
Qt/Embedded Whitepaper

Trolltech

www.trolltech.com

Abstract

This whitepaperdescribesthe Qt/EmbeddedC++ toolkit for GUI and applicationdevelopmenton
embeddeddevices.It runsonany devicesupportedbyLinux andaC++compiler. Qt/Embeddedprovides
the entire standardQt API and can compile out unusedfeaturesto minimize its memoryfootprint.
Qt/Embeddedapplicationscanbedevelopedon familiar desktopsystems,e.g. WindowsandUnix, and
with standardtools. It isprovidedwith all theQt toolsincludingQt Designer for visualform design,and
with toolsspecificallytailoredto theembeddedenvironment.

The Sharp Zaurus PDA using Qt/Embedded

Qt/Embedded Whitepaper

Trolltech

www.trolltech.com

Contents

1. Introduction . 3

2. System Requirements . 4

3. Architecture . 5

3.1. Windowing System . 6

3.2. Fonts . 6

3.3. Input Devices . 6

3.4. Input Methods . 7

3.5. Screen Acceleration . 7

4. Development Environment . 7

4.1. Qt’s Supporting Tools . 8

5. Signals and Slots . 8

5.1. A Signals and Slots Example . 9

5.2. Meta Object Compiler . 10

6. Widgets . 11

6.1. A ‘Hello’ Example . 11

6.2. Common Widgets . 12

6.3. Canvas . 13

6.4. Custom Widgets . 14

6.5. Main Windows . 16

6.6. Menus . 16

6.7. Toolbars . 17

6.8. Balloon Help . 17

6.9. Actions . 18

7. Dialogs . 18

7.1. Layouts . 18

7.2. Qt Designer . 21

7.3. Built-in Dialogs . 22

8. Look and Feel . 23

8.1. Widget Style . 23

8.2. Window Decorations . 24

9. Internationalization . 24

9.1. Unicode . 25

9.2. Translating Applications . 25

9.3. Qt Linguist . 26

10. Non-Graphical Classes . 27

10.1. Collection Classes . 27

10.2. Input/Output . 27

10.3. Networking . 28

10.4. Database . 28

10.5. Multi-Threading . 28

11. Qt/Embedded in the Wider World . 28

Index . 31

2

1. Introduction

Qt/Embedded is a C++ toolkit for GUI and application development for embedded devices.
It runs on a variety of processors, usually with Embedded Linux. Qt/Embedded applications
write directly to the frame-buffer, eliminating the need for the X Window System. In addition
to the class library, Qt/Embedded includes several tools to speed and ease development.
Applications can be developed with familiar programming environments on Windows and
Unix, using the standard Qt API.

Qt/Embeddedisaportof theQtC++API for embeddeddevices. It providesthesameAPI andtoolsasthe
Qt/X11,Qt/WindowsandQt/Macversions.Qt/Embeddedalsoincludesclassesandtoolsto specifically
supportembeddeddevelopment.

TheQt C++ toolkit uponwhich Qt/Embeddedis built hasbeenat theheartof commercialapplications
since1995.Qt isusedbyenterprisesasdiverseasAT&T,IBM, NASA,SharpandXerox,andbynumerous
smallercompaniesandorganizations.Qt 3.0 retainsthepower andeaseof useof earlierversionsand
introducesmany new classes.Qt’sclassesarefully featuredto reducedeveloperworkload,andprovide
consistentinterfacesto speedlearning.Qt is,andalwayshasbeen,fully object-oriented.

Qt providesatype-safealternativetoold fashionedcallbacks,calledsignalsandslots[p.8], thatfacilitates
true componentprogramming.Qt suppliesa wide rangeof versatilewidgets[p. 11] that can easily
besubclassedto createcustomcomponents,or combinedto createcustomdialogs[p. 18]. Pre-defined
dialogsfor commontaskssuchasmessageboxesandwizardsarealsoprovided.

Qt/Embeddedhasmuch smallersystemrequirements[p. 4], i.e. lower storage(Flash)and memory
(RAM) footprints,thanembeddedsolutionsbasedontheX Window System.It canrunonhardwarethat
runsLinux, hasalinearlyaddressableframebuffer,andsupportsaC++compiler. And Qt/Embeddedcan
berecompiledto excludeunusedfeaturesto reduceits memoryfootprintevenfurther.

The architecture[p. 5] of Qt/Embeddedincludesits own windowing system[p. 6]. A varietyof input
devices[p. 6] aresupported.

Developerswrite codeusingtheir familiar developmentenvironments[p. 7]. Qt Designer [p. 21] can
beusedto visually designuserinterfacesusingQt’s layout [p. 18] system,which automaticallyadapts
to theavailablescreenspace.Developerscanchooseoneof thepre-definedlook andfeel [p. 23] styles
or createtheir own uniquestyles. Unix userscan run and test their applicationson a pixel-perfect
virtual frame-buffer.

Qt/Embeddedalso provides many non-graphicalcomponents[p. 27] for specializedtasks,such as
internationalization[p. 24],networkinganddatabaseinteraction.

Qt/Embeddedis a mature,solid C++ toolkit, widely usedall over the world [p. 28]. In addition to
Qt/Embedded’smany othercommercialuses,it is thefoundationof theQtopiaapplicationenvironment
for smalldevices.Qt/Embeddedmakesapplicationdevelopmentapleasure,with itssimplebuild system,
visualform designandelegantAPI.

3

2. System Requirements

Qt/Embeddedsavesmemorybecauseit doesnot needan X serveror Xlib; insteadit writes
directlyto theframe-buffer. Memoryconsumptioncanbefine-tunedbycompilingout features
thatarenotused.It isalsopossibletocompileall theapplicationsintoasinglestaticallylinked
executable,to saveevenmorememory.

Qt/Embeddedisavailablefor all processorssupportedbyLinux thathaveaC++compiler, includingIntel
x86,MIPS,ARM, StrongARM,Motorola68000andPowerPC.Trolltechisalsoexploringthepossibility
of creatinga crossplatformtoolkit for theembeddedmarket. Qt/Embeddedimplementationsfor QNX
andfor WinCEarebothbeingtrialled. Trolltechalsoprovidesportingservicestootheroperatingsystems.

Qt/Embeddedapplicationswrite directly to thekernelframe-buffer. Linear frame-bufferswith 1, 4, 8,
15,16,24 and32 bit depthsandVGA16aresupported.Any graphiccardsupportedby thekernelwill
work, andQt/Embeddedcanbecustomizedto benefitfrom screenaccelerationhardware,asdescribed
in “Architecture”[p. 5]. Thereis no arbitrarylimit on screensize,andmany advancedfeaturessuchas
anti-aliasedfonts,alpha-blendedpixmapsandscreenrotationareprovided.

Qt/Embedded’sprincipalstrengthis thatisdoesn’t rely onanX server. Thisleadsto significantmemory
savingscomparedwith othersolutions,suchasQt/X11.A singlelibrary, the Qt/Embeddedlibrary, is
all that is necessaryto replacetheX server, theXlib library andthewidget toolkit of other‘embedded’
solutions.

x

R
A

M
(K

B
)

X Server + Phone Client + Mail Client+ Message Center
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Qt/X11

Qt/Embedded

2640 KB

5130 KB

6880 KB

8170 KB

0 KB

1640 KB

3230 KB

4250 KB

Cumulative RAM consumption

Figure 1. MemorycomparisonbetweenQt/X11andQt/Embeddedfor Ericsson’sscreenphone

4

ThegraphillustratesthattheX servergrabsa lot of RAM onstartup,andalsorequiresmorememoryas
eachnew applicationis launched.For example,startingthePhoneClientrequires2490KB with Qt/X11,
but only 1640KB with Qt/Embedded.

Thefootprintof theQt/Embeddedlibrarycanbereducedbycompilingoutunusedfeatures.Forexample,
theQListView widgetcanbecompiledoutbydefiningthepre-processorsymbolQT_NO_LISTVIEW,and
supportfor internationalizationis compiledout by definingQT_NO_I18N. Qt/Embeddedprovidesover
200configurablefeatures,resultingin librariesvaryingin sizebetween700KB and5000KB (Intel x86).
Mostcustomersuseconfigurationsbetween1500KB and4000KB.

Qt/Embeddedalsobenefitsfrom memory-saving techniquessuchasimplicit sharing(copy on write)
andcaching. Over 20 classesin Qt, including QBitmap, QMap, QPalette, QPicture, QPixmap and
QString, use implicit sharingto avoid unnecessarycopying and minimize memoryusage. Implicit
sharingoccursautomaticallyandmakesprogrammingmuchsimpler, avoiding therisksrelatedto hand
optimizationandpointers.

Many Qt componentscanbecompiledinto the library or madeavailableasplugins. Customlook and
feelcomponents[p. 23],databasedrivers,font formatreaders,imageformatconverters,text codecsand
widgetscanbecompiledasplugins,reducingthesizeof thecorelibrary andproviding moreflexibility .
Alternatively, if the applicationsand componentsare known in advance,they can be compiledand
staticallylinkedwith theQt/Embeddedlibrary into asingleexecutable,saving ROM, RAM andCPU.

3. Architecture

Qt/Embedded provides the standard Qt API for embedded devices with a lightweight
windowing system. Qt/Embedded’s object-oriented design makes it straightforward to support
additional devices, from peripherals like keyboards and mice to accelerated graphics boards.

With Qt/Embedded,developersbenefitfrom exactlythesameAPI thatQt/X11,Qt/WindowsandQt/Mac
provide.

Application Source Code

Qt API

Qt/X11

Xlib

Qt/Embedded

X Window Server

Frame-buffer

Linux Kernel

Figure 2. Qt/EmbeddedversusQt/X11onEmbeddedLinux

Usinga singleAPI acrossa varietyof platformsoffersmany benefits.Companiesthatproduceapplica-
tionsfor bothembeddeddevicesanddesktopcomputerscantraintheirdevelopersin asingletoolkit. This
makesit easierto shareexperienceandknowledge,andgivesmanagersmoreflexibility whenallocating
developerstoprojects.Furthermore,applicationsandcomponentsdevelopedfor aparticularplatformcan
besoldfor any of theotherQt platforms,expandingtheproducts’market for avery low marginalcost.

5

3.1. Windowing System

A Qt/Embeddedwindowingsystemconsistsof oneor moreprocesses,oneof whichactsasaserver. The
serverallocatesregionsto bedisplayedby clients,andgeneratesmouseandkeyboardevents.Theserver
processcanalsoprovide input methodsanda userinterfaceto launchclient applications.The server
processbehaveslike a client but hassomeadditionalprivileges. Any programcanberun astheserver
usingthe-qws command-lineoption.

Clientscommunicatewith theserverusingsharedmemory. Communicationiskepttoaminimum;clients
performall drawing operationsdirectly to theframe-buffer, without passingthroughtheserver, andare
responsiblefor drawing their own title barsandotherdecorations.This is all handledtransparentlyby
theQt/Embeddedlibrary.

ClientscanexchangemessagesusingQCOPchannels.TheserversimplybroadcastsQCOPmessagesto
all applicationslisteningto agivenchannel.Applicationscanrespondin aslotconnectedto areceived()
signal. Messagescanbeaccompaniedby binarydata,typically serializedusingtheQDataStream class,
describedin “Non-GraphicalClasses”[p. 27].

TheQProcess classprovidesanotherasynchronousinter-processcommunicationmechanism.It is used
tostartexternalprogramsandtocommunicatewith thembywriting totheirstandardinputandbyreading
their standardoutputandstandarderror.

3.2. Fonts

Qt/Embeddedsupportsfour different font formats: TrueType Fonts (TTF), PostScriptType1Fonts,
BitmapDistributionFormat(BDF)andQt Pre-renderedFonts(QPF).Supportfor otherfont formatscan
beaddedby subclassingQFontFactory, andcanbemadeavailableasa plugin. Anti-aliasedfontsare
supported.

EachTTF or Type1glyph is renderedat a givenpoint sizewhenit is first usedin a drawing or metrics
operation,and the result is cached.Memory and CPU time can often be saved by pre-renderinga
TTF or a Type1file at therequiredsizes(for example,10 and12 points)andsaving theresultin QPF
format. QPFfiles that containthe necessaryfontscanbe obtainedby usingthemakeqpf tool, or by
runningapplicationswith the -savefonts option. If all the fonts arein QPFformat,Qt/Embedded
canbereconfiguredto compileoutsupportfor TTF andType1fonts,whichwill cutdown thesizeof the
Qt/Embeddedlibrary, andconsiderablyreducetheamountof memoryusedto storefonts. For example,
a 10-pointTimesQPFfont for ASCII usesabout1300bytes,andis directlymappedinto memoryfrom
physicalstorage.

Qt/Embeddedfontsusuallycontaina smallsubsetof Unicode,typically ASCII or Latin-1.A complete
16-point Unicodefont usesover 1 MB of memory. It is possibleto save customsubsetsof a font,
for exampleonethat containsall the glyphsnecessaryto spell the nameof your productin 24-point
CappuccinoBold.

3.3. Input Devices

Qt/Embedded3.0supportsseveralmouseprotocolsout of thebox: BusMouse,IntelliMouse,Microsoft
andMouseMan.Qt/EmbeddedalsosupportstheNECVr41XX touch-panelandtheiPAQ touch-panel.
Developerscansupportcustompointerdevicesby subclassingQWSMouseHandler or QCalibrated-
MouseHandler.

Qt/Embeddedsupportsthe standard101-key keyboardandVr41XX buttons. Customkeyboardsand
othernon-pointerdevicescanbesupportedby subclassingQWSKeyboardHandler.

6

3.4. Input Methods

Input methods for non-Latin scripts (for example, Arabic, Chinese, Hebrew and Japanese) can be written
to filter and convert keyboard input. Input method writers have the entire Qt API at their disposal.

On devices without a keyboard, input methods constitute the only means of entering characters. Qtopia
provides four input methods: a handwriting recognizer, a graphical QWERTY keyboard, a Unicode
keyboard and a dictionary-based pickboard.

Pickboard

Handwriting

Keyboard

Unicode

Figure 3. The standard input methods available on Qtopia

3.5. Screen Acceleration

Screen operations can benefit from hardware acceleration by subclassing QScreen and QGfxRaster.
Trolltech provides example accelerated drivers for Mach64 and Voodoo3 cards, and can be contracted to
write custom drivers.

4. Development Environment

Qt/Embeddeddevelopmentcan take placeusingfamiliar Unix and Windowstools. Several
multi-platformtoolsareprovidedto makedevelopmenteasierandfaster,notablyQt Designer.
Unix usersadditionallybenefitfroma virtual frame-buffer that duplicates,pixel for pixel,the
screenof a device.

Applications for an embedded device can be compiled on any platform equipped with a cross-develop-
ment tool chain. The most common option is to build a cross-platform GNU C++ compiler (g++) with
libc and the binary utilities on a Unix system.

An alternative approach involves using a desktop version of Qt, such as Qt/X11or Qt/Windows, for most
of the development phase. This allows developers to use a familiar environment, for example, Microsoft
Visual C++ or Borland C++. On Unix, many environments are available, such as KDevelop, which
supports cross-development.

If the Qt/Embedded application is developed on Unix, it can be compiled to run on the development
machine in a separate console or in the virtual frame-buffer, an X11 application that simulates a frame-

7

buffer. By specifyingthedevice’swidth,heightandcolor depth,thesimulatedframe-buffer will match
thephysicaldevice,pixel for pixel. Thissavesdevelopersfrom continuouslyre-flashingthedevice,and
acceleratesthecompile,link andruncycle. It alsoallowsdeveloperstousestandarddebuggersandprofil-
ersonthedevelopmentmachine.If desired,Qt/EmbeddedapplicationscanactasVNC (VirtualNetwork
Computing)serversandberunoveranetwork.

4.1. Qt’s Supporting Tools

Qt includesmany toolsto supportembeddedsystemsdevelopment,someof which arementionedelse-
wherein thisdocument.Thetwo mostsubstantialtools(apartfrom thevirtual frame-buffer mentioned
above)areqmake andQt Designer.

Theqmake tool is a Makefile generatorfor theQt/Embeddedlibrary andfor applications.It generates
Makefilesfor multiple platformsfrom a project file (.pro). qmake supportscross-developmentand
shadow builds,andmakesit easyto switchbetweendifferentconfigurations.

DeveloperscanuseQt Designer to designdialogsvisually insteadof writing code. It usesQt’s layout
managersto producedialogsthat resizesmoothly, and is fully integratedwith qmake. Qt Designer is
coveredin “Dialogs” [p. 18].

5. Signals and Slots

The signals and slots mechanism provides inter-object communication. It is easy to understand
and use and it is fully supported by Qt Designer.

GUI applicationsrespondtouseractions.For example,whenauserclicksamenuitemor toolbarbutton,
theapplicationexecutessomecode. Moregenerally, wewantobjectsof any kind to communicatewith
eachother. The programmermust relateeventsto the relevant code. Older toolkits usemechanisms
thatarecrash-prone,inflexible, andnotobject-oriented.Trolltechhasinventedasolutioncalled’signals
andslots’.Signalsandslotsis a powerful inter-objectcommunicationmechanismthat canbe usedto
completelyreplacethecrudecallbacksandmessagemapsusedby legacy toolkits. Signalsandslotsare
fast,type-safe,flexible, fully object-orientedandimplementedin C++.

To associatesomecodewith a buttonusingtheold callbackmechanism,it is necessaryto passa pointer
to a functionto thebutton. Whenthebutton is clicked,thefunction is thencalled. Old toolkits do not
ensurethatargumentsof theright typearegivento thefunctionwhenit is called,which makescrashes
morelikely. Anotherproblemwith thecallbackapproachis that it tightly bindstheGUI elementto the
functionality, makingit difficult to developclassesindependently.

Qt’ssignalsandslotsmechanismis different. Qt widgetsemit signalswheneventsoccur. For example,
abuttonwill emita‘clicked’signalwhenit isclicked. Theprogrammercanchoosetoconnecttoasignal
by creatingafunction(calledaslot)andcallingtheconnect()functionto relatethesignalto theslot. Qt’s
signalsandslotsmechanismdoesnot requireclassesto have knowledgeof eachother, which makesit
mucheasierto develophighly reusableclasses.Signalsandslotsaretype-safe,with typeerrorsbeing
reportedby warningsratherthanby crashes.

8

connect(Object3, signal1, Object4, slot3)

connect(Object1, signal1, Object2, slot1)
connect(Object1, signal1, Object2, slot2)

connect(Object1, signal2, Object4, slot1)

Object3

signal1

slot1

Object4

slot1
slot2
slot3

Object1

signal1
signal2 Object2

signal1

slot1
slot2

Figure 4. An abstract view of some signals and slots connections

For example, if a Quit button’s clicked() signal is connected to the application’s quit() slot, a user’s click
on Quit makes the application terminate. In code, this is written as

connect(button, SIGNAL(clicked()), qApp, SLOT(quit()));

Connections can be added or removed at any time during the execution of a Qt application.

The signals and slots implementation smoothly extends C++’s syntax and takes full advantage of C++’s
object-oriented features. Signals and slots can be overloaded or reimplemented and may appear in the
public, protected or private sections of a class.

connect(fontSizeSpinBox, valueChanged(int),
textEdit, setPointSize(int))

connect(textEdit, modificationChanged(bool),
customStatusBar, modificationStatus(bool))

connect(fontFamilyComboBox, activated(QString),
textEdit, setFamily(QString))

Figure 5. An example of signals and slots connections

5.1. A Signals and Slots Example

To benefit from signals and slots, a class must inherit from QObject or one of its subclasses and include
the Q_OBJECT macro in the class’s definition. Signals are declared in the signals section of the class,
while slots are declared in the public slots, protected slots or private slots sections.

Here’s an example QObject subclass:

9

class BankAccount : public QObject

{

Q_OBJECT

public:

BankAccount() { curBalance = 0; }

int balance() const { return curBalance; }

public slots:

void setBalance(int newBalance);

signals:

void balanceChanged(int newBalance);

private:

int curBalance;

};

In the style of most C++ classes, the class BankAccount has a constructor, a get function balance(), and
a set function setBalance().

The class also has a signal balanceChanged(), which announces that the balance in the account has
changed. Signals are not implemented; when a signal is emitted, the slots it is connected to are exe-
cuted.

The set function is declared in the public slots section, so it is a slot. Slots are standard member
functions with an implementation that can be called like any other function, and which can also be
connected to signals.

Here’s the implementation of the slot setBalance():

void BankAccount::setBalance(int newBalance)

{

if (newBalance != curBalance) {

curBalance = newBalance;

emit balanceChanged(curBalance);

}

}

The statement

emit balanceChanged(curBalance);

causes the balanceChanged() signal to be emitted with the new current balance as its argument. The
keyword emit, like signals and slots, is provided by Qt and is transformed into standard C++ by the
C++ pre-processor.

One object’s signal can be connected to many different slots, and many signals can be connected to one
slot in a particular object. Connections are made between signals and slots whose parameters have the
same types. A slot can have fewer parameters than the signal and ignore the extra parameters.

5.2. Meta Object Compiler

The signals and slots mechanism is implemented in pure standard C++. The implementation uses the C++
pre-processor and the Meta Object Compiler (moc) included with the Qt toolkit.

10

Themoc readstheapplication’sheaderfilesandgeneratesthenecessarycodetosupportsignalsandslots.
Developersnevereditor evenneedto look at thegeneratedcode.Makefilesgeneratedbyqmake include
rulesto runmoc transparently, whenrequired.

In additionto handlingsignalsandslots,moc supportsQt’s translationmechanism,its propertysystem
andrun-timetypeinformation.

6. Widgets

Qt hasa rich setof widgets(buttons,scroll bars,etc.) that cater for mostsituations.Qt’s
widgetsareflexibleandeasyto subclassfor specialrequirements.

Widgetsareinstancesof QWidget oroneof itssubclasses,andcustomwidgetsarecreatedbysubclassing.

QTimer

QObject

QWidget

QDialog

QLabel

QFrame

QLineEdit

QSpinBox

Figure 6. An extractfrom theQWidget classhierarchy

A widgetmaycontainany numberof child widgets.Child widgetsareshown within theparentwidget’s
area.A widgetwith no parentis a top-level widget (a ‘window’), andis decoratedwith a configurable
frameandtitle bar. Qt imposesnoarbitrarylimitationsonwidgets.Any widgetcanbeatop-levelwidget;
any widgetcanbeachild of any otherwidget. Thepositionof child widgetswithin theparent’sareacan
besetautomaticallyusinglayoutmanagers[p. 18], or manuallyif preferred.Whena parentwidget is
disabled,hiddenor deleted,thesameactionis appliedto all its child widgetsrecursively.

Labels,messageboxes,tooltips,etc.,arenot confinedto usinga singlecolor, font andlanguage.Qt’s
text-renderingwidgetscandisplaymulti-languagerich text usingaHTML subset.

6.1. A ‘Hello’ Example

Thecompletesourcecodefor aprogramthatdisplays“Hello Qt/Embedded!”follows:

Figure 7. Hello Qt/Embedded!

#include <qapplication.h>

#include <qlabel.h>

11

int main(int argc, char **argv)

{

QApplication app(argc, argv);

QLabel *hello = new QLabel("Hello"

" <i>Qt/Embedded!</i>", 0);

app.setMainWidget(hello);

hello->show();

return app.exec();

}

6.2. Common Widgets

The screenshots below present the main Qt widgets, shown using the Windows style.

Figure 8. A QLabel and a QPushButton laid out with a QHBox

Figure 9. Two QRadioButtons and two QCheckBoxes laid out with a QButtonGroup

Figure 10. A QDateTimeEdit, a QLineEdit, a QTextEdit and a QComboBox laid out with a QGroupBox

Figure 11. A QDial, a QProgressBar, a QSpinBox, a QScrollBar, a QLCDNumber and a QSlider laid out with a QGrid

12

Figure 12. A QIconView, a QListView, a QListBox and a QTable laid out with a QGrid

QComboBox, QLineEdit and QSpinBox’s input can be constrained or validated using a QValidator
subclass. Regular expressions can be used for validation.

QTable, QListView, QTextEdit and other widgets that can display large amounts of data inherit
QScrollView and automatically provide scroll bars.

Many of Qt’s built-in widgets can display images, for example, buttons, labels, menu items, etc. The
QImage class supports the input, output and manipulation of images in several formats, including BMP,
GIF∗, JPEG, MNG, PNG, PNM, XBM and XPM.

6.3. Canvas

The QCanvas class provides a high-level interface to 2D graphics. It can handle a very large number of
‘canvas items’that represent lines, rectangles, ellipses, texts, pixmaps, animated sprites, etc. Canvas items
can easily be made interactive (e.g. user movable).

Figure 13. The Qtopia Asteroids game written with QCanvas

∗If you are in a country that recognizes software patents and where Unisys holds a patent on LZW decompression, Unisys may
require you to license the technology to use GIF.

13

Canvas items are instances of QCanvasItem subclasses. They are more lightweight than widgets, and
they can be quickly moved, hidden and shown. QCanvas has efficient support for collision detection,
and can list all the canvas items in a given area. QCanvasItem can be subclassed to provide custom item
types and to extend the functionality of existing types.

QCanvas objects are rendered by the QCanvasView class. Many QCanvasView objects can show the
same QCanvas, but with different translations, scales, rotations and shears.

QCanvas is ideal for data visualization. It has been used by customers for drawing road maps and for
presenting network topologies. It is also suitable for fast 2D games with lots of sprites.

6.4. Custom Widgets

Developers can create their own widgets and dialogs by subclassing QWidget or one of its subclasses.
To illustrate subclassing, the complete code for an analog clock widget is presented. The AnalogClock
widget displays the current time and updates itself automatically.

Figure 14. Analog clock widget

In analogclock.h, AnalogClock is defined like this:

#include <qwidget.h>

class AnalogClock : public QWidget

{

public:

AnalogClock(QWidget *parent = 0, const char *name = 0);

protected:

virtual void timerEvent(QTimerEvent *event);

virtual void paintEvent(QPaintEvent *event);

};

AnalogClock inherits QWidget. It has a constructor typical of widget classes, with optional parent
and name parameters. (Testing and debugging are easier if name is set.) The timerEvent() function is
inherited from QObject (a base class of QWidget) and is called at regular intervals by the system. The
paintEvent() function is inherited from QWidget and is called automatically whenever the widget needs
to be redrawn.

The timerEvent() and paintEvent() functions are two examples of ‘event handlers’. Application objects
receive system messages as Qt events (QEvent objects). There are over fifty types of event, of which the
most commonly used are MouseButtonPress, MouseButtonRelease, KeyPress, KeyRelease,
Paint, Resize and Close. Objects can respond to events sent to them, and filter events destined for
other objects.

In analogclock.cpp, the functions declared in analogclock.h are implemented:

14

#include <qdatetime.h>

#include <qpainter.h>

#include "analogclock.h"

AnalogClock::AnalogClock(QWidget *parent, const char *name)

: QWidget(parent, name)

{

startTimer(12000);

resize(100, 100);

}

void AnalogClock::timerEvent(QTimerEvent *)

{

update();

}

void AnalogClock::paintEvent(QPaintEvent *)

{

QCOORD hourHand[8] = { 2, 0, 0, 2, -2, 0, 0, -25 };

QCOORD minuteHand[8] = { 1, 0, 0, 1, -1, 0, 0, -40 };

QTime time = QTime::currentTime();

QPainter painter(this);

painter.setWindow(-50, -50, 100, 100);

painter.setBrush(black);

for (int i = 0; i < 12; i++) {

painter.drawLine(44, 0, 46, 0);

painter.rotate(30);

}

painter.save();

painter.rotate(30 * (time.hour() % 12) + time.minute() / 2);

painter.drawConvexPolygon(QPointArray(4, hourHand));

painter.restore();

painter.save();

painter.rotate(6 * time.minute());

painter.drawConvexPolygon(QPointArray(4, minuteHand));

painter.restore();

}

The constructor tells the system to call timerEvent() every twelve seconds to refresh the clock, and sets
the widget’s default size to 100 x 100.

In timerEvent(), the QWidget function update() is called to tell Qt that the widget needs to be repainted.
Subsequently, Qt will generate a paint event and call paintEvent().

In paintEvent(), a QPainter object is used to draw the twelve notches and the time and minute hands
on the widget. The QPainter class provides an API for painting widgets, pixmaps, vector images and
PostScript in a uniform way. It provides functions to draw points, lines, polygons, ellipses, arcs, Bezier

15

curves,etc. The coordinatesystemof a QPainter canbe translated,scaled,rotatedandsheared;the
objectsdrawn canbeclippedaccordingto a ’window’, andpositionedon thewidgetusinga ’viewport’.
Clippingcanbeusedto reduceflicker whenrepainting.An areaof theframe-buffer canbelockedand
accesseddirectlyusingtheQDirectPainter subclassof QPainter.

Thefilesanalogclock.h andanalogclock.cpp completelydefineandimplementtheAnalogClock
customwidget. Thiswidgetcanbeusedimmediately:

#include <qapplication.h>

#include "analogclock.h"

int main(int argc, char **argv)

{

QApplication app(argc, argv);

AnalogClock *clock = new AnalogClock;

app.setMainWidget(clock);

clock->show();

return app.exec();

}

6.5. Main Windows

TheQMainWindow classlaysoutasetof relatedwidgetstoprovideaframework for typicalapplication
mainwindows.

A mainwindow containsa setof standardwidgets. Thetop of themainwindow containsa menubar,
beneathwhich toolbarsarelaid out. Thetoolbarscanbemovedto any dockarea;mainwindows have
dockareasat thetop,left, right andbottom. Toolbarscanalsobedraggedoutof adockareaandfloated
asindependenttool palettes.Thebottomof themainwindow, below thebottomdockarea,is occupied
by a statusbar. Thecentralareacontainsany widget. Tooltipsand“What’s this?”helpprovideballoon
helpfor theuser-interfaceelements.

For smallscreendevices,it canbepreferableto defineastandardQWidget templatein Qt Designer and
usethat,ratherthanQMainWindow. Thetemplatetypically hasa menubaranda toolbarsideby side,
andmaynot have a statusbarat all. (Wherenecessary, statusmaybeshown in thetaskbaror thetitle
bar, for example.)

6.6. Menus

The QPopupMenu widget presentsmenuitems to the user in a vertical list. Popupmenuscan be
standalone(e.g. acontext menu),canappearin amenubar,or canbeasub-menuof anotherpopupmenu.

Eachmenuitem canhave an icon,a checkboxandan accelerator. Menu itemsusuallycorrespondto
actions(e.g. Save).Separatoritemsaredisplayedasa line andareusedto visuallygrouprelatedactions.

Here’sanexamplethatcreatesaFile menuwith New, Open andExit menuitems:

QPopupMenu *fileMenu = new QPopupMenu(this);

fileMenu->insertItem("&New", this, SLOT(newFile()), CTRL+Key_N);

fileMenu->insertItem("&Open...", this, SLOT(open()), CTRL+Key_O);

16

fileMenu->insertSeparator();

fileMenu->insertItem("E&xit", qApp, SLOT(quit()), CTRL+Key_Q);

Whena menuitem is chosen,the correspondingslot is executed.As acceleratorsarerarely usedon
deviceswith nokeyboard,Qt/Embeddedis typically configuredwithoutacceleratorsupport.Thismeans
that whereas“&New” would be renderedasNew on a desktopmachine,it will appearasNew on an
embeddeddevice.

TheQMenuBar classimplementsa menubar. It automaticallysetsits geometryto thetopof its parent
widget. It splitsits contentsacrossmultiple linesif theparentwindow is not wideenough.Qt’sbuilt-in
layoutmanagersautomaticallytakethemenubarinto consideration.

Qt’smenusystemis veryflexible. Menuitemscanbeenabled,disabled,addedor removeddynamically.
Menuitemswith customizedappearanceandbehavior canbecreatedby subclassingQCustomMenu-
Item.

6.7. Toolbars

The QToolButton classimplementsa toolbarbutton with an icon, a 3D frameandan optional label.
Toggletoolbarbuttonsturn featureson andoff. Othertoolbarbuttonsexecutea command.Different
iconscanbeprovidedfor theactive,disabledandenabledmodes,andfor theon andoff states.If only
oneicon is provided,Qt automaticallydistinguishesthestateusingvisualcues,for example,grayingout
disabledbuttons.Pressinga toolbarbuttoncanalsobeusedto triggerapopupmenu.

QToolButtonsusuallyappearside-by-sidewithin a QToolBar. An applicationcanhaveany numberof
toolbars,andtheuseris freeto movethemaround.Toolbarscancontainwidgetsof almostany type,for
exampleQComboBoxesandQSpinBoxes.

6.8. Balloon Help

Modern applicationsuseballoon help to briefly explain the purposeof user-interfaceelements.Qt
providestwo mechanismsfor balloonhelp: tooltipsand“What’sthis?”help.

Tooltipsaresmall,usuallyyellow, rectanglesthatappearautomaticallywhenthemousepointerhovers
over a widget. Tooltips are often usedto explain a toolbar button, sincetoolbar buttonsare rarely
displayedwith text labels.Here’show to setthetooltip of a ‘Save’ toolbarbutton:

QToolTip::add(saveButton, "Save");

It is alsopossibleto seta longerpieceof text to bedisplayedin thestatusbarwhenthetooltip is shown.

Devicesthatdonotuseamouse(for example,thosethatuseastylus),maynothaveameansof hovering
themousepointeroverawidget,whichis thenormalmechanismfor raisinga tooltip. Suchdevicesmay
notsupporttooltipsatall (relyingon“What’sthis?”helpinstead),ormayuseagesture,for example,press
andhold,to signify hovering.

“What’sthis?”helpis similar to tooltips,exceptthattheusermustrequestit. On a smallscreendevice,
“What’s this?”helpmaybeinvokedby pressinga ? helpbuttonthatappearsnext to theapplication’sX
closebutton,andthenpressingtherelevantwidget. “What’sthis?”helpis typically longerthanatooltip.
Here’show to setthe“What’sthis?”text for a ‘Save’ toolbarbutton:

QWhatsThis::add(saveButton, "Saves the current file.");

17

The QToolTip and QWhatsThis classes provide virtual functions that can be reimplemented for more
specialized behavior.

Qtopia doesn’t use either of these mechanisms to provide help. Instead it provides a ? help button in
each application’s title bar, which launches the HTML help browser with the help contents page for
the relevant application. It uses the press and hold gesture to invoke context (right click) menus and
property dialogs.

6.9. Actions

Applications usually provide the user with several different ways to perform a particular action. For
example, most applications provide a ’Save’action available from the menu (File|Save), from the toolbar
(the ’floppy disk’ toolbar button) and as an accelerator (Ctrl+S). The QAction class encapsulates this
concept. It allows programmers to define an action in one place and then add that action to a menu or
toolbar. Actions that only make sense as menu options can be added to menus directly.

The following code implements a ‘Save’ menu item and a ‘Save’ toolbar button. Balloon help and an
accelerator could easily be added, but are not included because they are rarely used for small devices.

QAction *saveAct = new QAction(this);

saveAct->setText("Save");

saveAct->setIconSet(QPixmap("save.png"));

connect(saveAct, SIGNAL(activated()), this, SLOT(save()));

saveAct->addTo(fileMenu);

saveAct->addTo(toolbar);

In addition to avoiding duplication, using a QAction ensures that the state of menu items stays in sync
with the state of toolbar buttons, and that tooltips are displayed when necessary. Disabling an action will
disable any corresponding menu items and toolbar buttons. Similarly, if the user clicks a toggle toolbar
button, the corresponding menu item will be checked or unchecked accordingly.

7. Dialogs

Developers can build their own dialogs using the Qt Designer visual design tool. Qt uses
‘layouts’ to automatically size and position widgets in relation to one another. This ensures that
dialogs make the best use of the available screen space. The use of layouts also means that
buttons and labels automatically resize to show their text in full regardless of language.

7.1. Layouts

Qt provides layout managers for organizing child widgets within the parent widget’s area. They feature
automatic positioning and resizing of child widgets, sensible minimum and default sizes for top-level
widgets, and automatic repositioning when the contents or the font changes.

Using layouts, developers can write applications independently of the screen size or orientation, without
wasting space or duplicating code. For internationalized applications, layouts ensure that buttons and
labels take as little space as possible without cutting off the text, regardless of the language.

18

Layouts also make it easy to accommodate certain user-interface components such as input methods and
task bars. For example, when Qtopia users are entering text, the input method takes up screen space, and
the application should adapt accordingly.

Figure 15. Layout management on Qtopia

Qt provides three built-in layout managers: QHBoxLayout, QVBoxLayout and QGridLayout.

Figure 16. QHBoxLayout, QVBoxLayout and QGridLayout

QHBoxLayout organizes the managed widgets in a single horizontal row from left to right. QVBoxLay-
out organizes the managed widgets in a single vertical column, from top to bottom. QGridLayout orga-
nizes the managed widgets in a grid of cells; widgets may span multiple cells.

In most cases, Qt’s layout managers pick optimal sizes for managed widgets so that windows look good
and resize smoothly. Developers can refine the layout using the following mechanisms:

1. Settinga minimumsize,a maximumsizeor a fixedsizefor somechild widgets.

2. Addingstretch itemsor spaceritems.Stretch or spacer items fill empty space in a layout.

3. Changingthesizepoliciesof thechild widgets.Programmers can fine tune the resize behavior of a
child widget. Child widgets can be set to expand, contract, keep the same size, etc.

4. Changingthe child widgets’ sizehints. QWidget::sizeHint() and QWidget::minimumSizeHint()
return a widget’s preferred size and preferred minimum size based on the contents. Built-in widgets
provide appropriate reimplementations.

5. Settingstretch factors. Stretch factors allow relative growth of child widgets, e.g. two thirds of any
extra space made available should be allocated to widget A and one third to widget B.

19

Layouts can also run right-to-left and bottom-to-top. Right-to-left layouts are convenient for internation-
alized applications supporting right-to-left languages such as Arabic and Hebrew.

Layouts can be nested to arbitrary levels. Here’s an example of a dialog box, shown at two different
sizes:

Figure 17. Small dialog and large dialog

The dialog uses three layouts: a QVBoxLayout that groups the push buttons, a QHBoxLayout that
groups the country listbox with the push buttons and a QVBoxLayout that groups the “Now please select
a country” label with the rest of the widget. A stretch item maintains the gap between the < Prev and
Help buttons.

The dialog’s widgets and layouts are created with the following code:

QVBoxLayout * buttonBox = new QVBoxLayout(6);

buttonBox->addWidget(new QPushButton("Next >", this));

buttonBox->addWidget(new QPushButton("< Prev", this));

buttonBox->addStretch(1);

buttonBox->addWidget(new QPushButton("Help", this));

QListBox * countryList = new QListBox(this);

countryList->insertItem("Canada");

/* … */

countryList->insertItem("United States of America");

QHBoxLayout * middleBox = new QHBoxLayout(11);

middleBox->addWidget(countryList);

middleBox->addLayout(buttonBox);

QVBoxLayout * topLevelBox = new QVBoxLayout(this, 6, 11);

topLevelBox->addWidget(new QLabel("Now please select a country", this)

);

topLevelBox->addLayout(middleBox);

Alternatively, the dialog can be designed using Qt Designer with just 17 mouse clicks.

20

Figure 18. Laying out a form in Qt Designer

7.2. Qt Designer

Qt Designer is a visual user-interface design tool. Qt applications can be written entirely in source code,
or using Qt Designer to speed up development. Designing a form with Qt Designer is a simple process.

Figure 19. Qt Designer

Developers click a toolbar button representing the widget they want, then click on a form to place the
widget. The widget’s properties can then be changed using the property editor. The precise positions and
sizes of the widgets do not matter. Developers select widgets and apply layouts to them. For example,
some button widgets could be selected and laid out side-by-side by choosing the ‘lay out horizontally’

21

option. This approach makes design very fast, and the finished forms will scale properly to fit whatever
window size is available.

Qt Designer eliminates the time-consuming compile, link and run cycle for user interface design. This
makes it easy to correct or change designs. Qt Designer’s preview options let developers see their forms
in any style, including custom styles. Qt Designer provides live preview and editing of database data
through its tight integration with Qt’s database classes.

Developers can create both ‘dialog’ style applications and ‘main window’ style applications with menus,
toolbars, balloon help, etc. Several form templates are supplied, and developers can create their own
templates to ensure consistency across an application or family of applications. Qt Designer uses wizards
to make creating toolbars, menus and database applications as fast and easy as possible. Programmers
can create their own custom widgets that can easily be integrated with Qt Designer.

Form designs are stored in human-readable .ui files, and converted into C++ header and source files by
the uic (User Interface Compiler). The qmake build tool automatically includes build rules for uic in
the Makefiles it generates, so developers do not need to invoke uic themselves.

Alternatively, .ui files can be loaded at run-time by applications, and converted into fully functional
forms. This allows customers to modify the look of an application without recompiling, and can also be
used to reduce the size of applications.

7.3. Built-in Dialogs

Qt includes ready-made dialog classes with static convenience functions for the most common tasks.
Screenshots of some of Qt’s standard dialogs are presented below.

QMessageBox is used to provide the user with information or to present the user with simple choices
(e.g. ‘Yes’or ‘No’).

Figure 20. A QMessageBox

QProgressDialog displays a progress bar and a ‘Cancel’button.

Figure 21. A QProgressDialog

QWizard provides a framework for wizard dialogs.

22

Figure 22. A QWizard

Qt also includes QColorDialog, QFileDialog, QFontDialog and QPrintDialog. These classes are more
suitable for desktop applications and are usually compiled out of Qt/Embedded.

8. Look and Feel

Qt desktop applications adopt the style, or look and feel, of their execution environment, e.g.
Windows XP, Mac OS X, Linux. Qt/Embedded applications can use any of these styles, or can
use custom styles, statically or as plugins. Developers can customize both the widget style and
the window decorations.

8.1. Widget Style

A style is a QStyle subclass that implements the look and feel of Qt’s widgets. Qt/Embedded program-
mers are free to use and modify existing styles or implement their own styles using Qt’s style engine. The
built-in styles available on Qt/Embedded are Windows, Motif, MotifPlus, CDE, Platinum and SGI. The
style can be set dynamically on a per-application basis, and even on a per-widget basis.

Figure 23. Comboboxes in the different built-in styles

A family of applications can be given a distinctive look by writing a custom style. Custom styles can
be defined by subclassing QStyle, QCommonStyle or any descendent of QCommonStyle. It is easy
to make small modifications to existing styles by reimplementing one or two virtual functions from the
appropriate base class.

A style can be compiled as a plugin. With plugins, developers can preview a form in their device’s custom
style in Qt Designer. Style plugins also give users the opportunity to change the look of the device without
recompiling.

23

QStyle

QMotifStyle

QCDEStyle QMotifPlusStyle QSGIStyle

QCommonStyle

QWindowsStyle

QPlatinumStyle

Figure 24. The QStyle class hierarchy

Qt’s built-in widgets are style-aware and will automatically repaint themselves when the style changes.
Custom widgets and dialogs are almost always combinations of built-in widgets and layouts, and are
automatically style-aware. On the rare occasions that it is necessary to write a custom widget from
scratch, developers can use QStyle to draw primitive user-interface elements rather than drawing raw
rectangles directly.

8.2. Window Decorations

Top-level windows are decorated by a title bar and a frame. Qt/Embedded includes these window
manager styles: BeOS, Hydro, KDE and Windows.

Figure 25. Windows with different window decorations

Decorations can be configured on a per-window basis, if required. Custom styles are created by
subclassing QWSDecoration, and distributed as plugins. For more control over the window manager’s
behavior, developers can subclass QWSManager.

24

9. Internationalization

Qt/Embedded fully supports Unicode, the international standard character set. Developers
can freely mix Arabic,English,Hebrew,Japanese,Russian,and every other language supported
by Unicode, in their applications. Qt/Embedded also includes tools to support application
translation to help companies reach international markets.

9.1. Unicode

Qt uses the QString class to store Unicode strings. QString replaces the crude const char *;
constructors and operators are provided to handle conversion between QString and const char *.
Programmers can copy QStrings by value without penalty, since QString uses implicit sharing (copy on
write) to reduce memory use. Qt also provides QCString to efficiently store ASCII strings.

Qt provides a powerful Unicode text rendering engine for all text that is displayed on screen, from the
simplest label to the most sophisticated rich-text editor. The engine supports advanced features such as
special line breaking behavior, bidirectional writing and diacritical marks. It renders most of the world’s
writing systems, including Arabic, Chinese, Cyrillic, English, Greek, Hebrew, Japanese, Korean, Latin
and Vietnamese. The engine is optimized for the common case: a single line of plain text with an optional
accelerator (e.g. File).

Conversion to and from different encodings and charsets is handled by QTextCodec subclasses. Qt 3.0
supports 37 different encodings, including Big5 and GBK for Chinese, EUC-JP, JIS and Shift-JIS for
Japanese, KOI8-R for Russian and the ISO 8859 series. They can be compiled as part of the library or as
plugins, or compiled out using the ‘feature’mechanism.

9.2. Translating Applications

Qt provides tools and functions to help developers provide applications in their customers’ native
languages.

To make a string translatable, simply wrap it in a call to tr() (read ‘translate’):

saveButton->setText(tr("Save"));

tr() attempts to replace a string literal (e.g. “Save”) with a translation if one is available; otherwise it uses
the original text. For example, English could be used as the source language and Chinese as the translated
language, or vice versa. The argument to tr() is converted to Unicode from the application’s default
encoding.

tr()’s general syntax is

Context::tr("source text", "comment")

The ‘context’ is the name of a QObject subclass. It is usually omitted, in which case the class containing
the tr() call is used as the context. The ‘source text’ is the text to translate. The ‘comment’ is optional;
along with the context, it provides additional information for human translators.

Translations are stored in QTranslator objects, which use memory-mapped .qm files (Qt Message
files). Each .qm file contains the translations for a particular language. The language can be changed at
run-time; any dialog created using Qt Designer can retranslate itself on the fly with no special provisions.

25

Qt provides three tools for preparing .qm files: lupdate, Qt Linguist and lrelease.

1. lupdate extracts all the (context, source text, comment) triples from the source code, including
Qt Designer .ui files, and generates a .ts file (Translation Source file). The .ts files are human-
readable.

2. Translators use Qt Linguist to provide translations for the source texts in the .ts files.

3. Highly compressed .qm files are generated by running lrelease on the .ts files. The .qm files
are used on the embedded device.

These steps are repeated as often as necessary during the lifetime of an application. It is perfectly safe to
run lupdate frequently, as it reuses existing translations and marks translations for obsolete source texts
without eliminating them.

9.3. Qt Linguist

Qt Linguist is a Qt application that helps translators translate Qt applications. Translators can edit .ts
files by hand, or more conveniently using Qt Linguist. The .ts file’ scontexts are listed in the left-hand

Figure 26. Qt Linguist

side of the application’s window. The list of source texts for the current context is displayed in the
top-right area, along with translations. By selecting a source text, the translator can enter a translation,
mark it done or unfinished and proceed to the next unfinished translation. Keyboard shortcuts are
provided for all the common navigation options: Done & Next, Next Unfinished, etc. The user interface’s
dockable windows can be reorganized to suit the translators’preferences.

26

Applications often use the same phrases many times in different source texts. Qt Linguist automatically
displays intelligent guesses based on previously translated strings and predefined translations at the
bottom of the window. Guesses often serve as a good starting point that helps translators translate
similar texts consistently. Qt Linguist can optionally validate translations to ensure that accelerators and
ending punctuation are translated correctly. Qt Linguist also detects slight changes in source texts and
automatically suggests appropriate translations. These translations are marked as unfinished so that a
translator can easily find them and check them.

10. Non-Graphical Classes

Qt/Embedded provides a full range of non-graphical classes that provide data containers
(collection classes), input/output, networking,database interaction and threading.

10.1. Collection Classes

Collection classes are used to store groups of items in memory. Qt/Embedded provides two sets of
collection classes: pointer-based collections and value-based collections.

The pointer-based collection classes are QDict<Key,T>, QPtrList<T>, QPtrQueue<T>, QP-
trStack<T>, QPtrVector<T> and QCache<T>. These classes are often used for storing pointers to
QWidgets and QObjects, and Qt/Embedded’s internals make heavy use of them. The pointer-based
collection classes can optionally take ownership of the objects they contain and automatically delete them
when the collection is destroyed, simplifying memory management.

The value-based collection classes are QMap<Key,T>, QValueList<T>, QValueStack<T>, QVal-
ueVector<T> and QStringList.They have an interface very similar to the STL containers. Qt/Embedded
also provides the low-level QMemArray<T> class with its subclasses QBitArray, QByteArray and
QPointArray. These classes are very efficient for handling basic ‘plain old data’ types.

To avoid the problem of code bloat associated with templates, Qt/Embedded uses private non-template
classes to implement the functionality of template classes. The template classes are only a thin layer
that converts special types to generic pointers, and results in very little binary code. Another technique,
implicit sharing, is used in the value-based containers to avoid needless duplication of data. These
optimizations make Qt’s collection classes suitable to embedded development.

10.2. Input/Output

Qt provides QTextStream and QDataStream to read and write text and binary data in a file, a buffer, a
socket or a custom device. QDataStream can be used to serialize basic C++ types and many Qt types.

Directories are manipulated using QDir. The QFileInfo class provides more detailed information about
a file, such as its size, permissions, creation time and last modification time.

Transparent access to remote files is provided by QUrlOperator. In addition to local file system access,
Qt supports the the FTP and HTTP protocols and can be extended to support other protocols. For
example, files can be downloaded using FTP like this:

QUrlOperator op;

op.copy(QString("ftp://ftp.trolltech.com/qt/INSTALL"),

QString("file:/tmp"));

URLs can easily be parsed and recomposed using QUrl.

27

Image files are usually read by creating a QImage with the file name as argument. Printing text and
images is handled by QPainter. These classes are described in “Widgets” [p. 11].

User settings and other application settings can easily be stored on disk using the QSettings class.
Settings are stored in text files under hierarchical keys, e.g. /Tools/Zoomer/RecentFiles. Booleans,
numbers, Unicode strings and lists of Unicode strings are supported.

Qt’s XML module provides a SAX parser and a DOM parser, both of which read well-formed XML and
are non-validating. The SAX (Simple API for XML) implementation follows the design of the SAX2
Java implementation, and is especially suitable for simple parsing requirements and for very large files.
The DOM (Document Object Model) Level 2 implementation follows the W3C recommendation and
includes namespace support.

10.3. Networking

Qt provides an interface for writing TCP/IP clients and servers. The QSocket class provides an
asynchronous buffered TCP connection. Functions such as QSocket::connectToHost() and QSock-
et::writeBlock() can be called at any time without freezing the application’s user interface. Sockets emit
the readyRead() signal when there is data available to read.

The QSocketDevice provides an abstraction for the underlying functionality for QSocket and QServer-
Socket, and can be used for UDP.

10.4. Database

The Qt SQL module provides a uniform interface for accessing SQL databases. Qt includes native drivers
for Oracle, Microsoft SQL Server, Sybase Adaptive Server, PostgreSQL, MySQL and ODBC. Programs
can access multiple databases using multiple drivers simultaneously.

Programmers can easily execute any SQL statements. Qt also provides a high-level C++ interface that
programmers can use to generate the appropriate SQL statements automatically.

Any Qt widget, including custom widgets, can be made data-aware. Qt also includes some database-spe-
cific convenience widgets, to simplify the creation of dialogs and windows that present records as forms
or in tables. Data-aware widgets automatically support browsing, updating and deleting records. Most
database designs require that new records have a unique key that cannot be guessed by Qt, so insertion
usually needs a small amount of code to be written. The programmer can easily force the user to confirm
actions, e.g. deletions.

Using the facilities that the Qt SQL module provides, it is straightforward to create database applications
that use foreign key lookups, present master-detail relationships, and support drill-down.

Qt’s SQL module is fully integrated with Qt Designer.Qt Designer can preview database forms and tables
using live data if desired, allowing developers to browse, delete and update records. Qt Designer has
templates and wizards to make creating database forms fast and simple.

10.5. Multi-Threading

GUI applications often use multiple threads: one thread to keep the user interface responsive, and one
or many other threads to perform time-consuming activities such as reading large files and performing
complex calculations. Qt/Embedded can be configured to support multi-threading, and provides four
threading classes: QThread, QMutex, QSemaphore and QWaitCondition.

28

11. Qt/Embedded in the Wider World

Qt/Embedded makes Linux a viable platform for embedded GUI applications. It is an
implementation of a mature,consistent,object-oriented toolkit that includes many tools to ease
and speed development. Qt/Embedded is already used by major companies and is attracting
software developers from both the commercial sector and from the open source community.

Qt/Embeddedbecamecommerciallyavailable for the first time in September2000. It is a port of
the Qt toolkit which hasbeenpowering both commercialand opensourceapplicationssince1995.
Qt/Embeddedis alreadyusedby enterprisesandindividualsacrosstheworld.

Organizationsthat wish to make useof a ready-madesoftware environment for specializeddevices
suchasPDAs andWebTVs,canlicenseQtopia,anenvironmentcreatedby Trolltech that is built with
Qt/Embedded.Qtopiais usedin theSharpZaurusdevice(shown on thecover-page)andincludesa PIM
(PersonalInformationManagement)applicationsuite. Qtopiais alsoavailablein opensourceform at
http://qpe.sourceforge.net. Qtopiais describedin theQtopia Whitepaper.

InsignaSolutionsoffersa Java Virtual Machinefor Qt/Embedded.TheQt API is usedto implementthe
JavaAWT, resultingin a look andfeel thatis consistentwith C++applications.

IBM andOTI (ObjectTechnologyInternational)alsoprovideaJavasolutionfor Qt/Embedded.Thisuses
theirSimpleWidgetToolkit insteadof theAbstractWidgetToolkit.

Qt hasanactive andhelpful usercommunitywho communicateusingtheqt-interest mailing list.
Seehttp://qt-interest.trolltech.comto subscribeor to browsethearchive.

Qt’sextensivedocumentationis availableon-lineathttp://doc.trolltech.com.

Developers can evaluate Qt/Embedded, with support, for 30 days. See
http://www.trolltech.com/products/qt/evaluate.htmlfor details.

For furtherinformation,emailinfo@trolltech.com.

A smallsampleof theapplicationsthathavebeendevelopedwith Qt/Embeddedareshown below.

OperaSoftware has developeda fast Qt/Embeddedweb-browser that supportsHTML 4.0, CSS1,
JavaScript1.3andcookies.

Figure 27. Konqueror/Embeddedby theKDE team·Portof NetHackby WarwickAllison

29

http://qpe.sourceforge.net
http://qt-interest.trolltech.com
http://doc.trolltech.com
http://www.trolltech.com/products/qt/evaluate.html
mailto:info@trolltech.com

Figure 28. Portof KDE’sSokobangameby SteveDunham·A SID playerby MarkusGritsch

30

Index

About box, 22
Acceleration hard-

ware, 7
Accelerator, 18, 26
Action, 18
Alpha-blended

pixmap, 4
Analog clock, 14
Animation, 13
Anti-aliased font, 4,

6
Aqua, 24
Arabic, 7 20, 25
ARM, 4
Array, 27
Assistant, 22
Asynchronous I/O, 6
Auto-deletion, 27
Automatic layout, 18
AWT, 29
Balloon help, 17
BDF, 6
BeOS, 24
Bezier curve, 16
Bidirectional writ-

ing, 25
Big5, 25
Binary serialization,

27
Bit depth, 4
Bitmap, 5, 13
Bloat problem, 27
BMP, 13
Borland C++, 7
Box layout, 12, 19
Browser, 29
BusMouse, 6
Button, 12
Cache, 27
Caching, 5
Callback, 8
Canvas, 13
CDE, 23
Central area, 16
char, 25
Charmap, 25
Charset, 25
Checkbox, 12

Child widget, 11, 18
Chinese, 7, 25
clicked(), 9
Client, 6, 28
Clipping, 16
Clock, 14
Code bloat problem,

27
Codec, 25
Collection class, 27
Collision testing, 14
Color, 23
Combobox, 12
Comment, 25
Communication, 6, 8
Compiler, 4, 7
Compiler features,

10
Component, 9
Configuration, 5, 27
connect(), 8
Connection, 8, 18
Container, 27
Context, 25
Context menu, 16
Control, 11
Copy on write, 5
Cross-development,

8
CSS1, 29
Custom canvas item,

14
Custom style, 23
Custom widget, 22,

28
Cyrillic, 25
Data visualization,

14
Database, 22, 28
Date, 12
Debugger, 8
Decorations, 6, 24
Default widget size,

18
Defaults, 27
Delete, 27
Designer, 8, 20 26,

28

Desktop, 5 7, 23
Device, 5
Diacritical mark, 25
Dial, 12
Dialog, 22
Dictionary, 27
Directory, 27
DOM, 28
Drawing, 23
Drill-down, 28
Driver, 5, 7
Druid, 22
Dynamic dialog, 22
Editor, 12
Embedded Linux, 4,

5
Emitting a signal, 10
Encoding, 25
English, 25
Ericsson, 4
Error, 22
EUC-JP, 25
Event, 8, 14
exec(), 12
Fatal error, 22
Features, 5
File, 27
Flash, 5, 8
Flicker, 16
Font, 18, 25
Foreign key, 28
Form, 20
Frame, 11, 24
Frame-buffer, 4, 5 8,

16
FTP, 27
g++, 7
Game, 14
GBK, 25
GCC, 7
Geometry, 11, 18
GIF, 13
Graph, 14
Graphic card, 4
Graphics, 7, 13
Greek, 25
Grid layout, 19
GUI application, 16

Handwriting, 7
Hebrew, 7 20, 25
Hierarchical tree

view, 13
Hover help, 17
HTML, 11, 29
HTTP, 27
Icon, 13 16, 17
Icon view, 13
Image, 13, 27
Implicit sharing, 5

25, 27
Inheriting, 9 14, 17
Input method, 7, 19
Input/output, 27
Input validation, 13
Insigna Solutions, 29
Intel x86, 4
IntelliMouse, 6
Internationalization,

18, 24
Introspection, 11
IP, 28
iPAQ, 6
IPC, 6
ISO 8859, 25
Japanese, 7 25, 26
Java, 28
Java Virtual Ma-

chine, 29
JavaScript, 29
JIS, 25
JPEG, 13
KDE, 24
KDevelop, 7
Key, 28
Keyboard, 5 6, 7
KOI8-R, 25
Korean, 25
Label, 12
Language, 18, 24
Latin, 25
Layout, 11, 18
LCD, 12
libc, 7
Library, 5 6, 6
Line breaking, 25
Line editor, 12

31

Linguist, 26
Linker, 7
Linking, 5
Linux, 4, 5
List, 27, 27
List box, 13
List view, 13
Localization, 24
Look and feel, 23
lrelease, 26
lupdate, 26
Mach64, 7
Macintosh, 5
Magic, 11
Main window, 16
Makefile, 8, 11
Makefiles, 22
Map, 27
Master-detail, 28
Maximum size, 19
Memory array, 27
Menu bar, 17, 18
Message box, 22
Message map, 8
Messaging, 14
Meta Object Compil-

er, 10
MFC, 8
Microsoft mouse, 6
Microsoft SQL Serv-

er, 28
Microsoft Visual

C++, 7
Microsoft Windows,

5 23, 24
Minimum size, 19
MIPS, 4
MNG, 13
moc, 10
Motif, 8, 23
Motorola 68000, 4
Mouse, 5
MouseMan, 6
Multi-line editor, 12
Multi-threading, 28
MySQL, 28
NEC Vr41XX, 6
Networking, 27, 28
Notebook, 22
Object-oriented pro-

gramming, 9

OCI, 28
ODBC, 28
Opera Software, 29
Operating system, 4
Oracle, 28
Ownership, 27
Painting, 14 16, 24
Parent widget, 11, 18
Peripheral, 5
Pickboard, 7
Picture, 13
Pixmap, 16
Plain old data, 27
Platforms, 5
Platinum, 23
Plugin, 5, 6 23 24, 25
PNG, 13
PNM, 13
Pointer-based collec-

tion, 27
Pointer device, 6
Popup menu, 16
Positioning, 18
PostgreSQL, 28
PostScript, 16
PostScript font, 6
PowerPC, 4
Pre-processor, 5, 10
Preferences, 23, 27
Preferred size, 19
Primary key, 28
Printer, 16
Private class, 27
.pro, 8
Process, 6, 6
Profiler, 8
Progress bar, 12, 22
Property, 11
Property box, 22
Push button, 12
QAction, 18
QApplication, 12
QBitArray, 27
QBitmap, 5
QButtonGroup, 12
QByteArray, 27
QCache, 27
QCalibratedMouse-

Handler, 6
QCanvas, 13
QCanvasItem, 14

QCanvasView, 14
QCDEStyle, 23
QCheckBox, 12
QColorDialog, 23
QComboBox, 12, 13
QCommonStyle, 23,

23
QCOP, 6
QCString, 25
QCustomMenuItem,

17
QDataStream, 6, 27
QDateEdit, 12
QDateTimeEdit, 12
QDial, 12
QDialog, 11
QDict, 27
QDir, 27
QDirectPainter, 16
QEvent, 14
QFileDialog, 23
QFileInfo, 27
QFontDialog, 23
QFontFactory, 6
QFrame, 11
QGfxRaster, 7
QGridLayout, 12 13,

19
QGroupBox, 12
QHBoxLayout, 12,

19
QIconView, 13
QImage, 13, 27
QLabel, 11, 12
QLCDNumber, 12
QLineEdit, 11 12, 13
QListBox, 13
QListView, 13, 13
.qm, 25
QMainWindow, 16
qmake, 8 11, 22
QMap, 5, 27
QMemArray, 27
QMenuBar, 16
QMessageBox, 22
QMotifPlusStyle, 23
QMotifStyle, 23
QMutex, 28
QNX, 4
QObject, 8, 9 11 25,

27

QPainter, 16, 27
QPalette, 5
QPF, 6
QPicture, 5
QPixmap, 5
QPlatinumStyle, 23
QPointArray, 27
QPopupMenu, 16
QPrintDialog, 23
QProcess, 6
QProgressBar, 12
QProgressDialog, 22
QPtrList, 27
QPtrQueue, 27
QPtrStack, 27
QPtrVector, 27
QPushButton, 12
QRadioButton, 12
QRegExp, 13
QScreen, 7
QScrollBar, 12
QScrollView, 13
QSemaphore, 28
QServerSocket, 28
QSettings, 27
QSGIStyle, 23
QSlider, 12
QSocket, 28
QSocketDevice, 28
QSpinBox, 11 12, 13
QStatusBar, 16
QString, 5 25, 27
QStringList, 27
QStyle, 23
Qt Designer, 8, 20 26,

28
Qt Linguist, 26
QTabDialog, 22
QTable, 13, 13
QTextCodec, 25, 27
QTextEdit, 12, 13
QTextStream, 27
QThread, 28
QTimeEdit, 12
QTimer, 11
QTL, 27
QToolBar, 17
QToolButton, 17
QToolTip, 18
Qtopia, 7 13, 19
QTranslator, 25

32

Queue, 27
quit(), 9
QUrl, 27
QUrlOperator, 27
QValidator, 13
QValueList, 27
QValueStack, 27
QValueVector, 27
QVBoxLayout, 19
QWaitCondition, 28
QWERTY, 7
QWhatsThis, 18
QWidget, 11, 27
QWindowsStyle, 23
QWizard, 22
QWSDecoration, 24
QWSKeyboardHan-

dler, 6
QWSManager, 24
QWSMouseHandler,

6
Radio button, 12
RAM, 4
Reference counting,

5
Registry, 27
Regular expression,

13
Relative growth, 19
Repositioning, 18
Resizing, 18
Reusability, 9
Rich text, 11
Right-to-left lan-

guages, 20, 25
ROM, 5
Rotation, 14, 16
RTTI, 11
Run-time type infor-

mation, 11
SAX, 28
Scale, 14, 16
Screen, 8
Screen rotation, 4
Screen size, 4 16, 18
Screens, 7
Scroll bar, 12, 13
Scroll view, 12, 13
Separator item, 16
Serialization, 27
Server, 4 6, 28

Settings, 27
SGI, 23
Shadow build, 8
Shared library, 5
Shared memory, 6
Sharing, 5 25, 27
Shear, 14, 16
Shift-JIS, 25
Signal, 8
Size, 18
Size policy, 19
Slider, 12
Slot, 8
Socket, 28
Source text, 25
Spacer item, 19
Spin box, 12
Spreadsheet, 13
Sprite, 13
SQL, 28
Stack, 27, 27
Static linking, 5
Status bar, 16
STL, 27
Storage, 5 25, 27
Stream, 27
Stretch, 19
Stretch factor, 19
String, 25
StrongARM, 4
Style, 23
Stylus, 6, 17
Sub-menu, 16
Subclassing, 9 14, 17
Sybase, 28
T9, 7
Tab widget, 22
Table, 13
TCP, 28
TDS, 28
Template, 27
Text editor, 12
Text rendering, 25
Text translation, 25
Theme, 23
Thread, 28
Time, 12
Timer, 14
Title bar, 11, 24
Toggle button, 17
Tool chain, 7

Toolbar, 16 17, 18
Tooltip, 17
Touch-panel, 6, 17
tr(), 25
Transformation, 14,

16
Translation, 11, 25
Tree view, 13
TrueType font, 6
.ts, 26
Type safety, 9
Type1 font, 6
UDP, 28
.ui, 22, 26
Unicode, 6, 7 25 27,

27
Unisys, 13
Unix, 4, 7
URL, 27
User input, 13
User settings, 27
Validation, 13
Value-based collec-

tion, 27
Vector, 27, 27
Vector image, 16
VGA16, 4
Vietnamese, 25
Viewport, 16
Virtual frame-buffer,

8
Visualization, 14
VNC, 8
Voodoo3, 7
Vr41XX, 6
W3C, 28
Warning, 22
Web-browser, 29
What’s this?, 17
Widget, 11
Widget style, 23
Window, 22
Window manager,

24
Windowing system,

5
Windows, 5, 7 23, 24
Wizard, 22, 28
Writing system, 25
X11, 4 5, 7
XBM, 13

XML, 28
XPM, 13

33

