling drawShape() [p. 56].

Reimplemented from QCanvasItem [p. 40].

void QCanvasPolygonalltem::drawShape (QPainter & p) [virtual protected]

Subclasses must reimplement this function to draw their shape. The pen and brush of p are already set to pen()
and brush() prior to calling this function.

See also draw() [p. 56].

Reimplemented in QCanvasRectangle, QCanvasPolygon and QCanvasEllipse.

QPen QCanvasPolygonalltem::pen () const

Returns the QPen used to draw the outline of the item, if any.

See also setPen() [p. 56].

int QCanvasPolygonalltem::rtti () const [virtual]

Returns 2 (QCanvasltem::Rtti Polygonalltem).
See also QCanvasltem::rtti() [p. 41].
Reimplemented from QCanvasltem [p. 41].

Reimplemented in QCanvasRectangle, QCanvasPolygon, QCanvasLine and QCanvasEllipse.

void QCanvasPolygonalltem::setBrush (QBrush b) [virtual]

Sets the QBrush used when drawing the polygonal item to the brush b.
See also setPen() [p. 56], brush() [p. 56] and drawShape() [p. 56].

void QCanvasPolygonalltem::setPen (QPen p) [virtual]

Sets the QPen used when drawing the item to the pen p. Note that many QCanvasPolygonalltems do not use the
pen value.

See also setBrush() [p. 561, pen() [p. 56] and drawShape() [p. 56].

QCanvasPolygonalltem Class Reference 57

void QCanvasPolygonalltem::setWinding (bool enable) [protected]

If enable is TRUE, the polygonal item will use the winding algorithm to determine the "inside" of the polygon;
otherwise the odd-even algorithm will be used.

The default is to use the odd-even algorithm.

See also winding() [p. 571.

bool QCanvasPolygonalltem::winding () const [protected]

Returns TRUE if the polygonal item uses the winding algorithm to determine the "inside" of the polygon. Returns
FALSE if it uses the odd-even algorithm.

The default is to use the odd-even algorithm.

See also setWinding() [p. 571.

QCanvasRectangle Class Reference

The QCanvasRectangle class provides a rectangle on a QCanvas.
This class is part of the canvas module.
#i ncl ude <qcanvas. h>

Inherits QCanvasPolygonalltem [p. 54].

Public Members

m QCanvasRectangle (QCanvas * canvas)

m QCanvasRectangle (const QRect & r, QCanvas * canvas)
QCanvasRectangle (int x, int y, int width, int height, QCanvas * canvas)
m ~QCanvasRectangle ()

m int width () const

m int height () const

» void setSize (int width, int height)

m QSize size () const

m QRect rect () const

e virtual int rtti () const

Protected Members

m virtual void drawShape (QPainter & p)
m virtual QPointArray chunks () const

Detailed Description

The QCanvasRectangle class provides a rectangle on a QCanvas.

This item paints a single rectangle which may have any pen() and brush(), but may not be tilted/rotated. For
rotated rectangles, use QCanvasPolygon.

The rectangle’s size and initial position can be set in the constructor. The size can set or changed later using
setSize(). Use height() and width() to retrieve the rectangle’s dimensions.

The rectangle can be drawn on a painter with drawShape().

Like any other canvas item rectangles can be moved with QCanvasltem::move() and QCanvasltem::moveBy(), or
by setting coordinates with QCanvasItem::setX(), QCanvasltem::setY() and QCanvasltem::setZ().

See also Graphics Classes and Image Processing Classes.

58

QCanvasRectangle Class Reference

Member Function Documentation

QCanvasRectangle::QCanvasRectangle (QCanvas * canvas)

Constructs a rectangle at position (0,0) with both width and height set to 32 pixels on canvas.

QCanvasRectangle::QCanvasRectangle (const QRect & r, QCanvas * canvas)

Constructs a rectangle positioned and sized by r on canvas.

QCanvasRectangle::QCanvasRectangle (int x, int y, int width, int height,
QCanvas * canvas)

Constructs a rectangle at position (x, y) and size width by height, on canvas.

QCanvasRectangle::~QCanvasRectangle ()

Destroys the rectangle.

QPointArray QCanvasRectangle::chunks () const [virtual protected]

Simply calls QCanvasItem::chunks().

void QCanvasRectangle::drawShape (QPainter & p) [virtual protected]
Draws the rectangle on painter p.

Reimplemented from QCanvasPolygonalltem [p. 56].

int QCanvasRectangle::height () const

Returns the height of the rectangle.

QRect QCanvasRectangle::rect () const

Returns the integer-converted x(), y() position and size() of the rectangle as a QRect.

int QCanvasRectangle::rtti () const [virtual]

Returns 5 (QCanvasltem::Rtti Rectangle).
See also QCanvasItem::rtti() [p. 41].

Reimplemented from QCanvasPolygonalltem [p. 56].

void QCanvasRectangle::setSize (int width, int height)

Sets the width and height of the rectangle.

QCanvasRectangle Class Reference

QSize QCanvasRectangle::size () const

Returns the width() and height() of the rectangle.

See also rect() [p. 59] and setSize() [p. 59].

int QCanvasRectangle::width () const

Returns the width of the rectangle.

60

QCanvasSpline Class Reference

The QCanvasSpline class provides multi-bezier splines on a QCanvas.
This class is part of the canvas module.
#i ncl ude <qcanvas. h>

Inherits QCanvasPolygon [p. 52].

Public Members

m QCanvasSpline (QCanvas * canvas)

m ~QCanvasSpline ()

m void setControlPoints (QPointArray ctrl, bool close = TRUE)
» QPointArray controlPoints () const

= bool closed () const

m virtual int rtti () const

Detailed Description

The QCanvasSpline class provides multi-bezier splines on a QCanvas.

A QCanvasSpline is a sequence of 4-point bezier curves joined together to make a curved shape.

You set the control points of the spline with setControlPoints().

If the bezier is closed(), then the first control point will be re-used as the last control point. Therefore, a closed
bezier must have a multiple of 3 control points and an open bezier must have one extra point.

The beziers are not necessarily joined "smoothly". To ensure this, set control points appropriately (general refer-

ences about beziers will explain this in detail).

Like any other canvas item splines can be moved with QCanvasltem::move() and QCanvasltem::moveBy(), or by
setting coordinates with QCanvasltem::setX(), QCanvasltem::setY() and QCanvasltem::setZ().

See also Graphics Classes and Image Processing Classes.

Member Function Documentation

QCanvasSpline::QCanvasSpline (QCanvas * canvas)

Create a spline with no control points on the canvas canvas.

See also setControlPoints() [p. 62].

61

QCanvasSpline Class Reference 62

QCanvasSpline::~QCanvasSpline ()

Destroy the spline.

bool QCanvasSpline::closed () const

Returns whether the control points are considered a closed set.

QPointArray QCanvasSpline::controlPoints () const

Returns the current set of control points.

See also setControlPoints() [p. 62] and closed() [p. 62].

int QCanvasSpline::rtti () const [virtual]

Returns 8 (QCanvasltem::Rtti Spline).
See also QCanvasItem::rtti() [p. 41].

Reimplemented from QCanvasPolygon [p. 53].

void QCanvasSpline::setControlPoints (QPointArray ctrl, bool close = TRUE)

Set the spline control points to ctrl.

If close is TRUE, then the first point in ctrl will be re-used as the last point, and the number of control points must
be a multiple of 3. If close is FALSE, one additional control point is required, and the number of control points must
be one of (4, 7, 11, ...).

If the number of control points doesn’t meet the above conditions, the number of points will be truncated to the
largest number of points that do meet the requirement.

QCanvasSprite Class Reference

The QCanvasSprite class provides an animated canvas item on a QCanvas.
This class is part of the canvas module.
#i ncl ude <qcanvas. h>

Inherits QCanvasltem [p. 36].

Public Members

m QCanvasSprite (QCanvasPixmapArray * a, QCanvas * canvas)
m void setSequence (QCanvasPixmapArray * a)

m virtual ~QCanvasSprite ()

» virtual void move (double nx, double ny, int nf)

= void setFrame (int f)

» enum FrameAnimationType { Cycle, Oscillate }

» virtual void setFrameAnimation (FrameAnimationType type = Cycle, int step = 1, int state = 0)
int frame () const

int frameCount () const

virtual int rtti () const

virtual QRect boundingRect () const

int width () const

int height () const

m int leftEdge () const

» int topEdge () const

int rightEdge () const

int bottomEdge () const

int leftEdge (int nx) const

int topEdge (int ny) const

int rightEdge (int nx) const

int bottomEdge (int ny) const

QCanvasPixmap * image () const

» virtual QCanvasPixmap * imageAdvanced () const
m QCanvasPixmap * image (int f) const

» virtual void advance (int phase)
e virtual void draw (QPainter & painter)

63

QCanvasSprite Class Reference 64

Detailed Description

The QCanvasSprite class provides an animated canvas item on a QCanvas.

A canvas sprite is an object which contains any number of images (referred to as frames), only one of which is
current, e.g. displayed, at any one time. The images can be passed in the constructor or set or changed later
with setSequence(). If you subclass QCanvasSprite you can change the frame that is displayed periodically, e.g.
whenever QCanvasltem::advance(1) is called to create the effect of animation.

The current frame can be set with setFrame() or with move(). The number of frames available is given by frame-
Count(). The bounding rectangle of the current frame is returned by boundingRect().

The current frame’s image can be retrieved with image(); use imageAdvanced() to retrieve the image for the frame
that will be shown after advance(1) is called. Use the image() overload passing it an integer index to retrieve a
particular image from the list of frames.

Use width() and height() to retrieve the dimensions of the current frame.

Use leftEdge() and rightEdge() to retrieve the current frame’s left-hand and right-hand x coordinates respectively.
Use bottomEdge() and topEdge() to retrieve the current frame’s bottom and top y coordinates respectively. These
functions have an overload which will accept an integer frame number to retrieve the coordinates of a particular
frame.

QCanvasSprite draws very quickly, at the cost of some memory.
The current frame’s image can be drawn on a painter with draw().

Like any other canvas item canvas sprites can be moved with move() which sets the x and y coordinates and the
frame number, as well as with QCanvasltem::move() and QCanvasltem::moveBy(), or by setting coordinates with
QCanvasItem::setX(), QCanvasltem::setY() and QCanvasltem::setZ().

See also Graphics Classes and Image Processing Classes.

Member Type Documentation

QCanvasSprite::FrameAnimationType
This enum is used to identify the different types of frame animation of QCanvasSprite.

e (CanvasSprite::Cycle - at each advance the frame number will be incremented by 1 (modulo the frame
count).

e (CanvasSprite::GCscillate - at each advance the frame number will be incremented by 1 up to the frame
count then decremented to by 1 to 0, repeating this sequence forever.

Member Function Documentation

QCanvasSprite::QCanvasSprite (QCanvasPixmapArray * a, QCanvas * canvas)
Constructs a QCanvasSprite which uses images from the QCanvasPixmapArray a.

The sprite in initially positioned at (0,0) on canvas, using frame O.

QCanvasSprite::~QCanvasSprite () [virtual]

Destroys the sprite and removes it from the canvas. Does not delete the images.

QCanvasSprite Class Reference 65

void QCanvasSprite::advance (int phase) [virtual]

Extends the default QCanvasltem implementation to provide the functionality of setFrameAnimation().
The phase is 0 or 1: see QCanvas::animate() for details.
See also QCanvasltem::advance() [p. 38] and setVelocity() [p. 42].

Reimplemented from QCanvasItem [p. 38].

int QCanvasSprite::bottomEdge () const

Returns the y coordinate of the current bottom edge of the sprite. (This may change as the sprite animates since
different frames may have different bottom edges.)

See also leftEdge() [p. 661, rightEdge() [p. 66] and topEdge() [p. 671.

int QCanvasSprite::bottomEdge (int ny) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns what the y coordinate of the top edge of the sprite would be if the sprite (actually its hotspot) were moved
to y-position ny.

See also leftEdge() [p. 661, rightEdge() [p. 66] and topEdge() [p. 67].

QRect QCanvasSprite::boundingRect () const [virtual]

Returns the bounding rectangle for the image in sprite’s current frame. This assumes that the images are tightly
cropped (ie. do not have transparent pixels all along a side).

Reimplemented from QCanvasltem [p. 39].

void QCanvasSprite::draw (QPainter & painter) [virtual]

Draws the current frame’s image at the sprite’s current position on painter painter-.
Reimplemented from QCanvasItem [p. 40].

int QCanvasSprite::frame () const

Returns the index of the current animation frame in the QCanvasSprite’s QCanvasPixmapArray.
See also setFrame() [p. 67] and move() [p. 66].

int QCanvasSprite::frameCount () const

Returns the number of frames in the QCanvasSprite’s QCanvasPixmapArray.

int QCanvasSprite::height () const

The height of the sprite for the current frame’s image.

See also frame() [p. 65].

QCanvasSprite Class Reference 66

QCanvasPixmap * QCanvasSprite::image () const

Returns the current frame’s image.

See also frame() [p. 65] and setFrame() [p. 67].

QCanvasPixmap * QCanvasSprite::image (int f) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the image for frame f. Does not do any bounds checking on f.

QCanvasPixmap * QCanvasSprite::imageAdvanced () const [virtual]

Returns the image the sprite will have after advance(1) is called. By default this is the same as image().

int QCanvasSprite::leftEdge () const
Returns the x coordinate of the current left edge of the sprite. (This may change as the sprite animates since
different frames may have different left edges.)

See also rightEdge() [p. 66], bottomEdge() [p. 65] and topEdge() [p. 671.

int QCanvasSprite::leftEdge (int nx) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns what the x coordinate of the left edge of the sprite would be if the sprite (actually its hotspot) were moved
to x-position nx.

See also rightEdge() [p. 661, bottomEdge() [p. 65] and topEdge() [p. 671.

void QCanvasSprite::move (double nx, double ny, int nf) [virtual]

Set the position of the sprite to nx, ny and the current frame to nf. nf will be ignored if it is larger than frameCount()
or smaller than O.

int QCanvasSprite::rightEdge () const
Returns the x coordinate of the current right edge of the sprite. (This may change as the sprite animates since

different frames may have different right edges.)

See also leftEdge() [p. 661, bottomEdge() [p. 65] and topEdge() [p. 671.

int QCanvasSprite::rightEdge (int nx) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns what the x coordinate of the right edge of the sprite would be if the sprite (actually its hotspot) were
moved to x-position nx.

See also leftEdge() [p. 66], bottomEdge() [p. 65] and topEdge() [p. 67].

QCanvasSprite Class Reference 67

int QCanvasSprite::rtti () const [virtual]

Returns 1 (QCanvasltem::Rtti_Sprite).
See also QCanvasltem::rtti() [p. 41].

Reimplemented from QCanvasItem [p. 41].

void QCanvasSprite::setFrame (int f)
Sets the animation frame used for displaying the sprite to f, an index into the QCanvasSprite’s QCanvasPixmapArray.
The call will be ignored if f is larger than frameCount() or smaller than 0.

See also frame() [p. 65] and move() [p. 66].

void QCanvasSprite::setFrameAnimation (FrameAnimationType type = Cycle, int step =
1, int state = 0) [virtual]

Sets the animation characteristics for the sprite.

For type == Cycle, the frames will increase by step at each advance, modulo the frameCount().

For type == Oscillate, the frames will increase by step at each advance, up to the frameCount(), then decrease by
step back to 0, etc.

The state parameter is for internal use.

void QCanvasSprite::setSequence (QCanvasPixmapArray * a)

Set the array of images used for displaying the sprite to the QCanvasPixmapArray a.

If the current frame() is larger than the number of images in a, the current frame will be reset to O.

int QCanvasSprite::topEdge () const

Returns the y coordinate of the top edge of the sprite. (This may change as the sprite animates since different
frames may have different top edges.)

See also leftEdge() [p. 661, rightEdge() [p. 66] and bottomEdge() [p. 65].

int QCanvasSprite::topEdge (int ny) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns what the y coordinate of the top edge of the sprite would be if the sprite (actually its hotspot) were moved
to y-position ny.

See also leftEdge() [p. 661, rightEdge() [p. 66] and bottomEdge() [p. 65].

int QCanvasSprite::width () const

The width of the sprite for the current frame’s image.

See also frame() [p. 65].

QCanvasText Class Reference

The QCanvasText class provides a text object on a QCanvas.

This class is part of the canvas module.

#i ncl ude <qcanvas. h>

Inherits QCanvasltem [p. 36].

Public Members

QCanvasText (QCanvas * canvas)

QCanvasText (const QString & t, QCanvas * canvas)
QCanvasText (const QString & t, QFont f, QCanvas * canvas)
virtual ~QCanvasText ()

void setText (const QString & t)

void setFont (const QFont & f)

void setColor (const QColor & ¢)

QString text () const

QFont font () const

QColor color () const

int textFlags () const

void setTextFlags (int f)

virtual QRect boundingRect () const

virtual int rtti () const

Protected Members

virtual void draw (QPainter & painter)

Detailed Description

The QCanvasText class provides a text object on a QCanvas.

A canvas text item has text with font, color and alignment attributes. The text and font can be set in the constructor
or set or changed later with setText() and setFont(). The color is set with setColor() and the alignment with
setTextFlags(). The text item’s bounding rectangle is retrieved with boundingRect().

The text can be drawn on a painter with draw().

Like any other canvas item text items can be moved with QCanvasltem::move() and QCanvasltem::moveBy(), or
by setting coordinates with QCanvasltem::setX(), QCanvasltem::setY() and QCanvasltem::setZ().

See also Graphics Classes and Image Processing Classes.

68

QCanvasText Class Reference

Member Function Documentation

QCanvasText::QCanvasText (QCanvas * canvas)

Constructs a QCanvasText with the text "\", on canvas.

QCanvasText::QCanvasText (const QString & t, QCanvas * canvas)

Constructs a QCanvasText with the text t, on canvas canvas.

QCanvasText::QCanvasText (const QString & t, QFont f, QCanvas * canvas)

Constructs a QCanvasText with the text t and font f, on the canvas canvas.

QCanvasText::~QCanvasText () [virtual]

Destroys the canvas text.

QRect QCanvasText::boundingRect () const [virtual]

Returns the bounding rectangle of the text.

Reimplemented from QCanvasItem [p. 39].

QColor QCanvasText::color () const

Returns the color of the text.

See also setColor() [p. 70].

void QCanvasText::draw (QPainter & painter) [virtual protected]

Draws the text using the painter painter.

Reimplemented from QCanvasItem [p. 40].

QFont QCanvasText::font () const

Returns the font in which the text is drawn.

See also setFont() [p. 70].

int QCanvasText::rtti () const [virtual]

Returns 3 (QCanvasltem::Rtti_Text).
See also QCanvasltem::rtti() [p. 41].

Reimplemented from QCanvasItem [p. 41].

69

QCanvasText Class Reference 70

void QCanvasText::setColor (const QColor & ¢)

Sets the color of the text to the color c.

See also color() [p. 69] and setFont() [p. 70].

void QCanvasText::setFont (const QFont & f)

Sets the font in which the text is drawn to font f.

See also font() [p. 69].

void QCanvasText::setText (const QString & t)

Sets the text item’s text to t. The text may contain newlines.

See also text() [p. 701, setFont() [p. 701, setColor() [p. 70] and setTextFlags() [p. 70].

void QCanvasText::setTextFlags (int f)

Sets the alignment flags to f. These are a bitwise OR of the flags available to QPainter::drawText() — see
Qt::AlignmentFlags.

See also setFont() [p. 70] and setColor() [p. 70].
QString QCanvasText::text () const
Returns the text item’s text.

See also setText() [p. 70].

int QCanvasText::textFlags () const

Returns the currently set alignment flags.

See also setTextFlags() [p. 70] and Qt::AlignmentFlags [Additional Functionality with Qt].

QCanvasView Class Reference

The QCanvasView class provides an on-screen view of a QCanvas.
This class is part of the canvas module.
#i ncl ude <qcanvas. h>

Inherits QScrollView [Widgets with Qt].

Public Members

m QCanvasView (QWidget * parent = 0, const char * name = 0, WFlags f = 0)

» QCanvasView (QCanvas * canvas, QWidget * parent = 0, const char * name = 0, WFlags f = 0)
m ~QCanvasView ()

QCanvas * canvas () const

void setCanvas (QCanvas * canvas)

const QWMatrix & worldMatrix () const

const QWMatrix & inverseWorldMatrix () const

bool setWorldMatrix (const QWMatrix & wm)

Protected Members

m virtual void drawContents (QPainter * p, int cx, int cy, int cw, int ch)

Detailed Description

The QCanvasView class provides an on-screen view of a QCanvas.
A QCanvasView is widget which provides a view of a QCanvas.

If you want users to be able to interact with a canvas view, subclass QCanvasView. You might then reimplement
QScrollView::contentsMousePressEvent() for example:

voi d MyCanvasVi ew. : cont entshMbusePressEvent (QvbuseEvent* e)

{
QCanvasltenList | = canvas()->collisions(e->pos());
for (QCanvaslteniist::lterator it=l.begin(); it!=l.end(); ++it) {
if ((*it)->rtti() == QCanvasRectangle::RTTlI)
qDebug("A QCanvasRectangle |ies somewhere at this point");
}
}

71

QCanvasView Class Reference 72

Set the canvas that the view shows with setCanvas() and retrieve the canvas which the view is showing with
canvas().

A transformation matrix can be used to transform the view of the canvas in various ways, for example, zooming in
or out or rotating. For example:

QMWAatrix wm
wnscale(2, 2); Il Zooms in by 2 times
wnrotate(90); Il Rotates 90 degrees clockwise

myCanvasVi ew >set Worl dMat ri x(wm);

Use setWorldMatrix() to set the canvas view’s world matrix: you must ensure that the world matrix is invertible.
The current world matrix is retrievable with worldMatrix(), and its inversion is retrievable with inverseWorldMa-
trix().

See also QWMatrix [p. 291], QPainter::setWorldMatrix() [p. 203], Graphics Classes and Image Processing Classes.

Member Function Documentation

QCanvasView::QCanvasView (QWidget * parent = 0, const char * name = 0, WFlags f =
0)

Constructs a QCanvasView with parent parent, and name name, using the widget flags f. The canvas view is not
associated with a canvas, so you will need to call setCanvas() to display a canvas.

QCanvasView::QCanvasView (QCanvas * canvas, QWidget * parent = 0,
const char * name = 0, WFlags f = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Constructs a QCanvasView which views canvas canvas, with parent parent, and name name, using the widget flags

f.

QCanvasView::~QCanvasView ()

Destroys the canvas view. The associated canvas is not deleted.

QCanvas * QCanvasView::canvas () const

Returns a pointer to the canvas which the QCanvasView is currently showing.

void QCanvasView::drawContents (QPainter * p, int cx, int cy, int cw,
int ch) [virtual protected]

Repaints part of the QCanvas that the canvas view is showing starting at cx by cy, with a width of cw and a height
of ch using the painter p.

Reimplemented from QScrollView [Widgets with Qt].

QCanvasView Class Reference 73

const QWMatrix & QCanvasView::inverseWorldMatrix () const

Returns a reference to the inverse of the canvas view’s current transformation matrix.

See also setWorldMatrix() [p. 73] and worldMatrix() [p. 73].

void QCanvasView::setCanvas (QCanvas * canvas)

Sets the canvas that the QCanvasView is showing to the canvas canvas.

bool QCanvasView::setWorldMatrix (const QWMatrix & wm)

Sets the transformation matrix of the QCanvasView to wm. The matrix must be invertible (i.e. if you create a world
matrix that zooms out by 2 times, then the inverse of this matrix is one that will zoom in by 2 times).

When you use this, you should note that the performance of the QCanvasView will decrease considerably.

Returns FALSE if wm is not invertable; otherwise returns TRUE.

See also worldMatrix() [p. 73], inverseWorldMatrix() [p. 73] and QWMatrix::isInvertible() [p. 294].

const QWMatrix & QCanvasView::worldMatrix () const

Returns a reference to the canvas view’s current transformation matrix.

See also setWorldMatrix() [p. 73] and inverseWorldMatrix() [p. 73].

QColor Class Reference

The QColor class provides colors based on RGB.

#include <qcol or. h>

Public Members

enum Spec { Rgb, Hsv }

QColor ()

QColor (int 1, int g, int b)

QColor (int x, int y, int z, Spec colorSpec)
QColor (QRgb rgb, uint pixel = Oxffffffff)
QColor (const QString & name)

QColor (const char * name)

QColor (const QColor & ¢)

QColor & operator= (const QColor & c)
bool isValid () const

QString name () const

void setNamedColor (const QString & name)
void rgb (int * 1, int * g, int * b) const
QRgb rgb () const

void setRgb (intr, int g, int b)

void setRgb (QRgb rgb)

int red () const

int green () const

int blue () const

void hsv (int * h, int * s, int * v) const

void getHsv (int & h, int & s, int & v) const (obsolete)
void setHsv (int h, int s, int v)

QcColor light (int factor = 150) const
QColor dark (int factor = 200) const

bool operator== (const QColor & c) const
bool operator!= (const QColor & c) const
uint alloc ()

uint pixel () const

74

QColor Class Reference 75

Static Public Members

int maxColors ()

int numBitPlanes ()

int enterAllocContext ()

void leaveAllocContext ()

int currentAllocContext ()

void destroyAllocContext (int context)
void initialize ()

» void cleanup ()

Related Functions

m QDataStream & operator<< (QDataStream & s, const QColor & c)
QDataStream & operator>> (QDataStream & s, QColor & c¢)

int qRed (QRgb rgb)

int qGreen (QRgb rgb)

int qBlue (QRgb rgb)

int gAlpha (QRgb rgba)

QRgb qRgb (intr, int g, int b)

m QRgb qRgba (int 1, int g, int b, int a)

m int qGray (intr, int g, int b)

m int qGray (qRgb rgb)

Detailed Description

The QColor class provides colors based on RGB.

A color is normally specified in terms of RGB (red, green and blue) components, but it is also possible to specify
HSV (hue, saturation and value) or set a color name (the names are copied from from the X11 color database).

In addition to the RGB value, a QColor also has a pixel value and a validity. The pixel value is used by the underlying
window system to refer to a color. It can be thought of as an index into the display hardware’s color table.

The validity (isValid()) indicates whether the color is legal at all. For example, a RGB color with RGB values out
of range is illegal. For performance reasons, QColor mostly disregards illegal colors. The result of using an invalid
color is unspecified and will usually be surprising.

There are 19 predefined QColor objects: bl ack, white, darkGay, gray, |ightGay, red, green, bl ue, cyan,
magent a, yel | ow, dar kRed, dar kG een, dar kBl ue, dar kCyan, dar kMagent a, dar kYel | ow, col or 0 and col or 1.

The colors col or 0 (zero pixel value) and col or 1 (non-zero pixel value) are special colors for drawing in bitmaps.

The QColor class has an efficient, dynamic color allocation strategy. A color is normally allocated the first time it is
used (lazy allocation), that is, whenever the pixel() function is called:

1. Is the pixel value valid? If it is, just return it; otherwise, allocate a pixel value.

2. Check an internal hash table to see if we allocated an equal RGB value earlier. If we did, set the pixel value
and return.

3. Try to allocate the RGB value. If we succeed, we get a pixel value that we save in the internal table with the
RGB value. Return the pixel value.

4. The color could not be allocated. Find the closest matching color and save it in the internal table.

QColor Class Reference 76

Because many people don’t know the HSV color model very well, we’ll cover it briefly here.

The RGB model is hardware-oriented. Its representation is close to what most monitors show. In contrast, HSV
represents color in a way more suited to traditional human perception of color. For example, the relationships
"stronger than", "darker than" and "the opposite of" are easily expressed in HSV but are much harder to express in
RGB.

HSV, like RGB, has three components:

e H, for hue, is either 0-359 if the color is chromatic (not gray), or meaningless if it is gray. It represents degrees
on the color wheel familiar to most people. Red is 0 (degrees), green is 120 and blue is 240.

e S, for saturation, is 0-255, and the bigger it is, the stronger the color is. Grayish colors have saturation near
0; very strong colors have saturation near 255.

e V for value, is 0-255 and represents lightness or brightness of the color. 0 is black; 255 is as far from black as
possible.

Here are some examples: Pure red is H=0, S=255, V=255. A dark red, moving slightly towards the magenta,
could be H=350 (equivalent to -10), S=255, V=180. A grayish light red could have H about 0 (say 350-359 or
0-10), S about 50-100, and S=255.

Qt returns a hue value of -1 for achromatic colors. If you pass a too-big hue value, Qt forces it into range. Hue 360
or 720 is treated as 0; hue 540 is treated as 180.

A color can be set by passing setNamedColor() an RGB string like "#112233", or a color name, e.g. "blue". The
names are taken from X11’s rgb.txt database but can also be used under Windows. To get a lighter or darker color
use light() and dark() respectively. Colors can also be set using setRgb() and setHsv(). The color components can
be accessed in one go with rgb() and hsv(), or individually with red(), green() and blue().

Use maxColors() and numBitPlanes() to determine the maximum number of colors and the number of bit planes
supported by the underlying window system,

If you need to allocate many colors temporarily, for example in an image viewer application, enterAllocContext(),
leaveAllocContext() and destroyAllocContext() will prove useful.

See also QPalette [p. 209], QColorGroup [p. 841, QApplication::setColorSpec() [Additional Functionality with
Qt], Color FAQ, Widget Appearance and Style, Graphics Classes and Image Processing Classes.

Member Type Documentation

QColor::Spec
The type of color specified, either RGB or HSV, e.g. in the QCol or:: QColor(x, y, z, col orSpec) constructor.

e (Col or::Rgb
e (Col or:: Hsv

Member Function Documentation

QColor::QColor ()

Constructs an invalid color with the RGB value (0,0,0). An invalid color is a color that is not properly set up for the
underlying window system.

The alpha value of an invalid color is unspecified.

See also isValid() [p. 80].

QColor Class Reference 77

QColor::QColor (int r, int g, int b)

Constructs a color with the RGB value r, g, b, in the same way as setRgb().
The color is left invalid if any or the arguments are illegal.

See also setRgb() [p. 82].

QColor::QColor (int x, int y, int z, Spec colorSpec)

Constructs a color with the RGB or HSV value x, y, z.

The arguments are an RGB value if colorSpec is QColor::Rgb. x (red), y (green), and z (blue). All of them must be
in the range 0-255.

The arguments are an HSV value if colorSpec is QColor::Hsv. x (hue) must be -1 for achromatic colors and 0-359
for chromatic colors; y (saturation) and z (value) must both be in the range 0-255.

See also setRgb() [p. 82] and setHsv() [p. 82].

QColor::QColor (QRgb rgb, uint pixel = Oxffffffff)

Constructs a color with the RGB value rgb and a custom pixel value pixel.

If pixel == Oxffffffff (the default), then the color uses the RGB value in a standard way. If pixel is something else,
then the pixel value is set directly to pixel, skipping the normal allocation procedure.

QColor::QColor (const QString & name)

Constructs a named color in the same way as setNamedColor() using name name.

See also setNamedColor() [p. 82].

QColor::QColor (const char * name)

Constructs a named color in the same way as setNamedColor() using name name.

See also setNamedColor() [p. 82].

QColor::QColor (const QColor & ¢)

Constructs a color that is a copy of c.

uint QColor::alloc ()

Allocates the RGB color and returns the pixel value.

Allocating a color means to obtain a pixel value from the RGB specification. The pixel value is an index into the
global color table, but should be considered an arbitrary platform-dependent value.

The pixel() function calls alloc() if necessary, so in general you don’t need to call this function.

See also enterAllocContext() [p. 78].

QColor Class Reference 78

int QColor::blue () const

Returns the B (blue) component of the RGB value.

void QColor::cleanup () [static]

Internal clean up required for QColor. This function is called from the QApplication destructor.

See also initialize() [p. 80].

int QColor::currentAllocContext () [static]

Returns the current color allocation context.
The default context is 0.

See also enterAllocContext() [p. 78] and leaveAllocContext() [p. 80].

QColor QColor::dark (int factor = 200) const

Returns a darker (or lighter) color, but does not change this object.

Returns a darker color if factor is greater than 100. Setting factor to 300 returns a color that has one-third the
brightness.

Returns a lighter color if factor is less than 100. We recommend using lighter() for this purpose. If factor is O or
negative, the return value is unspecified.

(This function converts the current RGB color to HSV, divides V by factor and converts back to RGB.)
See also light() [p. 80].
Examples: desktop/desktop.cpp and themes/wood.cpp.

void QColor::destroyAllocContext (int context) [static]

Destroys a color allocation context, context.

This function deallocates all colors that were allocated in the specified context. If context == -1, it frees up all
colors that the application has allocated. If context == -2, it frees up all colors that the application has allocated,
except those in the default context.

The function does nothing for true color displays.
See also enterAllocContext() [p. 78] and alloc() [p. 77].

Example: showimg/showimg.cpp.

int QColor::enterAllocContext () [static]

Enters a color allocation context and returns a nonzero unique identifier.

Color allocation contexts are useful for programs that need to allocate many colors and throw them away later, like
image viewers. The allocation context functions work for true color displays as well as colormap display, except
that QColor::destroyAllocContext() does nothing for true color.

Example:

QColor Class Reference

QPi xmap | oadPi xmap(QString fil eName)

{
static int alloc_context = 0;
if (alloc_context)
QCol or: : destroyAl | ocContext(alloc_context);
alloc_context = QColor::enterAllocContext();
QPi xmap pn(fileNane);
ol or::leaveAl |l ocContext();
return pm
}

79

The example code loads a pixmap from file. It frees up all colors that were allocated the last time loadPixmap()

was called.

The initial/default context is 0. Qt keeps a list of colors associated with their allocation contexts. You can call

destroyAllocContext() to get rid of all colors that were allocated in a specific context.

Calling enterAllocContext() enters an allocation context. The allocation context lasts until you call leaveAlloc-
Context(). QColor has an internal stack of allocation contexts. Each call to enterAllocContex() must have a

corresponding leaveAllocContext().

/1 context 0 active

int ¢l = QColor::enterAlocContext(); Il enter context
/1 context cl active

int ¢c2 = QColor::enterAllocContext(); Il enter context
/] context c2 active

QCol or: : | eaveAl | ocContext (); Il 1 eave context
/1 context cl active

QCol or: : | eaveAl | ocCont ext (); Il 1eave context

/!l context 0 active
/1 Now, free all colors that were allocated in context c2
Col or: : destroyAl | ocContext(c2);

cl

c2

c2

cl

You may also want to set the application’s color specification. See QApplication::setColorSpec() for more informa-

tion.

See also leaveAllocContext() [p. 80], currentAllocContext() [p. 78], destroyAllocContext() [p. 78] and

QApplication::setColorSpec() [Additional Functionality with Qt].

Example: showimg/showimg.cpp.

void QColor::getHsv (int & h, int & s, int & v) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new

code.

int QColor::green () const

Returns the G (green) component of the RGB value.

void QColor::hsv (int * h, int * s, int * v) const

Returns the current RGB value as HSV. The contents of the h, s and v pointers are set to the HSV values. If any of

the three pointers are null, the function does nothing.

The hue (which h points to) is set to -1 if the color is achromatic.

QColor Class Reference 80

See also setHsv() [p. 82] and rgb() [p. 811].

Example: themes/metal.cpp.

void QColor::initialize () [static]

Internal initialization required for QColor. This function is called from the QApplication constructor.

See also cleanup() [p. 78].

bool QColor::isValid () const

Returns FALSE if the color is invalid, i.e., it was constructed using the default constructor.

Use of this function is discouraged, as it is slightly slow on Truecolor displays. If you need a "null" QColor, it may
be better to use q QColor* where possible.

Example: scribble/scribble.cpp.

void QColor::leaveAllocContext () [static]

Leaves a color allocation context.
See enterAllocContext() for a detailed explanation.
See also enterAllocContext() [p. 78] and currentAllocContext() [p. 78].

Example: showimg/showimg.cpp.

QColor QColor::light (int factor = 150) const

Returns a lighter (or darker) color, but does not change this object.
Returns a lighter color if factor is greater than 100. Setting factor to 150 returns a color that is 50% brighter.

Returns a darker color if factor is less than 100. We recommend using dark() for this purpose. If factor is O or
negative, the return value is unspecified.

(This function converts the current RGB color to HSV, multiplies V by factor, and converts the result back to RGB.)
See also dark() [p. 78].
Examples: desktop/desktop.cpp and themes/wood.cpp.

int QColor::maxColors () [static]

Returns the maximum number of colors supported by the underlying window system.

QString QColor::name () const

Returns the name of the color in the format "#RRGGBB', i.e., a "#" character followed by three two-digit hexadec-
imal numbers.

See also setNamedColor() [p. 82].

QColor Class Reference 81

int QColor::numBitPlanes () [static]

Returns the number of color bit planes for the underlying window system.
The returned values is equal to the default pixmap depth;

See also QPixmap::defaultDepth() [p. 231].

bool QColor::operator!= (const QColor & c) const

Returns TRUE if this color has a different RGB value from c, or FALSE if they have equal RGB values.

QColor & QColor::operator= (const QColor & c)

Assigns a copy of the color ¢ and returns a reference to this color.

bool QColor::operator== (_const QColor & c¢) const

Returns TRUE if this color has the same RGB value as c, or FALSE if they have different RGB values.

uint QColor::pixel () const

Returns the pixel value.

This value is used by the underlying window system to refer to a color. It can be thought of as an index into the
display hardware’s color table, but the value is an arbitrary 32-bit value.

See also alloc() [p. 771.

int QColor::red () const

Returns the R (red) component of the RGB value.

void QColor::rgb (int * r, int * g, int * b) const
Sets the contents pointed to by r, g and b to the red, green and blue components of the RGB value respectively. The
value range for a component is 0..255.

See also setRgb() [p. 82] and hsv() [p. 791.

QRgb QColor::rgb () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the RGB value.

The return type QRgb is equivalent to unsi gned i nt.

For an invalid color, the alpha value of the returned valud is unspecified.

See also setRgb() [p. 821, hsv() [p. 791, gRed() [p. 831, gBlue() [p. 831, qGreen() [p. 83] and isValid() [p. 80].

QColor Class Reference 82

void QColor::setHsv (int h, int s, int v)

Sets a HSV color value. h is the hue, s is the saturation and v is the value of the HSV color.
If s or v are not in the range 0-255, or h is < -1, the color is not changed.

See also hsv() [p. 79] and setRgb() [p. 82].

Examples: drawdemo/drawdemo.cpp, grapher/grapher.cpp and progress/progress.cpp.

void QColor::setNamedColor (const QString & name)
Sets the RGB value to name, which may be in one of these formats:

e #RGB (each of R, G and B is a single hex digit)
o #RRGGBB

o #RRRGGGBBB

¢ #RRRRGGGGBBBB

e A name from the X color database (rgb.txt) (e.g. "steelblue" or "gainsboro"). These color names also work
under Qt for Windows.

The color is left invalid if name cannot be parsed.

void QColor::setRgb (intr, int g, int b)

Sets the RGB value to r, g, b. The arguments, r, g and b must all be in the range 0..255. If any of them are outside
the legal range, the color is not changed.

See also rgb() [p. 81] and setHsv() [p. 82].

void QColor::setRgb (QRgb rgb)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the RGB value to rgb.

The type QRgb is equivalent to unsi gned int.

See also rgb() [p. 81] and setHsv() [p. 82].

Related Functions

QDataStream & operator<< (QDataStream & s, const QColor & c)
Writes a color object, ¢ to the stream, s.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].
QDataStream & operator>> (QDataStream & s, QColor & c)

Reads a color object, ¢, from the stream, s.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QColor Class Reference

int qAlpha (QRgb rgba)

Returns the alpha component of the RGBA quadruplet rgba.

int gBlue (QRgb rgb)

Returns the blue component of the RGB triplet rgb.
See also qRgb() [p. 83] and QColor::blue() [p. 78].
int qGray (intr, int g, int b)

Returns a gray value 0..255 from the (r, g, b) triplet.

The gray value is calculated using the formula (r*11 + g*16 + b*5)/32.

int qGray (qRgb rgb)

83

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a gray value 0..255 from the given rgb colour.

int qGreen (QRgb rgb)

Returns the green component of the RGB triplet rgb.

See also qRgb() [p. 83] and QColor::green() [p. 791.

int gqRed (QRgb rgb)

Returns the red component of the RGB triplet rgb.
See also qRgb() [p. 83] and QColor::red() [p. 811].

QRgb gqRgb (int r, int g, int b)

Returns the RGB triplet (1,g,b).

The return type QRgb is equivalent to unsi gned i nt.

See also gqRgba() [p. 83], qRed() [p. 831, qGreen() [p. 83] and qBlue() [p. 83].

QRgb qRgba (int r, int g, int b, int a)

Returns the RGBA quadruplet (1,g,b,a).
The return type QRgba is equivalent to unsi gned i nt.
See also qRgb() [p. 831, qRed() [p. 831, qGreen() [p. 83] and gBlue() [p. 83].

QColorGroup Class Reference

The QColorGroup class contains a group of widget colors.

#incl ude <qgpalette. h>

Public Members

QColorGroup ()

QColorGroup (const QColor & foreground, const QColor & background, const QColor & light,
const QColor & dark, const QColor & mid, const QColor & text, const QColor & base) (obsolete)

QColorGroup (const QBrush & foreground, const QBrush & button, const QBrush & light,
const QBrush & dark, const QBrush & mid, const QBrush & text, const QBrush & bright_text,
const QBrush & base, const QBrush & background)

QColorGroup (const QColorGroup & other)
~QColorGroup ()
QColorGroup & operator= (const QColorGroup & other)

enum ColorRole { Foreground, Button, Light, Midlight, Dark, Mid, Text, BrightText, ButtonText, Base,
Background, Shadow, Highlight, HighlightedText, Link, LinkVisited, NColorRoles }

const QColor & color (ColorRole r) const
const QBrush & brush (ColorRole r) const
void setColor (ColorRole 1, const QColor & ¢)
void setBrush (ColorRole 1, const QBrush & b)
const QColor & foreground () const

const QColor & button () const

const QColor & light () const

const QColor & dark () const

const QColor & mid () const

const QColor & text () const

const QColor & base () const

const QColor & background () const

const QColor & midlight () const

const QColor & brightText () const

const QColor & buttonText () const

const QColor & shadow () const

const QColor & highlight () const

const QColor & highlightedText () const

const QColor & link () const

const QColor & linkVisited () const

bool operator== (const QColorGroup & g) const
bool operator!= (const QColorGroup & g) const

84

QColorGroup Class Reference 85

Related Functions

m QDataStream & operator< < (QDataStream & s, const QColorGroup & g)

Detailed Description

The QColorGroup class contains a group of widget colors.

A color group contains a group of colors used by widgets for drawing themselves. We recommend that widgets use
color group roles such as "foreground" and "base" rather than literal colors like "red" or "turqoise". The color roles
are enumerated and defined in the ColorRole documentation.

The most common use of QColorGroup is like this:

QPainter p;

p. set Pen(col orGroup().foreground());
p.drawtine(...)

See the ColorRole [p. 85] documentation below for more details on roles.
It is also possible to modify color groups or create new color groups from scratch.

The color group class can be created using three different constructors or by modifying one supplied by the Qt. The
default constructor creates an all-black color group, which can then be modified using set functions. There are two
functions that take long lists of arguments (slightly different lists - beware!). And there is the copy constructor.

We strongly recommend using a system-supplied color group and modifying that as necessary.

You modify a color group by calling the access functions setColor() and setBrush(), depending on whether you
want a pure color or a pixmap pattern.

There are also corresponding color() and brush() getters, and a commonly used convenience function to get each
ColorRole: background(), foreground(), base(), etc.

See also QColor [p. 74], QPalette [p. 209], QWidget::colorGroup [Widgets with Qt], Widget Appearance and
Style, Graphics Classes and Image Processing Classes.

Member Type Documentation

QColorGroup::ColorRole
The ColorRole enum defines the different symbolic color roles used in current GUIs. The central roles are as follow:

e (Col or G oup: : Background - general background color.
e (Col or G oup: : Foreground - general foreground color.

e (Col or Group: : Base - used as background color for text entry widgets, for example; usually white or another
light color.

e (Col or Group: : Text - the foreground color used with Base. Usually this is the same as the Foreground, in
which case it must provide good contrast with Background and Base.

e (Col or G oup: : Butt on - general button background color in which buttons need a background different from
Background, as in the Macintosh style.

e (Col or G oup: : ButtonText - a foreground color used with the Button color.

There are some color roles used mostly for 3D bevel and shadow effects:

QColorGroup Class Reference 86

e QCol or Group: : Li ght - lighter than Button color.

e (Col or Group: : M dlight - between Button and Light.
e QCol or Group: : Dark - darker than Button.

e (Col or G oup: : M d - between Button and Dark.

e (Col or G oup: : Shadow - a very dark color.

All of these are normally derived from Background and used in ways that depend on that relationship. For example,
buttons depend on it to make the bevels look attractive, and Motif scroll bars depend on Mid to be slightly different
from Background.

Selected (marked) items have two roles:

e QCol or Group: : Highlight - a color to indicate a selected or highlighted item.
e QCol or Group: : Hi ghl i ght edText - a text color that contrasts with Highlight.

Finally, there is a special role for text that needs to be drawn where Text or Foreground would give poor contrast,
such as on pressed push buttons:

e (Col or Group: : Bright Text - a text color that is very different from Foreground and contrasts well with e.g.
Dark.

e (Col or Group: : Li nk - a text color used for unvisited hyperlinks.
e QCol or Group: : Li nkVi si ted - a text color used for already visited hyperlinks.
e (QCol or G oup: : NCol or Rol es - Internal.

Note that text colors can be used for things other than just words; text colors are usually used for text, but it’s quite
common to use the text color roles for lines, icons, etc.

Foreground I_I:r:amge'controls :table i
Background \'
\\ S 30 -Effects with Light,

Highlight - = Shadow, MidLight, Dark
HighlightedText]

ButtonText
Button

This image shows most of the color roles in use:

Member Function Documentation

QColorGroup::QColorGroup ()

Constructs a color group with all colors set to black.

QColorGroup::QColorGroup (const QColor & foreground, const QColor & background,
const QColor & light, const QColor & dark, const QColor & mid, const QColor & text,
const QColor & base)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Constructs a color group with the specified colors. The button color will be set to the background color.

QColorGroup Class Reference 87

QColorGroup::QColorGroup (const QBrush & foreground, const QBrush & button,
const QBrush & light, const QBrush & dark, const QBrush & mid,
const QBrush & text, const QBrush & bright_text, const QBrush & base,
const QBrush & background)

Constructs a color group. You can pass either brushes, pixmaps or plain colors for foreground, button, light, dark,
mid, text, bright_text, base and background.

This constructor can be very handy sometimes, but don’t overuse it: such long lists of arguments are rather error-
prone.

See also QBrush [p. 17].

QColorGroup::QColorGroup (const QColorGroup & other)

Constructs a color group that is an independent copy of other.

QColorGroup::~QColorGroup ()

Destroys the color group.

const QColor & QColorGroup::background () const

Returns the background color of the color group.

See also ColorRole [p. 85].

const QColor & QColorGroup::base () const

Returns the base color of the color group.

See also ColorRole [p. 85].

const QColor & QColorGroup::brightText () const

Returns the bright text foreground color of the color group.
See also ColorRole [p. 85].

Examples: themes/metal.cpp and themes/wood.cpp.

const QBrush & QColorGroup::brush (ColorRole r) const

Returns the brush that has been set for color role r.
See also color() [p. 88], setBrush() [p. 89] and ColorRole [p. 85].

Examples: themes/metal.cpp and themes/wood.cpp.

const QColor & QColorGroup::button () const

Returns the button color of the color group.

QColorGroup Class Reference

See also ColorRole [p. 85].

Examples: themes/metal.cpp and themes/wood.cpp.

const QColor & QColorGroup::buttonText () const

Returns the button text foreground color of the color group.
See also ColorRole [p. 85].

Examples: themes/metal.cpp and themes/wood.cpp.

const QColor & QColorGroup::color (ColorRole r) const

Returns the color that has been set for color role r.

See also brush() [p. 87] and ColorRole [p. 85].

const QColor & QColorGroup::dark () const

Returns the dark color of the color group.
See also ColorRole [p. 85].

Example: themes/wood.cpp.

const QColor & QColorGroup::foreground () const

Returns the foreground color of the color group.
See also ColorRole [p. 85].

Examples: themes/metal.cpp and themes/wood.cpp.

const QColor & QColorGroup::highlight () const
Returns the highlight color of the color group.

See also ColorRole [p. 85].

const QColor & QColorGroup::highlightedText () const

Returns the highlighted text color of the color group.

See also ColorRole [p. 85].

const QColor & QColorGroup::light () const

Returns the light color of the color group.
See also ColorRole [p. 85].

Example: themes/wood.cpp.

88

QColorGroup Class Reference

const QColor & QColorGroup::link () const

Returns the unvisited link text color of the color group.

See also ColorRole [p. 85].

const QColor & QColorGroup::linkVisited () const

Returns the visited link text color of the color group.

See also ColorRole [p. 85].

const QColor & QColorGroup::mid () const

Returns the mid color of the color group.
See also ColorRole [p. 85].

Examples: themes/metal.cpp and themes/wood.cpp.

const QColor & QColorGroup::midlight () const

Returns the midlight color of the color group.

See also ColorRole [p. 85].

bool QColorGroup::operator!= (const QColorGroup & g) const
Returns TRUE if this color group is different from g; otherwise returns FALSE.
See also

QColorGroup & QColorGroup::operator= (const QColorGroup & other)

Copies the colors of other to this color group.

bool QColorGroup::operator== (const QColorGroup & g) const

Returns TRUE if this color group is equal to g; otherwise returns FALSE.

See also

void QColorGroup::setBrush (ColorRole r, const QBrush & b)

Sets the brush used for color role r to b.
See also brush() [p. 871, setColor() [p. 90] and ColorRole [p. 85].

Example: themes/wood.cpp.

QColorGroup Class Reference

void QColorGroup::setColor (ColorRole r, const QColor & ¢)

Sets the brush used for color role r to a solid color c.
See also brush() [p. 87] and ColorRole [p. 85].

Examples: listviews/listviews.cpp and themes/metal.cpp.
const QColor & QColorGroup::shadow () const
Returns the shadow color of the color group.

See also ColorRole [p. 85].

const QColor & QColorGroup::text () const

Returns the text foreground color of the color group.
See also ColorRole [p. 85].

Example: listviews/listviews.cpp.

Related Functions

QDataStream & operator<< (QDataStream & s, const QColorGroup & g)

Writes color group, g to the stream s.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

90

QCursor Class Reference

The QCursor class provides a mouse cursor with an arbitrary shape.
#include <qgcursor. h>

Inherits Qt [Additional Functionality with Qt].

Public Members

m QCursor ()

m QCursor (int shape)

m QCursor (const QBitmap & bitmap, const QBitmap & mask, int hotX = -1, int hotY = -1)
m QCursor (const QPixmap & pixmap, int hotX = -1, int hotY = -1)
m QCursor (const QCursor & c)

m ~QCursor ()

m QCursor & operator= (const QCursor & c)

m int shape () const

» void setShape (int shape)

m const QBitmap * bitmap () const

m const QBitmap * mask () const

m QPoint hotSpot () const

= HCURSOR handle () const

e QCursor (HCURSOR handle)

Static Public Members

QPoint pos ()

void setPos (int x, int y)
void setPos (const QPoint &)
void initialize ()

void cleanup ()

Related Functions

m QDataStream & operator< < (QDataStream & s, const QCursor & c)
m QDataStream & operator>> (QDataStream & s, QCursor & c)

91

QCursor Class Reference 92

Detailed Description

The QCursor class provides a mouse cursor with an arbitrary shape.

This class is mainly used to create mouse cursors that are associated with particular widgets and to get and set the
position of the mouse cursor.

Qt has a number of standard cursor shapes, but you can also make custom cursor shapes based on a QBitmap, a
mask and a hotspot.

To associate a cursor with a widget, use QWidget::setCursor(). To associate a cursor with all widgets (normally for
a short period of time), use QApplication::setOverrideCursor().

To set a cursor shape use QCursor::setShape() or use the QCursor constructor which takes the shape as argument,
or you can use one of the predefined cursors defined in the CursorShape enum.

If you want to create a cursor with your own bitmap, either use the QCursor constructor which takes a bitmap and
a mask or the constructor which takes a pixmap as arguments.

To set or get the position of the mouse cursor use the static methods QCursor::pos() and QCursor::setPos().

See also QWidget [Widgets with Qt], GUI Design Handbook: Cursors, Widget Appearance and Style and Implicitly
and Explicitly Shared Classes.

Member Function Documentation

QCursor::QCursor ()

Constructs a cursor with the default arrow shape.

QCursor::QCursor (int shape)

Constructs a cursor with the specified shape.
See CursorShape for a list of shapes.

See also setShape() [p. 94].

QCursor::QCursor (const QBitmap & bitmap, const QBitmap & mask, int hotX = -1,
int hotY = -1)
Constructs a custom bitmap cursor.
bitmap and mask make up the bitmap. hotX and hotY define the hot spot of this cursor.
If hotX is negative, it is set to the bi t map() . wi dt h()/ 2. If hotY is negative, it is set to the bi t map() . hei ght () /2.

The cursor bitmap (B) and mask (M) bits are combined this way:

B=1 and M=1 gives black.
B=0 and M=1 gives white.

B=0 and M=0 gives transparency.

H W=

B=1 and M=0 gives an undefined result.

Use the global color col or 0 to draw 0-pixels and col or 1 to draw 1-pixels in the bitmaps.

QCursor Class Reference 93

Valid cursor sizes depend on the display hardware (or the underlying window system). We recommend using
32x32 cursors, because this size is supported on all platforms. Some platforms also support 16x16, 48x48 and
64x64 cursors.

See also QBitmap::QBitmap() [p. 15] and QBitmap::setMask() [p. 236].

QCursor::QCursor (const QPixmap & pixmap, int hotX = -1, int hotY = -1)

Constructs a custom pixmap cursot.

pixmap is the image (usually it should have a mask (set using QPixmap::setMask()) hotX and hotY define the hot
spot of this cursor.

If hotX is negative, it is set to the pi xmap() . wi dt h()/ 2. If hotY is negative, it is set to the pi xmap() . hei ght () /2.

Valid cursor sizes depend on the display hardware (or the underlying window system). We recommend using
32x32 cursors, because this size is supported on all platforms. Some platforms also support 16x16, 48x48 and
64x64 cursors.

Currently, only black-and-white pixmaps can be used.

See also QPixmap::QPixmap() [p. 228] and QPixmap::setMask() [p. 236].

QCursor::QCursor (const QCursor & ¢)

Constructs a copy of the cursor c.

QCursor::QCursor (HCURSOR handle)

Creates a cursor with the specified window system handle handle.

Warning: Portable in principle, but if you use it you are probably about to do something non-portable. Be careful.

QCursor::~QCursor ()

Destroys the cursor.

const QBitmap * QCursor::bitmap () const

Returns the cursor bitmap, or 0 if it is one of the standard cursors.

void QCursor::cleanup () [static]

Internal function that deinitializes the predefined cursors. This function is called from the QApplication destructor.

See also initialize() [p. 941.

HCURSOR QCursor::handle () const

Returns the window system cursor handle.

Warning: Portable in principle, but if you use it you are probably about to do something non-portable. Be careful.

QCursor Class Reference 94

QPoint QCursor::hotSpot () const

Returns the cursor hot spot, or (0,0) if it is one of the standard cursors.

void QCursor::initialize () [static]

Internal function that initializes the predefined cursors. This function is called from the QApplication constructor.

See also cleanup() [p. 93].

const QBitmap * QCursor::mask () const

Returns the cursor bitmap mask, or 0 if it is one of the standard cursors.

QCursor & QCursor::operator= (const QCursor & c)

Assigns c to this cursor and returns a reference to this cursor.

QPoint QCursor::pos () [static]

Returns the position of the cursor (hot spot) in global screen coordinates.
You can call QWidget::mapFromGlobal() to translate it to widget coordinates.

See also setPos() [p. 941, QWidget::mapFromGlobal() [Widgets with Qt] and QWidget::mapToGlobal() [Widgets
with Qt].

Example: fileiconview/qfileiconview.cpp.

void QCursor::setPos (int x, int y) [static]

Moves the cursor (hot spot) to the global screen position x and y.
You can call QWidget::mapToGlobal() to translate widget coordinates to global screen coordinates.

See also pos() [p. 941, QWidget::mapFromGlobal() [Widgets with Qt] and QWidget::mapToGlobal() [Widgets
with Qt].

void QCursor::setPos (const QPoint &) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

void QCursor::setShape (int shape)

Sets the cursor to the shape identified by shape.
See CursorShape for a list of shapes.

See also shape() [p. 95].

QCursor Class Reference 95

int QCursor::shape () const

Returns the cursor shape identifier. The return value is one of following values (casted to an int).
See CursorShape for a list of shapes.

See also setShape() [p. 94].

Related Functions

QDataStream & operator<< (QDataStream & s, const QCursor & c)

Writes the cursor ¢ to the stream s.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QDataStream & operator>> (QDataStream & s, QCursor & c)

Reads a cursor from the stream s and sets c to the read data.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QGL Class Reference

The QGL class is a namespace for miscellaneous identifiers in the Qt OpenGL module.
This class is part of the OpenGL module.

#include <qgl . h>

Inherited by QGLFormat [p. 106], QGLContext [p. 101] and QGLWidget [p. 114].

Public Members

m enum FormatOption { DoubleBuffer = 0x0001, DepthBuffer = 0x0002, Rgba = 0x0004, AlphaChannel =
0x0008, AccumBuffer = 0x0010, StencilBuffer = 0x0020, StereoBuffers = 0x0040, DirectRendering =
0x0080, HasOverlay = 0x0100, SingleBuffer = DoubleBuffer< <16, NoDepthBuffer = DepthBuffer< <16,
ColorIndex = Rgba< <16, NoAlphaChannel = AlphaChannel< <16, NoAccumBuffer = AccumBuffer< <16,
NoStencilBuffer = StencilBuffer< <16, NoStereoBuffers = StereoBuffers< <16, IndirectRendering =
DirectRendering< <16, NoOverlay = HasOverlay<<16 }

Detailed Description

The QGL class is a namespace for miscellaneous identifiers in the Qt OpenGL module.

Normally you can ignore this class. QGLWidget and the other OpenGL* module classes inherit it, so when you
make your own QGLWidget subclass you can use the identifiers in the QGL namespace without qualification.

However, you may occasionally find yourself in situations where you need to refer to these identifiers from outside
the QGL namespace’s scope, e.g. in static functions. In such cases, simply write e.g. QGL::DoubleBuffer instead of
just DoubleBuffer.

* OpenGL is a trademark of Silicon Graphics, Inc. in the United States and other countries.

See also Graphics Classes and Image Processing Classes.

Member Type Documentation

QGL::FormatOption
This enum specifies the format options.

e (QGL:: Doubl eBuf f er
e QG.:: DepthBuf fer
e QG.:: Rgba

e Q4.:: Al phaChannel

96

QGL Class Reference

. AccunBuf f er

.. Stenci | Buf fer

. StereoBuffers

. DirectRendering
. HasQverl ay

.1 Singl eBuf fer

.. NoDept hBuf f er

.. Col or I ndex

.- NoAl phaChannel

. NoAccunBuf f er
:NoStenci | Buf fer
.. NoSt ereoBuffers
.. I'ndirect Rendering
:NoQverl ay

97

QGLColormap Class Reference

The QGLColormap class is used for installing custom colormaps into QGLWidgets.

#i ncl ude <qgl col or map. h>

Public Members

QGLColormap ()

QGLColormap (const QGLColormap & map)
~QGLColormap ()

QGLColormap & operator= (const QGLColormap & map)
bool isEmpty () const

int size () const

void detach ()

void setEntries (int count, const QRgb * colors, int base = 0)
void setEntry (int idx, QRgb color)

void setEntry (int idx, const QColor & color)

QRgb entryRgb (int idx) const

QColor entryColor (int idx) const

int find (QRgb color) const

int findNearest (QRgb color) const

Detailed Description

The QGLColormap class is used for installing custom colormaps into QGLWidgets.

QGLColormap provides a platform independent way of specifying and installing indexed colormaps into QGLWid-

gets. QGLColormap is especially useful when using the OpenGL color-index mode.

Under X11 you will have to use an X server that supports either a PseudoColor or DirectColor visual class. If your
X server currently only provides a GrayScale, TrueColor, StaticColor or StaticGray visual, you will not be able to
allocate colorcells for writing. If this is the case, try setting your X server in 8 bit mode. It should then provide you
with at least a PseudoColor visual. Note that you may experience colormap flashing if your X server is running in

8 bit mode.

Under Windows the size of the colormap is always set to 256 colors. Note that under Windows you are allowed to

install colormaps into child widgets.

This class uses explicit sharing (see Shared Classes).

Example of use:

#incl ude <qgapplication. h>

98

QGLColormap Class Reference 99

#i ncl ude <qgl col or map. h>

int main()
{
QApplication a(argc, argv);

MySuper GLW dget widget(0); // A QaWdget in color-index mode
QGLCol ormap col or map;

{1 This will fill the colormap with colors ranging from
/1 black to white.
for (int i =0; i size(); i++)

col ormap->setEntry(i, qRgb(i, i, i));

wi dget . set Col ormap(col ormap);
wi dget . show() ;
return a.exec();

}

See also QGIWidget::setColormap() [p. 121], QGIWidget::colormap() [p. 118], Graphics Classes and Image
Processing Classes.

Member Function Documentation

QGLColormap::QGLColormap ()

Construct a QGLColormap.

QGLColormap::QGLColormap (const QGLColormap & map)

Construct a shallow copy of map.

QGLColormap::~QGLColormap ()

Dereferences the QGLColormap and deletes it if this was the last reference to it.

void QGLColormap::detach ()

Detaches this QGLColormap from the shared block.

QColor QGLColormap::entryColor (int idx) const

Returns the QRgb value in the colorcell with index idx.

QRgb QGLColormap::entryRgb (int idx) const

Returns the QRgb value in the colorcell with index idx.

QGLColormap Class Reference 100

int QGLColormap::find (QRgb color) const

Returns the index of the color color. If color is not in the map, -1 is returned.

int QGLColormap::findNearest (QRgb color) const

Returns the index of the color that is the closest match to color color.

bool QGLColormap::isEmpty () const

Returns TRUE if the colormap is empty; otherwise returns FALSE. A colormap with no color values set is considered
to be empty.

QGLColormap & QGLColormap::operator= (const QGLColormap & map)

Assign a shallow copy of map to this QGLColormap.

void QGLColormap::setEntries (int count, const QRgb * colors, int base = 0)

Set an array of cells in this colormap. count is the number of colors that should be set, colors is the array of colors,
and base is the starting index.

void QGLColormap::setEntry (int idx, QRgb color)

Set cell idx in the colormap to color color.

void QGLColormap::setEntry (int idx, const QColor & color)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Set cell with index idx in the colormap to color color.

int QGLColormap::size () const

Returns the number of colorcells in the colormap.

QGLContext Class Reference

The QGLContext class encapsulates an OpenGL rendering context.
This class is part of the OpenGL module.

#include <qgl . h>

Inherits QGL [p. 96].

Public Members

» QGLContext (const QGLFormat & format, QPaintDevice * device)
m virtual ~QGLContext ()

m virtual bool create (const QGLContext * shareContext = 0)

m bool isValid () const

bool isSharing () const

virtual void reset ()

QGLFormat format () const

QGLFormat requestedFormat () const

virtual void setFormat (const QGLFormat & format)

virtual void makeCurrent ()

virtual void swapBuffers () const
QPaintDevice * device () const

e QColor overlayTransparentColor () const

Static Public Members

m const QGLContext * currentContext ()

Protected Members

m virtual bool chooseContext (const QGLContext * shareContext = 0)
m virtual void doneCurrent ()

m virtual int choosePixelFormat (void * dummyPfd, HDC pdc)

m bool devicelsPixmap () const

= bool windowCreated () const

m void setWindowCreated (bool on)

= bool initialized () const

m void setInitialized (bool on)

101

QGLContext Class Reference 102

Detailed Description

The QGLContext class encapsulates an OpenGL rendering context.
An OpenGL* rendering context is a complete set of OpenGL state variables.

The context’s format is set in the constructor or later with setFormat(). The format options that are actually set
are returned by format(); the options you asked for are returned by requestedFormat(). The context is created by
the create() function which is called from the constructors. The makeCurrent() function makes this context the
current rendering context. You can make no context current using doneCurrent(). The reset() function will reset
the context and make it invalid.

You can examine properties of the context with, e.g. isValid(), isSharing(), initialized(), windowCreated() and
overlayTransparentColor().

If you're using double buffering you can swap the screen contents with the off-screen buffer using swapBuffers().
* OpenGL is a trademark of Silicon Graphics, Inc. in the United States and other countries.

See also Graphics Classes and Image Processing Classes.

Member Function Documentation

QGLContext::QGLContext (const QGLFormat & format, QPaintDevice * device)
Constructs an OpenGL context for the paint device device, which can be a widget or a pixmap. The format specifies
several display options for the context.

If the underlying OpenGL/Window system cannot satisfy all the features requested in format, the nearest subset of
features will be used. After creation, the format() method will return the actual format obtained.

The context will be invalid if it was not possible to obtain a GL context at all.

See also format() [p. 103] and isValid() [p. 104].

QGLContext::~QGLContext () [virtual]

Destroys the OpenGL context and frees its resources.

bool QGLContext::chooseContext (const QGLContext * shareContext =
0) [virtual protected]

This semi-internal function is called by create(). It creates a system-dependent OpenGL handle that matches the
format() of shareContext as closely as possible.

On Windows, it calls the virtual function choosePixelFormat(), which finds a matching pixel format identifier. On
X11, it calls the virtual function chooseVisual() which finds an appropriate X visual. On other platforms it may
work differently.

int QGLContext::choosePixelFormat (void * dummyPfd, HDC pdc) [virtual protected]

Win32 only This virtual function chooses a pixel format that matches the OpenGL format. Reimplement this
function in a subclass if you need a custom context.

Warning: The dummyPfd pointer and pdc are used as a Pl XELFORMATDESCRI PTCR*. We use voi d to avoid using
Windows-specific types in our header files.

QGLContext Class Reference 103

See also chooseContext() [p. 102].

bool QGLContext::create (const QGLContext * shareContext = 0) [virtual]

Creates the GL context. Returns TRUE if it was successful in creating a GL rendering context on the paint device
specified in the constructor; otherwise returns FALSE (i.e. the context is invalid).

After successful creation, format() returns the set of features of the created GL rendering context.

If shareContext points to a valid QGLContext, this method will try to establish OpenGL display list sharing between
this context and the shareContext. Note that this may fail if the two contexts have different formats. Use isSharing()
to see if sharing succeeded.

Implementation note: initialization of C++ class members usually takes place in the class constructor. QGLContext
is an exception because it must be simple to customize. The virtual functions chooseContext() (and chooseVisual()
for X11) can be reimplemented in a subclass to select a particular context. The problem is that virtual functions are
not properly called during construction (even though this is correct C++) because C++ constructs class hierarchies
from the bottom up. For this reason we need a create() function.

See also chooseContext() [p. 102], format() [p. 103] and isValid() [p. 104].

const QGLContext * QGLContext::currentContext () [static]

Returns the current context, i.e. the context to which any OpenGL commands will currently be directed. Returns 0
if no context is current.

See also makeCurrent() [p. 104].

QPaintDevice * QGLContext::device () const

Returns the paint device set for this context.

See also QGLContext::QGLContext() [p. 102].

bool QGLContext::devicelsPixmap () const [protected]

Returns TRUE if the paint device of this context is a pixmap; otherwise returns FALSE.

void QGLContext::doneCurrent () [virtual protected]

Makes no GL context the current context. Normally, you do not need to call this function; QGLContext calls it as
necessary.

QGLFormat QGLContext::format () const

Returns the frame buffer format that was obtained (this may be a subset of what was requested).
See also requestedFormat() [p. 104].

bool QGLContext::initialized () const [protected]

Returns TRUE if this context has been initialized, i.e. if QGIWidget::initializeGL() has been performed on it;
otherwise returns FALSE.

QGLContext Class Reference 104
See also setInitialized() [p. 105].

bool QGLContext::isSharing () const

Returns TRUE if display list sharing with another context was requested in the create() call and the GL system was
able to fulfill this request; otherwise returns FALSE. Note that display list sharing might not be supported between
contexts with different formats.

bool QGLContext::isValid () const

Returns TRUE if a GL rendering context has been successfully created; otherwise returns FALSE.

void QGLContext::makeCurrent () [virtual]

Makes this context the current OpenGL rendering context. All GL functions you call operate on this context until
another context is made current.

QColor QGLContext::overlayTransparentColor () const
If this context is a valid context in an overlay plane, returns the plane’s transparent color. Otherwise returns an
invalid color.

The returned color’s pixel value is the index of the transparent color in the colormap of the overlay plane. (Natu-
rally, the color’'s RGB values are meaningless.)

The returned QColor object will generally work as expected only when passed as the argument to QGLWid-
get::qglColor() or QGILWidget::qglClearColor(). Under certain circumstances it can also be used to draw trans-
parent graphics with a QPainter. See the examples/opengl/overlay x11 example for details.

QGLFormat QGLContext::requestedFormat () const

Returns the frame buffer format that was originally requested in the constructor or setFormat().

See also format() [p. 103].

void QGLContext::reset () [virtual]

Resets the context and makes it invalid.

See also create() [p. 103] and isValid() [p. 104].

void QGLContext::setFormat (const QGLFormat & format) [virtual]

Sets a format for this context. The context is reset.

Call create() to create a new GL context that tries to match the new format.

QE.Cont ext *cx;
...

QGLFormat f;
f.setStereo(TRUE);

QGLContext Class Reference 105

cx->setFormat(f);
if ('cx->create())

exit(); // no QpenGL support, or cannot render on the specified paintdevice
if ('cx->format().stereo())

exit(); // could not create stereo context

See also format() [p. 103], reset() [p. 104] and create() [p. 103].

void QGLContext::setInitialized (bool on) [protected]

If on is TRUE the context has been initialized, i.e. QGLContext::setlnitialized() has been called on it. If on is FALSE
the context has not been initialized.

See also initialized () [p. 103].

void QGLContext::setWindowCreated (bool on) [protected]

If on is TRUE the context has had a window created for it. If on is FALSE no window has been created for the
context.

See also windowCreated() [p. 105].
void QGLContext::swapBuffers () const [virtual]
Swaps the screen contents with an off-screen buffer. Works only if the context is in double buffer mode.

See also QGLFormat::setDoubleBuffer() [p. 112].

bool QGLContext::windowCreated () const [protected]

Returns TRUE if a window has been created for this context; otherwise returns FALSE.

See also setWindowCreated() [p. 105].

QGLFormat Class Reference

The QGLFormat class specifies the display format of an OpenGL rendering context.
This class is part of the OpenGL module.

#include <qgl . h>

Inherits QGL [p. 96].

Public Members

» QGLFormat ()

» QGLFormat (int options, int plane = 0)
= bool doubleBuffer () const

m void setDoubleBuffer (bool enable)

m bool depth () const

m void setDepth (bool enable)

= bool rgba () const

m void setRgba (bool enable)

m bool alpha () const

m void setAlpha (bool enable)

= bool accum () const

= void setAccum (bool enable)

m bool stencil () const

= void setStencil (bool enable)

= bool stereo () const

m void setStereo (bool enable)

m bool directRendering () const

void setDirectRendering (bool enable)
bool hasOverlay () const

void setOverlay (bool enable)

int plane () const

m void setPlane (int plane)

» void setOption (FormatOption opt)
bool testOption (FormatOption opt) const

Static Public Members
m QGLFormat defaultFormat ()

m void setDefaultFormat (const QGLFormat & f)
» QGLFormat defaultOverlayFormat ()

106

QGLFormat Class Reference 107

m void setDefaultOverlayFormat (const QGLFormat & f)
m bool hasOpenGL ()
» bool hasOpenGLOverlays ()

Detailed Description

The QGLFormat class specifies the display format of an OpenGL rendering context.

A display format has several characteristics:

e Double or single buffering.
e Depth buffer.

e RGBA or color index mode.
e Alpha channel.

e Accumulation buffer.

e Stencil buffer.

e Stereo buffers.

e Direct rendering.

e Presence of an overlay.

e The plane of an overlay format.

You create and tell a QGLFormat object what rendering options you want from an OpenGL* rendering context.

OpenGL drivers or accelerated hardware may or may not support advanced features such as alpha channel or
stereographic viewing. If you request some features that the driver/hardware does not provide when you create a
QGIWidget, you will get a rendering context with the nearest subset of features.

There are different ways to define the display characteristics of a rendering context. One is to create a QGLFormat
and make it default for the entire application:

QGLFormat f;

f.set Al pha(TRUE);

f.setStereo(TRUE);

QGLFormat:: setDefaultFormat (f);

Or you can specify the desired format when creating an object of your QGLWidget subclass:

QG.Format f;

f.set Doubl eBuf fer(FALSE); Il single buffer
f.setDirectRendering(FALSE); Il software rendering
M/GLW dget* myW dget = new WG Wdget(f, ...);

After the widget has been created, you can find out which of the requested features the system was able to provide:

QG.Format f;
f.setOverlay(TRUE);
f.setStereo(TRUE);
M/GLW dget * myW dget = new WG Wdget(f, ...);
if ('w>format().stereo()) {

Il ok, goggles off

if ('w>format().hasOverlay()) {

gFatal ("Cool hardware required");

}

QGLFormat Class Reference 108

* OpenGL is a trademark of Silicon Graphics, Inc. in the United States and other countries.

See also QGLContext [p. 101], QGLWidget [p. 114], Graphics Classes and Image Processing Classes.

Member Function Documentation

QGLFormat::QGLFormat ()

Constructs a QGLFormat object with the factory default settings:

e Double buffer: Enabled.

e Depth buffer: Enabled.

¢ RGBA: Enabled (i.e., color index disabled).
e Alpha channel: Disabled.

e Accumulator buffer: Disabled.

e Stencil buffer: Disabled.

e Stereo: Disabled.

e Direct rendering: Enabled.

e Overlay: Disabled.

e Plane: O (i.e., normal plane).

QGLFormat::QGLFormat (int options, int plane = 0)

Creates a QGLFormat object that is a copy of the current application default format.

If options is not 0, this copy is modified by these format options. The options parameter should be FormatOption
values OR’ed together.

This constructor makes it easy to specify a certain desired format in classes derived from QGLWidget, for example:

/I The rendering in MyGLW dget depends on using
/] stencil buffer and al pha channel
M/GLW dget : : MyGLW dget (QN dget* parent, const char* name)
QGLWdget (QA.Format(StencilBuffer | Al phaChannel), parent, nane)

{
if (!format().stencil())
gwarning("Could not get stencil buffer; results will be suboptimal");
if (!format().al phaChannel ())
gwarning("Could not get al pha channel; results will be suboptiml");
}

Note that there are FormatOption values to turn format settings both on and off, e.g. DepthBuffer and NoDepth-
Buffer, DirectRendering and IndirectRendering, etc.

The plane parameter defaults to 0 and is the plane which this format should be associated with. Not all OpenGL
implmentations supports overlay/underlay rendering planes.

See also defaultFormat() [p. 109] and setOption() [p. 112].

QGLFormat Class Reference 109

bool QGLFormat::accum () const

Returns TRUE if the accumulation buffer is enabled; otherwise returns FALSE. The accumulation buffer is disabled
by default.

See also setAccum() [p. 110].

bool QGLFormat::alpha () const

Returns TRUE if the alpha channel of the framebuffer is enabled; otherwise returns FALSE. The alpha channel is
disabled by default.

See also setAlpha() [p. 111].

QGLFormat QGLFormat::defaultFormat () [static]
Returns the default QGLFormat for the application. All QGIWidgets that are created use this format unless another
format is specified, e.g. when they are constructed.

If no special default format has been set using setDefaultFormat(), the default format is the same as that created
with QGLFormat().

See also setDefaultFormat() [p. 111].

QGLFormat QGLFormat::defaultOverlayFormat () [static]

Returns the default QGLFormat for overlay contexts.

The factory default overlay format is:

e Double buffer: Disabled.

e Depth buffer: Disabled.

e RGBA: Disabled (i.e., color index enabled).
e Alpha channel: Disabled.

e Accumulator buffer: Disabled.

e Stencil buffer: Disabled.

e Stereo: Disabled.

e Direct rendering: Enabled.

e Overlay: Disabled.

e Plane: 1 (i.e., first overlay plane).

See also setDefaultFormat() [p. 111].

bool QGLFormat::depth () const

Returns TRUE if the depth buffer is enabled; otherwise returns FALSE. The depth buffer is enabled by default.
See also setDepth() [p. 112].

QGLFormat Class Reference 110

bool QGLFormat::directRendering () const

Returns TRUE if direct rendering is enabled; otherwise returns FALSE.
Direct rendering is enabled by default.

See also setDirectRendering() [p. 112].

bool QGLFormat::doubleBuffer () const

Returns TRUE if double buffering is enabled; otherwise returns FALSE. Double buffering is enabled by default.
See also setDoubleBuffer() [p. 112].

bool QGLFormat::hasOpenGL () [static]

Returns TRUE if the window system has any OpenGL support; otherwise returns FALSE.

Note: this function must not be called until the QApplication object has been created.

bool QGLFormat::hasOpenGLOverlays () [static]

Returns TRUE if the window system supports OpenGL overlays; otherwise returns FALSE.

Note: this function must not be called until the QApplication object has been created.

bool QGLFormat::hasOverlay () const

Returns TRUE if overlay plane is enabled; otherwise returns FALSE.
Overlay is disabled by default.
See also setOverlay() [p. 112].

int QGLFormat::plane () const

Returns the plane of this format. The default for normal formats is 0, which means the normal plane. The default
for overlay formats is 1, which is the first overlay plane.

See also setPlane() [p. 112].

bool QGLFormat::rgba () const

Returns TRUE if RGBA color mode is set. Returns FALSE if color index mode is set. The default color mode is
RGBA.

See also setRgba() [p. 113].

void QGLFormat::setAccum (bool enable)

If enable is TRUE enables the accumulation buffer; otherwise disables the accumulation buffer.

The accumulation buffer is disabled by default.

QGLFormat Class Reference 111

The accumulation buffer is used for create blur effects and multiple exposures.

See also accum() [p. 109].

void QGLFormat::setAlpha (bool enable)

If enable is TRUE enables the alpha channel; otherwise disables the alpha channel.
The alpha buffer is disabled by default.

The alpha channel is typically used for implementing transparency or translucency. The A in RGBA specifies the
transparency of a pixel.

See also alpha() [p. 109].

void QGLFormat::setDefaultFormat (const QGLFormat & f) [static]

Sets a new default QGLFormat for the application to f. For example, to set single buffering as the default instead of
double buffering, your main() can contain code like this:

QApplication a(argc, argv);
QGLFormat f;

f.set Doubl eBuf fer(FALSE);
QGLFormat: : setDefault Format (f);

See also defaultFormat() [p. 109].

void QGLFormat::setDefaultOverlayFormat (const QGLFormat & f) [static]

Sets a new default QGLFormat for overlay contexts to f. This format is used whenever a QGLWidget is created with
a format that hasOverlay() enabled.

For example, to get a double buffered overlay context (if available), use code like this:

QGLFormat f = QGLFornmat::defaul t OverlayFornmat();
f.set Doubl eBuffer(TRUE);
QGLFormat: : set Def ault Overl ayFormat (f);

As usual, you can find out after widget creation whether the underlying OpenGL system was able to provide the
requested specification:

[/ ...continued from above
M/GLW dget* myWdget = new MyGLW dget (QG.Format (QG.::HasOverlay), ...);
if (nyWdget->format().hasQverlay()) {
/] Yes, we got an overlay, let's check _its_ format:
QGLCont ext* ol Context = myW dget - >over| ayContext ();
if (ol Context->format().doubleBuffer())
; /1 yes, we got a double buffered overlay
el se
; /1 no, only single buffered overlays are avail able

See also defaultOverlayFormat() [p. 109].

QGLFormat Class Reference 112

void QGLFormat::setDepth (bool enable)

If enable is true enables the depth buffer; otherwise disables the depth buffer.
The depth buffer is enabled by default.

The purpose of a depth buffer (or z-buffering) is to remove hidden surfaces. Pixels are assigned z values based on
the distance to the viewer. A pixel with a high z value is closer to the viewer than a pixel with a low z value. This
information is used to decide whether to draw a pixel or not.

See also depth() [p. 109].

void QGLFormat::setDirectRendering (bool enable)

If enable is TRUE enables direct rendering; otherwise disables direct rendering.
Direct rendering is enabled by default.

Enabling this option will make OpenGL bypass the underlying window system and render directly from hardware
to the screen, if this is supported by the system.

See also directRendering() [p. 110].

void QGLFormat::setDoubleBuffer (bool enable)

If enable is true sets double buffering; otherwise sets single buffering.
Double buffering is enabled by default.

Double buffering is a technique where graphics are rendered on an off-screen buffer and not directly to the screen.
When the drawing has been completed, the program calls a swapBuffers function to exchange the screen contents
with the buffer. The result is flicker-free drawing and often better performance.

See also doubleBuffer() [p. 110], QGLContext::swapBuffers() [p. 105] and QGIWidget::swapBuffers() [p. 122].

void QGLFormat::setOption (FormatOption opt)

Sets the format option to opt.

See also testOption() [p. 113].

void QGLFormat::setOverlay (bool enable)

If enable is TRUE enables an overlay plane; otherwise disables the overlay plane.

Enabling the overlay plane will cause QGLWidget to create an additional context in an overlay plane. See the
QGLWidget documentation for further information.

See also hasOverlay() [p. 110].

void QGLFormat::setPlane (int plane)
Sets the requested plane to plane. 0 is the normal plane, 1 is the first overlay plane, 2 is the second overlay plane,
etc.; -1, -2, etc. are underlay planes.

Note that in contrast to other format specifications, the plane specifications will be matched exactly. This means
that if you specify a plane that the underlying OpenGL system cannot provide, an invalidQGLWidget will be created.

QGLFormat Class Reference 113

See also plane() [p. 110].

void QGLFormat::setRgba (bool enable)

If enable is TRUE sets RGBA mode. If enable is FALSE sets color index mode.
The default color mode is RGBA.

RGBA is the preferred mode for most OpenGL applications. In RGBA color mode you specify colors as red + green
+ blue + alpha quadruplets.

In color index mode you specify an index into a color lookup table.

See also rgba() [p. 110].

void QGLFormat::setStencil (bool enable)

If enable is TRUE enables the stencil buffer; otherwise disables the stencil buffer.
The stencil buffer is disabled by default.
The stencil buffer masks certain parts of the drawing area so that masked parts are not drawn on.

See also stencil() [p. 113].

void QGLFormat::setStereo (bool enable)

If enable is TRUE enables stereo buffering; otherwise disables stereo buffering.
Stereo buffering is disabled by default.
Stereo buffering provides extra color buffers to generate left-eye and right-eye images.

See also stereo() [p. 113].

bool QGLFormat::stencil () const

Returns TRUE if the stencil buffer is enabled; otherwise returns FALSE. The stencil buffer is disabled by default.

See also setStencil() [p. 113].

bool QGLFormat::stereo () const

Returns TRUE if stereo buffering is enabled; otherwise returns FALSE. Stereo buffering is disabled by default.
See also setStereo() [p. 113].

bool QGLFormat::testOption (FormatOption opt) const

Returns TRUE if format option opt is set; otherwise returns FALSE.

See also setOption() [p. 112].

QGLWidget Class Reference

The QGLWidget class is a widget for rendering OpenGL graphics.
This class is part of the OpenGL module.

#include <qgl . h>

Inherits QWidget [Widgets with Qt] and QGL [p. 96].

Public Members

» QGLWidget (QWidget * parent = 0, const char * name = 0, const QGLWidget * shareWidget = 0, WFlags f
=0)

» QGLWidget (const QGLFormat & format, QWidget * parent = 0, const char * name = 0,
const QGLWidget * shareWidget = 0, WFlags f = 0)

» ~QGLWidget ()

» void gqglColor (const QColor & c¢) const

m void qglClearColor (const QColor & c¢) const

= bool isValid () const

= bool isSharing () const

m virtual void makeCurrent ()

= bool doubleBuffer () const

m virtual void swapBuffers ()

» QGLFormat format () const

m const QGLContext * context () const

m virtual QPixmap renderPixmap (int w = 0, int h = 0, bool useContext = FALSE)

virtual QImage grabFrameBuffer (bool withAlpha = FALSE)

virtual void makeOverlayCurrent ()

const QGLContext * overlayContext () const

const QGLColormap & colormap () const

e void setColormap (const QGLColormap & cmap)

Public Slots

m virtual void updateGL ()
m virtual void updateOverlayGL ()

Static Public Members

= QImage convertToGLFormat (const QImage & img)

114

QGLWidget Class Reference 115

Protected Members

m virtual void initializeGL ()

m virtual void resizeGL (int width, int height)
» virtual void paintGL ()

» virtual void initializeOverlayGL ()

m virtual void resizeOverlayGL (int width, int height)
m virtual void paintOverlayGL ()

m void setAutoBufferSwap (bool on)

» bool autoBufferSwap () const

» virtual void paintEvent (QPaintEvent *)

m virtual void resizeEvent (QResizeEvent *)
m virtual void glInit ()

e virtual void glDraw ()

Detailed Description

The QGLWidget class is a widget for rendering OpenGL graphics.

QGIWidget provides functionality for displaying OpenGL* graphics integrated into a Qt application. It is very
simple to use. You inherit from it and use the subclass like any other QWidget, except that instead of drawing the
widget’s contents using QPainter etc. you use the standard OpenGL rendering commands.

QGLWidget provides three convenient virtual functions that you can reimplement in your subclass to perform the
typical OpenGL tasks:

e paintGL() - Renders the OpenGL scene. Gets called whenever the widget needs to be updated.

e resizeGL() - Sets up the OpenGL viewport, projection, etc. Gets called whenever the the widget has been
resized (and also when it shown for the first time because all newly created widgets get a resize event
automatically).

e initializeGL(Q) - Sets up the OpenGL rendering context, defines display lists, etc. Gets called once before the
first time resizeGL() or paintGL() is called.

Here is a rough outline of how your QGLWidget subclass may look:

class MyGLDrawer : public QGELW dget

{
Q OBJECT Il must include this if you use @ signals/slots
public:
MyGLDr awer (QW dget *parent, const char *nane)
. Q@ W dget (parent, nane) {}
prot ect ed:

void initializeG()
{

/1 Set up the rendering context, define display lists etc.:

glCearColor(0.0, 0.0, 0.0, 0.0);
gl Enabl e(G._DEPTH _TEST) ;

}

QGLWidget Class Reference 116

void resizeG(int w, int h)

{

/] setup viewport, projection etc.:
gl Viewport(0, 0, (Gint)w, (Gint)h);

gl Frustum{ ...);

}...

voi d paint G()
{

/1 draw the scene:

gl Rotatef(...);

gl Material fv(...);
gl Begi n(G._QUADS);
gl Vertex3f(...);
gl Vertex3f(...);

ol End()

}s

If you need to trigger a repaint from places other than paintGL() (a typical example is when using timers to animate
scenes), you should call the widget’s updateGL() function.

Your widget’s OpenGL rendering context is made current when paintGL(), resizeGL(), or initializeGL() is called. If
you need to call the standard OpenGL API functions from other places (e.g. in your widget’s constructor or in your
own paint functions), you must call makeCurrent() first.

QGLWidget provides advanced functions for requesting a new display format and you can even set a new rendering
context.

You can achieve sharing of OpenGL display lists between QGILWidgets (see the documentation of the QGLWidget
constructors for details).

Overlays

The QGLWidget creates a GL overlay context in addition to the normal context if overlays are supported by the
underlying system.

If you want to use overlays, you specify it in the format. (Note: Overlay must be requested in the format passed to
the QGIWidget constructor.) Your GL widget should also implement some or all of these virtual methods:

e paintOverlayGL()
e resizeOverlayGL()
e initializeOverlayGL()

These methods work in the same way as the normal paintGL() etc. functions, except that they will be called when
the overlay context is made current. You can explicitly make the overlay context current by using makeOver-
layCurrent(), and you can access the overlay context directly (e.g. to ask for its transparent color) by calling
overlayContext().

QGILWidget overlay support is only currently implemented for the X11 window system. The Windows implementa-
tion is experimental.

QGLWidget Class Reference 117

On X servers in which the default visual is in an overlay plane, non-GL Qt windows can also be used for overlays.
See the examples/opengl/overlay x11 example program for details.

* OpenGL is a trademark of Silicon Graphics, Inc. in the United States and other countries.

See also Graphics Classes and Image Processing Classes.

Member Function Documentation

QGLWidget::QGLWidget (QWidget * parent = 0, const char * name = 0,
const QGLWidget * shareWidget = 0, WFlags f = 0)

Constructs an OpenGL widget with a parent widget and a name.
The default format is used. The widget will be invalid if the system has no OpenGL support.
The parent, name and widget flag, f, arguments are passed to the QWidget constructor.

If the shareWidget parameter points to a valid QGLWidget, this widget will share OpenGL display lists with
shareWidget. If this widget and shareWidget have different formats, display list sharing may fail. You can check
whether display list sharing succeeded by calling isSharing().

The initialization of OpenGL rendering state, etc. should be done by overriding the initializeGL() function, rather
than in the constructor of your QGLWidget subclass.

See also QGLFormat::defaultFormat() [p. 109].

QGLWidget::QGLWidget (const QGLFormat & format, QWidget * parent = 0,
const char * name = 0, const QGLWidget * shareWidget = 0, WFlags f = 0)

Constructs an OpenGL widget with parent parent, called name.

The format argument specifies the desired rendering options. If the underlying OpenGL/Window system cannot
satisfy all the features requested in format, the nearest subset of features will be used. After creation, the format()
method will return the actual format obtained.

The widget will be invalid if the system has no OpenGL support.
The parent, name and widget flag, f, arguments are passed to the QWidget constructor.

If the shareWidget parameter points to a valid QGLWidget, this widget will share OpenGL display lists with
shareWidget. If this widget and shareWidget have different formats, display list sharing may fail. You can check
whether display list sharing succeeded by calling isSharing().

The initialization of OpenGL rendering state, etc. should be done by overriding the initializeGL() function, rather
than in the constructor of your QGLWidget subclass.

See also QGLFormat::defaultFormat() [p. 109] and isvValid() [p. 119].

QGLWidget::~QGLWidget ()

Destroys the widget.

bool QGLWidget::autoBufferSwap () const [protected]

Returns TRUE if the widget is doing automatic GL buffer swapping; otherwise returns FALSE.

See also setAutoBufferSwap() [p. 121].

QGLWidget Class Reference 118

const QGLColormap & QGLWidget::colormap () const

Returns the colormap for this widget.

Usually it is only top-level widgets that can have different colormaps installed. Asking for the colormap of a child
widget will return the colormap for the child’s top-level widget.

If no colormap has been set for this widget, the QColormap returned will be empty.

See also setColormap() [p. 121].

const QGLContext * QGLWidget::context () const

Returns the context of this widget.

It is possible that the context is not valid (see isValid()), for example, if the underlying hardware does not support
the format attributes that were requested.

QImage QGLWidget::convertToGLFormat (const QImage & img) [static]

Converts the image img into the unnamed format expected by OpenGL functions such as glTexImage2D(). The
returned image is not usable as a QImage, but QImage::width(), QIlmage::height() and QImage::bits() may be
used with OpenGL. The following few lines are from the texture example. Most of the code is irrelevant, so we just
quote the few lines we want:

Q mage texl, tex2, buf;
if ('buf.load("gllogo.bmp")) { // Load first imge fromfile

We create texI (and another variable) for OpenGL, and load a real image into buf.
texl = QAW dget::convert ToQ Format(buf); // flipped 32bit RGBA
A few lines later, we convert buf into OpenGL format and store it in texI.

gl Texl mge2D(G_L_TEXTURE_2D, 0, 3, texl.width(), texl.height(), O,
GL_RGBA, GL_UNSI GNED BYTE, texl.bits());

Another function in the same example uses texI with OpenGL.

Example: opengl/texture/gltexobj.cpp.

bool QGLWidget::doubleBuffer () const

Returns TRUE if the contained GL rendering context has double buffering; otherwise returns FALSE.
See also QGLFormat::doubleBuffer() [p. 110].

QGLFormat QGLWidget::format () const

Returns the format of the contained GL rendering context.

QGLWidget Class Reference 119

void QGLWidget::glDraw () [virtual protected]

Executes the virtual function paintGL().

The widget’s rendering context will become the current context and initializeGL() will be called if it hasn’t already
been called.

void QGLWidget::glInit () [virtual protected]

Initializes OpenGL for this widget’s context. Calls the virtual function initializeGL().

QImage QGLWidget::grabFrameBuffer (bool withAlpha = FALSE) [virtual]

Returns an image of the frame buffer. If withAlpha is TRUE the alpha channel is included.

void QGLWidget::initializeGL () [virtual protected]

This virtual function is called once before the first call to paintGL() or resizeGL(), and then once whenever the
widget has been assigned a new QGLContext. Reimplement it in a subclass.

This function should set up any required OpenGL context rendering flags, defining display lists, etc.

There is no need to call makeCurrent() because this has already been done when this function is called.

void QGLWidget::initializeOverlayGL () [virtual protected]

This virtual function is used in the same manner as initializeGL() except that it operates on the widget’s overlay
context instead of the widget’s main context. This means that initializeOverlayGL() is called once before the first
call to paintOverlayGL() or resizeOverlayGL(). Reimplement it in a subclass.

This function should set up any required OpenGL context rendering flags, defining display lists, etc. for the overlay
context.

There is no need to call makeOverlayCurrent() because this has already been done when this function is called.

bool QGLWidget::isSharing () const

Returns TRUE if display list sharing with another QGIWidget was requested in the constructor, and the GL system
was able to provide it; otherwise returns FALSE. The GL system may fail to provide display list sharing if the two
QGILWidgets use different formats.

See also format() [p. 118].

bool QGLWidget::isValid () const

Returns TRUE if the widget has a valid GL rendering context; otherwise returns FALSE. A widget will be invalid if
the system has no OpenGL support.

void QGLWidget::makeCurrent () [virtual]

Makes this widget the current widget for OpenGL operations, i.e. makes the widget’s rendering context the current
OpenGL rendering context.

QGLWidget Class Reference 120

void QGLWidget::makeOverlayCurrent () [virtual]

Makes the overlay context of this widget current. Use this if you need to issue OpenGL commands to the overlay
context outside of initializeOverlayGL(), resizeOverlayGL(), and paintOverlayGL().

Does nothing if this widget has no overlay.

See also makeCurrent() [p. 119].

const QGLContext * QGLWidget::overlayContext () const

Returns the overlay context of this widget, or 0 if this widget has no overlay.

See also context() [p. 118].

void QGLWidget::paintEvent (QPaintEvent *) [virtual protected]

Handles paint events. Will cause the virtual paintGL() function to be called.

The widget’s rendering context will become the current context and initializeGL() will be called if it hasn’t already
been called.

Reimplemented from QWidget [Widgets with Qt].

void QGILWidget::paintGL () [virtual protected]

This virtual function is called whenever the widget needs to be painted. Reimplement it in a subclass.

There is no need to call makeCurrent() because this has already been done when this function is called.

void QGLWidget::paintOverlayGL () [virtual protected]

This virtual function is used in the same manner as paintGL() except that it operates on the widget’s overlay context
instead of the widget’s main context. This means that paintOverlayGL() is called whenever the widget’s overlay
needs to be painted. Reimplement it in a subclass.

There is no need to call makeOverlayCurrent() because this has already been done when this function is called.

void QGLWidget::qglClearColor (const QColor & c¢) const

Convenience function for specifying the clearing color to OpenGL. Calls glClearColor (in RGBA mode) or
glClearIndex (in color-index mode) with the color c. Applies to the current GL context.

See also qglColor() [p. 120], QGLContext::currentContext() [p. 103] and QColor [p. 741].

void QGLWidget::qglColor (const QColor & c¢) const

Convenience function for specifying a drawing color to OpenGL. Calls glColor3 (in RGBA mode) or glindex (in
color-index mode) with the color c. Applies to the current GL context.

See also qglClearColor() [p. 120], QGLContext::currentContext() [p. 103] and QColor [p. 74].

QGLWidget Class Reference 121

QPixmap QGLWidget::renderPixmap (int w = 0, int h = 0, bool useContext =
FALSE) [virtual]

Renders the current scene on a pixmap and returns the pixmap.
You may use this method on both visible and invisible QGLWidgets.

This method will create a pixmap and a temporary QGLContext to render on the pixmap. It will then call initial-
izeGL(), resizeGL(), and paintGL() on this context. Finally, the widget’s original GL context is restored.

The size of the pixmap will be w pixels wide and h pixels high unless one of these parameters is 0 (the default), in
which case the pixmap will have the same size as the widget.

If useContext is TRUE, this method will try to be more efficient by using the existing GL context to render the
pixmap. The default is FALSE. Only use TRUE if you understand the risks.

Overlays are not rendered onto the pixmap.

If the GL rendering context and the desktop have different bit depths, the result will most likely look surprising.

void QGLWidget::resizeEvent (QResizeEvent *) [virtual protected]

Handles resize events. Calls the virtual function resizeGL().

Reimplemented from QWidget [Widgets with Qt].

void QGLWidget::resizeGL (int width, int height) [virtual protected]
This virtual function is called whenever the widget has been resized. The new size is passed in width and height.
Reimplement it in a subclass.

There is no need to call makeCurrent() because this has already been done when this function is called.

void QGLWidget::resizeOverlayGL (int width, int height) [virtual protected]

This virtual function is used in the same manner as paintGL() except that it operates on the widget’s overlay context
instead of the widget’s main context. This means that resizeOverlayGL() is called whenever the widget has been
resized. The new size is passed in width and height. Reimplement it in a subclass.

There is no need to call makeOverlayCurrent() because this has already been done when this function is called.

void QGLWidget::setAutoBufferSwap (bool on) [protected]

If on is TRUE automatic GL buffer swapping is switched on; otherwise it is switched off.

If on is TRUE and the widget is using a double-buffered format, the background and foreground GL buffers will
automatically be swapped after each time the paintGL() function has been called.

The buffer auto-swapping is on by default.

See also autoBufferSwap() [p. 1171, doubleBuffer() [p. 118] and swapBuffers() [p. 122].

void QGLWidget::setColormap (const QGLColormap & cmap)

Set the colormap for this widget to cmap. Usually it is only top-level widgets that can have colormaps installed.

See also colormap() [p. 118].

QGLWidget Class Reference 122

void QGLWidget::swapBuffers () [virtual]

Swaps the screen contents with an off-screen buffer. This only works if the widget’s format specifies double buffer
mode.

Normally, there is no need to explicitly call this function because it is done automatically after each widget repaint,
i.e. each time after paintGL() has been executed.

See also doubleBuffer() [p. 118], setAutoBufferSwap() [p. 121] and QGLFormat::setDoubleBuffer() [p. 112].

void QGLWidget::updateGL () [virtual slot]

Updates the widget by calling glDraw().

void QGLWidget::updateOverlayGL () [virtual slot]

Updates the widget’s overlay (if any). Will cause the virtual function paintOverlayGL() to be executed.

The widget’s rendering context will become the current context and initializeGL() will be called if it hasn’t already
been called.

QIconSet Class Reference

The QIconSet class provides a set of icons with different styles and sizes.

#incl ude <qi conset. h>

Public Members

enum Size { Automatic, Small, Large }

enum Mode { Normal, Disabled, Active }

enum State { On, Off }

QIconSet ()

QIconSet (const QPixmap & pixmap, Size size = Automatic)

QIconSet (const QPixmap & smallPix, const QPixmap & largePix)

QIconSet (const QIconSet & other)

virtual ~QIconSet ()

void reset (const QPixmap & pm, Size size)

virtual void setPixmap (const QPixmap & pm, Size size, Mode mode = Normal, State state = Off)
virtual void setPixmap (const QString & fileName, Size size, Mode mode = Normal, State state = Off)
QPixmap pixmap (Size size, Mode mode, State state = Off) const

QPixmap pixmap (Size size, bool enabled, State state = Off) const

QPixmap pixmap () const

bool isGenerated (Size size, Mode mode, State state = Off) const

void clearGenerated ()

bool isNull () const

void detach ()

e QlconSet & operator= (const QIlconSet & other)

Static Public Members

m void setIconSize (Size s, const QSize & size)
m const QSize & iconSize (Size s)

Detailed Description

The QlIconSet class provides a set of icons with different styles and sizes.

A QIconSet can generate smaller, larger, active, and disabled pixmaps from the set of icons it is given. Such pixmaps
are used by QToolButton, QHeader, QPopupMenu, etc. to show an icon representing a particular action.

The simplest use of QIconSet is to create one from a QPixmap and then use it, allowing Qt to work out all the
required icon styles and sizes. For example:

123

QIconSet Class Reference 124

Qrool Button *tb = new Qlool Button(Q conSet(QP xmap("open.xpnt)), ...);
Using whichever pixmap(s) you specify as a base, QIconSet provides a set of six icons, each with a Size and a Mode:

e Small Normal - can only be calculated from Large Normal.
e Small Disabled - calculated from Large Disabled or Small Normal.

Small Active - same as Small Normal unless you set it.

Large Normal - can only be calculated from Small Normal.

Large Disabled - calculated from Small Disabled or Large Normal.

Large Active - same as Large Normal unless you set it.

An additional set of six icons can be provided for widgets that have an "On" or "Off" state, like checkable menu
items or toggleable toolbuttons. If you provide pixmaps for the "On" state, but not for the "Off" state, the QIconSet
will provide the "Off" pixmaps. You may specify icons for both states in you wish.

You can set any of the icons using setPixmap().

When you retrieve a pixmap using pixmap(Size,Mode,State), QIconSet will return the icon that has been set or
previously generated for that size, mode and state combination. If no pixmap has been set or previously generated
for the combination QIconSet will generate a pixmap based on the pixmap(s) it has been given, cache the generated
pixmap for later use, and return it. The isGenerated() function returns TRUE if an icon was generated by QIconSet.

The Disabled appearance is computed using a "shadow" algorithm that produces results very similar to those used
in Microsoft Windows 95.

The Active appearance is identical to the Normal appearance unless you use setPixmap() to set it to something
special.

When scaling icons, QIconSet uses smooth scaling, which can partially blend the color component of pixmaps. If
the results look poor, the best solution is to supply pixmaps in both large and small sizes.

You can use the static function setlconSize() to set the preferred size of the generated large/small icons. The
default small size is 22x22 (compatible with Qt 2.x), while the default large size is 32x32. Please note that these
sizes only affect generated icons.

QIconSet provides a function, isGenerated(), that indicates whether an icon was set by the application programmer
or computed by QIconSet itself.

Making Classes that use QIconSet

If you write your own widgets that have an option to set a small pixmap, consider allowing a QIconSet to be set for
that pixmap. The Qt class QToolButton is an example of such a widget.

Provide a method to set a QIconSet, and when you draw the icon, choose whichever icon is appropriate for the
current state of your widget. For example:

voi d MyWdget::draw con(QPainter* p, QPoint pos)
{

}

You might also make use of the Active mode, perhaps making your widget Active when the mouse is over the
widget (see QWidget::enterEvent()), while the mouse is pressed pending the release that will activate the function,
or when it is the currently selected item. If the widget can be toggled, the "On" mode might be used to draw a
different icon.

p- >dr awPi xmap(pos, icons->pi xmap(Q conSet:: Small, isEnabled()));

See also QPixmap [p. 225], QLabel [Widgets with Qt], QToolButton [Dialogs and Windows with Qt],
QPopupMenu [Dialogs and Windows with Qt], QMainWindow::usesBigPixmaps [Dialogs and Windows with Qt],
GUI Design Handbook: Iconic Label, Microsoft Icon Gallery, Graphics Classes, Image Processing Classes and
Implicitly and Explicitly Shared Classes.

QIconSet Class Reference 125

Member Type Documentation

QIconSet::Mode
This enum type describes the mode for which a pixmap is intended to be used. The currently defined modes are:

e Q conSet:: Normal - Display the pixmap when the user is not interacting with the icon, but the functionality
represented by the icon is available.

e Q conSet:: Di sabl ed - Display the pixmap when the functionality represented by the icon is not available.

e Q conSet:: Active - Display the pixmap when the functionality represented by the icon is available and the
user is interacting with the icon, for example, moving the mouse over it or clicking it.

QIconSet::Size
This enum type describes the size at which a pixmap is intended to be used. The currently defined sizes are:

e Q conSet:: Automatic - The size of the pixmap is determined from its pixel size. This is a useful default.
e QconSet::Small - The pixmap is the smaller of two.
e Q conSet:: Large - The pixmap is the larger of two.

If a Small pixmap is not set by QIconSet::setPixmap(), the Large pixmap will be automatically scaled down to the
size of a small pixmap to generate the Small pixmap when required. Similarly, a Small pixmap will be automati-
cally scaled up to generate a Large pixmap. The preferred sizes for large/small generated icons can be set using
setlconSize().

See also setlconSize() [p. 1271, iconSize() [p. 126], setPixmap() [p. 1271, pixmap() [p. 127] and
QMainWindow::usesBigPixmaps [Dialogs and Windows with Qt].

QIconSet::State
This enum describes the state for which a pixmap is intended to be used. The state can be:

e QconSet:: O f - Display the pixmap when the widget is in an "off" state
e Q conSet:: On - Display the pixmap when the widget is in an "on" state

See also setPixmap() [p. 127] and pixmap() [p. 127].

Member Function Documentation

QIconSet::QIconSet ()

Constructs a null icon set. Use setPixmap(), reset(), or operator=() to set some pixmaps.

See also reset() [p. 1271].

QIconSet::QIconSet (const QPixmap & pixmap, Size size = Automatic)

Constructs an icon set for which the Normal pixmap is pixmap, which is assumed to be of size size.

QIconSet Class Reference 126

The default for size is Automatic, which means that QIconSet will determine whether the pixmap is Small or Large
from its pixel size. Pixmaps less than the width of a small generated icon are considered to be Small. You can use
setlconSize() to set the preferred size of a generated icon.

See also setlconSize() [p. 127] and reset() [p. 127].

QIconSet::QIconSet (const QPixmap & smallPix, const QPixmap & largePix)

Creates an iconset which uses the pixmap smallPix for for displaying a small icon, and the pixmap largePix for
displaying a large icon.

QIconSet::QIconSet (const QIconSet & other)

Constructs a copy of other. This is very fast.

QIconSet::~QIconSet () [virtual]

Destroys the icon set and frees any allocated resources.

void QIconSet::clearGenerated ()

Clears all generated pixmaps.

void QIconSet::detach ()

Detaches this icon set from others with which it may share data.
You will never need to call this function; other QIconSet functions call it as necessary.

const QSize & QIconSet::iconSize (Size s) [static]

If s is Small, returns the preferred size of a small generated icon; if s is Large, returns the preferred size of a large
generated icon.

See also setlconSize() [p. 127].

bool QIconSet::isGenerated (Size size, Mode mode, State state = Off) const

Returns TRUE if the pixmap with size size, mode mode and state state has been generated; otherwise returns FALSE.

bool QIconSet::isNull () const

Returns TRUE if the icon set is empty; otherwise returns FALSE.

QIconSet & QIconSet::operator= (const QIconSet & other)

Assigns other to this icon set and returns a reference to this icon set.

This is very fast.

QIconSet Class Reference 127
See also detach() [p. 126].

QPixmap QIconSet::pixmap (Size size, Mode mode, State state = Off) const

Returns a pixmap with size size, mode mode and state state, generating one if necessary. Generated pixmaps are
cached.

QPixmap QIconSet::pixmap (Size size, bool enabled, State state = Off) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a pixmap with size size, state state and a Mode which is Normal if enabled is TRUE, or Disabled if enabled
is FALSE.

QPixmap QIconSet::pixmap () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the pixmap originally provided to the constructor or to reset(). This is the Normal pixmap of unspecified
Size.

See also reset() [p. 127].

void QIconSet::reset (const QPixmap & pm, Size size)

Sets this icon set to use pixmap pm for the Normal pixmap, assuming it to be of size size.
This is equivalent to assigning QIconSet(pm, size) to this icon set.

This function does nothing if pm is a null pixmap.

void QIconSet::setlconSize (Size s, const QSize & size) [static]
Set the preferred size for all small or large icons that are generated after this call. If s is Small, sets the preferred
size of small generated icons to size. Similarly, if s is Large, sets the preferred size of large generated icons to size.

Note that cached icons will not be regenerated, so it is recommended that you set the preferred icon sizes before
generating any icon sets.

See also iconSize() [p. 126].

void QIconSet::setPixmap (const QPixmap & pm, Size size, Mode mode = Normal,
State state = Off) [virtual]

Sets this icon set to provide pixmap pm for size size, mode mode and state state. The icon set may also use pm for
generating other pixmaps if they are not explicitly set.

The size can be one of Automatic, Large or Small. If Automatic is used, QIconSet will determine if the pixmap is
Small or Large from its pixel size.

Pixmaps less than the width of a small generated icon are considered to be Small. You can use setIconSize() to set
the preferred size of a generated icon.

This function does nothing if pm is a null pixmap.

See also reset() [p. 1271].

QIconSet Class Reference 128

void QIconSet::setPixmap (const QString & fileName, Size size, Mode mode = Normal,
State state = Off) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets this icon set to load the file called fileName as a pixmap and use it for size size, mode mode and state state. The
icon set may also use this pixmap for generating other pixmaps if they are not explicitly set.

The size can be one of Automatic, Large or Small. If Automatic is used, QIconSet will determine if the pixmap is
Small or Large from its pixel size. Pixmaps less than the width of a small generated icon are considered to be Small.
You can use setlconSize() to set the preferred size of a generated icon.

QImage Class Reference

The QImage class provides a hardware-independent pixmap representation with direct access to the pixel data.

#incl ude <qgi mage. h>

Public Members

enum Endian { IgnoreEndian, BigEndian, LittleEndian }

QImage ()

QImage (int w, int h, int depth, int numColors = 0, Endian bitOrder = IgnoreEndian)
QImage (const QSize & size, int depth, int numColors = 0, Endian bitOrder = IgnoreEndian)
QImage (const QString & fileName, const char * format = 0)
QImage (const char * const xpm[])

QImage (const QByteArray & array)

QImage (uchar * yourdata, int w, int h, int depth, QRgb * colortable, int numColors, Endian bitOrder)
QImage (const QImage & image)

~QImage ()

QImage & operator= (const QIlmage & image)

QImage & operator= (const QPixmap & pixmap)

bool operator== (const QImage & i) const

bool operator!= (const QImage & i) const

void detach ()

QImage copy () const

QImage copy (int x, int y; int w, int h, int conversion flags = 0) const
QImage copy (const QRect & r) const

bool isNull () const

int width () const

int height () const

QSize size () const

QRect rect () const

int depth () const

int numColors () const

Endian bitOrder () const

QRgb color (int i) const

void setColor (int i, QRgb ¢)

void setNumcColors (int numColors)

bool hasAlphaBuffer () const

void setAlphaBuffer (bool enable)

bool allGray () const

bool isGrayscale () const

129

QImage Class Reference 130

uchar * bits () const

uchar * scanLine (int i) const

uchar ** jumpTable () const

QRgb * colorTable () const

int numBytes () const

int bytesPerLine () const

bool create (int width, int height, int depth, int numColors = 0, Endian bitOrder = IgnoreEndian)
bool create (const QSize &, int depth, int numColors = 0, Endian bitOrder = IgnoreEndian)
void reset ()

void fill (uint pixel)

void invertPixels (bool invertAlpha = TRUE)

QImage convertDepth (int depth) const

QImage convertDepthWithPalette (int d, QRgb * palette, int palette_count, int conversion flags = 0) const
QImage convertDepth (int depth, int conversion_flags) const

QImage convertBitOrder (Endian bitOrder) const

enum ScaleMode { ScaleFree, ScaleMin, ScaleMax }

QImage smoothScale (int w, int h, ScaleMode mode = ScaleFree) const
QImage smoothScale (const QSize & s, ScaleMode mode = ScaleFree) const
QImage scale (int w, int h, ScaleMode mode = ScaleFree) const

QImage scale (const QSize & s, ScaleMode mode = ScaleFree) const
QImage scaleWidth (int w) const

QImage scaleHeight (int h) const

QImage xForm (const QWMatrix & matrix) const

QImage createAlphaMask (int conversion_flags = 0) const

QImage createHeuristicMask (bool clipTight = TRUE) const

QImage mirror () const

QImage mirror (bool horizontal, bool vertical) const

QImage swapRGB () const

bool load (const QString & fileName, const char * format = 0)

bool loadFromData (const uchar * buf, uint len, const char * format = 0)
bool loadFromData (QByteArray buf, const char * format = 0)

bool save (const QString & fileName, const char * format, int quality = -1) const
bool valid (int x, int y) const

int pixelIndex (int x, int y) const

QRgb pixel (int %, int y) const

void setPixel (int x, int y; uint index or rgb)

int dotsPerMeterX () const

int dotsPerMeterY () const

void setDotsPerMeterX (int x)

void setDotsPerMeterY (int y)

QPoint offset () const

void setOffset (const QPoint & p)

QValueList<QImageTextKeyLang> textList () const

QStringList textLanguages () const

QStringlList textKeys () const

QString text (const char * key, const char * lang = 0) const

QString text (const QImageTextKeyLang & kl) const

void setText (const char * key, const char * lang, const QString & s)

QImage Class Reference 131

Static Public Members

Endian systemBitOrder ()

Endian systemByteOrder ()

const char * imageFormat (const QString & fileName)
QStrList inputFormats ()

m QStrList outputFormats ()

m QStringList inputFormatList ()

m QStringList outputFormatList ()

Related Functions

m QDataStream & operator< < (QDataStream & s, const QImage & image)
m QDataStream & operator>> ((QDataStream & s, QImage & image)

Detailed Description

The QImage class provides a hardware-independent pixmap representation with direct access to the pixel data.

It is one of the two classes Qt provides for dealing with images, the other being QPixmap. QImage is designed
and optimized for I/0 and for direct pixel access/manipulation. QPixmap is designed and optimized for draw-
ing. There are (slow) functions to convert between QImage and QPixmap: QPixmap::convertTolmage() and
QPixmap::convertFromImage().

An image has the parameters width, height and depth (bits per pixel, bpp), a color table and the actual pixels.
QImage supports 1-bpp, 8-bpp and 32-bpp image data. 1-bpp and 8-bpp images use a color lookup table; the pixel
value is a color table index.

32-bpp images encode an RGB value in 24 bits and ignore the color table. The most significant byte is used for the
alpha buffer.

An entry in the color table is an RGB triplet encoded as ui nt. Use the qRed, qGreen and gBlue functions (qcolor.h)
to access the components, and qRgb to make an RGB triplet (see the QColor class documentation).

1-bpp (monochrome) images have a color table with maximum two colors. There are two different formats: big
endian (MSB first) or little endian (LSB first) bit order. To access a single bit you will have to do some bit shifts:

Q mage i nage;

/] sets bhit at (x,y) to 1

if (image.bitOrder() == Qmage::LittleEndian)
*(image.scanLine(y) + (x >>3)) |=1<< (x &7);

el se
*(image.scanLine(y) + (x >> 3)) |=1 << (7 -(x &7));

If this looks complicated, it might be a good idea to convert the 1-bpp image to an 8-bpp image using convert-
Depth().

8-bpp images are much easier to work with than 1-bpp images because they have a single byte per pixel:

Q mage i nage;

/] set entry 19 in the color table to yellow

i mge. set Col or(19, qRgb(255, 255,0));

/1 set 8 bit pixel at (x,y) to value yellow (in color table)
*(image. scanLine(y) + x) = 19;

QImage Class Reference 132

32-bpp images ignore the color table; instead, each pixel contains the RGB triplet. 24 bits contain the RGB value;
the most significant byte is reserved for the alpha buffer.

Q mage i nage;

/] sets 32 bit pixel at (x,y) to yellow
uint *p = (uint *)imge.scanLine(y) + Xx;
*p = gRgb(255, 255, 0) ;

On Qt/Embedded, scanlines are aligned to the pixel depth and may be padded to any degree, while on all other
platforms, the scanlines are 32-bit aligned for all depths. The constructor taking a

uchar*
argument always expects 32-bit aligned data. On Qt/Embedded, an additional constructor allows the number of
byte-per-line to be specified.

QImage supports a variety of methods for getting information about the image, for example, colorTable(), allGray(),
isGrayscale(), bitOrder(), bytesPerLine(), depth(), dotsPerMeterX() and dotsPerMeterY(), hasAlphaBuffer(), num-
Bytes(), numColors(), and width() and height().

Pixel colors are retrieved with pixel() and set with setPixel().

QImage also supports a number of functions for creating a new image that is a transformed version of the origi-
nal. For example, copy(), convertBitOrder(), convertDepth(), createAlphaMask(), createHeuristicMask(), mirror(),
scale(), smoothScale(), swapRGB() and xForm(). There are also functions for changing attributes of an image in-
place, for example, setAlphaBuffer(), setColor(), setDotsPerMeterX() and setDotsPerMeterY () and setNumColors().

Images can be loaded and saved in the supported formats. Images are saved to a file with save(). Images are
loaded from a file with load() (or in the constructor) or from an array of data with loadFromData(). The lists of
supported formats are available from inputFormatList() and outputFormatList().

Strings of text may be added to images using setText().
The QImage class uses explicit sharing, similar to that used by QMemArray.
New image formats can be added as plugins.

See also QImagelO [p. 154], QPixmap [p. 225], Shared Classes [Programming with Qt], Graphics Classes, Image
Processing Classes and Implicitly and Explicitly Shared Classes.

Member Type Documentation

QImage::Endian
This enum type is used to describe the endianness of the CPU and graphics hardware.

The current values are:

e Q mage: : |1 gnor eEndi an - Endianness does not matter. Useful for some operations that are independent of
endianness.

e Q mage: : Bi gEndi an - Network byte order, as on SPARC and Motorola CPUs.
e Q mage:: LittleEndi an - PC/Alpha byte order.

QImage::ScaleMode

The functions scale() and smoothScale() use different modes for scaling the image. The purpose of these modes is
to retain the ratio of the image if this is required.

QImage Class Reference 133

e Q mage: : Scal eFree - The image is scaled freely: the resulting image fits exactly into the specified size; the
ratio will not necessarily be preserved.

e Q mage:: Scal eM n - The ratio of the image is preserved and the resulting image is guaranteed to fit into
the specified size (it is as large as possible within these constraints) - the image might be smaller than the
requested size.

e Q mage: : Scal eMax - The ratio of the image is preserved and the resulting image fills the whole specified
rectangle (it is as small as possible within these constraints) - the image might be larger than the requested
size.

Member Function Documentation

QImage::QImage ()

Constructs a null image.

See also isNull() [p. 139].

QImage::QImage (int w, int h, int depth, int numColors = 0, Endian bitOrder =
IgnoreEndian)

Constructs an image with w width, h height, depth bits per pixel, numColors colors and bit order bitOrder.

Using this constructor is the same as first constructing a null image and then calling the create() function.

See also create() [p. 136].

QImage::QImage (const QSize & size, int depth, int numColors = 0, Endian bitOrder =
IgnoreEndian)

Constructs an image with size size pixels, depth depth bits, numColors and bitOrder endianness.
Using this constructor is the same as first constructing a null image and then calling the create() function.

See also create() [p. 136].

QImage::QImage (const QString & fileName, const char * format = 0)

Constructs an image and tries to load it image from the file fileName.

If format is specified, the loader attempts to read the image using the specified format. If format is not specified
(which is the default), the loader reads a few bytes from the header to guess the file format.

If the loading of the image failed, this object is a null image.
The QImagelO documentation lists the supported image formats and explains how to add extra formats.

See also load() [p. 139], isNull() [p. 139] and QImagelO [p. 154].

QImage::QImage (const char * const xpm[])

Constructs an image from xpm, which must be a valid XPM image.
Errors are silently ignored.

Note that it’s possible to squeeze the XPM variable a little bit by using an unusual declaration:

QImage Class Reference 134

static const char * const start_xpn]]={
"16 15 8 1",
"a c #cec6bd",

The extra const makes the entire definition read-only, which is slightly more efficient (e.g., when the code is in a
shared library) and ROMable when the application is to be stored in ROM.

QImage::QImage (const QByteArray & array)

Constructs an image from the binary data array. It tries to guess the file format.
If the loading of the image failed, this object is a null image.

See also loadFromData() [p. 140], isNullQ [p. 139] and imageFormat() [p. 138].

QImage::QImage (uchar * yourdata, int w, int h, int depth, QRgb * colortable,
int numColors, Endian bitOrder)

Constructs an image w pixels wide, h pixels high with a color depth of depth, that uses an existing memory buffer,
yourdata. The buffer must remain valid throughout the life of the QImage. The image does not delete the buffer at
destruction.

If colortable is 0, a color table sufficient for numColors will be allocated (and destructed later).
Note that yourdata must be 32-bit aligned.

The endianness is given in bitOrder.

QImage::QImage (const QImage & image)

Constructs a shallow copy of image.

QImage::~QImage ()

Destroys the image and cleans up.

bool QImage::allGray () const

Returns TRUE if all the colors in the image are shades of gray (i.e., their red, green and blue components are
equal).

This function is slow for large 16-bit and 32-bit images.

See also isGrayscale() [p. 139].

Endian QImage::bitOrder () const

Returns the bit order for the image.
If it is a 1-bpp image, this function returns either QImage::BigEndian or QImage::LittleEndian.
If it is not a 1-bpp image, this function returns QImage::IgnoreEndian.

See also depth() [p. 137].

QImage Class Reference 135

uchar * QImage::bits () const

Returns a pointer to the first pixel data. This is equivalent to scanLine(0).
See also numBytes() [p. 140], scanLine() [p. 143] and jumpTable() [p. 139].

Example: opengl/texture/gltexobj.cpp.

int QImage::bytesPerLine () const

Returns the number of bytes per image scanline. This is equivalent to numBytes()/height().

See also numBytes() [p. 140] and scanLine() [p. 143].

QRgb QImage::color (int i) const

Returns the color in the color table at index i. The first color is at index 0.

A color value is an RGB triplet. Use the qRed(), qGreen() and gBlue() functions (defined in qcolor.h) to get the
color value components.

See also setColor() [p. 143], numColors() [p. 140] and QColor [p. 74].

Example: themes/wood.cpp.

QRgb * QImage::colorTable () const

Returns a pointer to the color table.

See also numColors() [p. 140].

QImage QImage::convertBitOrder (Endian bitOrder) const

Converts the bit order of the image to bitOrder and returns the converted image. The original image is not changed.
Returns *t hi s if the bitOrder is equal to the image bit order, or a null image if this image cannot be converted.

See also bitOrder() [p. 1341, systemBitOrder() [p. 145] and isNull() [p. 139].

QImage QImage::convertDepth (int depth, int conversion_flags) const

Converts the depth (bpp) of the image to depth and returns the converted image. The original image is not changed.
The depth argument must be 1, 8, 16 or 32.
Returns *t hi s if depth is equal to the image depth, or a null image if this image cannot be converted.

If the image needs to be modified to fit in a lower-resolution result (eg. converting from 32-bit to 8-bit), use the
conversion_flags to specify how you’d prefer this to happen.

See also Qt::ImageConversionFlags [Additional Functionality with Qt], depth() [p. 137] and isNull() [p. 139].

QImage QImage::convertDepth (int depth) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QImage Class Reference 136

QImage QImage::convertDepthWithPalette (int d, QRgb * palette, int palette_count,
int conversion_flags = 0) const

Note: currently no closest-color search is made. If colors are found that are not in the palette, the palette may not
be used at all. This result should not be considered valid because it may change in future implementations.
Currently inefficient for non-32-bit images.

Returns an image with depth d, using the palette count colors pointed to by palette. If d is 1 or 8, the returned
image will have its color table ordered the same as palette.

If the image needs to be modified to fit in a lower-resolution result (eg. converting from 32-bit to 8-bit), use the
conversion_flags to specify how you'd prefer this to happen.

See also Qt::ImageConversionFlags [Additional Functionality with Qt].

QImage QImage::copy () const

Returns a deep copy of the image.

See also detach() [p. 137].

QImage QImage::copy (int x, int y, int w, int h, int conversion_flags = 0) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns a deep copy of a sub-area of the image.

The returned image is always w by h pixels in size, and is copied from position x, y in this image. In areas beyond
this image pixels are filled with pixel 0.

If the image needs to be modified to fit in a lower-resolution result (eg. converting from 32-bit to 8-bit), use the
conversion_flags to specify how you’d prefer this to happen.

See also bitBlt() [p. 175] and Qt::ImageConversionFlags [Additional Functionality with Qt].

QImage QImage::copy (const QRect & r) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns a deep copy of a sub-area of the image.

The returned image has always the size of the rectangle r. In areas beyond this image pixels are filled with pixel 0.

bool QImage::create (int width, int height, int depth, int numColors = 0, Endian bitOrder
= IgnoreEndian)

Sets the image width, height, depth, its number of colors (in numColors), and bit order. Returns TRUE if successful,
or FALSE if the parameters are incorrect or if memory cannot be allocated.

The width and height is limited to 32767. depth must be 1, 8, or 32. If depth is 1, bitOrder must be set to either
QImage::LittleEndian or QImage::BigEndian. For other depths bitOrder must be QIlmage::IgnoreEndian.

This function allocates a color table and a buffer for the image data. The image data is not initialized.

The image buffer is allocated as a single block that consists of a table of scanline pointers (jumpTable()) and the
image data (bits()).

QImage Class Reference 137

See also fill() [p. 138], width() [p. 1461, height() [p. 1381, depth() [p. 1371, numColors() [p. 140], bitOrder()
[p. 134], jumpTable() [p. 1391, scanLine() [p. 1431, bits() [p. 1351, bytesPerLine() [p. 135] and numBytes()
[p. 140].

bool QImage::create (const QSize &, int depth, int numColors = 0, Endian bitOrder =
IgnoreEndian)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QImage QImage::createAlphaMask (int conversion_flags = 0) const

Builds and returns a 1-bpp mask from the alpha buffer in this image. Returns a null image if alpha buffer mode is
disabled.

See QPixmap::convertFromImage() for a description of the conversion_flags argument.

The returned image has little-endian bit order, which you can convert to big-endianness using convertBitOrder().

See also createHeuristicMask() [p. 1371, hasAlphaBuffer() [p. 138] and setAlphaBuffer() [p. 143].

QImage QImage::createHeuristicMask (bool clipTight = TRUE) const
Creates and returns a 1-bpp heuristic mask for this image. It works by selecting a color from one of the corners,
then chipping away pixels of that color starting at all the edges.

The four corners vote for which color is to be masked away. In case of a draw (this generally means that this
function is not applicable to the image), the result is arbitrary.

The returned image has little-endian bit order, which you can convert to big-endianness using convertBitOrder().

If clipTight is TRUE the mask is just large enough to cover the pixels; otherwise, the mask is larger than the data
pixels.

This function disregards the alpha buffer.
See also createAlphaMask() [p. 137].

int QImage::depth () const

Returns the depth of the image.

The image depth is the number of bits used to encode a single pixel, also called bits per pixel (bpp) or bit planes of
an image.

The supported depths are 1, 8, 16 and 32.
See also convertDepth() [p. 135].

void QImage::detach ()

Detaches from shared image data and makes sure that this image is the only one referring the data.

If multiple images share common data, this image makes a copy of the data and detaches itself from the sharing
mechanism. Nothing is done if there is just a single reference.

See also copy() [p. 136].

Example: themes/wood.cpp.

QImage Class Reference 138

int QImage::dotsPerMeterX () const
Returns the number of pixels that fit horizontally in a physical meter. This and dotsPerMeterY() define the intended
scale and aspect ratio of the image.

See also setDotsPerMeterX() [p. 143].

int QImage::dotsPerMeterY () const
Returns the number of pixels that fit vertically in a physical meter. This and dotsPerMeterX() define the intended
scale and aspect ratio of the image.

See also setDotsPerMeterY() [p. 144].

void QImage::fill (uint pixel)

Fills the entire image with the pixel value pixel.

If the depth of this image is 1, only the lowest bit is used. If you say fill(0), fill(2), etc., the image is filled with Os.
If you say fill(1), fill(3), etc., the image is filled with 1s. If the depth is 8, the lowest 8 bits are used.

If the depth is 32 and the image has no alpha buffer, the pixel value is written to each pixel in the image. If the
image has an alpha buffer, only the 24 RGB bits are set and the upper 8 bits (alpha value) are left unchanged.

See also invertPixels() [p. 139], depth() [p. 1371, hasAlphaBuffer() [p. 138] and create() [p. 136].

bool QImage::hasAlphaBuffer () const

Returns TRUE if alpha buffer mode is enabled, otherwise FALSE.
See also setAlphaBuffer() [p. 143].

int QImage::height () const

Returns the height of the image.
See also width() [p. 1461, size() [p. 144] and rect() [p. 142].

Example: opengl/texture/gltexobj.cpp.

const char * QImage::imageFormat (const QString & fileName) [static]
Returns a string that specifies the image format of the file fileName, or null if the file cannot be read or if the format
is not recognized.

The QImagelO documentation lists the guaranteed supported image formats, or use QImage::inputFormats() and
QImage::outputFormats() to get lists that include the installed formats.

See also load() [p. 139] and save() [p. 142].

QStringList QImage::inputFormatList () [static]

Returns a list of image formats that are supported for image input.

See also outputFormatList() [p. 141], inputFormats() [p. 139] and QImagelO [p. 154].

QImage Class Reference 139

Example: showimg/showimg.cpp.

QStrList QImage::inputFormats () [static]

Returns a list of image formats that are supported for image input.

See also outputFormats() [p. 141], inputFormatList() [p. 138] and QImagelO [p. 154].

void QImage::invertPixels (bool invertAlpha = TRUE)

Inverts all pixel values in the image.
If the depth is 32: if invertAlpha is TRUE, the alpha bits are also inverted, otherwise they are left unchanged.
If the depth is not 32, the argument invertAlpha has no meaning.

Note that inverting an 8-bit image means to replace all pixels using color index i with a pixel using color index 255
minus i. Similarly for a 1-bit image. The color table is not changed.

See also fill() [p. 138], depth() [p. 137] and hasAlphaBuffer() [p. 138].

bool QImage::isGrayscale () const

For 16-bit and 32-bit images, this function is equivalent to allGray().
For 8-bpp images, this function returns TRUE if color(i) is QRgb(i,i,i) for all indices of the color table.
See also allGray() [p. 134] and depth() [p. 1371.

bool QImage::isNull () const

Returns TRUE if it is a null image, otherwise FALSE.
A null image has all parameters set to zero and no allocated data.

Examples: qtimage/qtimage.cpp and showimg/showimg.cpp.

uchar ** QImage::jumpTable () const

Returns a pointer to the scanline pointer table.
This is the beginning of the data block for the image.
See also bits() [p. 135] and scanLine() [p. 143].

bool QImage::load (const QString & fileName, const char * format = 0)
Loads an image from the file fileName. Returns TRUE if the image was successfully loaded; otherwise returns
FALSE.

If format is specified, the loader attempts to read the image using the specified format. If format is not specified
(which is the default), the loader reads a few bytes from the header to guess the file format.

The QImagelO documentation lists the supported image formats and explains how to add extra formats.

See also loadFromData() [p. 1401, save() [p. 142], imageFormat() [p. 138], QPixmap::load() [p. 233] and
QImagelO [p. 154].

QImage Class Reference 140

bool QImage::loadFromData (const uchar * buf, uint len, const char * format = 0)
Loads an image from the first len bytes of binary data in buf. Returns TRUE if the image was successfully loaded,;
otherwise returns FALSE.

If format is specified, the loader attempts to read the image using the specified format. If format is not specified
(which is the default), the loader reads a few bytes from the header to guess the file format.

The QImagelO documentation lists the supported image formats and explains how to add extra formats.

See also load() [p. 1391, save() [p. 142], imageFormat() [p. 138], QPixmap::loadFromData() [p. 234] and
QImagelO [p. 154].

bool QImage::loadFromData (QByteArray buf, const char * format = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Loads an image from the QByteArray buf.

QImage QImage::mirror () const

Returns a QImage which is a vertically mirrored copy of this image. The original QImage is not changed.

QImage QImage::mirror (bool horizontal, bool vertical) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the image mirrored in the horizontal and/or the vertical direction depending on whether horizontal and
vertical are set to TRUE or FALSE. The original image is not changed.

See also smoothScale() [p. 144].

int QImage::numBytes () const

Returns the number of bytes occupied by the image data.

See also bytesPerLine() [p. 135] and bits() [p. 135].

int QImage::numColors () const

Returns the size of the color table for the image.

Notice that numColors() returns O for 16-bpp and 32-bpp images because these images do not use color tables, but
instead encode pixel values as RGB triplets.

See also setNumColors() [p. 144] and colorTable() [p. 135].

Example: themes/wood.cpp.

QPoint QImage::offset () const

Returns the number of pixels by which the image is intended to be offset by when positioning relative to other
images.

QImage Class Reference 141

bool QImage::operator!= (const QImage & i) const

Returns TRUE if this image and image i have different contents; otherwise returns FALSE. The comparison can
be slow, unless there is some obvious difference, such as different widths, in which case the function will return
quickly.

See also operator=() [p. 141].

QImage & QImage::operator= (const QIlmage & image)

Assigns a shallow copy of image to this image and returns a reference to this image.

See also copy() [p. 136].

QImage & QImage::operator= (const QPixmap & pixmap)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the image bits to the pixmap contents and returns a reference to the image.
If the image shares data with other images, it will first dereference the shared data.

Makes a call to QPixmap::convertTolmage().

bool QImage::operator== (const QImage & i) const

Returns TRUE if this image and image i have the same contents; otherwise returns FALSE. The comparison can
be slow, unless there is some obvious difference, such as different widths, in which case the function will return
quickly.

See also operator=() [p. 141].

QStringList QImage::outputFormatList () [static]

Returns a list of image formats that are supported for image output.

See also inputFormatList() [p. 138], outputFormats() [p. 141] and QImagelO [p. 154].

QStrList QImage::outputFormats () [static]

Returns a list of image formats that are supported for image output.
See also inputFormats() [p. 139], outputFormatList() [p. 141] and QImagelO [p. 154].

Example: showimg/showimg.cpp.

QRgb QImage::pixel (int x, int y) const

Returns the color of the pixel at the coordinates (x, y).

If (x, y) is not on the image, the results are undefined.

See also setPixel() [p. 1441, qRed() [p- 831, qGreen() [p. 831, gBlue() [p. 83] and valid() [p. 146].
Example: gqmag/qmag.cpp.

QImage Class Reference 142

int QImage::pixellndex (int x, int y) const

Returns the pixel index at the given coordinates.
If (x, y) is not valid, or if the image is not a paletted image (depth() > 8), the results are undefined.

See also valid() [p. 146] and depth() [p. 137].

QRect QImage::rect () const

Returns the enclosing rectangle (0,0,width(),height()) of the image.
See also width() [p. 146], height() [p. 138] and size() [p. 144].

void QImage::reset ()

Resets all image parameters and deallocates the image data.

Example: qtimage/qtimage.cpp.

bool QImage::save (const QString & fileName, const char * format, int quality = -1) const

Saves the image to the file fileName, using the image file format format and a quality factor of quality. quality must
be in the range 0..100 or -1. Specify O to obtain small compressed files, 100 for large uncompressed files, and -1
(the default) to use the default settings.

Returns TRUE if the image was successfully saved; otherwise returns FALSE.

See also load() [p. 1391, loadFromData() [p. 140], imageFormat() [p. 138], QPixmap::save() [p. 236] and
QImagelO [p. 154].

QImage QImage::scale (int w, int h, ScaleMode mode = ScaleFree) const

Returns a scaled copy of the image. The returned image has a size of width w by height h pixels if mode is
ScaleFree. The modes ScaleMin and ScaleMax may be used to preserve the ratio of the image: if mode is ScaleMin,
the returned image is guaranteed to fit into the rectangle specified by w and h (it is as large as possible within
the constraints); if mode is ScaleMax, the returned image fits at least into the specified rectangle (it is a small as
possible within the constraints).

If either the width w or the height h is O or negative, this function returns a null image.
This function uses a rather simple algorithm; if you need a better quality, use smoothScale() instead.

See also scaleWidth() [p. 143], scaleHeight() [p. 142], smoothScale() [p. 144] and xForm() [p. 146].
QImage QImage::scale (const QSize & s, ScaleMode mode = ScaleFree) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
The requested size of the image is s.

QImage QImage::scaleHeight (int h) const

Returns a scaled copy of the image. The returned image has a height of h pixels. This function automatically
calculates the width of the image so that the ratio of the image is preserved.

QImage Class Reference 143

If h is O or negative a null image is returned.

See also scale() [p. 142], scaleWidth() [p. 1431, smoothScale() [p. 144] and xForm() [p. 146].

QImage QImage::scaleWidth (int w) const

Returns a scaled copy of the image. The returned image has a width of w pixels. This function automatically
calculates the height of the image so that the ratio of the image is preserved.

If w is O or negative a null image is returned.

See also scale() [p. 142], scaleHeight() [p. 142], smoothScale() [p. 144] and xForm() [p. 146].

uchar * QImage::scanLine (int i) const

Returns a pointer to the pixel data at the scanline with index i. The first scanline is at index 0.
The scanline data is aligned on a 32-bit boundary.

Warning: If you are accessing 32-bpp image data, cast the returned pointer to QRgb* (QRgb has a 32-bit size) and
use it to read/write the pixel value. You cannot use the uchar* pointer directly, because the pixel format depends
on the byte order on the underlying platform. Hint: use qRed() and friends (qcolor.h) to access the pixels.

Warning: If you are accessing 16-bpp image data, you have to handle endianness yourself for now.
See also bytesPerLine() [p. 135], bits() [p. 135] and jumpTable() [p. 139].
Example: desktop/desktop.cpp.

void QImage::setAlphaBuffer (bool enable)

Enables alpha buffer mode if enable is TRUE, otherwise disables it. The default setting is disabled.

An 8-bpp image has 8-bit pixels. A pixel is an index into the color table, which contains 32-bit color values. In a
32-bpp image, the 32-bit pixels are the color values.

This 32-bit value is encoded as follows: The lower 24 bits are used for the red, green, and blue components. The
upper 8 bits contain the alpha component.

The alpha component specifies the transparency of a pixel. 0 means completely transparent and 255 means opaque.
The alpha component is ignored if you do not enable alpha buffer mode.

The alpha buffer is used to set a mask when a QImage is translated to a QPixmap.

See also hasAlphaBuffer() [p. 138] and createAlphaMask() [p. 137].

void QImage::setColor (int i, QRgb c)

Sets a color in the color table at index i to c.

A color value is an RGB triplet. Use the qRgb function (defined in qcolor.h) to make RGB triplets.
See also color() [p. 135], setNumColors() [p. 144] and numColors() [p. 140].

Examples: desktop/desktop.cpp and themes/wood.cpp.

void QImage::setDotsPerMeterX (int x)

Sets the value returned by dotsPerMeterX() to x.

QImage Class Reference 144

void QImage::setDotsPerMeterY (int y)

Sets the value returned by dotsPerMeterY() to y.

void QImage::setNumColors (int numColors)

Resizes the color table to numColors colors.
If the color table is expanded, then all new colors will be set to black (RGB 0,0,0).

See also numColors() [p. 140], color() [p. 1351, setColor() [p. 143] and colorTable() [p. 135].

void QImage::setOffset (const QPoint & p)

Sets the value returned by offset() to p.

void QImage::setPixel (int x, int y, uint index or rgb)

Sets the pixel index or color at the coordinates (x, y) to index_or_rgb.
If (x, y) is not valid, the result is undefined.
If the image is a paletted image (depth() <= 8) and index or rgb >= numColors(), the result is undefined.

See also pixellndex() [p. 1421, pixel() [p. 1411, gRgb() [p. 831, qRgba() [p. 83] and valid() [p. 146].

void QImage::setText (const char * key, const char * lang, const QString & s)

Records string s for the keyword key. The key should be a portable keyword recognizable by other software - some
suggested values can be found in the PNG specification. s can be any text. lang should specify the language code
(see RFC 1766) or 0.

QSize QImage::size () const

Returns the size of the image, i.e. its width and height.

See also width() [p. 1461, height() [p. 138] and rect() [p. 142].

QImage QImage::smoothScale (int w, int h, ScaleMode mode = ScaleFree) const

Returns a smoothly scaled copy of the image. The returned image has a size of width w by height h pixels if mode is
ScaleFree. The modes ScaleMin and ScaleMax may be used to preserve the ratio of the image: if mode is ScaleMin,
the returned image is guaranteed to fit into the rectangle specified by w and h (it is as large as possible within
the constraints); if mode is ScaleMax, the returned image fits at least into the specified rectangle (it is a small as
possible within the constraints).

For 32-bpp images and 1-bpp/8-bpp color images the result will be 32-bpp, whereas all-gray images (including
black-and-white 1-bpp) will produce 8-bit grayscale images with the palette spanning 256 grays from black to
white.

This function uses code based on pnmscale.c by Jef Poskanzer.
pnmscale.c - read a portable anymap and scale it

Copyright (C) 1989, 1991 by Jef Poskanzer.

QImage Class Reference 145

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation. This software is provided "as is" without
express or implied warranty.

See also scale() [p. 142] and mirror() [p. 140].

QImage QImage::smoothScale (const QSize & s, ScaleMode mode = ScaleFree) const
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
The requested size of the image is s.

QImage QImage::swapRGB () const

Returns a QImage in which the values of the red and blue components of all pixels have been swapped, effectively
converting an RGB image to a BGR image. The original QImage is not changed.

Endian QImage::systemBitOrder () [static]

Determines the bit order of the display hardware. Returns QImage::LittleEndian (LSB first) or QImage::BigEndian
(MSB first).

See also systemByteOrder() [p. 145].

Endian QImage::systemByteOrder () [static]

Determines the host computer byte order. Returns QImage::LittleEndian (LSB first) or QImage::BigEndian (MSB
first).

See also systemBitOrder() [p. 145].

QString QImage::text (const char * key, const char * lang = 0) const

Returns the string recorded for the keyword key in language lang, or in a default language if lang is 0.

QString QImage::text (const QImageTextKeyLang & kl) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the string recorded for the keyword and language kI.

QStringList QImage::textKeys () const

Returns the keywords for which some texts are recorded.

See also textList() [p. 1461, text() [p. 145], setText() [p. 144] and textLanguages() [p. 145].

QStringList QImage::textLanguages () const

Returns the language identifiers for which some texts are recorded.

QImage Class Reference 146

See also textList() [p. 146], text() [p. 145], setText() [p. 144] and textKeys() [p. 145].

QValueList<QImageTextKeyLang> QImage::textList () const

Returns a list of QImageTextKeyLang objects that enumerate all the texts key/language pairs set by setText() for
this image.

bool QImage::valid (int x, int y) const

Returns TRUE if (x, y) is a valid coordinate in the image, otherwise it returns FALSE.
See also width() [p. 1461, height() [p. 138] and pixellndex() [p. 142].
Example: gqmag/qmag.cpp.

int QImage::width () const

Returns the width of the image.
See also height() [p. 138], size() [p. 144] and rect() [p. 142].

Example: opengl/texture/gltexobj.cpp.

QImage QImage::xForm (const QWMatrix & matrix) const

Returns a copy of the image that is transformed using the transformation matrix, matrix.

The transformation matrix is internally adjusted to compensate for unwanted translation, i.e. xForm() returns the
smallest image that contains all the transformed points of the original image.

See also scale() [p. 142], QPixmap::xForm() [p. 237], QPixmap::trueMatrix() [p. 237] and QWMatrix [p. 291].

Related Functions

QDataStream & operator<< (QDataStream & s, const QImage & image)

Writes the image image to the stream s as a PNG image.

See also QImage::save() [p. 142] and Format of the QDataStream operators [Input/Output and Networking with
Qt].

QDataStream & operator>> (QDataStream & s, QImage & image)

Reads an image from the stream s and stores it in image.

See also QImage::load() [p. 139] and Format of the QDataStream operators [Input/Output and Networking with
Qt].

QImageConsumer Class Reference

The QImageConsumer class is an abstraction used by QImageDecoder.

#i ncl ude <gasynci magei o. h>

Public Members

m virtual void end ()

m virtual void changed (const QRect &)

m virtual void frameDone ()

m virtual void frameDone (const QPoint & offset, const QRect & rect)
m virtual void setLooping (int n)

m virtual void setFramePeriod (int milliseconds)

m virtual void setSize (int, int)

Detailed Description

The QImageConsumer class is an abstraction used by QImageDecoder.

The QMovie class, or QLabel::setMovie(), are easy to use and for most situations do what you want with regards
animated images.

A QImageConsumer consumes information about changes to the QImage maintained by a QImageDecoder. Think
of the QImage as the model or source of the image data, with the QImageConsumer as a view of that data and the
QImageDecoder being the controller that orchestrates the relationship between the model and the view.

You’d use the QImageConsumer class, for example, if you were implementing a web browser with your own image
loaders.

See also QImageDecoder [p. 149], Graphics Classes, Image Processing Classes and Multimedia Classes.

Member Function Documentation

void QImageConsumer::changed (const QRect &) [virtual]

Called when the given area of the image has changed.

void QImageConsumer::end () [virtual]

Called when all data of all frames has been decoded and revealed as changed().

147

QImageConsumer Class Reference 148

void QImageConsumer::frameDone () [virtual]

One of the two frameDone() functions will be called when a frame of an animated image has ended and been
revealed as changed().

When this function is called, the current image should be displayed.

The decoder will not make any further changes to the image until the next call to QImageFormat::decode().

void QImageConsumer::frameDone (const QPoint & offset, const QRect & rect) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

One of the two frameDone() functions will be called when a frame of an animated image has ended and been
revealed as changed().

When this function is called, the area rect in the current image should be moved by offset and displayed.

The decoder will not make any further changes to the image until the next call to QImageFormat::decode().

void QImageConsumer::setFramePeriod (int milliseconds) [virtual]

Notes that the frame about to be decoded should not be displayed until the given number of milliseconds after the
time that this function is called. Of course, the image may not have been decoded by then, in which case the frame
should not be displayed until it is complete. A value of -1 (the assumed default) indicates that the image should be
displayed even while it is only partially loaded.

void QImageConsumer::setLooping (int n) [virtual]

Called to indicate that the sequence of frames in the image should be repeated n times, including the sequence
during decoding.

e 0 = Forever
e 1 = Only display frames the first time through
e 2 = Repeat once after first pass through images

e ctc.

To make the QImageDecoder do this, just delete it and pass the information to it again for decoding (setLooping()
will be called again, of course, but that can be ignored), or keep copies of the changed areas at the ends of frames.

void QImageConsumer::setSize (int, int) [virtual]

This function is called as soon as the size of the image has been determined.

QImageDecoder Class Reference

The QImageDecoder class is an incremental image decoder for all supported image formats.

#i ncl ude <gasynci magei o. h>

Public Members

QImageDecoder (QImageConsumer * c)
~QImageDecoder ()

const QImage & image ()

int decode (const uchar * buffer, int length)

Static Public Members

m const char * formatName (const uchar * buffer, int length)
m QImageFormatType * format (const char * name)

m QStrList inputFormats ()

m void registerDecoderFactory (QImageFormatType * f)

» void unregisterDecoderFactory (QImageFormatType * f)

Detailed Description

The QImageDecoder class is an incremental image decoder for all supported image formats.

New formats are installed by creating objects of class QImageFormatType; the QMovie class can be used for all
installed incremental image formats. QImageDecoder is useful only for creating new ways of feeding data to an

QImageConsumer.

A QImageDecoder is a machine that decodes images. It takes encoded image data via its decode() method and
expresses its decoding by supplying information to a QImageConsumer. It implements its decoding by using a

QImageFormat created by one of the currently-existing QImageFormatType factory-objects.

QImageFormatType and QImageFormat are the classes that you might need to implement support for additional

image formats.

Qt supports GIF reading if it is configured that way during installation (see qgif.h). If it is, we are required to state
that "The Graphics Interchange Format(c) is the Copyright property of CompuServe Incorporated. GIF(sm) is a

Service Mark property of CompuServe Incorporated."

See also Graphics Classes, Image Processing Classes and Multimedia Classes.

149

QImageDecoder Class Reference 150

Member Function Documentation

QImageDecoder::QImageDecoder (QImageConsumer * c)

Constructs a QImageDecoder that will send change information to the QImageConsumer c.

QImageDecoder::~QImageDecoder ()

Destroys a QImageDecoder. The image it built is destroyed. The decoder built by the factory for the file format is
destroyed. The consumer for which it decoded the image is not destroyed.

int QImageDecoder::decode (const uchar * buffer, int length)

Call this function to decode some data into image changes. The data in buffer will be decoded, sending change
information to the QImageConsumer of this QImageDecoder until one of the change functions of the consumer
returns FALSE. The length of the data is given in length.

Returns the number of bytes consumed: 0 if consumption is complete, and -1 if decoding fails due to invalid data.

QImageFormatType * QImageDecoder::format (const char * name) [static]

Returns a QImageFormatType by name. This might be used when the user needs to force data to be interpreted as
being in a certain format. name is one of the formats listed by QImageDecoder::inputFormats(). Note that you will
still need to supply decodable data to result->decoderFor() before you can begin decoding the data.

const char * QImageDecoder::formatName (const uchar * buffer, int length) [static]

Call this function to find the name of the format of the given header. The returned string is statically allocated. The
function will look at the first length characters in the buffer.

Returns O if the format is not recognized.

const QImage & QImageDecoder::image ()

Returns the image currently being decoded.

QStrList QImageDecoder::inputFormats () [static]

Returns a sorted list of formats for which asynchronous loading is supported.

void QImageDecoder::registerDecoderFactory (QImageFormatType * f) [static]

Registers the new QImageFormatType f. This is not needed in application code because factories call this them-
selves.

void QImageDecoder::unregisterDecoderFactory (QImageFormatType * f) [static]

Unregisters the QImageFormatType f. This is not needed in application code because factories call this themselves.

QImageFormat Class Reference

The QImageFormat class is an incremental image decoder for a specific image format.

#i ncl ude <gasynci magei o. h>

Public Members

» virtual int decode (QImage & img, QImageConsumer * consumer, const uchar * buffer, int length)

Detailed Description

The QImageFormat class is an incremental image decoder for a specific image format.

By making a derived class of QImageFormatType, which in turn creates objects that are a subclass of QImageFormat,
you can add support for more incremental image formats, allowing such formats to be sources for a QMovie or for
the first frame of the image stream to be loaded as a QImage or QPixmap.

Your new subclass must reimplement the decode() function in order to process your new format.
New QImageFormat objects are generated by new QImageFormatType factories.

See also Graphics Classes, Image Processing Classes and Multimedia Classes.

Member Function Documentation

int QImageFormat::decode (QImage & img, QImageConsumer * consumer,
const uchar * buffer, int length) [virtual]

New subclasses must reimplement this method.

It should decode some or all of the bytes from buffer into img, calling the methods of consumer as the decoding
proceeds to inform that consumer of changes to the image. The length of the data is given in length. The consumer
may be 0, in which case the function should just process the data into img without telling any consumer about the
changes. Note that the decoder must store enough state to be able to continue in subsequent calls to this method -
this is the essence of the incremental image loading.

The function should return without processing all the data if it reaches the end of a frame in the input.

The function must return the number of bytes it has processed.

151

QImageFormatType Class Reference

The QImageFormatType class is a factory that makes QImageFormat objects.

#i ncl ude <gasynci magei o. h>

Public Members

» virtual ~QImageFormatType ()
m virtual QImageFormat * decoderFor (const uchar * buffer, int length)
m virtual const char * formatName () const

Protected Members

= QImageFormatType ()

Detailed Description

The QImageFormatType class is a factory that makes QImageFormat objects.

Whereas the QImagelO class allows for complete loading of images, QImageFormatType allows for incremental
loading of images.

New image file formats are installed by creating objects of derived classes of QImageFormatType. They must
implement decoderFor() and formatName().

QImageFormatType is a very simple class. Its only task is to recognize image data in some format and make a new
object, subclassed from QImageFormat, which can decode that format.

The factories for formats built into Qt are automatically defined before any other factory is initialized. If two
factories would recognize an image format, the factory created last will override the earlier one; you can thus
override current and future built-in formats.

See also Graphics Classes, Image Processing Classes and Multimedia Classes.

Member Function Documentation

QImageFormatType::QImageFormatType () [protected]

Constructs a factory. It automatically registers itself with QImageDecoder.

152

QImageFormatType Class Reference 153

QImageFormatType::~QImageFormatType () [virtual]

Destroys a factory. It automatically unregisters itself from QImageDecoder.

QImageFormat * QImageFormatType::decoderFor (const uchar * buffer,
int length) [virtual]

Returns a decoder for decoding an image that starts with the bytes in buffer. The length of the data is given in
length. This function should only return a decoder if it is certain that the decoder applies to data with the given
header. Returns O if there is insufficient data in the header to make a positive identification or if the data is not
recognized.

const char * QImageFormatType::formatName () const [virtual]

Returns the name of the format supported by decoders from this factory. The string is statically allocated.

QImagelO Class Reference

The QImagelO class contains parameters for loading and saving images.

#incl ude <qgi mage. h>

Public Members

= QImagelO ()

m QImagelO (QIODevice * ioDevice, const char * format)
QImagelO (const QString & fileName, const char * format)
~QImagelO ()

const QImage & image () const

int status () const

const char * format () const

QIODevice * ioDevice () const

QString fileName () const

int quality () const

QString description () const

const char * parameters () const

float gamma () const

void setImage (const QImage & image)

void setStatus (int status)

void setFormat (const char * format)

void setIODevice (QIODevice * ioDevice)

void setFileName (const QString & fileName)
void setQuality (int q)

void setDescription (const QString & description)
void setParameters (const char * parameters)
void setGamma (float gamma)

bool read ()

bool write ()

Static Public Members

m const char * imageFormat (const QString & fileName)
m const char * imageFormat (QIODevice * d)

m QStrList inputFormats ()

= QStrList outputFormats ()

» void definelOHandler (const char * format, const char * header, const char * flags,
image io_handler readlmage, image io handler writeImage)

154

QImagelO Class Reference 155

Detailed Description

The QImagelO class contains parameters for loading and saving images.

QImagelO contains a QIODevice object that is used for image data I/O. The programmer can install new image file
formats in addition to those that Qt implements.

Qt currently supports the following image file formats: PNG, BMB XBM, XPM and PNM. It may also support JPEG,
MNG and GIE, if specially configured during compilation. The different PNM formats are: PBM (P1 or P4), PGM
(P2 or P5), and PPM (P3 or P6).

You don’t normally need to use this class; QPixmap::load(), QPixmap::save(), and QImage contain sufficient func-
tionality.

For image files that contain sequences of images, only the first is read. See the QMovie for loading multiple images.

PBM, PGM, and PPM format output is always in the more condensed raw format. PPM and PGM files with more
than 256 levels of intensity are scaled down when reading.

Warning: If you are in a country which recognizes software patents and in which Unisys holds a patent on LZW
compression and/or decompression and you want to use GIE Unisys may require you to license the technology.
Such countries include Canada, Japan, the USA, France, Germany, Italy and the UK.

GIF support may be removed completely in a future version of Qt. We recommend using the PNG format.

See also QImage [p. 129], QPixmap [p. 225], QFile [Input/Output and Networking with Qt], QMovie [p. 161],
Graphics Classes, Image Processing Classes and Input/Output and Networking.

Member Function Documentation

QImagelO::QImagelO ()

Constructs a QImagelO object with all parameters set to zero.

QImagelO::QImagelO (QIODevice * ioDevice, const char * format)

Constructs a QImagelO object with the 1/0 device ioDevice and a format tag.

QImagelO::QImagelO (const QString & fileName, const char * format)

Constructs a QImagelO object with the file name fileName and a format tag.

QImagelO::~QImagelO ()

Destroys the object and all related data.

void QImagelO::definelOHandler (const char * format, const char * header,
const char * flags, image_io _handler readImage,
image_io_handler writeImage) [static]

Defines an image 1/0 handler for the image format called format, which is recognized using the regular expression
header, read using readlmage and written using writelmage.

QImagelO Class Reference 156

flags is a string of single-character flags for this format. The only flag defined currently is T (upper case), so the
only legal value for flags are "T" and the empty string. The "T" flag means that the image file is a text file, and Qt
should treat all newline conventions as equivalent. (XPM files and some PPM files are text files for example.)

format is used to select a handler to write a QImage; header is used to select a handler to read an image file.

If readImage is a null pointer, the QImagelIO will not be able to read images in format. If writeImage is a null pointer,
the QImagelO will not be able to write images in format. If both are null, the QImagelO object is valid but useless.

Example:
void readd F(Q magel O *i mage)

/] read the image using the inage->i oDevice()

}
void wited F(Q nagel O *i mage)
{
/1 wite the inmage using the image->i oDevice()
}

/1 add the G@F image handl er

Q magel O : definel OHandl er("d F",
"AA F[0-9][0-9][a-2]",
0,
readd F,
witeGF);

Before the regexp test, all the 0 bytes in the file header are converted to 1 bytes. This is done because when Qt was
ASCII-based, QRegExp could not handle 0 bytes in strings.

(Note that if one handlerIO supports writing a format and another supports reading it, Qt supports both reading
and writing. If two handlers support the same operation, Qt chooses one arbitrarily.)

QString QImagelO::description () const

Returns the image description string.

See also setDescription() [p. 158].

QString QImagelO::fileName () const

Returns the file name currently set.

See also setFileName() [p. 158].

const char * QImagelO::format () const

Returns the image format string or O if no format has been explicitly set.

float QImagelO::gamma () const

Returns the gamma value at which the image will be viewed.

See also setGammal() [p. 158].

QImagelO Class Reference 157

const QImage & QImagelO::image () const

Returns the image currently set.

See also setlmage() [p. 159].

const char * QImagelO::imageFormat (const QString & fileName) [static]

Returns a string that specifies the image format of the file fileName, or null if the file cannot be read or if the format
is not recognized.

const char * QImagelO::imageFormat (QIODevice * d) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a string that specifies the image format of the image read from IO device d, or a null pointer if the device
cannot be read or if the format is not recognized.

Make sure that d is at the right position in the device (for example, at the beginning of the file).

See also QIODevice::at() [Input/Output and Networking with Qt].

QStrList QImagelO::inputFormats () [static]

Returns a sorted list of image formats that are supported for image input.

QIODevice * QImagelO::ioDevice () const

Returns the IO device currently set.

See also setlODevice() [p. 159].
QStrList QImagelO::outputFormats () [static]
Returns a sorted list of image formats that are supported for image output.

Example: scribble/scribble.cpp.

const char * QImagelO::parameters () const

Returns the image’s parameters string.

See also setParameters() [p. 159].

int QImagelO::quality () const

Returns the quality of the written image, related to the compression ratio.

See also setQuality() [p. 159] and QImage::save() [p. 142].

QImagelO Class Reference 158

bool QImagelO::read ()

Reads an image into memory and returns TRUE if the image was successfully read; otherwise returns FALSE.

Before reading an image you must set an IO device or a file name. If both an IO device and a file name have been
set, the IO device will be used.

Setting the image file format string is optional.

Note that this function does not set the format used to read the image. If you need that information, use the
imageFormat() static functions.

Example:

QrmagelOiio;
QPi xmap pi xmap;
iio.setFileNane("vegeburger.bnp");
if (imge.read()) Il ok
pixmap = iio.imge(); // convert to pixmap

See also setlODevice() [p. 1591, setFileName() [p. 158], setFormat() [p. 158], write() [p. 159] and
QPixmap::load() [p. 233].

void QImagelO::setDescription (const QString & description)

Sets the image description string for image handlers that support image descriptions to description.

Currently, no image format supported by Qt uses the description string.

void QImagelO::setFileName (const QString & fileName)

Sets the name of the file to read or write an image from to fileName.

See also setlODevice() [p. 159].

void QImagelO::setFormat (const char * format)

Sets the image format format for the image to be read or written.
It is necessary to specify a format before writing an image.

It is not necessary to specify a format before reading an image. If no format has been set, Qt guesses the image
format before reading it. If a format is set the image will only be read if it has that format.

See also read() [p. 158], write() [p. 159] and format() [p. 156].

void QImagelO::setGamma (float gamma)

Sets the gamma value at which the image will be viewed to gamma. If the image format stores a gamma value
for which the image is intended to be used, then this setting will be used to modify the image. Setting to 0.0 will
disable gamma correction (ie. any specification in the file will be ignored).

The default value is 0.0.
See also gamma() [p. 156].

QImagelO Class Reference 159

void QImagelO::setIODevice (QIODevice * ioDevice)

Sets the IO device to be used for reading or writing an image.
Setting the IO device allows images to be read/written to any block-oriented QIODevice.
If ioDevice is not null, this I0 device will override file name settings.

See also setFileName() [p. 158].

void QImagelO::setImage (const QImage & image)

Sets the image to image.

See also image() [p. 157].

void QImagelO::setParameters (const char * parameters)

Sets the image’s parameter string to parameters. This is for image handlers that require special parameters.

Although the current image formats supported by Qt ignore the parameters string, it may be used in future exten-
sions or contributions (for example, JPEG).

See also parameters() [p. 157].

void QImagelO::setQuality (int q)

Sets the quality of the written image to q, related to the compression ratio.
g must be in the range 0..100. Specify 0 to obtain small compressed files, 100 for large uncompressed files

See also quality() [p. 157] and QImage::save() [p. 142].

void QImagelO::setStatus (int status)
Sets the image IO status to status. A non-zero value indicates an error, whereas O means that the IO operation was
successful.

See also status() [p. 159].

int QImagelO::status () const
Returns the image’s 10 status. A non-zero value indicates an error, whereas 0 means that the IO operation was
successful.

See also setStatus() [p. 159].

bool QImagelO::write ()

Writes an image to an IO device and returns TRUE if the image was successfully written; otherwise returns FALSE.

Before writing an image you must set an IO device or a file name. If both an IO device and a file name have been
set, the IO device will be used.

The image will be written using the specified image format.

Example:

QImagelO Class Reference 160

QmagelOiio;
Qrmage im
im= pixmap; // convert to image
iio.setlmge(im);
iio.setFileNane("vegeburger.bnmp");
iio.setFormat("BM");
if (iTiowite())
Il returned TRUE if witten successfully

See also setlODevice() [p. 159], setFileName() [p. 158], setFormat() [p. 158], read() [p. 158] and
QPixmap::save() [p. 236].

QMovie Class Reference

The QMovie class provides incremental loading of animations or images, signalling as it progresses.

#include <qgnovie. h>

Public Members

= QMovie ()

m QMovie (int bufsize)

m QMovie (QDataSource * src, int bufsize = 1024)

m QMovie (const QString & fileName, int bufsize = 1024)
m QMovie (QByteArray data, int bufsize = 1024)

m QMovie (const QMovie & movie)

m ~QMovie ()

= QMovie & operator= (const QMovie & movie)

» int pushSpace () const

void pushData (const uchar * data, int length)
const QColor & backgroundColor () const
void setBackgroundColor (const QColor & ¢)
const QRect & getValidRect () const

const QPixmap & framePixmap () const

const QImage & frameImage () const

bool isNull () const

m int frameNumber () const

m int steps () const

bool paused () const
bool finished () const
bool running () const
void unpause ()

void pause ()

void step ()

m void step (int steps)

= void restart ()

m int speed () const

void setSpeed (int percent)

void connectResize (QObject * receiver, const char * member)

void disconnectResize (QObject * receiver, const char * member = 0)
void connectUpdate (QObject * receiver, const char * member)

void disconnectUpdate (QObject * receiver, const char * member = 0)

161

QMovie Class Reference 162

m enum Status { SourceEmpty = -2, UnrecognizedFormat = -1, Paused = 1, EndOfFrame = 2, EndOfLoop =
3, EndOfMovie = 4, SpeedChanged = 5 }

m void connectStatus (QObject * receiver, const char * member)

e void disconnectStatus (QObject * receiver, const char * member = 0)

Detailed Description

The QMovie class provides incremental loading of animations or images, signalling as it progresses.

A QMovie provides a QPixmap as the framePixmap(); connections can be made via connectResize() and connec-
tUpdate() to receive notification of size and pixmap changes. All decoding is driven by the normal event-processing
mechanisms. The simplest way to display a QMovie is to use a QLabel and QLabel::setMovie().

The movie begins playing as soon as the QMovie is created (actually, once control returns to the event loop). When
the last frame in the movie has been played, it may loop back to the start if such looping is defined in the input
source.

QMovie objects are explicitly shared. This means that a QMovie copied from another QMovie will be displaying
the same frame at all times. If one shared movie pauses, all pause. To make independent movies, they must be
constructed separately.

The set of data formats supported by QMovie is determined by the decoder factories that have been installed; the
format of the input is determined as the input is decoded.

The supported formats are MNG (if Qt is built with MNG support enabled) and GIF (if Qt is built with GIF support
enabled). For MNG support, you need to have installed libmng from http://www.libmng.com.

Archives of animated GIFs and tools for building them can be found, for example, at Yahoo.

We are required to state the following: The Graphics Interchange Format(c) is the Copyright property of Com-
puServe Incorporated. GIF(sm) is a Service Mark property of CompuServe Incorporated.

Warning: If you are in a country that recognizes software patents and in which Unisys holds a patent on LZW
compression and/or decompression and you want to use GIE Unisys may require you to license that technology.
Such countries include Canada, Japan, the USA, France, Germany, Italy and the UK.

GIF support may be removed completely in a future version of Qt. We recommend using the MNG or PNG format.

* movies |00 x|

oL rul
BU)

See also QLabel::setMovie() [Widgets with Qt], Graphics Classes, Image Processing Classes and Multimedia
Classes.

Member Type Documentation

QMovie::Status

e QWovi e: : Sour ceEnpty

e Q\Wovi e: : Unrecogni zedFor mat
e QWvi e: : Paused

e Q\bvi e: : EndCf Frane

e QWovi e: : EndOf Loop

e Q\bvi e: : EndOf Movi e

e QWvi e: : SpeedChanged

QMovie Class Reference 163

Member Function Documentation

QMovie::QMovie ()

Constructs a null QMovie. The only interesting thing to do to such a movie is to assign another movie to it.

See also isNull() [p. 165].

QMovie::QMovie (int bufsize)
Constructs a QMovie with an external data source. You should later call pushData() to send incoming animation
data to the movie.

The bufsize argument sets the maximum amount of data the movie will transfer from the data source per event
loop. The lower this value, the better interleaved the movie playback will be with other event processing, but the
slower the overall processing will be.

See also pushData() [p. 166].

QMovie::QMovie (QDataSource * src, int bufsize = 1024)

Constructs a QMovie that reads an image sequence from the given data source, src. The source must be allocated
dynamically, because QMovie will take ownership of it and will destroy it when the movie is destroyed. The movie
starts playing as soon as event processing continues.

The bufsize argument sets the maximum amount of data the movie will transfer from the data source per event
loop. The lower this value, the better interleaved the movie playback will be with other event processing, but the
slower the overall processing will be.

QMovie::QMovie (const QString & fileName, int bufsize = 1024)

Constructs a QMovie that reads an image sequence from the file, fileName.

The bufsize argument sets the maximum amount of data the movie will transfer from the data source per event
loop. The lower this value, the better interleaved the movie playback will be with other event processing, but the
slower the overall processing will be.

QMovie::QMovie (QByteArray data, int bufsize = 1024)

Constructs a QMovie that reads an image sequence from the byte array, data.

The bufsize argument sets the maximum amount of data the movie will transfer from the data source per event
loop. The lower this value, the better interleaved the movie playback will be with other event processing, but the
slower the overall processing will be.

QMovie::QMovie (const QMovie & movie)

Constructs a movie that uses the same data as movie movie. QMovies use explicit sharing, so operations on the
copy will affect both.

QMovie::~QMovie ()

Destroys the QMovie. If this is the last reference to the data of the movie, the data are deallocated.

QMovie Class Reference 164

const QColor & QMovie::backgroundColor () const

Returns the background color of the movie set by setBackgroundColor().

<
¥

void QMovie::connectResize (QObject * receiver, const char * member)
Connects the receiver’s member of type voi d menber (const QSi ze&) so that it is signalled when the movie changes
size.

Note that due to the explicit sharing of QMovie objects, these connections persist until they are explicitly discon-
nected with disconnectResize() or until every shared copy of the movie is deleted.

Example: movies/main.cpp.

void QMovie::connectStatus (QObject * receiver, const char * member)

Connects the receiver’s member, of type voi d nember (int) so that it is signalled when the movie changes status.
The status codes are negative for errors and positive for information, and they are currently:

e QMovie::SourceEmpty signalled if the input cannot be read.

e QMovie::UnrecognizedFormat signalled if the input data is unrecognized.

e QMovie::Paused signalled when the movie is paused by a call to paused() or by after stepping pauses.

e QMovie::EndOfFrame signalled at end-of-frame after any update and Paused signals.

e QMovie::EndOfLoop signalled at end-of-loop, after any update signals, EndOfFrame - but before EndOfMovie.

e QMovie::EndOfMovie signalled when the movie completes and is not about to loop.

More status messages may be added in the future, so a general test for errors would test for negative.

Note that due to the explicit sharing of QMovie objects, these connections persist until they are explicitly discon-
nected with disconnectStatus() or until every shared copy of the movie is deleted.

Example: movies/main.cpp.

void QMovie::connectUpdate (QObject * receiver, const char * member)

Connects the receiver’s member of type voi d menber (const QRect & so that it is signalled when an area of the
framePixmap() has changed since the previous frame.

Note that due to the explicit sharing of QMovie objects, these connections persist until they are explicitly discon-
nected with disconnectUpdate() or until every shared copy of the movie is deleted.

Example: movies/main.cpp.
void QMovie::disconnectResize (QObject * receiver, const char * member = 0)

Disconnects the receiver’s member (or all members if member is zero) that were previously connected by connectRe-
size().

void QMovie::disconnectStatus (QObject * receiver, const char * member = 0)

Disconnects the receiver’s member (or all members if member is zero) that were previously connected by connect-
Status().

QMovie Class Reference 165

void QMovie::disconnectUpdate (QObject * receiver, const char * member = 0)

Disconnects the receiver’s member (or all members if \q member is zero) that were previously connected by con-
nectUpdate().

bool QMovie::finished () const

Returns TRUE if the image is no longer playing - this happens when all loops of all frames are complete; otherwise
returns FALSE.

Example: movies/main.cpp.

const QImage & QMovie::framelmage () const

Returns the current frame of the movie, as a QImage. It is not generally useful to keep a copy of this image. Also
note that you must not call this function if the movie is finished(), as the image is not them available.

See also framePixmap() [p. 165].

int QMovie::frameNumber () const

Returns the number of times EndOfFrame has been emitted since the start of the current loop of the movie. Thus,
before any EndOfFrame has been emitted the value will be 0; within slots processing the first signal, frameNum-
ber() will be 1, and so on.

const QPixmap & QMovie::framePixmap () const

Returns the current frame of the movie, as a QPixmap. It is not generally useful to keep a copy of this pixmap. It is
better to keep a copy of the QMovie and get the framePixmap() only when needed for drawing.

See also frameImage() [p. 165].
Example: movies/main.cpp.

const QRect & QMovie::getValidRect () const

Returns the area of the pixmap for which pixels have been generated.

bool QMovie::isNull () const

Returns TRUE if the movie is null; otherwise returns FALSE.

QMovie & QMovie::operator= (const QMovie & movie)

Makes this movie use the same data as movie movie. QMovies use explicit sharing.

void QMovie::pause ()

Pauses the progress of the animation.

See also unpause() [p. 167].

QMovie Class Reference 166

Example: movies/main.cpp.

bool QMovie::paused () const

Returns TRUE if the image is paused; otherwise returns FALSE.

Example: movies/main.cpp.

void QMovie::pushData (const uchar * data, int length)

Pushes length bytes from data into the movie. length must be no more than the amount returned by pushSpace()
since the previous call to pushData().

int QMovie::pushSpace () const

Returns the maximum amount of data that can currently be pushed into the movie by a call to pushData(). This is
affected by the initial buffer size, but varies as the movie plays and data is consumed.

void QMovie::restart ()

Rewinds the movie to the beginning. If the movie has not been paused, it begins playing again.

Example: movies/main.cpp.

bool QMovie::running () const

Returns TRUE if the image is not single-stepping, not paused, and not finished; otherwise returns FALSE.

void QMovie::setBackgroundColor (const QColor & ¢)

Sets the background color of the pixmap to c. If the background color isValid(), the pixmap will never have a mask
because the background color will be used in transparent regions of the image.

See also backgroundColor() [p. 164].

Example: movies/main.cpp.

void QMovie::setSpeed (int percent)

Sets the speed-up factor of the movie to percent. This is a percentage of the speed dictated by the input data format.
The default is 100 percent.

int QMovie::speed () const

Returns the speed-up factor of the movie. The default is 100 percent.

See also setSpeed() [p. 166].

QMovie Class Reference 167

void QMovie::step ()

Steps forward 1 frame and then pauses.

Example: movies/main.cpp.

void QMovie::step (int steps)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Steps forward, showing steps frames, and then pauses.

int QMovie::steps () const

Returns the number of steps remaining after a call to step(). If the movie is paised, steps() returns 0. If it’s running
normally or is finished, steps() returns a negative number.

Example: movies/main.cpp.

void QMovie::unpause ()

Unpauses the progress of the animation.
See also pause() [p. 165].

Example: movies/main.cpp.

QPNGImagePacker Class Reference

The QPNGImagePacker class creates well-compressed PNG animations.

#incl ude <gpngio. h>

Public Members

» QPNGImagePacker (QIODevice * iod, int storage_depth, int conversionflags)
m void setPixelAlignment (int x)
m bool packIimage (const QImage & img)

Detailed Description

The QPNGImagePacker class creates well-compressed PNG animations.
By using transparency, QPNGImagePacker allows you to build a PNG image from a sequence of QImages.
Images are added using packIlmage().

See also Graphics Classes and Image Processing Classes.

Member Function Documentation

QPNGImagePacker::QPNGImagePacker (QIODevice * iod, int storage depth,
int conversionflags)

Creates an image packer that writes PNG data to IO device iod using a storage_depth bit encoding (use 8 or 32,
depending on the desired quality and compression requirements).

If the image needs to be modified to fit in a lower-resolution result (eg. converting from 32-bit to 8-bit), use the
conversionflags to specify how you’d prefer this to happen.

See also Qt::ImageConversionFlags [Additional Functionality with Qt].

bool QPNGImagePacker::packlmage (const QImage & img)

Adds the image img to the PNG animation, analyzing the differences between this and the previous image to
improve compression.

168

QPNGImagePacker Class Reference 169

void QPNGImagePacker::setPixelAlignment (int x)

Aligns pixel differences to x pixels. For example, using 8 can improve playback on certain hardware. Normally the
default of 1-pixel alignment (i.e. no alignment) gives better compression and performance.

QPaintDevice Class Reference

The QPaintDevice class is the base class of objects that can be painted.
#incl ude <gpai ntdevi ce. h>

Inherited by QPixmap [p. 225], QWidget [Widgets with Qt], QPicture [p. 220] and QPrinter [p. 254].

Public Members

m virtual ~QPaintDevice ()

» int devType () const

= bool isExtDev () const

» bool paintingActive () const
virtual HDC handle () const
Display * x11Display () const

int x11Screen () const

int x11Depth () const

= int x11Cells () const

m Qt::HANDLE x11Colormap () const
» bool x11DefaultColormap () const
m void * x11Visual () const

e bool x11DefaultVisual () const

Static Public Members

m Display * x11AppDisplay ()

m int x11AppScreen ()

m int x11AppDepth ()

» int x11AppCells ()

m int x11AppDpiX ()

m int x11AppDpiY ()

Qt::HANDLE x11AppColormap ()
bool x11AppDefaultColormap ()
void * x11AppVisual ()

bool x11AppDefaultVisual ()
void x11SetAppDpiX (int dpi)
void x11SetAppDpiY (int dpi)

170

QPaintDevice Class Reference 171

Protected Members

m QPaintDevice (uint devflags)
m virtual bool emd (int, QPainter *, QPDevCmdParam *)
m virtual int metric (int) const

Related Functions

» void bitBlt (QPaintDevice * dst, int dx, int dy, const QPaintDevice * src, int sx, int sy, int sw, int sh,
Qt::RasterOp rop, bool ignoreMask)

» void bitBlt (QPaintDevice * dst, const QPoint & dp, const QPaintDevice * src, const QRect & sr,
RasterOp rop)

Detailed Description

The QPaintDevice class is the base class of objects that can be painted.

A paint device is an abstraction of a two-dimensional space that can be drawn using a QPainter. The drawing
capabilities are implemented by the subclasses QWidget, QPixmap, QPicture and QPrinter.

The default coordinate system of a paint device has its origin located at the top-left position. X increases to the
right and Y increases downward. The unit is one pixel. There are several ways to set up a user-defined coordinate
system using the painter - for example, by QPainter::setWorldMatrix().

Example (draw on a paint device):

voi d MyW dget: : pai nt Event (QPai nt Event *)

{
QPai nter p; [l our painter
p. begin(this); Il start painting the w dget
p.setPen(red); Il red outline
p.setBrush(yellow); Il yellow fill
p. drawkl i pse(10, 20, 100,100); // 100x100 ellipse at positin (10, 20)
p.end(); /'l painting done
}

The bit block transfer is an extremely useful operation for copying pixels from one paint device to another (or to
itself). It is implemented as the global function bitBlt().

Example (scroll widget contents 10 pixels to the right):
bitBlt(nyWdget, 10, 0, nyWdget);

Warning: Qt requires that a QApplication object must exist before any paint devices can be created. Paint devices
access window system resources, and these resources are not initialized before an application object is created.

See also Graphics Classes and Image Processing Classes.

Member Function Documentation

QPaintDevice::QPaintDevice (uint devflags) [protected]

Constructs a paint device with internal flags devflags. This constructor can be invoked only from subclasses of
QPaintDevice.

QPaintDevice Class Reference 172

QPaintDevice::~QPaintDevice () [virtual]

Destroys the paint device and frees window system resources.

bool QPaintDevice::cmd (int, QPainter *, QPDevCmdParam *) [virtual protected]

Internal virtual function that interprets drawing commands from the painter.

Implemented by subclasses that have no direct support for drawing graphics (external paint devices - for example,
QPicture).

int QPaintDevice::devType () const
Returns the device type identifier, which is Q nternal : : Wdget if the device is a QWidget, Q nternal : : Pi xmap

if i's a QPixmap, Qnternal::Printer if it's a QPrinter, Qnternal::Picture if it's a QPicture or
Q nternal :: UndefinedDevi ce in other cases (which should never happen).

HDC QPaintDevice::handle () const [virtual]

Returns the window system handle of the paint device, for low-level access. Using this function is not portable.
The HANDLE type varies with platform; see gpaintdevice.h and qwindowdefs.h for details.
See also x11Display() [p. 174].

bool QPaintDevice::isExtDev () const

Returns TRUE if the device is an external paint device; otherwise returns FALSE.

External paint devices cannot be bitBlt()’ed from. QPicture and QPrinter are external paint devices.

int QPaintDevice::metric (int) const [virtual protected]

Internal virtual function that returns paint device metrics.
Please use the QPaintDeviceMetrics class instead.

Reimplemented in QPixmap, QWidget and QPicture.

bool QPaintDevice::paintingActive () const

Returns TRUE if the device is being painted, i.e. someone has called QPainter::begin() but not yet QPainter::end()
for this device; otherwise returns FALSE.

See also QPainter::isActive() [p. 1971.

int QPaintDevice::x11AppCells () [static]

Returns the number of entries in the colormap of the X display global to the application (X11 only). Using this
function is not portable.

See also x11Colormap() [p. 174].

QPaintDevice Class Reference 173

Qt::HANDLE QPaintDevice::x11AppColormap () [static]

Returns the colormap of the X display global to the application (X11 only). Using this function is not portable.
See also x11Cells() [p. 174].

bool QPaintDevice::x11AppDefaultColormap () [static]

Returns the default colormap of the X display global to the application (X11 only). Using this function is not
portable.

See also x11Cells() [p. 174].

bool QPaintDevice::x11AppDefaultVisual () [static]

Returns the default Visual of the X display global to the application (X11 only). Using this function is not portable.

int QPaintDevice::x11AppDepth () [static]

Returns the depth of the X display global to the application (X11 only). Using this function is not portable.
See also QPixmap::defaultDepth() [p. 231].

Display * QPaintDevice::x11AppDisplay () [static]
Returns a pointer to the X display global to the application (X11 only). Using this function is not portable.
See also handle() [p. 172].

int QPaintDevice::x11AppDpiX () [static]

Returns the horizontal DPI of the X display (X11 only). Using this function is not portable. See QPaintDeviceMetrics
for portable access to related information. Using this function is not portable.

See also x11AppDpiY() [p. 1731, x11SetAppDpiX() [p. 174] and QPaintDeviceMetrics::logicalDpiX() [p. 177].
int QPaintDevice::x11AppDpiY () [static]

Returns the vertical DPI of the X11 display (X11 only). Using this function is not portable. See QPaintDeviceMetrics
for portable access to related information. Using this function is not portable.

See also x11AppDpiX() [p. 1731, x11SetAppDpiY() [p. 174] and QPaintDeviceMetrics::logicalDpiY() [p. 177].

int QPaintDevice::x11AppScreen () [static]

Returns the screen number on the X display global to the application (X11 only). Using this function is not portable.

void * QPaintDevice::x11AppVisual () [static]

Returns the Visual of the X display global to the application (X11 only). Using this function is not portable.

QPaintDevice Class Reference 174

int QPaintDevice::x11Cells () const

Returns the number of entries in the colormap of the X display for the paint device (X11 only). Using this function
is not portable.

See also x11Colormap() [p. 1741.

Qt::HANDLE QPaintDevice::x11Colormap () const

Returns the colormap of the X display for the paint device (X11 only). Using this function is not portable.

See also x11Cells() [p. 174].

bool QPaintDevice::x11DefaultColormap () const

Returns the default colormap of the X display for the paint device (X11 only). Using this function is not portable.
See also x11Cells() [p. 174].

bool QPaintDevice::x11DefaultVisual () const

Returns the default Visual of the X display for the paint device (X11 only). Using this function is not portable.

int QPaintDevice::x11Depth () const

Returns the depth of the X display for the paint device (X11 only). Using this function is not portable.
See also QPixmap::defaultDepth() [p. 231].

Display * QPaintDevice::x11Display () const

Returns a pointer to the X display for the paint device (X11 only). Using this function is not portable.
See also handle() [p. 172].

int QPaintDevice::x11Screen () const

Returns the screen number on the X display for the paint device (X11 only). Using this function is not portable.

void QPaintDevice::x11SetAppDpiX (int dpi) [static]

Sets the value returned by x11AppDpiX() to dpi. The default is determined by the display configuration. Changing
this value will alter the scaling of fonts and many other metrics and is not recommended. Using this function is not
portable.

See also x11SetAppDpiY() [p. 1741.
void QPaintDevice::x11SetAppDpiY (int dpi) [static]

Sets the value returned by x11AppDpiY() to dpi. The default is determined by the display configuration. Changing
this value will alter the scaling of fonts and many other metrics and is not recommended. Using this function is not

QPaintDevice Class Reference 175

portable.
See also x11SetAppDpiX() [p. 1741].

void * QPaintDevice::x11Visual () const

Returns the Visual of the X display for the paint device (X11 only). Using this function is not portable.

Related Functions

void bitBlt (QPaintDevice * dst, int dx, int dy, const QPaintDevice * src, int sx, int sy,
int sw, int sh, Qt::RasterOp rop, bool ignoreMask)

Copies a block of pixels from src to dst, perhaps merging each pixel according to the raster operation rop. sx, sy
is the top-left pixel in src (0, 0) by default, dx, dy is the top-left position in dst and sw, sh is the size of the copied
block (all of src by default).

The most common values for rop are CopyROP and XorROP; the Qt::RasterOp documentation defines all the pos-
sible values.

If ignoreMask is TRUE (the default is FALSE) and src is a masked QPixmap, the entire blit is masked by src->mask().

If src, dst, sw or sh is 0, bitBlt() does nothing. If sw or sh is negative bitBlt() copies starting at sx (and resp. sy) and
ending at the right end (resp. bottom) of src.

src must be a QWidget or QPixmap. You cannot blit from a QPrinter, for example. bitBlt() does nothing if you
attempt to blit from an unsupported device.

bitBlt() does nothing if src has a greater depth than dst. If you need to, for example, draw a 24-bit pixmap on an
8-bit widget, you must use drawPixmap().

void bitBlt (QPaintDevice * dst, const QPoint & dp, const QPaintDevice * src,
const QRect & sr, RasterOp rop)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Overloaded bitBlt() with the destination point dp and source rectangle sr.

QPaintDeviceMetrics Class Reference

The QPaintDeviceMetrics class provides information about a paint device.

#i ncl ude <gpai ntdevicemetrics.h>

Public Members

m QPaintDeviceMetrics (const QPaintDevice * pd)
int width () const

int height () const

int widthMM () const

int heightMM () const

int logicalDpiX () const

int logicalDpiY () const

int numColors () const

int depth () const

Detailed Description

The QPaintDeviceMetrics class provides information about a paint device.
Sometimes when drawing graphics it is necessary to obtain information about the physical characteristics of a paint

device. This class provides this information. For example, to compute the aspect ratio of a paint device:

QPai nt Devi ceMetrics pdm nyWdget);
doubl e aspect = (doubl e) pdm wi dthMM) / (double)pdm hei ght M) ;

QPaintDeviceMetrics contains methods to provide the width and height of a device in both pixels (width() and
height()) and millimeters (widthMM() and heightMM()), the number of colors the device supports (numColors()),
the number of bit planes (depth()), and the resolution of the device (logicalDpiX() and logicalDpiY()).

It is not always possible for QPaintDeviceMetrics to compute the values you ask for, particularly for external devices.
The ultimate example is asking for the resolution of of a QPrinter that is set to "print to file": who knows what
printer that file will end up on?

See also Graphics Classes and Image Processing Classes.

Member Function Documentation

QPaintDeviceMetrics::QPaintDeviceMetrics (const QPaintDevice * pd)

Constructs a metric for the paint device pd.

176

QPaintDeviceMetrics Class Reference 177

int QPaintDeviceMetrics::depth () const

Returns the bit depth (number of bit planes) of the paint device.

int QPaintDeviceMetrics::height () const

Returns the height of the paint device in default coordinate system units (e.g. pixels for QPixmap and QWidget).

Examples: action/application.cpp, application/application.cpp, helpviewer/helpwindow.cpp, mdi/application.cpp
and qwerty/qwerty.cpp.

int QPaintDeviceMetrics::heightMM () const

Returns the height of the paint device, measured in millimeters.

int QPaintDeviceMetrics::logicalDpiX () const

Returns the horizontal resolution of the device in dots per inch, which is used when computing font sizes. For X,
this is usually the same as could be computed from widthMM(), but it varies on Windows.

Examples: helpviewer/helpwindow.cpp and qwerty/qwerty.cpp.

int QPaintDeviceMetrics::logicalDpiY () const

Returns the vertical resolution of the device in dots per inch, which is used when computing font sizes. For X, this
is usually the same as could be computed from heightMM(), but it varies on Windows.

Example: helpviewer/helpwindow.cpp.

int QPaintDeviceMetrics::numColors () const

Returns the number of different colors available for the paint device.

int QPaintDeviceMetrics::width () const

Returns the width of the paint device in default coordinate system units (e.g. pixels for QPixmap and QWidget).

Examples: action/application.cpp, application/application.cpp, helpviewer/helpwindow.cpp, mdi/application.cpp
and qwerty/qwerty.cpp.

int QPaintDeviceMetrics::widthMM () const

Returns the width of the paint device, measured in millimeters.

QPainter Class Reference

The QPainter class does low-level painting e.g. on widgets.

#include <gpainter. h>

Inherits Qt [Additional Functionality with Qt].

Public Members

enum CoordinateMode { CoordDevice, CoordPainter }
QPainter ()

QPainter (const QPaintDevice * pd, bool unclipped = FALSE)
QPainter (const QPaintDevice * pd, const QWidget * copyAttributes, bool unclipped = FALSE)
~QPainter ()

bool begin (const QPaintDevice * pd, bool unclipped = FALSE)
bool begin (const QPaintDevice * pd, const QWidget * copyAttributes, bool unclipped = FALSE)
bool end ()

QPaintDevice * device () const

bool isActive () const

void flush (const QRegion & region, CoordinateMode cm = CoordDevice)
void flush ()

void save ()

void restore ()

QFontMetrics fontMetrics () const

QFontInfo fontInfo () const

const QFont & font () const

void setFont (const QFont & font)

const QPen & pen () const

void setPen (const QPen & pen)

void setPen (PenStyle style)

void setPen (const QColor & color)

const QBrush & brush () const

void setBrush (const QBrush & brush)

void setBrush (BrushStyle style)

void setBrush (const QColor & color)

QPoint pos () const

const QColor & backgroundColor () const

void setBackgroundColor (const QColor & ¢)

BGMode backgroundMode () const

void setBackgroundMode (BGMode m)

RasterOp rasterOp () const

178

QPainter Class Reference

void setRasterOp (RasterOp r)

const QPoint & brushOrigin () const

void setBrushOrigin (int x, int y)

void setBrushOrigin (const QPoint & p)

bool hasViewXForm () const

bool hasWorldXForm () const

void setViewXForm (bool enable)

QRect window () const

void setWindow (const QRect & r)

void setWindow (int x, int y, int w; int h)

QRect viewport () const

void setViewport (const QRect & r)

void setViewport (int x, int y, int w, int h)

void setWorldXForm (bool enable)

const QWMatrix & worldMatrix () const

void setWorldMatrix (const QWMatrix & m, bool combine = FALSE)
void saveWorldMatrix () (obsolete)

void restoreWorldMatrix () (obsolete)

void scale (double sx, double sy)

void shear (double sh, double sv)

void rotate (double a)

void translate (double dx, double dy)

void resetXForm ()

QPoint xForm (const QPoint & pv) const

QRect xForm (const QRect & rv) const

QPointArray xForm (const QPointArray & av) const
QPointArray xForm (const QPointArray & av, int index, int npoints) const
QPoint xFormDev (const QPoint & pd) const

QRect xFormDev (const QRect & rd) const
QPointArray xFormDev (const QPointArray & ad) const

QPointArray xFormDev (const QPointArray & ad, int index, int npoints) const

void setClipping (bool enable)

bool hasClipping () const

QRegion clipRegion (CoordinateMode m = CoordDevice) const

void setClipRect (const QRect & 1, CoordinateMode m = CoordDevice)

void setClipRect (int x, int y, int w, int h, CoordinateMode m = CoordDevice)
void setClipRegion (const QRegion & rgn, CoordinateMode m = CoordDevice)

void drawPoint (int x, int y)

void drawPoint (const QPoint & p)

void drawPoints (const QPointArray & a, int index = 0, int npoints = -1)
void moveTo (int x, int y)

void moveTo (const QPoint & p)

void lineTo (int x, int y)

void lineTo (const QPoint & p)

void drawLine (int x1, int y1, int X2, int y2)

void drawLine (const QPoint & p1, const QPoint & p2)

void drawRect (int x, int y, int w, int h)

void drawRect (const QRect & 1)

void drawWinFocusRect (int x, int y, int w, int h)

void drawWinFocusRect (int x, int y, int w, int h, const QColor & bgColor)

179

QPainter Class Reference 180

void drawWinFocusRect (const QRect & 1)

void drawWinFocusRect (const QRect & r, const QColor & bgColor)

void drawRoundRect (int x, int y, int w, int h, int xRnd = 25, int yRnd = 25)

void drawRoundRect (const QRect & 1, int xRnd = 25, int yRnd = 25)

void drawEllipse (int x, int y, int w, int h)

void drawEllipse (const QRect & r)

void drawArec (int x, int y, int w, int h, int a, int alen)

void drawArc (const QRect & 1, int a, int alen)

void drawPie (int x, int y, int w, int h, int a, int alen)

void drawPie (const QRect & r, int a, int alen)

void drawChord (int x, int y, int w, int h, int a, int alen)

void drawChord (const QRect & 1, int a, int alen)

void drawLineSegments (const QPointArray & a, int index = 0, int nlines = -1)

void drawPolyline (const QPointArray & a, int index = 0, int npoints = -1)

void drawPolygon (const QPointArray & a, bool winding = FALSE, int index = 0, int npoints = -1)
void drawConvexPolygon (const QPointArray & pa, int index = 0, int npoints = -1)

void drawCubicBezier (const QPointArray & a, int index = 0)

void drawPixmap (int x, int y, const QPixmap & pixmap, int sx = 0, int sy = 0, int sw = -1, int sh = -1)
void drawPixmap (const QPoint & p, const QPixmap & pm, const QRect & sr)

void drawPixmap (const QPoint & p, const QPixmap & pm)

void drawPixmap (const QRect & r, const QPixmap & pm)

void drawImage (int x, int y, const QImage & image, int sx = 0, int sy = 0, int sw = -1, int sh = -1,
int conversionFlags = 0)

void drawImage (const QPoint &, const QImage &, const QRect & sr, int conversionFlags = 0)
void drawImage (const QPoint & p, const QImage & i, int conversion flags = 0)

void drawImage (const QRect & r, const QImage & i)

void drawTiledPixmap (int x, int y, int w, int h, const QPixmap & pixmap, int sx = 0, int sy = 0)
void drawTiledPixmap (const QRect & r, const QPixmap & pm, const QPoint & sp)

void drawTiledPixmap (const QRect & 1, const QPixmap & pm)

void drawPicture (const QPicture & pic) (obsolete)

void drawPicture (int x, int y;, const QPicture & pic)

void drawPicture (const QPoint & p, const QPicture & pic)

void fillRect (int x, int y, int w, int h, const QBrush & brush)

void fillRect (const QRect & 1, const QBrush & brush)

void eraseRect (int x, int y, int w; int h)

void eraseRect (const QRect & r)

enum TextDirection { Auto, RTL, LTR }

void drawText (int x, int y, const QString &, int len = -1, TextDirection dir = Auto)

void drawText (const QPoint &, const QString &, int len = -1, TextDirection dir = Auto)

void drawText (int x, int y, const QString &, int pos, int len, TextDirection dir = Auto)

void drawText (const QPoint & p, const QString &, int pos, int len, TextDirection dir = Auto)
void drawText (int x, int y, int w, int h, int flags, const QString &, int len = -1, QRect * br = 0,
QTextParag ** internal = 0)

void drawText (const QRect & 1, int tf, const QString & str, int len = -1, QRect * brect = 0,
QTextParag ** internal = 0)

QRect boundingRect (int x, int y, int w, int h, int flags, const QString &, int len = -1, QTextParag ** intern
=0)

QRect boundingRect (const QRect & 1, int flags, const QString & str, int len = -1, QTextParag ** internal =
0)

int tabStops () const

void setTabStops (int ts)

QPainter Class Reference 181

e int * tabArray () const
e void setTabArray (int * ta)
e HDC handle () const

Static Public Members

m void redirect (QPaintDevice * pdev, QPaintDevice * replacement)
m void initialize ()
» void cleanup ()

Related Functions

» void gDrawShadeLine (QPainter * p, int x1, int y1, int X2, int y2, const QColorGroup & g, bool sunken,
int lineWidth, int midLineWidth)

m void gDrawShadeRect (QPainter * p, int x, int y, int w, int h, const QColorGroup & g, bool sunken,
int lineWidth, int midLineWidth, const QBrush * fill)

» void gDrawShadePanel (QPainter * p, int x, int y, int w, int h, const QColorGroup & g, bool sunken,
int lineWidth, const QBrush * fill)

» void gDrawWinButton (QPainter * p, int x, int y, int w, int h, const QColorGroup & g, bool sunken,
const QBrush * fill)

» void gDrawWinPanel (QPainter * p, int x, int y, int w, int h, const QColorGroup & g, bool sunken,
const QBrush * fill)

m void gDrawPlainRect (QPainter * p, int x, int y, int w, int h, const QColor & c, int lineWidth,
const QBrush * fill)

Detailed Description

The QPainter class does low-level painting e.g. on widgets.

The painter provides highly optimized functions to do most of the drawing GUI programs require. QPainter can
draw everything from simple lines to complex shapes like pies and chords. It can also draw aligned text and
pixmaps. Normally, it draws in a "natural" coordinate system, but it can also do view and world transformation.

The typical use of a painter is:

e Construct a painter.
e Set a pen, a brush etc.
e Draw.

e Destroy the painter.

Mostly, all this is done inside a paint event. (In fact, 99% of all QPainter use is in a reimplementation of QWid-
get::paintEvent(), and the painter is heavily optimized for such use.) Here’s one very simple example:

voi d Si npl eExanpl eW dget : : pai nt Event ()
{
QPainter paint(this);
paint.setPen(Q::blue);
pai nt.drawText(rect(), AlignCenter, "The Text");

QPainter Class Reference 182

Simple. However, there are many settings you may use:

e font() is the currently set font. If you set a font that isn’t available, Qt finds a close match. In fact font()
returns what you set using setFont() and fontInfo() returns the font actually being used (which may be the
same).

e brush() is the currently set brush; the color or pattern that’s used for filling e.g. circles.
e pen() is the currently set pen; the color or stipple that’s used for drawing lines or boundaries.
e backgroundMode() is Opaque or Transpar ent, i.e. whether backgroundColor() is used or not.

e backgroundColor() only applies when backgroundMode() is Opaque and pen() is a stipple. In that case, it
describes the color of the background pixels in the stipple.

e rasterOp() is how pixels drawn interact with the pixels already there.
e brushOrigin() is the origin of the tiled brushes, normally the origin of the window.

e viewport(), window(), worldMatrix() and many more make up the painter’s coordinate transformation sys-
tem. See The Coordinate System for an explanation of this, or see below for a very brief overview of the
functions.

e clipping() is whether the painter clips at all. (The paint device clips, too.) If the painter clips, it clips to
clipRegion().

e pos() is the current position, set by moveTo() and used by lineTo().

Note that some of these settings mirror settings in some paint devices, e.g. QWidget::font(). QPainter::begin() (or
the QPainter constructor) copies these attributes from the paint device. Calling, for example, QWidget::setFont()
doesn’t take effect until the next time a painter begins painting on it.

save() saves all of these settings on an internal stack, restore() pops them back.

The core functionality of QPainter is drawing, and there are functions to draw most primitives: drawPoint(),
drawPoints(), drawLine(), drawRect(), drawWinFocusRect(), drawRoundRect(), drawEllipse(), drawArc(), draw-
Pie(), drawChord(), drawLineSegments(), drawPolyline(), drawPolygon(), drawConvexPolygon() and drawCu-
bicBezier(). All of these functions take integer coordinates; there are no floating-point versions. Floatint-point
operations are outside the scope of QPainter (providing fast drawing of the things GUI programs draw).

There are functions to draw pixmaps/images, namely drawPixmap(), drawImage() and drawTiledPixmap(). draw-
Pixmap() and drawImage() produce the same result, except that drawPixmap() is faster on-screen and drawlm-
age() faster and sometimes better on QPrinter and QPicture.

Text drawing is done using drawText(), and when you need fine-grained positioning, boundingRect() tells you
where a given drawText() command would draw.

There is a drawPicture() that draws the contents of an entire QPicture using this painter. drawPicture() is the only
function that disregards all the painter’s settings: the QPicture has its own settings.

Normally, the QPainter operates on the device’s own coordinate system (usually pixels), but QPainter has good
support for coordinate transformation. See The Coordinate System for a more general overview and a simple
example.

The most common functions used are scale(), rotate(), translate() and shear(), all of which operate on the world-
Matrix(). setWorldMatrix() can replace or add to the currently set matrix().

setViewport() sets the rectangle on which QPainter operates. The default is the entire device, which is usually fine,
except on printers. setWindow() sets the coordinate system, that is, the rectangle that maps to viewport(). What’s
drawn inside the window() ends up being inside the viewport(). The window’s default is the same as the viewport,
and if you don’t use the transformations, they are optimized away, gaining another little bit of speed.

After all the coordinate transformation is done, QPainter can clip the drawing to an arbitrary rectangle or region.
hasClipping() is TRUE if QPainter clips, and clipRegion() returns the clip region. You can set it using either
setClipRegion() or setClipRect(). Note that the clipping can be slow. It’s all system-dependent, but as a rule of
thumb, you can assume that drawing speed is inversely proportional to the number of rectangles in the clip region.

QPainter Class Reference 183

After QPainter’s clipping, the paint device may also clip. For example, most widgets clip away the pixels used by
child widgets, and most printers clip away an area near the edges of the paper. This additional clipping is not
reflected by the return value of clipRegion() or hasClipping().

QPainter also includes some less-used functions that are very useful the few times you need them.

isActive() indicates whether the painter is active. begin() (and the most usual constructor) makes it active. end()
(and the destructor) deactivates it. If the painter is active, device() returns the paint device on which the painter
paints.

Sometimes it is desirable to make someone else paint on an unusual QPaintDevice. QPainter supports a static
function to do this, redirect(). We recommend not using it, but for some hacks it’s perfect.

setTabStops() and setTabArray() can change where the tab stops are, but these are very seldomly used.

Warning: Note that QPainter does not attempt to work around coordinate limitations in the underlying window
system. Some platforms may behave incorrectly with coordinates as small as +/-4000.

See also QPaintDevice [p. 170], QWidget [Widgets with Qt], QPixmap [p. 225], QPrinter [p. 254], QPicture
[p. 220], Application Walkthrough, Coordinate System Overview [p. 4], Graphics Classes and Image Processing
Classes.

Member Type Documentation

QPainter::CoordinateMode

e (QPai nter:: CoordDevi ce
e QPai nter:: CoordPai nter

See also clipRegion() [p. 187].

QPainter::TextDirection

e (QPainter::Auto
e (QPainter::RTL - right to left
e QPainter::LTR- left to right

See also drawText() [p. 192].

Member Function Documentation

QPainter::QPainter ()

Constructs a painter.
Notice that all painter settings (setPen, setBrush etc.) are reset to default values when begin() is called.

See also begin() [p. 184] and end() [p. 194].

QPainter::QPainter (const QPaintDevice * pd, bool unclipped = FALSE)

Constructs a painter that begins painting the paint device pd immediately. Depending on the underlying graphic
system the painter will paint over children of the paintdevice if unclipped is TRUE.

QPainter Class Reference 184

This constructor is convenient for short-lived painters, e.g. in a paint event and should be used only once. The
constructor calls begin() for you and the QPainter destructor automatically calls end().

Here’s an example using begin() and end():

voi d MyW dget: : pai nt Event (QPai nt Event *)

{
QPainter p;
p. begin(this);
p.drawtine(...); /'l draw ng code
p.end();
}

The same example using this constructor:

voi d MyW dget: : pai nt Event (QPai nt Event *)
{

QPainter p(this);
p.drawtine(...); /'l draw ng code
}
See also begin() [p. 184] and end() [p. 194].

QPainter::QPainter (const QPaintDevice * pd, const QWidget * copyAttributes,
bool unclipped = FALSE)

Constructs a painter that begins painting the paint device pd immediately, with the default arguments taken from
copyAttributes. The painter will paint over children of the paint device if unclipped is TRUE (although this is not
supported on all platforms).

See also begin() [p. 184].
QPainter::~QPainter ()

Destroys the painter.

const QColor & QPainter::backgroundColor () const

Returns the current background color.

See also setBackgroundColor() [p. 199] and QColor [p. 74].

BGMode QPainter::backgroundMode () const

Returns the current background mode.

See also setBackgroundMode() [p. 199] and BGMode [Additional Functionality with Qt].

bool QPainter::begin (const QPaintDevice * pd, bool unclipped = FALSE)

Begins painting the paint device pd and returns TRUE if successful, or FALSE if an error occurs. If unclipped is
TRUE, the painting will not be clipped at the paint device’s boundaries, yet note that this is not supported by all
platforms.

QPainter Class Reference 185

The errors that can occur are serious problems, such as these:
p->begin(0); // inpossible - paint device cannot be 0

Qi xmep pn(0, 0);
p->begin(pm); // inpossible - pmisNull();

p- >begin(nmyWdget);
p2->begin(nyWdget); // inpossible - only one painter at a tine

Note that most of the time, you can use one of the constructors instead of begin(), and that end() is automatically
done at destruction.

Warning: A paint device can only be painted by one painter at a time.
See also end() [p. 194] and flush() [p. 195].

Examples: aclock/aclock.cpp, application/application.cpp, desktop/desktop.cpp, hello/hello.cpp,
picture/picture.cpp, t10/cannon.cpp and xform/xform.cpp.

bool QPainter::begin (const QPaintDevice * pd, const QWidget * copyAttributes,
bool unclipped = FALSE)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This version opens the painter on a paint device pd and sets the initial pen, background color and font from
copyAttributes, painting over the paint devices’ children when unclipped is TRUE. This is equivalent to:

QPainter p;

p. begin(pd);

p. set Pen(copyAttributes->foregroundColor());

p. set Backgr oundCol or(copyAttri butes->backgroundCol or());
p.setFont(copyAttributes->font());

This begin function is convenient for double buffering. When you draw in a pixmap instead of directly in a widget
(to later bitBlt the pixmap into the widget) you will need to set the widgets’s font etc. This function does exactly
that.

Example:

voi d MyW dget: : pai nt Event (QPai nt Event *)
{
QPi xmap pn(size());
QPainter p;
p. begin(&m this);
Il ... potentially flickering paint operation ...

p.end();
bitBlt(this, 0, 0, &mn;

}

See also end() [p. 194].

QRect QPainter::boundingRect (int x, int y, int w, int h, int flags, const QString &, int len
= -1, QTextParag ** intern = 0)

Returns the bounding rectangle of the aligned text that would be printed with the corresponding drawText()
function using the first len characters of the string if len is > -1, or the whole of the string if len is -1. The drawing,

QPainter Class Reference 186

and hence the bounding rectangle, is constrained to the rectangle that begins at point (x, y) with width w and hight

h.

The flags argument is the bitwise OR of the following flags:

e AlignAuto aligns according to the language, usually left.
e AlignLeft aligns to the left border.

e AlignRight aligns to the right border.

o AlignHCenter aligns horizontally centered.

e AlignTop aligns to the top border.

e AlignBottom aligns to the bottom border.

e AlignVCenter aligns vertically centered

e AlignCenter (== AlignHCenter | AlignVCenter)
o SingleLine ignores newline characters in the text.
e ExpandTabs expands tabulators.

e ShowPrefix interprets "&x" as "x" underlined.

e WordBreak breaks the text to fit the rectangle.

Horizontal alignment defaults to AlignLeft and vertical alignment defaults to AlignTop.
If several of the horizontal or several of the vertical alignment flags are set, the resulting alignment is undefined.
The intern parameter should not be used.

See also Qt::TextFlags [Additional Functionality with Qt].

QRect QPainter::boundingRect (const QRect & r, int flags, const QString & str, int len =
-1, QTextParag ** internal = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the bounding rectangle of the aligned text that would be printed with the corresponding drawText()
function using the first len characters from str if len is > -1, or the whole of str if len is -1. The drawing, and hence
the bounding rectangle, is constrained to the rectangle r.

The internal parameter should not be used.

See also drawText() [p. 192], fontMetrics() [p. 196], QFontMetrics::boundingRect() [Additional Functionality
with Qt] and Qt::TextFlags [Additional Functionality with Qt].

const QBrush & QPainter::brush () const

Returns the current painter brush.
See also QPainter::setBrush() [p. 1991.

Examples: themes/metal.cpp and themes/wood.cpp.

const QPoint & QPainter::brushOrigin () const

Returns the brush origin currently set.

See also setBrushOrigin() [p. 200].

QPainter Class Reference 187

void QPainter::cleanup () [static]

Internal function that cleans up the painter.

QRegion QPainter::clipRegion (CoordinateMode m = CoordDevice) const

Returns the currently set clip region. Note that the clip region is given in physical device coordinates and not
subject to any coordinate transformation if m is equal to CoordDevice (the default). If m equals CoordPainter the
returned region is in model coordinates.

See also setClipRegion() [p. 200], setClipRect() [p. 200], setClipping() [p. 200] and QPainter::CoordinateMode
[p. 183].

Example: themes/wood.cpp.

QPaintDevice * QPainter::device () const

Returns the paint device on which this painter is currently painting, or null if the painter is not active.
See also QPaintDevice::paintingActive() [p. 172].

Examples: helpviewer/helpwindow.cpp and listboxcombo/listboxcombo.cpp.

void QPainter::drawArc (int x, int y, int w, int h, int a, int alen)

Draws an arc defined by the rectangle (x, y, w, h), the start angle a and the arc length alen.

The angles a and alen are 1/16th of a degree, i.e. a full circle equals 5760 (16*360). Positive values of a and alen
mean counter-clockwise while negative values mean clockwise direction. Zero degrees is at the 3’0o clock position.

Example:

QPainter p(nmyWdget);
p. drawArc(10,10, 70,100, 100*16, 160*16); // draws a "(" arc

See also drawPie() [p. 190] and drawChord() [p. 1871.

void QPainter::drawArc (const QRect & r, int a, int alen)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the arc that fits inside the rectangle r with start angle a and arc length alen.

void QPainter::drawChord (int x, int y, int w, int h, int a, int alen)

Draws a chord defined by the rectangle (x, y, w, h), the start angle a and the arc length alen.
The chord is filled with the current brush().

The angles a and alen are 1/16th of a degree, i.e. a full circle equals 5760 (16*360). Positive values of a and alen
mean counter-clockwise while negative values mean clockwise direction. Zero degrees is at the 3’0o clock position.

See also drawArc() [p. 187] and drawPie() [p. 190].

QPainter Class Reference 188

void QPainter::drawChord (const QRect & r, int a, int alen)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws a chord that fits inside the rectangle r with start angle a and arc length alen.

void QPainter::drawConvexPolygon (const QPointArray & pa, int index = 0, int npoints =
-1)

Draws the convex polygon defined by the npoints points in pa starting at pa[index] (index defaults to 0).

If the supplied polygon is not convex, the results are undefined.

On some platforms (e.g., X Window), this is faster than drawPolygon().

Example: aclock/aclock.cpp.

void QPainter::drawCubicBezier (const QPointArray & a, int index = 0)

Draws a cubic Bezier curve defined by the control points in a, starting at afindex] (index defaults to 0).

Control points after a[index + 3] are ignored. Nothing happens if there aren’t enough control points.

void QPainter::drawEllipse (int x, int y; int w, int h)

Draws an ellipse with center at (x + w/2, y + h/2) and size (w, h).

Examples: drawdemo/drawdemo.cpp, picture/picture.cpp and tictac/tictac.cpp.

void QPainter::drawEllipse (const QRect & r)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the ellipse that fits inside rectangle r.

void QPainter::drawlmage (int x, int y, const QImage & image, int sx = 0, int sy = 0,
int sw = -1, int sh = -1, int conversionFlags = 0)

Draws at (x, y) the sw by sh area of pixels from (sx, sy) in image, using conversionFlags if the image needs to be
converted to a pixmap. The default value for conversionFlags is 0; see convertFromImage() for information about
what other values do.

This function may convert image to a pixmap and then draw it, if device() is a QPixmap or a QWidget, or else draw
it directly, if device() is a QPrinter or QPicture.

See also drawPixmap() [p. 190] and QPixmap::convertFromImage() [p. 230].

void QPainter::drawlmage (const QPoint &, const QImage &, const QRect & sr,
int conversionFlags = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the rectangle sr from the image at the given point.

QPainter Class Reference 189

void QPainter::drawImage (const QPoint & p, const QImage & i, int conversion_flags =
0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the image i at point p.

If the image needs to be modified to fit in a lower-resolution result (eg. converting from 32-bit to 8-bit), use the
conversion_flags to specify how you’d prefer this to happen.

See also Qt::ImageConversionFlags [Additional Functionality with Qt].

void QPainter::drawlmage (const QRect & r, const QImage & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the image i into the rectangle r. The image will be scaled to fit the rectangle if image and rectangle
dimensions differ.

void QPainter::drawLine (int x1, int y1, int X2, int y2)

Draws a line from (x1, y1) to (x2, y2) and sets the current pen position to (x2, y2).
See also pen() [p. 1971.

Examples: aclock/aclock.cpp, drawlines/connect.cpp, progress/progress.cpp, splitter/splitter.cpp,
themes/metal.cpp and themes/wood.cpp.

void QPainter::drawLine (const QPoint & p1, const QPoint & p2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws a line from point pI to point p2.

void QPainter::drawLineSegments (const QPointArray & a, int index = 0, int nlines = -1)

Draws nlines separate lines from points defined in a, starting at a[index] (index defaults to 0). If nlines is -1 (the
defauls) all points until the end of the array are used (i.e. (a.size()-index)/2 lines are drawn).
Draws the 1st line from a[index] to a[index+1]. Draws the 2nd line from a[index+2] to a[index+3] etc.

See also drawPolyline() [p. 191], drawPolygon() [p. 191] and QPen [p. 215].

void QPainter::drawPicture (int x, int y, const QPicture & pic)

Replays the picture pic translated by (x, y).
This function does exactly the same as QPicture::play() when called with (x, y) = (0, 0).

Examples: picture/picture.cpp and xform/xform.cpp.

void QPainter::drawPicture (const QPicture & pic)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

QPainter Class Reference 190

Use one of the other QPainter::drawPicture() functions with a (0, 0) offset instead.

void QPainter::drawPicture (const QPoint & p, const QPicture & pic)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws picture pic at point p.

void QPainter::drawPie (int x, int y, int w, int h, int a, int alen)

Draws a pie defined by the rectangle (x, y, w, h), the start angle a and the arc length alen.
The pie is filled with the current brush().

The angles a and alen are 1/16th of a degree, i.e. a full circle equals 5760 (16*360). Positive values of a and alen
mean counter-clockwise while negative values mean clockwise direction. Zero degrees is at the 3’0o clock position.

See also drawArc() [p. 187] and drawChord() [p. 187].

Examples: drawdemo/drawdemo.cpp, grapher/grapher.cpp, t10/cannon.cpp and t9/cannon.cpp.

void QPainter::drawPie (const QRect & r, int a, int alen)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws a pie segment that fits inside the rectangle r with start angle a and arc length alen.

void QPainter::drawPixmap (int x, int y, const QPixmap & pixmap, int sx = 0, int sy = 0,
int sw = -1, int sh = -1)
Draws a pixmap at (x, y) by copying a part of pixmap into the paint device.

(x, y) specify the top-left point in the paint device that is to be drawn onto. (sx, sy) specify the top-left point in
pixmap that is to be drawn. The default is (0, 0).

(sw, sh) specify the size of the pixmap that is to be drawn. The default, (-1, -1), means all the way to the bottom
right of the pixmap.

See also bitBIt() [p. 175] and QPixmap::setMask() [p. 236].

Examples: grapher/grapher.cpp, picture/picture.cpp, qdir/qdir.cpp, qtimage/qtimage.cpp,
showimg/showimg.cpp, t10/cannon.cpp and xform/xform.cpp.

void QPainter::drawPixmap (const QPoint & p, const QPixmap & pm, const QRect & sr)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the rectangle sr of pixmap pm with its origin at point p.

void QPainter::drawPixmap (const QPoint & p, const QPixmap & pm)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the pixmap pm with its origin at point p.

QPainter Class Reference 191

void QPainter::drawPixmap (const QRect & r, const QPixmap & pm)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the pixmap pm into the rectangle r. The pixmap is scaled to fit the rectangle, if image and rectangle size
disagree.

void QPainter::drawPoint (int x, int y)

Draws/plots a single point at (x, y) using the current pen.
See also QPen [p. 215].

Examples: desktop/desktop.cpp and drawlines/connect.cpp.

void QPainter::drawPoint (const QPoint & p)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the point p.

void QPainter::drawPoints (const QPointArray & a, int index = 0, int npoints = -1)

Draws/plots an array of points, a, using the current pen.

If index is non-zero (the default is zero) only points from index are drawn. If npoints is negative (the default) the
rest of the points from index are drawn. If is is zero or greater, npoints points are drawn.

void QPainter::drawPolygon (const QPointArray & a, bool winding = FALSE, int index =
0, int npoints = -1)
Draws the polygon defined by the npoints points in a starting at afindex]. (index defaults to 0.)

If npoints is -1 (the default) all points until the end of the array are used (i.e. a.size()-index line segments define
the polygon).

The first point is always connected to the last point.

The polygon is filled with the current brush(). If winding is TRUE, the polygon is filled using the winding fill
algorithm. If winding is FALSE, the polygon is filled using the even-odd (alternative) fill algorithm.

See also drawLineSegments() [p. 189], drawPolyline() [p. 191] and QPen [p. 215].
Examples: desktop/desktop.cpp and picture/picture.cpp.

void QPainter::drawPolyline (const QPointArray & a, int index = 0, int npoints = -1)

Draws the polyline defined by the npoints points in a starting at afindex]. (index defaults to 0.)

If npoints is -1 (the default) all points until the end of the array are used (i.e. a.size()-index-1 line segments are
drawn).

See also drawLineSegments() [p. 189], drawPolygon() [p. 191] and QPen [p. 215].

Examples: scribble/scribble.cpp and themes/metal.cpp.

QPainter Class Reference 192

void QPainter::drawRect (int x, int y; int w;, int h)

Draws a rectangle with upper left corner at (x, y) and with width w and height h.
See also QPen [p. 215] and drawRoundRect() [p. 192].

Examples: drawdemo/drawdemo.cpp, picture/picture.cpp, t10/cannon.cpp, t11/cannon.cpp, t9/cannon.cpp,
tooltip/tooltip.cpp and trivial/trivial.cpp.

void QPainter::drawRect (const QRect & r)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the rectange r.

void QPainter::drawRoundRect (int x, int y, int w, int h, int xRnd = 25, int yRnd = 25)

Draws a rectangle with round corners at (x, y), with width w and height h.

The xRnd and yRnd arguments specify how rounded the corners should be. 0 is angled corners, 99 is maximum
roundedness.

The width and height include all of the drawn lines.
See also drawRect() [p. 192] and QPen [p. 215].

Examples: drawdemo/drawdemo.cpp and themes/wood.cpp.

void QPainter::drawRoundRect (const QRect & r, int xRnd = 25, int yRnd = 25)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws a rounded rectange r, rounding to the x position xRnd and the y position yRnd on each corner.

void QPainter::drawText (const QPoint & p, const QString &, int pos, int len,
TextDirection dir = Auto)

Draws the text from position pos, at point p If len is -1 the entire string is drawn, otherwise just the first len
characters. The text’s direction is specified by dir.
See also QPainter::TextDirection [p. 183].

Examples: desktop/desktop.cpp, drawdemo/drawdemo.cpp, grapher/grapher.cpp, picture/picture.cpp,
progress/progress.cpp, t8/cannon.cpp and trivial/trivial.cpp.

void QPainter::drawText (int x, int y, const QString &, int len = -1, TextDirection dir =
Auto)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the given text at position x, y. If len is -1 (the default) all the text is drawn, otherwise the first len characters
are drawn. The text’s direction is given by dir.

See also QPainter::TextDirection [p. 183].

QPainter Class Reference 193

void QPainter::drawText (const QPoint &, const QString &, int len = -1, TextDirection dir
= Auto)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Draws the text at the given point.

See also QPainter::TextDirection [p. 183].

void QPainter::drawText (int x, int y, const QString &, int pos, int len, TextDirection dir =
Auto)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the text from position pos, at point (x, y). If len is -1 the entire string is drawn, otherwise just the first len
characters. The text’s direction is specified by dir.

void QPainter::drawText (int x, int y, int w, int h, int flags, const QString &, int len = -1,
QRect * br = 0, QTextParag ** internal = 0)
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws the given text within the rectangle starting at x, y, with width w and height h. If len is -1 (the default) all the
text is drawn, otherwise the first len characters are drawn. The text’s alignment is given in the flags parameter (see
Qt::AlignmentFlags). br (if not null) is set to the actual bounding rectangle of the output. The internal parameter
is for internal use only.

void QPainter::drawText (const QRect & r, int tf, const QString & str, int len = -1,
QRect * brect = 0, QTextParag ** internal = 0)
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Draws at most len characters from str in the rectangle r.
Note that the meaning of r.y() is not the same for the two drawText() varieties.
This function draws formatted text. The tf text format is really of type Qt::AlignmentFlags.
Horizontal alignment defaults to AlignAuto and vertical alignment defaults to AlignTop.
brect (if not null) is set to the actual bounding rectangle of the output. internal is, yes, internal.

See also boundingRect() [p. 185].

void QPainter::drawTiledPixmap (int x, int y, int w, int h, const QPixmap & pixmap, int sx
=0, intsy = 0)
Draws a tiled pixmap in the specified rectangle.

(x, y) specifies the top-left point in the paint device that is to be drawn onto; with the width and height given by w
and h. (sx, sy) specify the top-left point in pixmap that is to be drawn. The default is (0, 0).

Calling drawTiledPixmap() is similar to calling drawPixmap() several times to fill (tile) an area with a pixmap, but
is potentially much more efficient depending on the underlying window system.

See also drawPixmap() [p. 190].

QPainter Class Reference 194

void QPainter::drawTiledPixmap (const QRect & r, const QPixmap & pm,
const QPoint & sp)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws a tiled pixmap, pm, inside rectange r with its origin at point sp.

void QPainter::drawTiledPixmap (const QRect & r, const QPixmap & pm)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws a tiled pixmap, pm, inside rectange r.

void QPainter::drawWinFocusRect (int x, int y, int w, int h, const QColor & bgColor)
Draws a Windows focus rectangle with upper left corner at (x, y) and with width w and height h using a pen color
that contrasts with bgColor.

This function draws a stippled rectangle (XOR is not used) that is used to indicate keyboard focus (when the
QApplication::style() is W ndowSt yl e).

The pen color used to draw the rectangle is either white or black depending on the color of bgColor (see
QColor::gray()).

Warning: This function draws nothing if the coordinate system has been rotated or sheared.

See also drawRect() [p. 192] and QApplication::style() [Additional Functionality with Qt].

void QPainter::drawWinFocusRect (int x, int y, int w, int h)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Draws a Windows focus rectangle with upper left corner at (x, y) and with width w and height h.

This function draws a stippled XOR rectangle that is used to indicate keyboard focus (when QApplication::style()
is W ndowst yl e).

Warning: This function draws nothing if the coordinate system has been rotated or sheared.
See also drawRect() [p. 192] and QApplication::style() [Additional Functionality with Qt].
void QPainter::drawWinFocusRect (const QRect & r)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws rectange r as a window focus rectangle.

void QPainter::drawWinFocusRect (const QRect & r, const QColor & bgColor)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws rectange r as a window focus rectangle using background color bgColor.

bool QPainter::end ()

Ends painting. Any resources used while painting are released.

QPainter Class Reference 195

Note that while you mostly don’t need to call end(), the destructor will do it, there is at least one common case,
namely double buffering.

QPainter p(myPixmap, this)

...

p.end(); // stops drawing on nyPi xmap

p. begin(this);

p. drawPi xmap(myPi xmap);
Since you can’t draw a QPixmap while it is being painted, it is necessary to close the active painter.
See also begin() [p. 184] and isActive() [p. 197].

Examples: aclock/aclock.cpp, application/application.cpp, desktop/desktop.cpp, hello/hello.cpp,
picture/picture.cpp, t10/cannon.cpp and xform/xform.cpp.

void QPainter::eraseRect (int x, int y, int w, int h)

Erases the area inside x, y, w, h. Equivalent tofill Rect(x, y, w, h, backgroundColor()).

Examples: listboxcombo/listboxcombo.cpp and showimg/showimg.cpp.

void QPainter::eraseRect (const QRect & r)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Erases the area inside the rectangle r.

void QPainter::fillRect (int x, int y, int w; int h, const QBrush & brush)

Fills the rectangle (x, y, w, h) with the brush.

You can specify a QColor as brush, since there is a QBrush constructor that takes a QColor argument and creates a
solid pattern brush.

See also drawRect() [p. 192].

Examples: listboxcombo/listboxcombo.cpp, progress/progress.cpp, qdir/qdir.cpp, qfd/fontdisplayer.cpp,
themes/metal.cpp and themes/wood.cpp.

void QPainter::fillRect (const QRect & r, const QBrush & brush)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Fills the rectangle r using brush brush.

void QPainter::flush (const QRegion & region, CoordinateMode cm = CoordDevice)

Flushes any buffered drawing operations inside the region region using clipping mode cm.
The flush may update the whole device if the platform does not support flushing to a specified region.

See also CoordinateMode [p. 183].

QPainter Class Reference 196

void QPainter::flush ()

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Flushes any buffered drawing operations.

const QFont & QPainter::font () const

Returns the currently set painter font.
See also setFont() [p. 201] and QFont [Additional Functionality with Qt].

Example: fileiconview/qfileiconview.cpp.

QFontInfo QPainter::fontInfo () const

Returns the font info for the painter, if the painter is active. It is not possible to obtain font information for an
inactive painter, so the return value is undefined if the painter is not active.

See also fontMetrics() [p. 196] and isActive() [p. 197].

QFontMetrics QPainter::fontMetrics () const

Returns the font metrics for the painter, if the painter is active. It is not possible to obtain metrics for an inactive
painter, so the return value is undefined if the painter is not active.

See also fontInfo() [p. 196] and isActive() [p. 1971].

Examples: action/application.cpp, application/application.cpp, desktop/desktop.cpp, drawdemo/drawdemo.cpp,
helpviewer/helpwindow.cpp, mdi/application.cpp and qwerty/qwerty.cpp.

HDC QPainter::handle () const

Returns the platform-dependent handle used for drawing.

bool QPainter::hasClipping () const

Returns TRUE if clipping has been set; otherwise returns FALSE.
See also setClipping() [p. 200].

Example: themes/wood.cpp.

bool QPainter::hasViewXForm () const

Returns TRUE if view transformation is enabled; otherwise returns FALSE.
See also setViewXForm() [p. 202] and xForm() [p. 205].

bool QPainter::hasWorldXForm () const

Returns TRUE if world transformation is enabled; otherwise returns FALSE.

See also setWorldXForm() [p. 203].

QPainter Class Reference 197

void QPainter::initialize () [static]

Internal function that initializes the painter.

bool QPainter::isActive () const

Returns TRUE if the painter is active painting, i.e. begin() has been called and end() has not yet been called;
otherwise returns FALSE.

See also QPaintDevice::paintingActive() [p. 172].
Example: desktop/desktop.cpp.

void QPainter::lineTo (int x, int y)

Draws a line from the current pen position to (x, y) and sets (x, y) to be the new current pen position.

See also QPen [p. 215], moveTo() [p. 197], drawLine() [p. 189] and pos() [p. 1971.

void QPainter::lineTo (const QPoint & p)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Draws a line to the point p.

void QPainter::moveTo (int x, int y)

Sets the current pen position to (x,)

See also lineTo() [p. 1971 and pos() [p. 1971.

void QPainter::moveTo (const QPoint & p)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Moves to the point p.

const QPen & QPainter::pen () const

Returns the current pen for the painter.
See also setPen() [p. 201].

Examples: progress/progress.cpp and themes/wood.cpp.

QPoint QPainter::pos () const

Returns the current position of the pen.

See also moveTo() [p. 1971.

QPainter Class Reference 198

RasterOp QPainter::rasterOp () const

Returns the current raster operation.

See also setRasterOp() [p. 201] and RasterOp [Additional Functionality with Qt].

void QPainter::redirect (QPaintDevice * pdev, QPaintDevice * replacement) [static]
Redirects all paint command for a paint device pdev to another paint device replacement, unless replacement is 0. If
replacement is 0, the redirection for pdev is removed.

Mostly, you can get better results with less work by calling QPixmap::grabWidget() or QPixmap::grapWindow().

void QPainter::resetXForm ()

Resets any transformations that were made using translate(), scale(), shear(), rotate(), setWorldMatrix(), setView-
port() and setWindow()

See also worldMatrix() [p. 204], viewport() [p. 204] and window() [p. 204].

void QPainter::restore ()

Restores the current painter state (pops a saved state off the stack).
See also save() [p. 198].
Example: aclock/aclock.cpp.

void QPainter::restoreWorldMatrix ()
This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

We recommend using restore() instead.

void QPainter::rotate (double a)

Rotates the coordinate system a degrees counterclockwise.

See also translate() [p. 2041, scale() [p. 1991, shear() [p. 2031, resetXForm() [p. 1981, setWorldMatrix() [p. 203]
and xForm() [p. 205].

Examples: aclock/aclock.cpp, t10/cannon.cpp and t9/cannon.cpp.

void QPainter::save ()

Saves the current painter state (pushes the state onto a stack). A save() must be followed by a corresponding
restore(). end () unwinds the stack.

See also restore() [p. 198].

Example: aclock/aclock.cpp.

QPainter Class Reference 199

void QPainter::saveWorldMatrix ()
This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

We recommend using save() instead.

void QPainter::scale (double sx, double sy)

Scales the coordinate system by (sx, sy).

See also translate() [p. 204], shear() [p. 203], rotate() [p. 198], resetXForm() [p. 198], setWorldMatrix()
[p. 203] and xForm() [p. 205].

Example: xform/xform.cpp.

void QPainter::setBackgroundColor (const QColor & c)

Sets the background color of the painter to c.

The background color is the color that is filled in when drawing opaque text, stippled lines and bitmaps. The
background color has no effect in transparent background mode (which is the default).

See also backgroundColor() [p. 184], setBackgroundMode() [p. 199] and BackgroundMode [Additional
Functionality with Qt].

void QPainter::setBackgroundMode (BGMode m)
Sets the background mode of the painter to m, which must be one of TransparentMode (the default) and Opaque-
Mode.

Transparent mode draws stippled lines and text without setting the background pixels. Opaque mode fills these
space with the current background color.

Note that in order to draw a bitmap or pixmap transparently, you must use QPixmap::setMask().
See also backgroundMode() [p. 184] and setBackgroundColor() [p. 199].

Example: picture/picture.cpp.

void QPainter::setBrush (BrushStyle style)

Sets a new painter brush with black color and the specified style.
See also brush() [p. 186] and QBrush [p. 17].

Examples: aclock/aclock.cpp, drawdemo/drawdemo.cpp, picture/picture.cpp, t10/cannon.cpp, t9/cannon.cpp,
themes/wood.cpp and tooltip/tooltip.cpp.

void QPainter::setBrush (const QBrush & brush)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets a new painter brush.

The brush defines how to fill shapes.

See also brush() [p. 186].

QPainter Class Reference 200

void QPainter::setBrush (const QColor & color)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets a new painter brush with the style SolidPattern and the specified color.

See also brush() [p. 186] and QBrush [p. 17].

void QPainter::setBrushOrigin (int x, int y)

Sets the brush origin to (x, y).

The brush origin specifies the (0, 0) coordinate of the painter’s brush. This setting only applies to pattern brushes
and pixmap brushes.

See also brushOrigin() [p. 186].

void QPainter::setBrushOrigin (const QPoint & p)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the brush origin to point p.

void QPainter::setClipRect (int x, int y, int w, int h, CoordinateMode m = CoordDevice)

Sets the clip region to the rectangle x, y, w, h and enables clipping. The clip mode is set to m.

Note that the clip region is given in physical device coordinates and not subject to any coordinate transformation if
m is equal to CoordDevice (the default). If m equals CoordPainter the returned region is in model coordinates.

See also setClipRegion() [p. 200], clipRegion() [p. 187], setClipping() [p. 200] and QPainter::CoordinateMode
[p. 183].

Examples: grapher/grapher.cpp, progress/progress.cpp, qtimage/qtimage.cpp, showimg/showimg.cpp,
splitter/splitter.cpp and trivial/trivial.cpp.

void QPainter::setClipRect (const QRect & r, CoordinateMode m = CoordDevice)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the clip region to the rectangle r and enables clipping. The clip mode is set to m.

void QPainter::setClipRegion (const QRegion & rgn, CoordinateMode m = CoordDevice)

Sets the clip region to rgn and enables clipping. The clip mode is set to m.

Note that the clip region is given in physical device coordinates and not subject to any coordinate transformation.
See also setClipRect() [p. 2001, clipRegion() [p. 187] and setClipping() [p. 200].

Examples: qfd/fontdisplayer.cpp and themes/wood.cpp.

void QPainter::setClipping (bool enable)

Enables clipping if enable is TRUE, or disables clipping if enable is FALSE.

QPainter Class Reference 201

See also hasClipping() [p. 196], setClipRect() [p. 200] and setClipRegion() [p. 200].

Example: themes/wood.cpp.

void QPainter::setFont (const QFont & font)

Sets a new painter font to font.
This font is used by subsequent drawText() functions. The text color is the same as the pen color.
See also font() [p. 196] and drawText() [p. 192].

Examples: application/application.cpp, drawdemo/drawdemo.cpp, grapher/grapher.cpp, hello/hello.cpp,
picture/picture.cpp, t13/cannon.cpp and xform/xform.cpp.

void QPainter::setPen (const QPen & pen)

Sets a new painter pen.
The pen defines how to draw lines and outlines, and it also defines the text color.
See also pen() [p. 1971.

Examples: desktop/desktop.cpp, drawdemo/drawdemo.cpp, progress/progress.cpp, t10/cannon.cpp,
t9/cannon.cpp, themes/metal.cpp and themes/wood.cpp.

void QPainter::setPen (PenStyle style)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets a new painter pen to have style style, width 0 and black color.

See also pen() [p. 197] and QPen [p. 215].

void QPainter::setPen (const QColor & color)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets a new painter pen with style SolidLine, width 0 and the specified color-.

See also pen() [p. 197] and QPen [p. 215].

void QPainter::setRasterOp (RasterOp r)

Sets the raster operation to r. The default is CopyROP
See also rasterOp() [p. 198].

void QPainter::setTabArray (int * ta)

Sets the tab stop array to ta. This puts tab stops at ta[0], ta[1] and so on. The array is null-terminated.
If both a tab array and a tab top size is set, the tab array wins.

See also tabArray() [p. 2041, setTabStops() [p. 202], drawText() [p. 192] and fontMetrics() [p. 196].

QPainter Class Reference 202

void QPainter::setTabStops (int ts)

Set the tab stop width to ts, i.e. locates tab stops at ts, 2*ts, 3*ts and so on.

Tab stops are used when drawing formatted text with ExpandTabs set. This fixed tab stop value is used only if no
tab array is set (which is the default case).

See also tabStops() [p. 2041, setTabArray() [p. 2011, drawText() [p. 192] and fontMetrics() [p. 196].

void QPainter::setViewXForm (bool enable)

Enables view transformations if enable is TRUE, or disables view transformations if enable is FALSE.

See also hasViewXForm() [p. 196], setWindow() [p. 202], setViewport() [p. 202], setWorldMatrix() [p. 203],
setWorldXForm() [p. 203] and xForm() [p. 205].

void QPainter::setViewport (int x, int y, int w, int h)

Sets the viewport rectangle view transformation for the painter and enables view transformation.

The viewport rectangle is part of the view transformation. The viewport specifies the device coordinate system and
is specified by the x, y, w width and h height parameters. Its sister, the window(), specifies the logical coordinate
system.

The default viewport rectangle is the same as the device’s rectangle. See the Coordinate System Overview [p. 4]
for an overview of coordinate transformation.

See also viewport() [p. 2041, setWindow() [p. 202], setViewXForm() [p. 202], setWorldMatrix() [p. 203],
setWorldXForm() [p. 203] and xForm() [p. 205].

Example: aclock/aclock.cpp.

void QPainter::setViewport (const QRect & r)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the painter’s viewport to rectangle r.

void QPainter::setWindow (int x, int y, int w, int h)

Sets the window rectangle view transformation for the painter and enables view transformation.

The window rectangle is part of the view transformation. The window specifies the logical coordinate system and
is specified by the x, y, w width and h height parameters. Its sister, the viewport(), specifies the device coordinate
system.

The default window rectangle is the same as the device’s rectangle. See the Coordinate System Overview [p. 4] for
an overview of coordinate transformation.

See also window() [p. 204], setViewport() [p. 202], setViewXForm() [p. 202], setWorldMatrix() [p. 203] and
setWorldXForm() [p. 203].

Examples: aclock/aclock.cpp and drawdemo/drawdemo.cpp.

void QPainter::setWindow (const QRect & r)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QPainter Class Reference 203

Sets the painter’s window to rectangle r.

void QPainter::setWorldMatrix (const QWMatrix & m, bool combine = FALSE)

Sets the world transformation matrix to m and enables world transformation.

If combine is TRUE, then m is combined with the current transformation matrix, otherwise m replaces the current
transformation matrix.

If m is the identity matrix and combine is FALSE, this function calls setWorldXForm(FALSE). (The identity matrix is
the matrix where QWMatrix::m11() and QWMatrix::m22() are 1.0 and the rest are 0.0.)

World transformations are applied after the view transformations (i.e. window and viewport).

The following functions can transform the coordinate system without using a QWMatrix:

e translate()
e scale()
e shear()

e rotate()

They operate on the painter’s worldMatrix() and are implemented like this:

void QPainter::rotate(double a)

{
QMatrix m
mrotate(a);
setWorldvatrix(m TRUE);
}

Note that you should always use combine when you are drawing into a QPicture. Otherwise it may not be possible
to replay the picture with additional transformations. Using translate(), scale(), etc. is safe.

For a brief overview of coordinate transformation, see the Coordinate System Overview.

See also worldMatrix() [p. 2041, setWorldXForm() [p. 203], setWindow() [p. 202], setViewport() [p. 2021,
setViewXForm() [p. 202], xForm() [p. 205] and QWMatrix [p. 291].

Examples: drawdemo/drawdemo.cpp and xform/xform.cpp.

void QPainter::setWorldXForm (bool enable)
Enables world transformations if enable is TRUE, or disables world transformations if enable is FALSE. The world
transformation matrix is not changed.

See also setWorldMatrix() [p. 203], setWindow() [p. 202], setViewport() [p. 202], setViewXForm() [p. 202] and
xForm() [p. 205].

void QPainter::shear (double sh, double sv)

Shears the coordinate system by (sh, sv).

See also translate() [p. 204], scale() [p. 199], rotate() [p. 198], resetXForm() [p. 198], setWorldMatrix() [p. 203]
and xForm() [p. 205].

QPainter Class Reference 204

int * QPainter::tabArray () const

Returns the currently set tab stop array.

See also setTabArray() [p. 201].

int QPainter::tabStops () const
Returns the tab stop setting.

See also setTabStops() [p- 202].

void QPainter::translate (double dx, double dy)

Translates the coordinate system by (dx, dy). After this call, (dx, dy) is added to points.

For example, the following code draws the same point twice:

voi d MyW dget: : pai nt Event ()

{
QPainter paint(this);
pai nt.drawPoint(0, 0);
paint.translate(100.0, 40.0);
pai nt. drawPoi nt (-100, -40);
}

See also scale() [p. 1991, shear() [p. 203], rotate() [p. 198], resetXForm() [p. 198], setWorldMatrix() [p. 203]
and xForm() [p. 205].

Examples: helpviewer/helpwindow.cpp, t10/cannon.cpp, t9/cannon.cpp, themes/metal.cpp, themes/wood.cpp
and xform/xform.cpp.

QRect QPainter::viewport () const

Returns the viewport rectangle.
See also setViewport() [p. 202] and setViewXForm() [p. 202].
Example: aclock/aclock.cpp.

QRect QPainter::window () const

Returns the window rectangle.
See also setWindow() [p. 202] and setViewXForm() [p. 202].
const QWMatrix & QPainter::worldMatrix () const

Returns the world transformation matrix.

See also setWorldMatrix() [p. 203].

QPainter Class Reference 205

QPoint QPainter::xForm (const QPoint & pv) const

Returns the point pv transformed from model coordinates to device coordinates.

See also xFormDev() [p. 205] and QWMatrix::map() [p. 294].

QRect QPainter::xForm (const QRect & rv) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the rectangle rv transformed from model coordinates to device coordinates.

If world transformation is enabled and rotation or shearing has been specified, then the bounding rectangle is
returned.

See also xFormDev() [p. 205] and QWMatrix::map() [p. 294].

QPointArray QPainter::xForm (const QPointArray & av) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the point array av transformed from model coordinates to device coordinates.

See also xFormDev() [p. 205] and QWMatrix::map() [p. 294].

QPointArray QPainter::xForm (const QPointArray & av, int index, int npoints) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the point array av transformed from model coordinates to device coordinates. The index is the first point
in the array and npoints denotes the number of points to be transformed. If npoints is negative, all points from
av[index] until the last point in the array are transformed.

The returned point array consists of the number of points that were transformed.
Example:

QPoint Array a(10);

QPointArray b;

b = painter.xForm(a, 2, 4); [/ b.size() == 4
b = painter.xForm(a, 2, -1); // b.size() == 8

See also xFormDev() [p. 205] and QWMatrix::map() [p. 294].

QRect QPainter::xFormDev (const QRect & rd) const

Returns the rectangle rd transformed from device coordinates to model coordinates.
If world transformation is enabled and rotation or shearing is used, then the bounding rectangle is returned.

See also xForm() [p. 205] and QWMatrix::map() [p. 294].

QPoint QPainter::xFormDev (const QPoint & pd) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the point pd transformed from device coordinates to model coordinates.

QPainter Class Reference 206
See also xForm() [p. 205] and QWMatrix::map() [p. 294].

QPointArray QPainter::xFormDev (const QPointArray & ad) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the point array ad transformed from device coordinates to model coordinates.

See also xForm() [p. 205] and QWMatrix::map() [p. 294].

QPointArray QPainter::xFormDev (const QPointArray & ad, int index, int npoints) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the point array ad transformed from device coordinates to model coordinates. The index is the first point
in the array and npoints denotes the number of points to be transformed. If npoints is negative, all points from
ad[index] until the last point in the array are transformed.

The returned point array consists of the number of points that were transformed.
Example:

QPoint Array a(10);

QPointArray b;

b = painter.xFornDev(a, 1, 3)
-1

= Il b.size() == 3
b = painter.xFornDev(a, 1,

): 11 b.size() == 9

See also xForm() [p. 205] and QWMatrix::map() [p. 294].

Related Functions

void qDrawPlainRect (QPainter * p, int x, int y, int w, int h, const QColor & c,
int lineWidth, const QBrush * fill)

#include <qdrawtil.h>

Draws a plain rectangle given by (x, y, w, h) using the painter p.

The color argument c specifies the line color.

The lineWidth argument specifies the line width.

The rectangle interior is filled with the fill brush unless fill is null.

If you want to use a QFrame widget instead, you can make it display a plain rectangle, for example
QFrame: : set FrameStyl e(QFrame::Box | QFrame::Plain).

Warning: This function does not look at QWidget::style() or QApplication::style(). Use the drawing functions in
QStyle to make widgets that follow the current GUI style.

See also gDrawShadeRect() [p. 207] and QStyle::drawPrimitive() [Events, Actions, Layouts and Styles with Qt].

void qDrawShadeLine (QPainter * p, int x1, int y1, int x2, int y2, const QColorGroup & g,
bool sunken, int lineWidth, int midLineWidth)

\{#include }

QPainter Class Reference 207

Draws a horizontal (yI == y2) or vertical (xI == x2) shaded line using the painter p.

Nothing is drawn if yI != y2 and x1 != x2 (i.e. the line is neither horizontal nor vertical).

The color group argument g specifies the shading colors (light, dark and middle colors).

The line appears sunken if sunken is TRUE, or raised if sunken is FALSE.

The lineWidth argument specifies the line width for each of the lines. It is not the total line width.

The midLineWidth argument specifies the width of a middle line drawn in the QColorGroup::mid() color.

If you want to use a QFrame widget instead, you can make it display a shaded line, for example
QFrane: : set FrameStyl e(QFrame:: HLine | QFrane:: Sunken).

Warning: This function does not look at QWidget::style() or QApplication::style(). Use the drawing functions in
QStyle to make widgets that follow the current GUI style.

See also gDrawShadeRect() [p. 207], gDrawShadePanel() [p. 207] and QStyle::drawPrimitive() [Events, Actions,
Layouts and Styles with Qt].

void qDrawShadePanel (QPainter * p, int x, int y, int w, int h, const QColorGroup & g,
bool sunken, int lineWidth, const QBrush * fill)

#include <qdrawtil.h>

Draws a shaded panel given by (x, y, w, h) using the painter p.

The color group argument g specifies the shading colors (light, dark and middle colors).
The panel appears sunken if sunken is TRUE, or raised if sunken is FALSE.

The lineWidth argument specifies the line width.

The panel interior is filled with the fill brush unless fill is null.

If you want to use a QFrame widget instead, you can make it display a shaded panel, for example
QFrame: : set FrameStyl e(QFrame:: Panel | QFrane:: Sunken).

Warning: This function does not look at QWidget::style() or QApplication::style(). Use the drawing functions in
QStyle to make widgets that follow the current GUI style.

See also gDrawWinPanel() [p. 208], gDrawShadeLine() [p. 206], gDrawShadeRect() [p. 207] and
QStyle::drawPrimitive() [Events, Actions, Layouts and Styles with Qt].

void qDrawShadeRect (QPainter * p, int X, int y, int w, int h, const QColorGroup & g,
bool sunken, int lineWidth, int midLineWidth, const QBrush * fill)

#include <qdrawtil.h>

Draws a shaded rectangle/box given by (x, y, w, h) using the painter p.

The color group argument g specifies the shading colors (light, dark and middle colors).

The rectangle appears sunken if sunken is TRUE, or raised if sunken is FALSE.

The lineWidth argument specifies the line width for each of the lines. It is not the total line width.

The midLineWidth argument specifies the width of a middle line drawn in the QColorGroup::mid() color.
The rectangle interior is filled with the fill brush unless fill is null.

If you want to use a QFrame widget instead, you can make it display a shaded rectangle, for example
QFrane: : set FrameStyl e(QFrame::Box | QFrame:: Raised).

Warning: This function does not look at QWidget::style() or QApplication::style(). Use the drawing functions in

QPainter Class Reference 208

QStyle to make widgets that follow the current GUI style.

See also gDrawShadeLine() [p. 206], gDrawShadePanel() [p. 207], gDrawPlainRect() [p. 206],
QStyle::drawltem() [Events, Actions, Layouts and Styles with Qt], QStyle::drawControl() [Events, Actions,
Layouts and Styles with Qt] and QStyle::drawComplexControl() [Events, Actions, Layouts and Styles with Qt].

void qDrawWinButton (QPainter * p, int X, int y, int w, int h, const QColorGroup & g,
bool sunken, const QBrush * fill)

#include <qgdrawutil.h>

Draws a Windows-style button given by (x, y, w, h) using the painter p.

The color group argument g specifies the shading colors (light, dark and middle colors).
The button appears sunken if sunken is TRUE, or raised if sunken is FALSE.

The line width is 2 pixels.

The button interior is filled with the *fill brush unless fill is null.

Warning: This function does not look at QWidget::style() or QApplication::style(). Use the drawing functions in
QStyle to make widgets that follow the current GUI style.

See also gDrawWinPanel() [p. 208] and QStyle::drawControl() [Events, Actions, Layouts and Styles with Qt].

void qDrawWinPanel (QPainter * p, int x, int y, int w, int h, const QColorGroup & g,
bool sunken, const QBrush * fill)

#include <qdrawtil.h>

Draws a Windows-style panel given by (x, y, w, h) using the painter p.
The color group argument g specifies the shading colors.

The panel appears sunken if sunken is TRUE, or raised if sunken is FALSE.
The line width is 2 pixels.

The button interior is filled with the fill brush unless fill is null.

If you want to use a QFrame widget instead, you can make it display a shaded panel, for example
QFrame: : set FrameStyl e(QFrame: : WnPanel | QFrame:: Raised).

Warning: This function does not look at QWidget::style() or QApplication::style(). Use the drawing functions in
QStyle to make widgets that follow the current GUI style.

See also gDrawShadePanel() [p. 207], gDrawWinButton() [p. 208] and QStyle::drawPrimitive() [Events, Actions,
Layouts and Styles with Qt].

QPalette Class Reference

The QPalette class contains color groups for each widget state.

#include <qgpal ette. h>

Public Members

QPalette ()

QPalette (const QColor & button) (obsolete)

QPalette (const QColor & button, const QColor & background)

QPalette (const QColorGroup & active, const QColorGroup & disabled, const QColorGroup & inactive)
QPalette (const QPalette & p)

~QPalette ()

QPalette & operator= (const QPalette & p)

enum ColorGroup { Disabled, Active, Inactive, NColorGroups, Normal = Active }
const QColor & color (ColorGroup gr, QColorGroup::ColorRole r) const
const QBrush & brush (ColorGroup gr, QColorGroup::ColorRole r) const
void setColor (ColorGroup gr, QColorGroup::ColorRole r, const QColor & ¢)
void setBrush (ColorGroup gr, QColorGroup::ColorRole 1, const QBrush & b)
void setColor (QColorGroup::ColorRole r, const QColor & c)

void setBrush (QColorGroup::ColorRole r, const QBrush & b)

QPalette copy () const

const QColorGroup & active () const

const QColorGroup & disabled () const

const QColorGroup & inactive () const

const QColorGroup & normal () const

void setActive (const QColorGroup & g)

void setDisabled (const QColorGroup & g)

void setInactive (const QColorGroup & g)

void setNormal (const QColorGroup & cg)

bool operator== (const QPalette & p) const

bool operator!= (const QPalette & p) const

bool isCopyOf (const QPalette & p)

int serialNumber () const

Related Functions

QDataStream & operator< < (QDataStream & s, const QPalette & p)
QDataStream & operator>> (QDataStream & s, QPalette & p)

209

QPalette Class Reference 210

Detailed Description

The QPalette class contains color groups for each widget state.

A palette consists of three color groups: active, disabled, and inactive. All widgets contain a palette, and all widgets
in Qt use their palette to draw themselves. This makes the user interface easily configurable and easier to keep
consistent.

If you create a new widget we strongly recommend that you use the colors in the palette rather than hard-coding
specific colors.

The color groups:

e The active() group is used for the window that has keyboard focus.
e The inactive() group is used for other windows.
e The disabled() group is used for widgets (not windows) that are disabled for some reason.

Both active and inactive windows can contain disabled widgets. (Disabled widgets are often called inaccessible or
grayed out.)

In Motif style, active() and inactive() look precisely the same. In Windows 2000 style and Macintosh Platinum
style, the two styles look slightly different.

There are setActive(), setlnactive(), and setDisabled () functions to modify the palette. (Qt also supports a normal()
group; this is an obsolete alias for active(), supported for backwards compatibility.)

Colors and brushes can be set for particular roles in any of a palette’s color groups with setColor() and setBrush().
You can copy a palette using the copy constructor and test to see if two palettes are identical using isCopyOf().

See also QApplication::setPalette() [Additional Functionality with Qt], QWidget::palette [Widgets with Qt],
QColorGroup [p. 84], QColor [p. 74], Widget Appearance and Style, Graphics Classes, Image Processing Classes
and Implicitly and Explicitly Shared Classes.

Member Type Documentation

QPalette::ColorGroup

e (QPal ette:: Disabled

e QPalette::Active

e (QPalette::lnactive

e (QPal ette:: NCol or G oups

e (QPalette:: Normal - synonym for Active

Member Function Documentation

QPalette::QPalette ()

Constructs a palette that consists of color groups with only black colors.

QPalette::QPalette (const QColor & button)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

QPalette Class Reference 211

Constructs a palette from the button color. The other colors are automatically calculated, based on this color.
Background will be the button color as well.

QPalette::QPalette (const QColor & button, const QColor & background)

Constructs a palette from a button color and a background. The other colors are automatically calculated, based on
these colors.

QPalette::QPalette (const QColorGroup & active, const QColorGroup & disabled,
const QColorGroup & inactive)

Constructs a palette that consists of the three color groups active, disabled and inactive. See QPalette for definitions
of the color groups and QColorGroup::ColorRole for definitions of each color role in the three groups.

See also QColorGroup [p. 84] and QColorGroup::ColorRole [p. 85].
QPalette::QPalette (const QPalette & p)
Constructs a copy of p.

This constructor is fast (it uses copy-on-write).

QPalette:: ~QPalette ()

Destroys the palette.

const QColorGroup & QPalette::active () const

Returns the active color group of this palette.
See also QColorGroup [p. 841, setActive() [p. 213], inactive() [p. 212] and disabled() [p. 212].

Examples: themes/metal.cpp and themes/wood.cpp.
const QBrush & QPalette::brush (ColorGroup gr, QColorGroup::ColorRole r) const
Returns the brush in color group gr, used for color role r.

See also color() [p. 2111, setBrush() [p. 213] and QColorGroup::ColorRole [p. 85].

const QColor & QPalette::color (ColorGroup gr, QColorGroup::ColorRole r) const

Returns the color in color group gr, used for color role r.

See also brush() [p. 2111, setColor() [p. 213] and QColorGroup::ColorRole [p. 85].

QPalette QPalette::copy () const

Returns a deep copy of this palette. This is slower than the copy constructor and assignment operator and no longer
offers any advantages.

QPalette Class Reference 212

const QColorGroup & QPalette::disabled () const

Returns the disabled color group of this palette.
See also QColorGroup [p. 84], setDisabled() [p. 213], active() [p. 211] and inactive() [p. 212].

Examples: themes/metal.cpp and themes/wood.cpp.

const QColorGroup & QPalette::inactive () const

Returns the inactive color group of this palette.

See also QColorGroup [p. 84], setlnactive() [p. 213], active() [p. 211] and disabled() [p. 212].

bool QPalette::isCopyOf (const QPalette & p)

Returns TRUE if this palette and p are copies of each other, ie. one of them was created as a copy of the other and
neither was subsequently modified. This is much stricter than equality.

See also operator=() [p. 212] and operator==() [p. 212].

const QColorGroup & QPalette::normal () const

Returns the active color group.

See also setActive() [p. 213] and active() [p. 211].

bool QPalette::operator!= (const QPalette & p) const

Returns TRUE (slowly) if this palette is different from p; otherwise returns FALSE (usually quickly).

QPalette & QPalette::operator= (const QPalette & p)

Assigns p to this palette and returns a reference to this palette.
This is fast (it uses copy-on-write).

See also copy() [p. 211].

bool QPalette::operator== (const QPalette & p) const

Returns TRUE (usually quickly) if this palette is equal to p; otherwise returns FALSE (slowly).

int QPalette::serialNumber () const
Returns a number that uniquely identifies this QPalette object. The serial number is intended for caching. Its value
may not be used for anything other than equality testing.

Note that QPalette uses copy-on-write, and the serial number changes during the lazy copy operation (detach()),
not during a shallow copy (copy constructor or assignment).

See also QPixmap [p. 225], QPixmapCache [p. 239] and QCache [Datastructures and String Handling with Qt].

QPalette Class Reference 213

void QPalette::setActive (const QColorGroup & g)

Sets the Active color group to g.
See also active() [p. 211], setDisabled() [p. 213], setInactive() [p. 213] and QColorGroup [p. 84].

void QPalette::setBrush (ColorGroup gr, QColorGroup::ColorRole r, const QBrush & b)

Sets the brush in color group gr, used for color role r, to b.

See also brush() [p. 211], setColor() [p. 213] and QColorGroup::ColorRole [p. 85].

void QPalette::setBrush (QColorGroup::ColorRole r, const QBrush & b)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the brush in for color role r in all three color groups to b.

See also brush() [p. 2111, setColor() [p. 213], QColorGroup::ColorRole [p. 85], active() [p. 211], inactive()
[p. 212] and disabled() [p. 212].

void QPalette::setColor (ColorGroup gr, QColorGroup::ColorRole r, const QColor & c)

Sets the brush in color group gr, used for color role r, to the solid color c.
See also setBrush() [p. 2131, color() [p. 211] and QColorGroup::ColorRole [p. 85].

Example: themes/themes.cpp.

void QPalette::setColor (QColorGroup::ColorRole r, const QColor & ¢)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the brush color used for color role r to color ¢ in all three color groups.

See also color() [p. 211], setBrush() [p. 213] and QColorGroup::ColorRole [p. 85].
void QPalette::setDisabled (const QColorGroup & g)

Sets the Disabled color group to g.

See also disabled() [p. 212], setActive() [p. 213] and setInactive() [p. 213].

void QPalette::setInactive (const QColorGroup & g)

Sets the Inactive color group to g.

See also active() [p. 2111, setDisabled() [p. 213], setActive() [p. 213] and QColorGroup [p. 841].

void QPalette::setNormal (const QColorGroup & cg)

Sets the active color group to cg.

See also setActive() [p. 213] and active() [p. 211].

QPalette Class Reference 214

Related Functions

QDataStream & operator<< (QDataStream & s, const QPalette & p)

Writes the palette, p to the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QDataStream & operator>> (QDataStream & s, QPalette & p)

Reads a palette from the stream, s into the palette p, and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QPen Class Reference

The QPen class defines how a QPainter should draw lines and outlines of shapes.
#include <gpen. h>

Inherits Qt [Additional Functionality with Qt].

Public Members

m QPen ()

m QPen (PenStyle style)

m QPen (const QColor & color, uint width = 0, PenStyle style = SolidLine)
m QPen (const QColor & cl, uint w, PenStyle s, PenCapStyle c, PenJoinStyle j)
m QPen (const QPen & p)

m ~QPen ()

m QPen & operator= (const QPen & p)

m PenStyle style () const

» void setStyle (PenStyle s)

m uint width () const

= void setWidth (uint w)

const QColor & color () const

void setColor (const QColor & ¢)

PenCapStyle capStyle () const

void setCapStyle (PenCapStyle c)

PenJoinStyle joinStyle () const

void setJoinStyle (PenJoinStyle j)

bool operator== (const QPen & p) const

bool operator!= (const QPen & p) const

Related Functions

m QDataStream & operator< < (QDataStream & s, const QPen & p)
m QDataStream & operator>> ((QDataStream & s, QPen & p)

Detailed Description

The QPen class defines how a QPainter should draw lines and outlines of shapes.

A pen has a style, width, color, cap style and join style.

215

QPen Class Reference 216

The pen style defines the line type. The default pen style is Qt::SolidLine. Setting the style to NoPen tells the
painter to not draw lines or outlines.

When drawing 1 pixel wide diagonal lines you can either use a very fast algorithm (specified by a line width of 0,
which is the default), or a slower but more accurate algorithm (specified by a line width of 1). For horizontal and
vertical lines a line width of O is the same as a line width of 1. The cap and join style have no effect on 0-width
lines.

The pen color defines the color of lines and text. The default line color is black. The QColor documentation lists
predefined colors.

The cap style defines how the end points of lines are drawn. The join style defines how the joins between two lines
are drawn when multiple connected lines are drawn (QPainter::drawPolyLine() etc.). The cap and join styles only
apply to wide lines, i.e. when the width is 1 or greater.

Use the QBrush class to specify fill styles.

Example:

QPai nter painter;

QPen pen(red, 2); /] red solid line, 2 pixels wde
pai nter. begi n(&anyPaintDevice); // paint something

pai nter. setPen(pen); /] set the red, w de pen

pai nter. drawRect (40,30, 200,100); // draw a rectangle

pai nter.setPen(blue); /1 set blue pen, 0 pixel wdth
pai nter. drawLi ne(40,30, 240,130); // draw a diagonal in rectangle
pai nter.end(); /] painting done

See the Qt::PenStyle [Additional Functionality with Qt] enum type for a complete list of pen styles.

With reference to the end points of lines, for wide (non-0-width) pens it depends on the cap style whether the
end point is drawn or not. QPainter will try to make sure that the end point is drawn for 0-width pens, but this
cannot be absolutely guaranteed because the underlying drawing engine is free to use any (typically accelerated)
algorithm for drawing O-width lines. On all tested systems, however, the end point of at least all non-diagonal lines
are drawn.

A pen’s color(), width(), style(), capStyle() and joinStyle() can be set in the constructor or later with setColor(),
setWidth(), setStyle(), setCapStyle() and setJoinStyle(). Pens may also be compared and streamed.

See also QPainter [p. 178], QPainter::setPen() [p. 201], Graphics Classes, Image Processing Classes and Implicitly
and Explicitly Shared Classes.

Member Function Documentation

QPen::QPen ()

Constructs a default black solid line pen with 0 width, which renders lines 1 pixel wide (fast diagonals).

QPen::QPen (PenStyle style)

Constructs a black pen with 0 width (fast diagonals) and style style.

See also setStyle() [p. 218].

QPen Class Reference 217

QPen::QPen (const QColor & color, uint width = 0, PenStyle style = SolidLine)

Constructs a pen with the specified color, width and style.

See also setWidth() [p. 219], setStyle() [p. 218] and setColor() [p. 218].

QPen::QPen (const QColor & cl, uint w, PenStyle s, PenCapStyle ¢, PenJoinStyle j)

Constructs a pen with the specified color ¢l and width w. The pen style is set to s, the pen cap style to ¢ and the pen
join style to j.

A line width of 0 will produce a 1 pixel wide line using a fast algorithm for diagonals. A line width of 1 will also
produce a 1 pixel wide line, but uses a slower more accurate algorithm for diagonals. For horizontal and vertical
lines a line width of 0 is the same as a line width of 1. The cap and join style have no effect on 0-width lines.

See also setWidth() [p. 219], setStyle() [p. 218] and setColor() [p. 218].

QPen::QPen (const QPen & p)

Constructs a pen that is a copy of p.

QPen::~QPen ()

Destroys the pen.

PenCapStyle QPen::capStyle () const

Returns the pen’s cap style.

See also setCapStyle() [p. 218].

const QColor & QPen::color () const

Returns the pen color.
See also setColor() [p. 218].
Example: scribble/scribble.h.

PenJoinStyle QPen::joinStyle () const

Returns the pen’s join style.

See also setJoinStyle() [p. 218].

bool QPen::operator!= (const QPen & p) const

Returns TRUE if the pen is different from p; otherwise returns FALSE
Two pens are different if they have different styles, widths or colors.

See also operator==() [p. 218].

QPen Class Reference 218

QPen & QPen::operator= (const QPen & p)

Assigns p to this pen and returns a reference to this pen.

bool QPen::operator== (const QPen & p) const

Returns TRUE if the pen is equal to p; otherwise returns FALSE
Two pens are equal if they have equal styles, widths and colors.

See also operator!=() [p. 217].

void QPen::setCapStyle (PenCapStyle c)

Sets the pen’s cap style to c.
The default value is FlatCap. The cap style has no effect on 0-width pens.

Warning: On Windows 95/98 and Macintosh, the cap style setting has no effect. Wide lines are rendered as if the
cap style was SquareCap.

See also capStyle() [p- 2171].

Example: themes/wood.cpp.

void QPen::setColor (const QColor & c¢)

Sets the pen color to c.
See also color() [p. 217].
Examples: progress/progress.cpp and scribble/scribble.h.

void QPen::setJoinStyle (PenJoinStyle j)

Sets the pen’s join style to j.
The default value is MiterJoin. The join style has no effect on 0-width pens.

Warning: On Windows 95/98 and Macintosh, the join style setting has no effect. Wide lines are rendered as if the
join style was BevelJoin.

See also joinStyle() [p. 217].

Example: themes/wood.cpp.

void QPen::setStyle (PenStyle s)

Sets the pen style to s.
See the Qt::PenStyle [Additional Functionality with Qt] documentation for a list of all the styles.

Warning: On Windows 95/98 and Macintosh, the style setting (other than NoPen and SolidLine) has no effect for
lines with width greater than 1.

See also style() [p. 219].

QPen Class Reference 219

void QPen::setWidth (uint w)

Sets the pen width to w.

A line width of 0 will produce a 1 pixel wide line using a fast algorithm for diagonals. A line width of 1 will also
produce a 1 pixel wide line, but uses a slower more accurate algorithm for diagonals. For horizontal and vertical
lines a line width of 0 is the same as a line width of 1. The cap and join style have no effect on 0-width lines.

See also width() [p. 219].
Examples: progress/progress.cpp and scribble/scribble.h.

PenStyle QPen::style () const
Returns the pen style.

See also setStyle() [p. 218].

uint QPen::width () const

Returns the pen width.
See also setWidth() [p. 2191].
Example: scribble/scribble.h.

Related Functions

QDataStream & operator<< (QDataStream & s, const QPen & p)

Writes the pen p to the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QDataStream & operator>> (QDataStream & s, QPen & p)

Reads a pen from the stream s into p and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QPicture Class Reference

The QPicture class is a paint device that records and replays QPainter commands.
#include <qgpicture. h>

Inherits QPaintDevice [p. 170].

Public Members

m QPicture (int formatVersion = -1)

m QPicture (const QPicture & pic)

m ~QPicture ()

bool isNull () const

uint size () const

const char * data () const

virtual void setData (const char * data, uint size)
bool play (QPainter * painter)

m bool load (QIODevice * dev, const char * format = Q)
m bool load (const QString & fileName, const char * format = 0)
= bool save (QIODevice * dev, const char * format = 0)

m bool save (const QString & fileName, const char * format = 0)
m QRect boundingRect () const
m QPicture & operator= (const QPicture & p)
Protected Members
m virtual int metric (int m) const
m void detach ()
» QPicture copy () const

Related Functions

m QDataStream & operator<< (QDataStream & s, const QPicture & r)
m QDataStream & operator>> (QDataStream & s, QPicture & r)

220

QPicture Class Reference 221

Detailed Description

The QPicture class is a paint device that records and replays QPainter commands.

A picture serializes painter commands to an IO device in a platform-independent format. A picture created under
Windows can be read on a Sun SPARC.

Pictures are called meta-files on some platforms.

Qt pictures use a proprietary binary format. Unlike native picture (meta-file) formats on many window systems,
Qt pictures have no limitations regarding their contents. Everything that can be painted can also be stored in a
picture, e.g. fonts, pixmaps, regions, transformed graphics, etc.

QPicture is an implicitely shared class.

Example of how to record a picture:

QPicture pic;

QPainter p;

p. begin(&pic); [l paint in picture
p.drawel |ipse(10,20, 80,70); // draw an ellipse
p.end(); [l painting done

pi c.save("draw ng.pic"); Il save picture

Example of how to replay a picture:

QPicture pic;

pic.load("draw ng.pic"); Il load picture
QPainter p;

p. begi n(&nyW dget); /'l paint in nyWdget
p. drawPi cture(pic); Il draw the picture
p.end(); /'l painting done

Pictures can also be drawn using play(). Some basic data about a picture is available, for example, size(), isNull()
and boundingRect().

See also Graphics Classes, Image Processing Classes and Implicitly and Explicitly Shared Classes.

Member Function Documentation

QPicture::QPicture (int formatVersion = -1)

Constructs an empty picture.

The formatVersion parameter may be used to create a QPicture that can be read by applications that are compiled
with earlier versions of Qt.

e formatVersion == 1 is binary compatible with Qt 1.x and later.

e formatVersion == 2 is binary compatible with Qt 2.0.x and later.
e formatVersion == 3 is binary compatible with Qt 2.1.x and later.
e formatVersion == 4 is binary compatible with Qt 3.x.

Note that the default formatVersion is -1 which signifies the current release, i.e. for Qt 3.0 a formatVersion of 4 is
the same as the default formatVersion of -1.

Reading pictures generated by earlier versions of Qt is supported and needs no special coding; the format is
automatically detected.

QPicture Class Reference 222

QPicture::QPicture (const QPicture & pic)

Constructs a shallow copy of pic.

QPicture::~QPicture ()

Destroys the picture.

QRect QPicture::boundingRect () const

Returns the picture’s bounding rectangle or an invalid rectangle if the picture contains no data.

QPicture QPicture::copy () const [protected]

Returns a deep copy of the picture.

const char * QPicture::data () const

Returns a pointer to the picture data. The pointer is only valid until the next non-const function is called on this
picture. The returned pointer is null if the picture contains no data.

See also size() [p. 223] and isNull() [p. 222].

void QPicture::detach () [protected]

Detaches from shared picture data and makes sure that this picture is the only one referring to the data.

If multiple pictures share common data, this picture makes a copy of the data and detaches itself from the sharing
mechanism. Nothing is done if there is just a single reference.

bool QPicture::isNull () const

Returns TRUE if the picture contains no data; otherwise returns FALSE.

bool QPicture::load (const QString & fileName, const char * format = 0)

Loads a picture from the file specified by fileName and returns TRUE if successful; otherwise returns FALSE.

By default, the file will be interpreted as being in the native QPicture format. Specifying the format string is optional
and is only needed for importing picture data stored in a different format.

Currently, the only external format supported is the W3C SVG format which requires the Qt XML module. The
corresponding format string is "svg".

See also save() [p. 223].

Examples: picture/picture.cpp and xform/xform.cpp.

bool QPicture::load (QIODevice * dev, const char * format = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QPicture Class Reference 223
dev is the device to use for loading.

int QPicture::metric (int m) const [virtual protected]

Internal implementation of the virtual QPaintDevice::metric() function.

Use the QPaintDeviceMetrics class instead.

A picture has the following hard-coded values: dpi=72, numcolors=16777216 and depth=24.
m is the metric to get.

Reimplemented from QPaintDevice [p. 172].

QPicture & QPicture::operator= (const QPicture & p)

Assigns a shallow copy of p to this picture and returns a reference to this picture.

bool QPicture::play (QPainter * painter)

Replays the picture using painter, and returns TRUE if successful or FALSE if the internal picture data is inconsistent.

This function does exactly the same as QPainter::drawPicture() with (x, y) = (0, 0).

bool QPicture::save (const QString & fileName, const char * format = 0)

Saves a picture to the file specified by fileName and returns TRUE if successful; otherwise returns FALSE.

Specifying the file format string is optional. It’s not recommended unless you intend to export the picture data for
the use in a 3rd party reader. By default the data will be saved in the native QPicture file format.

Currently, the only external format supported is the W3C SVG format which requires the Qt XML module. The
corresponding format string is "svg".

See also load() [p. 222].

Example: picture/picture.cpp.

bool QPicture::save (QIODevice * dev, const char * format = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
dev is the device to use for loading.

void QPicture::setData (const char * data, uint size) [virtual]

Sets the picture data directly from data and size. This function copies the input data.

See also data() [p. 222] and size() [p. 223].

uint QPicture::size () const

Returns the size of the picture data.

See also data() [p. 222].

QPicture Class Reference 224

Related Functions
QDataStream & operator<< (QDataStream & s, const QPicture & r)

Writes picture, r to the stream s and returns a reference to the stream.

QDataStream & operator>> (QDataStream & s, QPicture & r)

Reads a picture from the stream s into picture r and returns a reference to the stream.

QPixmap Class Reference

The QPixmap class is an off-screen, pixel-based paint device.

#i ncl ude <qpi xmap. h>

Inherits QPaintDevice [p. 170] and Qt [Additional Functionality with Qt].

Inherited by QBitmap [p. 14] and QCanvasPixmap [p. 47].

Public Members

enum ColorMode { Auto, Color, Mono }

enum Optimization { DefaultOptim, NoOptim, MemoryOptim = NoOptim, NormalOptim, BestOptim }
QPixmap ()

QPixmap (const QImage & image)

QPixmap (int w, int h, int depth = -1, Optimization optimization = DefaultOptim)
QPixmap (const QSize & size, int depth = -1, Optimization optimization = DefaultOptim)
QPixmap (const QString & fileName, const char * format = 0, ColorMode mode = Auto)
QPixmap (const QString & fileName, const char * format, int conversion flags)
QPixmap (const char * xpm[])

QPixmap (const QByteArray & img_data)

QPixmap (const QPixmap & pixmap)

~QPixmap ()

QPixmap & operator= (const QPixmap & pixmap)

QPixmap & operator= (const QImage & image)

bool isNull () const

int width () const

int height () const

QSize size () const

QRect rect () const

int depth () const

void fill (const QColor & fillColor = Qt::white)

void fill (const QWidget * widget, int xofs, int yofs)

void fill (const QWidget * widget, const QPoint & ofs)

void resize (int w, int h)

void resize (const QSize & size)

const QBitmap * mask () const

void setMask (const QBitmap & newmask)

bool selfMask () const

QBitmap createHeuristicMask (bool clipTight = TRUE) const

QPixmap xForm (const QWMatrix & matrix) const

225

QPixmap Class Reference 226

m QImage convertTolmage () const

m bool convertFromImage (const QImage & image, ColorMode mode = Auto)

» bool convertFromImage (const QImage & img, int conversion flags)

m bool load (const QString & fileName, const char * format = 0, ColorMode mode = Auto)

m bool load (const QString & fileName, const char * format, int conversion_flags)

= bool loadFromData (const uchar * buf, uint len, const char * format = 0, ColorMode mode = Auto)
» bool loadFromData (const uchar * buf, uint len, const char * format, int conversion_flags)

» bool loadFromData (const QByteArray & buf, const char * format = 0, int conversion_flags = 0)
m bool save (const QString & fileName, const char * format, int quality = -1) const

m int serialNumber () const

= Optimization optimization () const

e void setOptimization (Optimization optimization)

virtual void detach ()

bool isQBitmap () const

Static Public Members

m int defaultDepth ()

» QPixmap grabWindow (WId window, int x = 0, inty = 0, int w = -1, int h = -1)

m QPixmap grabWidget (QWidget * widget, intx = 0, inty = 0, intw = -1, inth = -1)
» QWMatrix trueMatrix (const QWMatrix & matrix, int w, int h)

m const char * imageFormat (const QString & fileName)

Optimization defaultOptimization ()

» void setDefaultOptimization (Optimization optimization)

Protected Members

m QPixmap (int w, int h, const uchar * bits, bool isXbitmap)
m virtual int metric (int m) const

Related Functions

m QDataStream & operator< < (QDataStream & s, const QPixmap & pixmap)
m QDataStream & operator>> ((QDataStream & s, QPixmap & pixmap)

Detailed Description

The QPixmap class is an off-screen, pixel-based paint device.

QPixmap is one of the two classes Qt provides for dealing with images; the other is QImage. QPixmap is designed
and optimized for drawing; QImage is designed and optimized for I/0O and for direct pixel access/manipulation.
There are (slow) functions to convert between QImage and QPixmap: convertTolmage() and convertFromImage().

One common use of the QPixmap class is to enable smooth updating of widgets. Whenever something complex
needs to be drawn, you can use a pixmap to obtain flicker-free drawing, like this:

1. Create a pixmap with the same size as the widget.
2. Fill the pixmap with the widget background color.

QPixmap Class Reference 227

3. Paint the pixmap.
4. bitBlt() the pixmap contents onto the widget.

Pixel data in a pixmap is internal and is managed by the underlying window system. Pixels can be accessed only
through QPainter functions, through bitBlt(), and by converting the QPixmap to a QImage.

You can easily display a QPixmap on the screen using QLabel::setPixmap(), for example, all the QButton subclasses
support pixmap use.

The QPixmap class uses lazy copying, so it is practical to pass QPixmap objects as arguments.

You can retrieve the width(), height(), depth() and size() of a pixmap. The enclosing rectangle is given by rect().
Pixmaps can be filled with fill() and resized with resize(). You can create and set a mask with createHeuristicMask()
and setMask(). Use selfMask() to see if the pixmap is identical to its mask.

In addition to loading a pixmap from file using load() you can also loadFromData(). You can control optimization
with setOptimization() and obtain a transformed version of the pixmap using xForm()

Note regarding Windows 95 and 98: on Windows 9x the system crashes if you create more than about 1000
pixmaps, independent of the size of the pixmaps or installed RAM. Windows NT and 2000 do not have this limita-
tion.

Qt tries to work around the resource limitation. If you set the pixmap optimization to QPixmap::MemoryOptim
and the width of your pixmap is less than or equal to 128 pixels, Qt stores the pixmap in a way that is very
memory-efficient when there are many pixmaps.

If your application uses dozens or hundreds of pixmaps (for example on tool bar buttons and in popup menus),
and you plan to run it on Windows 95 or Windows 98, we recommend using code like this:

QPi xmap: : set Defaul t Qoti mi zation(QPi xmap: : MemoryQptim) ;
while (...) {

/1 load tool bar pixmaps etc.

QPi xmap *pi xmap = new QPi xmap(fil eName);

}
QPi xmap: : set Defaul t Qoti m zation(QPi xmap:: Nor mal Optim);

See also QBitmap [p. 14], QImage [p. 129], QImagelO [p. 154], Shared Classes [Programming with Qt], Graphics
Classes and Implicitly and Explicitly Shared Classes.

Member Type Documentation

QPixmap::ColorMode

This enum type defines the color modes that exist for converting QImage objects to QPixmap. The current values
are:

e QPi xmap: : Aut o - Select Color or Mono on a case-by-case basis.
e QPi xmap: : Col or - Always create colored pixmaps.
e (QPi xmap: : Mono - Always create bitmaps.

QPixmap::Optimization

QPixmap has the choice of optimizing for speed or memory in a few places; the best choice varies from pixmap to
pixmap but can generally be derived heuristically. This enum type defines a number of optimization modes that
you can set for any pixmap to tweak the speed/memory tradeoffs:

QPixmap Class Reference 228

e (QPi xmap: : Def aul t Opt i m - Whatever QPixmap::defaultOptimization() returns. A pixmap with this optimiza-
tion will have whatever the current default optimization is. If the default optimization is changed using
setDefaultOptimization, then this will not effect any pixmaps that have already been created.

o QPi xmap: : NoOpt i m- No optimization (currently the same as MemoryOptim).

e (QPi xmap: : MenoryOpt i m- Optimize for minimal memory use.

e QPi xmap: : Nor mal Opt i m- Optimize for typical usage. Often uses more memory than MemoryOptim, and is
often faster.

e (QPi xmap: : Best Opti m- Optimize for pixmaps that are drawn very often and where performance is critical.
Generally uses more memory than NormalOptim and may provide a little better speed.

We recommend using DefaultOptim.

Member Function Documentation

QPixmap::QPixmap ()

Constructs a null pixmap.

See also isNull() [p. 233].

QPixmap::QPixmap (const QImage & image)

Constructs a pixmap from the QImage image.

See also convertFromImage() [p. 230].

QPixmap::QPixmap (int w, int h, int depth = -1, Optimization optimization =
DefaultOptim)

Constructs a pixmap with w width, h height and depth bits per pixel. The pixmap is optimized in accordance with
the optimization value.
The contents of the pixmap is uninitialized.

The depth can be either 1 (monochrome) or the depth of the current video mode. If depth is negative, then the
hardware depth of the current video mode will be used.

If either w or h is zero, a null pixmap is constructed.

See also isNull() [p. 233] and QPixmap::Optimization [p. 227].
QPixmap::QPixmap (const QSize & size, int depth = -1, Optimization optimization =
DefaultOptim)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Constructs a pixmap of size size, depth bits per pixel, optimized in accordance with the optimization value.

QPixmap::QPixmap (const QString & fileName, const char * format = 0,
ColorMode mode = Auto)

Constructs a pixmap from the file fileName. If the file does not exist or is of an unknown format, the pixmap
becomes a null pixmap.

QPixmap Class Reference 229

The fileName, format and mode parameters are passed on to load(). This means that the data in fileName is not
compiled into the binary. If fileName contains a relative path (e.g. the filename only) the relevant file must be
found relative to the runtime working directory.

See also QPixmap::ColorMode [p. 2271, isNull() [p. 2331, load() [p. 2331, loadFromData() [p. 2341, save()
[p. 236] and imageFormat() [p. 233].

QPixmap::QPixmap (const QString & fileName, const char * format, int conversion_flags)
Constructs a pixmap from the file fileName. If the file does not exist or is of an unknown format, the pixmap
becomes a null pixmap.

The fileName, format and conversion_flags parameters are passed on to load(). This means that the data in fileName
is not compiled into the binary. If fileName contains a relative path (e.g. the filename only) the relevant file must
be found relative to the runtime working directory.

If the image needs to be modified to fit in a lower-resolution result (e.g. converting from 32-bit to 8-bit), use the
conversion_flags to specify how you’d prefer this to happen.

See also Qt::ImageConversionFlags [Additional Functionality with Qt], isNull() [p. 233], load() [p. 2331,
loadFromData() [p. 234], save() [p. 236] and imageFormat() [p. 233].

QPixmap::QPixmap (const char * xpm[])

Constructs a pixmap from xpm, which must be a valid XPM image.

Errors are silently ignored.

Note that it’s possible to squeeze the XPM variable a little bit by using an unusual declaration:
static const char * const start xpni]={

"16 15 8 1",
"a ¢ #cec6bd",

The extra const makes the entire definition read-only, which is slightly more efficient (for example, when the code
is in a shared library) and ROMable when the application is to be stored in ROM.

In order to use that sort of declaration you must cast the variable back to const char ** when you create the
QPixmap.

QPixmap::QPixmap (const QByteArray & img data)

Constructs a pixmaps by loading from img_data. The data can be in any image format supported by Qt.
See also loadFromData() [p. 234].

QPixmap::QPixmap (const QPixmap & pixmap)

Constructs a pixmap that is a copy of pixmap.

QPixmap::QPixmap (int w, int h, const uchar * bits, bool isXbitmap) [protected]

Constructs a monochrome pixmap, with width w and height h, that is initialized with the data in bits. The isXbitmap
indicates whether the data is an X bitmap and defaults to FALSE. This constructor is protected and used by the
QBitmap class.

QPixmap Class Reference 230

QPixmap::~QPixmap ()

Destroys the pixmap.

bool QPixmap::convertFromImage (const QImage & img, int conversion_flags)

Converts image img and sets this pixmap. Returns TRUE if successful; otherwise returns FALSE.

The conversion_flags argument is a bitwise-OR of the Qt::ImageConversionFlags. Passing 0 for conversion flags
gives all the default options.

Note that even though a QPixmap with depth 1 behaves much like a QBitmap, isQBitmap() returns FALSE.

If a pixmap with depth 1 is painted with colorO and colorl and converted to an image, the pixels painted with
colorQ will produce pixel index O in the image and those painted with colorl will produce pixel index 1.

See also convertTolmage() [p. 230], isQBitmap() [p. 233], QImage::convertDepth() [p. 135], defaultDepth()
[p. 231] and QImage::hasAlphaBuffer() [p. 138].

Examples: qtimage/qtimage.cpp and themes/wood.cpp.

bool QPixmap::convertFromImage (const QImage & image, ColorMode mode = Auto)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Converts image and sets this pixmap using color mode mode. Returns TRUE if successful; otherwise returns FALSE.

See also QPixmap::ColorMode [p. 227].

QImage QPixmap::convertTolmage () const

Converts the pixmap to a QImage. Returns a null image if the operation failed.

If the pixmap has 1-bit depth, the returned image will also be 1 bit deep. If the pixmap has 2- to 8-bit depth, the
returned image has 8-bit depth. If the pixmap has greater than 8-bit depth, the returned image has 32-bit depth.

Note that for the moment, alpha masks on monochrome images are ignored.
See also convertFromImage() [p. 230].

Example: qmag/qmag.cpp.

QBitmap QPixmap::createHeuristicMask (bool clipTight = TRUE) const
Creates and returns a heuristic mask for this pixmap. It works by selecting a color from one of the corners and then
chipping away pixels of that color, starting at all the edges.

The mask may not be perfect but it should be reasonable, so you can do things such as the following:
pm >set Mask(pm >creat eHeuri sticMask());
This function is slow because it involves transformation to a QImage, non-trivial computations and a transformation

back to a QBitmap.

If clipTight is TRUE the mask is just large enough to cover the pixels; otherwise, the mask is larger than the data
pixels.

See also QImage::createHeuristicMask() [p. 137].

QPixmap Class Reference 231

int QPixmap::defaultDepth () [static]

Returns the default pixmap depth, i.e., the depth a pixmap gets if -1 is specified.
See also depth() [p. 231].

Optimization QPixmap::defaultOptimization () [static]

Returns the default pixmap optimization setting.

See also setDefaultOptimization() [p. 236], setOptimization() [p. 237] and optimization() [p. 235].

int QPixmap::depth () const

Returns the depth of the image.
The pixmap depth is also called bits per pixel (bpp) or bit planes of a pixmap. A null pixmap has depth 0.
See also defaultDepth() [p. 231], isNull() [p. 233] and QImage::convertDepth() [p. 135].

void QPixmap::detach () [virtual]

This is a special-purpose function that detaches the pixmap from shared pixmap data.

A pixmap is automatically detached by Qt whenever its contents is about to change. This is done in all QPixmap
member functions that modify the pixmap (fill(), resize(), convertFromImage(), load(), etc.), in bitBlt() for the
destination pixmap and in QPainter::begin() on a pixmap.

It is possible to modify a pixmap without letting Qt know. You can first obtain the system-dependent handle() and
then call system-specific functions (for instance, BitBlt under Windows) that modify the pixmap contents. In this
case, you can call detach() to cut the pixmap loose from other pixmaps that share data with this one.

detach() returns immediately if there is just a single reference or if the pixmap has not been initialized yet.

void QPixmap::fill (const QColor & fillColor = Qt::white)

Fills the pixmap with the color fillColor.

Examples: aclock/aclock.cpp, desktop/desktop.cpp, grapher/grapher.cpp, hello/hello.cpp, t10/cannon.cpp,
themes/metal.cpp and xform/xform.cpp.

void QPixmap::fill (const QWidget * widget, int xofs, int yofs)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Fills the pixmap with the widget’s background color or pixmap. If the background is empty, nothing is done. xofs,
yofs is an offset in the widget.

void QPixmap::fill (const QWidget * widget, const QPoint & ofs)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Fills the pixmap with the widget’s background color or pixmap. If the background is empty, nothing is done.

The ofs point is an offset in the widget.

QPixmap Class Reference 232

The point ofs is a point in the widget’s coordinate system. The pixmap’s top-left pixel will be mapped to the point
ofs in the widget. This is significant if the widget has a background pixmap; otherwise the pixmap will simply be
filled with the background color of the widget.

Example:

voi d CuteWdget: : pai nt Event(QPaintEvent *e)

{
QRect ur = e->rect(); /] rectangle to update
QPi xmap pix(ur.size()); /1 Pixmap for double-buffering

pix.fill(this, ur.topLeft()); // fill with w dget background

QPainter p(&ix);
p.translate(-ur.x(), -ur.y()); // use widget coordinate system
/1 when drawi ng on pixmap

1 ... draw on pixmap ...
p.end();

bitBit(this, ur.topLeft(), &pix);
}

QPixmap QPixmap::grabWidget (QWidget * widget, intx = 0, inty = 0, int w = -1, int h
= -1) [static]

Creates a pixmap and paints widget in it.

If the widget has any children, then they are also painted in the appropriate positions.

If you specify x, y, w or h, only the rectangle you specify is painted. The defaults are 0, O (top-left corner) and -1,-1
(which means the entire widget).

(If w is negative, the function copies everything to the right border of the window. If h is negative, the function
copies everything to the bottom of the window.)

If widget is 0, or if the rectangle defined by x, y, the modified w and the modified h does not overlap the widget-
>rect(), this function will return a null QPixmap.

This function actually asks widget to paint itself (and its children to paint themselves). QPixmap::grabWindow()
grabs pixels off the screen, which is a bit faster and picks up exactly what’s on-screen. This function works by
calling paintEvent() with painter redirection turned on. If there are overlaying windows, grabWindow () will see
them, but not this function.

If there is overlap, it returns a pixmap of the size you want, containing a rendering of widget. If the rectangle you
ask for is a superset of widget, the areas outside widget are covered with the widget’s background.

See also grabWindow() [p. 232], QPainter::redirect() [p. 198] and QWidget::paintEvent() [Widgets with Qt].

QPixmap QPixmap::grabWindow (WId window, int x = 0, inty = 0, int w = -1, inth =
-1) [static]
Grabs the contents of the window window and makes a pixmap out of it. Returns the pixmap.

The arguments (x, y) specify the offset in the window, whereas (w, h) specify the width and height of the area to
be copied.

If w is negative, the function copies everything to the right border of the window. If h is negative, the function
copies everything to the bottom of the window.

QPixmap Class Reference 233

Note that grabWindows() grabs pixels from the screen, not from the window. If there is another window partially
or entirely over the one you grab, you get pixels from the overlying window, too.

Note also that the mouse cursor is generally not grabbed.

The reason we use a window identifier and not a QWidget is to enable grabbing of windows that are not part of
the application, window system frames, and so on.

Warning: Grabbing an area outside the screen is not safe in general. This depends on the underlying window
system.

See also grabWidget() [p. 232].
Example: qmag/qmag.cpp.

int QPixmap::height () const

Returns the height of the pixmap.
See also width() [p. 2371, size() [p. 2371 and rect() [p. 235].

Examples: desktop/desktop.cpp, movies/main.cpp, qtimage/qtimage.cpp, scribble/scribble.cpp,
scrollview/scrollview.cpp, t10/cannon.cpp and xform/xform.cpp.

const char * QPixmap::imageFormat (const QString & fileName) [static]

Returns a string that specifies the image format of the file fileName, or null if the file cannot be read or if the format
cannot be recognized.

The QImagelO documentation lists the supported image formats.

See also load() [p. 233] and save() [p. 236].

bool QPixmap::isNull () const

Returns TRUE if this is a null pixmap; otherwise returns FALSE.

A null pixmap has zero width, zero height and no contents. You cannot draw in a null pixmap or bitBlt() anything
to it.

Resizing an existing pixmap to (0, 0) makes a pixmap into a null pixmap.
See also resize() [p. 235].
Examples: qdir/qdir.cpp, qmag/qmag.cpp and scrollview/scrollview.cpp.

bool QPixmap::isQBitmap () const

Returns TRUE if this is a QBitmap; otherwise returns FALSE.

bool QPixmap::load (const QString & fileName, const char * format,
int conversion_flags)

Loads a pixmap from the file fileName at runtime. Returns TRUE if successful, or FALSE if the pixmap could not be
loaded.

If format is specified, the loader attempts to read the pixmap using the specified format. If format is not specified
(default), the loader reads a few bytes from the header to guess the file’s format.

QPixmap Class Reference 234

See the convertFromImage() [p. 230] documentation for a description of the conversion_flags argument.
The QImagelO documentation lists the supported image formats and explains how to add extra formats.

See also loadFromData() [p. 234], save() [p. 236], imageFormat() [p. 233], QImage::load() [p. 139] and
QImagelO [p. 154].

Examples: picture/picture.cpp, scrollview/scrollview.cpp and xform/xform.cpp.

bool QPixmap::load (const QString & fileName, const char * format = 0,
ColorMode mode = Auto)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Loads a pixmap from the file fileName at runtime.

If format is specified, the loader attempts to read the pixmap using the specified format. If format is not specified
(default), the loader reads a few bytes from the header to guess the file’s format.

The mode is used to specify the color mode of the pixmap.

See also QPixmap::ColorMode [p. 227].

bool QPixmap::loadFromData (const uchar * buf, uint len, const char * format,
int conversion_flags)

Loads a pixmap from the binary data in buf (len bytes). Returns TRUE if successful, or FALSE if the pixmap could
not be loaded.

If format is specified, the loader attempts to read the pixmap using the specified format. If format is not specified
(default), the loader reads a few bytes from the header to guess the file’s format.

See the convertFromImage() [p. 230] documentation for a description of the conversion_flags argument.
The QImagelO documentation lists the supported image formats and explains how to add extra formats.

See also load() [p. 233], save() [p. 236], imageFormat() [p. 233], QImage::loadFromData() [p. 140] and
QImagelO [p. 154].

bool QPixmap::loadFromData (const uchar * buf, uint len, const char * format = 0,
ColorMode mode = Auto)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Loads a pixmap from the binary data in buf (len bytes) using color mode mode. Returns TRUE if successful, or
FALSE if the pixmap could not be loaded.

If format is specified, the loader attempts to read the pixmap using the specified format. If format is not specified
(default), the loader reads a few bytes from the header to guess the file’s format.

See also QPixmap::ColorMode [p. 227].

bool QPixmap::loadFromData (const QByteArray & buf, const char * format = 0,
int conversion flags = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QPixmap Class Reference 235

const QBitmap * QPixmap::mask () const

Returns the mask bitmap, or null if no mask has been set.

See also setMask() [p. 236] and QBitmap [p. 14].

int QPixmap::metric (int m) const [virtual protected]

Internal implementation of the virtual QPaintDevice::metric() function.
Use the QPaintDeviceMetrics class instead.
m is the metric to get.

Reimplemented from QPaintDevice [p. 172].

QPixmap & QPixmap::operator= (const QPixmap & pixmap)

Assigns the pixmap pixmap to this pixmap and returns a reference to this pixmap.

QPixmap & QPixmap::operator= (const QImage & image)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Converts the image image to a pixmap that is assigned to this pixmap. Returns a reference to the pixmap.

See also convertFromImage() [p. 230].

Optimization QPixmap::optimization () const

Returns the optimization setting for this pixmap.

The default optimization setting is QPixmap::NormalOptim. You may change this settings in two ways:

e Call setDefaultOptimization() to set the default optimization for all new pixmaps.

e Call setOptimization() to set a the optimization for individual pixmaps.

See also setOptimization() [p. 2371, setDefaultOptimization() [p. 236] and defaultOptimization() [p. 231].

QRect QPixmap::rect () const

Returns the enclosing rectangle (0,0,width(),height()) of the pixmap.
See also width() [p. 2371, height() [p. 233] and size() [p. 237].

Example: xform/xform.cpp.

void QPixmap::resize (int w, int h)

Resizes the pixmap to w width and h height. If either w or h is O, the pixmap becomes a null pixmap.

If both w and h are greater than O, a valid pixmap is created. New pixels will be uninitialized (random) if the
pixmap is expanded.

Examples: desktop/desktop.cpp and grapher/grapher.cpp.

QPixmap Class Reference 236

void QPixmap::resize (const QSize & size)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Resizes the pixmap to size size.

bool QPixmap::save (const QString & fileName, const char * format, int quality = -1)
const

Saves the pixmap to the file fileName using the image file format format and a quality factor quality. quality must
be in the range [0,100] or -1. Specify O to obtain small compressed files, 100 for large uncompressed files, and -1
to use the default settings. Returns TRUE if successful, or FALSE if the pixmap could not be saved.

See also load() [p. 233], loadFromData() [p. 234], imageFormat() [p. 233], QImage::save() [p. 142] and
QImagelO [p. 154].

Example: gqmag/qmag.cpp.

bool QPixmap::selfMask () const

Returns TRUE if the pixmap’s mask is identical to the pixmap itself; otherwise returns FALSE.

See also mask() [p. 235].

int QPixmap::serialNumber () const

Returns a number that uniquely identifies the contents of this QPixmap object. This means that multiple QPixmaps
objects can have the same serial number as long as they refer to the same contents.

An example of where this is useful is for caching QPixmaps.

See also QPixmapCache [p. 239].

void QPixmap::setDefaultOptimization (Optimization optimization) [static]

Sets the default pixmap optimization.

All new pixmaps that are created will use this default optimization. You may also set optimization for individual
pixmaps using the setOptimization() function.

The initial default optimization setting is QPi xmap: : Nor mal .

See also defaultOptimization() [p. 231], setOptimization() [p. 237] and optimization() [p. 235].

void QPixmap::setMask (const QBitmap & newmask)

Sets a mask bitmap.

The newmask bitmap defines the clip mask for this pixmap. Every pixel in newmask corresponds to a pixel in this
pixmap. Pixel value 1 means opaque and pixel value O means transparent. The mask must have the same size as
this pixmap.

Setting a null mask resets the mask.

See also mask() [p. 235], createHeuristicMask() [p. 230] and QBitmap [p. 14].

QPixmap Class Reference 237

void QPixmap::setOptimization (Optimization optimization)

Sets pixmap drawing optimization for this pixmap.

The optimization setting affects pixmap operations, in particular drawing of transparent pixmaps (bitBlt() a pixmap
with a mask set) and pixmap transformations (the xForm() function).

Pixmap optimization involves keeping intermediate results in a cache buffer and use the data in the cache to speed
up bitBlt() and xForm(). The cost is more memory consumption, up to twice as much as an unoptimized pixmap.

Use the setDefaultOptimization() to change the default optimization for all new pixmaps.
See also optimization() [p. 235], setDefaultOptimization() [p. 236] and defaultOptimization() [p. 231].
Example: desktop/desktop.cpp.

QSize QPixmap::size () const

Returns the size of the pixmap.
See also width() [p. 2371, height() [p. 233] and rect() [p. 235].

Examples: movies/main.cpp and qtimage/qtimage.cpp.

QWMatrix QPixmap::trueMatrix (const QWMatrix & matrix, int w, int h) [static]

Returns the actual matrix used for transforming a pixmap with w width and h height and matrix matrix.

When transforming a pixmap with xForm(), the transformation matrix is internally adjusted to compensate for
unwanted translation, i.e. xForm() returns the smallest pixmap containing all transformed points of the original
pixmap.

This function returns the modified matrix, which maps points correctly from the original pixmap into the new
pixmap.

See also xForm() [p. 237] and QWMatrix [p. 291].

int QPixmap::width () const

Returns the width of the pixmap.
See also height() [p. 2331, size() [p. 237] and rect() [p. 235].

Examples: desktop/desktop.cpp, movies/main.cpp, qtimage/qtimage.cpp, scribble/scribble.cpp,
scrollview/scrollview.cpp and xform/xform.cpp.

QPixmap QPixmap::xForm (const QWMatrix & matrix) const

Returns a copy of the pixmap that is transformed using matrix. The original pixmap is not changed.

The transformation matrix is internally adjusted to compensate for unwanted translation, i.e. xForm() returns the
smallest image that contains all the transformed points of the original image.

See also trueMatrix() [p. 2371, QWMatrix [p. 2911, QPainter::setWorldMatrix() [p. 203] and QImage::xForm()
[p. 146].

Examples: desktop/desktop.cpp, fileiconview/qfileiconview.cpp, movies/main.cpp, qmag/qmag.cpp,
qtimage/qtimage.cpp and xform/xform.cpp.

QPixmap Class Reference 238

Related Functions

QDataStream & operator<< (QDataStream & s, const QPixmap & pixmap)

Writes the pixmap pixmap to the stream s as a PNG image.

See also QPixmap::save() [p. 236] and Format of the QDataStream operators [Input/Output and Networking with
Qt].

QDataStream & operator>> (QDataStream & s, QPixmap & pixmap)

Reads a pixmap from the stream s into the pixmap pixmap.

See also QPixmap::load() [p. 233] and Format of the QDataStream operators [Input/Output and Networking with
Qt].

QPixmapCache Class Reference

The QPixmapCache class provides an application-global cache for pixmaps.

#i ncl ude <gpi xmapcache. h>

Static Public Members

m int cacheLimit ()

= void setCacheLimit (int n)

m QPixmap * find (const QString & key)

m bool find (const QString & key, QPixmap & pm)

m bool insert (const QString & key, QPixmap * pm) (obsolete)
m bool insert (const QString & key, const QPixmap & pm)

m void clear ()

Detailed Description

The QPixmapCache class provides an application-global cache for pixmaps.

This class is a tool for optimized drawing with QPixmap. You can use it to store temporary pixmaps that are
expensive to generate without using more storage space than cacheLimit(). Use insert() to insert pixmaps, find()
to find them and clear() to empty the cache.

For example, QRadioButton has a non-trivial visual representation so we don’t want to regenerate a pixmap when-
ever a radio button is displayed or changes state. In the function QRadioButton::drawButton(), we do not draw the
radio button directly. Instead, we first check the global pixmap cache for a pixmap with the key "$qt_radio nnn_",
where nnn is a numerical value that specifies the the radio button state. If a pixmap is found, we bitBlt() it onto
the widget and return. Otherwise, we create a new pixmap, draw the radio button in the pixmap, and finally insert
the pixmap in the global pixmap cache, using the key above. The bitBlt() is 10 times faster than drawing the radio

button. All radio buttons in the program share the cached pixmap since QPixmapCache is application-global.

QPixmapCache contains no member data, only static functions to access the global pixmap cache. It creates an
internal QCache for caching the pixmaps.

The cache associates a pixmap with a string (key). If two pixmaps are inserted into the cache using equal keys,
then the last pixmap will hide the first pixmap. The QDict and QCache classes do exactly the same.

The cache becomes full when the total size of all pixmaps in the cache exceeds cacheLimit(). The initial cache limit
is 1024 KByte (1 MByte); it is changed with setCacheLimit(). A pixmap takes roughly width*height*depth/8 bytes
of memory.

See the QCache [Datastructures and String Handling with Qt] documentation for more details about the cache
mechanism.

See also Environment Classes, Graphics Classes and Image Processing Classes.

239

QPixmapCache Class Reference 240

Member Function Documentation

int QPixmapCache::cacheLimit () [static]

Returns the cache limit (in kilobytes).
The default setting is 1024 kilobytes.
See also setCacheLimit() [p. 241].

void QPixmapCache::clear () [static]

Removes all pixmaps from the cache.

QPixmap * QPixmapCache::find (const QString & key) [static]

Returns the pixmap associated with the key in the cache, or null if there is no such pixmap.

Note: if valid, you should copy the pixmap immediately (this is quick). Subsequent insertions into the cache could
cause the pointer to become invalid. For this reason, we recommend you use find(const QString&, QPixmap&)
instead.

Example:

QPi xmap* pp;
QPi xmap p;
if ((pp=QPixmapCache::find("my_previous_copy", pm)) {
P = *pp;
} else {
p. | oad("bi gi mage. png");
QPi xmapCache: :insert ("ny_previous_copy", new QPi xmap(p));
}
pai nt er - >dr awPi xmap(0, 0, p);

bool QPixmapCache::find (const QString & key, QPixmap & pm) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Looks for a cached pixmap associated with the key in the cache. If a pixmap is found, the function sets pm to that
pixmap and returns TRUE. Otherwise, the function returns FALSE and does not change pm.

Example:
QPi xmap p;
if (!QPixmapCache::find("ny_previous_copy", pm) {
pm | oad(" bi gi mage. png");

QPi xmapCache: :insert ("ny_previous_copy", pm;

}
pai nt er - >dr awPi xmap(0, 0, p);

bool QPixmapCache::insert (const QString & key, const QPixmap & pm) [static]

Inserts a copy of the pixmap pm associated with the key into the cache.

All pixmaps inserted by the Qt library have a key starting with "$qt". Use something else for your own pixmaps.

QPixmapCache Class Reference 241

When a pixmap is inserted and the cache is about to exceed its limit, it removes pixmaps until there is enough
room for the pixmap to be inserted.

The oldest pixmaps (least recently accessed in the cache) are deleted when more space is needed.

See also setCacheLimit() [p. 241].

bool QPixmapCache::insert (const QString & key, QPixmap * pm) [static]
This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Inserts the pixmap pm associated with key into the cache. Returns TRUE if successful, or FALSE if the pixmap is too
big for the cache.

Note: pm must be allocated on the heap (using new).
If this function returns FALSE, you must delete pm yourself.

If this function returns TRUE, do not use pm afterwards or keep references to it because any other insertions into
the cache, whether from anywhere in the application or within Qt itself, could cause the pixmap to be discarded
from the cache and the pointer to become invalid.

Due to these dangers, we strongly recommend that you use insert(const QString&, const QPixmap&) instead.

void QPixmapCache::setCacheLimit (int n) [static]

Sets the cache limit to n kilobytes.
The default setting is 1024 kilobytes.
See also cacheLimit() [p. 240].

QPoint Class Reference

The QPoint class defines a point in the plane.

#include <gpoint. h>

Public Members

= QPoint ()

» QPoint (int xpos, int ypos)

bool isNull () const

int x () const

int y () const

void setX (int x)

m void setY (int y)

» int manhattanLength () const

QCOORD & rx ()

s QCOORD & ry()

m QPoint & operator+= (const QPoint & p)
= QPoint & operator-= (const QPoint & p)
m QPoint & operator*= (int c)

m QPoint & operator*= (double c)

m QPoint & operator/= (int c)

e QPoint & operator/= (double c)

Related Functions

m bool operator== (const QPoint & p1, const QPoint & p2)

bool operator!= (const QPoint & p1, const QPoint & p2)

const QPoint operator+ (const QPoint & p1, const QPoint & p2)
const QPoint operator- (const QPoint & p1, const QPoint & p2)
const QPoint operator* (const QPoint & p, int c)

const QPoint operator* (int c, const QPoint & p)

const QPoint operator* (const QPoint & p, double c)

const QPoint operator* (double ¢, const QPoint & p)

= const QPoint operator- (const QPoint & p)

= const QPoint operator/ (const QPoint & p, int c)

» const QPoint operator/ (const QPoint & p, double c¢)

m QDataStream & operator< < ((QDataStream & s, const QPoint & p)
m QDataStream & operator>> ((QDataStream & s, QPoint & p)

242

QPoint Class Reference 243

Detailed Description

The QPoint class defines a point in the plane.
A point is specified by an x coordinate and a y coordinate.

The coordinate type is QCOORD (a 32-bit integer). The minimum value of QCOORD is QCOORD_M N (-2147483648) and
the maximum value is QCOORD_MAX (2147483647).

The coordinates are accessed by the functions x() and y(); they can be set by setX() and setY() or by the reference
functions rx() and ry().

Given a point p, the following statements are all equivalent:
p.setX(p.x() + 1)

1
p+= Qoint(1, 0)
p. rx() ++;

1
1

A QPoint can also be used as a vector. Addition and subtraction of QPoints are defined as for vectors (each
component is added separately). You can divide or multiply a QPoint by an i nt or a doubl e. The function manhat-
tanLength() gives an inexpensive approximation of the length of the QPoint interpreted as a vector.

Example:

/1 QPoi nt ol dPos is defined somewhere el se
MW dget : : mouseMoveEvent (QvbuseEvent *e)

{
QPoint vector = e->pos() - ol dPos;
if (vector.manhattanLength() > 3)
. I/ nouse has noved nore than 3 pixels since ol dPos
}

QPoints can be compared for equality or inequality, and they can be written to and read from a QStream.

See also QSize [p. 285], QRect [p. 266], Graphics Classes and Image Processing Classes.

Member Function Documentation

QPoint::QPoint ()

Constructs a point with coordinates (0,0) (isNull() returns TRUE).

QPoint::QPoint (int xpos, int ypos)

Constructs a point with the x value xpos and y value ypos.

bool QPoint::isNull () const

Returns TRUE if both the x value and the y value are 0; otherwise returns FALSE.

int QPoint::manhattanLength () const

Returns the sum of the absolute values of x() and y(), traditionally known as the "Manhattan length" of the vector
from the origin to the point. The tradition arises because such distances apply to travelers who can only travel on
a rectangular grid, like the streets of Manhattan.

QPoint Class Reference

This is a useful, and quick to calculate, approximation to the true length: sqrt(pow(x(),2)+pow(y(),2)).

QPoint & QPoint::operator*= (int c)

Multiplies both x and y with ¢, and returns a reference to this point.

Example:

QPoint p(-1, 4);
p *= 2; Il p becones (-2,38)

QPoint & QPoint::operator*= (double c)

244

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Multiplies both x and y with ¢, and returns a reference to this point.

Example:

QPoint p(-1, 4);
p*= 2.5 Il p becomes (-3,10)

Note that the result is truncated.

QPoint & QPoint::operator+= (const QPoint & p)

Adds p to the point and returns a reference to this point.
Example:

QPoint p(3, 7);

-1 :

7
QPoint q(-1, 4)
p += q; Il p becones (2,11)

QPoint & QPoint::operator-= (const QPoint & p)

Subtracts p from the point and returns a reference to this point.
Example:
QPoint p(3, 7))
-1

7
QPoint q(-1, 4)
p-=q; Il p becomes (4,3)

QPoint & QPoint::operator/= (int c)

Divides both x and y by ¢, and returns a reference to this point.

Example:

QPoint p(-2, 8);
pl=2 Il p becomes (-1,4)

QPoint Class Reference 245

QPoint & QPoint::operator/= (double c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Divides both x and y by ¢, and returns a reference to this point.

Example:

QPoint p(-3, 10);
p /=25 Il p becones (-1,4)

Note that the result is truncated because points are held as integers.

QCOORD & QPoint::rx ()

Returns a reference to the x coordinate of the point.
Using a reference makes it possible to directly manipulate x.

Example:

QPoint p(1, 2);
p.rx()--; Il p becones (0, 2)

See also ry() [p. 245].

QCOORD & QPoint::ry ()

Returns a reference to the y coordinate of the point.
Using a reference makes it possible to directly manipulate y.

Example:

QPoint p(1, 2);
p.ry()++ Il p becones (1,3)

See also rx() [p. 245].

void QPoint::setX (int x)

Sets the x coordinate of the point to x.
See also x() [p. 246] and setY() [p. 245].

Example: t14/cannon.cpp.

void QPoint::setY (inty)

Sets the y coordinate of the point to y.
See also y() [p. 246] and setX() [p. 245].

Example: t14/cannon.cpp.

QPoint Class Reference 246

int QPoint::x () const

Returns the x coordinate of the point.
See also setX() [p. 245] and y() [p. 246].

Examples: dirview/dirview.cpp, fileiconview/qfileiconview.cpp, life/life.cpp, t14/cannon.cpp and
themes/wood.cpp.

int QPoint::y () const

Returns the y coordinate of the point.
See also setY() [p. 245] and x() [p. 246].

Examples: fileiconview/qfileiconview.cpp, life/life.cpp, t14/cannon.cpp and themes/wood.cpp.

Related Functions

bool operator!= (const QPoint & p1, const QPoint & p2)

Returns TRUE if pI and p2 are not equal; otherwise returns FALSE.

const QPoint operator* (const QPoint & p, int c)

Returns the QPoint formed by multiplying both components of p by c.

const QPoint operator* (int ¢, const QPoint & p)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the QPoint formed by multiplying both components of p by c.

const QPoint operator* (const QPoint & p, double c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the QPoint formed by multiplying both components of p by c.

Note that the result is truncated because points are held as integers.

const QPoint operator* (double ¢, const QPoint & p)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the QPoint formed by multiplying both components of p by c.

Note that the result is truncated because points are held as integers.

const QPoint operator+ (const QPoint & p1, const QPoint & p2)

Returns the sum of p1 and p2; each component is added separately.

QPoint Class Reference 247

const QPoint operator- (const QPoint & p1, const QPoint & p2)

Returns p2 subtracted from p1; each component is subtracted separately.

const QPoint operator- (const QPoint & p)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the QPoint formed by changing the sign of both components of p, equivalent to QPoi nt (0,0) - p.

const QPoint operator/ (const QPoint & p, int ¢)

Returns the QPoint formed by dividing both components of p by c.

const QPoint operator/ (const QPoint & p, double c¢)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the QPoint formed by dividing both components of p by c.

Note that the result is truncated because points are held as integers.

QDataStream & operator<< (QDataStream & s, const QPoint & p)

Writes point p to the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

bool operator== (const QPoint & p1, const QPoint & p2)

Returns TRUE if p1 and p2 are equal; otherwise returns FALSE.

QDataStream & operator>> (QDataStream & s, QPoint & p)

Reads a QPoint from the stream s into point p and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QPointArray Class Reference

The QPointArray class provides an array of points.
#i ncl ude <gpoi ntarray. h>

Inherits QMemArray [Datastructures and String Handling with Qt] <QPoint>.

Public Members

= QPointArray ()

m ~QPointArray ()

m QPointArray (int size)

m QPointArray (const QPointArray & a)

m QPointArray (const QRect & 1, bool closed = FALSE)
QPointArray (int nPoints, const QCOORD * points)
QPointArray & operator= (const QPointArray & a)
QPointArray copy () const

void translate (int dx, int dy)

QRect boundingRect () const

void point (uint index, int * x, int * y) const

m QPoint point (uint index) const

m void setPoint (uint index, int x, int y)

void setPoint (uint i, const QPoint & p)

bool setPoints (int nPoints, const QCOORD * points)

bool setPoints (int nPoints, int firstx, int firsty, ...)

bool putPoints (int index, int nPoints, const QCOORD * points)
bool putPoints (int index, int nPoints, int firstx, int firsty, ...)

bool putPoints (int index, int nPoints, const QPointArray & from, int fromIndex = 0)

void makeArc (int X, int y, int w; int h, int al, int a2)

» void makeEllipse (int x, int y, int w, int h)

» void makeArc (int x, int y, int w, int h, int al, int a2, const QWMatrix & xf)
QPointArray cubicBezier () const

Related Functions

m QDataStream & operator< < (QDataStream & s, const QPointArray & a)
m QDataStream & operator>> ((QDataStream & s, QPointArray & a)

248

QPointArray Class Reference 249

Detailed Description

The QPointArray class provides an array of points.

The QPointArray is an array of QPoint objects. In addition to the functions provided by QMemArray, QPointArray
provides some point-specific functions.

For convenient reading and writing of the point data use setPoints(), putPoints(), point(), and setPoint().

For geometry operations: boundingRect() and translate(). There is also a QWMatrix::map() function for more
general transformation of QPointArrays. You can also create arcs and ellipses with makeArc() and makeEllipse().

Among others, QPointArray is used by QPainter::drawLineSegments(), QPainter::drawPolyline(),
QPainter::drawPolygon() and QPainter::drawCubicBezier().

Note that because this class is a QMemArray, copying an array and modifying the copy modifies the original as
well, i.e. a shallow copy. If you need a deep copy use copy() or detach(), for example:

void drawG raffe(const QPointArray & r, QPainter * p)

{
QPointArray tnp =r;
t p. det ach();
Il sonme code that nmodifies tnp
p->drawPoi nts(tnp);
}

If you forget the tmp.detach(), the const array will be modified.

See also QPainter [p. 178], QWMatrix [p. 291], QMemArray [Datastructures and String Handling with Qt],
Graphics Classes, Image Processing Classes and Implicitly and Explicitly Shared Classes.

Member Function Documentation

QPointArray::QPointArray ()

Constructs a null point array.

See also isNull() [Datastructures and String Handling with Qt].

QPointArray::QPointArray (int size)

Constructs a point array with room for size points. Makes a null array if size ==

See also resize() [Datastructures and String Handling with Qt] and isNull() [Datastructures and String Handling
with Qt].

QPointArray::QPointArray (const QPointArray & a)

Constructs a shallow copy of the point array a.

See also copy() [p. 250].

QPointArray::QPointArray (const QRect & r, bool closed = FALSE)

Constructs a point array from the rectangle r.

QPointArray Class Reference 250

If closed is FALSE, then the point array just contains the following four points in the listed order: r.topLeft(),
r.topRight(), r.bottomRight() and r.bottomLeft().

If closed is TRUE, then a fifth point is set to r.topLeft().

QPointArray::QPointArray (int nPoints, const QCOORD * points)

Constructs a point array with nPoints points, taken from the points array.

Equivalent to setPoints(nPoints, points).

QPointArray::~QPointArray ()

Destroys the point array.

QRect QPointArray::boundingRect () const

Returns the bounding rectangle of the points in the array, or QRect(0,0,0,0) if the array is empty.

QPointArray QPointArray::copy () const

Creates a deep copy of the array.

QPointArray QPointArray::cubicBezier () const

Returns the Bezier points for the four control points in this array.

void QPointArray::makeArc (int x, int y, int w, int h, int al, int a2)

Sets the points of the array to those describing an arc of an ellipse with size w by h and position (x, y), starting
from angle al and spanning a2. The resulting array has sufficient resolution for pixel accuracy (see the overloaded
function which takes an additional QWMatrix parameter).

Angles are specified in 16ths of a degree, i.e. a full circle equals 5760 (16*360). Positive values mean counter-
clockwise, whereas negative values mean a clockwise direction. Zero degrees is at the 3 o’clock position.

See the angle diagram.

void QPointArray::makeArc (int x, int y, int w, int h, int al, int a2, const QWMatrix & xf)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the points of the array to those describing an arc of an ellipse with width w and height h and position (x,
y), starting from angle al, spanning angle a2 and transformed by the matrix xf. The resulting array has sufficient
resolution for pixel accuracy.

Angles are specified in 16ths of a degree, i.e. a full circle equals 5760 (16*360). Positive values mean counter-
clockwise, whereas negative values mean a clockwise direction. Zero degrees is at the 3 o’clock position.

See the angle diagram.

QPointArray Class Reference 251

void QPointArray::makeEllipse (int x, int y, int w, int h)

Sets the points of the array to those describing an ellipse with size w by h and position (x, y).

The returned array has sufficient resolution for use as pixels.

QPointArray & QPointArray::operator= (const QPointArray & a)

Assigns a shallow copy of a to this point array and returns a reference to this point array.
Equivalent to assign(a).

See also copy() [p. 250].

void QPointArray::point (uint index, int * x, int * y) const

Reads the coordinates of the point at position index within the array and writes them into *x and *y.

QPoint QPointArray::point (uint index) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the point at position index within the array.

bool QPointArray::putPoints (int index, int nPoints, int firstx, int firsty, ...)

Copies nPoints points from the variable argument list into this point array from position index, and resizes the point
array if i ndex+nPoi nt s exceeds the size of the array.

Returns TRUE if successful, or FALSE if the array could not be resized (typically due to lack of memory).

The example code creates an array with three points (1,2), (3,4) and (5,6), by expanding the array from 1 to 3

points:

QPointArray a(1);
a[0] = QPoint(1, 2);
a.putPoints(1, 2, 3,4, 5,6); // index == 1, points ==

This has the same result, but here putPoints overwrites rather than extends:
QPointArray a

(
a. put Poi nts(0,
a.putPoints(1

3);
31 1121 01 01 516);
1] 11 314);

The points are given as a sequence of integers, starting with firstx then firsty, and so on.

See also resize() [Datastructures and String Handling with Qt] and setPoints() [p. 252].

bool QPointArray::putPoints (int index, int nPoints, const QCOORD * points)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Copies nPoints points from the points coord array into this point array, and resizes the point array if i ndex+nPoi nt s
exceeds the size of the array.

Returns TRUE if successful, or FALSE if the array could not be resized (typically due to lack of memory).

QPointArray Class Reference 252

bool QPointArray::putPoints (int index, int nPoints, const QPointArray & from,
int fromIndex = 0)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This version of the function copies nPoints from from into this array, starting at index in this array and fromiIndex in
from. fromIndex is O by default.

QPointArray a;

a.putPoints(0, 3, 1,2, 0,0, 5,6);

/I ais nowthe three-point array (1,2, 0,0, 5,6);
QPointArray b;

b.putPoints(0, 3, 4,4, 55 6,6);

/I bis now(4,4, 55, 6,6);
a.putPoints(2, 3, b);

/I aisnow(1,2, 0,0, 4,4, 5,5 6,6);

void QPointArray::setPoint (uint index, int x, int y)

Sets the point at position index in the array to (x, y).

Example: themes/wood.cpp.

void QPointArray::setPoint (uint i, const QPoint & p)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the point at array index i to p.

bool QPointArray::setPoints (int nPoints, const QCOORD * points)

Resizes the array to nPoints and sets the points in the array to the values taken from points.
Returns TRUE if successful, or FALSE if the array could not be resized (normally due to lack of memory).
The example code creates an array with two points (1,2) and (3,4):
static QCOORD points[] ={ 1,2, 3,4 };
QPointArray a;
a.setPoints(2, points);
See also resize() [Datastructures and String Handling with Qt] and putPoints() [p. 251].

Examples: aclock/aclock.cpp, picture/picture.cpp, themes/metal.cpp and themes/wood.cpp.

bool QPointArray::setPoints (int nPoints, int firstx, int firsty;, ...)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Resizes the array to nPoints and sets the points in the array to the values taken from the variable argument list.
Returns TRUE if successful, or FALSE if the array could not be resized (typically due to lack of memory).

The example code creates an array with two points (1,2) and (3,4):

QPointArray a;
a.setPoints(2, 1,2, 3,4);

QPointArray Class Reference

The points are given as a sequence of integers, starting with firstx then firsty, and so on.
See also resize() [Datastructures and String Handling with Qt] and putPoints() [p. 251].
void QPointArray::translate (int dx, int dy)

Translates all points in the array (dx, dy).

Related Functions

QDataStream & operator<< (QDataStream & s, const QPointArray & a)

Writes the point array, a to the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QDataStream & operator>> (QDataStream & s, QPointArray & a)

Reads a point array, a from the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

253

QPrinter Class Reference

The QPrinter class is a paint device that paints on a printer.
#include <gprinter.h>

Inherits QPaintDevice [p. 170].

Public Members

m enum PrinterMode { ScreenResolution, PrinterResolution, HighResolution, Compatible }

m QPrinter (PrinterMode m = ScreenResolution)

m ~QPrinter ()

m enum Orientation { Portrait, Landscape }

m enum PageSize { A4, B5, Letter, Legal, Executive, AO, Al, A2, A3, A5, A6, A7, A8, A9, BO, B1, B10, B2, B3,
B4, B6, B7, B8, B9, C5E, Comm10E, DLE, Folio, Ledger, Tabloid, Custom, NPageSize = Custom }

m enum PageOrder { FirstPageFirst, LastPageFirst }

m enum ColorMode { GrayScale, Color }

m enum PaperSource { OnlyOne, Lower, Middle, Manual, Envelope, EnvelopeManual, Auto, Tractor,
SmallFormat, LargeFormat, LargeCapacity, Cassette, FormSource }

m QString printerName () const

m virtual void setPrinterName (const QString & name)

m bool outputToFile () const

m virtual void setOutputToFile (bool enable)

» QString outputFileName () const

» virtual void setOutputFileName (const QString & fileName)
QString printProgram () const

virtual void setPrintProgram (const QString & printProg)
QString printerSelectionOption () const

virtual void setPrinterSelectionOption (const QString & option)
QString docName () const

virtual void setDocName (const QString & name)
QString creator () const

» virtual void setCreator (const QString & creator)

= Orientation orientation () const

virtual void setOrientation (Orientation orientation)
PageSize pageSize () const

virtual void setPageSize (PageSize newPageSize)

short winPageSize () const

virtual void setPageOrder (PageOrder newPageOrder)
PageOrder pageOrder () const

» virtual void setResolution (int dpi)

254

QPrinter Class Reference 255

m virtual int resolution () const

m virtual void setColorMode (ColorMode newColorMode)
m ColorMode colorMode () const

» virtual void setFullPage (bool fp)

m bool fullPage () const

m QSize margins () const

m int fromPage () const

m int toPage () const

m virtual void setFromTo (int fromPage, int toPage)

m int minPage () const

= int maxPage () const

m virtual void setMinMax (int minPage, int maxPage)
= int numCopies () const

virtual void setNumCopies (int numCopies)

bool newPage ()

= bool abort ()

e bool aborted () const

e bool setup (QWidget * parent = 0)

e PaperSource paperSource () const

e virtual void setPaperSource (PaperSource source)

Detailed Description

The QPrinter class is a paint device that paints on a printer.

On Windows it uses the built-in printer drivers. On X11 it generates postscript and sends that to Ipr, Ip, or another
print command.

QPrinter is used much the same way as QWidget and QPixmap are used. The big difference is that you must keep
track of the pages.

QPrinter supports a number of settable parameters, most of which can be changed by the end user when the
application calls QPrinter::setup().

The most important parameters are:

e setOrientation() tells QPrinter which page orientation to use (virtual).
e setPageSize() tells QPrinter what page size to expect from the printer.
e setResolution() tells QPrinter what resolution you wish the printer to provide (in dpi).

e setFullPage() tells QPrinter whether you want to deal with the full page (so you can have accurate margins,
etc.) or just with the part the printer can draw on. The default is FALSE, so that by default you can probably
paint on (0,0) but the document’s margins are unknown.

o setNumCopies() tells QPrinter how many copies of the document it should print.

e setMinMax() tells QPrinter and QPrintDialog what the allowed range for fromPage() and toPage() are.

Except where noted, you can only call the set functions before setup(), or between QPainter::end() and setup().
(Some may take effect between setup() and begin(), or between begin() and end(), but that’s strictly undocu-
mented and such behaviour may differ depending on platform.)

There are also some settings that the user sets (through the printer dialog) and that applications are expected to
obey:

e pageOrder() tells the application program whether to print first-page-first or last-page-first.

QPrinter Class Reference 256

e colorMode() tells the application program whether to print in color or grayscale. (If you print in color and
the printer does not support color, Qt will try to approximate. The document may take longer to print, but
the quality should not be made visibly poorer.)

e fromPage() and toPage() indicate what pages the application program should print.

e paperSource() tells the application progam which paper source to print from.

You can of course call these functions to establish defaults before you ask the user through QPrinter::setup().

Once you start printing, newPage() is essential. You will probably also need to look at the QPaintDeviceMetrics
for the printer (see the print function in the Application walk-through). Note that the paint device metrics are
valid only after the QPrinter has been set up, i.e. after setup() has returned successfully. If you want high-quality
printing with accurate margins, it is essential to call setFullPage(TRUE).

If you want to abort the print job, abort() will try its best to stop printing. It may cancel the entire job or just some
of it.

The true type font embedding for Qt’s post script driver uses code by David Chappell of Trinity College Computing
Center.

Copyright 1995, Trinity College Computing Center. Written by David Chappell.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation. This software is provided "as is" without
express or implied warranty.

TrueType font support. These functions allow PPR to generate PostScript fonts from Microsoft compatible TrueType
font files.

The functions in this file do most of the work to convert a TrueType font to a type 3 PostScript font.

Most of the material in this file is derived from a program called "ttf2ps" which L. S. Ng posted to the usenet news
group "comp.sources.postscript”. The author did not provide a copyright notice or indicate any restrictions on use.

Last revised 11 July 1995.

See also Graphics Classes and Image Processing Classes.

Member Type Documentation

QPrinter::ColorMode
This enum type is used to indicate whether QPrinter should print in color or not. The possible values are:
e (Printer:: Col or - print in color if available, otherwise in grayscale. This is the default.
e (Printer:: GayScal e - print in grayscale, even on color printers. Might be a little faster than Color.
QPrinter::Orientation
This enum type (not to be confused with Qt::Orientation) is used to specify each page’s orientation.

e (Printer::Portrait - the page’s height is greater than its width (the default).
e (Printer::Landscape - the page’s width is greater than its height.

This type interacts with QPrinter::PageSize and QPrinter::setFullPage() to determine the final size of the page
available to the application.

QPrinter Class Reference 257

QPrinter::PageOrder

This enum type is used by QPrinter to tell the application program how to print. The possible values are

e (Printer::FirstPageFirst -the lowest-numbered page should be printed first.
e (Printer;:LastPageFirst -the highest-numbered page should be printed first.

QPrinter::PageSize

This enum type specifies what paper size QPrinter should use. QPrinter does not check that the paper size is avail-
able; it just uses this information, together with QPrinter::Orientation and QPrinter::setFullPage(), to determine
the printable area (see QPaintDeviceMetrics).

The defined sizes (with setFullPage(TRUE)) are:

e QPrinter::A0-841x 1189 mm

e (Printer::Al-594x 841 mm

e (QPrinter::A2-420 x 594 mm

e (Printer::A3-297x 420 mm

e (Printer::Ad-210x 297 mm, 8.26 x 11.7 inches
e QPrinter::A5-148 x 210 mm

e QPrinter::A6-105x 148 mm

e (Printer::A7-74x 105 mm

e (Printer::A8-52x 74 mm

e (Printer::A9-37x52 mm

e (Printer::B0-1030x 1456 mm

e QPrinter::Bl-728 x 1030 mm

e QPrinter::B10-32x45 mm

e (Printer::B2-515x 728 mm

e (Printer::B3-364x515 mm

e (Printer::B4-257x 364 mm

e QPrinter::B5-182x 257 mm, 7.17 x 10.13 inches
e (Printer::B6-128 x 182 mm

e QPrinter::B7-91x 128 mm

e (Printer::B8-64x91 mm

e (QPrinter::B9-45x64 mm

e (Printer::C5E- 163 x 229 mm

e QPrinter:: ComlOE - 105 x 241 mm, US Common #10 Envelope
e (Printer::DLE-110 x 220 mm

e (Printer::Executive -7.5x 10 inches, 191 x 254 mm
e QPrinter::Folio-210x 330 mm

e (Printer::Ledger - 432 x 279 mm

e (Printer::Legal - 8.5x 14 inches, 216 x 356 mm
e QPrinter::Letter -8.5x 11 inches, 216 x 279 mm
e QPrinter::Tabloid-279 x 432 mm

e QPrinter:: Custom

e (Printer::NPageSi ze - (internal)

With setFullPage(FALSE) (the default), the metrics will be a bit smaller; how much depends on the printer in use.

QPrinter Class Reference

QPrinter::PaperSource

258

This enum type specifies what paper source QPrinter is to use. QPrinter does not check that the paper source is
available; it just uses this information to try and set the paper source. Whether it will set the paper source depends

on whether the printer has that particular source.

Note: this is currently only implemented for Windows.

e QPrinter:
e QPrinter::
e QPrinter::
e QPrinter::
e QPrinter::
e QPrinter::
e QPrinter:
e (Printer:
e QPrinter::
e QPrinter::
e QPrinter::
e QPrinter::
e QPrinter::

:OnlyOne

Lower

Mddl e

Manual

Envel ope

Envel opeManual

cAuto
:Tractor

Smal | For mat
Lar geFor mat
Lar geCapacity
Cassette

For nBSour ce

QPrinter::PrinterMode

This enum describes the mode the printer should work in. It basically presets a certain resolution and working

mode.

e (Printer:: ScreenResol ution - Sets the resolution of the print device to the screen resolution. This has the
big advantage that the results obtained when painting on the printer will match more or less exactly the
visible output on the screen. It is the easiest to use, as font metrics on the screen and on the printer are the

same. This is the default value.

e QPrinter::PrinterResol ution - Use the physical resolution of the printer on Windows. On Unix, set the

postscript resolution to 72 dpi.

e (Printer:: H ghResol ution - Use printer resolution on windows, set the resolution of the postscript driver to

600dpi.

e (Printer:: Conpatibl e - Almost the same as PrinterResolution, but keeps some peculiarities of the printer

dirver of Qt 2.x. This is useful, when porting an application from Qt 2.x to Qt 3.x.

Member Function Documentation

QPrinter::QPrinter (PrinterMode m = ScreenResolution)

Constructs a printer paint device with mode m.

See also QPrinter::PrinterMode [p. 258].

QPrinter::~QPrinter ()

Destroys the printer paint device and cleans up.

QPrinter Class Reference 259

bool QPrinter::abort ()

Aborts the print job. Returns TRUE if successful, otherwise FALSE.
See also aborted() [p. 259].

bool QPrinter::aborted () const

Returns TRUE is the printer job was aborted, otherwise FALSE.

See also abort() [p. 259].

ColorMode QPrinter::colorMode () const

Returns the current color mode. The default color mode is Color.

See also setColorMode() [p. 262].

QString QPrinter::creator () const

Returns the name of the application that created the document.

See also setCreator() [p. 262].

QString QPrinter::docName () const

Returns the document name.

See also setDocName() [p. 262].

int QPrinter::fromPage () const

Returns the from-page setting. The default value is 0.
If fromPage() and toPage() both return O this should signify *print the whole document’.
The programmer is responsible for reading this setting and printing accordingly.

See also setFromTo() [p. 262] and toPage() [p. 265].

bool QPrinter::fullPage () const

Returns TRUE if the origin of the printer’s coordinate system is at the corner of the sheet and FALSE if it is at the
edge of the printable area.

See setFullPage() for details and caveats.

See also setFullPage() [p. 262], PageSize [p. 257] and QPaintDeviceMetrics [p. 176].

QSize QPrinter::margins () const

Returns the width of the left/right and top/bottom margins of the printer. This is a best-effort guess, not based on
perfect knowledge.

QPrinter Class Reference 260

If you have called setFullPage(TRUE) (this is recommended for high-quality printing), margins().width() may be
treated as the smallest sane left/right margin you can use, and margins().height() as the smallest sane top/bottom
margins you can use.

If you have called setFullPage(FALSE) (this is the default), margins() is automatically subtracted from the page-
Size() by QPrinter.

See also setFullPage() [p. 262], QPaintDeviceMetrics [p. 176] and PageSize [p. 257].

int QPrinter::maxPage () const

Returns the max-page setting. A user can’t choose a higher page number than maxPage() when they select a print
range. The default value is 0.

See also minPage() [p. 2601, setMinMax() [p. 262] and setFromTo() [p. 262].

int QPrinter::minPage () const

Returns the min-page setting, i.e. the lowest page number a user is allowed to choose. The default value is 0.

See also maxPage() [p. 260], setMinMax() [p. 262] and setFromTo() [p. 262].

bool QPrinter::newPage ()

Advances to a new page on the printer. Returns TRUE if successful, otherwise FALSE.

Examples: action/application.cpp, application/application.cpp, helpviewer/helpwindow.cpp and
mdi/application.cpp.

int QPrinter::numCopies () const

Returns the number of copies to be printed. The default value is 1.

See also setNumCopies() [p. 263].

Orientation QPrinter::orientation () const

Returns the orientation setting. The default value is QPrinter::Portrait.

See also setOrientation() [p. 263].

QString QPrinter::outputFileName () const

Returns the name of the output file. There is no default file name.

See also setOutputFileName() [p. 263] and setOutputToFile() [p. 263].

bool QPrinter::outputToFile () const

Returns TRUE if the output should be written to a file, or FALSE if the output should be sent directly to the printer.
The default setting is FALSE.

This function is currently only supported under X11.

QPrinter Class Reference 261

See also setOutputToFile() [p. 263] and setOutputFileName() [p. 263].

PageOrder QPrinter::pageOrder () const

Returns the current page order.

The default page order is FirstPageFirst.

PageSize QPrinter::pageSize () const

Returns the printer page size. The default value is system-dependent.

See also setPageSize() [p. 263].

PaperSource QPrinter::paperSource () const

Returns the currently set paper source of the printer.

See also setPaperSource() [p. 264].

QString QPrinter::printProgram () const

Returns the name of the program that sends the print output to the printer.

The default is to return a null string; meaning that QPrinter will try to be smart in a system-dependent way. On
X11 only, you can set it to something different to use a specific print program.

On Windows, this function returns the name of the printer device driver.

See also setPrintProgram() [p. 264] and setPrinterSelectionOption() [p. 264].

QString QPrinter::printerName () const

Returns the printer name. This value is initially set to the name of the default printer.

See also setPrinterName() [p. 264].

QString QPrinter::printerSelectionOption () const

Returns the printer options selection string. This is useful only if the print command has been explicitly set.
The default value (a null string) implies that the printer should be selected in a system-dependent manner.
Any other value implies that the given value should be used.

See also setPrinterSelectionOption() [p. 264].

int QPrinter::resolution () const [virtual]

Returns the current assumed resolution of the printer, as set by setResolution() or by the printer subsystem.

See also setResolution() [p. 264].

QPrinter Class Reference 262

void QPrinter::setColorMode (ColorMode newColorMode) [virtual]

Sets the printer’s color mode to newColorMode, which can be one of Color (the default) or GrayScale.

See also colorMode() [p. 259].

void QPrinter::setCreator (const QString & creator) [virtual]

Sets the name of the application that created the document to creator.

This function is only applicable to the X11 version of Qt. If no creator name is specified, the creator will be set to
"Qt" followed by some version number.

See also creator() [p. 259].

void QPrinter::setDocName (const QString & name) [virtual]

Sets the document name to name.

void QPrinter::setFromTo (int fromPage, int toPage) [virtual]

Sets the from-page and to-page settings to fromPage and toPage respectively.
The from-page and to-page settings specify what pages to print.
If fromPage and toPage are both 0 this should signify ’print the whole document’.

This function is useful mostly to set a default value that the user can override in the print dialog when you call
setup().

See also fromPage() [p. 2591, toPage() [p. 265], setMinMax() [p. 262] and setup() [p. 264].

void QPrinter::setFullPage (bool fp) [virtual]
Sets QPrinter to have the origin of the coordinate system at the top-left corner of the paper if fp is TRUE, or where
it thinks the top-left corner of the printable area is if fp is FALSE.

The default is FALSE. You can (probably) print on (0,0), and QPaintDeviceMetrics will report something smaller
than the size indicated by PageSize. (Note that QPrinter may be wrong - it does not have perfect knowledge of the
physical printer.)

If you set fp to TRUE, QPaintDeviceMetrics will report the exact same size as indicated by PageSize, but you cannot
print on all of that - you have to take care of the output margins yourself.

See also PageSize [p. 2571, setPageSize() [p. 263], QPaintDeviceMetrics [p. 176] and fullPage() [p. 2591.

Example: helpviewer/helpwindow.cpp.

void QPrinter::setMinMax (int minPage, int maxPage) [virtual]

Sets the min-page and max-page settings to minPage and maxPage respectively.

The min-page and max-page restrict the from-page and to-page settings. When the printer setup dialog appears,
the user cannot select a from page or a to page that are outside the range specified by min and max pages.

See also minPage() [p. 260], maxPage() [p. 260], setFromTo() [p. 262] and setup() [p. 264].

QPrinter Class Reference 263

void QPrinter::setNumCopies (int numCopies) [virtual]

Sets the number of pages to be printed to numCopies.
The printer driver reads this setting and prints the specified number of copies.

See also numCopies() [p. 260] and setup() [p. 264].

void QPrinter::setOrientation (Orientation orientation) [virtual]

Sets the print orientation to orientation.
The orientation can be either QPrinter::Portrait or QPrinter::Landscape.

The printer driver reads this setting and prints using the specified orientation. On Windows however, this setting
won’t take effect until the printer dialog is shown (using QPrinter::setup()).

See also orientation() [p. 260].

void QPrinter::setOutputFileName (const QString & fileName) [virtual]

Sets the name of the output file to fileName.

Setting a null or empty name (0 or ™) disables output to a file, i.e. calls setOutputToFile(FALSE). Setting a non-
empty name enables output to a file, i.e. calls setOutputToFile(TRUE).

This function is currently only supported under X11.

See also outputFileName() [p. 260] and setOutputToFile() [p. 263].

void QPrinter::setOutputToFile (bool enable) [virtual]

Specifies whether the output should be written to a file or sent directly to the printer.
Will output to a file if enable is TRUE, or will output directly to the printer if enable is FALSE.
This function is currently only supported under X11.

See also outputToFile() [p. 260] and setOutputFileName() [p. 263].

void QPrinter::setPageOrder (PageOrder newPageOrder) [virtual]

Sets the page order to newPageOrder.

The page order can be QPrinter::FirstPageFirst or QPrinter::LastPageFirst. The application programmer is respon-
sible for reading the page order and printing accordingly.

This function is useful mostly for setting a default value that the user can override in the print dialog when you call
setup().

void QPrinter::setPageSize (PageSize newPageSize) [virtual]

Sets the printer page size to newPageSize if that size is supported. The result if undefined if newPageSize is not
supported.

The default page size is system-dependent.

This function is useful mostly for setting a default value that the user can override in the print dialog when you call
setup().

QPrinter Class Reference 264

See also pageSize() [p. 261], PageSize [p. 257], setFullPage() [p. 262] and setResolution() [p. 264].

void QPrinter::setPaperSource (PaperSource source) [virtual]

Sets the paper source setting to source.

See also paperSource() [p. 261].

void QPrinter::setPrintProgram (const QString & printProg) [virtual]

Sets the name of the program that should do the print job to printProg.
On X11, this function sets the program to call with the PostScript output. On other platforms, it has no effect.

See also printProgram() [p. 261].

void QPrinter::setPrinterName (const QString & name) [virtual]

Sets the printer name to name.
The default printer will be used if no printer name is set.

Under X11, the PRINTER environment variable defines the default printer. Under any other window system, the
window system defines the default printer.

See also printerName() [p. 261].

void QPrinter::setPrinterSelectionOption (const QString & option) [virtual]
Sets the printer to use option to select the printer. option is null by default (which implies that Qt should be smart
enough to guess correctly), but it can be set to other values to use a specific printer selection option.

If the printer selection option is changed while the printer is active, the current print job may or may not be
affected.

void QPrinter::setResolution (int dpi) [virtual]

Requests that the printer prints at dpi or as near to dpi as possible.
This setting affects the coordinate system as returned by e.g. QPaintDeviceMetrics and QPainter::viewport().

The value depends on the PrintingMode used in the QPrinter constructor. By default, the dpi value of the screen is
used.

This function must be called before setup() to have an effect on all platforms.

See also resolution() [p. 261] and setPageSize() [p. 263].

bool QPrinter::setup (QWidget * parent = 0)

Opens a printer setup dialog, with parent parent, and asks the user to specify what printer to use and miscellaneous
printer settings.

Returns TRUE if the user pressed "OK" to print, or FALSE if the user cancelled the operation.

Examples: action/application.cpp, application/application.cpp, drawdemo/drawdemo.cpp,
helpviewer/helpwindow.cpp and mdi/application.cpp.

QPrinter Class Reference 265

int QPrinter::toPage () const

Returns the to-page setting. The default value is O.
If fromPage() and toPage() both return O this should signify *print the whole document’.
The programmer is responsible for reading this setting and printing accordingly.

See also setFromTo() [p. 262] and fromPage() [p. 259].

short QPrinter::winPageSize () const

Returns the Windows page size value as used by the DEVMODE struct (Windows only). Using this function is not
portable.

Use pageSize() to get the PageSize, e.g. ‘A4, 'Letter’, etc.

QRect Class Reference

The QRect class defines a rectangle in the plane.

#include <grect.h>

Public Members

= QRect ()

» QRect (const QPoint & topLeft, const QPoint & bottomRight)
m QRect (const QPoint & topLeft, const QSize & size)
m QRect (int left, int top, int width, int height)

m bool isNull () const

m bool isEmpty () const

= bool isValid () const

m QRect normalize () const

m int left () const

= int top () const

int right () const

int bottom () const

QCOORD & rLeft ()

QCOORD & rTop ()

QCOORD & rRight ()

QCOORD & rBottom ()

m int x () const

m int y () const

void setLeft (int pos)

void setTop (int pos)

void setRight (int pos)

void setBottom (int pos)

void setX (int x)

void setY (int y)

» QPoint topLeft () const

m QPoint bottomRight () const

m QPoint topRight () const

QPoint bottomLeft () const

QPoint center () const

void rect (int * x, int * y, int * w, int * h) const
void coords (int * xp1, int * yp1, int * xp2, int * yp2) const
void moveTopLeft (const QPoint & p)

void moveBottomRight (const QPoint & p)

266

QRect Class Reference 267

» void moveTopRight (const QPoint & p)
» void moveBottomLeft (const QPoint & p)
» void moveCenter (const QPoint & p)

void moveBy (int dx, int dy)

void setRect (int x, int y, int w, int h)

void setCoords (int xp1, int yp1, int xp2, int yp2)
void addCoords (int xp1, int yp1, int xp2, int yp2)
QSize size () const

int width () const

int height () const

void setWidth (int w)

void setHeight (int h)

void setSize (const QSize & s)

QRect operator| (const QRect & r) const

m QRect operator& (const QRect & r) const

m QRect & operator|= (const QRect & r)

m QRect & operator&= (const QRect & r)

m bool contains (const QPoint & p, bool proper = FALSE) const
» bool contains (int X, int y, bool proper = FALSE) const

m bool contains (const QRect & 1, bool proper = FALSE) const
e QRect unite (const QRect & r) const

e QRect intersect (const QRect & r) const

e bool intersects (const QRect & r) const

Related Functions

m bool operator== (const QRect & r1, const QRect & r2)

m bool operator!= (const QRect & r1, const QRect & r2)

m QDataStream & operator< < (QDataStream & s, const QRect & r)
m QDataStream & operator>> ((QDataStream & s, QRect & r)

Detailed Description

The QRect class defines a rectangle in the plane.

A rectangle is internally represented as an upper-left corner and a bottom-right corner, but it is normally expressed
as an upper-left corner and a size.

The coordinate type is QCOORD (defined in qwindowdefs.h as i nt). The minimum value of QCOORD is QCO-
ORD_MIN (-2147483648) and the maximum value is QCOORD MAX (2147483647).

Note that the size (width and height) of a rectangle might be different from what you are used to. If the top-left
corner and the bottom-right corner are the same, the height and the width of the rectangle will both be 1.

Generally, width = right - left + 1 and height = bottom - top + 1. We designed it this way to make it correspond
to rectangular spaces used by drawing functions in which the width and height denote a number of pixels. For
example, drawing a rectangle with width and height 1 draws a single pixel.

The default coordinate system has origin (0, 0) in the top-left corner. The positive direction of the y axis is down,
and the positive x axis is from left to right.

A QRect can be constructed with a set of left, top, width and height integers, from two QPoints or from a QPoint and
a QSize. After creation the dimensions can be changed, e.g. with setLeft(), setRight(), setTop() and setBottom(),

QRect Class Reference 268

or by setting sizes, e.g. setWidth(), setHeight() and setSize(). The dimensions can also be changed with the move
functions, e.g. moveBy(), moveCenter(), moveBottomRight(), etc. You can also add coordinates to a rectangle
with addCoords().

You can test to see if a QRect contains a specific point with contains(). You can also test to see if two QRects
intersect with intersects() (see also intersect()). To get the bounding rectangle of two QRects use unite().

See also QPoint [p. 242], QSize [p. 285], Graphics Classes and Image Processing Classes.

Member Function Documentation

QRect::QRect ()

Constructs an invalid rectangle.

QRect::QRect (const QPoint & topLeft, const QPoint & bottomRight)

Constructs a rectangle with topLeft as the top-left corner and bottomRight as the bottom-right corner.

QRect::QRect (const QPoint & topLeft, const QSize & size)

Constructs a rectangle with topLeft as the top-left corner and size as the rectangle size.

QRect::QRect (int left, int top, int width, int height)

Constructs a rectangle with the top, left corner and width and height.
Example (creates three identical rectangles):
QRect r1(QPoint(100,200), QPoint(110,215));

QRect r2(QPoint(100,200), QSize(11,16));
QRect r3(100, 200, 11, 16);

void QRect::addCoords (int xp1, int yp1, int xp2, int yp2)

Adds xp1, yp1, xp2 and yp2 respectively to the existing coordinates of the rectangle.

int QRect::bottom () const

Returns the bottom coordinate of the rectangle.
See also top() [p. 2751, setBottom() [p. 2731, bottomLeft() [p. 268] and bottomRight() [p. 269].

Examples: desktop/desktop.cpp, helpviewer/helpwindow.cpp, qfd/fontdisplayer.cpp, scribble/scribble.cpp and
themes/wood.cpp.

QPoint QRect::bottomLeft () const

Returns the bottom-left position of the rectangle.

QRect Class Reference 269

See also moveBottomLeft() [p. 2711, bottomRight() [p. 2691, topLeft() [p. 2751, topRight() [p. 2751, bottom()
[p. 268] and left() [p. 271].

Example: tictac/tictac.cpp.

QPoint QRect::bottomRight () const

Returns the bottom-right position of the rectangle.

See also moveBottomRight() [p. 2711, bottomLeft() [p. 2681, topLeft() [p. 2751, topRight() [p. 2751, bottom()
[p. 268] and right() [p. 273].

Example: tictac/tictac.cpp.

QPoint QRect::center () const

Returns the center point of the rectangle.

See also moveCenter() [p. 2711, topLeft() [p. 2751, topRight() [p. 275], bottomLeft() [p. 268] and bottomRight()
[p. 269].

Example: tooltip/tooltip.cpp.

bool QRect::contains (const QPoint & p, bool proper = FALSE) const

Returns TRUE if the point p is inside or on the edge of the rectangle; otherwise returns FALSE.
If proper is TRUE, this function returns TRUE only if p is inside (not on the edge).

Example: t14/cannon.cpp.

bool QRect::contains (int x, int y, bool proper = FALSE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns TRUE if the point x, y is inside this rectangle; otherwise returns FALSE.

If proper is TRUE, this function returns TRUE only if the point is entirely inside (not on the edge).

bool QRect::contains (const QRect & r, bool proper = FALSE) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns TRUE if the rectangle r is inside this rectangle; otherwise returns FALSE.
If proper is TRUE, this function returns TRUE only if r is entirely inside (not on the edge).

See also unite() [p. 276], intersect() [p. 270] and intersects() [p. 270].

void QRect::coords (int * xp1, int * yp1, int * xp2, int * yp2) const

Extracts the rectangle parameters as the top-left point *xp1, *yp1 and the bottom-right point *xp2, *yp2.
See also setCoords() [p. 273] and rect() [p. 273].

Examples: themes/metal.cpp and themes/wood.cpp.

QRect Class Reference 270

int QRect::height () const

Returns the height of the rectangle. The height includes both the top and bottom edges, i.e. height = bottom - top
+ 1.

See also width() [p. 2761, size() [p. 275] and setHeight() [p. 273].

Examples: aclock/aclock.cpp, desktop/desktop.cpp, movies/main.cpp, scribble/scribble.cpp, themes/metal.cpp,
themes/wood.cpp and xform/xform.cpp.

QRect QRect::intersect (const QRect & r) const

Returns the intersection of this rectangle and rectangle r. r.intersect(s) is equivalent to r &s.

bool QRect::intersects (const QRect & r) const

Returns TRUE if this rectangle intersects with rectangle r (there is at least one pixel that is within both rectangles);
otherwise returns FALSE.

See also intersect() [p. 270] and contains() [p. 269].

Examples: t11/cannon.cpp, t12/cannon.cpp, t13/cannon.cpp and t14/cannon.cpp.

bool QRect::isEmpty () const

Returns TRUE if the rectangle is empty; otherwise returns FALSE.
An empty rectangle has a left() > right() or top() > bottom().
An empty rectangle is not valid. i sEnpty() == !isValid()

See also isNull() [p. 270] and isValid() [p. 270].

bool QRect::isNull () const

Returns TRUE if the rectangle is a null rectangle; otherwise returns FALSE.

A null rectangle has both the width and the height set to 0, that is right() == left() - 1 and bottom() == top() - 1.
Remember that if right() == left() and bottom() == top(), then the rectangle has width 1 and height 1.

A null rectangle is also empty.

A null rectangle is not valid.

See also isEmpty() [p. 270] and isValid() [p. 270].

bool QRect::isValid () const

Returns TRUE if the rectangle is valid or FALSE if it is invalid (empty).
A valid rectangle has a left() <= right() and top() <= bottom().
isvValid() == "!isEnpty()

See also isNull() [p. 270], isEmpty() [p. 270] and normalize() [p. 272].

Examples: themes/metal.cpp and tooltip/tooltip.cpp.

QRect Class Reference 271

int QRect::left () const

Returns the left coordinate of the rectangle. Identical to x().

See also x() [p. 276], top() [p. 2751, right() [p. 273], setLeft() [p. 2741, topLeft() [p. 275] and bottomLeft()
[p. 268].

Examples: aclock/aclock.cpp, desktop/desktop.cpp, qfd/fontdisplayer.cpp, scribble/scribble.cpp, tictac/tictac.cpp
and xform/xform.cpp.

void QRect::moveBottomLeft (const QPoint & p)

Sets the bottom-left position of the rectangle to p, leaving the size unchanged.

See also bottomLeft() [p. 268], moveBottomRight() [p. 271], moveTopLeft() [p. 271], moveTopRight() [p. 271],
setBottom() [p. 273] and setLeft() [p. 274].

Example: t10/cannon.cpp.

void QRect::moveBottomRight (const QPoint & p)

Sets the bottom-right position of the rectangle to p, leaving the size unchanged.

See also bottomRight() [p. 269], moveBottomLeft() [p. 271], moveTopLeft() [p. 271], moveTopRight() [p. 271],
setBottom() [p. 273] and setRight() [p. 274].

void QRect::moveBy (int dx, int dy)

Moves the rectangle dx along the X axis and dy along the Y axis, relative to the current position. (Positive values
move the rectangle right and/or down.)

Examples: helpviewer/helpwindow.cpp, themes/wood.cpp and xform/xform.cpp.

void QRect::moveCenter (const QPoint & p)

Sets the center point of the rectangle to p, leaving the size unchanged.

See also center() [p. 269], moveTopLeft() [p. 2711, moveTopRight() [p. 271], moveBottomLeft() [p. 271] and
moveBottomRight() [p. 271].

Examples: t11/cannon.cpp and t12/cannon.cpp.

void QRect::moveTopLeft (const QPoint & p)

Sets the top-left position of the rectangle to p, leaving the size unchanged.

See also topLeft() [p. 275], moveTopRight() [p. 2711, moveBottomLeft() [p. 2711, moveBottomRight() [p. 271],
setTop() [p. 274] and setLeft() [p. 274].

Example: xform/xform.cpp.

void QRect::moveTopRight (const QPoint & p)

Sets the top-right position of the rectangle to p, leaving the size unchanged.

QRect Class Reference 272

See also topRight() [p. 2751, moveTopLeft() [p. 2711, moveBottomLeft() [p. 2711, moveBottomRight() [p. 271],
setTop() [p. 274] and setRight() [p. 274].

QRect QRect::normalize () const

Returns a normalized rectangle, i.e. a rectangle that has a non-negative width and height.
It swaps left and right if left() > right(), and swaps top and bottom if top() > bottom().
See also isValid() [p. 270].

Example: scribble/scribble.cpp.

QRect QRect::operator& (const QRect & r) const

Returns the intersection of this rectangle and rectangle r.
Returns an empty rectangle if there is no intersection.

See also operator&=() [p. 272], operator | () [p. 272], isEmpty() [p. 2701, intersects() [p. 270] and contains()
[p. 269].

QRect & QRect::operator&= (const QRect & r)

Intersects this rectangle with rectangle r.

QRect QRect::operator| (const QRect & r) const

Returns the bounding rectangle of this rectangle and rectangle r.

The bounding rectangle of a nonempty rectangle and an empty or invalid rectangle is defined to be the nonempty
rectangle.

See also operator | =() [p. 2721, operator&() [p. 272], intersects() [p. 270] and contains() [p. 269].

QRect & QRect::operator|= (const QRect & r)

Unites this rectangle with rectangle r.

QCOORD & QRect::rBottom ()

Returns a reference to the bottom coordinate of the rectangle.

See also rLeft() [p. 272], rTop() [p. 273] and rRight() [p. 273].

QCOORD & QRect::rLeft ()

Returns a reference to the left coordinate of the rectangle.

See also rTop() [p. 273], rRight() [p. 273] and rBottom() [p. 272].

QRect Class Reference 273

QCOORD & QRect::rRight ()

Returns a reference to the right coordinate of the rectangle.

See also rLeft() [p. 272], rTop() [p. 273] and rBottom() [p. 272].

QCOORD & QRect::rTop ()

Returns a reference to the top coordinate of the rectangle.

See also rLeft() [p. 272], rRight() [p. 273] and rBottom() [p. 272].

void QRect::rect (int * x, int * y, int * w, int * h) const

Extracts the rectangle parameters as the position *x, *y and width *w and height *h.
See also setRect() [p. 274] and coords() [p. 269].

Examples: themes/metal.cpp and themes/wood.cpp.

int QRect::right () const

Returns the right coordinate of the rectangle.
See also left() [p. 2711, setRight() [p. 274], topRight() [p. 275] and bottomRight() [p. 269].

Examples: customlayout/flow.cpp, desktop/desktop.cpp, helpviewer/helpwindow.cpp, qfd/fontdisplayer.cpp,
scribble/scribble.cpp, t11/cannon.cpp and themes/wood.cpp.

void QRect::setBottom (int pos)

Sets the bottom edge of the rectangle to pos. May change the height, but will never change the top edge of the
rectangle.
See also bottom() [p. 268], setTop() [p. 274] and setHeight() [p. 273].

Example: scribble/scribble.cpp.

void QRect::setCoords (int xp1, int yp1, int xp2, int yp2)

Sets the coordinates of the rectangle’s top-left corner to (xp1, yp1), and the coordinates of its bottom-right corner
to (xp2, yp2).

See also coords() [p. 269] and setRect() [p. 274].

void QRect::setHeight (int h)

Sets the height of the rectangle to h. The top edge is not moved, but the bottom edge may be moved.
See also height() [p. 2701, setTop() [p. 2741, setBottom() [p. 273] and setSize() [p. 274].
Example: desktop/desktop.cpp.

QRect Class Reference 274

void QRect::setLeft (int pos)

Sets the left edge of the rectangle to pos. May change the width, but will never change the right edge of the
rectangle.

Identical to setX().

See also left() [p. 2711, setTop() [p. 2741 and setWidth() [p. 274].

Example: scribble/scribble.cpp.

void QRect::setRect (int x, int y; int w, int h)

Sets the coordinates of the rectangle’s top-left corner to (x, y), and its size to (w, h).
See also rect() [p. 273] and setCoords() [p. 273].

Example: themes/wood.cpp.

void QRect::setRight (int pos)

Sets the right edge of the rectangle to pos. May change the width, but will never change the left edge of the
rectangle.
See also right() [p. 2731, setLeft() [p. 274] and setWidth() [p. 2741].

Example: scribble/scribble.cpp.

void QRect::setSize (const QSize & s)

Sets the size of the rectangle to s. The top-left corner is not moved.
See also size() [p. 2751, setWidth() [p. 274] and setHeight() [p. 273].

Example: xform/xform.cpp.

void QRect::setTop (int pos)

Sets the top edge of the rectangle to pos. May change the height, but will never change the bottom edge of the
rectangle.

Identical to setY().

See also top() [p. 275], setBottom() [p. 273] and setHeight() [p. 273].

Example: scribble/scribble.cpp.

void QRect::setWidth (int w)

Sets the width of the rectangle to w. The right edge is changed, but not the left edge.
See also width() [p. 2761, setLeft() [p. 2741, setRight() [p. 2741 and setSize() [p. 274].
Example: desktop/desktop.cpp.

QRect Class Reference 275

void QRect::setX (int x)

Sets the x position of the rectangle (its left end) to x. May change the width, but will never change the right edge
of the rectangle.

Identical to setLeft().

See also x() [p. 276] and setY() [p. 275].

void QRect::setY (inty)

Sets the y position of the rectangle (its top) to y. May change the height, but will never change the bottom edge of
the rectangle.

Identical to setTop().

See also y() [p. 276] and setX() [p. 275].

QSize QRect::size () const

Returns the size of the rectangle.
See also width() [p. 276] and height() [p. 270].

Examples: desktop/desktop.cpp, movies/main.cpp and t10/cannon.cpp.

int QRect::top () const

Returns the top coordinate of the rectangle. Identical to y().

See also y() [p. 2761, left() [p. 271], bottom() [p. 268], setTop() [p. 2741, topLeft() [p. 275] and topRight()
[p. 275].

Examples: aclock/aclock.cpp, desktop/desktop.cpp, helpviewer/helpwindow.cpp, scribble/scribble.cpp,
themes/wood.cpp, tictac/tictac.cpp and xform/xform.cpp.

QPoint QRect::topLeft () const

Returns the top-left position of the rectangle.

See also moveTopLeft() [p. 2711, topRight() [p. 275], bottomLeft() [p. 268], bottomRight() [p. 2691, left()
[p. 271] and top() [p. 275].

Examples: t10/cannon.cpp and tictac/tictac.cpp.

QPoint QRect::topRight () const

Returns the top-right position of the rectangle.

See also moveTopRight() [p. 2711, topLeft() [p. 2751, bottomLeft() [p. 2681, bottomRight() [p. 2691, top()
[p. 275] and right() [p. 273].

Example: tictac/tictac.cpp.

QRect Class Reference 276

QRect QRect::unite (const QRect & r) const

Returns the bounding rectangle of this rectangle and rectangle r. r. uni t e(s) is equivalent tor| s.

Examples: t11/cannon.cpp, t12/cannon.cpp and xform/xform.cpp.

int QRect::width () const

Returns the width of the rectangle. The width includes both the left and right edges, i.e. width = right - left + 1.
See also height() [p. 2701, size() [p. 275] and setHeight() [p. 273].

Examples: aclock/aclock.cpp, customlayout/border.cpp, desktop/desktop.cpp, movies/main.cpp,
themes/metal.cpp, themes/wood.cpp and xform/xform.cpp.

int QRect::x () const

Returns the left coordinate of the rectangle. Identical to left().
See also left() [p. 2711, yO [p. 276] and setX() [p. 275].

Examples: customlayout/border.cpp, desktop/desktop.cpp, movies/main.cpp, scribble/scribble.cpp,
t12/cannon.cpp, themes/metal.cpp and themes/wood.cpp.

int QRect::y () const

Returns the top coordinate of the rectangle. Identical to top().
See also top() [p. 2751, x() [p. 276] and setY() [p. 275].

Examples: desktop/desktop.cpp, movies/main.cpp, scribble/scribble.cpp, t12/cannon.cpp, t14/cannon.cpp,
themes/metal.cpp and themes/wood.cpp.

Related Functions

bool operator!= (const QRect & r1, const QRect & r2)

Returns TRUE if r1 and r2 are different; otherwise returns FALSE.

QDataStream & operator<< (QDataStream & s, const QRect & r)

Writes the QRect, r, to the stream s, and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

bool operator== (const QRect & r1, const QRect & r2)

Returns TRUE if r1 and r2 are equal; otherwise returns FALSE.

QDataStream & operator>> (QDataStream & s, QRect & r)

Reads a QRect from the stream s into rect r and returns a reference to the stream.

QRect Class Reference 277

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QRegion Class Reference

The QRegion class specifies a clip region for a painter.

#i ncl ude <qregion. h>

Public Members

enum RegionType { Rectangle, Ellipse }

QRegion ()

QRegion (int x, int y, int w, int h, RegionType t = Rectangle)
QRegion (const QRect & r, RegionType t = Rectangle)
QRegion (const QPointArray & a, bool winding = FALSE)
QRegion (const QRegion & 1)

QRegion (const QBitmap & bm)

~QRegion ()

QRegion & operator= (const QRegion & r)

bool isNull () const

bool isEmpty () const

bool contains (const QPoint & p) const

bool contains (const QRect & r) const

void translate (int dx, int dy)

QRegion unite (const QRegion & r) const

QRegion intersect (const QRegion & r) const
QRegion subtract (const QRegion & r) const
QRegion eor (const QRegion & r) const

QRect boundingRect () const

QMemArray<QRect> rects () const

const QRegion operator| (const QRegion & r) const
const QRegion operator+ (const QRegion & r) const
const QRegion operator& (const QRegion & r) const
const QRegion operator- (const QRegion & r) const
const QRegion operator ™ (const QRegion & r) const
QRegion & operator|= (const QRegion & r)
QRegion & operator+ = (const QRegion & r)
QRegion & operator&= (const QRegion & r)
QRegion & operator-= (const QRegion & r)

QRegion & operator ™ = (const QRegion & 1)

bool operator== (const QRegion & r) const

bool operator!= (const QRegion & r) const

HRGN handle () const

278

QRegion Class Reference 279

Related Functions

m QDataStream & operator< < (QDataStream & s, const QRegion & r)
m QDataStream & operator>> (QDataStream & s, QRegion & r)

Detailed Description

The QRegion class specifies a clip region for a painter.

QRegion is used with QPainter::setClipRegion() to limit the paint area to what needs to be painted. There is also a
QWidget::repaint() that takes a QRegion parameter. QRegion is the best tool for reducing flicker.

A region can be created from a rectangle, an ellipse, a polygon or a bitmap. Complex regions may be created by
combining simple regions using unite(), intersect(), subtract() or eor() (exclusive or). You can move a region using
translate().

You can test whether a region isNull(), isEmpty() or if it contains() a QPoint or QRect. The bounding rectangle is
given by boundingRect().

The function rects() gives a decomposition of the region into rectangles.

Example of using complex regions:

voi d MyW dget: : pai nt Event (QPai nt Event *)

{

QPainter p; /] our painter

QRegi on r1(QRect (100, 100,200,80), // rl =-elliptic region
QRegion: : El lipse);

QRegi on r2(QRect(100,120,90,30)); // r2 = rectangul ar region

QRegion r3 =rl.intersect(r2); /1 r3 =intersection

p. begin(this); /] start painting w dget
p.setCipRegion(r3); /] set clip region

/] paint clipped graphics
p.end(); /1 painting done

}

QRegion is an implicitly shared class.
Due to window system limitations, the width and height of a region is limited to 65535 on Unix/X11.

See also QPainter::setClipRegion() [p. 200], QPainter::setClipRect() [p. 2001, Graphics Classes and Image
Processing Classes.

Member Type Documentation
QRegion::RegionType
Determines the shape of the region to be created.

e (Regi on: : Rect angl e - the region covers the entire rectangle.
e (QRegion:: Ellipse - the region is an ellipse inside the rectangle.

QRegion Class Reference 280

Member Function Documentation

QRegion::QRegion ()

Constructs a null region.

See also isNull() [p. 282].

QRegion::QRegion (int x, int y, int w, int h, RegionType t = Rectangle)

Constructs a rectangular or elliptic region.

If t is Rectangle, the region is the filled rectangle (x, y, w, h). If t is Ellipse, the region is the filled ellipse with center
at @ +w/ 2,y + h/2)and size (w,h).

QRegion::QRegion (const QRect & r, RegionType t = Rectangle)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Create a region based on the rectange r with region type t.
If the rectangle is invalid a null region will be created.

See also QRegion::RegionType [p. 279].

QRegion::QRegion (const QPointArray & a, bool winding = FALSE)

Constructs a polygon region from the point array a.

If winding is TRUE, the polygon region is filled using the winding algorithm, otherwise the default even-odd fill
algorithm is used.

This constructor may create complex regions that will slow down painting when used.

QRegion::QRegion (const QRegion & r)

Constructs a new region which is equal to r.

QRegion::QRegion (const QBitmap & bm)

Constructs a region from the bitmap bm.
The resulting region consists of the pixels in bm that are col or 1, as if each pixel was a 1 by 1 rectangle.

This constructor may create complex regions that will slow down painting when used. Note that drawing masked
pixmaps can be done much faster using QPixmap::setMask().

QRegion::~QRegion ()

Destroys the region.

QRegion Class Reference 281

QRect QRegion::boundingRect () const

Returns the bounding rectangle of this region. An empty region gives a rectangle that is QRect::isNull().

bool QRegion::contains (const QPoint & p) const

Returns TRUE if the region contains the point p, or FALSE if p is outside the region.

bool QRegion::contains (const QRect & r) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if the region overlaps the rectangle r; or FALSE if r is completely outside the region.

QRegion QRegion::eor (const QRegion & r) const

Returns a region which is the exclusive or (XOR) of this region and r.

«»

The figure shows the exclusive or of two elliptical regions.

HRGN QRegion::handle () const

Returns the region’s handle.

QRegion QRegion::intersect (const QRegion & r) const

Returns a region which is the intersection of this region and r.

o

The figure shows the intersection of two elliptical regions.

bool QRegion::isEmpty () const

Returns TRUE if the region is empty, or FALSE if it is non-empty. An empty region is a region that contains no
points.
Example:

Region r1(10, 10, 20, 20);
QRegion r2(40, 40, 20, 20

~

QRegion r3;

rl.isNull(); Il FALSE

rl.iseEnpty(); Il FALSE

r3.isNull(); Il TRUE

r3.isenpty(); Il TRUE

r3 =rl.intersect(r2); Il r3 = intersection of rl and r2
r3.isNull(); Il FALSE

r3.isenpty(); Il TRUE

QRegion Class Reference 282

r3 =rl.unite(r2); /1 r3 =union of rl and r2
r3.isNull(); Il FALSE
r3.isenpty(); /'l FALSE

See also isNull() [p. 282].

bool QRegion::isNull () const

Returns TRUE if the region is a null region, otherwise FALSE.
A null region is a region that has not been initialized. A null region is always empty.

See also isEmpty() [p. 281].

bool QRegion::operator!= (const QRegion & r) const

Returns TRUE if the region is different from r, or FALSE if the regions are equal.

const QRegion QRegion::operator& (const QRegion & r) const

Applies the intersect() function to this region and r. r 1&r 2 is equivalent tor 1. i nt er sect (r2)

See also intersect() [p. 281].

QRegion & QRegion::operator&= (const QRegion & r)

Applies the intersect() function to this region and r and assigns the result to this region. r1&=r2 is equivalent to
ri=rl.intersect(r2)

See also intersect() [p. 281].

const QRegion QRegion::operator+ (const QRegion & r) const

Applies the unite() function to this region and r. r 1+r 2 is equivalent to r 1. uni t e(r 2)

See also unite() [p. 284] and operator| () [p. 283].

QRegion & QRegion::operator+= (const QRegion & r)

Applies the unite() function to this region and r and assigns the result to this region. rl+=r2 is equivalent to
ri=rl.unite(r2)

See also intersect() [p. 281].

const QRegion QRegion::operator- (const QRegion & r) const

Applies the subtract() function to this region and r. r 1-r 2 is equivalent to r 1. subt ract (r 2)

See also subtract() [p. 283].

QRegion Class Reference 283

QRegion & QRegion::operator-= (const QRegion & r)

Applies the subtract() function to this region and r and assigns the result to this region. r1-=r2 is equivalent to
ri=rl.subtract(r2)

See also subtract() [p. 283].
QRegion & QRegion::operator= (const QRegion & r)

Assigns r to this region and returns a reference to the region.

bool QRegion::operator== (const QRegion & r) const

Returns TRUE if the region is equal to r, or FALSE if the regions are different.

const QRegion QRegion::operator ™ (const QRegion & r) const

Applies the eor() function to this region and r. r 1*r 2 is equivalent to r 1. eor (r2)

See also eor() [p. 281].

QRegion & QRegion::operator ™ = (const QRegion & r)

Applies the eor() function to this region and r and assigns the result to this region. r17=r2 is equivalent to
ri=rl.eor(r2)

See also eor() [p. 281].

const QRegion QRegion::operator| (const QRegion & r) const
Applies the unite() function to this region and r. r1| r 2 is equivalent to r 1. uni t e(r 2)
See also unite() [p. 284] and operator+() [p. 282].

QRegion & QRegion::operator|= (const QRegion & r)

Applies the unite() function to this region and r and assigns the result to this region. r1|=r2 is equivalent to
ri=rl.unite(r2)

See also unite() [p. 284].

QMemArray<QRect> QRegion::rects () const

Returns an array of non-overlapping rectangles that make up the region.

The union of all the rectangles is equal to the original region.

QRegion QRegion::subtract (const QRegion & r) const

Returns a region which is r subtracted from this region.

QRegion Class Reference

«

284

The figure shows the result when the ellipse on the right is subtracted from the ellipse on the left. (I eft-right)

void QRegion::translate (int dx, int dy)

Translates (moves) the region dx along the X axis and dy along the Y axis.

QRegion QRegion::unite (const QRegion & r) const

Returns a region which is the union of this region and r.

The figure shows the union of two elliptical regions.

Related Functions

QDataStream & operator<< (QDataStream & s, const QRegion & r)

Writes the region r to the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QDataStream & operator>> (QDataStream & s, QRegion & r)

Reads a region from the stream s into r and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QSize Class Reference

The QSize class defines the size of a two-dimensional object.

#include <gsi ze. h>

Public Members

m QSize ()

m QSize (int w, int h)

m bool isNull () const

m bool isEmpty () const

m bool isValid () const

m int width () const

m int height () const

m void setWidth (int w)

m void setHeight (int h)

m void transpose ()

m QSize expandedTo (const QSize & otherSize) const
= QSize boundedTo (const QSize & otherSize) const
= QCOORD & rwidth ()

m QCOORD & rheight ()

m QSize & operator+= (const QSize & s)

m QSize & operator-= (const QSize & s)

m QSize & operator*= (int c)

m QSize & operator*= (double c)

m QSize & operator/= (int ¢)

e QSize & operator/= (double c)

Related Functions

m bool operator== (const QSize & s1, const QSize & s2)
bool operator!= (const QSize & s1, const QSize & s2)

m const QSize operator+ (const QSize & s1, const QSize & s2)
m const QSize operator- (const QSize & s1, const QSize & s2)
m const QSize operator* (const QSize & s, int ¢)

m const QSize operator* (int c, const QSize & s)

m const QSize operator* (const QSize & s, double c)

m const QSize operator* (double ¢, const QSize & s)

m const QSize operator/ (const QSize & s, int c)

285

QSize Class Reference 286

m const QSize operator/ (const QSize & s, double c)
m QDataStream & operator< < (QDataStream & s, const QSize & sz)
m QDataStream & operator>> ((QDataStream & s, QSize & sz)

Detailed Description

The QSize class defines the size of a two-dimensional object.
A size is specified by a width and a height.

The coordinate type is QCOORD (defined in qwindowdefs.h as i nt). The minimum value of QCOORD is QCO-
ORD_MIN (-2147483648) and the maximum value is QCOORD_MAX (2147483647).

The size can be set in the constructor and changed with setWidth() and setHeight(), or using operator+=(),
operator-=(), operator*=() and operator/=(), etc. You can swap the width and height with transpose(). You can
get a size which holds the maximum height and width of two sizes using expandedTo(), and the minimum height
and width of two sizes using boundedTo().

See also QPoint [p. 242], QRect [p. 266], Graphics Classes and Image Processing Classes.

Member Function Documentation

QSize::QSize ()

Constructs a size with invalid (negative) width and height.

QSize::QSize (int w;, int h)

Constructs a size with width w and height h.

QSize QSize::boundedTo (const QSize & otherSize) const

Returns a size with the minimum width and height of this size and otherSize.

QSize QSize::expandedTo (const QSize & otherSize) const

Returns a size with the maximum width and height of this size and otherSize.

Examples: customlayout/card.cpp and customlayout/flow.cpp.

int QSize::height () const

Returns the height.
See also width() [p. 288].
Examples: movies/main.cpp, qfd/fontdisplayer.cpp and qfd/qfd.cpp.

bool QSize::isEmpty () const

Returns TRUE if the width is <= 0 or the height is <= 0, otherwise FALSE.

QSize Class Reference 287

bool QSize::isNull () const

Returns TRUE if the width is 0 and the height is 0; otherwise returns FALSE.

bool QSize::isValid () const

Returns TRUE if the width is equal to or greater than O and the height is equal to or greater than 0; otherwise
returns FALSE.

QSize & QSize::operator*= (int c)

Multiplies both the width and height by ¢ and returns a reference to the size.

QSize & QSize::operator*= (double c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Multiplies both the width and height by ¢ and returns a reference to the size.

Note that the result is truncated.

QSize & QSize::operator+= (const QSize & s)

Adds s to the size and returns a reference to this size.

Example:

Size s(3, 7);
@Sizer(-1, 4);
S +=r1; Il s becones (2,11)

QSize & QSize::operator-= (const QSize & s)

Subtracts s from the size and returns a reference to this size.

Example:

Size s(3, 7);
@Sizer(-1, 4);
S -=1; Il s becones (4,3)

QSize & QSize::operator/= (int c)

Divides both the width and height by ¢ and returns a reference to the size.

QSize & QSize::operator/= (double c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Divides both the width and height by ¢ and returns a reference to the size.

Note that the result is truncated.

QSize Class Reference 288

QCOORD & QSize::rheight ()

Returns a reference to the height.
Using a reference makes it possible to directly manipulate the height.

Example:

QSi ze s(100, 10);
s.rheight() +=5; Il s beconmes (100, 15)

See also rwidth() [p. 288].

QCOORD & QSize::rwidth ()

Returns a reference to the width.
Using a reference makes it possible to directly manipulate the width.

Example:

QSi ze s(100, 10);
s.rwidth() += 20; Il s beconmes (120, 10)

See also rheight() [p. 288].

void QSize::setHeight (int h)

Sets the height to h.
See also height() [p. 286] and setWidth() [p. 288].

void QSize::setWidth (int w)
Sets the width to w.
See also width() [p. 288] and setHeight() [p. 288].

void QSize::transpose ()

Swaps the values of width and height.

int QSize::width () const

Returns the width.
See also height() [p. 286].
Examples: movies/main.cpp, qfd/fontdisplayer.cpp and qfd/qfd.cpp.

QSize Class Reference 289

Related Functions

bool operator!= (const QSize & s1, const QSize & s2)

Returns TRUE if s1 and s2 are different; otherwise returns FALSE.

const QSize operator* (const QSize & s, int ¢)

Multiplies s by ¢ and returns the result.

const QSize operator* (int c, const QSize & s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Multiplies s by ¢ and returns the result.

const QSize operator* (const QSize & s, double c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Multiplies s by ¢ and returns the result.

const QSize operator* (double c, const QSize & s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Multiplies s by c and returns the result.

const QSize operator+ (const QSize & s1, const QSize & s2)

Returns the sum of s1 and s2; each component is added separately.

const QSize operator- (const QSize & s1, const QSize & s2)

Returns s2 subtracted from s1; each component is subtracted separately.

const QSize operator/ (const QSize & s, int ¢)

Divides s by ¢ and returns the result.

const QSize operator/ (const QSize & s, double c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Divides s by ¢ and returns the result.

Note that the result is truncated.

QSize Class Reference 290

QDataStream & operator<< (QDataStream & s, const QSize & sz)

Writes the size sz to the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

bool operator== (const QSize & s1, const QSize & s2)

Returns TRUE if s1 and s2 are equal; otherwise returns FALSE.

QDataStream & operator>> (QDataStream & s, QSize & sz)

Reads the size from the stream s into size sz and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

QWDMatrix Class Reference

The QWMatrix class specifies 2D transformations of a coordinate system.

#include <qwmatrix. h>

Public Members

» QWMatrix ()

» QWMatrix (double m11, double m12, double m21, double m22, double dx, double dy)
m void setMatrix (double m11, double m12, double m21, double m22, double dx, double dy)
m double m11 () const

m double m12 () const

m double m21 () const

= double m22 () const

= double dx () const

» double dy () const

» void map (int x, int y, int * tx, int * ty) const

m void map (double x, double y, double * tx, double * ty) const
m QRect mapRect (const QRect & rect) const

m QPoint map (const QPoint & p) const (obsolete)

m QRect map (const QRect & r) const (obsolete)

m QPointArray map (const QPointArray & a) const (obsolete)

= void reset ()

m bool isIdentity () const

m QWMatrix & translate (double dx, double dy)

m QWMatrix & scale (double sx, double sy)

m QWMatrix & shear (double sh, double sv)

m QWMatrix & rotate (double a)

m bool isInvertible () const

m QWMatrix invert (bool * invertible = 0) const

» bool operator== (const QWMatrix & m) const

m bool operator!= (const QWMatrix & m) const

m QWDMatrix & operator*= (const QWMatrix & m)

= QPoint operator* (const QPoint & p) const

m QRegion operator® (const QRect & r) const

m QRegion operator* (const QRegion & r) const

e QPointArray operator* (const QPointArray & a) const

291

QWMatrix Class Reference 292

Related Functions

m QWMatrix operator* (const QWMatrix & m1, const QWMatrix & m2)
m QDataStream & operator< < (QDataStream & s, const QWMatrix & m)
m QDataStream & operator>> (QDataStream & s, QWMatrix & m)

Detailed Description

The QWMatrix class specifies 2D transformations of a coordinate system.

The standard coordinate system of a paint device has the origin located at the top-left position. X values increase
to the right; Y values increase downward.

This coordinate system is default for the QPainter, which renders graphics in a paint device. A user-defined coordi-
nate system can be specified by setting a QWMatrix for the painter.

Example:

MW dget : : pai nt Event(QPai nt Event *)

{
QPainter p; /'l our painter
QMWatrix m /1 our transfornmation matrix
mrotate(22.5); /] rotated coordinate system
p.begin(this); /] start painting
p.setVorldMvatrix(m); /] use rotated coordinate system
p. drawText (30,20, "detator"); // draw rotated text at 30,20
p.end(); /1 painting done

}

A matrix specifies how to translate, scale, shear or rotate the graphics; the actual transformation is performed by
the drawing routines in QPainter and by QPixmap::xForm().

The QWMatrix class contains a 3*3 matrix of the form:

ml nm2 O
ml n22 0
dx dy 1

A matrix transforms a point in the plane to another point:

X’ mi*x + nR2l*y + dx
y’ m2*y + ml2*x + dy

The point (x, y) is the original point, and (x’, y’) is the transformed point. (x’, y’) can be transformed back to (x, y)
by performing the same operation on the inverted matrix.

The elements dx and dy specify horizontal and vertical translation. The elements m11 and m22 specify horizontal
and vertical scaling. The elements m12 and m21 specify horizontal and vertical shearing.

The identity matrix has m11 and m22 set to 1; all others are set to 0. This matrix maps a point to itself.

Translation is the simplest transformation. Setting dx and dy will move the coordinate system dx units along the X
axis and dy units along the Y axis.

Scaling can be done by setting m11 and m22. For example, setting m11 to 2 and m22 to 1.5 will double the height
and increase the width by 50%.

Shearing is controlled by m12 and m21. Setting these elements to values different from zero will twist the coordi-
nate system.

QWMatrix Class Reference 293

Rotation is achieved by carefully setting both the shearing factors and the scaling factors. The QWMatrix has a
function that sets rotation directly.

QWMatrix lets you combine transformations like this:

QMWatrix m Il identity matrix
mtranslate(10, -20); // first translate (10,-20)
mrotate(25); Il then rotate 25 degrees
mscale(1.2, 0.7); Il finally scale it

Here’s the same example using basic matrix operations:

doubl e a = pi /180 * 25; /1 convert 25 to radians
doubl e sina = sin(a);
doubl e cosa = cos(a);

QMWatrix m(0, 0, 0, 0, 10, -20); // translation matrix

QMWAatrix n2(cosa, sina, [l rotation matrix
-sina, cosa, 0, 0);

QMWatrix nB(1.2, 0, 0, 0.7, 0, 0); // scaling matrix

QMWatrix m

m=nB8* n2 * nl; /! conmbine all transformations

QPainter has functions to translate, scale, shear and rotate the coordinate system without using a QWMa-
trix. Although these functions are very convenient, it can be more efficient to build a QWMatrix and call
QPainter::setWorldMatrix() if you want to perform more than a single transform operation.

See also QPainter::setWorldMatrix() [p. 203], QPixmap::xForm() [p. 2371, Graphics Classes and Image Processing
Classes.

Member Function Documentation

QWMatrix::QWMatrix ()

Constructs an identity matrix. All elements are set to zero except m11 and m22 (scaling), which are set to 1.

QWMatrix::QWMatrix (double m11, double m12, double m21, double m22, double dx,
double dy)

Constructs a matrix with the elements, m11, m12, m21, m22, dx and dy.

double QWMatrix::dx () const

Returns the horizontal translation.

double QWMatrix::dy () const

Returns the vertical translation.

QWMatrix QWMatrix::invert (bool * invertible = 0) const

Returns the inverted matrix.

QWMatrix Class Reference 294

If the matrix is singular (not invertible), the identity matrix is returned.

If invertible is not null, the value of *invertible is set to TRUE if the matrix is invertible or to FALSE if the matrix is
not invertible.

See also isInvertible() [p. 294].

Example: t14/cannon.cpp.

bool QWMatrix::isIdentity () const

Returns TRUE if the matrix is the identity matrix; otherwise returns FALSE.

See also reset() [p. 296].

bool QWMatrix::isInvertible () const

Returns TRUE if the matrix is invertible; otherwise returns FALSE.

See also invert() [p. 293].

double QWMatrix::m11 () const

Returns the X scaling factor.

double QWMatrix::m12 () const

Returns the vertical shearing factor.

double QWMatrix::m21 () const

Returns the horizontal shearing factor.

double QWMatrix::m22 () const

Returns the Y scaling factor.

void QWMatrix::map (int x, int y, int * tx, int * ty) const
Transforms (x, y) to (*tx, *ty) using the formulae:

*tX
*ty

ml1*x + nRl*y + dx (rounded to the nearest integer)
m2*y + ml2*x + dy (rounded to the nearest integer)

Examples: t14/cannon.cpp and xform/xform.cpp.

void QWMatrix::map (double x, double y, double * tx, double * ty) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Transforms (x, y) to (*tx, *ty) using the following formulae:

QWMatrix Class Reference 295

*tX
*ty

ml*x + nRl*y + dx
m2*y + ml2*x + dy

QPoint QWMatrix::map (const QPoint & p) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Does the same as operator *(const QPoint &)

QRect QWMatrix::map (const QRect & r) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Please use QWMatrix::mapRect() instead.

Note that this method does return the bounding rectangle of the r, when shearing or rotations are used.

QPointArray QWMatrix::map (const QPointArray & a) const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new
code.

Does the same as operator *(const QPointArray &)

QRect QWMatrix::mapRect (const QRect & rect) const

Returns the transformed rectangle rect.
The bounding rectangle is returned if rotation or shearing has been specified.
If you need to know the exact region rect maps to use operator*().

See also operator*() [p. 295].

bool QWMatrix::operator!= (const QWMatrix & m) const

Returns TRUE if this matrix is not equal to m; otherwise returns FALSE.

QPoint QWMatrix::operator* (const QPoint & p) const

Transforms p to using the formulae:

retx
rety

mll*px + nmR1l*py + dx (rounded to the nearest integer)
m2*py + ml2*px + dy (rounded to the nearest integer)

QRegion QWMatrix::operator* (const QRect & r) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Transforms the rectangle r.

QWMatrix Class Reference 296

Rotation and shearing a rectangle results in a more general region, which is returned here.

Calling this method can be rather expensive, if rotations or shearing are used. If you just need to know the bounding
rectangle of the returned region, use mapRect() which is a lot faster than this function.

See also QWMatrix::mapRect() [p. 295].

QRegion QWMatrix::operator* (const QRegion & r) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Transforms the region r.

Calling this method can be rather expensive, if rotations or shearing are used.

QPointArray QWMatrix::operator* (const QPointArray & a) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the point array a transformed by calling map for each point.

QWMatrix & QWMatrix::operator*= (const QWMatrix & m)

Returns the result of multiplying this matrix with matrix m.

bool QWMatrix::operator== (const QWMatrix & m) const

Returns TRUE if this matrix is equal to m; otherwise returns FALSE.

void QWMatrix::reset ()

Resets the matrix to an identity matrix.
All elements are set to zero, except m11 and m22 (scaling) that are set to 1.

See also isIdentity() [p. 2941].

QWMatrix & QWMatrix::rotate (double a)

Rotates the coordinate system a degrees counterclockwise.
Returns a reference to the matrix.
See also translate() [p. 2971, scale() [p. 296] and shear() [p. 2971.

Examples: desktop/desktop.cpp, drawdemo/drawdemo.cpp, t14/cannon.cpp and xform/xform.cpp.

QWMatrix & QWMatrix::scale (double sx, double sy)

Scales the coordinate system unit by sx horizontally and sy vertically.
Returns a reference to the matrix.

See also translate() [p. 2971, shear() [p. 297] and rotate() [p. 296].

QWMatrix Class Reference 297

Examples: fileiconview/qfileiconview.cpp, movies/main.cpp, qmag/qmag.cpp, qtimage/qtimage.cpp,
showimg/showimg.cpp and xform/xform.cpp.

void QWMatrix::setMatrix (double m11, double m12, double m21, double m22,
double dx, double dy)

Sets the matrix elements to the specified values, m11, m12, m21, m22, dx and dy.

QWMatrix & QWMatrix::shear (double sh, double sv)

Shears the coordinate system by sh horizontally and sv vertically.
Returns a reference to the matrix.
See also translate() [p. 2971, scale() [p. 296] and rotate() [p. 296].

Examples: drawdemo/drawdemo.cpp and xform/xform.cpp.

QWMatrix & QWMatrix::translate (double dx, double dy)

Moves the coordinate system dx along the X-axis and dy along the Y-axis.
Returns a reference to the matrix.
See also scale() [p. 296], shear() [p. 297] and rotate() [p. 296].

Examples: drawdemo/drawdemo.cpp, t14/cannon.cpp and xform/xform.cpp.

Related Functions

QWDMatrix operator* (const QWMatrix & m1, const QWMatrix & m2)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the product of m1 * m2.

Note that matrix multiplication is not commutative, i.e. a*b != b*a.

QDataStream & operator<< (QDataStream & s, const QWMatrix & m)
Writes the matrix m to the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].
QDataStream & operator>> (QDataStream & s, QWMatrix & m)

Reads the matrix m from the stream s and returns a reference to the stream.

See also Format of the QDataStream operators [Input/Output and Networking with Qt].

Index

abort()

QPrinter, 259
aborted()

QPrinter, 259
accum()

QGLFormat, 109
active()

QCanvasltem, 38

QPalette, 211
addCoords()

QRect, 268
advance()

QCanvas, 27

QCanvasltem, 38

QCanvasSprite, 65
allGray()

Qlmage, 134
allltems()

QCanvas, 28
alloc()

QColor, 77
alpha()

QGLFormat, 109
angleLength()

QCanvasEllipse, 34
angleStart()

QCanvasEllipse, 35
animated()

QCanvasltem, 39
areaPoints()

QCanvasPolygon, 53

QCanvasPolygonalltem, 55
areaPointsAdvanced()

QCanvasPolygonalltem, 55
autoBufferSwap()

QGLWidget, 117

background()
QColorGroup, 87
backgroundColor()
QCanvas, 28
QMovie, 164
QPainter, 184
backgroundMode()
QPainter, 184
backgroundPixmap()
QCanvas, 28
base()
QColorGroup, 87
begin()
QPainter, 184, 185

bitmap()

QCursor, 93
bitOrder()

QlImage, 134
bits()

QImage, 135
blue()

QColor, 78
bottom()

QRect, 268
bottomEdge ()

QCanvasSprite, 65
bottomLeft()

QRect, 268
bottomRight()

QRect, 269
boundedTo()

QSize, 285
boundingRect()

QCanvasltem, 39

QCanvasPolygonalltem, 55

QCanvasSprite, 65

QCanvasText, 69

QPainter, 185, 186

QPicture, 222

QPointArray, 250

QRegion, 280
boundingRectAdvanced()

QCanvasltem, 39
brightText()

QColorGroup, 87
brush()

QCanvasPolygonalltem, 55

QColorGroup, 87

QPainter, 186

QPalette, 211
brushOrigin()

QPainter, 186
buffer()

QBuffer, 22
button()

QColorGroup, 87
buttonText()

QColorGroup, 88
bytesPerLine()

QImage, 135

cacheLimit()
QPixmapCache, 240
canvas()
QCanvasltem, 39

298

QCanvasView, 72
capStyle()

QPen, 217
center()

QRect, 269
changed()

QImageConsumer, 147
chooseContext()

QGLContext, 102
choosePixelFormat()

QGLContext, 102
chunks()

QCanvasRectangle, 59
chunkSize()

QCanvas, 28
cleanup()

QColor, 78

QCursor, 93

QPainter, 187
clear()

QPixmapCache, 240
clearGenerated()

QlconSet, 126
clipRegion()

QPainter, 187
closed()

QCanvasSpline, 62
cmd()

QPaintDevice, 172
collidesWith()

QCanvasltem, 39
collisions()

QCanvas, 28

QCanvaslItem, 39
color()

QBrush, 19

QCanvasText, 69

QColorGroup, 88

QImage, 135

QPalette, 211

QPen, 217
ColorGroup

QPalette, 210
colormap()

QGILWwidget, 118
ColorMode

QPixmap, 227

QPrinter, 256
colorMode()

QPrinter, 259

Index

ColorRole
QColorGroup, 85
colorTable()
QlImage, 135
connectResize()
QMovie, 164
connectStatus()
QMovie, 164
connectUpdate()
QMovie, 164
contains()
QRect, 269
QRegion, 280
context()
QGILWidget, 118
controlPoints()
QCanvasSpline, 62
convertBitOrder()
QlImage, 135
convertDepth()
QlImage, 135
convertDepthWithPalette ()
QImage, 136
convertFromImage()
QPixmap, 230
convertToGLFormat()
QGLWidget, 118
convertTolmage()
QPixmap, 230
CoordinateMode
QPainter, 183
coords()
QRect, 269
copy()
QImage, 136
QPalette, 211
QPicture, 222
QPointArray, 250
count()
QCanvasPixmapArray, 50
create()
QGLContext, 103
QImage, 136, 137
createAlphaMask()
QlImage, 137
createHeuristicMask()
QImage, 137
QPixmap, 230
creator()
QPrinter, 259
cubicBezier()
QPointArray, 250
currentAllocContext()
QColor, 78
currentContext()
QGLContext, 103

dark()

QColor, 78

QColorGroup, 88
data()

QPicture, 222
decode()

QImageDecoder, 150
QImageFormat, 151
decoderFor()
QImageFormatType, 153
defaultDepth()
QPixmap, 231
defaultFormat()
QGLFormat, 109
defaultOptimization()
QPixmap, 231
defaultOverlayFormat()
QGLFormat, 109
defineIOHandler()
QImagelO, 155
depth()
QGLFormat, 109
QImage, 137
QPaintDeviceMetrics, 177
QPixmap, 231
description()
QImagelO, 156
destroyAllocContext()
QColor, 78
detach()
QGLColormap, 99
QlconSet, 126
QImage, 137
QPicture, 222
QPixmap, 231
device()
QGLContext, 103
QPainter, 187
devicelsPixmap()
QGLContext, 103
devType()
QPaintDevice, 172
directRendering()
QGLFormat, 110
disabled ()
QPalette, 212
disconnectResize ()
QMovie, 164
disconnectStatus()
QMovie, 164
disconnectUpdate()
QMovie, 165
docName()
QPrinter, 259
doneCurrent()
QGLContext, 103
dotsPerMeterX()
QImage, 138
dotsPerMeterY()
QlImage, 138
doubleBuffer()
QGLFormat, 110
QGLWidget, 118
draw()
QCanvasltem, 40
QCanvasPolygonalltem, 56
QCanvasSprite, 65
QCanvasText, 69
drawArc()

QPainter, 187
drawArea()

QCanvas, 28
drawBackground()

QCanvas, 29
drawChord()

QPainter, 187, 188
drawContents()

QCanvasView, 72
drawConvexPolygon()

QPainter, 188
drawCubicBezier()

QPainter, 188
drawEllipse()

QPainter, 188
drawForeground()

QCanvas, 29
drawlmage()

QPainter, 188, 189
drawLine()

QPainter, 189
drawLineSegments()

QPainter, 189
drawPicture()

QPainter, 189, 190
drawPie()

QPainter, 190
drawPixmap()

QPainter, 190, 191
drawPoint()

QPainter, 191
drawPoints()

QPainter, 191
drawPolygon()

QPainter, 191
drawPolyline()

QPainter, 191
drawRect()

QPainter, 192
drawRoundRect()

QPainter, 192
drawShape()

QCanvasEllipse, 35

QCanvasPolygon, 53

QCanvasPolygonalltem, 56

QCanvasRectangle, 59
drawText()

QPainter, 192, 193
drawTiledPixmap()

QPainter, 193, 194
drawWinFocusRect()

QPainter, 194
dxQ

QWMatrix, 292
dyO

QWMatrix, 292

enabled()
QCanvasltem, 40
end()
QImageConsumer, 147
QPainter, 194
Endian

Index

QlImage, 132
endPoint()

QCanvasLine, 46
enterAllocContext()

QColor, 78
entryColor()

QGLColormap, 99
entryRgb()

QGLColormap, 99
eor()

QRegion, 280
eraseRect()

QPainter, 195
expandedTo()

QSize, 285

fileName()

QImagelO, 156
fill()

QlImage, 138

QPixmap, 231
fillRect()

QPainter, 195
find(Q)

QGLColormap, 100

QPixmapCache, 240
findNearest()

QGLColormap, 100
finished ()

QMovie, 165
flush()

QPainter, 195, 196
font()

QCanvasText, 69

QPainter, 196
fontInfo()

QPainter, 196
fontMetrics()

QPainter, 196
foreground()

QColorGroup, 88
format()

QGLContext, 103

QGIWidget, 118

QImageDecoder, 150

QImagelO, 156
formatName()

QImageDecoder, 150

QImageFormatType, 153
FormatOption

QGL, 96
frame()

QCanvasSprite, 65
FrameAnimationType

QCanvasSprite, 64
frameCount()

QCanvasSprite, 65
frameDone()

QImageConsumer, 148
framelmage()

QMovie, 165
frameNumber()

QMovie, 165

framePixmap()
QMovie, 165

fromPage()
QPrinter, 259

fullPage()
QPrinter, 259

gammal()

QImagelO, 156
getHsv()

QColor, 79
getValidRect()

QMovie, 165
glDraw()

QGLWidget, 119
glnit()

QGLWidget, 119
grabFrameBuffer()

QGILWidget, 119
grabWidget()

QPixmap, 232
grabWindow ()

QPixmap, 232
green()

QColor, 79

handle()
QCursor, 93
QPaintDevice, 172
QPainter, 196
QRegion, 280
hasAlphaBuffer()
QImage, 138
hasClipping()
QPainter, 196
hasOpenGL()
QGLFormat, 110
hasOpenGLOverlays()
QGLFormat, 110
hasOverlay()
QGLFormat, 110
hasViewXForm ()
QPainter, 196
hasWorldXForm()
QPainter, 196
height()
QCanvas, 29
QCanvasEllipse, 35
QCanvasRectangle, 59
QCanvasSprite, 65
QlImage, 138
QPaintDeviceMetrics, 177
QPixmap, 233
QRect, 270
QSize, 285
heightMM()
QPaintDeviceMetrics, 177
hide()
QCanvasltem, 40
highlight()
QColorGroup, 88
highlightedText()
QColorGroup, 88

hotSpot()
QCursor, 94
hsv()
QColor, 79

iconSize()
QlconSet, 126
image()
QCanvasPixmapArray, 50
QCanvasSprite, 66
QImageDecoder, 150
QImagelO, 157
imageAdvanced()
QCanvasSprite, 66
imageFormat()
QlImage, 138
QImagelO, 157
QPixmap, 233
inactive()
QPalette, 212
initialize ()
QColor, 80
QCursor, 94
QPainter, 197
initialized ()
QGLContext, 103
initializeGL()
QGILWidget, 119
initializeOverlayGL()
QGLWidget, 119
inputFormatList()
QImage, 138
inputFormats()
QImage, 139
QImageDecoder, 150
QImagelO, 157
insert()
QPixmapCache, 240, 241
intersect()
QRect, 270
QRegion, 280
intersects()
QRect, 270
inverseWorldMatrix ()
QCanvasView, 73
invert()
QWMatrix, 292
invertPixels()
QImage, 139
ioDevice()
QImagelO, 157
isActive()
QCanvasltem, 40
QPainter, 197
isCopyOf()
QPalette, 212
isEmpty()
QGLColormap, 100
QRect, 270
QRegion, 280
QSize, 285
isEnabled ()
QCanvasltem, 40

300

Index

isExtDev()
QPaintDevice, 172
isGenerated()
QlconSet, 126
isGrayscale()
QImage, 139
isldentity()
QWMatrix, 293
isInvertible()
QWMatrix, 293
isNull()
QlconSet, 126
QImage, 139
QMovie, 165
QPicture, 222
QPixmap, 233
QPoint, 243
QRect, 270
QRegion, 281
QSize, 286
isQBitmap()
QPixmap, 233
isSelected()
QCanvasltem, 40
isSharing()
QGLContext, 104
QGLWidget, 119
isValid()

QCanvasPixmapArray, 51

QColor, 80
QGLContext, 104
QGIWidget, 119
QRect, 270
QSize, 286
isVisible()
QCanvasltem, 40

joinStyle()
QPen, 217
jumpTable()
QImage, 139

leaveAllocContext()
QColor, 80
left()
QRect, 271
leftEdge()
QCanvasSprite, 66
light(
QColor, 80
QColorGroup, 88
lineTo()
QPainter, 197
link()
QColorGroup, 89
linkVisited()
QColorGroup, 89
load()
QImage, 139
QPicture, 222
QPixmap, 233, 234
loadFromData()
QImage, 140

QPixmap, 234
logicalDpiX()

QPaintDeviceMetrics, 177

logicalDpiY()

QPaintDeviceMetrics, 177

mll(Q)

QWDMatrix, 293
ml2()

QWDMatrix, 293
m21()

QWMatrix, 293
m22()

QWMatrix, 293
makeArc()

QPointArray, 250
makeCurrent()

QGLContext, 104

QGLWidget, 119
makeEllipse()

QPointArray, 251
makeOverlayCurrent()

QGLWidget, 120
manhattanLength()

QPoint, 243
map()

QWMatrix, 293, 294
mapRect()

QWMatrix, 294
margins()

QPrinter, 259
mask()

QCursor, 94

QPixmap, 235
maxColors()

QColor, 80
maxPage()

QPrinter, 260
metric()

QPaintDevice, 172

QPicture, 223

QPixmap, 235

mid()

QColorGroup, 89
midlight()

QColorGroup, 89
minPage()

QPrinter, 260
mirror()

QImage, 140
Mode

QIconSet, 125
move()

QCanvasltem, 40
QCanvasSprite, 66
moveBottomLeft()
QRect, 271
moveBottomRight()
QRect, 271
moveBy()
QCanvasltem, 40
QRect, 271
moveCenter()

QRect, 271
moveTo()
QPainter, 197
moveTopLeft()
QRect, 271
moveTopRight()
QRect, 271

name()
QColor, 80
newPage()
QPrinter, 260
normal()
QPalette, 212
normalize()
QRect, 272
numBitPlanes()
QColor, 81
numBytes()
QImage, 140
numColors()
QImage, 140

QPaintDeviceMetrics, 177

numCopies()
QPrinter, 260

offset()
QImage, 140
offsetX()
QCanvasPixmap, 48
offsetY()
QCanvasPixmap, 48
onCanvas()
QCanvas, 29
operator

0

QCanvasPixmapArray, 51

=0
QBrush, 19
QColor, 81
QColorGroup, 89
QImage, 141
QPalette, 212
QPen, 217
QRegion, 281
QWMatrix, 294
operator®()
QWMatrix, 294, 295
operator*=()
QPoint, 244
QSize, 286
QWMatrix, 295
operator+ ()
QRegion, 281
operator+=()
QPoint, 244
QRegion, 281
QSize, 286
operator-()
QRegion, 281
operator-=()
QPoint, 244
QRegion, 282

Index

QSize, 286
operator/=()
QPoint, 244, 245
QSize, 286
operator=()
QBitmap, 16
QBrush, 19
QColor, 81
QColorGroup, 89
QCursor, 94
QGLColormap, 100
QlconSet, 126
QlImage, 141
QMovie, 165
QPalette, 212
QPen, 218
QPicture, 223
QPixmap, 235
QPointArray, 251
QRegion, 282
operator==()
QBrush, 19
QColor, 81
QColorGroup, 89
QlImage, 141
QPalette, 212
QPen, 218
QRegion, 282
QWMatrix, 295
operator&()
QRect, 272
QRegion, 281
operator&=()
QRect, 272
QRegion, 281
operator ™ ()
QRegion, 282
operator ™ =()
QRegion, 282
Optimization
QPixmap, 227
optimization()
QPixmap, 235
Orientation
QPrinter, 256
orientation()
QPrinter, 260
outputFileName()
QPrinter, 260
outputFormatList()
QImage, 141
outputFormats()
QImage, 141
QImagelO, 157
outputToFile()
QPrinter, 260
overlayContext()
QGIWidget, 120
overlayTransparentColor()
QGLContext, 104

packimage()
QPNGImagePacker, 168

PageOrder

QPrinter, 257
pageOrder()

QPrinter, 261
PageSize

QPrinter, 257
pageSize()

QPrinter, 261
paintEvent()

QGIWidget, 120
paintGL()

QGLWidget, 120
paintingActive()

QPaintDevice, 172
paintOverlayGL()

QGLWidget, 120
PaperSource

QPrinter, 258
paperSource()

QPrinter, 261
parameters()

QImagelO, 157
pause()

QMovie, 165
paused()

QMovie, 166
pen()

QCanvasPolygonalltem, 56

QPainter, 197
pixel()

QColor, 81

QlImage, 141
pixellndex()

Qlmage, 142
pixmap()

QBrush, 19

QlconSet, 127
plane()

QGLFormat, 110
playQ

QPicture, 223
point()

QPointArray, 251
points()

QCanvasPolygon, 53
posQ)

QCursor, 94

QPainter, 197
PrinterMode

QPrinter, 258
printerName()

QPrinter, 261
printerSelectionOption()

QPrinter, 261
printProgram()

QPrinter, 261
pushData()

QMovie, 166
pushSpace()

QMovie, 166
putPoints()

QPointArray, 251, 252

302

qglClearColor()
QGLWidget, 120
qglColor()
QGLWidget, 120
quality()
QImagelO, 157

rasterOp()

QPainter, 198
rBottom()

QRect, 272
read()

QImagelO, 158
readCollisionMasks()

QCanvasPixmapArray, 51
readPixmaps()

QCanvasPixmapArray, 51
rect()

QCanvas, 29

QCanvasRectangle, 59

Qlmage, 142

QPixmap, 235

QRect, 273
rects()

QRegion, 282
red()

QColor, 81
redirect()

QPainter, 198
RegionType

QRegion, 278
registerDecoderFactory()

QImageDecoder, 150
renderPixmap()

QGLWidget, 121
requestedFormat()

QGLContext, 104
reset()

QGLContext, 104

QlconSet, 127

QImage, 142

QWMatrix, 295
resetXForm()

QPainter, 198
resize()

QCanvas, 29

QPixmap, 235, 236
resized()

QCanvas, 30
resizeEvent()

QGLWidget, 121
resizeGL()

QGLWidget, 121
resizeOverlayGL()

QGLWidget, 121
resolution()

QPrinter, 261
restart()

QMovie, 166
restore()

QPainter, 198
restoreWorldMatrix()

QPainter, 198

Index

retune()

QCanvas, 30
rgb()

QColor, 81
rgba()

QGLFormat, 110
rheight()

QSize, 287
right()

QRect, 273
rightEdge()

QCanvasSprite, 66
rLeft()

QRect, 272
rotate()

QPainter, 198
QWMatrix, 295

rRight()
QRect, 272

rTop()
QRect, 273

rtti()
QCanvasEllipse, 35
QCanvasltem, 41
QCanvasLine, 46
QCanvasPolygon, 53
QCanvasPolygonalltem, 56
QCanvasRectangle, 59
QCanvasSpline, 62
QCanvasSprite, 67
QCanvasText, 69

RttiValues

QCanvasltem, 38
running()

QMovie, 166
rwidth()

QSize, 287
rx()

QPoint, 245
ry()

QPoint, 245
save()

Qlmage, 142
QPainter, 198
QPicture, 223
QPixmap, 236
saveWorldMatrix ()
QPainter, 199
scale()
QlImage, 142
QPainter, 199
QWMatrix, 295
scaleHeight()
QImage, 142
ScaleMode
QlImage, 132
scaleWidth()
QlImage, 143
scanLine()
QlImage, 143
selected()
QCanvasltem, 41

selfMask()
QPixmap, 236
serialNumber()
QPalette, 212
QPixmap, 236
setAccum()
QGLFormat, 110
setActive()
QCanvasltem, 41
QPalette, 213
setAdvancePeriod()
QCanvas, 30
setAllChanged()
QCanvas, 30
setAlpha()
QGLFormat, 111
setAlphaBuffer()
QlImage, 143
setAngles()
QCanvasEllipse, 35
setAnimated()
QCanvasltem, 41
setAutoBufferSwap()
QGLWidget, 121
setBackgroundColor()
QCanvas, 30
QMovie, 166
QPainter, 199
setBackgroundMode()
QPainter, 199
setBackgroundPixmap()
QCanvas, 30
setBottom ()
QRect, 273
setBrush()
QCanvasPolygonalltem, 56
QColorGroup, 89
QPainter, 199, 200
QPalette, 213
setBrushOrigin()
QPainter, 200
setBuffer()
QBuffer, 22
setCacheLimit()
QPixmapCache, 241
setCanvas()
QCanvasltem, 41
QCanvasView, 73
setCapStyle()
QPen, 218
setChanged()
QCanvas, 30
setClipping()
QPainter, 200
setClipRect()
QPainter, 200
setClipRegion()
QPainter, 200
setColor()
QBrush, 19
QCanvasText, 70
QColorGroup, 90
Qlmage, 143

303

QPalette, 213
QPen, 218
setColormap()
QGLWidget, 121
setColorMode()
QPrinter, 262
setControlPoints()
QCanvasSpline, 62
setCoords()
QRect, 273
setCreator()
QPrinter, 262
setData()
QPicture, 223
setDefaultFormat()
QGLFormat, 111
setDefaultOptimization()
QPixmap, 236
setDefaultOverlayFormat()
QGLFormat, 111
setDepth()
QGLFormat, 112
setDescription()
QImagelO, 158
setDirectRendering()
QGLFormat, 112
setDisabled()
QPalette, 213
setDocName()
QPrinter, 262
setDotsPerMeterX()
QlImage, 143
setDotsPerMeterY ()
Qlmage, 144
setDoubleBuffer()
QGLFormat, 112
setDoubleBuffering()
QCanvas, 31
setEnabled()
QCanvasltem, 42
setEntries()
QGLColormap, 100
setEntry()
QGLColormap, 100
setFileName()
QImagelO, 158
setFont()
QCanvasText, 70
QPainter, 201
setFormat()
QGLContext, 104
QImagelO, 158
setFrame()
QCanvasSprite, 67
setFrameAnimation()
QCanvasSprite, 67
setFramePeriod()
QImageConsumer, 148
setFromTo()
QPrinter, 262
setFullPage()
QPrinter, 262
setGammal()

Index

QImagelO, 158
setHeight()

QRect, 273

QSize, 287
setHsv()

QColor, 82
setlconSize()

QlconSet, 127
setlmage()

QCanvasPixmapArray, 51

QImagelO, 159
setInactive()
QPalette, 213
setInitialized ()
QGLContext, 105
setlODevice()
QImagelO, 159
setJoinStyle()
QPen, 218
setLeft()
QRect, 273
setLooping()
QImageConsumer, 148
setMask()
QPixmap, 236
setMatrix()
QWMatrix, 296
setMinMax()
QPrinter, 262
setNamedColor()
QColor, 82
setNormal()
QPalette, 213
setNumColors()
QImage, 144
setNumCopies()
QPrinter, 263
setOffset()
QCanvasPixmap, 48
QImage, 144
setOptimization()
QPixmap, 237
setOption()
QGLFormat, 112
setOrientation()
QPrinter, 263
setOutputFileName()
QPrinter, 263
setOutputToFile()
QPrinter, 263
setOverlay()
QGLFormat, 112
setPageOrder()
QPrinter, 263
setPageSize()
QPrinter, 263
setPaperSource()
QPrinter, 264
setParameters()
QImagelO, 159
setPen()

QCanvasPolygonalltem, 56

QPainter, 201

setPixel()

QImage, 144
setPixelAlignment()

QPNGImagePacker, 169
setPixmap()

QBrush, 19

QlconSet, 127, 128
setPlane()

QGLFormat, 112
setPoint()

QPointArray, 252
setPoints()

QCanvasLine, 46

QCanvasPolygon, 53

QPointArray, 252
setPos()

QCursor, 94
setPrinterName()

QPrinter, 264
setPrinterSelectionOption()

QPrinter, 264
setPrintProgram()

QPrinter, 264
setQuality()

QImagelO, 159
setRasterOp()

QPainter, 201
setRect()

QRect, 274
setResolution()

QPrinter, 264
setRgb()

QColor, 82
setRgba()

QGLFormat, 113
setRight()

QRect, 274
setSelected ()

QCanvasltem, 42
setSequence()

QCanvasSprite, 67
setShape()

QCursor, 94
setSize()

QCanvasEllipse, 35

QCanvasRectangle, 59

QImageConsumer, 148

QRect, 274
setSpeed()

QMovie, 166
setStatus()

QImagelO, 159
setStencil ()

QGLFormat, 113
setStereo()

QGLFormat, 113
setStyle()

QBrush, 19

QPen, 218
setTabArray()

QPainter, 201
setTabStops()

QPainter, 202

setText()

QCanvasText, 70

Qlmage, 144
setTextFlags()

QCanvasText, 70
setTile()

QCanvas, 31
setTiles()

QCanvas, 31
setTop()

QRect, 274
setUnchanged ()

QCanvas, 31
setup()

QPrinter, 264
setUpdatePeriod()

QCanvas, 31
setVelocity ()

QCanvasltem, 42
setViewport()

QPainter, 202
setViewXForm()

QPainter, 202
setVisible()

QCanvasltem, 42
setWidth()

QPen, 219

QRect, 274

QSize, 287
setWinding()

QCanvasPolygonalltem, 56

setWindow()

QPainter, 202
setWindowCreated()

QGLContext, 105
setWorldMatrix ()

QCanvasView, 73

QPainter, 203
setWorldXForm()

QPainter, 203
setX()

QCanvasltem, 42

QPoint, 245

QRect, 274
setXVelocity ()

QCanvasltem, 42
setY()

QCanvasltem, 42

QPoint, 245

QRect, 274
setYVelocity()

QCanvasltem, 42
setZ()

QCanvasltem, 43
shadow()

QColorGroup, 90
shape()

QCursor, 95
shear()

QPainter, 203

QWMatrix, 296
show()

QCanvasltem, 43

Index

Size

QlIconSet, 125
size()

QCanvas, 31

QCanvasRectangle, 60

QGLColormap, 100

QImage, 144

QPicture, 223

QPixmap, 237

QRect, 275
smoothScale()

QlImage, 144, 145
Spec

QColor, 76
speed()

QMovie, 166
startPoint()

QCanvasLine, 46
State

QlIconSet, 125
Status

QMovie, 162
status()

QImagelO, 159
stencil()

QGLFormat, 113
step()

QMovie, 167
steps()

QMovie, 167
stereo()

QGLFormat, 113
style()

QBrush, 20

QPen, 219
subtract()

QRegion, 282
swapBuffers()

QGLContext, 105

QGILwidget, 122
swapRGB()

QImage, 145
systemBitOrder()

QImage, 145
systemByteOrder()

Qlmage, 145

tabArray()

QPainter, 204
tabStops()

QPainter, 204
testOption()

QGLFormat, 113
text()

QCanvasText, 70

QColorGroup, 90

Qlmage, 145
TextDirection

QPainter, 183
textFlags()

QCanvasText, 70
textKeys()

QImage, 145

textLanguages()

QlImage, 145
textList()

QImage, 146
tile()

QCanvas, 32
tileHeight()

QCanvas, 32
tilesHorizontally()

QCanvas, 32
tilesVertically()

QCanvas, 32
tileWidth()

QCanvas, 32
top()

QRect, 275
toPage()

QPrinter, 265
topEdge()

QCanvasSprite, 67
topLeft()

QRect, 275
topRight()

QRect, 275
translate()

QPainter, 204

QPointArray, 253

QRegion, 283

QWDMatrix, 296
transpose()

QSize, 287
trueMatrix ()

QPixmap, 237

unite()

QRect, 275

QRegion, 283
unpause()

QMovie, 167
unregisterDecoderFactory()

QImageDecoder, 150
update()

QCanvas, 32

QCanvasltem, 43
updateGL()

QGLWidget, 122
updateOverlayGL()

QGLWidget, 122

valid()
QlImage, 146
validChunk()
QCanvas, 32
viewport()
QPainter, 204
visible()
QCanvasltem, 43

width()
QCanvas, 32
QCanvasEllipse, 35
QCanvasRectangle, 60
QCanvasSprite, 67

Qlmage, 146

QPaintDeviceMetrics, 177

QPen, 219
QPixmap, 237
QRect, 275
QSize, 287
widthMM()

QPaintDeviceMetrics, 177

winding()

QCanvasPolygonalltem, 57

window()

QPainter, 204
windowCreated()

QGLContext, 105
winPageSize()

QPrinter, 265
worldMatrix ()

QCanvasView, 73

QPainter, 204
write()

QImagelO, 159
writeBlock()

QBuffer, 22, 23

x()
QCanvasltem, 43
QPoint, 246
QRect, 276
x11AppCells()
QPaintDevice, 172
x11AppColormap()
QPaintDevice, 173
x11AppDefaultColormap()
QPaintDevice, 173
x11AppDefaultVisual()
QPaintDevice, 173
x11AppDepth()
QPaintDevice, 173
x11AppDisplay()
QPaintDevice, 173
x11AppDpiX()
QPaintDevice, 173
x11AppDpiY()
QPaintDevice, 173
x11AppScreen()
QPaintDevice, 173
x11AppVisual()
QPaintDevice, 173
x11Cells()
QPaintDevice, 174
x11Colormap()
QPaintDevice, 174
x11DefaultColormap()
QPaintDevice, 174
x11DefaultVisual()
QPaintDevice, 174
x11Depth()
QPaintDevice, 174
x11Display()
QPaintDevice, 174
x11Screen()
QPaintDevice, 174
x11SetAppDpiX()

Index

QPaintDevice, 174
x11SetAppDpiY()

QPaintDevice, 174
x11Visual()

QPaintDevice, 175
xForm()

QBitmap, 16

QImage, 146

QPainter, 205

QPixmap, 237
xFormDev()

QPainter, 205, 206
xVelocity()

QCanvasltem, 43

yO

306

QCanvasltem, 43
QPoint, 246
QRect, 276
yVelocity ()
QCanvasltem, 43

z()
QCanvasltem, 43

