Databases with Qt

Qt 3.0

Copyright (© 2001 Trolltech AS. All rights reserved.

TROLLTECH, Qt and the Trolltech logo are registered trademarks of Trolltech AS. Linux is a registered trademark
of Linus Torvalds. UNIX is a registered trademark of X/Open Company Ltd. Mac is a registered trademark of Apple
Computer Inc. MS Windows is a registered trademark of Microsoft Corporation. All other products named are
trademarks of their respective owners.

The definitive Qt documentation is provided in HTML format supplied with Qt, and available online at http://doc.trolltech.com.
This PDF file was generated automatically from the HTML source as a convenience to users, although PDF is not an official Qt
documentation format.

Contents

SQL Module e e e e e e e e e 3
SQLModule - DFIVEIS & v v v v e et e e e e e e e e e e e e e e e e e e 27
QDataBrowser Class Reference i i it e e e 33
QDataTable Class Reference i i i i e e e e e e e e e e 47
QDataView Class Reference i i i i e e e e e e 62
QSql Class Reference o i i it e e e e e e e e e e e 65
QSqlCursor Class Reference i i i e e e e e e e e e e 67
QSqlDatabase Class Reference. i i e e e e e e 80
QSqlDriver Class Reference e e e e 87
QSqlEditorFactory Class Reference i i e e 92
QSqlError Class Reference i i i e e e e e e e e e e 94
QSqlField Class Reference i i i i e e e e e e e 97
QSqlFieldInfo Class Reference i i i i e e e e e e 101
QSqlForm Class Reference i i e e e e e e e e e 105
QSqlindex Class Reference i i e e e e e e e 109
QSqlPropertyMap Class Reference i i it ittt e e e e 112
QSqlQuery Class Reference i i i i ittt i e e e e e e e e 115
QSqlRecord Class Reference i i i e e e e e e e 122
QSqlRecordInfo Class Reference i i it it e e 128
QSqlResult Class Reference i i i i i ittt i e e e e e e e e 130
Index e e e e e e 134

SQL Module

This module is part of the Qt Enterprise Edition.

Introduction

Qt’s SQL classes help you provide seamless database integration to your Qt applications.

This overview assumes that you have at least a basic knowledge of SQL. You should be able to understand simple
SELECT, | NSERT, UPDATE and DELETE commands. Although the QSqlCursor class provides an interface to database
browsing and editing that does not require a knowledge of SQL, a basic understanding of SQL is highly recom-
mended. A standard text covering SQL databases is An Introduction to Database Systems (7th ed.) by C. J. Date,
ISBN 0201385902.

Whilst this module overview presents the classes from a purely programmatic point of view the Qt Designer manual’s
"Creating Database Applications" chapter takes a higher-level approach demonstrating how to set up master-detail
relationships between widgets, perform drilldown and handle foreign key lookups.

This document is divided into six sections:
SQL Module Architecture. This describes the how the classes fit together.
Connecting to Databases. This section explains how to set up database connections using the QSqlDatabase class.

Executing SQL Commands. This section demonstrates how to issue the standard data manipulation commands,
SELECT, | NSERT, UPDATE and DELETE on tables in the database (although any valid SQL statement can be sent to the
database). The focus is purely on database interaction using QSqlQuery.

Using Cursors. This section explains how to use the QSqlCursor class which provides a more structured and
powerful API than the raw SQL used with QSqlQuery.

Data-Aware Widgets. This section shows how to programmatically link your database to the user interface. In this
section we introduce the QDataTable, QSqlForm, QSqlPropertyMap and QSqlEditorFactory classes and demonstrate
how to use custom data-aware widgets. Qt Designer provides an easy visual way of achieving the same thing. See
the Qt Designer manual, QDataBrowser and QDataView for more information.

Subclassing QSqlCursor. This section gives examples of subclassing QSqlCursor. Subclassing can be used to provide
default and calculated values for fields (such as auto-numbered primary index fields), and to display calculated
data, e.g. showing names rather than ids of foreign keys.

SQL Module Architecture

The SQL classes are divided into three layers:

User Interface Layer. These classes provide data-aware widgets that can be connected to tables or views in the
database (by using a QSqlCursor as a data source). End users can interact directly with these widgets to browse
or edit data. Qt Designer is fully integrated with the SQL classes and can be used to create data-aware forms. The
data-aware widgets can also be programmed directly with your own C+ + code. The classes that support this layer

SQL Module 4

include QSqlEditorFactory, QSqlForm, QSqlPropertyMap, QDataTable, QDataBrowser and QDataView.

SQL API Layer. These classes provide access to databases. Connections are made using the QSglDatabase class.
Database interaction is achieved either by using the QSqlQuery class and executing SQL commands directly or
by using the higher level QSqlCursor class which composes SQL commands automatically. In addition to QSql-
Database, QSqlCursor and QSqlQuery, the SQL API layer is supported by QSqlError, QSqlField, QSqlindex and
QSqlRecord.

Driver Layer. This comprises three classes, QSqlResult, QSqlDriver and QSqlDriverFactorylnterface. This layer
provides the low level bridge between the database and the SQL classes. This layer is documented separately since
it is only relevant to driver writers, and is rarely used in standard database application programming. See here for
more information on implementing a Qt SQL driver plugin.

SQL Driver Plugins

The Qt SQL module can dynamically load new drivers at runtime using the Plugins.
The SQL driver documentation describes how to build plugins for specific database management systems.

Once a plugin is built, Qt will automatically load it, and the driver will be available for use by QSqlDatabase (see
QSqlDatabase::drivers() for more information).

Connecting to Databases

At least one database connection must be created and opened before the QSglQuery or QSqlCursor classes can be
used.

If the application only needs a single database connection, the QSqlDatabase class can create a connection which
is used by default for all SQL operations. If multiple database connections are required these can easily be set up.

QSqglDatabase requires the gsqldatabase.h header file.

Connecting to a Single Database

Making a database connection is a simple three step process: activate the driver, set up the connection information,
and open the connection.

#include <qgapplication. h>
#i ncl ude <gsql dat abase. h>
#include "../login. h"

int min(int argc, char *argv[])
{
QApplication app(argc, argv);

QSql Dat abase *defaul t DB = QSql Dat abase: : addDat abase(DB_SALES DRI VER);
if (defaultDB) {

def aul t DB- >set Dat abaseName(DB_SALES DBNAME)

def aul t DB- >set User Nang(DB_SALES USER);

def aul t DB- >set Password(DB_SALES PASSWD);

def aul t DB- >set Host Nang(DB_SALES HOST);

if (defaultDB->open()) {
/1 Database successfully opened; we can now i ssue SQ.L comands.

SQL Module 5

}

return O;

From sql/overview/connect1/main.cpp

First we activate the driver by calling QSqlDatabase::addDatabase(), passing the name of the driver we wish to
use for this connection. At the time of writing the available drivers are: QODBC3 (Open Database Connectivity),
QOCI8 (Oracle), QTDS7 (Sybase Adaptive Server and Microsoft SQL Server), QPSQL7 (PostgreSQL 6 and 7) and
QMYSQL3 (MySQL). Note that some of these drivers aren’t included in the Qt Free Edition, look at the README
files for details.

The connection which is created becomes the application’s default database connection and will be used by the Qt
SQL classes if no other database is specified.

Second we call setDatabaseName(), setUserName(), setPassword() and setHostName() to initialize the connection
information. Note that for the QOCI8 (Oracle) driver the TNS Service Name has to be passed to setDatbaseName().

Third we call open() to open the database and give us access to the data. If this call fails it will return FALSE; error
information can be determined using QSqlDatabase::lastError().

Connecting to Multiple Databases

Connecting to multiple databases is achieved using the two argument form of QSqlDatabase::addDatabase() where
the second argument is a unique identifier distinguishing the connection.

#i ncl ude <qgapplication. h>
#i ncl ude <gsql dat abase. h>
#include "../login.h"

bool createConnections();

int min(int argc, char *argv[])

{
QApplication app(argc, argv);
if (createConnections()) {
Il Databases successfully opened; get pointers to them
QSql Dat abase *oracl edb = QSgl Dat abase: : dat abase("ORACLE");
/1 Now we can now i ssue SQL commands to the oracle connection
[l or to the default connection
}
return 0;
}

bool createConnections()
{
Il create the default database connection
Sql Dat abase *defaul t DB = QSql Dat abase: : addDat abase(DB_SALES DRI VER);
if (! defaultDB) {
gwarning("Failed to connect to driver");
return FALSE;
}
def aul t DB- >set Dat abaseName(DB_SALES DBNAME);
def aul t DB- >set User Name(DB _SALES USER)

SQL Module 6

def aul t DB- >set Passwor d(DB_SALES PASSWD) ;
def aul t DB- >set Host Name(DB_SALES HOST);
if (! defaultDB->open()) {
gwarning("Failed to open sal es database: " +
defaul t DB->l astError().driverText());
gwarni ng(defaul t DB->l ast Error(). databaseText());
return FALSE;

}

Il create a named connection to oracle

QSql Dat abase *oracl e = QSql Dat abase: : addDatabase(DB_ORDERS DRI VER, "CORACLE");

if (! oracle) {
gwarning("Failed to connect to oracle driver");
return FALSE;

}

oracl e- >set Dat abaseName(DB_ORDERS _DBNAME) ;

oracl e- >set User Nanme(DB_ORDERS USER);

oracl e->set Passwor d(DB_ORDERS PASSWD);

oracl e- >set Host Name(DB_ORDERS HOST);

if (! oracle->open()) {
gwarning("Failed to open orders database: " +

oracle->lastError().driverText());

gwWarni ng(oracl e->l astError().databaseText());
return FALSE;

}

return TRUE;

From sql/overview/create_connections/main.cpp

In the example above we have moved the connections into their own function, createConnections(), and added
some basic error handling. The static function QSqlDatabase::database() can be called from anywhere to provide a
pointer to a database connection. If we call it without any parameter it will return the default connection. If called
with the identifier we’ve used for a connection, e.g. "ORACLE", in the above example, it will return a pointer to the
specified connection.

If you create a mai n. cpp using Qt Designer, it will not include our example createConnections() function. This
means that applications that preview correctly in Qt Designer will not run unless you implement your own database
connections function.

Note that in the code above the ODBC connection was not named and is therefore used as the default connection.
QSqglDatabase maintains ownership of the pointers returned by the addDatabase() static function. To remove a
database from the list of maintained connections, first close the database with QSqlDatabase::close(), and then
remove it using the static function QSqlDatabase::removeDatabase().

Executing SQL Commands Using QSqlQuery

The QSqlQuery class provides an interface for executing SQL commands. It also has functions for navigating
through the result sets of SELECT queries and for retrieving individual records and field values.

The QSqlCursor class described in the next section inherits from QSqlQuery and provides a higher level interface
that composes SQL commands for us. QSqlCursor is particularly easy to integrate with on-screen widgets. Program-
mers unfamiliar with SQL can safely skip this section and use the QSqlCursor class covered in "Using QSqlCursor".

SQL Module 7

Transactions

If the underlying database engine supports transactions QSqlDriver::hasFeature(QSqlDriver::Transactions) will
return TRUE. You can use QSqlDatabase::transaction() to initiate a transaction, followed by the SQL commands
you want to execute within the context of the transaction, and then either QSglDatabase::commit() or QSql-
Database::rollback().

Basic Browsing

#i ncl ude <qgapplication. h>
#i ncl ude <gsql dat abase. h>
#i ncl ude <qgsql query. h>
#include "../login.h"

bool createConnections();

int min(int argc, char *argv[])

{
QApplication app(argc, argv);
if (createConnections()) {
QSql Dat abase *oracl edb = QSgl Dat abase: : dat abase("ORACLE");
Il Copy data fromthe oracle database to the ODBC (default)
/'l dat abase
QSql Query target;
QSql Query query("SELECT id, name FROM people;", oracledb);
if (query.isActive()) {
while (query.next()) {
target.exec("INSERT INTO people (id, name) VALUES (" +
query.val ue(0).toString() +
", " + query.value(l).toString() + "');");
}
}
}
return 0;
}

From sql/overview/basicbrowsing/main.cpp

In the example above we've added an additional header file, gsqlquery.h. The first query we create, t ar get, uses
the default database and is initially empty. For the second query, g, we specify the "ORACLE" database that we want
to retrieve records from. Both the database connections were set up in the createConnections() function we wrote
earlier.

After creating the initial SELECT statement, isActive() is checked to see if the query executed successfully. The
next() function is used to iterate through the query results. The value() function returns the contents of fields as
QVariants. The insertions are achieved by creating and executing queries against the default database using the

target QSqlQuery.

int count = 0;
if (query.isActive()) {
while (query.next()) {
target.exec("INSERT INTO people (id, name) VALUES (" +
query.val ue(0).toString() +
", " + query.value(l).toString() + "');");
if (target.isActive())

SQL Module 8

count += target. nunRowsAffected();

From sql/overview/basicbrowsing2/main.cpp

The above code introduces a count of how many records are successfully inserted. Note that isActive() returns
FALSE if the query, e.g. the insertion, fails. numRowsAffected() returns -1 if the number of rows cannot be
determined, e.g. if the query fails.

Basic Data Manipulation

int min(int argc, char *argv[])

{
QApplication app(argc, argv);
int rows = 0;
if (createConnections()) {
QSql Query query("INSERT INTO staff (id, forenane, surnanme, salary) "
"VALUES (1155, 'Gnger’, 'Davis’, 50000);");
if (query.isActive()) rows += query. nunRowsAffected() ;
query. exec("UPDATE staff SET sal ary=60000 WHERE i d=1155;");
if (query.isActive()) rows += query. nunRowsAffected() ;
query. exec("DELETE FROM staff WHERE id=1155;");
if (query.isActive()) rows += query.nunRowsAffected() ;
}
return (rows ==3) ?2 0 : 1,
}

From sql/overview/basicdatamanip/main.cpp

This example demonstrates straightforward SQL DML (data manipulation language) commands. Since we did not
specify a database in the QSqlQuery constructor the default database is used. QSqlQuery objects can also be used
to execute SQL DDL (data definition language) commands such as CREATE TABLE and CREATE INDEX.

Navigating Result Sets

Once a SELECT query has been executed successfully we have access to the result set of records that matched the
query criteria. We have already used one of the navigation functions, next(), which can be used alone to step
sequentially through the records. QSqlQuery also provides first(), last(), next() and prev(). After any of these
commands we can check that we are on a valid record location by calling isValid ().

We can also navigate to any arbitrary record using seek(). The first record in the dataset is zero. The number of
the last record is size() - 1. Note that not all databases provide the size of a SELECT query and in such cases size()
returns -1.

if (createConnections()) {
QSql Query query("SELECT id, name FROM peopl e ORDER BY nane;");
if (! query.isActive()) return 1; // Query failed
int i;
i = query.size(); Il In this exanple we have 9 records; i ==
query.first(); Il Moves to the first record.

SQL Module 9

i = query.at(); i ==

query. last(); Il Moves to the last record.

i = query.at(); i ==

query.seek(query.size() / 2); I/ Mves to the mddle record.
i = query.at(); i ==

From sql/overview/navigating/main.cpp
The example above shows some of the navigation functions in use.

Not all drivers support size(), but we can interrogate the driver to find out:

Sql Dat abase* defaul t DB = QSql Dat abase: : dat abase() ;
if (defaul tDB->driver()->hasFeature(QSqgl Driver::QuerySize)) {

Il QSql Query::size() supported

}
el se {

Il QSql Query::size() cannot be relied upon
}

Once we have located the record we are interested in we may wish to retrieve data from it.

if (createConnections()) {
QSql Query query("SELECT id, surname FROM staff;");
if (query.isActive()) {
while (query.next()) {
qDebug(query.value(0).toString()
(1

+'0" 4+
query.val ue(1).toString());

From sql/overview/retrievel/main.cpp
Note that if you wish to iterate through the record set in order the only navigation function you need is next().

Tip: The lastQuery() function returns the text of the last query executed. This can be useful to check that the query
you think is being executed is the one actually being executed.

Using QSglCursor

The QSqlCursor class provides a high level interface to browsing and editing records in SQL database tables or
views without the need to write your own SQL.

QSqlCursor can do almost everything that QSqlQuery can, with two exceptions. Since cursors represent tables or
views within the database, by default, QSqlCursor objects retrieve all the fields of each record in the table or view
whenever navigating to a new record. If only some fields are relevant simply confine your processing to those
and ignore the others. Or, manually disable the generation of certain fields using QSqlRecord::setGenerated().
However, if you really don’t want to retrieve all fields in the cursor then you should use a QSqlQuery instead, and
customize the query to suit your needs. You can edit records using a QSqlCursor providing that the table or view
has a primary index that uniquely distinguishes each record. If this condition is not met then you’ll need to use a
QSqlQuery for edits. (Note that not all databases support editable views.)

QSqlCursor operates on a single record at a time. Whenever performing an insert, update or delete using QSql-
Cursor, only a single record in the database is affected. When navigating through records in the cursor, only one
record at a time is available in application code. In addition, QSqlCursor maintains a separate ’edit buffer’ which is

SQL Module 10

used to make changes to a single record in the database. The edit buffer is maintained in a separate memory area,
and is unnaffected by the 'navigation buffer’ which changes as the cursor moves from record to record.

Before we can use QSqlCursor objects we must first create and open a database connection. Connecting is described
in the Connecting to Databases section above. For the examples that follow we will assume that the connections
have been created using the createConnections() function defined in the QSqlDatabase example presented earlier.

In the data-aware widgets section that follows this one we show how to link widgets to database cursors. Once we
have a knowledge of both cursors and data-aware widgets we can discuss subclassing QSqlCursor.

The QSqlCursor class requires the gsqlcursor.h header file.

Retrieving Records

#include <qgapplication. h>
#i ncl ude <gsql dat abase. h>
#incl ude <gsql cursor. h>
#include "../login.h"

bool createConnections();

int min(int argc, char *argv[])

{
QApplication app(argc, argv);
if (createConnections()) {
@Sql Cursor cur("staff"); // Specify the table/view name
cur.select(); // W'Il retrieve every record
while (cur.next()) {
gDebug(cur.value("id").toString() +": " +
cur.value("surname").toString() +" " +
cur.value("salary").toString());
}
}
return 0;
}

From sql/overview/retrieve2/main.cpp

We create the QSqlCursor object, specifying the table or view to use. If we need to use a database other than the
default we can specify it in the QSqlCursor constructor.

The SQL executed by the cur.select() call is
SELECT staff.id, staff.forename, staff.surname, staff.salary, staff.statusid FROM staff

Next, we iterate through the records returned by this select statement using cur.next(). Field values are retrieved
in in a similar way to QSqlQuery, except that we pass field names rather than numeric indexes to value() and
setValue().

Sorting and Filtering Records

To specify a subset of records to retrieve we can pass filtering criteria to the select() function. Each record that is
returned will meet the criteria of the filter (the filter corresponds to the SQL statement’s WHERE clause).

cur.select("id > 100")

SQL Module 11

This select() call will execute the SQL

SELECT staff.id, staff.forename, staff.surname, staff.salary, staff.statusid
FROM staff WHERE staff.id > 100

This will retrieve only those staff whose i d is greater than 100.

In addition to retrieving selected records we often want to specify a sort order for the returned records. This is
achieved by creating a QSqlIndex object which contains the names of the field(s) we wish to sort by and pass this
object to the select() call.

@Sql Cursor cur("staff");
@Sql I ndex nanel ndex = cur.index("surname");
cur. sel ect(namel ndex);

Here we create a QSqllndex object with one field, "surname". When we call the select() function we pass the index
object, which specifies that the records should be returned sorted by staff.surname. Each field in the index object
is used in the ORDER BY clause of the select statement. The SQL executed here is

SELECT staff.id, staff.forename, staff.surname, staff.salary, staff.statusid
FROM staff ORDER BY staff.surname ASC

Combining the retrieval of a subset of records and ordering the results is straightforward.
cur.select("surname LIKE "A%", nanelndex);

We pass in a filter string (the WHERE clause), and the QSqlIndex object to sort by (the ORDER BY clause). This
produces

SELECT staff.id, staff.forename, staff.surname, staff.salary, staff.statusid
FROM st af f WHERE staff.surname LIKE ' A% ORDER BY staff.surname ASC

To sort by more than one field, an index can be created which contains multiple fields. Ascending and descending
order can be set using QSqlIndex::setDescending(); the default is ascending.

@Sql Cursor cur("staff");

@StringList fields = QStringList() << "surname" << "forename";
@Sql I ndex order = cur.index(fields);

cur.select(order);

while (cur.next()) {

From sql/overview/order1/main.cpp

Here we create a string list containing the fields we wish to sort by, in the order they are to be used. Then we create
a QSqlindex object based on these fields, finally executing the select() call using this index. This executes

SELECT staff.id, staff.forename, staff.surname, staff.salary, staff.statusid
FROM staff ORDER BY staff.surnane ASC, staff.forenane ASC

If we need to retrieve records with fields that match specific criteria we can create a filter based on an index.

@Sql Cursor cur("staff");

@Stringlist fields = QStringList() << "id" << "forename";
@Sql I ndex order = cur.index(fields);

@Sql Index filter = cur.index("surname");

cur.setVal ue("surnane", "Bl oggs");

cur.select(filter, order);

while (cur.next()) {

SQL Module 12

From sql/overview/order2/main.cpp

This executes

SELECT staff.id, staff.forename, staff.surname, staff.salary, staff.statusid
FROM staff WHERE staff.surname=" Bl oggs’ ORDER BY staff.id ASC, staff.forename ASC

The "order" QSqlindex contains two fields, "id" and "forename" which are used to order the results. The "filter"
QSqlindex contains a single field, "surname". When an index is passed as a filter to the select() function, for each
field in the filter, a fieldname=value subclause is created where the value is taken from the current cursor’s value
for that field. We use setValue() to ensure the value used is the one we want.

Extracting Data

QSql Cursor cur("creditors");
QStringList orderFields = QStringList() << "surname" << "forename";
@Sql I ndex order = cur.index(orderFields);

QStringList filterFields = QStringList() << "surnane" << "city";
gl Index filter = cur.index(filterFields);

cur. setVal ue("surnane", "Chirac");

cur.setValue("city", "Paris");

cur.select(filter, order);

while (cur.next()) {
int id=cur.value("id").tolnt();
@String name = cur.value("forename").toString() +
cur.value("surname").toString();
qDebug(QString::number(id) +": " + name);

non

+

From sql/overview/extract/main.cpp

In this example we begin by creating a cursor on the creditors table. We create two QSqlIndex objects. The first,
"order", is created from the "orderFields" string list. The second, "filter", is created from the "filterFields" string list.
We set the values of the two fields used in the filter, "surname" and "city", to the values we’re interested in. Now
we call select() which generates and executes the following SQL:

SELECT creditors.city, creditors.surnane, creditors.forenanme, creditors.id
FROM creditors

WHERE creditors.surname = 'Chirac’ AND creditors.city = 'Paris’

ORDER BY creditors. surname ASC, creditors.forename ASC

The filter fields are used in the WHERE clause. Their values are taken from the cursor’s current values for those
fields; we set these values ourselves with the setValue() calls. The order fields are used in the ORDER BY clause.

Now we iterate through each matching record (if any). We retrieve the contents of the id, forename and surname
fields and pass them on to some processing function, in this example a simple qDebug() call.

Manipulating Records

Records can be inserted, updated or deleted in a table or view using a QSqlCursor providing that the table or view
has a primary index that uniquely distinguishes each record. If this is not the case a QSqlQuery must be used
instead. (Note that not all databases support editable views.)

SQL Module 13

Each cursor has an internal ’edit buffer’ which is used by all the edit operations (insert, update and delete). The
editing process is the same for each operation: acquire a pointer to the relevant buffer; call setValue() to prime the
buffer with the values you want; call insert() or update() or del() to perform the desired operation. For example,
when inserting a record using a cursor, you call primelnsert() to get a pointer to the edit buffer and then call
setValue() on this buffer to set each field’s value. Then you call QSQICursor::insert() to insert the contents of
the edit buffer into the database. Similarly, when updating (or deleting) a record, the values of the fields in the
edit buffer are used to update (or delete) the record in the database. The ’edit buffer’ is unaffected by any cursor
navigation functions. Note that if you pass a string value to setValue() any single quotes will be escaped (turned
into a pair of single quotes) since a single quote is a special character in SQL.

The primelnsert(), primeUpdate() and primeDelete() methods all return a pointer to the internal edit buffer, how-
ever each method can potentially perform different operations on the edit buffer before returning it. By default,
QSqlCursor::primelnsert() clears all the field values in the edit buffer (see QSqlRecord::clearValues()). Both QSql-
Cursor::primeUpdate() and QSqlCursor::primeDelete() initialize the edit buffer with the current contents of the
cursor before returning it. All three of these functions are virtual, so you can redefine the behavior (for example,
reimplementing primelnsert() to auto-number fields in the edit buffer). Data-aware user-interface controls emit
signals, e.g. primelnsert(), that you can connect to; these pass a pointer to the appropriate buffer so subclassing
may not be necessary. See subclassing QSqlCursor for more information on subclassing; see the Qt Designer manual
for more on connecting to the primelnsert() signal.

When insert(), update() or del() is called on a cursor, it will be invalidated and will no longer be positioned on a
valid record. If we need to move to another record after performing an insert(), update() or del() we must make a
fresh select() call. This ensures that changes to the database are accurately reflected in the cursor.

Inserting Records

QSql Cursor cur("prices")
QStringList names = QStringlList() <<
"Screwdriver" << "Hammer" << "Wench" << "Saw';
int id = 20;
for (QStringList::Iterator name = nanes. begin();
name != names.end(); ++name) {
QSql Record *buffer = cur.prinelnsert()
buffer->setValue("id", id);
buf f er - >set Val ue("nanme", *name);
buf f er->set Val ue("price", 100.0 + (double)id);
count += cur.insert();
i d++;

From sql/overview/insert/main.cpp

In this example we create a cursor on the "prices" table. Next we create a list of product names which we iterate
over. For each iteration we call the cursor’s primelnsert() method. This method returns a pointer to a QSqlRecord
buffer in which all the fields are set to NULL. (Note that QSqlCursor::primelnsert() is virtual, and can be customized
by derived classes. See QSqlCursor). Next we call setValue() for each field that requires a value. Finally we call
insert() to insert the record. The insert() call returns the number of rows inserted.

We obtained a pointer to a QSqlRecord object from the primelnsert() call. QSqlRecord objects can hold the data
for a single record plus some meta-data about the record. In practice most interaction with a QSqlRecord consists
of simple value() and setValue() calls as shown in this and the following example.

Updating Records

QSql Cursor cur("prices");
cur.select("id=202");
if (cur.next()) {

SQL Module 14

gl Record *buffer = cur. prineUpdate();

doubl e price = buffer->value("price").toDouble();
doubl e newprice = price * 1.05;

buf f er->set Val ue("price", newprice);

cur. update();

From sql/overview/update/main.cpp

This example begins with the creation of a cursor over the prices table. We select the record we wish to update
with the select() call and move to it with the next() call. We call primeUpdate() to get a QSqlRecord pointer to a
buffer which is populated with the contents of the current record. We retrieve the value of the price field, calculate
a new price, and set the the price field to the newly calculated value. Finally we call update() to update the record.
The update() call returns the number of rows updated.

If many identical updates need to be performed, for example increasing the price of every item in the price list,
using a single SQL statement with QSqlQuery is more efficient, e.g.

Sql Query query("UPDATE prices SET price = price * 1.05");

Deleting Records

QSql Cursor cur("prices")
cur.select("id=999");
if (cur.next()) {
cur. primeDel ete();
cur.del ();

From sql/overview/del/main.cpp

To delete records, select the record to be deleted and navigate to it. Then call primeDelete() to populate the cursor
with the primary key of the selected record, (in this example, the pri ces. i d field), and then call QSqglCursor::del()
to delete it.

As with update(), if multiple deletions need to be made with some common criteria it is more efficient to do so
using a single SQL statement, e.g.

@&Sql Query query("DELETE FROM prices WHERE id >= 2450 AND id <= 2500");

Data-Aware Widgets

Data-Aware Widgets provide a simple yet powerful means of connecting databases to Qt user interfaces. The
easiest way of creating and manipulating data-aware widgets is with Qt Designer. For those who prefer a purely
programmatic approach the following examples and explanations provide an introduction. Note that the "Creating
Database Applications” chapter of the Qt Designer manual and its accompanying examples provides additional
information.

Data-Aware Tables

#include <qgapplication. h>
#i ncl ude <gsql dat abase. h>
#incl ude <gsql cursor. h>
#i ncl ude <qdat at abl e. h>
#include "../login.h"

SQL Module 15

bool createConnections();

int min(int argc, char *argv[])

{
QApplication app(argc, argv);
if (createConnections()) {
@Sql Cursor staffCursor("staff");
QDat aTabl e *staffTabl e = new QDat aTabl e(&staffCursor, TRUE);
app. set Mai nW dget (staffTable);
st af f Tabl e->refresh();
st af f Tabl e- >show() ;
return app. exec();
}
return 0;
}

From sql/overview/tablel/main.cpp

Data-Aware tables require the qdatatable.h and gsqlcursor.h header files. We create our application object, call
createConnections() and create the cursor. We create the QDataTable passing it a pointer to the cursor, and set the
autoPopulate flag to TRUE. Next we make our QDataTable the main widget and call refresh() to populate it with
data and call show() to make it visible.

The autoPopulate flag tells the QDataTable whether or nor it should create columns based on the cursor. autoPop-
ulate does not affect the loading of data into the table; that is achieved by the refresh() function.

@Sql Cursor staffCursor("staff");
QDat aTabl e *staff Tabl e = new QDat aTabl e(&staffCursor);

app. set Mai nW dget (staffTable);

st af f Tabl e- >addCol urm(" f or enane", "Forename");
st af f Tabl e- >addCol urm("surname", "Surname");
st af f Tabl e- >addCol urm("sal ary", "Annual Salary");

@Stringlist order = QStringList() << "surname" << "forenanme";
staff Tabl e->set Sort(order);

st af f Tabl e->refresh();
st af f Tabl e- >show() ;

From sql/overview/table2/main.cpp

We create an empty QDataTable which we make into our main widget and then we manually add the columns we
want in the order we wish them to appear. For each column we specify the field name and optionally a display
label.

We have also opted to sort the rows in the table; this could also have been achieved by applying the sort to the
cursor itself.

Once everything is set up we call refresh() to load the data from the database and show() to make the widget
visible.

QDataTables only retrieve visible rows which (depending on the driver) allows even large tables to be displayed
very quickly with minimal memory cost.

SQL Module 16

Creating Data-Aware Forms

Creating data-aware forms is more involved than using data-aware tables because we must take care of each field
individually. Most of the code below can be automatically generated by Qt Designer. See the Qt Designer manual
for more details.

Displaying a Record

#i ncl ude <qgapplication. h>
#incl ude <qdi al og. h>
#include <qgl abel . h>

#incl ude <qgl ayout. h>
#include <qglineedit.h>

#i ncl ude <gsql dat abase. h>
#include <gsql cursor. h>
#include <qgsql form h>
#include "../login.h"

bool createConnections();

class FormDialog : public QDialog

QLabel *sal aryLabel
QLineEdit *sal aryEdit

new QLabel ("Salary:", this);
new QLineEdit(this);

{
public:
FornDi al og() ;
b
For mDi al og: : For nDi al og()
{
QLabel *forenameLabel = new QLabel ("Forename:", this);
QLabel *forenameDi splay = new QLabel (this);
QLabel *surnaneLabel = new QLabel ("Surnane:", this);
QLabel *surnaneDisplay = new QLabel (this);

i
gri d->addW dget (forenanelLabel, 0, 0)
gri d->addW dget (f orenaneDi spl ay, 0, 1);
grid->addW dget (surnameLabel , 1, 0);
gri d->addW dget (surnameDi spl ay, 1, 1);
gri d->addW dget (sal aryLabel, 2, 0);
gri d->addW dget (sal aryEdit, 2, 1)
grid->activate();

QSql Cursor staffCursor("staff");
staffCursor.select();
staf f Cursor. next();

gl Form sql Forn(this);

sql Form set Record(staffCursor. primeUpdate());
sql Forminsert(forenaneDi splay, "forenane");
sql Forminsert(surnameDisplay, "surname");
sql Forminsert(salaryEdit, "salary");

sql Form readFi el ds() ;

SQL Module 17

int min(int argc, char *argv[])

{
QApplication app(argc, argv);
if (! createConnections()) return 1;
FornDi al og *fornDi al og = new FornDi al og();
fornDi al og- >show() ;
app. set Mai nW dget (fornDi al og);
return app. exec();

}

From sql/overview/form1/main.cpp

We include the header files for the widgets that we need. We also include gsqldatabase.h and gsqlcursor.h as usual,
but we now add gsqlform.h.

The form will be presented as a dialog so we subclass QDialog with our own FormDialog class. We use a QLineEdit
for the salary so that the user can change it. All the widgets are laid out with a grid.

We create a cursor on the staff table, select all records and move to the first record.

Now we create a QSqlForm object and set the QSqlForm’s record buffer to the cursor’s update buffer. For each
widget that we wish to make data-aware we insert a pointer to the widget and the associated field name into the
QSqlForm. Finally we call readFields() to populate the widgets with data from the database via the cursor’s buffer.

Displaying a Record in a Data Form

QDataView is a Widget that can hold a read-only QSqlForm. In addition to QSqlForm it offers the slot refresh (
QSqlRecord *) so it can easily be linked together with a QDataTable to display a detailled view of a record:

connect (myDat aTabl e, SIGNAL(current Changed(QSgl Record*)),
myDat aVi ew, SLOT(refresh(QSgl Record*)));

Editing a Record

This example is similar to the previous one so we will focus on the differences.

class FornDial og : public Qb alog
{
Q OBJECT
public:
FornDi al og() ;
~FornDi al og();
public slots:
voi d save();
private:
@Sql Cursor staffCursor;
@Sql For m *sql Form
@Sqgl I ndex i dI ndex;
b

From sql/overview/form2/main.h

The save slot will be used for a button that the user can press to confirm their update. We also hold pointers to the
QSqlCursor and the QSqlForm since they will need to be accessed outside the constructor.

SQL Module 18

staff Cursor.set Tri nmed("forename", TRUE);
staffCursor.set Tri mmed("surnane", TRUE);

We call setTrimmed() on the text fields so that any spaces used to right pad the fields are removed when the fields
are retrieved.

Properties that we might wish to apply to fields, such as alignment and validation are achieved in the conventional
way, for example, by calling QLineEdit::setAlignment and QLineEdit::setValidator.

QineEdit *forenameEdit new QLineEdit(this);

QPushButton *saveButton new QPushButton("&Save", this);
connect (saveButton, SIGNAL(clicked()), this, SLOT(save()));

The FormDialog constructor is similar to the one in the previous example. We have changed the forename and
surname widgets to QLineEdits to make them editable and have added a QPushButton the user can click to save
their updates.

grid->addW dget (saveButton, 3, 0);
We add an extra row to the grid containing the save button.

i dindex = staffCursor.index("id");
staff Cursor.select(idlndex);
staffCursor.first();

We create a QSqlIndex object and then execute a select() using the index. We then move to the first record in the
result set.

sql Form = new QSgl Forn{ this);
sql Form >set Record(staffCursor.prineUpdate());

We create a new QSqlForm object and set it’s record buffer to the cursor’s update buffer.

sql Form >i nsert(forenaneEdit, "forename");
sql Form >i nsert(surnanekdit, "surname");
sql Form >i nsert(salaryEdit, "salary");

sql Form >r eadFi el ds() ;

Now we link the buffer’s fields to the QLineEdit controls. (In the previous example we linked the cursor’s fields.)
The edit controls are populated by the readFields() call as before.

For nDi al og: : ~For nDi al og()
{

}

In the destructor we don’t have to worry about the widgets or QSqlForm since they are children of the form and
will be deleted by Qt at the right time.

voi d FornDi al og: : save()
{
sql Form >writeFields();
staff Cursor. updat e();
staff Cursor.select(idlndex);
staffCursor.first();

SQL Module 19

Finally we add the save functionality for when the user presses the save button. We write back the data from
the widgets to the QSqlRecord buffer with the writeFields() call. Then we update the database with the updated
version of the record with the cursor’s update() function. At this point the cursor is no longer positioned at a valid
record so we reissue the select() call using our QSglindex and move to the first record.

QDataBrowser and QDataView are widgets which provide a great deal of the above functionality. QDataBrowser
provides a data form which allows editing of and navigation through records in a cursor. QDataView provides a
read only form for data in a cursor or database record. See the class documentation or the Qt Designer manual for
more information on using these widgets.

Link to sql/overview/form2/main.cpp

Custom Editor Widgets

QSqlForm uses QSqlPropertyMap to handle the transfer of data between widgets and database fields. Custom
widgets can also be used in a form by installing a property map that contains information about the properties of
the custom widget which should be used to transfer the data.

This example is based on the form2 example in the previous section so we will only cover the differences here. The
full source is in sql/overview/custom1/main.h and sql/overview/custom1/main.cpp

class CustonkEdit : public QineEdit

{
Q OBJECT
Q PROPERTY(@sString upperLine READ upperLine WRI TE set Upper Li ne)
public:
Custonkdit (QN dget *parent=0, const char *nane=0);
@String upperLine() const;
voi d set UpperLine(const QString & ine);
public slots:
voi d changed(const QString &ine);
private:
@String upperLineText;
b

We've created a simple subclass of QLineEdit and added a property, upperLineText, which will hold an uppercase
version of the text. We also created a slot, changed.

QSql PropertyMap *propMap;
We will be using a property map so we add a pointer to a property map to our FormDialog’s private data.

CustonEdit:: CustonEdit (QN dget *parent, const char *nane) :
Qi neEdi t(parent, name)
{

connect (this, SIGNAL(textChanged(const QString &)),
this, SLOT(changed(const QString &));

In the CustomEdit constructor we use the QLineEdit constructor and add a connection between the textChanged
signal and our own changed slot.

voi d Custonkdit::changed(const QString &ine)
{

}

set UpperLine(line);

SQL Module 20

The changed() slot calls our setUpperLine() function.

voi d CustonEdit:: setUpperLine(const QString &ine)
{

upper Li neText = line. upper();
set Text (upperLineText);

}

The setUpperLine() function places an uppercase copy of the text in the upperLineText buffer and then sets the text
of the widget to this text.

Our CustomEdit class ensures that the text entered is always uppercase and provides a property that can be used
with a property map to link CustomEdit instances directly to database fields.

CustonEdit *forenameEdit = new CustonEdit(this);

Custonkdit *surnanekEdit new Custonkdit(this);
We use the same FormDialog as we did before, but this time replace two of the QLineEdit widgets with our own
CustomEdit widgets.

Laying out the grid and setting up the cursor is the same as before.

propMap = new QSgl PropertyMap;
propMap- >i nsert (forenaneEdit->cl assNanme(), "upperlLine");

We create a new property map on the heap and register our CustomEdit class and its upperLine property with the
property map.

sgl Form = new QSql Form(this);
sql Form >set Record(staffCursor->primeUpdate());
sql Form >i nstal | PropertyMap(propMap);

The final change is to install the property map into the QSqlForm once the QSqlForm has been created. This passes
responsibility for the property map’s memory to QSqlForm which itself is owned by the FormDialog, so Qt will
delete them at the right time.

The behaviour of this example is identical to the previous one except that the forename and surname fields will be
uppercase since they use our CustomEdit widget.

Custom Editor Widgets for QTables

We must reimpliment QSqlEditorFactory to use custom editor widgets in tables. In the following example we will
create a custom editor based on QComboBox and a QSqlEditorFactory subclass to show how a QTable can use a
custom editor.

class StatusPicker : public QConboBox
{
Q OBJECT
Q PROPERTY(int statusid READ statusld WRITE setStatusld)
public:
Stat usPi cker (QW dget *parent=0, const char *name=0);
int statusld() const;
void setStatusld(int id);
private:
Qvap i ndex2i d;

SQL Module 21

From sql/overview,/table3/main.h

We create a property, statusid, and define our READ and WRITE methods for it. The statusid’s in the status table
will probably be different from the combobox’s indexes so we create a QMap to map combobox indexes to/from
the statusids that we will list in the combobox.

class Custontqgl Edi torFactory : public QSql EditorFactory

{
Q OBJECT
public:
QN dget *createEditor(QN dget *parent, const QSqlField *field);
b

We also need to subclass QSqlEditorFactory declaring a createEditor() function since that is the only function we
need to reimplement.

St at usPi cker:: Stat usPi cker(QAN dget *parent, const char *name)
QConboBox(parent, nane)
{
@Sql Cursor cur("status");
cur.select(cur.index("name"));

int i =0;

while (cur.next()) {
insertlten(cur.value("name").toString(), i);
index2id[i] = cur.value("id").tolnt();
i+

From sql/overview/table3/main.cpp

In the StatusPicker’s constructor we create a cursor over the status table indexed by the name field. We then iterate
over each record in the status table inserting each name into the combobox. We store the statusid for each name
in the index2id QMap using the same QMap index as the combobox index.

int StatusPicker::statusld() const

{
}

return index2id[currentitem)];

The statusid property READ function simply involves looking up the combobox’s index for the currently selected
item in the index2id QMap which maps combobox indexes to statusids.

voi d StatusPicker::setStatusld(int statusid)

{
Qwvap::lterator it;
for (it =index2id.begin(); it !'=index2id.end(); ++it) {
if (it.data() == statusid) {
setCurrentlten(it.key());
br eak;
}
}
}

The statusId() function implements the statusid property’s WRITE function. We create an iterator over a QMap and
iterate over the index2id QMap. We compare each index2id element’s data (statusid) to the id parameter’s value.

SQL Module 22

If we have a match we set the combobox’s current item to the index2id element’s key (the combobox index), and
leave the loop.

When the user edits the status field in the QDataTable they will be presented with a combobox of valid status names
taken from the status table. However the status displayed is still the raw statusid. To display the status name when
the field isn’t being edited requires us to subclass QDataTable and reimplement the paintField() function.

class Custoniable : public QDataTable

{
Q OBJECT
public:
Cust onirabl e(
QSql Cursor *cursor, bool autoPopul ate = FALSE
QN dget * parent = 0, const char * name =0) :
Qat aTabl e(cursor, autoPopul ate, parent, name) {}
voi d pai ntFi el d(
QPainter * p, const QSql Field* field, const QRect & cr, bool);
b

From sql/overview,/table4/main.h

We simply call the original QDataTable constructor without changing anything. We also declare the paintField
function.

voi d Custoniable::paintField(QPainter * p, const QSglField* field,
const QRect & cr, bool b)
{

if (!field)
return;
if (field->name() == "statusid") {
QSql Query query("SELECT name FROM status WHERE id=" +
field->value().toString());
QString text;
if (query.next()) {
text = query.value(0).toString();

}

p->drawText (2,2, cr.width()-4, cr.height()-4, fieldAignment(field), text);
}
el se {

QPat aTabl e: :paintField(p, field, cr, b) ;
}

From sql/overview/table4/main.cpp

The paintField code is based on QDataTable’s source code. We need to make three changes. Firstly add an if clause
field->name() == "statusid" and look up the textual value for the id with a straighforward QSqlQuery. Secondly
call the superclass to handle other fields. The last change is in our main function where we change staffTable from
being a QDataTable to being a CustomTable.

Subclassing QSqlCursor

#i ncl ude <qgapplication. h>
#i ncl ude <gsql dat abase. h>
#incl ude <gsql cursor. h>
#i ncl ude <qdat at abl e. h>

SQL Module 23

#include "../login. h"
bool createConnections();

int min(int argc, char *argv[])

{
QApplication app(argc, argv);
if (createConnections()) {
@Sql Cursor invoiceltemCursor("invoiceiten);
QDat aTabl e *invoi cel tenTabl e = new QDat aTabl e(& nvoi cel t emCursor)
app. set Mai nW dget (i nvoi cel teniTabl e);
i nvoi cel t enffabl e- >addCol um("pricesid", "PricelD");
i nvoi cel t enffabl e- >addCol um("quantity", "Quantity");
i nvoi cel t enifabl e- >addCol um(" pai ddate", "Paid")
i nvoi cel t enffabl e->refresh();
i nvoi cel t enfrabl e- >show() ;
return app. exec();
}
return 1,
}

From sql/overview/subclass1/main.cpp

This example is very similar to the tablel example presented earlier. We create a cursor, add the fields and their
display labels to a QDataTable, call refresh() to load the data and call show() to show the widget.

Unfortunately this example is unsatisfactory. It is tedious to set the table name and any custom characteristics for
the fields every time we need a cursor over this table. And it would be far better if we displayed the name of the
product rather than its pricesid. Since we know the price of the product and the quantity we could also show the
product cost and the cost of each invoiceitem. Finally it would be useful (or even essential for primary keys) if we
could default some of the values when the user adds a new record.

class InvoiceltenCursor : public QSqgl Cursor
{

public:
I nvoi cel t enCur sor ()
b
From sql/overview/subclass2/main.h
We have created a separate header file and subclassed QSqlCursor.

I nvoi cel tenCursor: : Invoi cel t enCur sor ()
@Sql Cursor("invoiceitent)
{

}

/1 NOOP

From sql/overview/subclass2/main.cpp

In our class’s constructor we call the QSqlCursor constructor with the name of the table. We don’t have any other
characteristics to add at this stage.

SQL Module 24

I nvoi cel t enCur sor invoi celtenCursor;
Whenever we require a cursor over the invoiceitem table we can create an InvoiceltemCursor instead of a generic
QSqlCursor.
We still need to show the product name rather than the pricesid.

prot ect ed:

Qvariant calcul ateField(const QString & nane);
From sql/overview/subclass3/main.h
The change in the header file is minimal: we simply add the signature of the calculateField() function since we will

be reimplementing it.

I nvoi cel tenCursor: : Invoi cel t enCur sor ()
@Sql Cursor("invoiceitent)

{
QSql Fi el di nfo product Nane("product nane", Qvariant::String);
append(product Nane);
set Cal cul ated(product Name. name(), TRUE);
}
Qvariant InvoiceltenCursor::cal cul ateField(const QString & name)
{
if (name == "productnane") {
QSql Query query("SELECT name FROM prices WHERE id=" +
field("pricesid")->value().toString() + ";");
if (query.next())
return query.value(0);
}
return Qvariant(Qstring::null);
}

From sql/overview/subclass3/main.cpp

We have changed the InvoiceltemCursor constructor. We now create a new QSqlField called productname and
append this to the InvoiceltemCursor’s set of fields. We call setCalculated() on productname to identify it as a
calculated field. The first argument to setCalculated() is the field name, the second a bool which if TRUE signifies
that calculateField () must be called to get the field’s value.

i nvoi cel t enffabl e- >addCol um(" product name", "Product");

We add our new fields with addColumn() which adds them to the form and sets their display names.

We have to define our own calculateField() function. In our example database the pricesid in the invoiceitem table
is a foreign key into the prices table. We find the name of the product by executing a query on the prices table
using the pricesid. This returns the product’s name.

We are now able to extend the example to include calculated fields which perform real calculations.

The header file, sql/overview/subclass4/main.h, remains unchanged from the previous example, but the construc-
tor and calculateField() function require some simple expansion. We’ll look at each in turn.

I nvoi cel tenCursor: : Invoi cel t enCur sor ()
QSql Cursor("invoiceitent)
{

SQL Module 25

QSql Fi el dinfo product Name("product name", Qvariant::String);
append(product Nane);
set Cal cul at ed(product Nane. nane(), TRUE);

@Sql Fieldinfo productPrice("price", Qvariant::Double);
append(productPrice);
set Cal cul at ed(product Price. name(), TRUE);

QSql Fi el dinfo product Cost("cost", Qvariant::Double);
append(product Cost);
set Cal cul ated(product Cost.name(), TRUE);

}

From sql/overview/subclass4/main.cpp

We create two extra fields, price and cost, and append them to the cursor’s set of fields. Both are registered as
calculated fields with calls to setCalculated().

Qvariant InvoiceltenmCursor::cal cul ateField(const QString & name)

{
if (name == "productnane") {
QSql Query query("SELECT name FROM prices WHERE id=" +
field("pricesid")->value().toString() + ";");
if (query.next())
return query.value(0);
}
else if (name == "price") {
QSql Query query("SELECT price FROM prices WHERE id=" +
field("pricesid")->value().toString() + ;");
if (query.next())
return query.value(0);
}
else if (name == "cost") {
QSql Query query("SELECT price FROM prices WHERE id=" +
field("pricesid")->value().toString() + ";");
if (query.next())
return Qvariant(query.value(0).toDouble() *
val ue("quantity").toDouble());
}
return QVariant(Qstring::null);
}

From sql/overview/subclass4/main.cpp

The calculateField() function has expanded slightly because now we must calculate the value of three different
fields. The productname and price fields are produced by looking up the corresponding values in the prices table
keyed by pricesid. The cost field is calculated simply by multiplying the price by the quantity. Note that we cast the
cost to a QVariant since that is the type that calculateField() must return.

We've written three separate queries rather than one to make the example more like a real application where it is
more likely that each calculated field would be a lookup against a different table or view.

The last feature that we need to add is defaulting values when the user attempts to insert a new record.
@Sql Record *prinelnsert();

From sql/overview/subclass5/main.h

SQL Module 26

We declare our own primelnsert() function since we will need to reimplement this.

The constructor and the calculateField() function remain unchanged.

gl Record *Invoi cel tenmCursor:: primelnsert()

{
gl Record *buffer = editBuffer();
@Sql Query query("SELECT NEXTVAL('invoiceitemseq);");
if (query.next())
buf f er->set Val ue("id", query.value(0));
buf f er->set Val ue("pai ddate", QDate::currentDate());
buf fer->set Val ue("quantity", 1);
return buffer;
}

From sql/overview/subclass5/main.cpp

We get a pointer to the internal edit buffer that the cursor uses for inserts and updates. The id field is a unique
integer that we generate using the invoiceitem_seq. We default the value of the paiddate field to today’s date and
default the quantity to 1. Finally we return a pointer to the buffer. The rest of the code is unchanged from the
previous version.

The Example Tables

The example tables used can be recreated with the following standard SQL. You may need to modify the SQL to
match that used by your particular database.

create table people (id integer primary key, nane char(40))

create table staff (id integer primary key, forenane char(40),
surnane char(40), salary float, statusid integer)

create table status (id integer primry key, nane char(30))

create table creditors (id integer primary key, forenane char(40),
surnane char (40), city char(30))

create table prices (id integer prinary key, nane char(40), price float)
create table invoiceitem (id integer primry key,

pricesid integer, quantity integer,
pai ddate date)

A sequence was used in the calculateField () example above. Note that sequences are not supported in all databases.

create sequence invoiceitemseq

SQL Module - Drivers

Introduction

The SQL Module uses driver plugins in order to communicate with different database APIs. Since the SQL Module
API is database-independent, all database-specific code is contained within these drivers. Several drivers are sup-
plied with Qt and other drivers can be added. The driver source code is supplied and can be used as a model for
writing your own drivers.

To build a driver plugin you need the client API that is shipped with every DBMS (Database Management System).
Most installation programs also allow you to install "development libraries", and these are what you need. These
libraries are responsible for the low-level communication with the DBMS.

The currently available drivers shipped with Qt are:

e QMYSQL3 - MySQL Driver

e QOCIS8 - Oracle Call Interface Driver

e QODBC3 - ODBC (Open Database Connectivity) Driver

e QPSQL?7 - PostgreSQL v6.x and v7.x Driver

e QTDS7 - Sybase Adaptive Server and Microsoft SQL Server Driver

Note that not all of the plugins are shipped with the Qt Free Edition due to licence incompatibilities with the GPL.

Building the drivers using configure

The Qt configure script automatically detects the available client libraries on your machine. Run "configure -help"
to see what drivers may be built. You should get an output similar to this:

Possi bl e values for : [nmysgl oci odbc psql tds]
Aut o-Detected on this system [nysqgl psql]

Note that configure cannot detect the neccessary libraries and include files if they are not in the standard paths, so
it may be necessary to specify these paths using the "-I" and "-L" switches. If your MySQL include files are installed
in /usr/local/mysqgl (or in C:\mysgl\include on Windows), then pass the following parameter to configure: "-
I/usr/local/mysql" (or "-IC:\mysql\include" for Windows).

Note that on Windows the parameter -1 doesn’t allow spaces in filenames, so use the 8.3 name instead, i.e. use
"C:\progra~1\mysql" instead of "C:\program files\mysql".

Use the -qt-sqgl-<driver> parameter to build the database driver statically into your Qt library or
-pl ugi n-sql -<driver> to build the driver as a plugin. Look at the chapters below for additional information
about required libraries.

27

SQL Module - Drivers 28

Building the plugins manually

QMYSQL3 - MySQL 3.x
General informations

MySQL 3.x doesn’t support SQL transactions by default. There are some backends which offer this functionality.
Recent versions of the MySQL client libraries (>3.23.34) allow you to use transactions on those modified servers.

If you have a recent client library and connect to a transaction-enabled MySQL server, a call to the
QSqlDriver::hasFeature(QSqlDriver::Transactions) function returns TRUE and SQL transactions can be used.

You can find information about MySQL on http://www.mysql.com

How to build the plugin on Unix/Linux

You need the MySQL header files and as well as the shared library "libmysglclient.so". Depending on your Linux
distribution you need to install a package which is usually called "mysql-devel".

Tell gmake where to find the MySQL header files and shared libraries (here it is assumed that MySQL is installed
in /usr/local) and run make:

cd $QTDI R/ pl ugi ns/src/sql drivers/ nysql
gmake -0 Makefile "I NCLUDEPATH+=/usr/ | ocal /include" "LIBS+=-L/usr/local/lib -Inysqlclient" nysqgl.pro
make

How to build the plugin on Windows

You need to get the MySQL installation files. Run SETUREXE and choose "Custom Install". Install the "Libs &
Include Files" Module. Build the plugin as follows (here it is assumed that MySQL is installed in C:\MYSQL):

cd %TDI R% pl ugi ns\ src\ sql dri ver s\ nysql
gmake -0 Makefile "I NCLUDEPATH+=C:\ MYSQ\ I NCLUDE" " LI BS+=C:\ MyYSQL\ LI B\ OPT\ LI BMYSQL. LI B" nysql . pro
nmeke

If you are not using a Microsoft compiler, replace "nmake" with "make" in the statement above.

QOCIS - Oracle Call Interface
How to build the plugin on Unix/Linux

All files required to build driver should ship with the standard Oracle install. For Linux, it may be possible to copy
headers from another platform’s install.

Oracle library files required to build driver:

e libclntsh.so
e libcIntsh.so.8.0
e libwtc8.s0

Oracle header files required to build driver:

e nzerror.h

SQL Module - Drivers 29

e nzt.h

e oci.h

e ocil.h

e oci8dp.h
e ociap.h
e ociapr.h
e ocidef.h
e ocidem.h
e ocidfn.h
e ociextp.h
e ocikp.h
e ocikpr.h
e odci.h

e oratypes.h
e ori.h

e orid.h

e orl.h

e oro.h

e ort.h

Tell gmake where to find the Oracle header files and shared libraries (here it is assumed that Oracle is installed in
/usr/local) and run make:

cd $QTDI R/ pl ugi ns/src/sql drivers/oci
gmake -0 Makefile "I NCLUDEPATH+=/usr/ | ocal /include" "LIBS+=-L/usr/local/lib -lIclntsh -l1wc8" oci.pro
meke

How to build the plugin on Windows

Choosing the option "Programmer” in the Oracle Client Installer from the Oracle Client Installation CD is sufficient
to build the plugin.

Build the plugin as follows (here it is assumed that Oracle Client is installed in C:\oracle):

cd %Dl R pl ugi ns\ src\sql drivers\oci
gmake -0 Makefile "I NCLUDEPATH+=C: \ oracl e\ oci\incl ude" oci.pro
nmake

If you are not using a Microsoft compiler, replace "nmake" with "make" in the statement above.

QODBCS3 - Open Database Connectivity
General informations

ODBC (Open Database Connectivity) is a general interface that allows you to connect to multiple DBMS using
a common interface. The QODBC3 driver allows you to connect to an ODBC driver manager and access his
datasources. Note that you also need to install and configure ODBC drivers for the ODBC driver manager that is
installed on your system. The QODBC3 plugin then allows you to use these data sources in your Qt project.

SQL Module - Drivers 30

On Windows systems after 95 an ODBC driver manager should be installed by default, for Unix systems there are
some implementations which have to be installed first. Note that every client that uses your application is required
to have an ODBC driver manager installed, otherwise the QODBC3 plugin will not work.

The QODBC3 Plugin needs an ODBC compilant driver manager version 2.0 or greater to work. Some ODBC drivers
claim to be version 2.0 compilant, but do not offer all needed functionality. The QODBC3 plugin therefore checks
whether the data source can be used after a connection has been established and refuses to work if the check fails.
If you don’t like this behaviour, you can remove the #def i ne ODBC_CHECK_DRI VER line from the file gsql _odbc. cpp.
Do this at your own risk!

How to build the plugin on Unix/Linux

It is recommended that you use unixODBC. You can find the newest version and ODBC drivers at
http://www.unixodbc.org. You need the unixODBC header files and shared libraries.

Tell gmake where to find the unixODBC header files and shared libraries (here it is assumed that unixODBC is

installed in /usr/local/unixODBC) and run make:

cd $QTDI R/ pl ugi ns/ src/ sql drivers/ odbc
gmake "1 NCLUDEPATH+=/ usr/ | ocal / uni xODBC/ i ncl ude" "LIBS+=-L/usr/|ocal/unix0DBC/ lib -l odbc"
meke

How to build the plugin on Windows

The ODBC header and include files should already be installed in the right directories. You just have to build the
plugin as follows:

cd %TDI R pl ugi ns\ src\sql drivers\odbc
gmake -o Makefile odbc.pro
nmake

If you are not using a Microsoft compiler, replace "nmake" with "make" in the statement above.

QPSQL7 - PostgreSQL version 6 and 7
General information
The QPSQL7 driver supports both version 6 and 7 of PostgreSQL. We recommend compiling the plugin with a

recent version of the PostgreSQL Client API (libpq) because it is more stable and still downward compatible.

If you want to link the plugin against the libpq shipped with version 6 we recomment a recent version like Post-
greSQL 6.5.3, otherwise a connection to a version 7 server may not work.

The driver auto-detects the server version of PostgreSQL after a connection was successful. If the server is too old
or the version information cannot be determined a warning is issued.

For more information about PostgreSQL visit http://www.postgresql.org.

How to build the plugin on Unix/Linux

Just installing "libpqg.so" and the corresponding header files is unfortunately not sufficient. You have to get the
whole source distribution and run the configure script once (there is no need to build it if you have already
installed a binary distribution).

Tell gmake where to find the PostgreSQL header files and shared libraries (here it is assumed that you extracted
the PostgreSQL source code in /usr/src/psql and the shared library is installed in /usr/lib) and run make:

SQL Module - Drivers 31

cd $QTDI R/ pl ugi ns/ src/ sql drivers/ psql
gmake -o Makefile "I NCLUDEPATH+=/ usr/src/psql/src/include /usr/src/psql/src/interfaces/libpg" "LIBS+=-L/us
meke

QTDS?7 - Sybase Adaptive Server and Microsoft SQL Server
How to build the plugin on Unix/Linux

Under Unix, two libraries are available which support the TDS protocol:

- FreeTDS, a free implementation of the TDS protocol (http://www.freetds.org). Note that FreeTDS is not yet
stable, so some functionality may not work as expected.

- Sybase Open Client, available from http://www.sybase.com Note for Linux users: Get the Open Client RPM from
http://linux.sybase.com

Regardless of which library you use, the shared object file "libsybdb.so" is needed. Set the SYBASE environment
variable to point to the directory where you installed the client library and execute gmake:

cd $QTDI R/ pl ugi ns/ src/ sql drivers/tds
gmake -o Makefile "I NCLUDEPATH=$SYBASE/i ncl ude" "LIBS=-L$SYBASE/ Iib -Isybdb"
make

How to build the plugin on Windows

You can either use the DB-Library supplied by Microsoft or the Sybase Open Client (http://www.sybase.com). You
have to include NTWDBLIB.LIB to build the plugin:

cd %QTDI R pl ugi ns\'src\sql drivers\tds
gmake -0 Makefile "LIBS+=NTWDBLI B. LI B" tds.pro
nnmake

By default the Microsoft library is used on Windows, if you want to force the use of the Sybase Open Client, you
have to define Q USE_SYBASE in %QTDIR%\src\sql\drivers\tds\gsql tds.cpp.

Troubleshooting

You should always use client libraries that have been compiled with the same compiler as you are using for your
project. If you cannot get a source distibution to compile the client libraries yourself, you have to make sure that the
pre-compiled library is compatible with your compiler, otherwise you will get a lot of "undefined symbols" errors.
Some compilers have tools to convert libraries, e.g. Borland ships the tool COFF20MF. EXE to convert libraries that
have been generated with Microsoft Visual C++.

If the compilation of a plugin succeeds but it cannot be loaded, make sure that the following requirements are met:

e Make sure you are using a shared Qt library, you cannot use the plugins with a static build.

e Make sure that the environment variable QTDIR points to the right directory. Go to the $QT-
DIR/plugins/sqldrivers directory and make sure that the plugin exists in that directory.

e Make sure that the client libraries of the DBMS are available on the system. On Unix, run the command | dd
and pass the name of the plugin as parameter, for example | dd |ibgsql nysql . so. You will get a warning
if any of the client libraries couldn’t be found. On Windows, you can use the dependency walker of Visual
Studio.

SQL Module - Drivers 32

How to write your own database driver

QSqlDatabase is responsible for loading and managing database driver plugins. When a database is added (see
QSqlDatabase::addDatabase()), the appropriate driver plugin is loaded (using QSqlDriverPlugin). QSqlDatabase
relies on the driver plugin to provide interfaces for QSqlDriver and QSqlResult.

QSqlDriver is an abstract base class which defines the functionality of a SQL database driver. This includes func-
tions such as QSqlDriver::open() and QSqlDriver::close(). QSglDriver is responsible for connecting to a database,
establish the proper environment, etc. In addition, QSqlDriver can create QSqlQuery objects appropriate for the
particular database API. QSqlDatabase forwards many of its function calls directly to QSqlDriver which provides
the concrete implementation.

QSqlResult is an abstract base class which defines the functionality of a SQL database query. This includes state-
ments such as SELECT, UPDATE, or ALTER TABLE. QSqlResult contains functions such as QSqlResult::next() and
QSqlResult::value(). QSqlResult is responsible for sending queries to the database, returning result data, etc.
QSqlQuery forwards many of its function calls directly to QSqlResult which provides the concrete implementation.

QSqlDriver and QSqlResult are closely connected. When implementing a Qt SQL driver, both of these classes must
to be subclassed and the abstract virtual methods in each class must be implemented.

To implement a Qt SQL driver as a plugin (so that it is recognized and loaded by the Qt library at runtime),
the driver must use the Q_EXPORT PLUGIN macro. Please read the Qt Plugin documentation for more in-
formation on this. You can also check out how this is done in the SQL plugins that is provided with Qt in
QDI R/ pl ugi ns/src/sql drivers and QTDI R/ src/sql /drivers.

QDataBrowser Class Reference

The QDataBrowser class provides data manipulation and navigation for data entry forms.
This class is part of the sql module.
#i ncl ude <qgdat abr owser. h>

Inherits QWidget [Widgets with Qt].

Public Members

QDataBrowser (QWidget * parent = 0, const char * name = 0, WFlags fl = 0)
m ~QDataBrowser ()

» enum Boundary { Unknown, None, BeforeBeginning, Beginning, End, AfterEnd }
m Boundary boundary ()

void setBoundaryChecking (bool active)

bool boundaryChecking () const

void setSort (const QSqlindex & sort)

void setSort (const QStringList & sort)

QStringlList sort () const

void setFilter (const QString & filter)

QString filter () const

m virtual void setSqlCursor (QSqlCursor * cursor, bool autoDelete = FALSE)

m QSqlCursor * sqlCursor () const

virtual void setForm (QSqlForm * form)

QSqlForm * form ()

virtual void setConfirmEdits (bool confirm)

virtual void setConfirmInsert (bool confirm)

virtual void setConfirmUpdate (bool confirm)

virtual void setConfirmDelete (bool confirm)

m virtual void setConfirmCancels (bool confirm)
= bool confirmEdits () const

= bool confirmInsert () const

bool confirmUpdate () const

bool confirmDelete () const

bool confirmCancels () const

virtual void setReadOnly (bool active)

bool isReadOnly () const

virtual void setAutoEdit (bool autoEdit)

e bool autoEdit () const

e virtual bool seek (int i, bool relative = FALSE)

33

QDataBrowser Class Reference

Public Slots

virtual void refresh ()

virtual void insert ()
virtual void update ()
virtual void del ()
virtual void first ()
virtual void last ()
virtual void next ()

m virtual void prev ()

m virtual void readFields ()
m virtual void writeFields ()
m virtual void clearValues ()
e void updateBoundary ()

Signals

m void firstRecordAvailable (bool available)

m void lastRecordAvailable (bool available)

= void nextRecordAvailable (bool available)

m void prevRecordAvailable (bool available)

» void currentChanged (const QSqlRecord * record)
void primelInsert (QSqlRecord * buf)

void primeUpdate (QSqlRecord * buf)

void primeDelete (QSqlRecord * buf)

void beforelnsert (QSqglRecord * buf)

void beforeUpdate (QSqlRecord * buf)

void beforeDelete (QSqlRecord * buf)

void cursorChanged (QSqlCursor::Mode mode)

Properties

» bool autoEdit — whether the browser automatically applies edits

» bool boundaryChecking — whether boundary checking is active

m bool confirmCancels — whether the browser confirms cancel operations
m bool confirmDelete — whether the browser confirms deletions

m bool confirmEdits — whether the browser confirms edit operations

m bool confirmInsert — whether the data browser confirms insertions

m bool confirmUpdate — whether the browser confirms updates

m QString filter — the data browser’s filter

m bool readOnly — whether the browser is read-only

m QStringList sort — the data browser’s sort

QDataBrowser Class Reference 35

Protected Members

virtual bool insertCurrent ()

virtual bool updateCurrent ()

virtual bool deleteCurrent ()

virtual bool currentEdited ()

virtual QSql::Confirm confirmEdit (QSql::Op m)
virtual QSql::Confirm confirmCancel (QSql::Op m)
virtual void handleError (const QSqlError & error)

Detailed Description

The QDataBrowser class provides data manipulation and navigation for data entry forms.

A high-level API is provided to navigate through data records in a cursor, insert, update and delete records, and
refresh data in the display.

If you want a read-only form to present database data use QDataView; if you want a table-based presentation of
your data use QDataTable.

A QDataBrowser is used to associate a dataset with a form in much the same way as a QDataTable associates
a dataset with a table. Once the data browser has been constructed it can be associated with a dataset with
setSqlCursor(), and with a form with setForm(). Boundary checking, sorting and filtering can be set with set-
BoundaryChecking(), setSort() and setFilter(), respectively.

The insertCurrent() function reads the fields from the default form into the default cursor and performs the insert.
The updateCurrent() and deleteCurrent() functions perform similarly to update and delete the current record
respectively.

The user can be asked to confirm all edits with setConfirmEdits(). For more precise control use setConfirmInsert(),
setConfirmUpdate(), setConfirmDelete() and setConfirmCancels(). Use setAutoEdit() to control the behaviour of
the form when the user edits a record and then navigates.

The record set is navigated using first(), next(), prev(), last() and seek(). The form’s display is updated with
refresh(). When navigation takes place the firstRecordAvailable(), lastRecordAvailable(), nextRecordAvailable()
and prevRecordAvailable() signals are emitted. When the cursor record is changed due to navigation the cursor-
Changed() signal is emitted.

If you want finer control of the insert, update and delete processes then you can use the low level functions to
perform these operations as described below.

The form is populated with data from the database with readFields(). If the user is allowed to edit, (see setRead-
Only()), write the form’s data back to the cursor’s edit buffer with writeFields(). You can clear the values in the
form with clearValues(). Editing is performed as follows:

e insert When the data browser enters insertion mode it emits the primelnsert() signal which you can connect
to, for example to pre-populate fields. Call writeFields() to write the user’s edits to the cursor’s edit buffer
then call insert() to insert the record into the database. The beforelnsert() signal is emitted just before the
cursor’s edit buffer is inserted into the database; connect to this for example, to populate fields such as an
auto-generated primary key.

e update For updates the primeUpdate() signal is emitted when the data browser enters update mode. After
calling writeFields() call update() to update the record and connect to the beforeUpdate() signal to manipu-
late the user’s data before the update takes place.

e delete For deletion the primeDelete() signal is emitted when the data browser enters deletion mode. After
calling writeFields() call del() to delete the record and connect to the beforeDelete() signal, for example to
record an audit of the deleted record.

See also Database Classes.

QDataBrowser Class Reference 36

Member Type Documentation

QDataBrowser::Boundary

This enum describes where the data browser is positioned.

The currently defined values are:

e (Dat aBr owser : : Unknown - the boundary cannot be determined (usually because there is no default cursor, or
the default cursor is not active).

e (Dat aBr owser : : None - the browser is not positioned on a boundary, but it is positioned on a record somewhere
in the middle.

e (Dat aBr owser : : Bef or eBegi nni ng - the browser is positioned before the first available record.
e (Dat aBr owser : : Begi nni ng - the browser is positioned at the first record.

e (Dat aBrowser : : End - the browser is positioned at the last record.

e (Dat aBrowser: : Aft er End - the browser is positioned after the last available record.

Member Function Documentation

QDataBrowser::QDataBrowser (QWidget * parent = 0, const char * name = 0, WFlags fl

Constructs a data browser which is a child of parent, with the name name and widget flags set to fl.

QDataBrowser::~QDataBrowser ()

Destroys the object and frees any allocated resources.

bool QDataBrowser::autoEdit () const

Returns TRUE if the browser automatically applies edits; otherwise returns FALSE. See the "autoEdit" [p. 44]
property for details.

void QDataBrowser::beforeDelete (QSqlRecord * buf) [signal]

This signal is emitted just before the cursor’s edit buffer is deleted from the database. The buf parameter points
to the edit buffer being deleted. You might connect to this signal to capture some auditing information about the
deletion.

void QDataBrowser::beforelnsert (QSqlRecord * buf) [signal]

This signal is emitted just before the cursor’s edit buffer is inserted into the database. The buf parameter points to
the edit buffer being inserted. You might connect to this signal to populate a generated primary key for example.

QDataBrowser Class Reference 37

void QDataBrowser::beforeUpdate (QSqlRecord * buf) [signal]

This signal is emitted just before the cursor’s edit buffer is updated in the database. The buf parameter points to
the edit buffer being updated. You might connect to this signal to capture some auditing information about the
update.

Boundary QDataBrowser::boundary ()

Returns an enum indicating the boundary status of the browser.

This is achieved by moving the default cursor and checking the position, however the current default form val-
ues will not be altered. After checking for the boundary, the cursor is moved back to its former position. See
QDataBrowser::Boundary.

See also Boundary [p. 36].

bool QDataBrowser::boundaryChecking () const

Returns TRUE if boundary checking is active; otherwise returns FALSE. See the "boundaryChecking" [p. 44] prop-
erty for details.

void QDataBrowser::clearValues () [virtual slot]

Clears all the values in the form.

All the edit buffer field values are set to their "zero state’, e.g. 0 for numeric fields and " for string fields. Then the
widgets are updated using the property map. For example, a combobox that is property-mapped to integers would
scroll to the first item. See the QSqlPropertyMap constructor for the default mappings of widgets to properties.

QSql::Confirm QDataBrowser::confirmCancel (QSql::Op m) [virtual protected]

Protected virtual function which returns a confirmation for cancelling an edit mode m. Derived classes can reim-
plement this function and provide their own confirmation dialog. The default implementation uses a message box
which prompts the user to confirm the edit action.

bool QDataBrowser::confirmCancels () const

Returns TRUE if the browser confirms cancel operations; otherwise returns FALSE. See the "confirmCancels" [p. 44]
property for details.

bool QDataBrowser::confirmDelete () const

Returns TRUE if the browser confirms deletions; otherwise returns FALSE. See the "confirmDelete" [p. 44] property
for details.

QSql::Confirm QDataBrowser::confirmEdit (QSql::Op m) [virtual protected]

Protected virtual function which returns a confirmation for an edit of mode m. Derived classes can reimplement
this function and provide their own confirmation dialog. The default implementation uses a message box which
prompts the user to confirm the edit action.

QDataBrowser Class Reference 38

bool QDataBrowser::confirmEdits () const

Returns TRUE if the browser confirms edit operations; otherwise returns FALSE. See the "confirmEdits" [p. 44]
property for details.

bool QDataBrowser::confirmInsert () const

Returns TRUE if the data browser confirms insertions; otherwise returns FALSE. See the "confirmInsert" [p. 45]
property for details.

bool QDataBrowser::confirmUpdate () const

Returns TRUE if the browser confirms updates; otherwise returns FALSE. See the "confirmUpdate" [p. 45] property
for details.

void QDataBrowser::currentChanged (const QSqlRecord * record) [signal]

This signal is emitted whenever the current cursor position changes. The record parameter points to the contents
of the current cursor’s record.

bool QDataBrowser::currentEdited () [virtual protected]

Returns TRUE if the form’s edit buffer differs from the current cursor buffer, otherwise FALSE is returned.

void QDataBrowser::cursorChanged (QSqlCursor::Mode mode) [signal]

This signal is emitted whenever the cursor record was changed due to navigation. The mode parameter is the edit
that just took place, e.g. Insert, Update or Delete. See QSqlCursor::Mode.

void QDataBrowser::del () [virtual slot]

Performs a delete operation on the data browser’s cursor. If there is no default cursor or no default form, nothing
happens.

Otherwise, the following happens:

The current form’s record is deleted from the database, providing that the data browser is not in insert mode. If the
data browser is actively inserting a record (see insert()), the insert action is cancelled, and the browser navigates
to the last valid record that was current. If there is an error, handleError() is called.

bool QDataBrowser::deleteCurrent () [virtual protected]

Performs a delete on the default cursor using the values from the default form and updates the default form. If there
is no default form or no default cursor, nothing happens. If the deletion was successful, the cursor is repositioned
to the nearest record and TRUE is returned. The nearest record is the next record if there is one otherwise the
previous record if there is one. If an error occurred during the deletion from the database, handleError() is called
and FALSE is returned.

See also cursor [Widgets with Qt], form() [p. 39] and handleError() [p. 39].

QDataBrowser Class Reference 39

QString QDataBrowser::filter () const

Returns the data browser’s filter. See the "filter" [p. 45] property for details.

void QDataBrowser::first () [virtual slot]

Moves the default cursor to the first record and refreshes the default form to display this record. If there is no
default form or no default cursor, nothing happens. If the data browser successfully navigated to the first record,
the default cursor is primed for update and the primeUpdate() signal is emitted.

If the browser is already positioned on the first record nothing happens.

void QDataBrowser::firstRecordAvailable (bool available) [signal]

This signal is emitted whenever the position of the cursor changes. The available parameter indicates whether or
not the first record in the default cursor is available.

QSqlForm * QDataBrowser::form ()

Returns a pointer to the data browser’s default form or 0 if no form has been set.

void QDataBrowser::handleError (const QSqlError & error) [virtual protected]

Virtual function which handles the error error. The default implementation warns the user with a message box.

void QDataBrowser::insert () [virtual slot]

Performs an insert operation on the data browser’s cursor. If there is no default cursor or no default form, nothing
happens.

If auto-editing is on (see setAutoEdit()), the following happens:

o If the browser is already actively inserting a record, the current form’s data is inserted into the database.

o If the browser is not inserting a record, but the current record was changed by the user, the record is updated
in the database with the current form’s data (i.e. with the changes).

If there is an error handling any of the above auto-edit actions, handleError() is called and no insert or update is
performed.

If no error occurred, or auto-editing is not enabled, the data browser begins actively inserting a record into the
database by performing the following actions:

e The default cursor is primed for insert using QSqlCursor::primelnsert().
e The primelnsert() signal is emitted.

e The form is updated with the values in the default cursor’s. edit buffer so that the user can fill in the values
to be inserted.

QDataBrowser Class Reference 40

bool QDataBrowser::insertCurrent () [virtual protected]

Reads the fields from the default form into the default cursor and performs an insert on the default cursor. If there
is no default form or no default cursor, nothing happens. If an error occurred during the insert into the database,
handleError() is called and FALSE is returned. If the insert was successfull, the cursor is refreshed and relocated to
the newly inserted record, the cursorChanged() signal is emitted, and TRUE is returned.

See also cursorChanged() [p. 381, sqlCursor() [p. 431, form() [p. 39] and handleError() [p. 39].

bool QDataBrowser::isReadOnly () const

Returns TRUE if the browser is read-only; otherwise returns FALSE. See the "readOnly" [p. 45] property for details.

void QDataBrowser::last () [virtual slot]

Moves the default cursor to the last record and refreshes the default form to display this record. If there is no
default form or no default cursor, nothing happens. If the data browser successfully navigated to the last record,
the default cursor is primed for update and the primeUpdate() signal is emitted.

If the browser is already positioned on the last record nothing happens.

void QDataBrowser::lastRecordAvailable (bool available) [signal]

This signal is emitted whenever the position of the cursor changes. The available parameter indicates whether or
not the last record in the default cursor is available.

void QDataBrowser::next () [virtual slot]

Moves the default cursor to the next record and refreshes the default form to display this record. If there is no
default form or no default cursor, nothing happens. If the data browser successfully navigated to the next record,
the default cursor is primed for update and the primeUpdate() signal is emitted.

If the browser is positioned on the last record nothing happens.

void QDataBrowser::nextRecordAvailable (bool available) [signal]

This signal is emitted whenever the position of the cursor changes. The available parameter indicates whether or
not the next record in the default cursor is available.

void QDataBrowser::prev () [virtual slot]

Moves the default cursor to the previous record and refreshes the default form to display this record. If there is
no default form or no default cursor, nothing happens. If the data browser successfully navigated to the previous
record, the default cursor is primed for update and the primeUpdate() signal is emitted.

If the browser is positioned on the first record nothing happens.

void QDataBrowser::prevRecordAvailable (bool available) [signal]

This signal is emitted whenever the position of the cursor changes. The available parameter indicates whether or
not the previous record in the default cursor is available.

QDataBrowser Class Reference 41

void QDataBrowser::primeDelete (QSqlRecord * buf) [signal]

This signal is emitted when the data browser enters deletion mode. The buf parameter points to the record buffer
being deleted. (Note that QSqlCursor::primeDelete() is not called on the default cursor, as this would corrupt
values in the form.) Connect to this signal in order to, for example, save a copy of the deleted record for auditing
purposes.

See also del() [p. 38].

void QDataBrowser::primelnsert (QSqlRecord * buf) [signal]

This signal is emitted when the data browser enters insertion mode. The buf parameter points to the record buffer
that is to be inserted. Connect to this signal to, for example, prime the record buffer with default data values,
auto-numbered fields etc. (Note that QSqlCursor::primelnsert() is not called on the default cursor, as this would
corrupt values in the form.)

See also insert() [p. 39].

void QDataBrowser::primeUpdate (QSqlRecord * buf) [signal]

This signal is emitted when the data browser enters update mode. Note that during naviagtion (first(), last(),
next(), prev()), each record that is shown in the default form is primed for update. The buf parameter points to
the record buffer being updated. (Note that QSqlCursor::primeUpdate() is not called on the default cursor, as this
would corrupt values in the form.) Connect to this signal in order to, for example, keep track of which records
have been updated, perhaps for auditing purposes.

See also update() [p. 43].

void QDataBrowser::readFields () [virtual slot]

Reads the fields from the default cursor’s edit buffer and displays them in the form. If there is no default cursor or
no default form, nothing happens.

void QDataBrowser::refresh () [virtual slot]

Refreshes the data browser’s data using the default cursor. The browser’s current filter and sort are applied if they
have been set.

See also filter [p. 45] and sort [p. 45].

bool QDataBrowser::seek (int i, bool relative = FALSE) [virtual]

Moves the default cursor to the record specified by the index i and refreshes the default form to display this record.
If there is no default form or no default cursor, nothing happens. If relative is TRUE (the default is FALSE), the
cursor is moved relative to its current position. If the data browser successfully navigated to the desired record, the
default cursor is primed for update and the primeUpdate() signal is emitted.

If the browser is already positioned on the desired record nothing happens.

void QDataBrowser::setAutoEdit (bool autoEdit) [virtual]

Sets whether the browser automatically applies edits to autoEdit. See the "autoEdit" [p. 44] property for details.

QDataBrowser Class Reference 42

void QDataBrowser::setBoundaryChecking (bool active)

Sets whether boundary checking is active to active. See the "boundaryChecking" [p. 44] property for details.

void QDataBrowser::setConfirmCancels (bool confirm) [virtual]

Sets whether the browser confirms cancel operations to confirm. See the "confirmCancels" [p. 44] property for
details.

void QDataBrowser::setConfirmDelete (bool confirm) [virtual]

Sets whether the browser confirms deletions to confirm. See the "confirmDelete" [p. 44] property for details.

void QDataBrowser::setConfirmEdits (bool confirm) [virtual]

Sets whether the browser confirms edit operations to confirm. See the "confirmEdits" [p. 44] property for details.

void QDataBrowser::setConfirmInsert (bool confirm) [virtual]

Sets whether the data browser confirms insertions to confirm. See the "confirmInsert" [p. 45] property for details.

void QDataBrowser::setConfirmUpdate (bool confirm) [virtual]

Sets whether the browser confirms updates to confirm. See the "confirmUpdate" [p. 45] property for details.

void QDataBrowser::setFilter (const QString & filter)

Sets the data browser’s filter to filter. See the "filter" [p. 45] property for details.

void QDataBrowser::setForm (QSqlForm * form) [virtual]

Sets the browser’s default form to form. The cursor and all navigation and data manipulation functions that the
browser provides become available to the form.

void QDataBrowser::setReadOnly (bool active) [virtual]

Sets whether the browser is read-only to active. See the "readOnly" [p. 45] property for details.

void QDataBrowser::setSort (const QStringList & sort)

Sets the data browser’s sort to sort. See the "sort" [p. 45] property for details.

void QDataBrowser::setSort (const QSqlindex & sort)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the data browser’s sort to the QSqlindex sort. To apply the new sort, use refresh().

QDataBrowser Class Reference 43

void QDataBrowser::setSqlCursor (QSqlCursor * cursor, bool autoDelete =
FALSE) [virtual]

Sets the default cursor used by the data browser to cursor. If autoDelete is TRUE (the default is FALSE), the data
browser takes ownership of the cursor pointer, which will be deleted when the browser is destroyed, or when
setSqlCursor() is called again. To activate the cursor use refresh(). The cursor’s edit buffer is used in the default
form to browse and edit records.

See also sqlCursor() [p. 431, form() [p. 39] and setForm() [p. 42].

QStringList QDataBrowser::sort () const

Returns the data browser’s sort. See the "sort" [p. 45] property for details.

QSqlCursor * QDataBrowser::sqlCursor () const

Returns a pointer to the default cursor used for navigation, or O if there is no default cursor.

See also setSqlCursor() [p. 43].

void QDataBrowser::update () [virtual slot]

Performs an update operation on the data browser’s cursor.
If there is no default cursor or no default form, nothing happens. Otherwise, the following happens:

If the data browser is actively inserting a record (see insert()), that record is inserted into the database using
insertCurrent(). Otherwise, the database is updated with the current form’s data using updateCurrent(). If there is
an error handling either action, handleError() is called.

void QDataBrowser::updateBoundary () [slot]

If boundaryChecking() is TRUE, checks the boundary of the current default cursor and emits signals which indicate
the position of the cursor.

bool QDataBrowser::updateCurrent () [virtual protected]

Reads the fields from the default form into the default cursor and performs an update on the default cursor. If there
is no default form or no default cursor, nothing happens. If an error occurred during the update on the database,
handleError() is called and FALSE is returned. If the update was successfull, the cursor is refreshed and relocated
to the updated record, the cursorChanged() signal is emitted, and TRUE is returned.

See also cursor [Widgets with Qt], form() [p. 39] and handleError() [p. 39].

void QDataBrowser::writeFields () [virtual slot]

Writes the form’s data to the default cursor’s edit buffer. If there is no default cursor or no default form, nothing
happens.

QDataBrowser Class Reference 44

Property Documentation

bool autoEdit

This property holds whether the browser automatically applies edits.

The default value for this property is TRUE. When the user begins an insertion or an update on a form there are
two possible outcomes when they navigate to another record:

e the insert or update is is performed — this occurs if autoEdit is TRUE

e the insert or update is discarded — this occurs if autoEdit is FALSE

Set this property’s value with setAutoEdit() and get this property’s value with autoEdit().

bool boundaryChecking

This property holds whether boundary checking is active.

When boundary checking is active (the default), signals are emitted indicating the current position of the default
Cursor.

See also boundary() [p. 37].
Set this property’s value with setBoundaryChecking() and get this property’s value with boundaryChecking().

bool confirmCancels

This property holds whether the browser confirms cancel operations.

If this property is TRUE, all cancels must be confirmed by the user through a message box (this behavior can
be changed by overriding the confirmCancel() function), otherwise all cancels occur immediately. The default is
FALSE.

See also confirmEdits [p. 44] and confirmCancel() [p. 37].

Set this property’s value with setConfirmCancels() and get this property’s value with confirmCancels().

bool confirmDelete

This property holds whether the browser confirms deletions.
If this property is TRUE, the browser confirms deletions, otherwise deletions happen immediately.

See also confirmCancels [p. 441, confirmEdits [p. 441, confirmUpdate [p. 45], confirmInsert [p. 45] and
confirmEdit() [p. 371.

Set this property’s value with setConfirmDelete() and get this property’s value with confirmDelete().

bool confirmEdits

This property holds whether the browser confirms edit operations.

If this property is TRUE, the browser confirms all edit operations (insertions, updates and deletions), otherwise all
edit operations happen immediately. Confirmation is achieved by presenting the user with a message box — this
behavior can be changed by reimplementing the confirmEdit() function,

QDataBrowser Class Reference 45

See also confirmEdit() [p. 371, confirmCancels [p. 441, confirmInsert [p. 45], confirmUpdate [p. 45] and
confirmDelete [p. 44].

Set this property’s value with setConfirmEdits() and get this property’s value with confirmEdits().

bool confirmInsert

This property holds whether the data browser confirms insertions.
If this property is TRUE, the browser confirms insertions, otherwise insertions happen immediately.

See also confirmCancels [p. 441, confirmEdits [p. 441, confirmUpdate [p. 45], confirmDelete [p. 44] and
confirmEdit() [p. 371.

Set this property’s value with setConfirmInsert() and get this property’s value with confirmInsert().

bool confirmUpdate

This property holds whether the browser confirms updates.
If this property is TRUE, the browser confirms updates, otherwise updates happen immediately.

See also confirmCancels [p. 441, confirmEdits [p. 441, confirmInsert [p. 45], confirmDelete [p. 44] and
confirmEdit() [p. 371.

Set this property’s value with setConfirmUpdate() and get this property’s value with confirmUpdate().

QString filter

This property holds the data browser’s filter.

The filter applies to the data shown in the browser. Call refresh() to apply the new filter. A filter is a string
containing a SQL WHERE clause without the WHERE keyword, e.g. "id>1000", "name LIKE ’A%"".

There is no default filter.
See also sort [p. 45].

Set this property’s value with setFilter() and get this property’s value with filter().

bool readOnly

This property holds whether the browser is read-only.
The default is FALSE, i.e. data can be edited. If the data browser is read-only, no database edits will be allowed.

Set this property’s value with setReadOnly() and get this property’s value with isReadOnly().

QStringList sort

This property holds the data browser’s sort.

The data browser’s sort affects the order in which records are viewed in the browser. Call refresh() to apply the
new sort.

When retrieving the sort property, a string list is returned in the form ’fieldname order’, e.g. ’id ASC’, ’surname
DESC'’.

There is no default sort.

QDataBrowser Class Reference

See also filter [p. 45] and refresh() [p. 411].

Set this property’s value with setSort() and get this property’s value with sort().

46

QDataTable Class Reference

The QDataTable class provides a flexible SQL table widget that supports browsing and editing.
This class is part of the sql module.
#incl ude <qdat at abl e. h>

Inherits QTable [Widgets with Qt].

Public Members

m QDataTable (QWidget * parent = 0, const char * name = 0)

m QDataTable (QSqlCursor * cursor, bool autoPopulate = FALSE, QWidget * parent = 0, const char * name =
0)

m ~QDataTable ()

m virtual void addColumn (const QString & fieldName, const QString & label = QString::null, int width = -1,
const QIconSet & iconset = QIconSet ())

m virtual void removeColumn (uint col)

m virtual void setColumn (uint col, const QString & fieldName, const QString & label = QString::null,
int width = -1, const QIconSet & iconset = QIconSet ())

m QString nullText () const

m QString trueText () const

m QString falseText () const

m DateFormat dateFormat () const

= bool confirmEdits () const

= bool confirmInsert () const

» bool confirmUpdate () const

= bool confirmDelete () const

= bool confirmCancels () const

= bool autoDelete () const

bool autoEdit () const

QString filter () const

QStringlList sort () const

virtual void setSqlCursor (QSqlCursor * cursor = 0, bool autoPopulate = FALSE, bool autoDelete = FALSE)
QSqlCursor * sqlCursor () const

virtual void setNullText (const QString & nullText)
m virtual void setTrueText (const QString & trueText)
m virtual void setFalseText (const QString & falseText)
m virtual void setDateFormat (const DateFormat f)

m virtual void setConfirmEdits (bool confirm)

m virtual void setConfirmInsert (bool confirm)

m virtual void setConfirmUpdate (bool confirm)

47

QDataTable Class Reference

m virtual void setConfirmDelete (bool confirm)
virtual void setConfirmCancels (bool confirm)
virtual void setAutoDelete (bool enable)
virtual void setAutoEdit (bool autoEdit)
virtual void setFilter (const QString & filter)
virtual void setSort (const QStringList & sort)

m virtual void setSort (const QSqlindex & sort)

m enum Refresh { RefreshData = 1, RefreshColumns = 2, RefreshAll = 3 }

void refresh (Refresh mode)

virtual void sortColumn (int col, bool ascending = TRUE, bool wholeRows = FALSE)
virtual QString text (int row, int col) const

QVariant value (int row, int col) const

QSqlRecord * currentRecord () const

void installEditorFactory (QSqlEditorFactory * f)
e void installPropertyMap (QSqlPropertyMap * m)
e virtual int numcCols () const

e virtual int numRows () const

Public Slots

m virtual void find (const QString & str, bool caseSensitive, bool backwards)
m virtual void sortAscending (int col)

m virtual void sortDescending (int col)

m virtual void refresh ()

Signals

» void currentChanged (QSglRecord * record)
» void primelInsert (QSqlRecord * buf)

m void primeUpdate (QSqlRecord * buf)

» void primeDelete (QSqlRecord * buf)

» void beforeInsert (QSqlRecord * buf)

m void beforeUpdate (QSqlRecord * buf)

m void beforeDelete (QSqlRecord * buf)

» void cursorChanged (QSql::Op mode)

Properties

m bool autoEdit — whether the data table automatically applies edits

» bool confirmCancels — whether the data table confirms cancel operations
» bool confirmDelete — whether the data table confirms delete operations
» bool confirmEdits — whether the data table confirms edit operations

m bool confirmInsert — whether the data table confirms insert operations

m bool confirmUpdate — whether the data table confirms update operations
m DateFormat dateFormat — the format how date/time values are displayed
m QString falseText — the text used to represent false values

m QString filter — the data filter for the data table

QDataTable Class Reference 49

m QString nullText — the text used to represent NULL values

m int numCols — the number of columns in the table (read only)
m int numRows — the number of rows in the table (read only)

m QStringList sort — the data table’s sort

e QString trueText — the text used to represent true values

Protected Members

m virtual bool insertCurrent ()

m virtual bool updateCurrent ()

m virtual bool deleteCurrent ()

m virtual QSql::Confirm confirmEdit (QSql::Op m)

virtual QSql::Confirm confirmCancel (QSql::Op m)

virtual void handleError (const QSqlError & e)

virtual bool beginInsert ()

virtual QWidget * beginUpdate (int row, int col, bool replace)
m int indexOf (uint i) const

= void reset ()

m void setSize (QSqlCursor * sql)

m virtual void paintField (QPainter * p, const QSqlField * field, const QRect & cr, bool selected)
m virtual int fieldAlignment (const QSqlField * field)

Detailed Description

The QDataTable class provides a flexible SQL table widget that supports browsing and editing.
QDataTable supports various functions for presenting and editing SQL data from a QSqlCursor in a table.
If you want a to present your data in a form use QDataBrowser, or for read-only forms, QDataView.

When displaying data, QDataTable only retrieves data for visible rows. If the driver supports the ’query size’
property the QDataTable will have the correct number of rows and the vertical scrollbar will accurately reflect
the number of rows displayed in proportion to the number of rows in the dataset. If the driver does not support
the 'query size’ property rows are dynamically fetched from the database on an as-needed basis with the scrollbar
becoming more accurate as the user scrolls down through the records. This allows extremely large queries to be
displayed as quickly as possible, with minimum memory usage.

QDataTable inherits QTable’s API and extends it with functions to sort and filter the data and sort columns. See
setSqlCursor(), setFilter(), setSort(), setSorting(), sortColumn() and refresh().

When displaying editable cursors, cell editing will be enabled. (For more information on editable cursors, see
QSqlCursor). QDataTable can be used to modify existing data and to add new records. When a user makes changes
to a field in the table, the cursor’s edit buffer is used. The table will not send changes in the edit buffer to the
database until the user moves to a different record in the grid or presses Return. Cell editing is initiated by pressing
F2 (or right clicking and then clicking the appropriate popup menu item) and cancelled by pressing Esc. If there is
a problem updating or adding data, errors are handled automatically (see handleError() to change this behavior).
Note that if autoEdit() is FALSE navigating to another record will cancel the insert or update.

The user can be asked to confirm all edits with setConfirmEdits(). For more precise control use setConfirmInsert(),
setConfirmUpdate(), setConfirmDelete() and setConfirmCancels(). Use setAutoEdit() to control the behaviour of
the table when the user edits a record and then navigates. (Note that setAutoDelete() is unrelated; it is used to set
whether the QSqlCursor is deleted when the table is deleted.)

QDataTable Class Reference 50

Since the data table can perform edits, it must be able to uniquely identify every record so that edits are correctly
applied. Because of this the underlying cursor must have a valid primary index to ensure that a unique record is
inserted, updated or deleted within the database otherwise the database may be changed to an inconsistent state.

QDataTable creates editors using the default QSqlEditorFactory. Different editor factories can be used by calling
installEditorFactory(). A property map is used to map between the cell’s value and the editor. You can use your
own property map with installPropertyMap().

The contents of a cell is available as a QString with text() or as a QVariant with value(). The current record is
returned by currentRecord(). Use the find() function to search for a string in the table.

Editing actions can be applied programatically. For example, the insertCurrent() function reads the fields from the
current record into the cursor and performs the insert. The updateCurrent() and deleteCurrent() functions perform
similarly to update and delete the current record respectively.

Columns in the table can be created automatically based on the cursor (see setSqlCursor()). Columns can be
manipulated manually using addColumn(), removeColumn() and setColumn().

The table automatically copies many of the properties of the cursor to format the display of data within cells
(alignment, visibility, etc.). The cursor can be changed with setSqlCursor(). The filter (see setFilter()) and sort
defined within the table are used instead of the filter and sort set on the cursor. For sorting options see setSort(),
sortColumn(), sortAscending() and sortDescending().

The text used to represent NULL, TRUE and FALSE values can be changed with setNullText(), setTrueText() and
setFalseText() respectively. You can change the appearance of cells by reimplementing paintField().

Whenever a new row is selected in the table the currentChanged() signal is emitted. The primelnsert() signal
is emitted when an insert is initiated. The primeUpdate() and primeDelete() signals are emitted when update
and deletion are initiated respectively. Just before the database is updated a signal is emitted; beforelnsert(),
beforeUpdate() or beforeDelete() as appropriate.

See also Database Classes.

Member Type Documentation

QDataTable::Refresh

This enum describes the refresh options.

The currently defined values are:

e (Dat aTabl e: : RefreshDat a - refresh the data, i.e. read it from the database
e (Dat aTabl e: : Ref resh@l ums - refresh the list of fields, e.g. the column headings
e (QDat aTabl e: : RefreshA | - refresh both the data and the list of fields

Member Function Documentation

QDataTable::QDataTable (QWidget * parent = 0, const char * name = 0)

Constructs a data table which is a child of parent, with the name name.

QDataTable::QDataTable (QSqlCursor * cursor, bool autoPopulate = FALSE,
QWidget * parent = 0, const char * name = 0)

Constructs a data table which is a child of parent, with the name name using the cursor cursor.

QDataTable Class Reference 51

If autoPopulate is TRUE (the default is FALSE), columns are automatically created based upon the fields in the
cursor record. Note that autoPopulate only governs the creation of columns; to load the cursor’s data into the table
use refresh().

If the cursor is read-only, the table also becomes read-only. In addition, the table adopts the cursor’s driver’s
definition for representing NULL values as strings.

QDataTable::~QDataTable ()

Destroys the object and frees any allocated resources.

void QDataTable::addColumn (const QString & fieldName, const QString & label =
QString::null, int width = -1, const QIconSet & iconset = QIconSet ()) [virtual]

Adds the next column to be displayed using the field fieldName, column label label, width width and iconset iconset.

If label is specified, it is used as the column’s header label, otherwise the field’s display label is used when setSql-
Cursor() is called. The iconset is used to set the icon used by the column header; by default there is no icon.

See also setSqlCursor() [p. 58] and refresh() [p. 55].

Examples: sql/overview/subclass1/main.cpp, sql/overview/subclass3/main.cpp, sql/overview/table2/main.cpp
and sql/sqltable/main.cpp.

bool QDataTable::autoDelete () const

Returns TRUE if the table will automatically delete the cursor specified by setSqlCursor(), otherwise returns FALSE.

bool QDataTable::autoEdit () const

Returns TRUE if the data table automatically applies edits; otherwise returns FALSE. See the "autoEdit" [p. 59]
property for details.

void QDataTable::beforeDelete (QSglRecord * buf) [signal]

This signal is emitted just before the currently selected record is deleted from the database. The buf parameter
points to the edit buffer being deleted. Connect to this signal to, for example, copy some of the fields for later use.

void QDataTable::beforeIlnsert (QSqlRecord * buf) [signal]

This signal is emitted just before the cursor’s edit buffer is inserted into the database. The buf parameter points to
the edit buffer being inserted. Connect to this signal to, for example, populate a key field with a unique sequence
number.

void QDataTable::beforeUpdate (QSqlRecord * buf) [signal]

This signal is emitted just before the cursor’s edit buffer is updated in the database. The buf parameter points to the
edit buffer being updated. Connect to this signal when you want to transform the user’s data behind-the-scenes.

QDataTable Class Reference 52

bool QDataTable::beginInsert () [virtual protected]

Protected virtual function called when editing is about to begin on a new record. If the table is read-only, or if
there’s no cursor or the cursor does not allow inserts, nothing happens.
Editing takes place using the cursor’s edit buffer(see QSqlCursor::editBuffer()).

When editing begins, a new row is created in the table marked with an asterisk '*’ in the row’s vertical header
column, i.e. at the left of the row.

QWidget * QDataTable::beginUpdate (int row, int col, bool replace) [virtual protected]

Protected virtual function called when editing is about to begin on an existing row. If the table is read-only, or if
there’s no cursor, nothing happens.

Editing takes place using the cursor’s edit buffer (see QSqlCursor::editBuffer()).
row and col refer to the row and column in the QDataTable.

(replace is provided for reimplementors and reflects the API of QTable::beginEdit().)

QSql::Confirm QDataTable::confirmCancel (QSql::Op m) [virtual protected]

Protected virtual function which returns a confirmation for cancelling an edit mode of m. Derived classes can
reimplement this function to provide their own cancel dialog. The default implementation uses a message box
which prompts the user to confirm the cancel.

bool QDataTable::confirmCancels () const

Returns TRUE if the data table confirms cancel operations; otherwise returns FALSE. See the "confirmCancels"
[p. 59] property for details.

bool QDataTable::confirmDelete () const

Returns TRUE if the data table confirms delete operations; otherwise returns FALSE. See the "confirmDelete" [p. 59]
property for details.

QSql::Confirm QDataTable::confirmEdit (QSql::Op m) [virtual protected]

Protected virtual function which returns a confirmation for an edit of mode m. Derived classes can reimplement
this function to provide their own confirmation dialog. The default implementation uses a message box which
prompts the user to confirm the edit action.

bool QDataTable::confirmEdits () const

Returns TRUE if the data table confirms edit operations; otherwise returns FALSE. See the "confirmEdits" [p. 60]
property for details.

bool QDataTable::confirmInsert () const

Returns TRUE if the data table confirms insert operations; otherwise returns FALSE. See the "confirmInsert" [p. 60]
property for details.

QDataTable Class Reference 53

bool QDataTable::confirmUpdate () const

Returns TRUE if the data table confirms update operations; otherwise returns FALSE. See the "confirmUpdate"
[p. 60] property for details.

void QDataTable::currentChanged (QSqlRecord * record) [signal]

This signal is emitted whenever a new row is selected in the table. The record parameter points to the contents of
the newly selected record.

QSqglRecord * QDataTable::currentRecord () const

Returns a pointer to the currently selected record, or O if there is no current selection. The table owns the pointer,
so do not delete it or otherwise modify it or the cursor it points to.

void QDataTable::cursorChanged (QSql::Op mode) [signal]

This signal is emitted whenever the cursor record was changed due to an edit. The mode parameter is the type of
edit that just took place.

DateFormat QDataTable::dateFormat () const

Returns the format how date/time values are displayed. See the "dateFormat" [p. 60] property for details.

bool QDataTable::deleteCurrent () [virtual protected]

For an editable table, issues a delete on the current cursor’s primary index using the values of the currently selected
row. If there is no current cursor or there is no current selection, nothing happens. If confirmEdits() or confir-
mbDelete() is TRUE, confirmEdit() is called to confirm the delete. Returns TRUE if the delete succeeded, otherwise
FALSE.

The underlying cursor must have a valid primary index to ensure that a unique record is deleted within the database
otherwise the database may be changed to an inconsistent state.

QString QDataTable::falseText () const

Returns the text used to represent false values. See the "falseText" [p. 60] property for details.

int QDataTable::fieldAlignment (const QSqlField * field) [virtual protected]

Returns the alignment for field.

QString QDataTable::filter () const

Returns the data filter for the data table. See the "filter" [p. 60] property for details.

QDataTable Class Reference 54

void QDataTable::find (const QString & str, bool caseSensitive,
bool backwards) [virtual slot]

Searches the current cursor for a cell containing the string str starting at the current cell and working forwards (or
backwards if backwards is TRUE). If the string is found, the cell containing the string is set as the current cell. If
caseSensitive is FALSE the case of str will be ignored.

The search will wrap, i.e. if the first (or if backwards is TRUE, last) cell is reached without finding str the search
will continue until it reaches the starting cell. If str is not found the search will fail and the current cell will remain
unchanged.

void QDataTable::handleError (const QSqlError & e) [virtual protected]

Protected virtual function which is called when an error e has occurred on the current cursor(). The default
implementation displays a warning message to the user with information about the error.

int QDataTable::indexOf (uint i) const [protected]

Returns the index of the field within the current SQL query that is displayed in column i.

bool QDataTable::insertCurrent () [virtual protected]

For an editable table, issues an insert on the current cursor using the values in the cursor’s edit buffer. If there is no
current cursor or there is no current "insert" row, nothing happens. If confirmEdits() or confirmInsert() is TRUE,
confirmEdit() is called to confirm the insert. Returns TRUE if the insert succeeded, otherwise returns FALSE.

The underlying cursor must have a valid primary index to ensure that a unique record is inserted within the
database otherwise the database may be changed to an inconsistent state.

void QDataTable::installEditorFactory (QSqlEditorFactory * f)

Installs a new SQL editor factory f. This enables the user to create and instantiate their own editors for use in cell
editing. Note that QDataTable takes ownership of this pointer, and will delete it when it is no longer needed or
when installEditorFactory() is called again.

See also QSqlEditorFactory [p. 92].

void QDataTable::installPropertyMap (QSqlPropertyMap * m)

Installs a new property map m. This enables the user to create and instantiate their own property maps for use in
cell editing. Note that QDataTable takes ownership of this pointer, and will delete it when it is no longer needed or
when installPropertMap() is called again.

See also QSqlPropertyMap [p. 112].

QString QDataTable::nullText () const

Returns the text used to represent NULL values. See the "nullText" [p. 61] property for details.

QDataTable Class Reference 55

int QDataTable::numCols () const [virtual]

Returns the number of columns in the table. See the "numCols" [p. 61] property for details.

Reimplemented from QTable [Widgets with Qt].

int QDataTable::numRows () const [virtual]

Returns the number of rows in the table. See the "numRows" [p. 61] property for details.

Reimplemented from QTable [Widgets with Qt].

void QDataTable::paintField (QPainter * p, const QSqlField * field, const QRect & cr,
bool selected) [virtual protected]

Paints the field on the painter p. The painter has already been translated to the appropriate cell’s origin where the
field is to be rendered. cr describes the cell coordinates in the content coordinate system. The selected parameter is
ignored.

If you want to draw custom field content you have to reimplement paintField() to do the custom drawing. The
default implementation renders the field value as text. If the field is NULL, nullText() is displayed in the cell. If the
field is Boolean, trueText() or falseText() is displayed as appropriate.

Example: sql/overview/table4/main.cpp.

void QDataTable::primeDelete (QSqlRecord * buf) [signal]

This signal is emitted after the cursor is primed for delete by the table, when a delete action is beginning on the
table. The buf parameter points to the edit buffer being deleted. Connect to this signal in order to, for example,
record auditing information on deletions.

void QDataTable::primelnsert (QSqlRecord * buf) [signal]

This signal is emitted after the cursor is primed for insert by the table, when an insert action is beginning on the
table. The buf parameter points to the edit buffer being inserted. Connect to this signal in order to, for example,
prime the record buffer with default data values.

void QDataTable::primeUpdate (QSqlRecord * buf) [signal]

This signal is emitted after the cursor is primed for update by the table, when an update action is beginning on the
table. The buf parameter points to the edit buffer being updated. Connect to this signal in order to, for example,
provide some visual feedback that the user is in ’insert mode’.

void QDataTable::refresh () [virtual slot]
Refreshes the table. The cursor is refreshed using the current filter, the current sort, and the currently defined
columns. Equivalent to calling refresh(QDataTable::RefreshData).

Examples: sql/overview/subclass1/main.cpp, sql/overview/tablel/main.cpp, sql/overview/table2/main.cpp and
sql/sqltable/main.cpp.

QDataTable Class Reference 56

void QDataTable::refresh (Refresh mode)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Refreshes the table. If there is no currently defined cursor (see setSqlCursor()), nothing happens. The mode
parameter determines which type of refresh will take place.

See also Refresh [p. 501, setSqlCursor() [p. 58] and addColumn() [p. 511].

void QDataTable::removeColumn (uint col) [virtual]

Removes column col from the list of columns to be displayed. If col does not exist, nothing happens.

See also QSqlField [p. 97].

void QDataTable::reset () [protected]

Resets the table so that it displays no data.

See also setSqlCursor() [p. 58].

void QDataTable::setAutoDelete (bool enable) [virtual]

Sets the cursor auto-delete flag to enable. If enable is TRUE, the table will automatically delete the cursor specified
by setSqlCursor(). Otherwise, (the default), the cursor will not be deleted.

void QDataTable::setAutoEdit (bool autoEdit) [virtual]

Sets whether the data table automatically applies edits to autoEdit. See the "autoEdit" [p. 59] property for details.

void QDataTable::setColumn (uint col, const QString & fieldName, const QString & label
= QString::null, int width = -1, const QIconSet & iconset = QIconSet ()) [virtual]

Sets the col column to display using the field fieldName, column label label, width width and iconset iconset.

If label is specified, it is used as the column’s header label, otherwise the field’s display label is used when setSql-
Cursor() is called. The iconset is used to set the icon used by the column header; by default there is no icon.

See also setSqlCursor() [p. 58] and refresh() [p. 55].

void QDataTable::setConfirmCancels (bool confirm) [virtual]

Sets whether the data table confirms cancel operations to confirm. See the "confirmCancels" [p. 59] property for
details.

void QDataTable::setConfirmDelete (bool confirm) [virtual]

Sets whether the data table confirms delete operations to confirm. See the "confirmDelete" [p. 59] property for
details.

QDataTable Class Reference 57

void QDataTable::setConfirmEdits (bool confirm) [virtual]

Sets whether the data table confirms edit operations to confirm. See the "confirmEdits" [p. 60] property for details.

void QDataTable::setConfirmInsert (bool confirm) [virtual]

Sets whether the data table confirms insert operations to confirm. See the "confirmInsert" [p. 60] property for
details.

void QDataTable::setConfirmUpdate (bool confirm) [virtual]

Sets whether the data table confirms update operations to confirm. See the "confirmUpdate" [p. 60] property for
details.

void QDataTable::setDateFormat (const DateFormat f) [virtual]

Sets the format how date/time values are displayed to f. See the "dateFormat" [p. 60] property for details.

void QDataTable::setFalseText (const QString & falseText) [virtual]

Sets the text used to represent false values to falseText. See the "falseText" [p. 60] property for details.

void QDataTable::setFilter (const QString & filter) [virtual]

Sets the data filter for the data table to filter. See the "filter" [p. 60] property for details.

void QDataTable::setNullText (const QString & nullText) [virtual]

Sets the text used to represent NULL values to nullText. See the "nullText" [p. 61] property for details.

void QDataTable::setSize (QSqglCursor * sql) [protected]

If the cursor’s sql driver supports query sizes, the number of rows in the table is set to the size of the query.
Otherwise, the table dynamically resizes itself as it is scrolled. If \q sql is not active, it is made active by issuing a
select() on the cursor using the sql cursor’s current filter and current sort.

void QDataTable::setSort (const QStringList & sort) [virtual]

Sets the data table’s sort to sort. See the "sort" [p. 61] property for details.

void QDataTable::setSort (const QSglindex & sort) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the sort to be applied to the displayed data to sort. If there is no current cursor, nothing happens. A QSqlindex
contains field names and their ordering (ASC or DESC); these are used to compose the ORDER BY clause.

See also sort [p. 61].

QDataTable Class Reference 58

void QDataTable::setSqlCursor (QSqlCursor * cursor = 0, bool autoPopulate = FALSE,
bool autoDelete = FALSE) [virtual]

Sets cursor as the data source for the table. To force the display of the data from cursor, use refresh(). If autoPopulate
is TRUE, columns are automatically created based upon the fields in the cursor record. If autoDelete is TRUE (the
default is FALSE), the table will take ownership of the cursor and delete it when appropriate. If the cursor is read-
only, the table becomes read-only. The table adopts the cursor’s driver’s definition for representing NULL values as
strings.

See also refresh() [p. 55], readOnly [Widgets with Qt], setAutoDelete() [p. 56] and QSqlDriver::nullText()
[p. 901].

void QDataTable::setTrueText (const QString & trueText) [virtual]

Sets the text used to represent true values to trueText. See the "trueText" [p. 61] property for details.

QStringList QDataTable::sort () const

Returns the data table’s sort. See the "sort" [p. 61] property for details.

void QDataTable::sortAscending (int col) [virtual slot]

Sorts column col in ascending order.

See also sorting [Widgets with Qt].

void QDataTable::sortColumn (int col, bool ascending = TRUE, bool wholeRows =
FALSE) [virtual]

Sorts column col in ascending order if ascending is TRUE (the default), otherwise sorts in descending order. The
wholeRows parameter is ignored for SQL tables.

Reimplemented from QTable [Widgets with Qt].

void QDataTable::sortDescending (int col) [virtual slot]
Sorts column col in descending order.

See also sorting [Widgets with Qt].

QSqlCursor * QDataTable::sqlCursor () const

Returns a pointer to the cursor used by the data table.

QString QDataTable::text (int row, int col) const [virtual]

Returns the text in cell row, col, or an empty string if the cell is empty. If the cell’s value is NULL then nullText()
will be returned. If the cell does not exist then a null QString is returned.

Reimplemented from QTable [Widgets with Qt].

QDataTable Class Reference 59

QString QDataTable::trueText () const

Returns the text used to represent true values. See the "trueText" [p. 61] property for details.

bool QDataTable::updateCurrent () [virtual protected]

For an editable table, issues an update using the cursor’s edit buffer. If there is no current cursor or there is
no current selection, nothing happens. If confirmEdits() or confirmUpdate() is TRUE, confirmEdit() is called to
confirm the update. Returns TRUE if the update succeeded, otherwise returns FALSE.

The underlying cursor must have a valid primary index to ensure that a unique record is updated within the
database otherwise the database may be changed to an inconsistent state.

QVariant QDataTable::value (int row, int col) const

Returns the value in cell row, col, or an invalid value if the cell does not exist or has no value.

Property Documentation

bool autoEdit

This property holds whether the data table automatically applies edits.
The default value for this property is TRUE. When the user begins an insert or update in the table there are two
possible outcomes when they navigate to another record:

1. the insert or update is is performed — this occurs if autoEdit is TRUE
2. the insert or update is abandoned — this occurs if autoEdit is FALSE

Set this property’s value with setAutoEdit() and get this property’s value with autoEdit().

bool confirmCancels

This property holds whether the data table confirms cancel operations.

If the confirmCancel property is active, all cancels must be confirmed by the user through a message box (this
behavior can be changed by overriding the confirmCancel() function), otherwise all cancels occur immediately.
The default is FALSE.

See also confirmEdits [p. 60] and confirmCancel() [p. 52].

Set this property’s value with setConfirmCancels() and get this property’s value with confirmCancels().

bool confirmDelete

This property holds whether the data table confirms delete operations.

If the confirmDelete property is active, all deletions must be confirmed by the user through a message box (this
behaviour can be changed by overriding the confirmEdit() function), otherwise all delete operations occur imme-
diately.

See also confirmCancels [p. 591, confirmEdits [p. 601, confirmUpdate [p. 60] and confirmInsert [p. 60].

Set this property’s value with setConfirmDelete() and get this property’s value with confirmDelete().

QDataTable Class Reference 60

bool confirmEdits

This property holds whether the data table confirms edit operations.

If the confirmEdits property is active, the data table confirms all edit operations (inserts, updates and deletes),
otherwise all edit operations occur immediately.

See also confirmCancels [p. 591, confirmInsert [p. 60], confirmUpdate [p. 60] and confirmDelete [p. 59].

Set this property’s value with setConfirmEdits() and get this property’s value with confirmEdits().

bool confirmInsert

This property holds whether the data table confirms insert operations.

If the confirmlInsert property is active, all insertions must be confirmed by the user through a message box (this
behaviour can be changed by overriding the confirmEdit() function), otherwise all insert operations occur immedi-
ately.

See also confirmCancels [p. 591, confirmEdits [p. 601, confirmUpdate [p. 60] and confirmDelete [p. 59].

Set this property’s value with setConfirmInsert() and get this property’s value with confirmInsert().

bool confirmUpdate

This property holds whether the data table confirms update operations.

If the confirmUpdate property is active, all updates must be confirmed by the user through a message box (this
behaviour can be changed by overriding the confirmEdit() function), otherwise all update operations occur imme-
diately.

See also confirmCancels [p. 591, confirmEdits [p. 601, confirmInsert [p. 60] and confirmDelete [p. 59].

Set this property’s value with setConfirmUpdate() and get this property’s value with confirmUpdate().

DateFormat dateFormat

This property holds the format how date/time values are displayed.
The dateFormat property will be used to display date/time values in the table. The default value is ’Qt::LocalDate’.

Set this property’s value with setDateFormat() and get this property’s value with dateFormat().

QString falseText

This property holds the text used to represent false values.
The falseText property will be used to represent NULL values in the table. The default value is 'False’.

Set this property’s value with setFalseText() and get this property’s value with falseText().

QString filter

This property holds the data filter for the data table.

The filter applies to the data shown in the table. To actually a new filter, use refresh(). A filter string is an SQL
WHERE clause without the WHERE keyword.

There is no default filter.

QDataTable Class Reference 61

See also sort [p. 61].

Set this property’s value with setFilter() and get this property’s value with filter().

QString nullText

This property holds the text used to represent NULL values.

The nullText property will be used to represent NULL values in the table. The default value is provided by the
cursor’s driver.

Set this property’s value with setNullText() and get this property’s value with nullText().

int numcCols

This property holds the number of columns in the table.

Get this property’s value with numCols().

int numRows

This property holds the number of rows in the table.

Get this property’s value with numRows().

QStringList sort

This property holds the data table’s sort.
The table’s sort affects the order in which data records are displayed in the table. To apply a sort, use refresh().

When examining the sort property, a string list is returned with each item having the form ’fieldname order’ (e.g.,
’id ASC’, ’surname DESC).

There is no default sort.
See also filter [p. 60] and refresh() [p. 55].

Set this property’s value with setSort() and get this property’s value with sort().

QString trueText

This property holds the text used to represent true values.
The trueText property will be used to represent NULL values in the table. The default value is "True’.

Set this property’s value with setTrueText() and get this property’s value with trueText().

QDataView Class Reference

The QDataView class provides read-only SQL forms.
This class is part of the sql module.
#i ncl ude <qgdat avi ew. h>

Inherits QWidget [Widgets with Qt].

Public Members

m QDataView (QWidget * parent = 0, const char * name = 0, WFlags fl = 0)
~QDataView ()

virtual void setForm (QSqlForm * form)

m QSqlForm * form ()

m virtual void setRecord (QSqlRecord * record)

m QSqlRecord * record ()

Public Slots

m virtual void refresh (QSglRecord * buf)
m virtual void readFields ()

m virtual void writeFields ()

m virtual void clearValues ()

Detailed Description

The QDataView class provides read-only SQL forms.

This class provides a form which displays SQL field data from a record buffer. Because QDataView does not support
editing it uses less resources than a QDataBrowser. This class is well suited for displaying read-only data from a
SQL database.

If you want a to present your data in an editable form use QDataBrowser; if you want a table-based presentation
of your data use QDataTable.

The form is associated with the data view with setForm() and the record is associated with setRecord(). You can
also pass a QSqlRecord to the refresh() function which will set the record to the given record and read the record’s
fields into the form.

See also Database Classes.

62

QDataView Class Reference 63

Member Function Documentation

QDataView::QDataView (QWidget * parent = 0, const char * name = 0, WFlags fl = 0)

Constructs a data view which is a child of parent, with the name name and widget flags set to fl.

QDataView::~QDataView ()

Destroys the object and frees any allocated resources.

void QDataView::clearValues () [virtual slot]

Clears the default form’s values. If there is no default form, nothing happens. All the values are set to their "zero
state’, e.g. 0 for numeric fields, "" for string fields.

QSqlForm * QDataView::form ()

Returns the default form used by the data view, or 0 if there is none.

See also setForm() [p. 63].

void QDataView::readFields () [virtual slot]

Causes the default form to read its fields from the record buffer. If there is no default form, or no record, nothing
happens.

See also setForm() [p. 63].

QSqglRecord * QDataView::record ()

Returns the default record used by the data view, or O if there is none.

See also setRecord() [p. 641.

void QDataView::refresh (QSqlRecord * buf) [virtual slot]

Causes the default form to display the contents of buf. If there is no default form, nothing happens.The buf also
becomes the default record for all subsequent calls to readFields() and writefields(). This slot is equivalant to
calling:

myVi ew. set Record(record);
myVi ew. r eadFi el ds();

See also setRecord() [p. 64] and readFields() [p. 63].

void QDataView::setForm (QSqlForm * form) [virtual]

Sets the form used by the data view to form. If a record has already been assigned to the data view, the form will
display that record’s data.

See also form() [p. 63].

QDataView Class Reference 64

void QDataView::setRecord (QSqlRecord * record) [virtual]

Sets the record used by the data view to record. If a form has already been assigned to the data view, the form will
display the data from record in that form.

See also record() [p. 63].

void QDataView::writeFields () [virtual slot]

Causes the default form to write its fields to the record buffer. If there is no default form, or no record, nothing
happens.

See also setForm() [p. 63].

QSql Class Reference

The QSql class is a namespace for Qt SQL identifiers that need to be global-like.
This class is part of the sql module.

#include <gsql . h>

Public Members

QSql)

enum Op { None = -1, Insert = 0, Update = 1, Delete = 2 }
m enum Location { BeforeFirst = -1, AfterLast = -2 }

enum Confirm { Cancel = -1, No=0,Yes =1}

Detailed Description

The QSql class is a namespace for Qt SQL identifiers that need to be global-like.

Normally, you can ignore this class. Several Qt SQL classes inherit it, so all the identifiers in the Qt SQL namespace
are visible to you without qualification.

See also Database Classes.

Member Type Documentation

QSql::Confirm

This enum type describes edit confirmations.

The currently defined values are:

e (Sql::Yes

e (5gl::No

e (Sgl :: Cance
QSql::Location

This enum type describes SQL navigation locations.

The currently defined values are:

65

QSql Class Reference

e (5ql:

: Bef or eFi rst

e (5ql:: Afterlast

QSql::0Op

This enum type describes edit operations.

The currently defined values are:

e (S5l ::
e 5ql::
e 5ql::
e (S5ql::

None

I nsert
Updat e
Del ete

Member Function Documentation

QSql::QSql ()

Constructs a Qt SQL namepsace class

66

QSqlCursor Class Reference

The QSqlCursor class provides browsing and editing of SQL tables and views.
This class is part of the sql module.
#incl ude <qgsql cursor. h>

Inherits QSqlRecord [p. 122] and QSqlQuery [p. 115].

Public Members

m QSqlCursor (const QString & name = QString::null, bool autopopulate = TRUE, QSqlDatabase * db = 0)
m QSqlCursor (const QSqlCursor & other)

QSqlCursor & operator= (const QSqlCursor & other)

m ~QSqlCursor ()

m enum Mode { ReadOnly = 0, Insert = 1, Update = 2, Delete = 4, Writable = 7 }
m virtual QSqllndex primaryIndex (bool setFromCursor = TRUE) const

» virtual QSqlindex index (const QStringList & fieldNames) const

QSqlindex index (const QString & fieldName) const

QSqlindex index (const char * fieldName) const

virtual void setPrimaryIndex (const QSqlindex & idx)

virtual void append (const QSqlFieldInfo & fieldInfo)

virtual void insert (int pos, const QSqlFieldInfo & fieldInfo)

virtual void remove (int pos)

m virtual void clear ()

m virtual void setGenerated (const QString & name, bool generated)
virtual void setGenerated (int i, bool generated)

virtual QSqlRecord * editBuffer (bool copy = FALSE)

virtual QSqlRecord * primelnsert ()

virtual QSqlRecord * primeUpdate ()

virtual QSqlRecord * primeDelete ()

virtual int insert (bool invalidate = TRUE)

virtual int update (bool invalidate = TRUE)

m virtual int del (bool invalidate = TRUE)

m virtual void setMode (int mode)

m int mode () const

m virtual void setCalculated (const QString & name, bool calculated)
m bool isCalculated (const QString & name) const

m virtual void setTrimmed (const QString & name, bool trim)
m bool isTrimmed (const QString & name) const
= bool isReadOnly () const

67

QSqlCursor Class Reference 68

= bool canlnsert () const

m bool canUpdate () const

m bool canDelete () const

m bool select ()

m bool select (const QSqlindex & sort)

m bool select (const QSqllndex & filter, const QSqllndex & sort)

virtual bool select (const QString & filter, const QSqlindex & sort = QSqlIlndex ())
virtual void setSort (const QSqlIlndex & sort)

QSqlindex sort () const

m virtual void setFilter (const QString & filter)

e QString filter () const

e virtual void setName (const QString & name, bool autopopulate = TRUE)

e QString name () const

Protected Members

» virtual QVariant calculateField (const QString & name)
» virtual int update (const QString & filter, bool invalidate = TRUE)
m virtual int del (const QString & filter, bool invalidate = TRUE)
m virtual QString toString (const QString & prefix, QSqlField * field, const QString & fieldSep) const
m virtual QString toString (QSqlRecord * rec, const QString & prefix, const QString & fieldSep,
const QString & sep) const

m virtual QString toString (const QSqlindex & i, QSqlRecord * rec, const QString & prefix,
const QString & fieldSep, const QString & sep) const

Detailed Description

The QSqlCursor class provides browsing and editing of SQL tables and views.

A QSqlCursor is a database record (see QSglRecord) that corresponds to a table or view within an SQL database
(see QSqlDatabase). There are two buffers in a cursor, one used for browsing and one used for editing records.
Each buffer contains a list of fields which correspond to the fields in the table or view.

When positioned on a valid record, the browse buffer contains the values of the current record’s fields from the
database. The edit buffer is separate, and is used for editing existing records and inserting new records.

For browsing data, a cursor must first select() data from the database. After a successful select() the cursor is active
(isActive() returns TRUE), but is initially not positioned on a valid record (isValid() returns FALSE). To position
the cursor on a valid record, use one of the navigation functions, next(), prev(), first(), last(), or seek(). Once
positioned on a valid record, data can be retrieved from the browse buffer using value(). If a navigation function is
not successful, it returns FALSE, the cursor will no longer be positioned on a valid record and the values returned
by value() are undefined.

For example:

@Sql Cursor cur("staff"); // Specify the table/view name
cur.select(); // W'Il retrieve every record
while (cur.next()) {

qDebug(cur.value("id").toString() +": " +
cur.value("surname").toString() + " " +
cur.value("salary").toString());

QSqlCursor Class Reference 69

In the above example, a cursor is created specifying a table or view name in the database. Then, select() is
called, which can be optionally parameterised to filter and order the records retrieved. Each record in the cursor is
retrieved using next(). When next() returns FALSE, there are no more records to process, and the loop terminates.

For editing records (rows of data), a cursor contains a separate edit buffer which is independent of the fields used
when browsing. The functions insert(), update() and del() operate on the edit buffer. This allows the cursor to be
repositioned to other records while simultaneously maintaining a separate buffer for edits. You can get a pointer
to the edit buffer using editBuffer(). The primelnsert(), primeUpdate() and primeDelete() functions also return
a pointer to the edit buffer and prepare it for insert, update and delete respectively. Edit operations only affect
a single row at a time. Note that update() and del() require that the table or view contain a primaryIlndex() to
ensure that edit operations affect a unique record within the database.

For example:

QSql Cursor cur("prices");
cur.select("id=202");
if (cur.next()) {
@Sql Record *buffer = cur. prineUpdate();
doubl e price = buffer->value("price").toDouble();
doubl e newprice = price * 1.05;
buf f er->set Val ue("price", newprice);
cur. update();

To edit an existing database record, first move to the record you wish to update. Call primeUpdate() to get the
pointer to the cursor’s edit buffer. Then use this pointer to modify the values in the edit buffer. Finally, call update()
to save the changes to the database. The values in the edit buffer will be used to locate the appropriate record
when updating the database (see primarylndex()).

Similarly, when deleting an existing database record, first move the record you wish to delete. Then, call
primeDelete() to get the pointer to the edit buffer. Finally, call del() to delete the record from the database.
Again, the values in the edit buffer will be used to locate and delete the appropriate record.

To insert a new record, call primeInsert() to get the pointer to the edit buffer. Use this pointer to populate the edit
buffer with new values and then insert() the record into the database.

After calling insert(), update() or del(), the cursor is no longer positioned on a valid record and can no longer be
navigated (isValid() return FALSE). The reason for this is that any changes made to the database will not be visible
until select() is called to refresh the cursor. You can change this behavior by passing FALSE to insert(), update()
or del() which will prevent the cursor from becoming invalid. These edits will then not be visible when navigating
the cursor until select() is called.

QSqlCursor contains virtual methods which allow editing behavior to be customized by subclasses. This allows
custom cursors to be created which encapsulate the editing behavior of a database table for an entire application.
For example, a cursor can be customized to always auto-number primary index fields, or provide fields with suitable
default values, when inserting new records.

See also Database Classes.

Member Type Documentation

QSqlCursor::Mode

This enum type describes how QSqlCursor operates on records in the database.

The currently defined values are:

e (Sgl Cursor:: ReadOnly - the cursor can only SELECT records from the database.

QSqlCursor Class Reference 70

e (gl Cursor::Insert - the cursor can INSERT records into the database.

e (Sgl Cursor: : Updat e - the cursor can UPDATE records in the database.

e (Sql Cursor:: Del et e - the cursor can DELETE records from the database.

e (Sgl Cursor::Witable - the cursor can INSERT, UPDATE and DELETE records in the database.

Member Function Documentation

QSqlCursor::QSqglCursor (const QString & name = QString::null, bool autopopulate =
TRUE, QSqlDatabase * db = 0)

Constructs a cursor on database db using table or view name.

If autopopulate is TRUE (the default), the name of the cursor must correspond to an existing table or view name in
the database so that field information can be automatically created. If the table or view does not exist, the cursor
will not be functional.

The cursor is created with an initial mode of QSqlCursor::Writable (meaning that records can be inserted, updated
or deleted using the cursor). If the cursor does not have a unique primary index, update and deletes cannot be
performed.

Note that autopopulate refers to populating the cursor with meta-data, e.g. the names of the table’s fields, not with
retrieving data. The select() function is used to populate the cursor with data.

See also setName() [p. 77] and setMode() [p. 76].

QSqglCursor::QSglCursor (const QSqglCursor & other)

Constructs a copy of other.

QSqglCursor::~QSqlCursor ()

Destroys the object and frees any allocated resources.

void QSqlCursor::append (const QSqglFieldIinfo & fieldInfo) [virtual]

Append a copy of field fieldInfo to the end of the cursor. Note that all references to the cursor edit buffer become
invalidated.

QVariant QSqlCursor::calculateField (const QString & name) [virtual protected]

Protected virtual function which is called whenever a field needs to be calculated. If calculated fields are being
used, derived classes must reimplement this function and return the appropriate value for field name. The default
implementation returns an invalid QVariant.

See also setCalculated() [p. 76].

Examples: sql/overview/subclass3/main.cpp and sql/overview/subclass4/main.cpp.

bool QSqlCursor::canDelete () const

Returns TRUE if the cursor will perform deletes, FALSE otherwise.

QSqlCursor Class Reference 71

See also setMode() [p. 76].

bool QSqglCursor::canInsert () const

Returns TRUE if the cursor will perform inserts, FALSE otherwise.

See also setMode() [p. 76].

bool QSglCursor::canUpdate () const

Returns TRUE if the cursor will perform updates, FALSE otherwise.

See also setMode() [p. 76].

void QSqlCursor::clear () [virtual]

Removes all fields from the cursor. Note that all references to the cursor edit buffer become invalidated.

Reimplemented from QSqlRecord [p. 123].

int QSqlCursor::del (bool invalidate = TRUE) [virtual]

Deletes a record from the database using the cursor’s primary index and the contents of the cursor edit buffer.
Returns the number of records which were deleted, or O if there was an error. For error information, use lastError().

Only records which meet the filter criteria specified by the cursor’s primary index are deleted. If the cursor does not
contain a primary index, no delete is performed and O is returned. If invalidate is TRUE (the default), the current
cursor can no longer be navigated. A new select() call must be made before you can move to a valid record. For
example:

QSql Cursor cur("prices");
cur.select("id=999");
if (cur.next()) {

cur. primebel ete();

cur. del ();

In the above example, a cursor is created on the ’prices’ table and positioned to the record to be deleted. First
primeDelete() is called to populate the edit buffer with the current cursor values, e.g. with an id of 999, and then
del() is called to actually delete the record from the database. Remember: all edit operations (insert(), update()
and delete()) operate on the contents of the cursor edit buffer and not on the contents of the cursor itself.

See also primeDelete() [p. 74], setMode() [p. 76] and lastError() [p. 118].

Example: sql/overview/del/main.cpp.

int QSqlCursor::del (const QString & filter, bool invalidate = TRUE) [virtual protected]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Deletes the current cursor record from the database using the filter filter. Only records which meet the filter criteria
are deleted. Returns the number of records which were deleted. If invalidate is TRUE (the default), the current
cursor can no longer be navigated. A new select() call must be made before you can move to a valid record. For
error information, use lastError().

QSqlCursor Class Reference 72

The filter is an SQL WHERE clause, e.g. i d=500.
See also setMode() [p. 76] and lastError() [p. 118].

QSqlRecord * QSqlCursor::editBuffer (bool copy = FALSE) [virtual]

Returns a pointer to the current internal edit buffer. If copy is TRUE (the default is FALSE), the current cursor field
values are first copied into the edit buffer. The edit buffer is valid as long as the cursor remains valid. The cursor
retains ownership of the returned pointer, so it must not be deleted or modified.

See also primelnsert() [p. 741, primeUpdate() [p. 74] and primeDelete() [p. 74].

QString QSglCursor::filter () const

Returns the current filter, or an empty string if there is no current filter.

QSqglIindex QSqlCursor::index (const QStringList & fieldNames) const [virtual]

Returns an index composed of fieldNames, all in ASCending order. Note that all field names must exist in the cursor,
otherwise an empty index is returned.

See also QSqlindex [p. 109].

Examples: sql/overview/extract/main.cpp, sql/overview/order1l/main.cpp, sql/overview/order2/main.cpp and
sql/overview/table3/main.cpp.

QSqglIindex QSqlCursor::index (const QString & fieldName) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns an index based on fieldName.

QSqlIndex QSqlCursor::index (const char * fieldName) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns an index based on fieldName.

void QSqlCursor::insert (int pos, const QSqlFieldInfo & fieldInfo) [virtual]
Insert a copy of fieldInfo at position pos. If a field already exists at pos, it is removed. Note that all references to the
cursor edit buffer become invalidated.

Examples: sql/overview/insert/main.cpp and sql/overview/insert2/main.cpp.

int QSqlCursor::insert (bool invalidate = TRUE) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Inserts the current contents of the cursor’s edit record buffer into the database, if the cursor allows inserts. Returns
the number of rows affected by the insert. For error information, use lastError().

If invalidate is TRUE (the default), the cursor will no longer be positioned on a valid record and can no longer be
navigated. A new select() call must be made before navigating to a valid record.

QSqlCursor Class Reference 73

@Sql Cursor cur("prices");

@Sql Record *buffer = cur.prinelnsert();
buf f er->set Val ue("id", 53981);

buf f er - >set Val ue("nane", "Thingy");
buf f er - >set Val ue("price", 105.75);
cur.insert();

In the above example, a cursor is created on the ’prices’ table and a pointer to the insert buffer is aquired using
primelnsert(). Each field’s value is set to the desired value and then insert() is called to insert the data into the
database. Remember: all edit operations (insert(), update() and delete()) operate on the contents of the cursor
edit buffer and not on the contents of the cursor itself.

See also setMode() [p. 76] and lastError() [p. 118].

bool QSqlCursor::isCalculated (const QString & name) const

Returns TRUE if the field name is calculated, otherwise FALSE is returned. If the field name does not exist, FALSE
is returned.

See also setCalculated() [p. 76].

bool QSqlCursor::isReadOnly () const

Returns TRUE if the cursor is read-only, FALSE otherwise. The default is FALSE. Read-only cursors cannot be edited
using insert(), update() or del().

See also setMode() [p. 76].

bool QSqlCursor::isTrimmed (const QString & name) const

Returns TRUE if the field name is trimmed, otherwise FALSE is returned. If the field name does not exist, FALSE is
returned.

When a trimmed field of type string or cstring is read from the database any trailing (right-most) spaces are
removed.

See also setTrimmed() [p. 77].

int QSqlCursor::mode () const
Returns the current cursor mode.

See also setMode() [p. 76].

QString QSqlCursor::name () const

Returns the name of the cursor.

QSqlCursor & QSqlCursor::operator= (const QSqlCursor & other)

Sets the cursor equal to other.

QSqlCursor Class Reference 74

QSqlIindex QSqlCursor::primarylndex (bool setFromCursor = TRUE) const [virtual]

Returns the primary index associated with the cursor as defined in the database, or an empty index if there is no
primary index. If setFromCursor is TRUE (the default), the index fields are populated with the corresponding values
in the cursor’s current record.

QSqlRecord * QSqlCursor::primeDelete () [virtual]

'Primes’ the field values of the edit buffer for delete and returns a pointer to the edit buffer. The default imple-
mentation copies the field values from the current cursor record into the edit buffer (therefore, this function is
equivalent to calling editBuffer(TRUE)). The cursor retains ownership of the returned pointer, so it must not be
deleted or modified.

See also editBuffer() [p. 72] and del() [p. 71].

Example: sql/overview/del/main.cpp.

QSqlRecord * QSqlCursor::primelnsert () [virtual]

"Primes’ the field values of the edit buffer for insert and returns a pointer to the edit buffer. The default implemen-
tation clears all field values in the edit buffer. The cursor retains ownership of the returned pointer, so it must not
be deleted or modified.

See also editBuffer() [p. 72] and insert() [p. 72].

Examples: sql/overview/insert/main.cpp, sql/overview/insert2/main.cpp, sql/overview/subclass5/main.cpp and
sql/sqltable/main.cpp.

QSqlRecord * QSqlCursor::primeUpdate () [virtual]

"Primes’ the field values of the edit buffer for update and returns a pointer to the edit buffer. The default imple-
mentation copies the field values from the current cursor record into the edit buffer (therefore, this function is
equivalent to calling editBuffer(TRUE)). The cursor retains ownership of the returned pointer, so it must not be
deleted or modified.

See also editBuffer() [p. 72] and update() [p. 78].

Examples: sql/overview/custom1/main.cpp, sql/overview/form1/main.cpp and sql/overview/update/main.cpp.

void QSqlCursor::remove (int pos) [virtual]
Removes the field at pos. If pos does not exist, nothing happens. Note that all references to the cursor edit buffer
become invalidated.

Reimplemented from QSqlRecord [p. 125].

bool QSqlCursor::select (const QString & filter, const QSglIndex & sort = QSqlIndex
()) [virtuall

Selects all fields in the cursor from the database matching the filter criteria filter. The data is returned in the order
specified by the index sort. Returns TRUE if the data was successfully selected, otherwise FALSE is returned.

The filter is a string containing an SQL WHERE clause but without the '"WHERE’ keyword. The cursor is initially
positioned at an invalid row after this function is called. To move to a valid row, use seek(), first(), last(), prev()
or next().

QSqlCursor Class Reference 75

Example:

@Sql Cursor cur("Enployee"); // Use the Enpl oyee table or view
cur.select("deptno=10"); // select all records in department 10
while(cur.next()) {

. Il process data

}

Il select records in other departments, ordered by department nunber
cur.sel ect("deptno>10", cur.index("deptno"));

The filter will apply to any subsequent select() calls that do not explicitly specify another filter. Similarly the sort
will apply to any subsequent select() calls that do not explicitly specify another sort.

QSql Cursor cur("Enpl oyee");
cur.select("deptno=10"); // select all records in department 10
while(cur.next()) {

. Il process data

}

cur.select(); // re-selects all records in departnment 10

Examples: sql/overview/del/main.cpp, sql/overview/extract/main.cpp, sql/overview/order1l/main.cpp,
sql/overview/order2/main.cpp, sql/overview/retrieve2/main.cpp, sql/overview/table3/main.cpp and
sql/overview/update/main.cpp.

bool QSqglCursor::select ()

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Selects all fields in the cursor from the database. The rows are returned in the order specified by the last call to
setSort() or the last call to select() that specified a sort, whichever is the most recent. If there is no current sort,
the order in which the rows are returned is undefined. The records are filtered according to the filter specified by
the last call to setFilter() or the last call to select() that specified a filter, whichever is the most recent. If there is no
current filter, all records are returned. The cursor is initially positioned at an invalid row. To move to a valid row,
use seek(), first(), last(), prev() or next().

See also setSort() [p. 771 and setFilter() [p. 76].

bool QSqglCursor::select (const QSqlIndex & sort)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Selects all fields in the cursor from the database. The data is returned in the order specified by the index sort.
The records are filtered according to the filter specified by the last call to setFilter() or the last call to select() that
specified a filter, whichever is the most recent. The cursor is initially positioned at an invalid row. To move to a
valid row, use seek(), first(), last(), prev() or next().

bool QSqlCursor::select (const QSqlIndex & filter, const QSqlIindex & sort)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Selects all fields in the cursor matching the filter index filter. The data is returned in the order specified by the
index sort. The filter index works by constructing a WHERE clause using the names of the fields from the filter and

QSqlCursor Class Reference 76

their values from the current cursor record. The cursor is initially positioned at an invalid row. To move to a valid
row, use seek(), first(), last(), prev() or next(). This function is useful, for example, for retrieving data based upon
a table’s primary index:

QSql Cursor cur("Enpl oyee");

gl I ndex pk = cur. primarylndex();

cur.setValue("id", 10);

cur.select(pk, pk); // generates "SELECT ... FROM Enpl oyee WHERE i d=10 ORDER BY id"

In this example the QSqlindex, pk, is used for two different purposes. When used as the filter (first) argument,
the field names it contains are used to construct the WHERE clause, each set to the current cursor value, WHERE
i d=10, in this case. When used as the sort (second) argument the field names it contains are used for the ORDER
BY clause, ORDER BY i d in this example.

void QSqlCursor::setCalculated (const QString & name, bool calculated) [virtual]

Sets field name to calculated. If the field name does not exist, nothing happens. The value of a calculated field is
set by the calculateField() virtual function which you must reimplement otherwise the field value will become an
invalid QVariant. Calculated fields do not appear in generated SQL statements sent to the database.

See also calculateField() [p. 70] and QSqlRecord::setGenerated() [p. 125].

void QSqlCursor::setFilter (const QString & filter) [virtual]
Sets the current filter to filter. Note that no new records are selected. To select new records, use select(). The filter
will apply to any subsequent select() calls that do not explicitly specify a filter.

The filter is an SQL WHERE clause without the keyword 'WHERE’, e.g. nane=' Dave’.

void QSqlCursor::setGenerated (const QString & name, bool generated) [virtual]

Sets the generated flag for the field name to generated. If the field does not exist, nothing happens. Only fields that
have generated set to TRUE are included in the SQL that is generated, e.g. by QSqlCursor.

See also isGenerated() [p. 124].

Reimplemented from QSqlRecord [p. 125].

void QSqlCursor::setGenerated (int i, bool generated) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the generated flag for the field i to generated.

See also isGenerated() [p. 124].

Reimplemented from QSqlRecord [p. 125].

void QSqlCursor::setMode (int mode) [virtual]

Sets the cursor mode to mode. This value can be an OR’ed combination of QSqlCursor::Mode values. The default
mode for a cursor is QSqlCursor::Writable.

QSqlCursor Class Reference 77
QSql Cursor cur("Enpl oyee");
cur.set Mode(QSgl Cursor::Witable); // allowinsert/update/delete
cur.set Mode(QSgl Cursor::lnsert | QSgl Cursor::Update); // allowinserts and updates only

cur. set Mode(QSgl Cursor::ReadOnly); // no inserts/updates/deletes allowed

void QSglCursor::setName (const QString & name, bool autopopulate = TRUE) [virtual]

Sets the name of the cursor to name. If autopopulate is TRUE (the default), the name must correspond to a valid
table or view name in the database. Also, note that all references to the cursor edit buffer become invalidated when
fields are auto-populated. See the QSqlCursor constructor documentation for more information.

void QSqlCursor::setPrimaryIndex (const QSqglindex & idx) [virtual]

Sets the primary index associated with the cursor to the index idx. Note that this index must contain a field or set
of fields which identify a unique record within the underlying database table or view so that update() and del()
will execute as expected.

See also update() [p. 78] and del() [p. 71].

void QSqlCursor::setSort (const QSqlindex & sort) [virtual]

Sets the current sort to sort. Note that no new records are selected. To select new records, use select(). The sort
will apply to any subsequent select() calls that do not explicitly specify a sort.

void QSqlCursor::setTrimmed (const QString & name, bool trim) [virtual]

Sets field name to trim. If the field name does not exist, nothing happens.

When a trimmed field of type string or cstring is read from the database any trailing (right-most) spaces are
removed.

See QVariant.

See also isTrimmed() [p. 73].

QSqlIndex QSglCursor::sort () const

Returns the current sort, or an empty index if there is no current sort.

QString QSqlCursor::toString (QSqlRecord * rec, const QString & prefix,
const QString & fieldSep, const QString & sep) const [virtual protected]

Returns a formatted string composed of all the fields in rec. Each field is composed of the prefix (e.g. table or view
name), ".", the field name, the fieldSep and the field value. If the prefix is empty then the field will begin with the
field name. The fields are then joined together separated by sep. Fields where isGenerated () returns FALSE are not
included. This function is useful for generating SQL statements.

QSqlCursor Class Reference 78

QString QSglCursor::toString (const QString & prefix, QSqlField * field,
const QString & fieldSep) const [virtual protected]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a formatted string composed of the prefix (e.g. table or view name), ".", the field name, the fieldSep and
the field value. If the prefix is empty then the string will begin with the field name. This function is useful for
generating SQL statements.

QString QSqlCursor::toString (const QSqlIlndex & i, QSqlRecord * rec,
const QString & prefix, const QString & fieldSep, const QString & sep)
const [virtual protected]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a formatted string composed of all the fields in the index i. Each field is composed of the prefix (e.g. table
or view name), ".", the field name, the fieldSep and the field value. If the prefix is empty then the field will begin
with the field name. The field values are taken from rec. The fields are then joined together separated by sep. Fields
where isGenerated () returns FALSE are ignored. This function is useful for generating SQL statements.

int QSqlCursor::update (bool invalidate = TRUE) [virtual]

Updates the database with the current contents of the edit buffer. Returns the number of records which were
updated, or O if there was an error. For error information, use lastError().

Only records which meet the filter criteria specified by the cursor’s primary index are updated. If the cursor does
not contain a primary index, no update is performed and 0 is returned.

If invalidate is TRUE (the default), the current cursor can no longer be navigated. A new select() call must be made
before you can move to a valid record. For example:

QSql Cursor cur("prices");
cur.select("id=202");
if (cur.next()) {
gl Record *buffer = cur. prineUpdate();
doubl e price = buffer->value("price").toDouble();
doubl e newprice = price * 1.05;
buf fer->set Val ue("price", newprice);
cur. update();

In the above example, a cursor is created on the ’prices’ table and is positioned on the record to be update updated.
A pointer is then aquired to the cursor’s edit buffer using primeUpdate(). A new value is calculated and placed
into the edit buffer with the setValue() call. Finally, an update() call is made on the cursor which uses the tables’s
primary index to update the record in the database with the contents of the cursor’s edit buffer. Remember: all
edit operations (insert(), update() and delete()) operate on the contents of the cursor edit buffer and not on the
contents of the cursor itself.

Note that if the primary index does not uniquely distinguish records the database may be changed into an incon-
sistent state.

See also setMode() [p. 76] and lastError() [p. 118].

Example: sql/overview/update/main.cpp.

QSqlCursor Class Reference 79

int QSqlCursor::update (const QString & filter, bool invalidate =
TRUE) [virtual protected]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Updates the database with the current contents of the cursor edit buffer using the specified filter. Returns the
number of records which were updated, or O if there was an error. For error information, use lastError().

Only records which meet the filter criteria are updated, otherwise all records in the table are updated.

If invalidate is TRUE (the default), the cursor can no longer be navigated. A new select() call must be made before
you can move to a valid record.

See also primeUpdate() [p. 741, setMode() [p. 76] and lastError() [p. 118].

QSqglDatabase Class Reference

The QSqlDatabase class is used to create SQL database connections and provide transaction handling.
This class is part of the sql module.
#i ncl ude <gsql dat abase. h>

Inherits QObject [Additional Functionality with Qt].

Public Members

m ~QSqlDatabase ()

m bool open ()

m bool open (const QString & user, const QString & password)
= void close ()

m bool isOpen () const

m bool isOpenError () const

m QStringList tables () const

QSqlindex primaryIndex (const QString & tablename) const
QSqlRecord record (const QString & tablename) const
QSqlRecord record (const QSqlQuery & query) const
QSqlRecordInfo recordInfo (const QString & tablename) const

QSqlRecordInfo recordInfo (const QSglQuery & query) const
QSqglQuery exec (const QString & query = QString::null) const
m QSqlError lastError () const

= bool transaction ()

bool commit ()

bool rollback ()

virtual void setDatabaseName (const QString & name)

virtual void setUserName (const QString & name)

virtual void setPassword (const QString & password)
virtual void setHostName (const QString & host)
virtual void setPort (int p)

m QString databaseName () const

m QString userName () const

m QString password () const

m QString hostName () const

m QString driverName () const

e int port () const
e QSqglDriver * driver () const

80

QSqlDatabase Class Reference 81

Static Public Members

m QSqlDatabase * addDatabase (const QString & type, const QString & connectionName =
defaultConnection)

m QSqlDatabase * database (const QString & connectionName = defaultConnection, bool open = TRUE)
» void removeDatabase (const QString & connectionName)

m bool contains (const QString & connectionName = defaultConnection)

m QStringList drivers ()

Properties

m QString databaseName — the name of the database or the TNS Service Name for the QOCI8 (Oracle) driver
m QString hostName — the host name where the database resides

m QString password — the password used to connect to the database

m int port — the port used to connect to the database

m QString userName — the user name connected to the database

Protected Members

m QSglDatabase (const QString & driver, const QString & name, QObject * parent = 0, const char * objname
=0)

Detailed Description

The QSqlDatabase class is used to create SQL database connections and provide transaction handling.

This class is used to create connections to SQL databases. It also provides transaction handling functions for those
database drivers that support transactions.

The QSqlDatabase class itself provides an abstract interface for accessing many types of database backend.
Database-specific drivers are used internally to actually access and manipulate data, (see QSqlDriver). Result
set objects provide the interface for executing and manipulating SQL queries (see QSqlQuery).

See also Database Classes.

Member Function Documentation

QSqglDatabase::QSqglDatabase (const QString & driver, const QString & name,
QObject * parent = 0, const char * objname = 0) [protected]

Creates a QSglDatabase connection named name that uses the driver referred to by driver, with the parent parent
and the object name objname. If the driver is not recognized, the database connection will have no functionality.

The currently available drivers are:

e QODBC3 - ODBC (Open Database Connectivity) Driver

e QOCIS8 - Oracle Call Interface Driver

e QPSQL?7 - PostgreSQL v6.x and v7.x Driver

e QTDS7 - Sybase Adaptive Server and Microsoft SQL Server Driver

QSqlDatabase Class Reference 82

e QMYSQL3 - MySQL Driver

Note that additional 3rd party drivers can be loaded dynamically.

QSglDatabase::~QSqglDatabase ()

Destroys the object and frees any allocated resources.

QSqglDatabase * QSqlDatabase::addDatabase (const QString & type,
const QString & connectionName = defaultConnection) [static]

Adds a database to the list of database connections using the driver type and the connection name connectionName.

The database connection is referred to by connectionName. A pointer to the newly added database connection is
returned. This pointer is owned by QSqlDatabase and will be deleted on program exit or when removeDatabase()
is called. If connectionName is not specified, the newly added database connection becomes the default database
connection for the application, and subsequent calls to database() (without a database name parameter) will return
a pointer to it.

See also database() [p. 82] and removeDatabase() [p. 85].

Examples: sql/overview/connectl/main.cpp, sql/overview/create_connections/main.cpp and
sql/sqltable/main.cpp.

void QSqlDatabase::close ()

Closes the database connection, freeing any resources acquired.

bool QSglDatabase::commit ()

Commits a transaction to the database if the driver supports transactions. Returns TRUE if the operation succeeded,
FALSE otherwise.

See also QSqlDriver::hasFeature() [p. 89] and rollback() [p. 85].

bool QSqglDatabase::contains (const QString & connectionName =
defaultConnection) [static]

Returns TRUE if the list of database connections contains connectionName, otherwise returns FALSE.

QSqglDatabase * QSqlDatabase::database (const QString & connectionName =
defaultConnection, bool open = TRUE) [static]

Returns a pointer to the database connection named connectionName. The database connection must have been
previously added with database(). If open is TRUE (the default) and the database connection is not already open it
is opened now. If no connectionName is specified the default connection is used. If connectionName does not exist
in the list of databases, 0 is returned. The pointer returned is owned by QSqlDatabase and should not be deleted.

Examples: sql/overview/basicbrowsing/main.cpp and sql/overview/create_connections/main.cpp.

QSqlDatabase Class Reference 83

QString QSqlDatabase::databaseName () const

Returns the name of the database or the TNS Service Name for the QOCI8 (Oracle) driver. See the "databaseName"
[p. 86] property for details.

QSqlDriver * QSqlDatabase::driver () const

Returns a pointer to the database driver used to access the database connection.

QString QSqlDatabase::driverName () const

Returns the name of the driver used by the database connection.

QStringList QSqlDatabase::drivers () [static]

Returns a list of all available database drivers.

QSqlQuery QSqglDatabase::exec (const QString & query = QString::null) const

Executes an SQL statement (e.g. an INSERT, UPDATE or DELETE statement) on the database, and returns a
QSqlQuery object. Use lastError() to retrieve error information. If query is QString::null, an empty, invalid query is
returned and lastError() is not affected.

See also QSqlQuery [p. 115] and lastError() [p. 83].

QString QSqlDatabase::hostName () const

Returns the host name where the database resides. See the "hostName" [p. 86] property for details.

bool QSglDatabase::isOpen () const

Returns TRUE if the database connection is currently open, otherwise returns FALSE.

bool QSqlDatabase::isOpenError () const

Returns TRUE if there was an error opening the database connection, otherwise returns FALSE. Error information
can be retrieved using the lastError() function.

QSqlError QSqlDatabase::lastError () const

Returns information about the last error that occurred on the database. See QSqlError for more information.

Examples: sql/overview/create_connections/main.cpp and sql/sqltable/main.cpp.

bool QSqglDatabase::open ()

Opens the database connection using the current connection values. Returns TRUE on success, and FALSE if there
was an error. Error information can be retrieved using the lastError() function.

QSqlDatabase Class Reference 84

See also lastError() [p. 83].

Examples: sql/overview/connectl/main.cpp, sql/overview/create_connections/main.cpp and
sql/sqltable/main.cpp.

bool QSglDatabase::open (const QString & user, const QString & password)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Opens the database connection using user name and password. Returns TRUE on success, and FALSE if there was
an error. Error information can be retrieved using the lastError() function.

See also lastError() [p. 83].

QString QSqlDatabase::password () const

Returns the password used to connect to the database. See the "password" [p. 86] property for details.

int QSqlDatabase::port () const

Returns the port used to connect to the database. See the "port" [p. 86] property for details.

QSqlIindex QSglDatabase::primaryIndex (const QString & tablename) const

Returns the primary index for table tablename. If no primary index exists an empty QSqlIndex will be returned.

QSqlRecord QSqlDatabase::record (const QString & tablename) const

Returns a QSqlRecord populated with the names of all the fields in the table (or view) named tablename. The order
in which the fields are returned is undefined. If no such table (or view) exists, an empty record is returned.

See also recordInfo() [p. 841].

QSqglRecord QSqglDatabase::record (const QSqlQuery & query) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a QSqlRecord populated with the names of all the fields used in the SQL query. If the query is a "SELECT
*" the order in which fields are returned is undefined.

See also recordInfo() [p. 841].

QSqlRecordInfo QSqglDatabase::recordInfo (const QString & tablename) const

Returns a QSqlRecordInfo populated with meta-data about the table (or view) tablename. If no such table (or view)
exists, an empty record is returned.

See also QSqlRecordInfo [p. 128], QSqlFieldInfo [p. 101] and record() [p. 84].

QSqglRecordInfo QSqlDatabase::recordInfo (const QSqlQuery & query) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QSqlDatabase Class Reference 85

Returns a QSqlRecordInfo object with meta data for the QSqlQuery query. Note that this overloaded function may
return not as much information as the recordInfo function which takes the name of a table as parameter.

See also QSqlRecordInfo [p. 128], QSglFieldInfo [p. 101] and record() [p. 841].

void QSqlDatabase::removeDatabase (const QString & connectionName) [static]

Removes the database connection connectionName from the list of database connections. Note that there should be
no open queries on the database connection when this function is called, otherwise a resource leak will occur.

bool QSqglDatabase::rollback ()

Rolls a transaction back on the database if the driver supports transactions. Returns TRUE if the operation suc-
ceeded, FALSE otherwise.

See also QSqlDriver::hasFeature() [p. 891, commit() [p. 82] and transaction() [p. 85].

void QSqlDatabase::setDatabaseName (const QString & name) [virtual]

Sets the name of the database or the TNS Service Name for the QOCI8 (Oracle) driver to name. See the "database-
Name" [p. 86] property for details.

void QSqlDatabase::setHostName (const QString & host) [virtual]

Sets the host name where the database resides to host. See the "hostName" [p. 86] property for details.

void QSqlDatabase::setPassword (const QString & password) [virtual]

Sets the password used to connect to the database to password. See the "password" [p. 86] property for details.

void QSqlDatabase::setPort (int p) [virtual]

Sets the port used to connect to the database to p. See the "port" [p. 86] property for details.

void QSglDatabase::setUserName (const QString & name) [virtual]

Sets the user name connected to the database to name. See the "userName" [p. 86] property for details.

QStringList QSqglDatabase::tables () const

Returns a list of tables in the database.

bool QSqglDatabase::transaction ()

Begins a transaction on the database if the driver supports transactions. Returns TRUE if the operation succeeded,
FALSE otherwise.

See also QSqlDriver::hasFeature() [p. 891, commit() [p. 82] and rollback() [p. 85].

QSqlDatabase Class Reference 86

QString QSqlDatabase::userName () const

Returns the user name connected to the database. See the "userName" [p. 86] property for details.

Property Documentation

QString databaseName

This property holds the name of the database or the TNS Service Name for the QOCI8 (Oracle) driver.
There is no default value.

Set this property’s value with setDatabaseName() and get this property’s value with databaseName().

QString hostName

This property holds the host name where the database resides.
There is no default value.

Set this property’s value with setHostName() and get this property’s value with hostName().

QString password

This property holds the password used to connect to the database.
There is no default value.

Set this property’s value with setPassword() and get this property’s value with password().

int port

This property holds the port used to connect to the database.
There is no default value.

Set this property’s value with setPort() and get this property’s value with port().

QString userName

This property holds the user name connected to the database.
There is no default value.

Set this property’s value with setUserName() and get this property’s value with userName().

QSqlDriver Class Reference

The QSqlDriver class is an abstract base class for accessing SQL databases.

This class is part of the sql module.

#include <qgsql driver.h>

Inherits QObject [Additional Functionality with Qt].

Public Members

enum DriverFeature { Transactions, QuerySize, BLOB }

QSqlDriver (QObject * parent = 0, const char * name = 0)
~QSqlDriver ()

bool isOpen () const

bool isOpenError () const

virtual bool beginTransaction ()

virtual bool commitTransaction ()

virtual bool rollbackTransaction ()

virtual QStringList tables (const QString & user) const

virtual QSqlindex primaryIndex (const QString & tableName) const
virtual QSqlRecord record (const QString & tableName) const

virtual QSqlRecord record (const QSqlQuery & query) const

virtual QSqlRecordInfo recordInfo (const QString & tablename) const
virtual QSqlRecordInfo recordInfo (const QSqlQuery & query) const
virtual QString nullText () const

virtual QString formatValue (const QSqlField * field, bool trimStrings = FALSE) const
QSqlError lastError () const

virtual bool hasFeature (DriverFeature f) const

virtual bool open (const QString & db, const QString & user = QString::null, const QString & password =
QString::null, const QString & host = QString::null, int port = -1)
virtual void close ()

virtual QSqlQuery createQuery () const

Protected Members

virtual void setOpen (bool o)
virtual void setOpenError (bool e)
virtual void setLastError (const QSqlError & e)

87

QSqlDriver Class Reference 88

Detailed Description

The QSqlDriver class is an abstract base class for accessing SQL databases.
This class should not be used directly. Use QSqlDatabase instead.

See also Database Classes.

Member Type Documentation

QSqlDriver::DriverFeature

This enum contains a list of features a driver may support. Use hasFeature() to query whether a feature is supported
or not.

The currently defined values are:

e (Sql Driver::Transacti ons - whether the driver supports SQL transactions

e (Sql Driver:: QuerySi ze - whether the database is capable of reporting the size of a query. Note that some
databases do not support returning the size (i.e. number of rows returned) of a query, in which case QSql-
Query::size() will return -1

e (Sgl Dri ver: : BLOB - whether the driver supports Binary Large Object fields

See also hasFeature() [p. 89].

Member Function Documentation

QSqlDriver::QSqlDriver (QObject * parent = 0, const char * name = 0)

Default constructor. Creates a new driver with parent parent and name name.

QSqlDriver::~QSqlDriver ()

Destroys the object and frees any allocated resources.

bool QSqglDriver::beginTransaction () [virtual]

Protected function which derived classes can reimplement to begin a transaction. If successful, return TRUE,
otherwise return FALSE. The default implementation returns FALSE.

See also commitTransaction() [p. 89] and rollbackTransaction() [p. 90].

void QSqlDriver::close () [virtual]

Derived classes must reimplement this abstract virtual function in order to close the database connection. Return
TRUE on success, FALSE on failure.

See also setOpen() [p. 91].

QSqlDriver Class Reference 89

bool QSqglDriver::commitTransaction () [virtual]

Protected function which derived classes can reimplement to commit a transaction. If successful, return TRUE,
otherwise return FALSE. The default implementation returns FALSE.

See also beginTransaction() [p. 88] and rollbackTransaction() [p. 90].

QSqlQuery QSqlDriver::createQuery () const [virtual]

Creates an empty SQL result on the database. Derived classes must reimplement this function and return a QSql-
Query object appropriate for their database to the caller.

QString QSglDriver::formatValue (const QSqlField * field, bool trimStrings = FALSE)
const [virtual]

Returns a string representation of the field value for the database. This is used, for example, when constructing
INSERT and UPDATE statements.

The default implementation returns the value formatted as a string according to the following rules:

e If field is null, nullText() is returned.

e If field is character data, the value is returned enclosed in single quotation marks, which is appropriate for
many SQL databases. Any embedded single-quote characters are escaped (replaced with two single-quote
characters). If trimStrings is TRUE (the default is FALSE), all trailing whitespace is trimmed from the field.

o If field is date/time data, the value is formatted in ISO format and enclosed in single quotation marks. If the
date/time data is invalid, nullText() is returned.

o If field is bytearray data, and the driver can edit binary fields, the value is formatted as a hexadecimal string.

e For any other field type toString() will be called on its value and the result returned.

See also QVariant::toString() [Datastructures and String Handling with Qt].

bool QSqlDriver::hasFeature (DriverFeature f) const [virtual]

Returns TRUE if the driver supports feature f; otherwise returns FALSE.
Note that some databases need to be open() before this can be determined.

See also DriverFeature [p. 88].

bool QSqlDriver::isOpen () const

Returns TRUE if the database connection is open, FALSE otherwise.

bool QSqlDriver::isOpenError () const

Returns TRUE if the there was an error opening the database connection, FALSE otherwise.

QSqlError QSqlDriver::lastError () const

Returns a QSqlError object which contains information about the last error that occurred on the database.

QSqlDriver Class Reference 90

QString QSqlDriver::nullText () const [virtual]

Returns a string representation of the 'NULL value for the database. This is used, for example, when constructing
INSERT and UPDATE statements. The default implementation returns the string 'NULL.

bool QSqlDriver::open (const QString & db, const QString & user = QString::null,
const QString & password = QString::null, const QString & host = QString::null,
int port = -1) [virtual]

Derived classes must reimplement this abstract virtual function in order to open a database connection on database
db, using user name user, password password, host host and port port.

The function must return TRUE on success and FALSE on failure.

See also setOpen() [p. 911.

QSqlindex QSqlDriver::primarylndex (const QString & tableName) const [virtual]

Returns the primary index for table tableName. Returns an empty QSqlindex if the table doesn’t have a primary
index. The default implementation returns an empty index.

QSqglRecord QSqglDriver::record (const QString & tableName) const [virtual]

Returns a QSqlRecord populated with the names of the fields in table tableName. If no such table exists, an empty
list is returned. The default implementation returns an empty record.

QSqlRecord QSqlDriver::record (const QSqlQuery & query) const [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a QSqlRecord populated with the names of the fields in the SQL query. The default implementation returns
an empty record.

QSqglRecordInfo QSqlDriver::recordInfo (const QString & tablename) const [virtual]

Returns a QSqlRecordInfo object with meta data on the table tablename.

QSqglRecordInfo QSqlDriver::recordInfo (const QSqlQuery & query) const [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a QSqlRecordInfo object with meta data for the QSqlQuery query. Note that this overloaded function may
return not as much information as the recordInfo function which takes the name of a table as parameter.

bool QSqlDriver::rollbackTransaction () [virtual]

Protected function which derived classes can reimplement to rollback a transaction. If successful, return TRUE,
otherwise return FALSE. The default implementation returns FALSE.

See also beginTransaction() [p. 88] and commitTransaction() [p. 89].

QSqlDriver Class Reference 91

void QSqlDriver::setLastError (const QSqlError & e) [virtual protected]

Protected function which allows derived classes to set the value of the last error, e, that occurred on the database.

See also lastError() [p. 89].

void QSqlDriver::setOpen (bool o) [virtual protected]

Protected function which sets the open state of the database to 0. Derived classes can use this function to report
the status of open().

See also open() [p. 90] and setOpenError() [p. 91].

void QSqlDriver::setOpenError (bool e) [virtual protected]

Protected function which sets the open error state of the database to e. Derived classes can use this function to
report the status of open(). Note that if e is TRUE the open state of the database is set to closed (i.e., isOpen()
returns FALSE).

See also open() [p. 90].

QStringList QSqlDriver::tables (const QString & user) const [virtual]

Returns a list of tables in the database. The default implementation returns an empty list.

Currently the user argument is unused.

QSqlEditorFactory Class Reference

The QSqlEditorFactory class is used to create the editors used by QDataTable and QSglForm.
This class is part of the sql module.
#include <gsql editorfactory. h>

Inherits QEditorFactory [Additional Functionality with Qt].

Public Members

QSqlEditorFactory (QObject * parent = 0, const char * name = 0)
~QSqlEditorFactory ()

virtual QWidget * createEditor (QWidget * parent, const QVariant & variant)
virtual QWidget * createEditor (QWidget * parent, const QSqlField * field)

Static Public Members

» QSqlEditorFactory * defaultFactory ()
» void installDefaultFactory (QSqlEditorFactory * factory)

Detailed Description

The QSqlEditorFactory class is used to create the editors used by QDataTable and QSqlForm.

QSqlEditorFactory is used by QDataTable and QSqlForm to automatically create appropriate editors for a given
QSqlField. For example if the field is a QVariant::String a QLineEdit would be the default editor, whereas a QVari-
ant::Int’s default editor would be a QSpinBox.

If you want to create different editors for fields with the same data type, subclass QSqlEditorFactory and reimple-
ment the createEditor() function.

See also QDataTable [p. 471, QSqlForm [p. 105] and Database Classes.

Member Function Documentation

QSqlEditorFactory::QSqglEditorFactory (QObject * parent = 0, const char * name = 0)

Constructs a SQL editor factory with parent parent and name name.

92

QSqlEditorFactory Class Reference 93

QSqlEditorFactory::~QSqlEditorFactory ()

Destroys the object and frees any allocated resources.

QWidget * QSqlEditorFactory::createEditor (QWidget * parent,
const QVariant & variant) [virtual]

Creates and returns the appropriate editor widget for the QVariant variant.
The widget that is returned has the parent parent (which may be zero). If variant is invalid, 0 is returned.

Reimplemented from QEditorFactory [Additional Functionality with Qt].
QWidget * QSqlEditorFactory::createEditor (QWidget * parent,
const QSqlField * field) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Creates and returns the appropriate editor for the QSqlField field.

QSqlEditorFactory * QSqlEditorFactory::defaultFactory () [static]

Returns an instance of a default editor factory.

void QSqlEditorFactory::installDefaultFactory (QSqlEditorFactory * factory) [static]

Replaces the default editor factory with factory. All QDataTable and QSglForm instantiations will use this new
factory for creating field editors. QSqlEditorFactory takes ownership of factory, and destroys it when it is no longer
needed.

QSqlError Class Reference

The QSqlError class provides SQL database error information.
This class is part of the sql module.

#include <gsqlerror. h>

Public Members

m enum Type { None, Connection, Statement, Transaction, Unknown }

m QSglError (const QString & driverText = QString::null, const QString & databaseText = QString::null,
int type = QSqlError::None, int number = -1)

m QSgqlError (const QSqlError & other)

m QSqlError & operator= (const QSqlError & other)

m virtual ~QSqlError ()

m QString driverText () const

virtual void setDriverText (const QString & driverText)

QString databaseText () const

virtual void setDatabaseText (const QString & databaseText)

int type () const

virtual void setType (int type)

int number () const

virtual void setNumber (int number)

Detailed Description

The QSqlError class provides SQL database error information.

This class is used to report database-specific errors. An error description and (if appropriate) a database-specific
error number can be recovered using this class.

See also Database Classes.

Member Type Documentation

QSqlError::Type

This enum type describes the type of SQL error that occurred.

The currently defined values are:

94

QSqlError Class Reference 95

e (Bqgl Error:: None - no error occurred

e (gl Error:: Connection - connection error

e (Sql Error:: Statenment - statement syntax error

e (Bql Error:: Transaction - transaction failed error
e (Sql Error:: Unknown - unknown error

Member Function Documentation

QSqlError::QSqlError (const QString & driverText = QString::null,
const QString & databaseText = QString::null, int type = QSqlError::None,
int number = -1)

Constructs an error containing the driver error text driverText, the database-specific error text databaseText, the
type type and the optional error number number.

QSqlError::QSqlError (const QSqlError & other)

Creates a copy of other.

QSqlError::~QSqlError () [virtual]

Destroys the object and frees any allocated resources.

QString QSqlError::databaseText () const

Returns the text of the error as reported by the database. This may contain database-specific descriptions.

QString QSqlError::driverText () const

Returns the text of the error as reported by the driver. This may contain database-specific descriptions.

int QSqlError::number () const

Returns the database-specific error number, or -1 if it cannot be determined.

QSqlError & QSqlError::operator= (const QSqlError & other)

Sets the error equal to other.

void QSqlError::setDatabaseText (const QString & databaseText) [virtual]

Sets the database error text to the value of databaseText.

QSqlError Class Reference

void QSqlError::setDriverText (const QString & driverText) [virtual]

Sets the driver error text to the value of driverText.

void QSqlError::setNumber (int number) [virtual]

Sets the database-specific error number to the value of number.

void QSqlError::setType (int type) [virtual]

Sets the error type to the value of type.

int QSqlError::type () const

Returns the error type, or -1 if the type cannot be determined.

See also QSqlError::Type [p. 94].

96

QSqlField Class Reference

The QSqlField class manipulates the fields in SQL database tables and views.
This class is part of the sql module.

#include <gsqlfield.h>

Public Members

m QSqlField (const QString & fieldName = QString::null, QVariant::Type type = QVariant::Invalid)
m QSglField (const QSglField & other)

m QSqlField & operator= (const QSqlField & other)
bool operator== (const QSqlField & other) const
m virtual ~QSqlField ()

virtual void setValue (const QVariant & value)
virtual QVariant value () const

virtual void setName (const QString & name)
QString name () const

virtual void setNull ()

bool isNull () const

m virtual void setReadOnly (bool readOnly)

= bool isReadOnly () const

» void clear (bool nullify = TRUE)

e QVariant::Type type () const

Detailed Description

The QSqlField class manipulates the fields in SQL database tables and views.

QSqlField represents the characteristics of a single column in a database table or view, such as the data type and
column name. A field also contains the value of the database column, which can be viewed or changed.

Field data values are stored as QVariants. Using an incompatible type is not permitted. For example:

gl Field f("myfield", Qariant::Int);
f.setValue(QPixmap()); // will not work

However, the field will attempt to cast certain data types to the field data type where possible:

&gl Field f("nyfield, Qariant::Int);
f.setValue(QString("123")); // casts QString to int

97

QSqlField Class Reference 98

QSqlField objects are rarely created explicitly in application code. They are usually accessed indirectly through
QSqlRecord or QSqlCursor which already contain a list of fields. For example:

@Sql Cursor cur("Enpl oyee"); /] create cursor using the 'Enployee’ table
gl Field* f = cur.field("name"); [/ use the 'name’ field
f->set Val ue("Dave"); /1 set field value

In practice we rarely need to extract a pointer to a field at all. The previous example would normally be written:

QSql Cursor cur("Enpl oyee");
cur.setVal ue("nanme", "Dave");

See also Database Classes.

Member Function Documentation

QSqlField::QSqlField (const QString & fieldName = QString::null, QVariant::Type type =
QVariant::Invalid)

Constructs an empty field called fieldName of type type.

QSqglField::QSqlField (const QSqglField & other)

Constructs a copy of other.

QSqlField::~QSqlField () [virtual]

Destroys the object and frees any allocated resources.

void QSqlField::clear (bool nullify = TRUE)

Clears the value of the field. If the field is read-only, nothing happens. If nullify is TRUE (the default), the field is
set to NULL.

bool QSqglField::isNull () const

Returns TRUE if the field is currently null, otherwise returns FALSE.

bool QSqlField::isReadOnly () const

Returns TRUE if the field’s value is read only, otherwise FALSE.

QString QSglField::name () const

Returns the name of the field.

Example: sql/overview/table4/main.cpp.

QSqlField Class Reference 99

QSqglField & QSqlField::operator= (const QSqlField & other)

Sets the field equal to other.

bool QSqglField::operator== (const QSqlField & other) const

Returns TRUE if the field is equal to other, otherwise returns FALSE. Fields are considered equal when the following
field properties are the same:

name()
isNull()
value()
isReadOnly()

void QSqlField::setName (const QString & name) [virtual]

Sets the name of the field to name.

void QSqlField::setNull () [virtual]

Sets the field to NULL and clears the value using clear(). If the field is read-only, nothing happens.
See also isReadOnly() [p. 98] and clear() [p. 98].

void QSqlField::setReadOnly (bool readOnly) [virtual]

Sets the read only flag of the field’s value to readOnly.
See also setValue() [p. 99].

void QSqlField::setValue (const QVariant & value) [virtual]

Sets the value of the field to value. If the field is read-only (isReadOnly() returns TRUE), nothing happens. If the
data type of value differs from the field’s current data type, an attempt is made to cast it to the proper type. This
preserves the data type of the field in the case of assignment, e.g. a QString to an integer data type. For example:

QSql Cursor cur("Enpl oyee"); Il " Enpl oyee’ table
Sql Field* f = cur.field("student_count"); // an integer field

f->setVal ue(nyLineEdit->text()); /] cast the line edit text to an integer

See also isReadOnly() [p. 98].

QVariant::Type QSqlField::type () const

Returns the field’s type.

QSqlField Class Reference 100

QVariant QSqlField::value () const [virtual]

Returns the internal value of the field as a QVariant.

Example: sql/overview/table4/main.cpp.

QSqlFieldInfo Class Reference

The API for this class is under development and is subject to change.
We do not recommend the use of this class for production work at this time.

The QSqlFieldInfo class stores meta data associated with a SQL field.
This class is part of the sql module.

#include <qgsqlfield. h>

Public Members

m QSglFieldInfo (const QString & name = QString::null, QVariant::Type typ = QVariant::Invalid, int required
= -1, int len = -1, int prec = -1, const QVariant & defValue = QVariant (), int typeID = 0, bool generated =
TRUE, bool trim = FALSE, bool calculated = FALSE)

m QSqlFieldInfo (const QSqlFieldInfo & other)

m QSqlFieldInfo (const QSqlField & other, bool generated = TRUE)

virtual ~QSqlFieldInfo ()

QSqlFieldInfo & operator= (const QSqlFieldInfo & other)

bool operator== (const QSqlFieldInfo & f) const

QSqlField toField () const

int isRequired () const

QVariant:: Type type () const

m int length () const

» int precision () const

m QVariant defaultValue () const
QString name () const

int typelD () const

bool isGenerated () const

bool isTrim () const

bool isCalculated () const
virtual void setTrim (bool trim)

m virtual void setGenerated (bool gen)
e virtual void setCalculated (bool calc)

Detailed Description

The QSqlFieldInfo class stores meta data associated with a SQL field.

QSqlFieldInfo objects only store meta data; field values are stored in QSqlField objects.

101

QSqlFieldInfo Class Reference 102

All values must be set in the constructor, and may be retrieved using isRequired(), type(), length(), precision(),
defaultvalue(), name(), isGenerated () and typeID().

See also Database Classes.

Member Function Documentation

QSqlFieldInfo::QSqlFieldInfo (const QString & name = QString::null, QVariant::Type typ
= QVariant::Invalid, int required = -1, int len = -1, int prec = -1,
const QVariant & defValue = QVariant (), int typeID = 0, bool generated = TRUE,
bool trim = FALSE, bool calculated = FALSE)

Constructs a QSqlFieldInfo with the following parameters:

e name the name of the field.
e typ the field’s type in a QVariant.

e required greater than 0 if the field is required, O if its value can be NULL and less than O if it cannot be
determined whether the field is required or not.

e [en the length of the field. Note that for non-character types some databases return either the length in bytes
or the number of digits. -1 signifies that the length cannot be determined.

e prec the precision of the field, or -1 if the field has no precision or it cannot be determined.

e defValue the default value that is inserted into the table if none is specified by the user. QVariant() if there is
no default value or it cannot be determined.

e typelD the internal typelD of the database system (only useful for low-level programming). O if unknown.

o generated TRUE indicates that this field should be included in auto-generated SQL statments, e.g. in QSql-
Cursor.

e trim TRUE indicates that widgets should remove trailing whitespace from character fields. This does not
affect the field value but only its representation inside widgets.

e calculated TRUE indicates that the value of this field is calculated. The value of calculated fields can by
modified by subclassing QSqlCursor and overriding QSqlCursor::calculateField ().

QSqglFieldInfo::QSqlFieldInfo (const QSqlFieldInfo & other)

Constructs a copy of other.

QSqlFieldInfo::QSqlFieldInfo (const QSqlField & other, bool generated = TRUE)

Creates a QSqlFieldInfo object with the type and the name of the QSqlField other. If generated is TRUE this field
will be included in auto-generated SQL statments, e.g. in QSqlCursor.

QSqlFieldInfo::~QSqlFieldInfo () [virtual]

Destroys the object and frees any allocated resources.

QVariant QSqlFieldInfo::defaultValue () const

Returns the default value of this field or an empty QVariant if the field has no default value or the value couldn’t be
determined. The default value is the value inserted in the database when it was not explicitly specified by the user.

QSqlFieldInfo Class Reference 103

bool QSqlFieldInfo::isCalculated () const

Returns TRUE if the field is calculated.
See also setCalculated() [p. 104].

bool QSqlFieldInfo::isGenerated () const

Returns TRUE if this field should be included in auto-generated SQL statments, e.g. in QSqlCursor; otherwise
returns FALSE.

See also setGenerated() [p. 104].

int QSqlFieldInfo::isRequired () const

Returns a value greater than O if the field is required (NULL values are not allowed), O if it isn’t required (NULL
values are allowed) or less than 0 if it cannot be determined whether the field is required or not.

bool QSqlFieldInfo::isTrim () const

Returns TRUE if trailing whitespace should be removed from character fields.

See also setTrim() [p. 104].

int QSqlFieldInfo::length () const

Returns the length of this field. For fields storing text the return value is the maximum number of characters the
field can hold. For non-character fields some database systems return the number of bytes needed or the number
of digits allowed. If the length cannot be determined -1 is returned.

QString QSqlFieldInfo::name () const

Returns the name of the field in the SQL table.

Examples: sql/overview/subclass3/main.cpp and sql/overview/subclass4/main.cpp.
QSqlFieldInfo & QSqglFieldInfo::operator= (const QSqlFieldInfo & other)

Assigns other to this field info and returns a reference to it.

bool QSqglFieldInfo::operator== (const QSqlFieldInfo & f) const

Returns TRUE if this fieldinfo is equal to f; otherwise returns FALSE.

Two field infos are considered equal when all their attributes match.

int QSqlFieldInfo::precision () const

Returns the precision of this field or -1 if the field has no precision or it cannot be determined.

QSqlFieldInfo Class Reference 104

void QSqlFieldInfo::setCalculated (bool calc) [virtual]

calc set to TRUE indicates that this field is a calculated field. The value of calculated fields can by modified by
subclassing QSqlCursor and overriding QSqlCursor::calculateField().

See also isCalculated() [p. 103].

void QSqlFieldInfo::setGenerated (bool gen) [virtual]

gen set to FALSE indicates that this field should not appear in auto-generated SQL statements (for example in
QSqlCursor).

See also isGenerated() [p. 103].

void QSqlFieldInfo::setTrim (bool trim) [virtual]

If trim is TRUE widgets should remove trailing whitespace from character fields. This does not affect the field value
but only its representation inside widgets.

See also isTrim() [p. 103].

QSqlField QSqlFieldInfo::toField () const

Returns an empty QSqlField based on the information in this QSqlFieldInfo.

QVariant::Type QSqlFieldInfo::type () const

Returns the type of this field or QVariant::Invalid if the type is unknown.

int QSqlFieldInfo::typelD () const

Returns the internal type identifier as returned from the database system. The return value is O if the type is
unknown.

Warning: This information is only useful for low-level database programming and is not database independent.

QSqlForm Class Reference

The QSqlForm class creates and manages data entry forms tied to SQL databases.
This class is part of the sql module.
#i ncl ude <gsql form h>

Inherits QObject [Additional Functionality with Qt].

Public Members

QSqlForm (QObject * parent = 0, const char * name = 0)

m ~QSqlForm ()

m virtual void insert (QWidget * widget, const QString & field)
» virtual void remove (const QString & field)

= uint count () const

m QWidget * widget (uint i) const

m QSqlField * widgetToField (QWidget * widget) const

m QWidget * fieldTowidget (QSqlField * field) const

m void installPropertyMap (QSqlPropertyMap * pmap)

m virtual void setRecord (QSqlRecord * buf)

Public Slots

m virtual void readField (QWidget * widget)

m virtual void writeField (QWidget * widget)

m virtual void readFields ()

m virtual void writeFields ()

m virtual void clear ()

m virtual void clearValues (bool nullify = FALSE)

Protected Members

m virtual void insert (QWidget * widget, QSqlField * field)
m virtual void remove (QWidget * widget)

105

QSqlForm Class Reference 106

Detailed Description

The QSqglForm class creates and manages data entry forms tied to SQL databases.

Typical use of a QSqlForm consists of the following steps:

Create the widgets you want to appear in the form.

Create a cursor and navigate to the record to be edited.

Create the QSqlForm.

Set the form’s record buffer to the cursor’s update buffer.

Insert each widget and the field it is to edit into the form.

Use readFields() to update the editor widgets with values from the database’s fields.

Display the form and let the user edit values etc.

® Nk L=

Use writeFields() to update the database’s field values with the values in the editor widgets.

Note that a QSglForm does not access the database directly, but most often via QSqlFields which are part of a
QSqlCursor. A QSqlCursor::insert(), QSqlCursor::update() or QSqlCursor::del() call is needed to actually write
values to the database.

Some sample code to initialize a form successfully:

QineEdit nyEditor(this);

@Sql Form nyForn(this);
@Sql Cursor myCursor("mytable");

Il Execute a query to nake the cursor valid

myCur sor. sel ect ();

Il Move the cursor to a valid record (the first record)

myCur sor. next ();

Il Set the forms record pointer to the cursor’s edit buffer (which
Il contains the current record’ s val ues)

myFor m set Record(nyCursor. primeUpdate());

Il Insert afield into the formthat uses nyEditor to edit the
Il field 'somefield in ' nytable’
myForminsert(&wEditor, "sonefield");

Il Update nyEditor with the value fromthe mapped database field
myFor m r eadFi el ds();

[l Let the user edit the form

Il Update the database
myFormwiteFields(); // Update the cursor’'s edit buffer fromthe form
nmyCur sor . updat e() ; /1 Update the database fromthe cursor’s huffer

If you want to use custom editors for displaying/editing data fields, you need to install a custom QSqlPropertyMap.
The form uses this object to get or set the value of a widget.

Note that Qt Designer provides a visual means of creating data-aware forms.

See also installPropertyMap() [p. 1071, QSqlPropertyMap [p. 112] and Database Classes.

QSqlForm Class Reference 107

Member Function Documentation

QSqlForm::QSqlForm (QObject * parent = 0, const char * name = 0)

Constructs a QSqlForm with parent parent and name name.

QSqlForm::~QSqlForm ()

Destroys the object and frees any allocated resources.

void QSqglForm::clear () [virtual slot]

Removes every widget, and the fields they’re mapped to, from the form.

void QSqlForm::clearValues (bool nullify = FALSE) [virtual slot]

Clears the values in all the widgets, and the fields they are mapped to, in the form. If nullify is TRUE (the default
is FALSE), each field is also set to null.

uint QSqlForm::count () const

Returns the number of widgets in the form.

QWidget * QSqlForm::fieldToWidget (QSqlField * field) const

Returns the widget that field field is mapped to.

void QSglForm::insert (QWidget * widget, const QString & field) [virtual]

Inserts a widget, and the name of the field it is to be mapped to, into the form. To actually associate inserted widgets
with an edit buffer, use setRecord().

See also setRecord() [p. 108].

Examples: sql/overview/form1/main.cpp and sql/overview/form2/main.cpp.

void QSglForm::insert (QWidget * widget, QSqlField * field) [virtual protected]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Inserts a widget, and the field it is to be mapped to, into the form.

void QSqlForm::installPropertyMap (QSqlPropertyMap * pmap)

Installs a custom QSqlPropertyMap. This is useful if you plan to create your own custom editor widgets.
QSqlForm takes ownership of pmap, and pmap is therefore deleted when QSqlForm goes out of scope.
See also QDataTable::installEditorFactory() [p. 54].

Example: sql/overview/custom1/main.cpp.

QSqlForm Class Reference 108

void QSglForm::readField (QWidget * widget) [virtual slot]

Updates the widget widget with the value from the SQL field it is mapped to. Nothing happens if no SQL field is
mapped to the widget.

void QSqlForm::readFields () [virtual slot]

Updates the widgets in the form with current values from the SQL fields they are mapped to.
Examples: sql/overview/form1/main.cpp and sql/overview/form2/main.cpp.
void QSglForm::remove (QWidget * widget) [virtual protected]

Removes a widget, and hence the field it’s mapped to, from the form.

void QSglForm::remove (const QString & field) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Removes field from the form.

void QSglForm::setRecord (QSqlRecord * buf) [virtual]

Sets buf as the record buffer for the form. To force the display of the data from buf, use readFields().
See also readFields() [p. 108] and writeFields() [p. 108].

Examples: sql/overview/custom1/main.cpp, sql/overview/form1/main.cpp and sql/overview/form2/main.cpp.

QWidget * QSqlForm::widget (uint i) const

Returns the i-th widget in the form. Useful for traversing the widgets in the form.

QSqlField * QSqlForm::widgetToField (QWidget * widget) const

Returns the SQL field that widget widget is mapped to.

void QSglForm::writeField (QWidget * widget) [virtual slot]

Updates the SQL field with the value from the widget it is mapped to. Nothing happens if no SQL field is mapped
to the widget.

void QSqglForm::writeFields () [virtual slot]

Updates the SQL fields with values from the widgets they are mapped to. To actually update the database with the
contents of the record buffer, use QSqlCursor::insert(), QSqlCursor::update() or QSqlCursor::del() as appropriate.

Example: sql/overview/form2/main.cpp.

QSqlindex Class Reference

The QSqlIndex class provides functions to manipulate and describe QSqlCursor and QSglDatabase indexes.
This class is part of the sql module.
#incl ude <gsqlindex. h>

Inherits QSqlRecord [p. 122].

Public Members

m QSglindex (const QString & cursorname = QString::null, const QString & name = QString::null)
m QSqlIndex (const QSqlindex & other)

m ~QSqlIndex ()

m QSqlindex & operator= (const QSqlindex & other)

m virtual void setCursorName (const QString & cursorName)
m QString cursorName () const

m virtual void setName (const QString & name)

QString name () const

virtual void append (const QSqlField & field)

virtual void append (const QSqlField & field, bool desc)
bool isDescending (int i) const

virtual void setDescending (int i, bool desc)

Static Public Members

m QSqlindex fromStringList (const QStringList & 1, const QSqlCursor * cursor)

Detailed Description

The QSqglindex class provides functions to manipulate and describe QSqlCursor and QSqlDatabase indexes.

This class is used to describe and manipulate QSqlCursor and QSqlDatabase indexes. An index refers to a single
table or view in a database. Information about the fields that comprise the index can be used to generate SQL
statements, or to affect the behavior of a QSqlCursor object.

Normally, QSqlindex objects are created by QSqlDatabase or QSqlCursor.

See also Database Classes.

109

QSqlindex Class Reference 110

Member Function Documentation

QSqlIndex::QSglindex (const QString & cursorname = QString::null,
const QString & name = QString::null)

Constructs an empty index using the cursor name cursorname and index name name.

QSqlIndex::QSglindex (const QSqlindex & other)

Constructs a copy of other.

QSqlIndex::~QSqlindex ()

Destroys the object and frees any allocated resources.

void QSqlindex::append (const QSqlField & field) [virtual]

Appends the field field to the list of indexed fields. The field is appended with an ascending sort order.
Reimplemented from QSqlRecord [p. 123].

void QSqlindex::append (const QSqlField & field, bool desc) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Appends the field field to the list of indexed fields. The field is appended with an ascending sort order, unless desc
is TRUE.

QString QSqlIndex::cursorName () const

Returns the name of the cursor which the index is associated with.

QSqlIndex QSglindex::fromStringList (const QStringList & 1,
const QSqglCursor * cursor) [static]

Returns an index based on the field descriptions in [and the cursor cursor. The field descriptions should be in the
same format that toStringList() produces, for example, a surname field in the people table might be in one of these

non

forms: "surname", "surname DESC" or "people.surname ASC'.

See also toStringList() [p. 126].

bool QSqlIndex::isDescending (int i) const

Returns true if field i in the index is sorted in descending order, otherwise returns FALSE.

QString QSqlIndex::name () const

Returns the name of the index.

QSqlindex Class Reference 111

QSqglindex & QSqglindex::operator= (const QSqlIndex & other)

Sets the index equal to other.

void QSqglIndex::setCursorName (const QString & cursorName) [virtual]

Sets the name of the cursor that the index is associated with to cursorName.

void QSqlIndex::setDescending (int i, bool desc) [virtual]

If desc is TRUE, field i is sorted in descending order. Otherwise, field i is sorted in ascending order (the default). If
the field does not exist, nothing happens.

void QSqlindex::setName (const QString & name) [virtual]

Sets the name of the index to name.

QSqlPropertyMap Class Reference

The QSqlPropertyMap class is used to map widgets to SQL fields.
This class is part of the sql module.

#incl ude <qgsql propertymap. h>

Public Members

m QSqlPropertyMap ()

virtual ~QSqlPropertyMap ()

QVariant property (QWidget * widget)

virtual void setProperty (QWidget * widget, const QVariant & value)
void insert (const QString & classname, const QString & property)
void remove (const QString & classname)

Static Public Members

m QSqlPropertyMap * defaultMap ()
m void installDefaultMap (QSqlPropertyMap * map)

Detailed Description

The QSqlPropertyMap class is used to map widgets to SQL fields.

The SQL module uses Qt object properties to insert and extract values from editor widgets.

This class is used to map editors to SQL fields. This works by associating SQL editor class names to the properties

used to insert and extract values to/from the editor.

For example, a QLineEdit can be used to edit text strings and other data types in QDataTables or QSqlForms. Several
properties are defined in QLineEdit, but only the text property is used to insert and extract text from a QLineEdit.
Both QDataTable and QSqlForm use the global QSqlPropertyMap for inserting and extracting values to and from
an editor widget. The global property map defines several common widgets and properties that are suitable for

many applications. You can add and remove widget properties to suit your specific needs.

If you want to use custom editors with your QDataTable or QSqlForm, you have to install your own QSqlProper-

tyMap for that table or form. Example:

QSql PropertyMap *nyMap new QSql PropertyMap();
QSql Form *myForm = new QSgl Forn(this);
MyEdi t or myEditor(this);

112

QSqlPropertyMap Class Reference 113

Il Set the QSgl Forms record buffer to the update buffer of
Il a pre-existing QSql Cursor called 'cur’.
myFor m >set Recor d(cur->primeUpdate());

Il Install the custom zed map
myMap- >i nsert ("MyEditor", "content");
myForm >i nstal | PropertyMap(nyMap); // myForm now owns nyMap

Il Insert afield into the formthat uses a nyEditor to edit the
Il field sonefield
myForm >insert(&myEditor, "somefield");

Il Update nyEditor with the value fromthe mapped database field
myFor m >r eadFi el ds() ;

/1l Let the user edit the form

Il Update the database fields with the values in the form
myForm >writeFiel ds();

You can also replace the global QSqlPropertyMap that is used by default. (Bear in mind that QSqlPropertyMap
takes ownership of the new default map.)

@Sql PropertyMap *nyMap = new QSql PropertyMap;

myMap- >i nsert("MyEditor", "content");
QSql PropertyMap: :install Defaul t Map(myMap);

See also QDataTable [p. 471, QSqlForm [p. 105], QSqlEditorFactory [p. 92] and Database Classes.

Member Function Documentation

QSqlPropertyMap::QSqlPropertyMap ()

Constructs a QSqlPropertyMap.
The default property mappings used by Qt widgets are:

e QButton — text

e QCheckBox — checked

e QComboBox — currentltem
e QDateEdit — date

e QDateTimeEdit — dateTime
e QDial — value

e QLabel — text

e QLCDNumber — value

e QLineEdit — text

e QListBox — currentltem

e QMultiLineEdit — text

QSqlPropertyMap Class Reference 114

e QPushButton — text

e QRadioButton — text

e QScrollBar — value

e QSlider — value

e QSpinBox — value

o QTextBrowser — source
e QTextEdit — text

e QTextView — text

e QTimeEdit — time

QSqlPropertyMap::~QSqlPropertyMap () [virtual]

Destroys the QSqlPropertyMap.

Note that if the QSqlPropertyMap is installed with installPropertyMap() the object it was installed into, e.g. the
QSqlForm, takes ownership and will delete the QSqlPropertyMap when necessary.

QSqlPropertyMap * QSqlPropertyMap::defaultMap () [static]

Returns the application global QSqlPropertyMap.

void QSqlPropertyMap::insert (const QString & classname, const QString & property)

Insert a new classname/property pair, which is used for custom SQL field editors. There must be a Q PROPERTY
clause in the classname class declaration for the property.

Example: sql/overview/custom1/main.cpp.
void QSqlPropertyMap::installDefaultMap (QSqlPropertyMap * map) [static]

Replaces the global default property map with map. All QDataTable and QSqlForm instantiations will use this new
map for inserting and extracting values to and from editors. QSqlPropertyMap takes ownership of map, and destroys
it when it is no longer needed.

QVariant QSqlPropertyMap::property (QWidget * widget)

Returns the mapped property of widget as a QVariant.

void QSqlPropertyMap::remove (const QString & classname)

Removes classname from the map.

void QSqlPropertyMap::setProperty (QWidget * widget, const QVariant & value) [virtual]

Sets the property of widget to value.

QSqlQuery Class Reference

The QSqlQuery class provides a means of executing and manipulating SQL statements.
This class is part of the sql module.

#incl ude <gsql query. h>

Inherited by QSqglCursor [p. 67].

Public Members

m QSqlQuery (QSqlResult * r)

m QSqlQuery (const QString & query = QString::null, QSqlDatabase * db = 0)
m QSqlQuery (const QSqlQuery & other)

» QSqlQuery & operator= (const QSqlQuery & other)
m virtual ~QSqlQuery ()

= bool isValid () const

= bool isActive () const

bool isNull (int field) const

int at () const

QString lastQuery () const

int numRowsAffected () const

QSqlError lastError () const
bool isSelect () const

= int size () const

m const QSqlDriver * driver () const

const QSqlResult * result () const

virtual bool exec (const QString & query)
virtual QVariant value (int i) const

virtual bool seek (int i, bool relative = FALSE)
virtual bool next ()

virtual bool prev ()

virtual bool first ()

virtual bool last ()

Protected Members

m virtual void beforeSeek ()
m virtual void afterSeek ()

115

QSqlQuery Class Reference 116

Detailed Description

The QSqlQuery class provides a means of executing and manipulating SQL statements.

QSqlQuery encapsulates the functionality involved in creating, navigating and retrieving data from SQL queries
which are executed on a QSqlDatabase. It can be used to execute DML (data manipulation language) statements,
e.g. SELECT, | NSERT, UPDATE and DELETE, and also DDL (data definition language) statements, e.g. CREATE TABLE.
It can also be used to execute database-specific commands which are not standard SQL (e.g. SET DATESTYLE=I SO
for PostgreSQL).

Successfully executed SQL statements set the query to an active state (isActive() returns TRUE) otherwise the query
is set to an inactive state. In either case, when executing a new SQL statement, the query is positioned on an invalid
record; an active query must be navigated to a valid record (so that isValid() returns TRUE) before values can be
retrieved.

Navigating records is performed with the following functions:

e next()

e prev()
first()
last()
seek(int)

These functions allow the programmer to move forward, backward or arbitrarily through the records returned by
the query. Once an active query is positioned on a valid record, data can be retrieved using value(). All data is
transferred from the SQL backend using QVariants.

For example:

QSql Query query("select name fromcustoner;");
while (query.next()) {
QString nanme = query.val ue(0).toString();
doSonet hi ng(nane);

}

To access the data returned by a query, use the value() method. Each field in the data returned by a SELECT
statement is accessed by passing the index number of the desired field, starting with 0. There are no methods to
access a field by name to make sure the usage of QSqlQuery is as optimal as possible (see QSqlCursor for a more
flexible interface for selecting data from a table or view in the database).

See also QSqlDatabase [p. 801, QSqlCursor [p. 671, QVariant [Datastructures and String Handling with Qt] and
Database Classes.

Member Function Documentation

QSqlQuery::QSqlQuery (QSqlResult * r)

Creates a QSqlQuery object which uses the QSqlResult r to communicate with a database.

QSqlQuery::QSqlQuery (const QString & query = QString::null, QSqlDatabase * db = 0)

Creates a QSqlQuery object using the SQL query and the database db. If db is O, (the default), the application’s
default database is used.

See also QSqlDatabase [p. 80].

QSqlQuery Class Reference 117

QSqlQuery::QSqlQuery (const QSqlQuery & other)

Constructs a copy of other.

QSqlQuery::~QSqlQuery () [virtual]

Destroys the object and frees any allocated resources.

void QSqlQuery::afterSeek () [virtual protected]

Protected virtual function called after the internal record pointer is moved to a new record. The default implemen-
tation does nothing.

int QSqlQuery::at () const

Returns the current internal position of the query. The first record is at position zero. If the position is invalid, a
QSql::Location will be returned indicating the invalid position.

See also isValid() [p. 118].

Example: sql/overview/navigating/main.cpp.

void QSqglQuery::beforeSeek () [virtual protected]

Protected virtual function called before the internal record pointer is moved to a new record. The default imple-
mentation does nothing.

const QSqlDriver * QSqlQuery::driver () const

Returns a pointer to the database driver associated with the query.

bool QSqglQuery::exec (const QString & query) [virtual]

Executes the SQL query. Returns TRUE if the query was successful sets the query state to active, otherwise returns
FALSE and the query becomes inactive. The query string must use syntax appropriate for the SQL database being
queried, for example, standard SQL.

After the query is executed, the query is positioned on an invalid record, and must be navigated to a valid record
before data values can be retrieved.

See also isActive() [p. 118], isValid() [p. 1181, next() [p. 1181, prev() [p. 119], first(Q [p. 1171, last([p. 118]
and seek() [p. 120].

Examples: sql/overview/basicbrowsing/main.cpp, sql/overview/basicbrowsing2/main.cpp and
sql/overview/basicdatamanip/main.cpp.

bool QSqlQuery::first () [virtual]

Retrieves the first record in the result, if available, and positions the query on the retrieved record. Note that the
result must be in an active state and isSelect() must return TRUE before calling this function or it will do nothing
and return FALSE. Returns TRUE if successful. If unsuccessful the query position is set to an invalid position and
FALSE is returned.

QSqlQuery Class Reference 118

Example: sql/overview/navigating/main.cpp.

bool QSqlQuery::isActive () const

Returns TRUE if the query is currently active, otherwise returns FALSE.

Examples: sql/overview/basicbrowsing/main.cpp, sql/overview/basicbrowsing2/main.cpp,
sql/overview/basicdatamanip/main.cpp, sql/overview/navigating/main.cpp and
sql/overview/retrievel/main.cpp.

bool QSqlQuery::isNull (int field) const

Returns TRUE if field is currently NULL, otherwise returns FALSE. The query must be active and positioned on a
valid record before calling this function otherwise it returns FALSE. Note that, for some drivers, isNull() will not
return accurate information until after an attempt is made to retrieve data.

See also isActive() [p. 118], isValid() [p. 118] and value() [p. 120].

bool QSqglQuery::isSelect () const

Returns TRUE if the current query is a SELECT statement, otherwise returns FALSE.

bool QSqlQuery::isValid () const

Returns TRUE if the query is currently positioned on a valid record, otherwise returns FALSE.

bool QSqlQuery::last () [virtual]
Retrieves the last record in the result, if available, and positions the query on the retrieved record. Note that the
result must be in an active state and isSelect() must return TRUE before calling this function or it will do nothing

and return FALSE. Returns TRUE if successful. If unsuccessful the query position is set to an invalid position and
FALSE is returned.

Example: sql/overview/navigating/main.cpp.
QSqlError QSqglQuery::lastError () const

Returns error information about the last error (if any) that occurred.

See also QSqlError [p. 94].

QString QSglQuery::lastQuery () const

Returns the text of the current query being used, or QString::null if there is no current query text.

bool QSqlQuery::next () [virtual]

Retrieves the next record in the result, if available, and positions the query on the retrieved record. Note that the
result must be in an active state and isSelect() must return TRUE before calling this function or it will do nothing
and return FALSE.

QSqlQuery Class Reference 119

The following rules apply:

o If the result is currently located before the first record, e.g. immediately after a query is executed, an attempt
is made to retrieve the first record.

o If the result is currently located after the last record, there is no change and FALSE is returned.

o If the result is located somewhere in the middle, an attempt is made to retrieve the next record.

If the record could not be retrieved, the result is positioned after the last record and FALSE is returned. If the record
is successfully retrieved, TRUE is returned.

See also at() [p. 117] and isValid() [p. 118].

Examples: sql/overview/basicbrowsing/main.cpp, sql/overview/basicbrowsing2/main.cpp,
sql/overview/retrievel/main.cpp, sql/overview/subclass3/main.cpp, sql/overview/subclass4/main.cpp,
sql/overview/subclass5/main.cpp and sql/sqltable/main.cpp.

int QSqlQuery::numRowsAffected () const

Returns the number of rows affected by the result’s SQL statement, or -1 if it cannot be determined. Note that for
SELECT statements, this value will be the same as size(). If the query is not active (isActive() returns FALSE), -1 is
returned.

See also size() [p. 120] and QSqlDriver::hasFeature() [p. 89].

Examples: sql/overview/basicbrowsing2/main.cpp and sql/overview/basicdatamanip/main.cpp.

QSqlQuery & QSqlQuery::operator= (const QSqlQuery & other)

Assigns other to the query.

bool QSqlQuery::prev () [virtual]

Retrieves the previous record in the result, if available, and positions the query on the retrieved record. Note that
the result must be in an active state and isSelect() must return TRUE before calling this function or it will do
nothing and return FALSE.

The following rules apply:

e If the result is currently located before the first record, there is no change and FALSE is returned.
e If the result is currently located after the last record, an attempt is made to retrieve the last record.

e If the result is somewhere in the middle, an attempt is made to retrieve the previous record.

If the record could not be retrieved, the result is positioned before the first record and FALSE is returned. If the
record is successfully retrieved, TRUE is returned.

See also at() [p. 117].

const QSqlResult * QSqlQuery::result () const

Returns a pointer to the result associated with the query.

QSqlQuery Class Reference 120

bool QSqlQuery::seek (int i, bool relative = FALSE) [virtual]

Retrieves the record at position (or offset) i, if available, and positions the query on the retrieved record. The first
record is at position zero. Note that the query must be in an active state and isSelect() must return TRUE before
calling this function.

The following rules apply:
If relative is FALSE (the default), the following rules apply:

e If i is negative, the result is positioned before the first record and FALSE is returned.

e Otherwise, an attempt is made to move to the record at position i. If the record at position i could not be
retrieved, the result is positioned after the last record and FALSE is returned. If the record is successfully
retrieved, TRUE is returned.

If relative is TRUE, the following rules apply:

e If the result is currently positioned before the first record or on the first record, and i is negative, there is no
change, and FALSE is returned.

e If the result is currently located after the last record, and i is positive, there is no change, and FALSE is
returned.

e If the result is currently located somewhere in the middle, and the relative offset i moves the result below
zero, the result is positioned before the first record and FALSE is returned.

e Otherwise, an attempt is made to move to the record i records ahead of the current record (or i records behind
the current record if i is negative). If the record at offset i could not be retrieved, the result is positioned after
the last record if i >= 0, (or before the first record if i is negative), and FALSE is returned. If the record is
successfully retrieved, TRUE is returned.

Example: sql/overview/navigating/main.cpp.

int QSqlQuery::size () const

Returns the size of the result, (number of rows returned), or -1 if the size cannot be determined or the database
does not support reporting information about query sizes. Note that for non-SELECT statements (isSelect() returns
FALSE), size() will return -1. If the query is not active (isActive() returns FALSE), -1 is returned.

To determine the number of rows affected by a non-SELECT statement, use numRowsAffected().
See also isActive() [p. 118], numRowsAffected() [p. 119] and QSqlDriver::hasFeature() [p. 89].

Example: sql/overview/navigating/main.cpp.

QVariant QSqlQuery::value (int i) const [virtual]

Returns the value of field i (zero based).

The fields are numbered from left to right using the text of the SELECT statement, e.g. in "select forename, surname
from people;", field 0 is forename and field 1 is surname. Using SELECT * is not recommended because the order
of the fields in the query is undefined.

An invalid QVariant is returned if field i does not exist, if the query is inactive, or if the query is positioned on an
invalid record.

See also prev() [p. 1191, next() [p. 118], first() [p. 1171, last() [p. 1181, seek() [p. 120], isActive() [p. 118] and
isValid() [p. 118].

QSqlQuery Class Reference 121

Examples: sql/overview/basicbrowsing/main.cpp, sql/overview/basicbrowsing2/main.cpp,
sql/overview/retrievel/main.cpp, sql/overview/subclass3/main.cpp, sql/overview/subclass4/main.cpp,
sql/overview/subclass5/main.cpp and sql/sqltable/main.cpp.

QSqlRecord Class Reference

The QSqlRecord class encapsulates a database record, i.e. a set of database fields.
This class is part of the sql module.
#incl ude <gsql record. h>

Inherited by QSqlCursor [p. 67] and QSqllndex [p. 109].

Public Members

= QSqglRecord ()

m QSglRecord (const QSqlRecord & other)

QSqglRecord & operator= (const QSqlRecord & other)

virtual ~QSqlRecord ()

virtual QVariant value (int i) const

virtual QVariant value (const QString & name) const

virtual void setValue (int i, const QVariant & val)

virtual void setValue (const QString & name, const QVariant & val)
bool isGenerated (int i) const

bool isGenerated (const QString & name) const

virtual void setGenerated (const QString & name, bool generated)
virtual void setGenerated (int i, bool generated)

virtual void setNull (int i)

virtual void setNull (const QString & name)

bool isNull (int i)

bool isNull (const QString & name)

int position (const QString & name) const

QString fieldName (int i) const

QSqlField * field (int i)

QSqlField * field (const QString & name)

const QSqlField * field (int i) const

const QSqlField * field (const QString & name) const

virtual void append (const QSqlField & field)

virtual void insert (int pos, const QSqlField & field)

virtual void remove (int pos)

bool isEmpty () const

bool contains (const QString & name) const

virtual void clear ()

virtual void clearValues (bool nullify = FALSE)

uint count () const

virtual QString toString (const QString & prefix = QString::null, const QString & sep = ",") const
virtual QStringList toStringList (const QString & prefix = QString::null) const

122

QSqlRecord Class Reference 123

Detailed Description

The QSqglRecord class encapsulates a database record, i.e. a set of database fields.

The QSqlRecord class encapsulates the functionality and characteristics of a database record (usually a table or
view within the database). QSqlRecords support adding and removing fields as well as setting and retrieving field
values.

QSqlRecord is implicitly shared. This means you can make copies of the record in time O(1). If multiple QSqlRecord
instances share the same data and one is modifying the record’s data then this modifying instance makes a copy
and modifies its private copy - thus it does not affect other instances.

See also Database Classes.

Member Function Documentation

QSqlRecord::QSqlRecord ()

Constructs an empty record.

QSqlRecord::QSqlRecord (const QSglRecord & other)

Constructs a copy of other.

QSqlRecord::~QSqlRecord () [virtual]

Destroys the object and frees any allocated resources.

void QSglRecord::append (const QSqlField & field) [virtual]
Append a copy of field field to the end of the record.

Reimplemented in QSqlindex.

void QSqlRecord::clear () [virtual]

Removes all fields from the record.

See also clearValues() [p. 123].

Reimplemented in QSqlCursor.

void QSqlRecord::clearValues (bool nullify = FALSE) [virtual]

Clears the value of all fields in the record. If nullify is TRUE, (it’s default is FALSE), each field is set to null.

bool QSqlRecord::contains (const QString & name) const

Returns TRUE if there is a field in the record called name, otherwise returns FALSE.

QSqlRecord Class Reference 124

uint QSqlRecord::count () const

Returns the number of fields in the record.

QSqlField * QSqlRecord::field (int i)

Returns a pointer to the field at position i within the record, or 0 if it cannot be found.

QSqlField * QSqlRecord::field (const QString & name)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a pointer to the field with name name within the record, or O if it cannot be found. Field names are not
case-sensitive.

const QSqlField * QSqlRecord::field (int i) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

const QSqlField * QSqlRecord::field (const QString & name) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a pointer to the field with name name within the record, or 0 if it cannot be found. Field names are not
case-sensitive.

QString QSglRecord::fieldName (int i) const

Returns the name of the field at position i. If the field does not exist, QString::null is returned.

void QSqglRecord::insert (int pos, const QSqglField & field) [virtual]

Insert a copy of field at position pos. If a field already exists at pos, it is removed.

bool QSqglRecord::isEmpty () const

Returns TRUE if there are no fields in the record, otherwise returns FALSE.

bool QSqglRecord::isGenerated (const QString & name) const

Returns TRUE if the field name is to be generated (the default), otherwise returns FALSE. If the field does not exist,
FALSE is returned.

See also setGenerated() [p. 125].

bool QSqlRecord::isGenerated (int i) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QSqlRecord Class Reference 125

Returns TRUE if the field with the index i is to be generated (the default), otherwise returns FALSE. If the field
does not exist, FALSE is returned.

See also setGenerated() [p. 125].

bool QSglRecord::isNull (const QString & name)

Returns TRUE if the field name is currently null, otherwise returns FALSE. If the field name doesn’t exist the return
value is TRUE.

See also position() [p. 125].

bool QSqlRecord::isNull (int i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns TRUE if the field i is currently null, otherwise returns FALSE. If the index i doesn’t exist the return value is
TRUE.

See also fieldName() [p. 124].

QSqlRecord & QSqlRecord::operator= (const QSqlRecord & other)

Sets the record equal to other.

int QSqlRecord::position (const QString & name) const

Returns the position of the field named name within the record, or -1 if it cannot be found. Field names are not
case-sensitive. If more than one field matches, the first one is returned.

void QSqlRecord::remove (int pos) [virtual]

Removes the field at pos. If pos does not exist, nothing happens.

Reimplemented in QSqlCursor.

void QSqlRecord::setGenerated (const QString & name, bool generated) [virtual]

Sets the generated flag for the field name to generated. If the field does not exist, nothing happens. Only fields that
have generated set to TRUE are included in the SQL that is generated, e.g. by QSqlCursor.

See also isGenerated() [p. 124].

Reimplemented in QSqlCursor.

void QSglRecord::setGenerated (int i, bool generated) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the generated flag for the field i to generated.
See also isGenerated() [p. 124].

Reimplemented in QSqlCursor.

QSqlRecord Class Reference 126

void QSqglRecord::setNull (int i) [virtual]

Sets the value of field i to NULL. If the field does not exist, nothing happens.

void QSqlRecord::setNull (const QString & name) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the value of field name to NULL. If the field does not exist, nothing happens.

void QSqlRecord::setValue (int i, const QVariant & val) [virtual]

Sets the value of the field at position i to val. If the field does not exist, nothing happens.

Examples: sql/overview/extract/main.cpp, sql/overview/insert/main.cpp, sql/overview/insert2/main.cpp,
sql/overview/order2/main.cpp, sql/overview/subclass5/main.cpp, sql/overview/update/main.cpp and
sql/sqltable/main.cpp.

void QSqlRecord::setValue (const QString & name, const QVariant & val) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the value of field name to val. If the field does not exist, nothing happens.

QString QSqglRecord::toString (const QString & prefix = QString::null,
const QString & sep = ",") const [virtual]
Returns a list of all the record’s field names as a string separated by sep.

Note that fields which are not generated are not included (see isGenerated()). The returned string is suitable, for
example, for generating SQL SELECT statements. If a prefix is specified, e.g. a table name, all fields are prefixed in
the form:

"prefix. <fieldname>"

QStringList QSqlRecord::toStringList (const QString & prefix = QString::null)
const [virtual]
Returns a list of all the record’s field names, each having the prefix prefix.

Note that fields which have generated set to FALSE are not included. (See isGenerated()). If prefix is supplied, e.g.
a table name, all fields are prefixed in the form:

"prefix. <fieldname>"

QVariant QSqlRecord::value (int i) const [virtual]
Returns the value of the field located at position i in the record. If field i does not exist the resultant behaviour is
undefined.

This function should be used with QSqlQuerys. When working with a QSqlCursor the value(const QString&)
overload which uses field names is more appropriate.

Example: sql/overview/update/main.cpp.

QSqlRecord Class Reference 127

QVariant QSqlRecord::value (const QString & name) const [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns the value of the field named name in the record. If field name does not exist the resultant behaviour is
undefined.

QSqlRecordInfo Class Reference

The API for this class is under development and is subject to change.
We do not recommend the use of this class for production work at this time.

The QSqlRecordInfo class encapsulates a set of database field meta data.
This class is part of the sql module.

#include <gsql record. h>

Public Members
» QSqglRecordInfo ()
m QSqglRecordInfo (const QSqlFieldInfolist & other)
m QSqglRecordInfo (const QSqlRecord & other)
m size type contains (const QString & fieldName) const

m QSqlFieldInfo find (const QString & fieldName) const
m QSqlRecord toRecord () const

Detailed Description
The QSglRecordInfo class encapsulates a set of database field meta data.

This class is a QValueList that holds a set of database field meta data. Use contains() to see if a given field name
exists in the record, and use find() to get a QSqlFieldInfo record for a named field.

See also QValueList [Datastructures and String Handling with Qt], QSqlFieldInfo [p. 101] and Database Classes.

Member Function Documentation

QSqglRecordInfo::QSqlRecordInfo ()

Constructs an empty recordinfo object

QSglRecordInfo::QSqlRecordInfo (const QSqlFieldInfoList & other)

Constructs a copy of other.

128

QSqlRecordInfo Class Reference 129

QSqlRecordInfo::QSqlRecordInfo (const QSqlRecord & other)

Constructs a QSqlRecordInfo object based on the fields in the QSqlRecord other.

size_type QSqlRecordInfo::contains (const QString & fieldName) const

Returns the number of times a field named fieldName occurs in the record. Returns 0 if no field by that name could
be found.

QSqglFieldIinfo QSqglRecordInfo::find (const QString & fieldName) const

Returns a QSqlFieldInfo object for the first field in the record which has the field name fieldName. If no matching
field is found then an empty QSqlFieldInfo object is returned.

QSqglRecord QSqlRecordInfo::toRecord () const

Returns an empty QSqlRecord based on the field information in this QSqlRecordInfo.

QSqlResult Class Reference

The QSqlResult class provides an abstract interface for accessing data from SQL databases.
This class is part of the sql module.

#include <gsqlresult.h>

Public Members

m virtual ~QSqlResult ()

Protected Members

m QSqlResult (const QSqlDriver * db)
m int at () const

m QString lastQuery () const
QSqlError lastError () const

bool isValid () const

bool isActive () const

bool isSelect () const

bool isForwardOnly () const

const QSqlDriver * driver () const

virtual void setAt (int at)

m virtual void setActive (bool a)

» virtual void setLastError (const QSqlError & e)
virtual void setQuery (const QString & query)
virtual void setSelect (bool s)

virtual void setForwardOnly (bool forward)

virtual QVariant data (inti)

virtual bool isNull (int i)

virtual bool reset (const QString & query)
m virtual bool fetch (int i)

m virtual bool fetchNext ()

m virtual bool fetchPrev ()

m virtual bool fetchFirst ()

m virtual bool fetchLast ()

e virtual int size ()

e virtual int numRowsAffected ()

130

QSqlResult Class Reference 131

Detailed Description

The QSqlResult class provides an abstract interface for accessing data from SQL databases.

Normally you would use QSqlQuery instead of QSqlResult since QSqlQuery provides a generic wrapper for
database-specific implementations of QSqlResult.

See also QSql [p. 65] and Database Classes.

Member Function Documentation

QSqlResult::QSqlResult (const QSqlDriver * db) [protected]

Protected constructor which creates a QSqlResult using database db. The object is initialized to an inactive state.

QSqlResult:: ~QSqlResult () [virtual]

Destroys the object and frees any allocated resources.

int QSqlResult::at () const [protected]

Returns the current (zero-based) position of the result.

QVariant QSqlResult::data (int i) [virtual protected]

Returns the data for field i (zero-based) as a QVariant. This function is only called if the result is in an active
state and is positioned on a valid record and i is non-negative. Derived classes must reimplement this function and
return the value of field i, or QVariant() if it cannot be determined.

const QSqlDriver * QSqlResult::driver () const [protected]

Returns the driver associated with the result.

bool QSglResult::fetch (int i) [virtual protected]

Positions the result to an arbitrary (zero-based) index i. This function is only called if the result is in an active
state. Derived classes must reimplement this function and position the result to the index i, and call setAt() with
an appropriate value. Return TRUE to indicate success, FALSE for failure.

bool QSqglResult::fetchFirst () [virtual protected]

Positions the result to the first record in the result. This function is only called if the result is in an active state.
Derived classes must reimplement this function and position the result to the first record, and call setAt() with an
appropriate value. Return TRUE to indicate success, FALSE for failure.

QSqlResult Class Reference 132

bool QSqglResult::fetchLast () [virtual protected]

Positions the result to the last record in the result. This function is only called if the result is in an active state.
Derived classes must reimplement this function and position the result to the last record, and call setAt() with an
appropriate value. Return TRUE to indicate success, FALSE for failure.

bool QSqlResult::fetchNext () [virtual protected]

Positions the result to the next available record in the result. This function is only called if the result is in an active
state. The default implementation calls fetch() with the next index. Derived classes can reimplement this function
and position the result to the next record in some other way, and call setAt() with an appropriate value. Return
TRUE to indicate success, FALSE for failure.

bool QSqlResult::fetchPrev () [virtual protected]

Positions the result to the previous available record in the result. This function is only called if the result is in an
active state. The default implementation calls fetch() with the previous index. Derived classes can reimplement
this function and position the result to the next record in some other way, and call setAt() with an appropriate
value. Return TRUE to indicate success, FALSE for failure.

bool QSqglResult::isActive () const [protected]

Returns TRUE if the result has records to be retrieved, otherwise returns FALSE.

bool QSqlResult::isForwardOnly () const [protected]

Returns TRUE when you can only scroll forward through a result set otherwise FALSE

bool QSqglResult::isNull (int i) [virtual protected]

Returns TRUE if the field at position i is NULL, otherwise returns FALSE.

bool QSqglResult::isSelect () const [protected]

Returns TRUE if the current result is from a SELECT statement, otherwise returns FALSE.

bool QSqlResult::isValid () const [protected]

Returns TRUE if the result is positioned on a valid record (that is, the result is not positioned before the first or
after the last record); otherwise returns FALSE.

QSqlError QSqglResult::lastError () const [protected]

Returns the last error associated with the result.

QString QSqlResult::lastQuery () const [protected]

Returns the current SQL query text, or QString::null if there is none.

QSqlResult Class Reference 133

int QSqlResult::numRowsAffected () [virtual protected]

Returns the number of rows affected by the last query executed.

bool QSqglResult::reset (const QString & query) [virtual protected]

Sets the result to use the SQL statement query for subsequent data retrieval. Derived classes must reimplement this
function and apply the query to the database. This function is called only after the result is set to an inactive state
and is positioned before the first record of the new result. Derived classes should return TRUE if the query was
successful and ready to be used, FALSE otherwise.

void QSqlResult::setActive (bool a) [virtual protected]

Protected function provided for derived classes to set the internal active state to the value of a.

See also isActive() [p. 132].

void QSqlResult::setAt (int at) [virtual protected]

Protected function provided for derived classes to set the internal (zero-based) result index to at.

See also at() [p. 131].

void QSqlResult::setForwardOnly (bool forward) [virtual protected]

Sets forward only mode to forward. If forward is TRUE only fetchNext() is allowed for navigating the results.
Forward only mode needs far less memory since results do not have to be cached. forward only mode is off by
default.

See also fetchNext() [p. 132].

void QSqlResult::setLastError (const QSqlError & e) [virtual protected]

Protected function provided for derived classes to set the last error to the value of e.
See also lastError() [p. 132].

void QSqlResult::setQuery (const QString & query) [virtual protected]

Sets the current query for the result to query. The result must be reset() in order to execute the query on the
database.

void QSqlResult::setSelect (bool s) [virtual protected]

Protected function provided for derived classes to indicate whether or not the current statement is an SQL SELECT
statement. The s parameter should indicate TRUE if the statement is a SELECT statement, otherwise FALSE.

int QSqlResult::size () [virtual protected]

Returns the size of the result or -1 if it cannot be determined.

Index

addColumn()
QDataTable, 51
addDatabase()
QSqlDatabase, 82
afterSeek()
QSqlQuery, 117
append()
QSqlCursor, 70
QSqlindex, 110
QSqlRecord, 123
at()
QSqlQuery, 117
QSqlResult, 131
autoDelete()
QDataTable, 51
autoEdit
QDataBrowser, 44
QDataTable, 59
autoEdit()
QDataBrowser, 36
QDataTable, 51

beforeDelete()
QDataBrowser, 36
QDataTable, 51
beforelnsert()
QDataBrowser, 36
QDataTable, 51
beforeSeek()
QSqlQuery, 117
beforeUpdate ()
QDataBrowser, 37
QDataTable, 51
beginlnsert()
QDataTable, 52
beginTransaction()
QSqlDriver, 88
beginUpdate()
QDataTable, 52
Boundary
QDataBrowser, 36
boundary()
QDataBrowser, 37
boundaryChecking
QDataBrowser, 44
boundaryChecking()
QDataBrowser, 37

calculateField ()
QSqlCursor, 70
canDelete()

QSqlCursor, 70
canlnsert()
QSqlCursor, 71
canUpdate()
QSqlCursor, 71
clear()
QSqlCursor, 71
QSqlField, 98
QSqlForm, 107
QSqlRecord, 123
clearValues()
QDataBrowser, 37
QDataView, 63
QSqlForm, 107
QSqlRecord, 123
close()
QSqlDatabase, 82
QSqlDriver, 88
commit()
QSqlDatabase, 82
commitTransaction()
QSqlDriver, 89
Confirm
QSql, 65
confirmCancel ()
QDataBrowser, 37
QDataTable, 52
confirmCancels
QDataBrowser, 44
QDataTable, 59
confirmCancels()
QDataBrowser, 37
QDataTable, 52
confirmDelete
QDataBrowser, 44
QDataTable, 59
confirmDelete()
QDataBrowser, 37
QDataTable, 52
confirmEdit()
QDataBrowser, 37
QDataTable, 52
confirmEdits
QDataBrowser, 44
QDataTable, 60
confirmEdits()
QDataBrowser, 38
QDataTable, 52
confirmInsert
QDataBrowser, 45

134

QDataTable, 60
confirmInsert()
QDataBrowser, 38
QDataTable, 52
confirmUpdate
QDataBrowser, 45
QDataTable, 60
confirmUpdate()
QDataBrowser, 38
QDataTable, 53
contains()
QSqlDatabase, 82
QSqlRecord, 123
QSqlRecordInfo, 129
count()
QSqlForm, 107
QSqlRecord, 124
createEditor()
QSqlEditorFactory, 93
createQuery()
QSqlDriver, 89
currentChanged()
QDataBrowser, 38
QDataTable, 53
currentEdited()
QDataBrowser, 38
currentRecord()
QDataTable, 53
cursorChanged()
QDataBrowser, 38
QDataTable, 53
cursorName()
QSqlIndex, 110

data()
QSqlResult, 131
database()
QSqlDatabase, 82
databaseName
QSqlDatabase, 86
databaseName()
QSqlDatabase, 83
databaseText()
QSqlError, 95
dateFormat
QDataTable, 60
dateFormat()
QDataTable, 53
defaultFactory()
QSqlEditorFactory, 93
defaultMap()

Index

QSqlPropertyMap, 114

defaultValue()
QSqlFieldInfo, 102
del()
QDataBrowser, 38
QSqlCursor, 71
deleteCurrent()
QDataBrowser, 38
QDataTable, 53
driver()
QSqlDatabase, 83
QSqlQuery, 117
QSqlResult, 131
DriverFeature
QSqlDriver, 88
driverName()
QSqlDatabase, 83
drivers()
QSqlDatabase, 83
driverText()
QSqlError, 95

editBuffer()
QSqlCursor, 72
exec()
QSqlDatabase, 83

QSqlQuery, 117

falseText
QDataTable, 60
falseText()
QDataTable, 53
fetch()
QSqlResult, 131
fetchFirst()
QSqlResult, 131
fetchLast()
QSqlResult, 132
fetchNext()
QSqlResult, 132
fetchPrev()
QSqlResult, 132
field()
QSqlRecord, 124
fieldAlignment()
QDataTable, 53
fieldName()
QSqlRecord, 124
fieldTowidget()
QSqlForm, 107
filter
QDataBrowser, 45
QDataTable, 60
filter()
QDataBrowser, 39
QDataTable, 53
QSqlCursor, 72
find(Q
QDataTable, 54

QSqlRecordInfo, 129

first()
QDataBrowser, 39
QSqlQuery, 117

firstRecordAvailable ()
QDataBrowser, 39
form()
QDataBrowser, 39
QDataView, 63
formatValue()
QSqlDriver, 89
fromStringList()
QSqlindex, 110

handleError()
QDataBrowser, 39
QDataTable, 54
hasFeature()
QSqlDriver, 89
hostName
QSqglDatabase, 86
hostName()
QSqlDatabase, 83

index()
QSqlCursor, 72
indexOf()
QDataTable, 54
insert()
QDataBrowser, 39
QSqlCursor, 72
QSqlForm, 107

QSqlPropertyMap, 114

QSqlRecord, 124
insertCurrent()

QDataBrowser, 40

QDataTable, 54
installDefaultFactory()

QSgqlEditorFactory, 93

installDefaultMap()

QSqlPropertyMap, 114

installEditorFactory()
QDataTable, 54
installPropertyMap()
QDataTable, 54
QSqlForm, 107
isActive()
QSqlQuery, 118
QSqlResult, 132
isCalculated()
QSqlCursor, 73
QSqlFieldInfo, 103
isDescending()
QSqlindex, 110
iSEmpty()
QSqlRecord, 124
isForwardOnly()
QSqlResult, 132
isGenerated()
QSqlFieldInfo, 103
QSqlRecord, 124
isNull()
QSqlField, 98
QSqlQuery, 118
QSqlRecord, 125
QSqlResult, 132
isOpen()

QSqlDatabase, 83
QSqlDriver, 89
isOpenError()
QSqglDatabase, 83
QSqlDriver, 89
isReadOnly()
QDataBrowser, 40
QSqlCursor, 73
QSqlField, 98
isRequired()
QSqlFieldInfo, 103
isSelect()
QSqlQuery, 118
QSqlResult, 132
isTrim()
QSqlFieldInfo, 103
isTrimmed()
QSqlCursor, 73
isvalid()
QSqlQuery, 118
QSqlResult, 132

last()
QDataBrowser, 40
QSqlQuery, 118
lastError()
QSqlDatabase, 83
QSqlDriver, 89
QSqlQuery, 118
QSqlResult, 132
lastQuery()
QSqlQuery, 118
QSqlResult, 132
lastRecordAvailable()
QDataBrowser, 40
length()
QSqlFieldInfo, 103
Location
QSql, 65

Mode

QSqlCursor, 69
mode()

QSqlCursor, 73

name()

QSqlCursor, 73

QSqlField, 98

QSqlFieldInfo, 103

QSqlindex, 110
next()

QDataBrowser, 40

QSqlQuery, 118
nextRecordAvailable()

QDataBrowser, 40
nullText

QDataTable, 61
nullText()

QDataTable, 54

QSqlDriver, 90
number()

QSqlError, 95
numCols

QDataTable, 61

135

Index

numCols()
QDataTable, 55
numRows
QDataTable, 61
numRows()
QDataTable, 55
numRowsAffected ()
QSqlQuery, 119
QSqlResult, 133

Op
QSql, 66
open()

QSgqlDatabase, 83, 84

QSqlDriver, 90
operator=()
QSqlCursor, 73
QSqlError, 95
QSqlField, 99
QSqlFieldInfo, 103
QSqlindex, 111
QSqlQuery, 119
QSqlRecord, 125
operator==()
QSqlField, 99
QSqlFieldInfo, 103

paintField()
QDataTable, 55
password
QSqlDatabase, 86
password()
QSqlDatabase, 84
port
QSqlDatabase, 86
port()
QSqlDatabase, 84
position()
QSqlRecord, 125
precision()
QSqlFieldInfo, 103
prev()
QDataBrowser, 40
QSqlQuery, 119
prevRecordAvailable()
QDataBrowser, 40
primaryIndex()
QSqlCursor, 74
QSqlDatabase, 84
QSqlDriver, 90
primeDelete()
QDataBrowser, 41
QDataTable, 55
QSqlCursor, 74
primelnsert()
QDataBrowser, 41
QDataTable, 55
QSqlCursor, 74
primeUpdate()
QDataBrowser, 41
QDataTable, 55
QSqlCursor, 74

property(

QSqlPropertyMap, 114

QMYSQL3, 28
QOCI8, 28
QODBC3, 29
QPSQL7, 30
QTDS7, 31

readField()
QSqlForm, 108
readFields()
QDataBrowser, 41
QDataView, 63
QSqlForm, 108
readOnly
QDataBrowser, 45
record()
QDataView, 63
QSqlDatabase, 84
QSqlDriver, 90
recordInfo()
QSqlDatabase, 84
QSqlDriver, 90
Refresh
QDataTable, 50
refresh()
QDataBrowser, 41
QDataTable, 55, 56
QDataView, 63
remove()
QSqlCursor, 74
QSqlForm, 108

QSqlPropertyMap, 114

QSqlRecord, 125
removeColumn()

QDataTable, 56
removeDatabase()

QSqlDatabase, 85
reset()

QDataTable, 56

QSqlResult, 133
result()

QSqlQuery, 119
rollback()

QSqlDatabase, 85
rollbackTransaction()

QSqlDriver, 90

seek()

QDataBrowser, 41

QSqlQuery, 120
select()

QSqlCursor, 74, 75
setActive()

QSqlResult, 133
setAt()

QSqlResult, 133
setAutoDelete()

QDataTable, 56
setAutoEdit()

QDataBrowser, 41

QDataTable, 56
setBoundaryChecking()

QDataBrowser, 42
setCalculated()
QSqlCursor, 76
QSqlFieldInfo, 104
setColumn()
QDataTable, 56
setConfirmCancels()
QDataBrowser, 42
QDataTable, 56
setConfirmDelete ()
QDataBrowser, 42
QDataTable, 56
setConfirmEdits()
QDataBrowser, 42
QDataTable, 57
setConfirmInsert()
QDataBrowser, 42
QDataTable, 57
setConfirmUpdate()
QDataBrowser, 42
QDataTable, 57
setCursorName()
QSqlindex, 111
setDatabaseName()
QSqlDatabase, 85
setDatabaseText()
QSqlError, 95
setDateFormat()
QDataTable, 57
setDescending()
QSqlindex, 111
setDriverText()
QSqlError, 96
setFalseText()
QDataTable, 57
setFilter()
QDataBrowser, 42
QDataTable, 57
QSqlCursor, 76
setForm()
QDataBrowser, 42
QDataView, 63
setForwardOnly()
QSqlResult, 133
setGenerated()
QSqlCursor, 76
QSqlFieldInfo, 104
QSqlRecord, 125
setHostName()
QSqglDatabase, 85
setLastError()
QSqlDriver, 91
QSqlResult, 133
setMode()
QSqlCursor, 76
setName()
QSqlCursor, 77
QSqlField, 99
QSqlindex, 111
setNull()
QSqlField, 99
QSqlRecord, 126
setNullText()

136

Index

QDataTable, 57
setNumber()
QSqlError, 96
setOpen()
QSqlDriver, 91
setOpenError()
QSqlDriver, 91
setPassword()
QSqlDatabase, 85
setPort()
QSqlDatabase, 85
setPrimaryIndex()
QSqlCursor, 77
setProperty()
QSqlPropertyMap, 114
setQuery()
QSqlResult, 133
setReadOnly()
QDataBrowser, 42
QSqlField, 99
setRecord()
QDataView, 64
QSqlForm, 108
setSelect()
QSqlResult, 133
setSize()
QDataTable, 57
setSort()
QDataBrowser, 42
QDataTable, 57
QSqlCursor, 77
setSqlCursor()
QDataBrowser, 43
QDataTable, 58
setTrim()
QSqlFieldInfo, 104
setTrimmed ()
QSqlCursor, 77
setTrueText()
QDataTable, 58
setType()

QSqlError, 96
setUserName()

QSqlDatabase, 85
setValue()

QSqlField, 99

QSqlRecord, 126
size()

QSqlQuery, 120

QSqlResult, 133
sort

QDataBrowser, 45

QDataTable, 61
sort()

QDataBrowser, 43

QDataTable, 58

QSqlCursor, 77
sortAscending()

QDataTable, 58
sortColumn()

QDataTable, 58
sortDescending()

QDataTable, 58
sqlCursor()

QDataBrowser, 43

QDataTable, 58

tables()

QSqlDatabase, 85

QSqlDriver, 91
text()

QDataTable, 58
toField()

QSqlFieldInfo, 104
toRecord()

QSqlRecordInfo, 129
toString()

QSqlCursor, 77, 78

QSqlRecord, 126
toStringList()

QSqlRecord, 126
transaction()

QSqlDatabase, 85

trueText

QDataTable, 61
trueText()

QDataTable, 59
Type

QSqlError, 94
type()

QSqlError, 96

QSqlField, 99

QSqlFieldInfo, 104
typeID()

QSqlFieldInfo, 104

update()
QDataBrowser, 43
QSqlCursor, 78, 79
updateBoundary()
QDataBrowser, 43
updateCurrent()
QDataBrowser, 43
QDataTable, 59
userName
QSqlDatabase, 86
userName()
QSqlDatabase, 86

value()
QDataTable, 59
QSqlField, 100
QSqlQuery, 120
QSqlRecord, 126, 127

widget()
QSqlForm, 108
widgetToField()
QSqlForm, 108
writeField()
QSqlForm, 108
writeFields()
QDataBrowser, 43
QDataView, 64
QSqlForm, 108

137

