
Notes on the use of RTP for shared workspace applications

Colin Perkins
Department of Computer Science

University College London
Gower Street

London WC1E 6BT
c.perkins@cs.ucl.ac.uk

Jon Crowcroft
Department of Computer Science

University College London
Gower Street

London WC1E 6BT
jon@cs.ucl.ac.uk

ABSTRACT
The Real-time Transport Protocol, RTP, has become the dominant
protocol for streaming audio and video in IP-based environments.
A number of proposals have been made which attempt to build on
this success and apply RTP for shared workspace applications. We
discuss the needs of such applications and the features provided by
RTP, with an aim to showing why RTP is not appropriate for such
uses.

1. INTRODUCTION
In recent years the Real-time Transport Protocol, RTP [15], has be-
come the protocol of choice for audio/video transport in the Internet.
One of the reasons for this success is the flexibility of RTP, which
was designed as a protocol framework, rather than a monolithic pro-
tocol, allowing it to be tailored to different applications and media
formats.

This flexibility has led a number of authors to consider the use of
RTP for other scenarios, not necessarily related to audio/video trans-
port. For example, it has recently been suggested that RTP may pro-
vide the base for a protocol for the transport of interactive media
such as shared whiteboards [11]. In this paper we provide a critical
evaluation of the applicability of RTP for these applications, noting
those areas where RTP is not a good fit and suggesting alternative
solutions.

This paper is structured as follows: section 2 presents an overview
of interactive media applications, highlighting their key functional
and protocol requirements. This is followed, in sections 3 and 4,
by a discussion of RTP and its suitability for these applications. In
section 5 we discuss other possible approaches. Finally we present
our conclusions in section 6.

2. INTERACTIVE MEDIA
Informally, an interactive media application is one where the state
of the system changes primarily in response to user interaction. Ex-
amples include a shared whiteboard or text editor, a distributed pre-
sentation tool, or a networked multiplayer game. It does not include

audio or video, since those media are primarily time related, rather
than responding to explicit user events.

A more formal classification of media flows is presented in [11].
That work defines interactive media to be those which can be in-
fluenced by events external to the media, and splits this definition
into two: discrete interactive media are only influenced by exter-
nal events, continuous interactive media also change their state over
time without external interaction. In contrast, non-interactive media
change their state over time irrespective of external events.

This leads to an important observation: interactive media applica-
tions have a multi-dimensional state space based on both time and
the set of external events which may affect the system, whereas the
state space for non-interactive media is linear.

Consider, for example, a shared presentation tool. This may have
time-based state (e.g. an animation, or an audio/video clip), ephemeral
state based on user interaction (e.g. a telepointer) and persistent state
(e.g. the text and diagrams comprising the presentation). This is
in contrast to a non-interactive media application such as streaming
video, where media frames are presented in time order with no other
interaction.

There are a number of consequensesdue to these observations. Firstly,
we note that a single linear namespace is not sufficient to identify
state updates in an interactive media application, since these updates
may be triggered by a combination of factors.

Loss detection and reliability becomes more complex in interactive
media applications, since there is no longer a single linear names-
pace for objects and since some objects are persistent. In addition,
an interactive media application must be aware of the possibility of
conflicting updates, since the state of the system may be affected by
multiple external events simultaneously, complicating any reliabil-
ity mechanism.

Handling late joiners becomes more complex, since the state of the
system no longer depends solely on when they joined, but also upon
the shared application state at that time.

Finally, we note that interactive media have partial rather than strict
data ordering requirements, with late data being useful, and brows-
ing being common.

These observations rapidly lead to the conclusion that a single pro-
tocol is unlikely to be sufficient for the full range of interactive me-
dia applications. Indeed, many authors [3; 4; 5; 6] have concluded

that application level framing [2] is a requirement for such applica-
tions.

There are, however, a number of features in common across a broad
range of interactive media applications, and those features can po-
tentially be abstracted into a common protocol framework. In par-
ticular, it has been observed that many applications need structured
application data unit (ADU) names [12], a simple mechanism for
the detection of packet loss, a means of distinguishing different types
of data, a means of identifying participants, and a timestamping mech-
anism.

It has also been observed that it is not necessary to include common
reliability and error recovery schemes, or mechanisms for handling
late joiners, since applications have a wide and disjoint range of re-
quirements in these areas.

3. OVERVIEW OF RTP
RTP is a protocol framework designed to provide end-to-end deliv-
ery services for data with real time characteristics, including pay-
load type identification, timestamping, sequence numbers, source
identification and reception quality feedback. It draws heavily on
the notion of application level framing [2] to provide mutability to
different application scenarios, and efficient adaptation to different
network conditions. These characteristics have lead a number of au-
thors to consider the use of RTP for interactive media applications.
In this section we review RTP in some detail, this will be followed
in section 4 by a critique of the use of RTP for interactive media.

An application using RTP as its transport is expected to provide a
single media stream with real time characteristics. Such a media
stream comprises a number of application data units, which

� are ephemeral, with no long lived name

� are timed, and require timely delivery

� are ordered

� may come in a range of different types

� are associated with a named source

� are useful if delivered unreliably, but some feedback on re-
ception quality is needed

These features are provided by a fixed packet header which is ap-
plied to each data packet. In addition, the RTP control protocol pro-
vides approximate membership information and reception quality
feedback.

An RTP data packet comprises a fixed header, followed by an op-
tional header extension and the application data. The format of the
fixed header is shown in figure 1.

RTP provides a single sequence number space, used to detect packet
loss and misordering. The sequence number increases by one for
each packet sent, regardless of the contents of the packet and hence
does not provide structured naming of application data units.

The RTP timestamp reflects the sampling instant of the first octet in
the payload. It is a free running clock at a rate natural to the me-
dia format; for example the audio sampling rate or the 90kHz video

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|V=2|P|X| CC |M| PT | sequence number |
+-+
| timestamp |
+-+
| synchronization source (SSRC) identifier |
+-+
| contributing source (CSRC) identifiers (if any) |
| |
+-+
| optional header extension |
| |
+-+
| payload data |
| |
+-+

Figure 1: An RTP data packet header

clock chosen to be a common multiple of PAL and NTSC framerate.
It must be of sufficient resolution to achieve accurate synchronisa-
tion and to measure network jitter.

The RTP timestamp denotes the playout order for application data
units. If those ADUs are resequenced before transmission it will not
be monotonically increasing in the packets as received.

Since the RTP timestamp is derived from the media clock, and each
media stream is transported in a separate RTP session, it is not pos-
sible to synchronize media streams from the information contained
in the data packets alone. The mapping from RTP timestamp to real-
time is obtained via sender report packets, described later.

The combination of sequence number and timestamp is sufficient to
uniquely identify each application data unit. Due to the ephemeral
nature of ADUs, there is no external mapping onto long lived names,
and no feedback on the reception of individual ADUs is provided.

Each participant in an RTP session is identified by a 32 bit synchro-
nisation source (SSRC) identifier included in each data packet. The
SSRC is chosen randomly when joining a session, and a mecha-
nism for resolving collisions is included. It should be noted that the
SSRC is an ephemeral identifier, which is not suitable for long-term
data naming. A mapping from SSRC to a canonical name is pro-
vided by source description control packets, described later.

RTP supports the concept of mixers, which combine data from mul-
tiple sources. Each data packet may include a list of contributing
sources (CSRCs) for this purpose.

The RTP data packet header also includes a payload type identifier
field, to differentiate payload formats. The mapping from payload
format to payload type number is provided by either a static profile
definition (e.g. [14]) or non-RTP signalling (e.g. via SDP [7] car-
ried in SIP [9]).

Finally, a marker is included as a hint for the receiver to indicate
that this ADU denotes a significant event in the media stream. The
significance of a packet with the marker present is unknown to an
application which is not familiar with the ADU semantics.

In addition to media transport, RTP provides a separate reporting
and control protocol, RTCP.This control protocol works by periodic
rate controlled multicast from each participant, such that the aver-
age aggregate control traffic rate is 5% of the data rate. The interval
between transmissions of control packets from each participant is at
minimum once every 5 seconds, randomised up to 50% in either di-

rection. This reporting interval increases as the number of members
in an RTP session increases, such that RTCP cannot be considered
a timely protocol.

There are four types of RTCP packet: sender report, receiver report,
source description and BYE. Multiple control packets may be trans-
ported in a single compound packet. Control packets are associated
with their sender by SSRC.

An RTCP sender report has two functions: it maps between the RTP
media clock and an NTP format timestamp giving wallclock time,
and it provides a packet and octet count for the media stream (allow-
ing the data rate to be estimated). The mapping between RTP and
NTP time allows receivers to perform inter-media synchronisation
(e.g. for lipsync [10]) and in conjunction with information from re-
ceiver reports allows the sender to estimate the round trip time to
all receivers. As their name implies, sender report packets are only
sent by those members who are actively transmitting data.

Receiver reports are sent by all members who receive media data
during a reporting interval. They contain a report block for each ac-
tive source, that report block contains

� the fraction of packets lost this interval

� the cumulative number of packets lost

� the extended highest sequence number received

� an estimate of the network induced timing jitter

� the timestamp from the last sender report (LSR)

� the delay since receiving the last sender report (DLSR)

The LSR and DLSR fields are included so that senders may estimate
the round trip time to each receiver.

The estimate of the network timing jitter assumes that packets are
evenly spaced, for example as is the case with most network audio
applications. If packets are not evenly spaced in time, the estimate
of the jitter will be incorrect.

Source description packets provide a mapping from SSRC to a canon-
ical name for each participant. The canonical name comprises the
participant’s username and network address (e.g. colin@128.16.32.159),
and so is consistent across restarts of a media tool, for example, but
is not persistent or long-term consistent. In addition, other person-
nal details such as participant names, email addresses and location
may optionally be transported. Finally, BYE packets inform others
participants that a member of the session is about to leave.

As discussed earlier, RTP is a protocol framework rather than a com-
plete protocol specification. In order to be complete, RTP needs one
or more payload format specifications and profiles.

Payload format specifications detail how particular media formats,
such as audio and video encodings, are transported in RTP. They de-
fine the mapping from the codec output bitstream to an RTP packet
stream, including any payload specific header information to be car-
ried at the beginning of the payload section of an RTP data packet.
More detail on the design of RTP payload format specifications can
be found in [8].

An RTP profile defines a mapping from payload formats to payload
type numbers, and may redefine some features of the base RTP header.
The RTP specification [15] has this to say on the subject:

“The existing RTP data packet header is believed to be
complete for the set of functions required in common
across all the application classes that RTP might sup-
port. However, in keeping with the ALF design princi-
ple, the header may be tailored through modifications
or additions defined in a profile specification while still
allowing profile-independent monitoring and recording
tools to function.”

These modifications and additions include the ability to change the
size of the payload type field to include additional marker bits, add
additional fixed headers to the data packet header, define new RTCP
packet types and extend sender/receiver reports with additional fixed
header fields.

It should be noted that profiles are not permitted to redefine the ex-
isting header fields, since that would affect the operation of profile
independent monitoring and recording tools.

4. RTP FOR INTERACTIVE MEDIA?
We have presented the requirements of interactive media applica-
tions in section 2, and the features afforded by RTP in section 3. We
now address the issue of how well RTP fits the needs of interactive
media applications.

The features of RTP data packets which are directly relevent to in-
teractive media applications include the payload type, synchronisa-
tion source, marker and padding bits.

The sequence number performs two roles in RTP: detection of packet
loss and ADU naming. Interactive media applications may still ben-
efit from detection of packet loss via the sequence number, but it is
likely to be insufficient to identify ADUs in an interactive media ap-
plication due to the non-linear namespace in such applications [12].

The semantics of the RTP timestamp are different to those expected
by most interactive media applications, being based on a free run-
ning linear clock of relevence to the media. Whilst most interactive
media applications can use a timestamp, they have no concept of a
media clock and a better fit can be made by using wallclock time
as their timestamp (this also implies that the mapping from the me-
dia clock to wallclock time via sender reports is not useful for these
applications, although a clock synchronization protocol may be re-
quired to align the participants’ ideas of wallclock time).

It should further be noted that many interactive media applications
employ some form of reliability, whereby data packets are retrans-
mitted to repair lost data. The use of a media timestamp to deter-
mine playout of such packets, as would be done following the RTP
model, is clearly dubious. Figure 2 shows the RTP adaptive playout
model, where media samples are buffered based on the observed jit-
ter in the network and RTP timestamps, to regenerate the inter-ADU
timing necessary for correct playout of the media (see, for example,
[13] for a more detailed discussion of this process). An interactive
media application typically does not have to regenerate the timing
of a media stream before playout, and can often play ADUs as soon
as they are received, or use late ADUs for repair when they would

Delay adaptation

Playout delay

Buffer
Samples

Figure 2: Adaptive media playout in an RTP application

have to be discarded by an application following the standard RTP
playout model.

Of the four types of RTCP packet (sender report, receiver report,
source description and bye), we have previously noted that RTCP
sender report packets are of little use to interactive media applica-
tions, since their primary purpose is to convey the mapping between
the RTP media clock and the real-time NTP clock. Since interac-
tive media applications do not have a comparable media clock, this
mapping is redundant.

This does not necessarily mean that the concept of sender reports
is of no use to interactive media applications. It may be possible to
use some form of sender report to inform receivers of the progress
of a transmission, helping with the detection of tail-loss, or to allow
estimation of the round trip time between receivers. Such sender
report packets will, however, differ from those used by RTCP.

The concept of reception reports is valid for interactive media ap-
plications, but the details of the report are likely to differ from those
used by RTP.

The statistics relating to loss fraction and cumulative number of pack-
ets lost are meaningful only if packets are transmitted with a unique
sequence number per packet, and retransmissions are not used (or
if a retransmitted data packet has a different sequence number from
the original). This is not to say that analogous measurements can-
not be derived for interactive media applications, but unless these
fields are calculated in exactly the same way as per [15] those ap-
plications which are using the original definition will be confused
by reception reports using a different definition for these fields.

The extended sequence number field in a reception report is not use-
ful for those interactive media applications which use structured se-
quence numbers, since it relates to the linear RTP sequence number
space. If a linear sequence number space is applied to data packets,
with structured sequence numbers being carried within the payload,
then the extended sequence number will be meaningful, but perhaps
not useful.

The interarrival jitter field in a reception report gives meaningful re-
sults only if data packets are sent regularly. Since interactive media
applications typically have non-regular data transmission patterns,
this field will often be valid but meaningless.

The LSR and DLSR fields are useful if the application uses sender
reports.

Source description and BYE packets may be used unchanged, al-
though since sender and receiver report packets are not appropriate
in their existing form, it may be necessary to change the packing
rules for compound RTCP packets.

It is important to note that RTP explicitly allows for profile indepen-
dent media applications, and it is not legal to redefine the calculation
of the existing header fields, since this would confuse those appli-
cations expecting standard RTP (for example, a profile independent
reception quality monitor or recording tool). An extension mecha-
nism allows additional information to be carried in RTP/RTCP pack-
ets, allowing applications which require extra functionality.

The rules for when to transmit RTCP packets may not be appropri-
ate for an interactive media application. The transmission rate was
designed to scale to very large groups by dynamically adjusting the
interval such that a constant rate of 5% of the data bandwidth is as-
signed to RTCP. The result is that an RTP application cannot send
an RTCP packet at an arbitrary time, and must obey fixed transmis-
sion rules. Violating these will affect the operation of other (profile
independent) applications which may be using the standard RTCP
transmission rules.

For example, it is not appropriate to use RTCP as a mechanism to re-
quest retransmission of data packets since that would limit the chances
for retransmission requests to those when the rate-limited RTCP pack-
ets can be sent.

Another example is the use of RTCP to convey data (as a signalling
protocol) since this will affect the rate at which we can convey sig-
nalling messages. An application which relys on this signalling may
be performance limited by the low rate at which RTCP operates.

To summarise, we believe that the needs of interactive media appli-
cations are not well met by RTP.

5. RELATED WORK
The primary motivation for this work was the RTP/I protocol [11],
an attempt to define an RTP profile suitable for use by interactive
media applications. That work provides an interesting and useful
taxonomy of media applications (interactive vs non-interactive and
discrete vs continuous), and addresses a number of important prob-
lems in the transport of interactive media – application level naming
of ADUs and reliability, synchronisation with RTP media streams
and recording of interactive media applications.

The major flaw of RTP/I, in our opinion, is the decision to make the
protocol an RTP profile, rather than using RTP as a useful point in
the design space from which to start work, and discard those aspects
which are not useful. This shows itself in the design of an RTP/I data
packet, where the header is twice the size of an RTP header due to
the inclusion of a sub-component sequence number and identifier, in
addition to the sequence number in the RTP header. In addition, the
mapping from sub-component identifier to an application meaning-
ful name is done via a new RTCP packet type, as are state queries.
As previously mentioned, the rate limits for RTCP will seriously im-
pact the performance of the system if they are followed, and if not
could impact the performance of other RTP applications monitor-
ing/recording an RTP/I session.

The RTP/I work does not deal with these issues, nor of the appli-
cability or otherwise of the RTP timestamp, sequence number, re-
ceiver report statistics and use of sender reports.

As an alternative the Reliable Multicast Framing Protocol [3] and
the Reliable Multicast Framework [4] both derive protocol frame-
works for reliable multicast, with requirements similar to those of
many interactive media applications.

The Reliable Multicast Framing Protocol [3] was designed as a generic
protocol� framework for reliable multicast; hence it is directly appli-
cable to interactive media applications. It shares much of the same
philosophy as RTP, but has a number of significant differences re-
sulting from the different focus adopoted.

Like RTP, the RMFP specifies the format of an ADU header and a
number of session packets (e.g. reception report). Those packets,
whilst similar in concept have somewhat different structure and se-
mantics to those of the corresponding RTP headers. Consider, for
example, the RMFP data packet header illustrated in figure 3.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| V |P|R|F|S|E|X| PAYLOAD TYPE | LENGTH |
+-+
| SOURCE ID |
+-+
| SEQUENCE NUMBER | OBJECT ID |
+-|
| NAME LENGTH | ADU NAME :
+-|
: ADU NAME :
+-+

Figure 3: An RMFP data packet header

The RMFP data packet header includes a sequence number, object
identifer and ADU name. However, RMFP does not specify the se-
mantics of these fields - they must be defined by a profile specifi-
cation for a particular class of applications (for example [1]). This
allows considerable flexibility, and removes many of the problems
associated with the use of RTP for interactive media: the semantics
of the sequence number can now fit the application, and structured
ADU names can be directly used.

RMFP ADUs also include bits in the header to indicate if this packet
is a retransmission or contains forward error correction (FEC) infor-
mation. The explicit inclusion of these bits allows for applications
which can use jitter information to calculate this, without having to
include such retransmitted data which adversly affects these statis-
tics in RTP.

RMFP also does not include a timestamp. This removes another
problem with the use of RTP, since there is no implicit or explicit
media playout model in RMFP and applications can use ADUs in
any desired order. However, it introduces a problem - it is not possi-
ble to directly synchronise RMFP data with an RTP flow. An RMFP
profile can specify a timestamp and playout model if it is desired for
a particular class of applications.

Like RTP, the RMFP has separate flows for data packets and ses-
sion messages. It also introduces a third flow for control packets.
This allows control packets to be sent at any desired rate, rather than
being limited to the session data rate as happens with RTP control
packets.

All in all, we consider RMFP to be a much better fit for interactive
media applications than is RTP, although both derive from the same
philosophy of protocol design.

The Reliable Multicast Framework, RMF [4] attempts to solve a
similar problem to RMFP. Like RMFP it defines common formats
for data, control and session packets, but rather than defining a com-
mon core with a series of profile extensions, RMF focuses on the
development of a ‘universal receiver’ which can speak any desired
reliable multicast protcol. Quoting from [4]:

“A receiver’s actions are specialized to conform to the
requirements of a specific reliable multicast protocol
as a consequence of the sender setting various fields
in data packets appropriately and as a consequence of
the session-level control protocols setting state infor-
mation appropriately.”

As a consequence of this, it is difficult to categorize RMF since the
behaviour can vary significantly. It does, however, have a number
of features which are useful for interactive media applications and
avoids many of the problems of using RTP in this area.

For example RMF includes bits in the header to indicate that this
packet is a retransmission (to avoid confusion of reception quality
statistics) and to allow for segmentation and reassembly of ADUs.
It also provides for flexible reception quality feedback, avoiding the
limitations of RTCP RR packets for this use, and for flexible repair
strategies. Unfortunately, it still provides only a single sequence
number and no explicit naming of ADUs, and no timestamp is in-
cluded.

The opinion of the authors is that the RMF model is overcomplex
for the gain provided, but it does explore a number of interesting
concepts. Many, but not all, of the pitfalls of the use of RTP for
interactive media are avoided.

6. CONCLUSIONS
We have presented a critical overview of the use of RTP for interac-
tive media applications such as shared workspaces, networked games,
or distributed presentation tools. Our conclusion is that RTP is not
the correct protocol for most such applications. Rather, RTP may
form one part for the needed protocol suite, supplemented by other
protocols more tuned for the needs of different parts of an interac-
tive media application.

Many applications are best designed around the use of multiple pro-
tocols: it may be that non-interactive media are transported by RTP,
interactive media by another protocol, and bulk transfer of data is
handled by some form of reliable multicast. This presents no prob-
lem to a well designed system, and allows for considerable flexi-
bility, for example by transporting the different media on different
transport addresses they can be assigned to a different QoS cate-
gories. It also allows for each media to be transported by a protocol
optimised for that class of application, in accordance with the prin-
ciples of application level framing [2].

Finally, it is our belief that the development of a common framing
protocol for interactive media is of importance. There exists a great
deal of common functionality between different application classes,
and it is desirable to leverage that into a single framework if possi-
ble.

7. ACKNOWLEDGMENTS
This work grew of out of discussion within the European Commis-
sion Telematics for Research Programme, project RE4007. In par-
ticular, we wish to thank Martin Mauve for many stimulating con-
versations on this subject. We also acknowledge the careful review
provided by Orion Hodson.

8. REFERENCES
[1] C. Castelluccia, C.-J. Villanueva, and T. Turletti. RMFP

Profile for SRM. Work in progress (Internet draft), March

1996.

[2] D. D. Clark and D. L. Tennenhouse. Architectural
considerations for a new generation of protocols. In
Proceedings ACM SIGCOMM’90, Philadelphia, September
1990.

[3] J. Crowcroft, L. Vicisano, Z. Wang, A. Ghosh, M. Fuchs,
C. Diot, and T. Turletti. RMFP: A reliable multicast framing
protocol, March 1998. Work in progress (Internet draft).

[4] B. DeCleene, S. Bhattacharaya, T. Friedman, M. Keaton,
J. Kurose, D. Rubenstein, and D. Towsley. Reliable multicast
framework (RMF): A white paper, March 1997.

[5] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang.
A reliable multicast framework for light-weight sessions and
applications level framing. IEEE/ACM Transactions on
Networking, December 1997.

[6] M. Handley and J. Crowcroft. Network text editor (NTE): A
scalable shared text editor for the Mbone. In Proceedings
ACM SIGCOMM’97, Cannes, France, September 1997.

[7] M. Handley and V. Jacobson. SDP: Session Description
Protocol. IETF Network Working Group, April 1998.
RFC2327.

[8] M. Handley and C. Perkins. Guidelines for writers of RTP
payload format specifications. IETF Network Working
Group, December 1999. RFC2736.

[9] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg.
SIP: Session Initiation Protocol. IETF Network Working
Group, March 1999. RFC2543.

[10] I. Kouvelas, V. Hardman, and A. Watson. Lip
synchronisation for use over the Internet: Analysis and
implementation. In Proceedings IEEE Globecom’96,
London, UK, November 1996.

[11] M. Mauve, V. Hilt, C. Kuhmünch, and W. Effelsberg. RTP/I -
An Application-Layer Protocol for the Transmission of
Interactive Media with Real-Time Characteristics. In
Proceedings IEEE Multimedia Systems, 1999.

[12] S. Raman and S. McCanne. Scalable data naming for
application level framing in reliable multicast. In
Proceedings ACM Multimedia’98, Bristol, UK, September
1998.

[13] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne.
Adaptive playout mechanisms for packetized audio
applications in wide-area networks. In Proceedings IEEE
INFOCOM, Toronto, Canada, June 1994.

[14] H. Schulzrinne. RTP profile for audio and video conferences
with minimal control. IETF Network Working Group,
January 1996. RFC1889.

[15] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A transport protocol for real-time applications. IETF
Network Working Group, January 1996. RFC1889.

