
System V Interface Definition,
Fourth Edition
Volume 2

FINAL COPY
June 15, 1995

File:

Page: 2

Copyright 1983, 1984, 1985, 1986,1987, 1988, 1995 Novell, Inc.
All Rights Reserved. No part of this publication may be reproduced, photocopied, stored
on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.
122 East 1700 South
Provo, UT 84606
U.S.A.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document,
Novell assumes no liability to any party for any loss of damage caused by errors or omissions or
by statements of any kind in the System V Interface Definition, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence,
accident, or any other cause. Novell further assumes no liability arising out of the application or
use of any product or system described herein; nor any liability for incidental or consequential
damages arising from the use of this document. Novell disclaims all warranties regarding the
information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

Novell makes no representation that the interconnection of products in the manner described
herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting or license to make, use or sell equipment constructed in accordance
with this description.

Novell reserves the right to make changes without further notice to any products herein to
improve reliability, function, or design.

TRADEMARKS

Ann Arbor is a trademark of Ann Arbor Terminals, Inc.
Beehive is a trademark of Beehive International.
Concept is a trademark of Human Designed Systems, Inc.
HP is a trademark of Hewlett–Packard Co.
LSI is a trademark of Lear Siegler, Inc.
Micro–Term, ACT and MIME are trademarks of Micro–Term, Inc.
OSF/Motif is a trademark of the Open Software Foundation
PostScript is a trademark of Adobe Systems.
Tektronix and Tektronix 4010 are registered trademarks of Tektronix, Inc.
TeleVideo is a registered trademark of TeleVideo Systems, Inc.
Teleray is a trademark of Research, Inc.
Teletype is a registered trademark of AT&T.
The X Window System is a trademark of MIT.
UNIX is a registered trademark in the USA and other countries, licensed
exclusively through X/Open Company, Ltd.
VT100 is a trademark of Digital Equipment Corporation.
X/Open is a trademark of X/Open Company Limited.

1

FINAL COPY
June 15, 1995

File:

Page: 4

Volume 2 Table of Contents

1 BASIC UTILITIES INTRODUCTION

2 BASIC COMMANDS AND UTILITIES

3 ADVANCED UTILITIES INTRODUCTION

4 ADVANCED COMMANDS AND UTILITIES

5 ADMINISTERED SYSTEMS INTRODUCTION

6 ADMINISTERED SYSTEMS COMMANDS
AND UTILITIES

Table of Contents i

FINAL COPY
June 15, 1995

File: MasterToc
svid

Page: 5

FINAL COPY
June 15, 1995

File:

Page: 6

Basic Utilities Introduction

The Basic Utilities Extension defines an environment that provides basic user-level
functionality. It includes the s h (shell) command interpreter, shell programming
aids, facilities for basic directory and file manipulation, and facilities for text file
editing and processing.

The Base System is prerequisite for support of the Basic Utilities Extension.

Summary of Commands and Utilities

The following commands and utilities are supported by the Basic Utilities Exten-
sion. Items marked with a (*) are Level 2, as defined in the General Introduction to
this volume. Items marked with a (‡) are internationalized and may reference
environment variables for localization information. [See envvar(BA_ENV)]. Items
marked with a (†) are new to this issue of the SVID.

a r ‡ d e f a d m ‡ k i l l ‡ p f m t *‡ s t r c h g
a w k ‡ d f ‡ l f m t *‡ p g *‡ s t r c o n f
b a n n e r ‡ d i f f 3 l i n e p r ‡ s u m ‡
b a s e n a m e ‡ d i f f ‡ l i s t u s e r s p r i n t f t a i l ‡
c a l d i r n a m e ‡ l n ‡ p s ‡ t e e ‡
c a l e n d a r d u ‡ l s ‡ p w d ‡ t e s t ‡
c a t ‡ e c h o m a i l ‡ r e d ‡ t o u c h ‡
c d ‡ e d ‡ m k d i r ‡ r m ‡ t r ‡
c h m o d ‡ e x p r ‡ m o r e r m a i l ‡ t r u e
c m p ‡ f a l s e m v ‡ r m d i r ‡ u m a s k ‡
c o l ‡ f i l e ‡ n a w k ‡ r s h ‡ u n a m e ‡
c o m m ‡ f i n d ‡ n l ‡ s e d ‡ u n c o m p r e s s
c o m p r e s s ‡ f m t n o h u p ‡ s h ‡ u n i q ‡
c p ‡ g e t t x t ‡ p a c k ‡ s l e e p ‡ u n p a c k ‡
c p i o ‡ g r e p ‡ p a g e s o r t ‡ w a i t ‡
c t a g s ‡ h e a d p a s t e ‡ s p e l l ‡ w c ‡
c u t ‡ i c o n v ‡ p c a t ‡ s p l i t ‡ z c a t
d a t e ‡ j s h ‡

Basic Utilities Introduction 1-1

FINAL COPY
June 15, 1995
File: bu_int.txt

svid

Page: 7

Organization of Technical Information

The ‘‘Basic Commands and Utilities’’ chapter provides manual page descriptions
of commands and utilities supported by this extension.

1-2 BASIC UTILITIES INTRODUCTION

FINAL COPY
June 15, 1995
File: bu_int.txt

svid

Page: 8

Basic Commands And Utilities

The following section contains the manual pages for the BU_CMD routines.

Basic Commands And Utilities 2-1

FINAL COPY
June 15, 1995

File: bu_cmd.cov
svid

Page: 9

FINAL COPY
June 15, 1995

File:

Page: 10

ar (BU_CMD) ar (BU_CMD)

new files are to be placed after a or before b or i posname. Otherwise new
files are placed at the end.

- t Print a table of contents of the archive file. If no names are given, all files in
the archive are listed. If names are given, only those files are listed.

- u Update older files. When used with the - r option, files within the archive
are replaced only if the corresponding file has a modification time that is at
least as new as the modification time of the file within the archive.

- x Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

The meanings of the other key arguments are as follows:

v Give a verbose file-by-file description of the making of a new archive file
from the old archive and the constituent files. When used with the - t
option, give a long listing of all information about the files. When used with
x, d, or r, print the name of the file preceding each extraction. When used
with p, write the file to standard output.

c Suppress the message that is produced by default when afile is created.

s Force the regeneration of the archive symbol table even if a r is not invoked
with a command which will modify the archive contents. This command is
useful to restore the archive symbol table after the s t r i p(SD_CMD) com-
mand has been used on the archive.

SEE ALSO
l d (SD_CMD), l o r d e r(SD_CMD), s t r i p(SD_CMD)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/ar
svid

Page: 12

awk (BU_CMD) awk (BU_CMD)

‘‘1’’ files

NAME
awk – pattern-directed scanning and processing language

SYNOPSIS
awk [-F fs] [prog] [inputfile ...]

awk [-F fs] [-f progfile] [inputfile ...]

DESCRIPTION
awk scans each input inputfile for lines that match any of a set of patterns specified
literally in prog or in a file specified as -f progfile. With each pattern there can be an
associated action that will be performed when a line of a inputfile matches the pat-
tern. Each line is matched against the pattern portion of every pattern-action state-
ment; the associated action is performed for each matched pattern. The inputfile
name - means the standard input. Any inputfile of the form var=value is treated as
an assignment, not a filename.

An input line is made up of fields separated by white space, or by the regular
expression assigned to special variable FS. The -F fs option defines the input field
separator as the regular expression fs.

The fields are denoted $1, $2, ...; $0 refers to the entire line.

A pattern-action statement has the form

pattern { action }

A missing { action } means print the line; a missing pattern always matches.
Pattern-action statements are separated by newlines or semicolons.

An action is a sequence of statements. A statement can be one of the following:
if(expression) statement [else statement]
while(expression) statement
for(expression ; expression ; expression) statement
for(var in array) statement
do statement while(expression)
break
continue
{ [statement ...] }
expression # commonly var = expression
print [expression-list] [> expression]
printf format [, expression-list] [> expression]
return [expression]
next # skip remaining patterns on this input line
delete array[expression] # delete an array element
exit [expression] # exit immediately; status is expression

Statements are terminated by semicolons, newlines or right braces. An empty
expression-list stands for $0. String constants are quoted " ", with the usual C
language escapes recognized within. Expressions take on string or numeric values
as appropriate, and are built using the operators + - * / % ˆ (exponentiation),
and concatenation (indicated by a blank). The operators ! ++ -- += -= *= /=
%= ˆ= > >= < <= == != ?: are also available in expressions. Variables may be
scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/awk
svid

Page: 13

awk (BU_CMD) awk (BU_CMD)

string. Array subscripts may be any string, not necessarily numeric; this allows for
a form of associative memory. Multiple subscripts such as [i,j,k] are permitted;
the constituents are concatenated, separated by the value of SUBSEP.

The print statement prints its arguments on the standard output (or on a file if
>file or >>file is present or on a pipe if cmd is present), separated by the current
output field separator, and terminated by the output record separator. file and cmd
may be literal names or parenthesized expressions; identical string values in dif-
ferent statements denote the same open file. The printf statement formats its
expression list according to the format [see printf(BA_LIB)]. The built-in function
close(expr) closes the file or pipe expr .

The customary functions exp, log, sqrt, sin, cos, and atan2 are built in. Other
built-in functions are:

length
the length in characters of its argument taken as a string, or of $0 if no argu-
ment.

rand random number on (0,1)

srand
sets the seed for rand

int truncates to an integer value

substr(s, m, n)
the n-character substring of s that begins at position m counted from 1.

index(s, t)
the position in s where the string t occurs, or 0 if it does not.

match(s, r)
the position in s where the regular expression r occurs, or 0 if it does not.
The variables RSTART and RLENGTH are set to the position and length of
the matched string.

split(s, a, fs)
splits the string s into array elements a[1] , a[2] , . . ., a[n] , and returns n . The
separation is done with the regular expression fs or with the field separator
FS if fs is not given.

sub(r, t, s)
substitutes t for the first occurrence of the regular expression r in the string
s . If s is not given, $0 is used. sub returns the number of replacements.

gsub same as sub except that all occurrences of the regular expression are
replaced; gsub returns the number of replacements.

sprintf(fmt, expr, ...)
the string resulting from formatting expr ... according to the printf format
fmt

system(cmd)
executes cmd and returns its exit status

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/awk
svid

Page: 14

awk (BU_CMD) awk (BU_CMD)

The ‘‘function’’ getline sets $0 to the next input record from the current input
file; getline <file sets $0 to the next record from file . getline x sets variable x
instead. Finally, cmd|getline pipes the output of cmd into getline; each call of
getline returns the next line of output from cmd . In all cases, getline returns 1
for a successful input, 0 for end of file, and –1 for an error.

Patterns are arbitrary Boolean combinations (with ! || &&) of regular expres-
sions and relational expressions. Regular expressions are as in egrep [see
egrep(AU_CMD)]. Isolated regular expressions in a pattern apply to the entire line.
Regular expressions may also occur in relational expressions, using the operators ˜
and !˜. /re/ is a constant regular expression; any string (constant or variable) may
be used as a regular expression, except in the position of an isolated regular expres-
sion in a pattern.

A pattern may consist of two patterns separated by a comma; in this case, the action
is performed for all lines from an occurrence of the first pattern though an
occurrence of the second.

A relational expression is one of the following:
expression matchop regular-expression
expression relop expression
expression in array-name
(expr,expr,...) in array-name

where a relop is any of the six relational operators in C, and a matchop is either ˜
(matches) or !˜ (does not match). A conditional is an arithmetic expression, a rela-
tional expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first
input line is read and after the last. BEGIN and END do not combine with other pat-
terns.

Variable names with special meanings:

FS regular expression used to separate fields; also settable by option -F
fs.

NF number of fields in the current record.

NR ordinal number of the current record.

FNR ordinal number of the current record in the current file.

FILENAME the name of the current input file.

RS input record separator (default newline).

OFS output field separator (default blank).

ORS output record separator (default newline).

OFMT output format for numbers (default %.6g).

SUBSEP separates multiple subscripts (default 034).

ARGC argument count, assignable.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/awk
svid

Page: 15

awk (BU_CMD) awk (BU_CMD)

ARGV argument array, assignable; non-null members are taken as filenames.

Functions may be defined (at the position of a pattern-action statement) thus:

function foo(a, b, c) { ...; return x }

Parameters are passed by value if scalar and by reference if array name; functions
may be called recursively. Parameters are local to the function; all other variables
are global.

EXAMPLE
length > 72

Print lines longer than 72 characters.

{ print $2, $1 }
Print first two fields in opposite order.

BEGIN { FS = ",[\t]*|[\t]+" }
{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs.

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Add up first column, print sum and average.

/start/, /stop/
Print all lines between start/stop pairs.

BEGIN { # Simulate echo(1)
for (i = 1; i < ARGC; i++) printf "%s ", ARGV[i]
printf "\n"
exit }

SEE ALSO
egrep(AU_CMD), lex(SD_CMD), printf(BA_LIB), sed(BU_CMD).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: bu_cmd/awk
svid

Page: 16

banner (BU_CMD) banner (BU_CMD)

NAME
banner – make large letters

SYNOPSIS
banner strings

DESCRIPTION
The command banner prints each argument in large letters (across the page) on the
standard output, putting each argument on a separate line. Spaces can be included
in an argument by surrounding it with quotes. The maximum number of characters
that can be accommodated in a line is implementation dependent; excess characters
are simply ignored.

ERRORS
Non-ASCII characters specified in strings may not be output correctly.

SEE ALSO
echo(BU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/banner
svid

Page: 17

basename (BU_CMD) basename (BU_CMD)

NAME
b a s e n a m e, d i r n a m e – deliver portions of path names

SYNOPSIS
b a s e n a m e string [suffix]

d i r n a m e string

DESCRIPTION
b a s e n a m e deletes any prefix ending in / and the suffix (if present in string) from
string, and prints the result on the standard output. It is normally used inside sub-
stitution marks (‘ ‘) within shell procedures. The suffix is a pattern as defined on
the e d(BU_CMD) manual page.

d i r n a m e delivers all but the last level of the path name in string.

The L C _ C T Y P E environment variable defines the codesets used in the pathname [see
L A N G on e n v v a r(BA_ENV)].

EXAMPLES
The following example, invoked with the argument / h o m e / s m s / p e r s o n a l / m a i l
sets the environment variable N A M E to the file named m a i l and the environment
variable M Y M A I L P A T H to the string / h o m e / s m s / p e r s o n a l.

N A M E = ‘ b a s e n a m e $ H O M E / p e r s o n a l / m a i l ‘
M Y M A I L P A T H = ‘ d i r n a m e $ H O M E / p e r s o n a l / m a i l ‘

This shell procedure, invoked with the argument / u s r / s r c / b i n / c a t . c, compiles
the named file and moves the output to c a t in the current directory:

c c $ 1
m v a . o u t ` b a s e n a m e $ 1 . c ̀

SEE ALSO
s h(BU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/basename
svid

Page: 18

cal (BU_CMD) cal (BU_CMD)

NAME
c a l – print calendar

SYNOPSIS
c a l [[month] year]

DESCRIPTION
c a l prints a calendar for the specified year. If a month is also specified, a calendar
just for that month is printed. If neither is specified, a calendar for the present
month is printed. The month is a number between 1 and 12. The year can be
between 1 and 9999. The calendar produced is in the form of a Gregorian calendar
(as used in Western Europe and the United States), but the month and the abbrevi-
ated day names are taken from the locale given by the environment variable
L C _ T I M E.

c a l examines the environment variables L C _ T I M E to determine the names of the
months and days, and L C _ C T Y P E for how to print the characters the names are com-
posed from. If the abbreviated day name in the locale entry is longer than two
screen columns in width, it is truncated to two columns.

LEVEL
Level 1.

NOTICES
The command c a l 8 3 refers to the year 83, not 1983.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/cal
svid

Page: 19

calendar (BU_CMD) calendar (BU_CMD)

NAME
c a l e n d a r – reminder service

SYNOPSIS
c a l e n d a r

DESCRIPTION
c a l e n d a r consults the file c a l e n d a r in the current directory and prints out lines
that contain today’s or tomorrow’s date anywhere in the line. Most reasonable
month-day dates such as A u g . 2 4, a u g u s t 2 4, 8 / 2 4, and so on, are recognized, but
not 2 4 A u g u s t or 2 4 / 8. On weekends ‘‘tomorrow’’ extends through Monday.
c a l e n d a r can be invoked regularly by using the c r o n t a b(AU_CMD) or
a t(AU_CMD) commands.

If the environment variable D A T E M S K is set, c a l e n d a r will use its value as the full
path name of a template file containing format strings. The strings consist of field
descriptors and text characters and are used to provide a richer set of allowable
date formats in different languages by appropriate settings of the environment vari-
able L C _ A L L, or L C _ T I M E. variables L C _ A L L, L C _ T I M E, and L A N G [see
e n v v a r(BA_ENV)]. The L C _ C T Y P E environment variable is also examined for
details of the codesets used in the format strings. [See d a t e(BU_CMD) for the
allowable list of field descriptors.]

EXAMPLES
The following example shows the possible contents of a template:

% B % e t h o f t h e y e a r % Y

% B represents the full month name, % e the day of month and % Y the year (4 digits).

If D A T E M S K is set to this template, the following c a l e n d a r file would be valid:

M a r c h 7 t h o f t h e y e a r 1 9 8 9 < R e m i n d e r >

SEE ALSO
a t(AU_CMD), c r o n(AU_CMD), c r o n t a b(AU_CMD), d a t e(BU_CMD),
m a i l(BU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/calendar
svid

Page: 20

cat (BU_CMD) cat (BU_CMD)

NAME
c a t – concatenate and print files

SYNOPSIS
c a t [- s u v] [file . . .]

DESCRIPTION
c a t reads each file in sequence and writes it on the standard output. Thus

c a t f i l e

prints the contents of f i l e on your terminal, and

c a t f i l e 1 f i l e 2 > f i l e 3

concatenates f i l e 1 and f i l e 2, and writes the results in f i l e 3. If no input file is
given, or if the argument - is encountered, c a t reads from the standard input. c a t
processes supplementary code set characters according to the locale specified in the
L C _ C T Y P E environment variable [see L A N G on e n v v a r(BA_ENV)].

The following options apply to c a t:

- u The output is not buffered. (The default is buffered output.)

- s c a t is silent about non-existent files.

- v Causes non-printing characters (with the exception of tabs, new-lines, and
form-feeds) to be printed visibly. ASCII control characters (octal 000 – 037)
are printed as ˆ n, where n is the corresponding ASCII character in the
range octal 100 – 137 (@, A, B, C, . . ., X, Y, Z, [, \,], ˆ, and _); the DEL char-
acter (octal 0177) is printed ˆ ?. Other non-printable characters are printed
as M - x, where x is the ASCII character specified by the low-order seven
bits. All supplementary code set characters are considered to be printable.

Errors
c a t returns the following values:

0 If all input files were output successfully.
> 0 If an error occurred while accessing one or more input files.

SEE ALSO
c p(BU_CMD), p g(BU_CMD), p r(BU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/cat
svid

Page: 21

cd (BU_CMD) cd (BU_CMD)

NAME
c d – change working directory

SYNOPSIS
c d [directory]

DESCRIPTION
If directory is not specified, the value of shell parameter $ H O M E is used as the new
working directory. If directory specifies a complete path starting with /, ., or . .,
directory becomes the new working directory. If neither case applies, c d tries to find
the designated directory relative to one of the paths specified by the $ C D P A T H shell
variable. $ C D P A T H has the same syntax as, and similar semantics to, the $ P A T H shell
variable. c d must have execute (search) permission in directory.

Because a new process is created to execute each command, c d would be ineffective
if it were written as a normal command; therefore, it is recognized by and is internal
to the shell.

SEE ALSO
c h d i r(BA_OS), p w d(BU_CMD), s h(BU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/cd
svid

Page: 22

chmod (BU_CMD) chmod (BU_CMD)

NAME
c h m o d – change file mode

SYNOPSIS
c h m o d [- R] mode file . . .

c h m o d [- R] [u g o a] { + | - | = } [r w x l s t u g o] file . . .

DESCRIPTION
c h m o d changes or assigns the mode of a file. The mode of a file specifies its permis-
sions and other attributes. The mode may be absolute or symbolic.

An absolute mode is specified using octal numbers:

c h m o d nnnn file . . .

where n is a number from 0 to 7. An absolute mode is constructed from the OR of
any of the following modes:

4000 Set user ID on execution.
20#0 Set group ID on execution if # is 7, 5, 3, or 1.

Enable mandatory locking if # is 6, 4, 2, or 0.
This bit is ignored if the file is a directory; it may be set or
cleared only using the symbolic mode.

1000 Turn on sticky bit [see c h m o d(BA_OS)].
0400 Allow read by owner.
0200 Allow write by owner.
0100 Allow execute (search in directory) by owner.
0070 Allow read, write, and execute (search) by group.
0007 Allow read, write, and execute (search) by others.

On execution, the s e t u i d and s e t g i d modes affect interpreter scripts only if the
first line of those scripts is

! pathname [arg]

where pathname is the path of a command interpreter, such as s h. [See
e x e c(BA_OS).]

A symbolic mode is specified in the following format:

c h m o d [who] operator [permission(s)] file . . .

who is zero or more of the characters u, g, o, and a specifying whose permissions are
to be changed or assigned:

u user’s permissions
g group’s permissions
o others’ permissions
a all permissions (user, group, and other)

If who is omitted, it defaults to a.

operator is one of +, −, or =, signifying how permissions are to be changed:

+ Add permissions.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/chmod
svid

Page: 23

chmod (BU_CMD) chmod (BU_CMD)

- Take away permissions.
= Assign permissions absolutely.

Unlike other symbolic operations, = has an absolute effect in that it resets all other
bits. Omitting permission(s) is useful only with = to take away all permissions.

permission(s) is any compatible combination of the following letters:

r read permission
w write permission
x execute permission
X conditional execute permission (see below)
s user or group set-ID
t sticky bit
l mandatory locking
u , g , o indicate that permission is to be taken from the current user,

group or other mode respectively.

The X represents the execute permission of a file only if the file is a directory, or if
the current (unmodified) file permissions have at least one execute bit present. If
neither of these conditions are true, it will be ignored.

Permissions to a file may vary depending on your user identification number (UID)
or group identification number (GID). Permissions are described in three sequences
each having three characters:

User Group Other

r w x r w x r w x

This example (user, group, and others all have permission to read, write, and exe-
cute a given file) demonstrates two categories for granting permissions: the access
class and the permissions themselves.

Multiple symbolic modes separated by commas may be given, though no spaces
may intervene between these modes. Operations are performed in the order given.
Multiple symbolic letters following a single operator cause the corresponding
operations to be performed simultaneously.

The letter s is only meaningful with u or g, and t only works with u.

Mandatory file and record locking (l) refers to a file’s ability to have its reading or
writing permissions locked while a program is accessing that file. When locking is
requested, the group ID of the user must be the same as the group ID of the file. It
is not possible to permit group execution and enable a file to be locked on execution
at the same time. In addition, it is not possible to turn on the set-group-ID bit and
enable a file to be locked on execution at the same time. The following examples,
therefore, are invalid and elicit error messages:

c h m o d g + x , + l file
c h m o d g + s , + l file

Only the owner of a file or directory (or a privileged user) may change that file’s or
directory’s mode. Only a privileged user may set the sticky bit on a non-directory
file. Otherwise, c h m o d will mask the sticky-bit but will not return an error. In order
to turn on a file’s set-group-ID bit, your own group ID must correspond to the file’s
and group execution must be set.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/chmod
svid

Page: 24

chmod (BU_CMD) chmod (BU_CMD)

The - R option recursively descends through directory arguments, setting the mode
for each file as described above. If a symbolic link is encountered whose target is a
directory, the permission of the directory is changed. That directory’s contents are
not recursively traversed.

USAGE
Deny execute permission to everyone:

c h m o d a - x file

Allow read permission to everyone:

c h m o d 4 4 4 file

Make a file readable and writable by the group and others:

c h m o d g o + r w file
c h m o d 0 6 6 file

Cause a file to be locked during access:

c h m o d + l file

Allow everyone to read, write, and execute the file and turn on the set group-ID.

c h m o d = r w x , g + s file
c h m o d 2 7 7 7 file

Absolute changes don’t work for the set-group-ID bit of a directory. You must use
g + s or g - s.

SEE ALSO
c h m o d(BA_OS), g e t a c l(ES_CMD), l s(BU_CMD)

LEVEL
Level 1. The octal mode format of mode is Level 2.

NOTICES
c h m o d permits you to produce useless modes so long as they are not illegal (for
example, making a text file executable). c h m o d does not check the file type to see if
mandatory locking is available.

Normally, the effective user and group ID of a process is the user and group ID of
the invoking process. If the set-user-ID (set-group-ID) on execution mode bit of an
executable file is set, the effective user (group) ID of the process, when the file is
invoked, is the owner (group) ID of the executable file. The real user ID and real
group ID of the new process remain the same as those of the calling process.

Setting the ‘‘set-group-ID on execution’’ bit on a directory (via the g + s option)
means that any files subsequently created in that directory will automatically be
given the group ID of that directory.

Neither set-user-ID nor set-group-ID mode bits affect shell script privileges.

When symbolic links are created by l n, they are made with permissions set to read,
write, and execute for owner, group, and world (7 7 7). A c h m o d applied to a sym-
bolic link acts on the target of the link, not on the link itself.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/chmod
svid

Page: 25

chmod (BU_CMD) chmod (BU_CMD)

The symbolic modes should be used in preference to the octal representation, since
the octal representation may not be supported in future releases.

If who is not specified, POSIX.2 requires use of u m a s k. Use the P O S I X 2 environmen-
tal variable to get POSIX.2 behavior. The POSIX.2 behavior is inconsistent with
existing System V behavior.

Page 4

FINAL COPY
June 15, 1995

File: bu_cmd/chmod
svid

Page: 26

cmp (BU_CMD) cmp (BU_CMD)

NAME
c m p – compare two files

SYNOPSIS
c m p [- l] [- s] file1 file2 [skip1 [skip2]]

DESCRIPTION
The two files are compared. (If file2 is -, the standard input is used.) Under default
options, c m p makes no comment if the files are the same; if they differ, it announces
the byte and line number at which the difference occurred. If one file is an initial
subsequence of the other, that fact is noted. skip1 and skip2 are initial byte offsets
into file1 and file2 respectively, and may be either octal or decimal; a leading respec-
tively, and may be either octal or decimal; the form of the number is determined by
the environment variable L C _ N U M E R I C (in the C locale, a leading 0 denotes an octal
number). [see L A N G on e n v v a r(BA_ENV)]. 0 denotes octal.

Options
- l Print the byte number (decimal) and the differing bytes (octal) for each

difference.

- s Print nothing for differing files; return codes only.

Errors
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessi-
ble or missing argument.

SEE ALSO
c o m m (BU_CMD), d i f f (BU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/cmp
svid

Page: 27

col (BU_CMD) col (BU_CMD)

NAME
col – filter reverse line-feeds

SYNOPSIS
col [-bfpx]

DESCRIPTION
The command col reads from the standard input and writes to the standard out-
put. It performs the line overlays implied by reverse line feeds, and by forward and
reverse half-line feeds.

If the –b option is given, col assumes that the output device in use is not capable
of backspacing. In this case, if two or more characters are to appear in the same
place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not emit them
on output. Instead, text that would appear between lines is moved to the next
lower full-line boundary. This treatment can be suppressed by the –f (fine)
option; in this case, the output from col may contain forward half-line feeds, but
will still never contain either kind of reverse line motion.

Unless the –x option is given, col will convert white space to tabs on output
wherever possible to shorten printing time.

The ASCII control characters SO and SI are assumed by col to start and end text
in an alternate character set. The character set to which each input character
belongs is remembered, and on output SI and SO characters are generated as
appropriate to ensure that each character is printed in the correct character set.

On input, the only control characters accepted are space, backspace, tab, return,
newline, SI, SO, VT, reverse line feed, forward half-line feed, and reverse half-line
feed. The VT character is an alternate form of full reverse line-feed, included for
compatibility with some earlier programs of this type. All other non-printing char-
acters are ignored.

The ASCII codes for the control functions and line-motion sequences mentioned
above are given in the table below. ESC stands for the ASCII "escape" character,
with the octal code 033; ESC-x means a sequence of two characters, ESC followed
by the character x.

reverse line feed ESC-7
reverse half-line feed ESC-8
forward half-line feed ESC-9
vertical tab (VT) 013
start-of-text (SO) 016
end-of-text (SI) 017

Normally, col will remove any escape sequences found in its input that are
unknown to it; the –p option may be used to force these to be passed through
unchanged. The use of this option is discouraged unless the user is aware of the
consequences.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/col
svid

Page: 28

col (BU_CMD) col (BU_CMD)

USAGE
General.

Local vertical motions that would result in backing up past the first line of the docu-
ment are ignored. As a result, the first line must not have any superscripts.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/col
svid

Page: 29

comm (BU_CMD) comm (BU_CMD)

NAME
c o m m – select or reject lines common to two sorted files

SYNOPSIS
c o m m [- 1 2 3] file file2

DESCRIPTION
c o m m reads file1 and file2, which should be ordered in the current locale’s collating
sequence [see s o r t(BU_CMD)], and produces a three-column output: lines only in
file1; lines only in file2; and lines in both files. The file name - means the standard
input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus c o m m - 1 2
prints only the lines common to the two files; c o m m - 2 3 prints only lines in the first
file but not in the second; c o m m - 1 2 3 prints nothing.

The lines are compared using the current locale’s collation sequence, set by the
environment variable L C _ C O L L A T E. [see L A N G in e n v v a r(BA_ENV) for the locale
environment variables, and their effects on collation.] Note that if the files were
s o r ted with a different collation sequence from each other, or from that under
which c o m m is executed, the results will be meaningless.

The L C _ C T Y P E environment variable determines the codesets used in the command
line arguments and the files. [see L A N G on e n v v a r(BA_ENV)]. Note that if this vari-
able differs when the files are sorted, or when c o m m is executed, the output of c o m m
will be meaningless. Note also, that if L C _ C T Y P E and L C _ C O L L A T E are set to dif-
ferent values, meaningful results cannot be guaranteed.

SEE ALSO
c m p (BU_CMD), d i f f (BU_CMD), j o i n (AU_CMD), s o r t (BU_CMD), u n i q
(BU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/comm
svid

Page: 30

compress (BU_CMD) compress (BU_CMD)

NAME
c o m p r e s s, u n c o m p r e s s, z c a t – compress data for storage, uncompress and display
compressed files

SYNOPSIS
c o m p r e s s [- f c v] [- b bits] file...

u n c o m p r e s s [- c] file...

z c a t file...

DESCRIPTION
c o m p r e s s takes a file and compresses it to the smallest possible size, creates a
compressed output file, and removes the original file unless the - c option is
present. Compression is achieved by encoding common strings within the file.
u n c o m p r e s s restores a previously compressed file to its uncompressed state and
removes the compressed version. z c a t uncompresses and displays a file on the
standard output.

If no file is specified on the command line, input is taken from the standard input
and the output is directed to the standard output. Output defaults to a file with the
same filename as the input file with the suffix . Z or it can be directed through the
standard output. The output files have the same permissions and ownership as the
corresponding input files or the user’s standard permissions if output is directed
through the standard output.

If no space is saved by compression, the output file is not written unless the - F flag
is present on the command line.

Options
The following options are available from the command line:

- b bits Specifies the maximum number of bits to use in encoding.

– c Writes output on the standard output and does not remove original file.

- f Forces output file to be written, even if one already exists, and even if no
space is saved by compressing.

- v Prints the name of the file being compressed and the percentage of
compression achieved. With u n c o m p r e s s, the name of the uncompressed
file is printed.

SEE ALSO
a r (BU_CMD), c a t (BU_CMD), p a c k (BU_CMD), t a r (AU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/compress
svid

Page: 31

cp (BU_CMD) cp (BU_CMD)

NAME
c p – copy files

SYNOPSIS
c p [- r] [- i] [- e extent_opt] file1 [file2 . . .] target

DESCRIPTION
The c p command copies filen to target. filen and target may not have the same name.
[Care must be taken when using s h(BU_CMD) metacharacters.] If target is not a
directory, only one file may be specified before it; if it is a directory, more than one
file may be specified. If target does not exist, c p creates a file named target. If target
exists and is not a directory, its contents are overwritten. If target is a directory, the
file(s) are copied to that directory.

The following options are recognized:

- i c p will prompt for confirmation whenever the copy would overwrite an
existing target. An affirmative response means that the copy should proceed
[the affirmative response is locale dependent: y in the C locale, see L A N G on
e n v v a r(BA_ENV)]. Any other answer prevents c p from overwriting target.
The - i option remains in effect even if the standard input is not a terminal.

- f c p will attempt to overwrite an existing target. If a file descriptor for target
cannot be obtained, c p will attempt to unlink target and proceed. See
NOTICES below.

- r (if filen is a directory) Copy the directory and all its files, including any sub-
directories and their files. (If it exists, target must be a directory.) - r is mul-
tithreaded and uses the enhanced n f t w (walk a file tree). See NOTICES
below.

- R Copy a file hierarchy in the same fashion as - r. However, instead of copy-
ing special files (device files, FIFOs, or symbolic links) by copying their con-
tents, create a target file with the same file type as filen. Normal files are
copied in the same fashion as for - r. - R is multithreaded and uses the
enhanced n f t w (walk a file tree). See NOTICES below.

- e extent_opt
Specify how to handle a file that has extent attribute information. Extent
attributes could include reserved space, a fixed extent size, and extent align-
ment. It may not be possible to preserve the information if the destination
file system does not support extent attributes, has a different block size than
the source file system, or lacks free extents appropriate to satisfy the extent
attribute requirements. Valid values for extent_opt are:

w a r n Issue a warning message if extent attribute information cannot
be kept (default).

f o r c e Fail the copy if extent attribute information cannot be kept.

i g n o r e Ignore extent attribute information entirely.

If filen is a file and target is a link to another file with links, the other links remain
and target becomes a new file.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/cp
svid

Page: 32

cp (BU_CMD) cp (BU_CMD)

SEE ALSO
c h m o d(BU_CMD), c p i o(BU_CMD), r m(BU_CMD)

LEVEL
Level 1.

NOTICES
A - - permits the user to mark the end of any command line options explicitly, thus
allowing c p to recognize filename arguments that begin with a -. If a - - and a -
both appear on the same command line, the second will be interpreted as a
filename.

c p without the - R options hangs if file is a pipe.

It is not considered an error if more than one of the - f or - i options are specified.
The last option specified will determine c p’s behavior.

The algorithm used to efficiently distribute the tree walking among various threads
may affect the order in which files and directories are copied. This order may not
match the hierarchy of the original input tree. The result, however, will match the
source. Issuing a BREAK to the command while is is executing will yield a partially
completed tree where files and directories may appear to have been copied arbi-
trarily. No particular order is guaranteed. Because they are not dependent on any
particular order for populating the tree, c p - r and c p - R execute much more
quickly than previous versions.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/cp
svid

Page: 33

cpio (BU_CMD) cpio (BU_CMD)

NAME
cpio – copy file archives in and out

SYNOPSIS
cpio -o[acBLv] [-C size] [-H header]

cpio -i[Bcdkmrtuvf] [-C size] [-H header] [-R id] [patterns]

cpio -p[adlLmuv] [-R id] directory

DESCRIPTION
The command cpio –o (copy out) reads the standard input to obtain a list of path-
names and copies those files onto the standard output in archive form, including
pathname and status information.

The command cpio –i (copy in) extracts files from the standard input, which is
assumed to be the product of a previous cpio –o. Only files with names that
match patterns are selected. The arguments patterns are simple regular expressions
given in the name-generating notation of the shell [see sh(BU_CMD)]. In patterns,
meta-characters ?, *, and [. . .] match the / character and a backslash (\) is
used as an escape character within the pattern. Multiple patterns may be specified
and if no patterns are specified, the default for patterns is * (i.e., select all files).
When cpio is invoked from the shell, each pattern should be quoted; otherwise the
shell may expand the pattern to the names of files in the current directory. The
extracted files are conditionally created and copied into the current directory tree
based on the options described below. The permissions of the files are those of the
previous cpio –o. cpio –i is affected by the umask for non-priviledged
users. The owner and group of the files are those of the current user unless the user
has appropriate privileges, which causes cpio to retain the owner and group of
the files of the previous cpio –o.

The command cpio –p (pass) copies in and out in a single operation. Destination
pathnames are interpreted relative to the destination directory .

The meanings of the available options are:

–a Reset access times of input files after they have been copied. [When option
–l (see below) is also specified, access times of the linked files are not reset.]

–B Block input/output 5120 bytes to the record. (This does not apply to the –p
option; it is meaningful only with data directed to or from character special
files.)

–d Creates directories as needed.

–c Write header information in ASCII character form for portability.

–r Rename files interactively. If the user types a null line, the file is skipped. If
the user types a period, the original pathname is retained.

–t Print a table of contents of the input. No files are created.

–u Copy unconditionally (normally, an older file will not replace a newer file
with the same name).

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/cpio
svid

Page: 34

cpio (BU_CMD) cpio (BU_CMD)

Example 1:

ls  cpio –oc >/rsave

Example 2:

cd $HOME/olddir
find . –depth –print  cpio –pdl $HOME/newdir

SEE ALSO
ar(BU_CMD), find(BU_CMD), ls(BU_CMD), sh(BU_CMD), tar(AU_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/cpio
svid

Page: 36

ctags (BU_CMD) ctags (BU_CMD)

NAME
ctags – create a tags file for use with ex and vi

SYNOPSIS
ctags [–aBFtuwx] [–f tagsfile] filename ...

DESCRIPTION
The ctags command makes a tags file for ex [see ex(AU_CMD)] from the
specified C, Pascal, FORTRAN, yacc [see yacc(SD_CMD)], and lex [see
lex(SD_CMD)], sources. A tags file gives the locations of specified objects (in this
case functions and type definitions) in a group of files. Each entry in the tags is
composed of three fields separated by white space, the object name, the the file in
which it is defined, and an address specification. Function definitions are located
using regular expression patterns, type definitions, using a line number.

ex and vi [see vi(AU_CMD)] use entries in the tags file to locate and display a
definition.

Normally ctags places the tag descriptions in a file called tags; this may be
overridden with the –f option. By default, the tags file is sorted in lexicographic
(ASCII) order, and ex expects its entries to be so sorted.

Files with names ending in .c or .h are assumed to be C source files and are
searched for C routine and macro definitions. Files with names ending in .y are
assumed to be yacc source files. Files with names ending in .l are assumed to be
lex files. Others are first examined to see if they contain any Pascal or FORTRAN
routine definitions; if not, they are processed again looking for C definitions.

The tag for the main() function is treated specially in C programs. The tag
formed is created by prepending M to filename, with a trailing .c removed, if any,
and leading pathname components also removed. This makes use of ctags practi-
cal in directories with more than one program.

The options have the following meanings:

–a Append output to an existing tags file. The resulting file is not sorted. To
preserve the order, use –u instead.

–B Use backward searching patterns (? ... ?).

–F Use forward searching patterns (/ ... /) (default).

–t Create tags for typedefs.

–u Update the specified files in the tags file. Entries that refer to them are
deleted and then replaced in lexicographic order. Beware: this option is
implemented in a way which is rather slow; it may be faster simply to
rebuild the tags file.

–w Suppress warning diagnostics.

–x Produce a list of object names, the line number and file name on which each
is defined, as well as the text of that line and prints this on the standard out-
put. This is a simple index which can be printed out as an off-line readable
function index.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/ctags
svid

Page: 37

ctags (BU_CMD) ctags (BU_CMD)

FILES
tags output tags file

USAGE
End-user.

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is
done is a very simpleminded way. No attempt is made to deal with block structure;
if there are two Pascal procedures in different blocks with the same name, ctags
will only make an entry for one.

ctags does not know about #ifdefs .

ctags should know about Pascal types. It relies on the input being well formed to
detect typedefs. Use of –tx shows only the last line of typedefs.

SEE ALSO
ex(AU_CMD), find(BU_CMD), vi(AU_CMD), lex(SD_CMD, yacc(SD_CMD)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/ctags
svid

Page: 38

cut (BU_CMD) cut (BU_CMD)

When list is in the form low-, each element in list is treated as described
for low- high above, with high set to the number of bytes in the current
line, excluding the terminating n e w l i n e character.

When list is in the form - high, each element in list is treated like low-
high above, with low set to 1.

When list is given as a single number, num, each element is treated like
low- high above with low and high set to num.

- c list The fields specified in list represent characters. (This differs from - b
because a single character may be many bytes.)

- f list The fields specified in list represent fields assumed to be separated in the
file by a delimiter character (see - d). Lines with no field delimiters will
be passed through intact (useful for table subheadings), unless - s is
specified. Output fields are separated by a single occurrence of the
delimiter character.

- d char The field delimiter used by - f is c h a r. The default is tab. Space or other
characters with special meaning to the shell must be quoted. char may
be a supplementary code set character.

- s Suppresses lines with no delimiter characters when used with the - f
option.

USAGE
Any of the following strings are legal lists: ‘‘1 , 4 , 7’’ (copies fields 1, 4 and 7 only);
‘‘1 - 3 8’’ (copies fields 1, 2, 3, and 8 only); ‘‘- 5 , 1 0’’ (short for ‘‘1 - 5 , 1 0’’); or ‘‘3 -’’
(short for third through last field). Note that b l a n k separated lists need to be sur-
rounded by quotes on the command line.

The following are some useful examples:

c u t - d : - f 1 , 5 / e t c / p a s s w d mapping of user login IDs to names

SEE ALSO
g r e p(BU_CMD), p a s t e(BU_CMD)

LEVEL
Level 1.

NOTICES
Use g r e p(BU_CMD) to make horizontal ‘‘cuts’’ (by context) through a file, or
p a s t e(1) to put files together column-wise (that is, horizontally). To reorder
columns in a table, use c u t and p a s t e.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/cut
svid

Page: 40

date (BU_CMD) date (BU_CMD)

NAME
d a t e – print and set the date

SYNOPSIS
d a t e [- u] [+format]

d a t e [- u] [mmddHHMM[[cc]yy]]

d a t e [- a [-]sss.fff]

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date and time
are printed. Otherwise, the current date is set if the user is a privilege user.

Supplementary code set characters in + format (see below) are recognized and
displayed according to the locale specified in the L C _ C T Y P E environment variable
[see L A N G on e n v v a r(BA_ENV)]. Month and weekday names are recognized
according to the locale specified in the L C _ T I M E environment variable, as described
below.

- a [-]sss.fff Slowly adjust the time by sss.fff seconds (fff represents fractions of
a second). This adjustment can be positive or negative. The
system’s clock will be sped up or slowed down until it has drifted
by the number of seconds specified.

- u Display (or set) the date in Coordinated Universal Time or
Greenwich Mean Time, bypassing the normal conversion to (or
from) local time.

mm is the month number

dd is the day number in the month

HH is the hour number (24 hour system)

MM is the minute number

cc is the century minus one

yy is the last 2 digits of the year number

The month, day, year, and century may be omitted; the current
values are supplied as defaults. For example:

d a t e 1 0 0 8 0 0 4 5

sets the date to Oct 8, 12:45 AM. The current year is the default
because no year is supplied. The system operates in GMT. d a t e
takes care of the conversion to and from local standard and day-
light time. Only a privileged user may change the date. After suc-
cessfully setting the date and time, d a t e displays the new date
according to the default format. The d a t e command uses T Z to
determine the correct time zone information [see L A N G on
e n v v a r(BA_ENV)].

+ format If the argument begins with +, the output of d a t e is under the con-
trol of the user. Each Field Descriptor is preceded by % and is
replaced in the output by its corresponding value. A single % is
encoded by % %. All other characters are copied to the output

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/date
svid

Page: 41

date (BU_CMD) date (BU_CMD)

without change. The string is always terminated with a new-line
character. If the argument contains embedded blanks it must be
quoted (see the EXAMPLE section). Supplementary code set char-
acters may be used in format.

As noted, month and weekday names are recognized according to the locale
specified in the L C _ T I M E environment variable [see L A N G on e n v v a r(BA_ENV)].
The names are taken from a file whose format is specified in s t r f t i m e(BA_LIB).
This file also defines country-specific date and time formats such as % c, which
specifies the default date format. The following form is the default for % c:

% a % b % e % T % Z % Y

For example: Fri Dec 23 10:10:42 EST 1992

Field Descriptors (must be preceded by a %):

a abbreviated weekday name
A full weekday name
b abbreviated month name
B full month name
c country-specific date and time format
C century as a decimal integer (equivalent to the year divided by 100)
d day of month – 01 to 31
D date as % m / % d / % y
e day of month – 1 to 31 (single digits are preceded by a blank)
h abbreviated month name (alias for % b)
H hour – 00 to 23
I hour – 01 to 12
j day of year – 001 to 366
m month of year – 01 to 12
M minute – 00 to 59
n insert a new-line character
p string containing ante-meridian or post-meridian indicator (by default,

AM or PM)
r time as % I : % M : % S % p
R time as % H : % M
S second – 00 to 61, allows for leap seconds
t insert a tab character
T time as % H : % M : % S
U week number of year (Sunday as the first day of the week) – 00 to 53
w day of week – Sunday = 0
W week number of year (Monday as the first day of the week) – 00 to 53
x country-specific date format
X country-specific time format
y year within century – 00 to 99
Y year as ccyy (4 digits)
Z abbreviated timezone name

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/date
svid

Page: 42

date (BU_CMD) date (BU_CMD)

Some of the field descriptors above can be modified by prepending them with an E
or O, resulting in the following descriptors.

Modified Field Descriptors (must be preceded by a %):

E c Alternate appropriate date and time representation.
E C Name of the base year (period) in locale’s alternate representation.
E x Locale’s alternate date representation.
E y Offset from %EC (year only) in locale’s alternate representation.
E Y Full alternate year representation.
O d Day of month using locale’s alternate numeric symbols.
O e Day of month using locale’s alternate numeric symbols.
O H Hour (24 hr clock) using locale’s alternate numeric symbols.
O I Hour (12 hr clock) using locale’s alternate numeric symbols.
O m Month using locale’s alternate numeric symbols.
O M Minutes using locale’s alternate numeric symbols.
O S Seconds using locale’s alternate numeric symbols.
O U Week number of year (Sunday is 1st day of week) using locale’s alternate

numeric symbols.
O w Week day as number in locale’s alternate representation (Sunday = 0).
O W Week number of year (Monday is 1st day of week) using locale’s alternate

numeric symbols.
O y Year (offset from %C) in alternate representation.

USAGE
Examples

The command

d a t e ’ + D A T E : % m / % d / % y % n T I M E : % H : % M : % S ’

generates as output:

D A T E : 0 8 / 0 1 / 7 6
T I M E : 1 4 : 4 5 : 0 5

SEE ALSO
e n v v a r (BA_ENV), s t r f t i m e (BA_LIB)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/date
svid

Page: 43

defadm (BU_CMD) defadm (BU_CMD)

NAME
defadm – display/modify default values

SYNOPSIS
d e f a d m
d e f a d m [filename [name [=value]] [name [=value]] [. . .]]
defadm [– d filename name [name] [. . .]]

DESCRIPTION
The command d e f a d m prints, modifies, adds, or deletes system default values con-
tained in the file given by filename; where filename is a file in the / e t c / d e f a u l t
directory.

If d e f a d m is executed with no arguments, it lists the files in the / e t c / d e f a u l t
directory.

If d e f a d m is given a filename, it prints all the defaults contained in the filename. If
one or more names are specified together with a filename, then d e f a d m prints the
specified names together with their values.

If d e f a d m is given a filename and one or more names and values, then the default file
is modified so that the name is set to the respective value.

If defadm is given the - d option, a filename, and one or more names, it removes the
specified names from the filename.

FILES
/ e t c / d e f a u l t / a u d i t ,
/ e t c / d e f a u l t / c r o n ,
/ e t c / d e f a u l t / l o g i n ,
/ e t c / d e f a u l t / p a s s w d ,
/ e t c / d e f a u l t / s u ,
/ e t c / d e f a u l t / u s e r a d d ,
/ e t c / d e f a u l t / u s e r d e l .

SEE ALSO
cron(AU_CMD), passwd(AU_CMD), su(AU_CMD), useradd(AS_CMD),
userdel(AS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/defadm
svid

Page: 44

df (BU_CMD) df (BU_CMD)

NAME
df – report number of free disk blocks and i-nodes

SYNOPSIS
df [-F FSType] [-begklntV] [-o specific_options] [directoryspecial ...]

DESCRIPTION
df is a file system-independent command which prints the allocation portions of
the generic superblock for mounted file systems, directories or mounted resources
by examining the information returned by statvfs() [see statvfs(BA_OS)]. direc-
tory represents a valid directory name. df reports on the device that contains the
directory. If directory represents a mount point then df reports on the file system
mounted on the mount point. special represents a special device (e.g.,
/dev/dsk/c1d0s8). specific_options represent options specified as a comma
separated list of keywords and/or keyword-attribute pairs which are to be inter-
preted by the FSType-specific module.

The options have the following meaning:

–F Specify the FSType on which to operate. This is only needed if the file
system is unmounted. The FSType should be specified here or be deter-
minable from /etc/vfstab.

–o specify FSType-specific options, if any.

–b Print only the number of kilobytes free.

–e Print only the number of files free.

–g Print the entire statvfs structure. Used only for mounted file systems.
Cannot be used with the -o option. This option will override the -b,
-e, -k, -n, and -t options.

–l Report on local file systems only. Used only for mounted file systems.
Cannot be used with the -o option.

–n Print only the FSType name. Invoked with no arguments, this option
prints a list of mounted file system types. Used only for mounted file
systems. Cannot be used with the -o option.

–t Print full listings with totals. This option will override the -b, -e, and
-n options.

–k Print allocation in kilobytes. Because its output format is different from
that of other options, this option should only be invoked with the -l or
-V options.

–V Echo complete command line but do not execute command. The com-
mand line is generated by using the options and arguments provided,
plus determining the others by a /etc/mnttab or /etc/vfstab
lookup.

If no arguments or options are specified, the free space on all local and remotely
mounted file systems is printed.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/df
svid

Page: 45

df (BU_CMD) df (BU_CMD)

FILES
/dev/dsk/*

/etc/mnttab

/etc/vfstab table of file system information

USAGE
General

SEE ALSO
mount(AS_CMD).

FUTURE DIRECTIONS
Note that the current System V output format is preserved for compatibility reasons
only and will be phased out in a future release.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/df
svid

Page: 46

diff (BU_CMD) diff (BU_CMD)

The following options are mutually exclusive:

- c Produces a listing of differences with three lines of context. With this option
output format is modified slightly: output begins with identification of the
files involved and their creation dates, then each change is separated by a
line with a dozen *’s. The dates are in the format that output from d a t e
" + % a % b % e % T % Y " produces. This is affected by the L C _ T I M E environ-
ment variable. [see d a t e(BU_CMD) and L A N G on e n v v a r(BA_ENV)]. The
lines removed from filename1 are marked with ’—’; those added to filename2
are marked ’ + ’. Lines that are changed from one file to the other are
marked in both files with ’ ! ’.

- C number
Produces a listing of differences identical to that produced by - c with
number lines of context. The form of number is affected by the L C _ N U M E R I C
environment variable. [see L A N G on e n v v a r(BA_ENV)].

- e Produces a script of a, c, and d commands for the editor e d, which will
recreate filename2 from filename1. In connection with - e, the following shell
program may help maintain multiple versions of a file. Only an ancestral
file ($1) and a chain of version-to-version e d scripts ($2,$3, . . .) made by
d i f f need be on hand. A ‘‘latest version’’ appears on the standard output.

(s h i f t ; c a t $∗; e c h o ′1 , $ p ′)  e d – $ 1

Except in rare circumstances, d i f f finds a smallest sufficient set of file differences.

- f Produces a similar script, not useful with e d, in the opposite order.

- h Does a fast, half-hearted job. It works only when changed stretches are
short and well separated, but does work on files of unlimited length.
Options - e and - f are unavailable with - h.

- n Produces a script similar to - e, but in the opposite order and with a count of
changed lines on each insert or delete command.

- D string
Creates a merged version of filename1 and filename2 with C preprocessor
controls included so that a compilation of the result without defining string
is equivalent to compiling filename1, while defining string will yield
filename2.

The following options are used for comparing directories:

- l Produce output in long format. Before the d i f f, each text file is piped
through p r(BU_CMD) to paginate it. Other differences are remembered
and summarized after all text file differences are reported.

- r Applies d i f f recursively to common subdirectories encountered.

- s Reports files that are identical; these would not otherwise be mentioned.

- S name
Starts a directory d i f f in the middle, beginning with the file name.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/diff
svid

Page: 48

diff (BU_CMD) diff (BU_CMD)

Errors
The exit status returns 0 if no differences are found, 1 if differences are found, and 2
if an error occurred.

SEE ALSO
c m p (BU_CMD), c o m m (BU_CMD), e d (BU_CMD), p r (BU_CMD)

LEVEL
Level 1.

NOTICES
Editing scripts produced under the - e or - f option are naive about creating lines
consisting of a single period (.).

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/diff
svid

Page: 49

diff3 (BU_CMD) diff3 (BU_CMD)

NAME
d i f f 3 – 3-way differential file comparison

SYNOPSIS
d i f f 3 [- e x E X 3] file1 file2 file3

DESCRIPTION
d i f f 3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

= = = = all three files differ

= = = = 1 file1 is different

= = = = 2 file2 is different

= = = = 3 file3 is different

The type of change suffered in converting a given range of a given file to some other
is indicated in one of these ways:

f : n1 a Text is to be appended after line number n1 in file f, where
f = 1, 2, or 3.

f : n1 , n2 c Text is to be changed in the range line n1 to line n2. If n1
= n2, the range may be abbreviated to n1.

The original contents of the range follows immediately after a c indication. When
the contents of two files are identical, the contents of the lower-numbered file is
suppressed.

- e Produce a script for the editor e d(BU_CMD) that will incorporate into file1
all changes between file2 and file3, that is, the changes that normally would
be flagged = = = = and = = = = 3.

- x Produce a script to incorporate only changes flagged = = = =.

- 3 Produce a script to incorporate only changes flagged = = = = 3.

- E Produce a script that will incorporate all changes between file2 and
file3, but treat overlapping changes (that is, changes that would be
flagged with = = = = in the normal listing) differently. The overlap-
ping lines from both files will be inserted by the edit script, brack-
eted by < < < < < < and > > > > > > lines.

- X Produce a script that will incorporate only changes flagged = = = =,
but treat these changes in the manner of the - E option.

The following command will apply the resulting script to file1.

(c a t s c r i p t ; e c h o ′1 , $ p ′)  e d - file1

SEE ALSO
d i f f (BU_CMD)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/diff3
svid

Page: 50

du (BU_CMD) du (BU_CMD)

NAME
du – estimate file space usage

SYNOPSIS
du [-ars] [file ...]

DESCRIPTION
The command du gives an estimate, in 512-byte units, of the file space contained in
all the specified files. Whenever a directory is named, all files within it are reported;
sub-directories are traversed recursively. If no file is specified, the current directory
is used.

The option –s causes only the grand total (for each of the specified files) to be given.
The option –a causes a report to be generated for each file. With no options, a
report is given for each directory only.

du is normally silent about directories that cannot be read, files that cannot be
opened, etc. The –r option will cause du to generate messages in such instances.

A file with two or more links is only counted once.

USAGE
General.

Sparse files may generate incorrect (high) estimates.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/du
svid

Page: 51

echo (BU_CMD) echo (BU_CMD)

NAME
e c h o – echo arguments

SYNOPSIS
e c h o [arg] . . .

e c h o [arg]

DESCRIPTION
e c h o writes its arguments separated by blanks and terminated by a new-line on the
standard output. It processes supplementary code set characters according to the
locale specified in the L C _ C T Y P E environment variable [see L A N G on
e n v v a r(BA_ENV)].

The / u s r / b i n / s h version understands the following C-like escape conventions;
beware of conflicts with the shell’s use of \ :

\ b backspace
\ c print line without new-line
\ f form-feed
\ n new-line
\ r carriage return
\ t tab
\ v vertical tab
\ \ backslash
\ 0n where n is the 1-, 2-, or 3-digit octal encoding of an 8-bit character.

Each byte of multibyte characters should be preceded by backslash
(\).

- n do not add the newline to the output.

e c h o is useful for producing diagnostics in command files, for sending known data
into a pipe, and for displaying the contents of environment variables.

SEE ALSO
s h (BU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/echo
svid

Page: 52

ed (BU_CMD) ed (BU_CMD)

NAME
e d, r e d – text editor

SYNOPSIS
e d [- s] [- p string] [file]

r e d [- s] [- p string] [file]

DESCRIPTION
e d is the standard text editor. If the file argument is given, e d simulates an e com-
mand (see below) on the named file; that is to say, the file is read into e d’s buffer so
that it can be edited. Both e d and r e d process supplementary code set characters in
file, and recognize supplementary code set characters in the prompt string given to
the - p option (see below) according to the locale specified in the L C _ C T Y P E environ-
ment variable [see L A N G on e n v v a r(BA_ENV)]. In regular expressions, pattern
searches are performed on characters, not bytes, as described below.

- s Suppresses the printing of byte counts by e, r, and w commands, of diagnos-
tics from e and q commands, and of the ! prompt after a !shell command.

- p Allows the user to specify a prompt string. The string may contain supple-
mentary code set characters.

e d operates on a copy of the file it is editing; changes made to the copy have no
effect on the file until a w (write) command is given. The copy of the text being
edited resides in a temporary file called the buffer. There is only one buffer.

r e d is a restricted version of e d. It will only allow editing of files in the current
directory. It prohibits executing shell commands via !shell command . Attempts to
bypass these restrictions result in an error message (restricted shell).

Both e d and r e d support the f s p e c formatting capability. After including a format
specification as the first line of file and invoking e d with your terminal in
s t t y – t a b s or s t t y t a b 3 mode [see s t t y(AU_CMD)], [see s t t y(1)], the specified
tab stops will automatically be used when scanning file. For example, if the first line
of a file contained:

< : t 5 , 1 0 , 1 5 s 7 2 : >

tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72
would be imposed. NOTE: when you are entering text into the file, this format is not
in effect; instead, because of being in s t t y – t a b s or s t t y t a b 3 mode, tabs are
expanded to every eighth column.

Commands to e d have a simple and regular structure: zero, one, or two addresses
followed by a single-character command, possibly followed by parameters to that
command. These addresses specify one or more lines in the buffer. Every com-
mand that requires addresses has default addresses, so that the addresses can very
often be omitted.

In general, only one command may appear on a line. Certain commands allow the
input of text. This text is placed in the appropriate place in the buffer. While e d is
accepting text, it is said to be in input mode. In this mode, no commands are recog-
nized; all input is merely collected. Leave input mode by typing a period (.) at the
beginning of a line, followed immediately by pressing RETURN.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/ed
svid

Page: 53

ed (BU_CMD) ed (BU_CMD)

e d supports a limited form of regular expression notation; regular expressions are
used in addresses to specify lines and in some commands (for example, s) to specify
portions of a line that are to be substituted. A regular expression specifies a set of
character strings. A member of this set of strings is said to be matched by the regu-
lar expression. The regular expressions allowed by e d are constructed as follows:

The following one-character regular expressions match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-
character regular expression that matches itself.

1.2 A backslash (\) followed by any special character is a one-character regular
expression that matches the special character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and backslash, respec-
tively), which are always special, except when they appear within square
brackets ([]; see 1.4 below).

b. ˆ (caret or circumflex), which is special at the beginning of a regular
expression (see 4.1 and 4.3 below), or when it immediately follows the left
of a pair of square brackets ([]) (see 1.4 below).

c. $ (dollar sign), which is special at the e n d of a regular expression (see 4.2
below).

d. The character that is special for that specific regular expression, that is
used to bound (or delimit) a regular expression. (For example, see how
slash (/) is used in the g command, below.)

1.3 A period (.) is a one-character regular expression that matches any character,
including supplementary code set characters, except new-line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one-
character regular expression that matches one character, including supplemen-
tary code set characters, in that string. If, however, the first character of the
string is a circumflex (ˆ), the one-character regular expression matches any
character, including supplementary code set characters, except new-line and
the remaining characters in the string. The ˆ has this special meaning only if it
occurs first in the string. The minus (-) may be used to indicate a range of con-
secutive characters, including supplementary code set characters; for example,
[0 - 9] is equivalent to [0 1 2 3 4 5 6 7 8 9]. Characters specifying the range must
be from the same code set; when the characters are from different code sets,
one of the characters specifying the range is matched. The - loses this special
meaning if it occurs first (after an initial ˆ, if any) or last in the string. The right
square bracket (]) does not terminate such a string when it is the first charac-
ter within it (after an initial ˆ, if any); for example, [] a - f] matches either a
right square bracket (]) or one of the ASCII letters a through f inclusive. The
four characters listed in 1.2.a above stand for themselves within such a string
of characters.

The following rules may be used to construct regular expressions from one-
character regular expressions:

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/ed
svid

Page: 54

ed (BU_CMD) ed (BU_CMD)

2.1 A one-character regular expression is a regular expression that matches what-
ever the one-character regular expression matches.

2.2 A one-character regular expression followed by an asterisk (*) is a regular
expression that matches zero or more occurrences of the one-character regular
expression, which may be a supplementary code set character. If there is any
choice, the longest leftmost string that permits a match is chosen.

2.3 A one-character regular expression followed by \ {m\ }, \ {m,\ }, or \ {m,n\ }
is a regular expression that matches a range of occurrences of the one-
character regular expression. The values of m and n must be non-negative
integers less than 256; \ {m\ } matches exactly m occurrences; \ {m,\ } matches
at least m occurrences; \ {m,n\ } matches any number of occurrences between
m and n inclusive. Whenever a choice exists, the regular expression matches as
many occurrences as possible.

2.4 The concatenation of regular expressions is a regular expression that matches
the concatenation of the strings matched by each component of the regular
expression.

2.5 A regular expression enclosed between the character sequences \ (and \) is a
regular expression that matches whatever the unadorned regular expression
matches.

2.6 The expression \n matches the same string of characters as was matched by an
expression enclosed between \ (and \) earlier in the same regular expression.
Here n is a digit; the sub-expression specified is that beginning with the n-th
occurrence of \ (counting from the left. For example, the expression
ˆ\ (. * \) \ 1 $ matches a line consisting of two repeated appearances of the same
string.

A regular expression may be constrained to match words.

3.1 \ < constrains a regular expression to match the beginning of a string or to fol-
low a character that is not a digit, underscore, or letter. The first character
matching the regular expression must be a digit, underscore, or letter.

3.2 \ > constrains a regular expression to match the end of a string or to precede a
character that is not a digit, underscore, or letter.

A regular expression may be constrained to match only an initial segment or final
segment of a line (or both).

4.1 A circumflex (ˆ) at the beginning of a regular expression constrains that regu-
lar expression to match an initial segment of a line.

4.2 A dollar sign ($) at the end of an entire regular expression constrains that reg-
ular expression to match a final segment of a line.

4.3 The construction ˆregular expression$ constrains the regular expression to
match the entire line.

The null regular expression (for example, / /) is equivalent to the last regular
expression encountered. See also the last paragraph of the DESCRIPTION section
below.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/ed
svid

Page: 55

ed (BU_CMD) ed (BU_CMD)

To understand addressing in e d it is necessary to know that at any time there is a
current line. Generally speaking, the current line is the last line affected by a com-
mand; the exact effect on the current line is discussed under the description of each
command. Addresses are constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. ′x addresses the line marked with the mark name character x, which must be a
lower-case letter (a–z). Lines are marked with the k command described
below.

5. A regular expression enclosed by slashes (/) addresses the first line found by
searching forward from the line following the current line toward the end of
the buffer and stopping at the first line containing a string matching the regu-
lar expression. If necessary, the search wraps around to the beginning of the
buffer and continues up to and including the current line, so that the entire
buffer is searched. See also the last paragraph of the DESCRIPTION section
below.

6. A regular expression enclosed in question marks (?) addresses the first line
found by searching backward from the line preceding the current line toward
the beginning of the buffer and stopping at the first line containing a string
matching the regular expression. If necessary, the search wraps around to the
end of the buffer and continues up to and including the current line. See also
the last paragraph of the DESCRIPTION section below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by a
decimal number specifies that address plus (respectively minus) the indicated
number of lines. A shorthand for .+5 is .5.

8. If an address begins with + or -, the addition or subtraction is taken with
respect to the current line; for example, - 5 is understood to mean . - 5.

9. If an address ends with + or -, then 1 is added to or subtracted from the
address, respectively. As a consequence of this rule and of Rule 8, immedi-
ately above, the address - refers to the line preceding the current line. (To
maintain compatibility with earlier versions of the editor, the character ˆ in
addresses is entirely equivalent to -.) Moreover, trailing +and - characters
have a cumulative effect, so - - refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1 , $, while a semi-
colon (;) stands for the pair . , $.

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept
one or two addresses assume default addresses when an insufficient number of
addresses is given; if more addresses are given than such a command requires, the
last one(s) are used.

Page 4

FINAL COPY
June 15, 1995

File: bu_cmd/ed
svid

Page: 56

ed (BU_CMD) ed (BU_CMD)

Typically, addresses are separated from each other by a comma (,). They may also
be separated by a semicolon (;). In the latter case, the first address is calculated,
the current line (.) is set to that value, and then the second address is calculated.
This feature can be used to determine the starting line for forward and backward
searches (see Rules 5 and 6, above). The second address of any two-address
sequence must correspond to a line in the buffer that follows the line corresponding
to the first address.

In the following list of e d commands, the parentheses shown prior to the command
are not part of the address; rather they show the default address(es) for the com-
mand.

The file arguments of the e, E, f, r, w, and W commands are subject to pattern match-
ing as in s h(BU_CMD), They should be separated from the command letter by one
or more spaces or tabs.

It is generally illegal for more than one command to appear on a line. However,
any command (except e, f, r, or w) may be suffixed by l, n, or p in which case the
current line is either listed, numbered or printed, respectively, as discussed below
under the l, n, and p commands.
(.) a
<text>
. The append command accepts zero or more lines of text and appends it

after the addressed line in the buffer. The current line (.) is left at the last
inserted line, or, if there were none, at the addressed line. Address 0 is legal
for this command: it causes the ‘‘appended’’ text to be placed at the begin-
ning of the buffer. The maximum number of bytes that may be entered
from a terminal is 256 per line. {LINE_MAX} per line (including the new-
line character). {LINE_MAX} is defined in l i m i t s . h.

(.) c
<text>
. The change command deletes the addressed lines from the buffer, then

accepts zero or more lines of text that replaces these lines in the buffer. The
current line (.) is left at the last line input, or, if there were none, at the first
line that was not deleted.

(. , .) d
The delete command deletes the addressed lines from the buffer. The line
after the last line deleted becomes the current line; if the lines deleted were
originally at the end of the buffer, the new last line becomes the current line.

e file The edit command deletes the entire contents of the buffer and then reads
the contents of file into the buffer. The current line (.) is set to the last line of
the buffer. If file is not given, the currently remembered file name, if any, is
used (see the f command). The number of characters read in is printed; file
is remembered for possible use as a default file name in subsequent e, r, and
w commands. If file is replaced by !, the rest of the line is taken to be a shell
[s h(1)] command whose output is to be read in. Such a shell command is
not remembered as the current file name. See also DIAGNOSTICS below.

Page 5

FINAL COPY
June 15, 1995

File: bu_cmd/ed
svid

Page: 57

ed (BU_CMD) ed (BU_CMD)

E file The Edit command is like e, except that the editor does not check to see if
any changes have been made to the buffer since the last w command.

f file If file is given, the f ile-name command changes the currently remembered
file name to file; otherwise, it prints the currently remembered file name.

(1 , $) g /regular expression/command list
In the global command, the first step is to mark every line that matches the
given regular expression. Then, for every such line, the given command list
is executed with the current line (.) initially set to that line. A single com-
mand or the first of a list of commands appears on the same line as the glo-
bal command. All lines of a multi-line list except the last line must be ended
with a \; a, i, and c commands and associated input are permitted. The .
terminating input mode may be omitted if it would be the last line of the
command list. An empty command list is equivalent to the p command. The
g, G, v, and V commands are not permitted in the command list. See the
NOTICES section and the last paragraph of the DESCRIPTION section
below.

(1 , $) G /regular expression/
In the interactive Global command, the first step is to mark every line that
matches the given regular expression. Then, for every such line, that line is
printed, the current line (.) is changed to that line, and any one command
(other than one of the a, c, i, g, G, v, and V commands) may be input and is
executed. After the execution of that command, the next marked line is
printed, and so on; a new-line acts as a null command; an & causes the re-
execution of the most recent command executed within the current invoca-
tion of G. Note that the commands input as part of the execution of the G
command may address and affect any lines in the buffer. The G command
can be terminated by an interrupt signal (ASCII DEL or BREAK).

h The help command gives a short error message that explains the reason for
the most recent ? diagnostic.

H The Help command causes e d to enter a mode in which error messages are
printed for all subsequent ? diagnostics. It will also explain the previous ? if
there was one. The H command alternately turns this mode on and off; it is
initially off.

(.) i
<text>
. The insert command accepts zero or more lines of text and inserts it before

the addressed line in the buffer. The current line (.) is left at the last
inserted line, or, if there were none, at the addressed line. This command
differs from the a command only in the placement of the input text.
Address 0 is not legal for this command. The maximum number of charac-
ters that may be entered from a terminal is 256 per line. {LINE_MAX} per
line (including the new-line character). {LINE_MAX} is defined in
l i m i t s . h.

Page 6

FINAL COPY
June 15, 1995

File: bu_cmd/ed
svid

Page: 58

ed (BU_CMD) ed (BU_CMD)

(. , . + 1) j
The join command joins contiguous lines by removing the appropriate
new-line characters. If exactly one address is given, this command does
nothing.

(.) kx
The m a rk command marks the addressed line with name x, which must be a
lower-case letter (a - z). The address ′x then addresses this line; the current
line (.) is unchanged.

(. , .) l
The list command prints the addressed lines in an unambiguous way: a few
non-printing characters (for example, tab, backspace) are represented by
visually mnemonic overstrikes. All other non-printing characters are
printed in octal, and long lines are folded. All other non-printing characters
are printed in octal, long lines are folded and the end of each line is marked
with a $. An l command may be appended to any command other than e,
f, r, or w.

(. , .) ma
The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed line(s) to
be moved to the beginning of the file. It is an error if address a falls within
the range of moved lines; the current line (.) is left at the last line moved.

(. , .) n
The number command prints the addressed lines, preceding each line by its
line number and a tab character; the current line (.) is left at the last line
printed. The n command may be appended to any command other than e,
f, r, or w.

(. , .) p
The print command prints the addressed lines; the current line (.) is left at
the last line printed. The p command may be appended to any command
other than e, f, r, or w. For example, d p deletes the current line and prints
the new current line.

P The editor will prompt with a * for all subsequent commands. The P com-
mand alternately turns this mode on and off; it is initially off.

q The quit command causes e d to exit. No automatic write of a file is done;
however, see DIAGNOSTICS below.

Q The editor exits without checking if changes have been made in the buffer
since the last w command.

($) r file
The read command reads the contents of file into the buffer. If file is not
given, the currently remembered file name, if any, is used (see the e and f
commands). The currently remembered file name is not changed unless file
is the very first file name mentioned since e d was invoked. Address 0 is
legal for r and causes the file to be read in at the beginning of the buffer. If
the read is successful, the number of characters read in is printed; the
current line (.) is set to the last line read in. If file is replaced by !, the rest
of the line is taken to be a shell [see s h(BU_CMD)] command whose output

Page 7

FINAL COPY
June 15, 1995

File: bu_cmd/ed
svid

Page: 59

ed (BU_CMD) ed (BU_CMD)

is to be read in.

For example, $ r ! l s appends current directory to the end of the file being
edited. Such a shell command is not remembered as the current file name.

(. , .) s /regular expression/replacement/ or
(. , .) s /regular expression/replacement/ g or
(. , .) s /regular expression/replacement/n n = 1–512

The substitute command searches each addressed line for an occurrence of
the specified regular expression. In each line in which a match is found, all
(non-overlapped) matched strings are replaced by the replacement if the glo-
bal replacement indicator g appears after the command. If the global indica-
tor does not appear, only the first occurrence of the matched string is
replaced. If a number n, appears after the command, only the n-th
occurrence of the matched string on each addressed line is replaced. It is an
error if the substitution fails on all addressed lines. Any character other
than space or new-line may be used instead of / to delimit the regular
expression and the replacement; the current line (.) is left at the last line on
which a substitution occurred. See also the last paragraph of the DESCRIP-
TION section below.
An ampersand (&) appearing in the replacement is replaced by the string
matching the regular expression on the current line. The special meaning of
& in this context may be suppressed by preceding it by \ . As a more gen-
eral feature, the characters \n , where n is a digit, are replaced by the text
matched by the n-th regular subexpression of the specified regular expres-
sion enclosed between \ (and \). When nested parenthesized subexpres-
sions are present, n is determined by counting occurrences of \ (starting
from the left. When the character % is the only character in the replacement,
the replacement used in the most recent substitute command is used as the
replacement in the current substitute command. The % loses its special mean-
ing when it is in a replacement string of more than one character or is pre-
ceded by a \ .
A line may be split by substituting a new-line character into it. The new-line
in the replacement must be escaped by preceding it by \ . Such substitution
cannot be done as part of a g or v command list.

(. , .) ta
This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); the current line
(.) is left at the last line copied.

u The undo command nullifies the effect of the most recent command that
modified anything in the buffer, namely the most recent a, c, d, g, i, j, m, r,
s, t, v, G, or V command.

(1 , $) v /regular expression/command list
This command is the same as the global command g, except that the lines
marked during the first step are those that do not match the regular expres-
sion.

Page 8

FINAL COPY
June 15, 1995

File: bu_cmd/ed
svid

Page: 60

ed (BU_CMD) ed (BU_CMD)

(1 , $) V /regular expression/
This command is the same as the interactive global command G, except that
the lines that are marked during the first step are those that do not match
the regular expression.

(1 , $) w file
The write command writes the addressed lines into file. If file does not exist,
it is created with mode 6 6 6 (readable and writable by everyone), unless
your file creation mask dictates otherwise; see the description of the u m a s k
special command on s h(BU_CMD). The currently remembered file name is
not changed unless file is the very first file name mentioned since e d was
invoked. If no file name is given, the currently remembered file name, if
any, is used (see the e and f commands); the current line (.) is unchanged.
If the command is successful, the number of characters written is printed. If
file is replaced by !, the rest of the line is taken to be a shell command whose
standard input is the addressed lines. Such a shell command is not remem-
bered as the current file name.

(1 , $) W file
This command is the same as the write command above, except that it
appends the addressed lines to the end of file if it exists. If file does not exist,
it is created as described above for the w command.

($) = The line number of the addressed line is typed; the current line (.) is
unchanged by this command.

!shell command
The remainder of the line after the ! is sent to the UNIX system shell to be
interpreted as a command. See s h(BU_CMD). Within the text of that com-
mand, the unescaped character % is replaced with the remembered file
name; if a ! appears as the first character of the shell command, it is
replaced with the text of the previous shell command. Thus, ! ! will repeat
the last shell command. If any expansion is performed, the expanded line is
echoed; the current line (.) is unchanged.

(. + 1)<new-line>
An address alone on a line causes the addressed line to be printed. A new-
line alone is equivalent to . + 1 p; it is useful for stepping forward through the
buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, e d prints a ? and returns to its
command level.

Some size limitations: 512 bytes in a line, 256 bytes in a global command list and in
the pathname of a file (counting slashes). {LINE_MAX} bytes in a line, 256 bytes in
a global command list, and {PATH_MAX} bytes in the pathname of a file (counting
slashes). {LINE_MAX} and {PATH_MAX} are defined in l i m i t s . h. The limit on
the number of lines depends on the amount of user memory: each line takes 1 word.

When reading a file, e d discards ASCII NUL characters.

If a file is not terminated by a new-line character, e d adds one and puts out a mes-
sage explaining what it did.

Page 9

FINAL COPY
June 15, 1995

File: bu_cmd/ed
svid

Page: 61

ed (BU_CMD) ed (BU_CMD)

If the closing delimiter of a regular expression or of a replacement string (for exam-
ple, /) would be the last character before a new-line, that delimiter may be omitted,
in which case the addressed line is printed. The following pairs of commands are
equivalent:

s / s 1 / s 2 s / s 1 / s 2 / p
g / s 1 g / s 1 / p
? s 1 ? s 1 ?

Errors
? for command errors.

?file for an inaccessible file.
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the
entire buffer, e d warns the user if an attempt is made to destroy e d’s buffer via the
e or q commands. It prints ? and allows one to continue editing. A second e or q
command at this point will take effect. The - s command-line option inhibits this
feature.

SEE ALSO
e x(AU_CMD), g r e p(BU_CMD), s e d(BU_CMD), s h(BU_CMD), s t t y(AU_CMD)
u m a s k(BU_CMD), v i(AU_CMD)

LEVEL
Level 1.

NOTICES
The - option, although it continues to be supported, has been replaced in the docu-
mentation by the - s option that follows the Command Syntax Standard A ! com-
mand cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot be used if
the editor is invoked from a restricted shell [see s h(BU_CMD)].

The sequence \ n in a regular expression does not match a new-line character.

If the editor input is coming from a command file (for example, e d file <
ed_cmd_file), the editor exits at the first failure.

The following environment variables affect the execution of p r: L A N G, L C _ A L L,
L C _ C T Y P E, L C _ M E S S A G E S, L C _ T I M E, T Z [see L A N G on e n v v a r(BA_ENV)].

Page 10

FINAL COPY
June 15, 1995

File: bu_cmd/ed
svid

Page: 62

expr (BU_CMD) expr (BU_CMD)

NAME
e x p r – evaluate arguments as an expression

SYNOPSIS
e x p r arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on
the standard output. Terms of the expression must be separated by blanks. Char-
acters special to the shell must be escaped. Note that 0 is returned to indicate a zero
value, rather than the null string. Strings containing blanks or other special charac-
ters should be quoted. Integer-valued arguments may be preceded by a unary
minus sign. Internally, integers are treated as 32-bit, 2s complement numbers. The
length of the expression is limited to 512 characters. Expressions may be grouped
using (escaped) parentheses.

The operators and keywords are listed below. Characters that need to be escaped
in the shell [see s h (BU_CMD)] are preceded by \. The list is in order of increasing
precedence, with equal precedence operators grouped within { } symbols.

expr \ | expr
Return the first expr if it is neither null nor 0, otherwise return the second
expr.

expr \ & expr
Return the first expr if neither expr is null or 0, otherwise return 0.

expr { = , \ > , \ > = , \ < , \ < = , ! = } expr
Return the result of an integer comparison if both arguments are integers,
otherwise return the result of a lexical comparison.

expr { + , – } expr
Add or subtract integer-valued arguments.

expr { \ * , / , % } expr
Multiply, divide, or compute remainder of integer-valued arguments.

expr : expr
m a t c h expr expr

Compare the first argument with the second argument, which must be a
regular expression. Regular expression syntax is the same as that of e d
(BU_CMD) except that all patterns are ‘‘anchored’’ (that is, begin with ˆ)
and, therefore, ˆ is not a special character, in that context. Normally, the
matching operator returns the number of characters matched (0 on failure).
Alternatively, the \ (. . . \) pattern symbols can be used to return a
portion of the first argument.

l e n g t h string
Return the length of string.

s u b s t r string index count
Return the portion of string composed of at most count characters starting at
the character position of string as expressed by index (where the first charac-
ter of string is index 1, not 0).

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/expr
svid

Page: 63

expr (BU_CMD) expr (BU_CMD)

i n d e x string character_sequence
Return the index of the first character in string that is also in
character_sequence or 0 to indicate no match.

e x p r processes supplementary code set characters according to the locale specified
in the L C _ C T Y P E environment variable [see L A N G on e n v v a r (BA_ENV). In regular
expressions, pattern searches are performed on characters, not bytes, as described
on e d (BU_CMD)

Errors
As a side effect of expression evaluation, e x p r returns the following exit values:
0 The expression is neither null nor 0.
1 The expression is null or 0.
2 An expression is invalid.

n o n - n u m e r i c a r g u m e n t arithmetic attempted on a non-numeric string

USAGE
Examples

Add 1 to the shell variable a:

a = ‘ e x p r $ a + 1 ‘

The following example emulates b a s e n a m e (BU_CMD) it returns the last segment of
the path name $ a. For $ a equal to either / u s r / a b c / f i l e or just f i l e, the example
returns f i l e. The / / characters eliminate any ambiguity about the division opera-
tor.

e x p r / / $ a : ’ . * / \ (. * \) ’

SEE ALSO
e d(BU_CMD), s h(BU_CMD)

NOTICES
After argument processing by the shell, e x p r cannot tell the difference between an
operator and an operand except by the value. If $ a is an =, the command:

e x p r $ a = ’ = ’

looks like:

e x p r = = =

as the arguments are passed to e x p r (and they are all taken as the = operator). The
following works:

e x p r X $ a = X =

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/expr
svid

Page: 64

file (BU_CMD) file (BU_CMD)

NAME
file – determine file type

SYNOPSIS
file [-f file] [-h] file ...

DESCRIPTION
The command file performs a series of tests on each specified file in an attempt to
classify it. If it appears to be a text file, file examines an initial segment and
makes a guess about its language. (The answer is not guaranteed to be correct.) If
file is an executable ("a.out") file it is identified as such, and any other available
information is reported.

If the –f option is given, the next argument is taken to be a file containing the
names of the files to be examined.

If the argument is a symbolic link, by default, the link is followed and file tests
the file that the symbolic link references. When the –h is specified, symbolic links
will not be followed and the output will be:

symbolic link to pathname

where pathname is the pathname of the referenced file.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/file
svid

Page: 65

find (BU_CMD) find (BU_CMD)

NAME
find – find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
The command find recursively descends the directory hierarchy for each path-
name in the path-name-list (that is, one or more pathnames) seeking files that match
a boolean expression written in the primaries given below. In the following descrip-
tions, the argument n is used as a decimal integer where +n means more than n,
–n means less than n, and n means exactly n.

The expression argument is made up of:

-name pattern
True if pattern matches the current filename. Normal shell filename gen-
eration characters [see sh(BU_CMD)] may be used. A backslash (\) is
used as an escape character within the pattern. The pattern should be
escaped or quoted when find is invoked from the shell.

–perm 0num
True if the file permission flags exactly match the octal number 0num
[see chmod(BU_CMD)]. If 0num is prefixed by a minus sign, only the
bits that are set in 0num are compared with the file permission flags, and
the expression evaluates true if they match.

–type c True if the type of the file is c, where c is b, c, d, l, p, or f for block
special file, character special file, directory, symbolic link, fifo (named
pipe), or plain file, respectively.

–follow Always true; causes symbolic links to be followed. When following
symbolic links, find keeps track of the visited directories so it can
detect any infinite loops that would be caused by a symbolic link point-
ing up to an ancestor. This expression should not be used with the
–type l option.

–links n
True if the file has n links.

–user uname
True if the file belongs to the user uname. If uname is numeric and does
not appear as a login name in the /etc/passwd file, it is taken as a
user ID.

–group gname
True if the file belongs to the group gname. If gname is numeric and does
not appear in the /etc/group file, it is taken as a group ID.

– l e v e l [=| – |+]level
True if the file level exactly matches (’=’), dominates (’+’), or is
dominated by (-) level. The level can be specified as a fully qualified
level, alias name, or a level identifier (LID) [see lvlname(ES_CMD)].

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/find
svid

Page: 66

find (BU_CMD) find (BU_CMD)

–size n[c]
True if the file is n "blocks" long (block = 512 bytes). If n is followed by a
c, the size is in bytes.

–atime n
True if the file has been accessed in n days. The access time of direc-
tories in path-name-list is changed by find itself.

–mtime n
True if the file has been modified in n days.

–ctime n
True if the file inode has been changed in n days.

–exec cmd
True if the executed cmd returns a zero value as exit status. The end of
cmd must be punctuated by an escaped semicolon. A command argu-
ment {} is replaced by the current pathname.

–ok cmd Like –exec except that the generated command line is printed with a
question mark first, and is executed only if the user responds by typing
y.

–print Always true; causes the current pathname to be printed.

–newer file
True if the current file has been modified more recently than the argu-
ment file.

–depth Always true; causes descent of the directory hierarchy to be done so that
all entries in a directory are acted on before the directory itself. This can
be useful when find is used with cpio [see cpio(BU_CMD)] to transfer
files that are contained in directories without write permission.

–fstype type
True if the file system to which the file belongs is of type type.

–inum n True if the file has inode number n.

–nouser True if the file belongs to a user not in the /etc/passwd file.

–nogroup
True if the file belongs to a group not in the /etc/group file.

–prune Always yields true. Has the side effect of pruning the search tree at the
file.

expression True if the parenthesized expression is true (parentheses must be
escaped if they are special to the command interpreter).

The primaries may be combined using the following operators (in order of decreas-
ing precedence):

1. The negation of a primary (! is the unary not operator).

2. Concatenation of primaries (the and operation is implied by the juxtaposition
of two primaries).

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/find
svid

Page: 67

find (BU_CMD) find (BU_CMD)

3. Alternation of primaries (–o is the OR operator).

FILES
/etc/passwd
/etc/group

USAGE
General.

When find is used in conjunction with cpio and the command to follow sym-
bolic links is applied to one of them (–L for cpio and –follow for find), then
the other must also follow symbolic links. Applying a ’follow symbolic links’
option to one command and not the other causes unexpected and unusual results.

EXAMPLE
To remove all files named tmp or ending in .xx that have not been accessed for a
week:

find / \(–name tmp –o –name ′*.xx′ \) -atime+7 -exec rm {} \;

SEE ALSO
chmod(BU_CMD), cpio(BU_CMD), sh(BU_CMD), stat(BA_OS), test(BU_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/find
svid

Page: 68

fmt (BU_CMD) fmt (BU_CMD)

NAME
f m t – simple text formatters

SYNOPSIS
f m t [- c s] [- w width] [file . . .]

DESCRIPTION
f m t is a simple text formatter that fills and joins lines to produce output lines of
(up to) the number of characters specified in the - w width option. The default width
is 72. f m t concatenates the inputfiles listed as arguments. If none are given, f m t for-
mats text from the standard input.

Blank lines are preserved in the output, as is the spacing between words. f m t does
not fill lines beginning with a ‘‘.’’ (dot), for compatibility with n r o f f. Nor does it
fill lines starting with ‘‘F r o m :’’.

Indentation is preserved in the output, and input lines with differing indentation
are not joined (unless - c is used).

f m t can also be used as an in-line text filter for v i(AU_CMD); the v i command:

! } f m t

reformats the text between the cursor location and the end of the paragraph.

OPTIONS
- c Crown margin mode. Preserve the indentation of the first two lines

within a paragraph, and align the left margin of each subsequent line
with that of the second line. This is useful for tagged paragraphs.

- s Split lines only. Do not join short lines to form longer ones. This
prevents sample lines of code, and other such formatted text, from
being unduly combined.

- w width Fill output lines to up to width columns.

SEE ALSO
v i (AU_CMD)

LEVEL
Level 1.

NOTICES
The - w width option is acceptable for BSD compatibility, but it may go away in
future releases.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/fmt
svid

Page: 69

fmtmsg (BU_CMD) fmtmsg (BU_CMD)

NAME
fmtmsg – display a message in the standard format on standard error and the sys-
tem console

SYNOPSIS
fmtmsg [-c classification] [-u subclass] [-l label] [-s severity]

[-t tag] [-a action] text

DESCRIPTION
Based on a message’s classification component, fmtmsg either writes a formatted
message to standard error, to the console, or to both.

A formatted message consists of up to five standard components as defined below.
The components, classification and subclass, are not part of the standard message
displayed to the user, but define the source of the message and direct the display of
the formatted message.

Options
–c classification

Describes the source of the message. Valid keywords are:

hard indicates that the source of the condition is hardware
soft indicates that the source of the condition is software
firm indicates that the source of the condition is firmware

–u subclass A comma list of keywords that further defines the message and
directs the display of the message. Valid keywords are:

appl identifies the condition as having originated in an applica-
tion. This keyword should not be used in combination
with either util or opsys.

util identifies the condition as having originated in a utility.
This keyword should not be used in combination with
either appl or opsys.

opsys identifies the message as having originated in the kernel.
This keyword should not be used in combination with
either appl or util.

recov indicates that the application will recover from the condi-
tion. This keyword should not be used in combination
with nrecov.

nrecov indicates that the application will not recover from the
condition. This keyword should not be used in combina-
tion with recov.

print causes the message to be printed to the standard error
stream. print, console, or both may be used.

console causes the message to be written to the system console.

–l label Identifies the source of the message.

–s severity Indicates the seriousness of the error. The keywords and definitions
of the standard levels of severity are:

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/fmtmsg
svid

Page: 70

fmtmsg (BU_CMD) fmtmsg (BU_CMD)

halt indicates that the application has encountered a severe fault
and is halting.

error indicates that the application has detected a fault.
warn indicates a condition that is out of the ordinary and might be

a problem.
info provides information about a condition that is not in error.

–t tag The string containing an identifier for the message.

–a action A text string describing the first step in the error-recovery process.
This string must be written so that the entire action argument is inter-
preted as a single argument. fmtmsg precedes each action string
with the prefix: TO FIX:.

text A text string describing the condition. Must be written so that the
entire text argument is interpreted as a single argument.

ERRORS
The exit codes for fmtmsg are the following:

0 = All the requested functions were executed successfully.
1 = The command contains a syntax error, an invalid option,

or an invalid argument to an option.
2 = The command executed with partial success, however

the message was not displayed on standard error.
4 = The command executed with partial success, however the message

was not displayed on the system console.
32 = No requested functions were executed successfully.

USAGE
There are two environment variables that control the behavior of fmtmsg: MSGVERB
and SEV_LEVEL. MSGVERB is set by the administrator in the /etc/profile for
the system. Users can override the system-set MSGVERB by resetting MSGVERB in
their own .profile files or by changing the value in their current shell session.
SEV_LEVEL can be used in shell scripts.

MSGVERB tells fmtmsg which message components to select when writing messages
to standard error. The value of MSGVERB is a colon list of optional keywords.
MSGVERB can be set as follows:

MSGVERB=[keyword[:keyword]...]
export MSGVERB

Valid keywords are: label, severity, text, action and tag. If MSGVERB
contains a keyword for a component and the component’s value is not the null
value, fmtmsg includes that component in the message when writing the message
to standard error. If MSGVERB does not include a keyword for a message com-
ponent, that component is not included in the display of the message. The key-
words may appear in any order. If MSGVERB is not defined, if its value is the null
string, if its value is not of the correct format, or if it contains keywords other than
the valid ones listed above, fmtmsg selects all components.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/fmtmsg
svid

Page: 71

fmtmsg (BU_CMD) fmtmsg (BU_CMD)

MSGVERB affects only which message components are selected for display. All mes-
sage components are included in console messages.

SEV_LEVEL defines severity levels and associates print strings with them for use by
fmtmsg. The standard severity levels shown below cannot be modified. Addi-
tional severity levels can be defined, redefined, and removed.

keyword level print string
(none) 0 (no severity is used)
halt 1 HALT
error 2 ERROR
warn 3 WARNING
info 4 INFO

SEV_LEVEL is set as follows:

S E V _ L E V E L =[description[:description]...]
e x p o r t S E V _ L E V E L

The format of description is a three-field comma list as follows:

description=severity_keyword,level,print_string

severity_keyword
a character string that is used as the keyword on the –s severity option
to fmtmsg.

level a character string that evaluates to a positive integer (other than 0,
1, 2, 3, or 4, that are reserved for the standard severity levels). If
the keyword severity_keyword is used, level is the severity value passed
on to fmtmsg().

print_string the character string used by fmtmsg in the standard message format
whenever the severity value level is used.

If SEV_LEVEL is not defined, or if its value is null, no severity levels other than the
defaults are available. If a description in the colon list is not a three-field comma list,
or if the second field of a comma list does not evaluate to a positive integer, that
description in the colon list is ignored.

EXAMPLE
Example 1:

The following example of fmtmsg produces a complete message in the standard
message format and displays it to the standard error stream:

$ fmtmsg –c soft –u recov,print,appl –l UX:cat \
> –s error -t UX:cat:138 \
> –a "refer to manual" "invalid syntax"

produces:
UX:cat: ERROR: invalid syntax

TO FIX: refer to manual UX:cat:138

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/fmtmsg
svid

Page: 72

fmtmsg (BU_CMD) fmtmsg (BU_CMD)

Example 2:

When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and Example 1 is used, fmtmsg produces:
ERROR: invalid syntax
TO FIX: refer to manual

Example 3:

When the environment variable SEV_LEVEL is set as follows:

SEV_LEVEL=note,5,NOTE

the following fmtmsg command:

$ fmtmsg –c soft –u print –l UX:cat –s note \
> –a "refer to manual" "invalid syntax"

produces:
UX:cat: NOTE: invalid syntax

TO FIX: refer to manual

and displays the message on standard error.

SEE ALSO
fmtmsg(BA_LIB).

FUTURE DIRECTIONS
This command is to be removed when the three year waiting period has expired.

LEVEL
Level 2: April 1991.

Page 4

FINAL COPY
June 15, 1995

File: bu_cmd/fmtmsg
svid

Page: 73

gettxt (BU_CMD) gettxt (BU_CMD)

NAME
gettxt – retrieve a text string from a message data base

SYNOPSIS
gettxt msgfile:msgnum [dflt_msg]

DESCRIPTION
gettxt retrieves a text string from a message file in the directory
/usr/lib/locale/locale/LC_MESSAGES. The directory locale corresponds to the
language in which the text strings are written [see setlocale(BA_OS)].

msgfile Name of the file in the directory:
/usr/lib/locale/locale/LC_MESSAGES

from which msgnum is to be retrieved. The name of msgfile can be up to
14 characters in length, but may not contain either \0 (null) or the ASCII
codes for / (slash) or : (colon).

msgnum Sequence number of the string to retrieve from msgfile . The strings in
msgfile are numbered sequentially from 1 to n , where n is the number of
strings in the file.

dflt_msg Default string to be used on failure to retrieve the message from the file.
The text string to be retrieved is in the file created by the mkmsgs utility and
installed in the locale directory in /usr/lib/locale/locale/LC_MESSAGES. The
environment variable LC_MESSAGES controls which directory is searched. If
LC_MESSAGES is not set, the environment variable LANG will be used. If LANG is
not set, the language in which the strings will be retrieved is U. S. English and the
files containing the strings are in /usr/lib/locale/C/LC_MESSAGES/∗ .
If gettxt fails to retrieve a message in requested language, it will try to retrieve
the same message in the C locale. If this also fails, the processing depends on the
second argument. If the second argument is not supplied on the command line or it
is the null string, gettxt will display the string Message not found!! The
second argument will be displayed if it is not the null string.
Nongraphic characters may be included in the default message as alphabetic escape
sequences.

EXAMPLE
gettxt UX:10 "hello world\n"

FILES
/usr/lib/locale/C/LC_MESSAGES/∗ default message files created by

mkmsgs
/usr/lib/locale/locale/LC_MESSAGES/∗

message files for different languages
created by mkmsgs

SEE ALSO
gettxt(BA_LIB), mkmsgs(AS_CMD), setlocale(BA_OS), srchtxt(AS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/gettxt
svid

Page: 74

grep (BU_CMD) grep (BU_CMD)

NAME
g r e p – search a file for a pattern

SYNOPSIS
g r e p [- E | - F] [- c | - l | - q] [- b h i n s v x] expression [file . . .]

g r e p [- E | - F] [- c | - l | - q] [- b h i n s v x] - e expression . . .
[- f exprfile] . . . [file . . .]

g r e p [- E | - F] [- c | - l | - q] [- b h i n s v x] [- e expression] . . .
- f exprfile . . . [file . . .]

DESCRIPTION
g r e p searches files for patterns and prints all lines that contain at least one of the
patterns. By default g r e p uses limited regular expressions (expressions that have
string values that use a subset of the possible alphanumeric and special characters)
like those used with e d(BU_CMD) to match the patterns (in expression and exprfile).
It uses a compact non-deterministic algorithm. If the - E or - F options are specified,
g r e p behaves like e g r e p or f g r e p, see O P T I O N S.

Be careful using the characters $, ∗, [, ˆ, , (,), and \ in the expression because they
are also meaningful to the shell. It is safest to enclose the entire expression in single
quotes ′ . . . ′ . A null expression matches all lines.

g r e p processes supplementary code set characters according to the locale specified
in the L C _ C T Y P E environment variable [see L A N G on e n v v a r(BA_ENV)]. except as
noted under the - i option below. The pattern searches are performed on charac-
ters, not bytes, as described in e d(BU_CMD).

If no files are specified, g r e p assumes standard input. If a ‘‘-’’ is specified as a file,
standard input is used. Normally, each line matched is copied to standard output.
The filename is printed before each line matched if there is more than one input file.

OPTIONS
- E Specifying - E on a g r e p command line, is equivalent to calling e g r e p. All

specified patterns (in expression and exprfile) are then full regular expressions.
See e g r e p(AU_CMD) for an explanation of full regular expressions. When
this option is specified, all other g r e p options (except - F) have the same
effect as usual, and the same effect as they have for e g r e p(AU_CMD).

- F Specifying - F on a g r e p command line, is equivalent to calling f g r e p. All
specified patterns (in expression and exprfile) are then character strings. When
this option is specified, all other g r e p options (except - E) have the same
effect as usual, and the same effect as they have for f g r e p.

- c Print only a count of the lines that contain one of the patterns.

- e expression
Specify one or more patterns (regular expressions or strings) to be used dur-
ing the search for input. The patterns in expression are separated by n e w l i n e
characters. Two adjacent n e w l i n es indicate a null pattern. The last pattern
does not require a terminating n e w l i n e. When multiple - e or - f options are
specified, all the patterns specified will be used. (Obviously, if expression is to
contain n e w l i n es, it should be quoted.)

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/grep
svid

Page: 75

grep (BU_CMD) grep (BU_CMD)

This option is useful for specifying patterns that begin with a ‘‘-’’.

- f exprfile
Read one or more patterns (regular expressions or strings) from exprfile. The
patterns in exprfile are terminated by a n e w l i n e character. An empty line in
exprfile indicates a null pattern. When multiple - e or - f options are
specified, all the patterns specified will be used.

- h Suppress printing of filenames when searching multiple files.

- i Ignore uppercase/lowercase distinction during comparisons, as defined by
the locale in L C _ C T Y P E [see L A N G on e n v v a r(BA_ENV)]. Valid for single-
byte characters only.

- l Print the names of files with matching lines once, separated by newlines.
Does not repeat the names of files when a pattern is found more than once.
If the input file is s t d i n, then a message such as ‘‘(s t a n d a r d i n p u t)’’ will
be written, depending upon the message locale.

- n Precede each line by its line number in the file (first line is 1).

- q Quiet, do not write anything to the standard output, regardless of any
matches. Exits with zero if any input line is matched.

- s Suppress error messages about nonexistent or unreadable files.

- v Print all lines except those that contain a pattern.

- x Match only lines for which the pattern matches the entire line. For character
strings, the pattern must match all characters in the line. For regular expres-
sions, this option is equivalent to placing a ‘‘ˆ’’ at the start of the pattern, and
a ‘‘$’’ at the end of the pattern.

Errors
Exit status returns 0 if any matches are found, 1 if none are found, and 2 for syntax
errors or inaccessible files (even if matches were found).

SEE ALSO
e d (BU_CMD), e g r e p (AU_CMD), s e d (BU_CMD), s h (BU_CMD)

LEVEL
Level 1.

NOTICES
Lines are limited to L I N E _ M A X bytes; longer lines are truncated. L I N E _ M A X is
defined in / u s r / i n c l u d e / l i m i t s . h.

If there is a line with embedded nulls, g r e p will only match up to the first null; if it
matches, it will print the entire line.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/grep
svid

Page: 76

head (BU_CMD) head (BU_CMD)

NAME
h e a d – display first few lines of files

SYNOPSIS
h e a d [- n number] [file . . .]

h e a d [-number] [file . . .]

DESCRIPTION
h e a d copies the first number lines of each file to the standard output. If no file is
given, h e a d copies lines from the standard input. The environment variable
L C _ C T Y P E is referenced so that the codesets used in the data are processed correctly.
[see L A N G on e n v v a r(BA_ENV)]. The default value of number is 10 lines.

When more than one file is specified, the start of each file will look like:
= = >file< = =

Thus, a common way to display a set of short files, identifying each one, is:

h e a d - n 9 9 9 9 file1 file2 . . .

SEE ALSO
c a t(BU_CMD), m o r e(BU_CMD), p g(BU_CMD), t a i l(BU_CMD)

LEVEL
Level 1.

NOTICES
The -number option has been made obsolete by POSIX, hence it is recommended
that application authors avoid its use in favor of the - n number option.

The length of the input lines is limited to {L I N E _ M A X} bytes.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/head
svid

Page: 77

kill (BU_CMD) kill (BU_CMD)

NAME
k i l l – send a signal to a process

SYNOPSIS
k i l l [- s signal] pid . . .

k i l l - l [status]

k i l l [-signal] pid . . .

k i l l - l

DESCRIPTION
k i l l sends a signal to the specified processes. The value of signal may be numeric
or symbolic [see s i g n a l(BA_OS)]. The symbolic signal name is the name as it
appears in / u s r / i n c l u d e / s y s / s i g n a l . h, with the S I G prefix stripped off. Signal
15 (S I G T E R M) is sent by default; this will normally kill processes that do not catch or
ignore the signal.

pid is either an unsigned or negative integer that identifies which process(es) should
receive the signal. If pid is unsigned, the process with process ID pid is selected. If
pid is preceded by a negative sign (-), all processes with process group ID pid are
selected.

For example, if pid is 0, all processes in the process group are signaled.

The signaled process must belong to the current user unless the user is a privileged
user.

The process number of each asynchronous process started with & is reported by the
shell (unless more than one process is started in a pipeline, in which case the
number of the last process in the pipeline is reported). Process numbers can also be
found by using p s(BU_CMD).

Options
- s signal Send signal to the selected processes.

- l [status] If status is null, print a list of symbolic signal names that may be used
as signal. If status is not null, it is either a return status from a process
terminated by a signal (stored in the ? environment variable for the
most recently completed process), or a signal number. In both cases
the symbolic name of the matching signal is printed.

-signal Send signal to the selected processes. This option is the same as - s
signal.

- l Print a list of symbolic signal names that may be used as signal.

SEE ALSO
k i l l(BA_OS), p s(BU_CMD), s h(BU_CMD), s i g n a l(BA_OS), s i g n a l(BA_ENV)

LEVEL
Level 1.

NOTICES
The -signal usage is for backward compatibility, and may not be supported in
future releases. It should therefore be avoided.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/kill
svid

Page: 78

lfmt (BU_CMD) lfmt (BU_CMD)

NAME
lfmt – display error message in standard format and pass to logging and monitor-
ing services

SYNOPSIS
lfmt [–c][–f flags][–l label][–s severity][–g catalog:msgnum] format [args]

DESCRIPTION
l f m t uses format for p r i n t f style formatting of args. l f m t encapsulates the output
in the standard error message format and displays the output on stderr. In addition,
l f m t forwards its output to the logging and monitoring facility.

The following options are available.

– c Display the output on the console, with a date and time stamp.

– f flags Specify logging information as a comma-separated list of keywords
from the following sets:

Major classification
Identifies the source of the condition. Identifiers are: h a r d
(hardware), s o f t (software), and f i r m (firmware).

Message source subclassification
Identifies the type of software in which the problem is
spotted. Identifiers are: a p p l (application), u t i l (utility),
and o p s y s (operating system).

– g catalog:msgid
Specify that a localized version of format should be retrieved from a
locale-specific message database. catalog indicates the message database
that contains the localized version of the format string. catalog is limited
to 14 characters. These characters must be selected from a set of all char-
acter values, excluding \ 0 (null) and the ASCII codes for / (slash) and :
(colon).

msgid is a positive number that indicates the index of the string into the
message database.

If catalog does not exist in the current locale (identified by the
L C _ M E S S A G E S or L A N G environment variables), or if msgid is out of
bounds, l f m t will attempt to retrieve the message from the C locale. If
this second retrieval fails, l f m t uses the format string as passed on the
command line.

l f m t will output M e s s a g e n o t f o u n d ! ! \ n as the format string if catalog
is not a valid catalog name as defined above and msgid is not a positive
number.

– l label Specify the label string to be displayed with the message (e.g.,
" U X : c a t "). label is a character string no more than 25 characters in
length; it will be automatically suffixed with a colon (:). When
unspecified, no label is displayed as part of the message.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/lfmt
svid

Page: 79

lfmt (BU_CMD) lfmt (BU_CMD)

– s severity
Specify the severity string to be displayed with the message. Acceptable
strings include the standard severities in either their print string (i.e.,
H A L T, E R R O R, I N F O, W A R N I N G, and " T O F I X ") or keyword (i.e., h a l t,
e r r o r, i n f o, w a r n, and a c t i o n) forms, or any other user-defined string.
The severity will be suffixed with a colon (:). The E R R O R severity will be
used if no severity is specified.

Standard Error Message Format
l f m t displays error messages in the following format:

label: severity: text

If no label was defined using the - l label option, the message is displayed in the for-
mat:

severity: text

If l f m t is called twice to display an error message and a helpful action or recovery
message, the output can look like the following:

label: severity: text
label: T O F I X : text

ERRORS
Upon success, lfmt exits with code 0. Upon failure, lfmt exits with the following
codes:

1 write error.

2 cannot log or forward to console.

3 syntax error.

EXAMPLE
Example 1:

l f m t – f s o f t , u t i l – l U X : t e s t – s i n f o " t e s t f a c i l i t y e n a b l e d "

displays the message to stderr and makes it available for logging:

U X : t e s t : I N F O : t e s t f a c i l i t y e n a b l e d

SEE ALSO
envvar(BA_ENV), gettxt(BU_CMD), pfmt(BU_CMD), pfmt(BA_LIB), lfmt(BA_LIB),
printf(BU_CMD).

LEVEL
Level 2, April 1991.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/lfmt
svid

Page: 80

line (BU_CMD) line (BU_CMD)

NAME
l i n e – read one line

SYNOPSIS
l i n e

DESCRIPTION
l i n e copies one line (up to a newline) from the standard input and writes it on the
standard output. It returns an exit code of 1 on E O F and always prints at least a
newline. It is often used within shell files to read from the user’s terminal.

The L C _ C T Y P E environment variable defines the processing of the codesets used in
the input file. [See L A N G in e n v v a r(BA_ENV).]

SEE ALSO
r e a d (BA_OS) s h (BU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/line
svid

Page: 81

listusers (BU_CMD) listusers (BU_CMD)

NAME
listusers – list user information

SYNOPSIS
listusers [–h] [–v]
listusers [–g groups] [–l logins]

DESCRIPTION
Executed without any options, this command lists all user logins sorted by login.
The output shows the login ID and the account field value in /etc/passwd.

–h Prints the valid security levels of the invoking user. This option is only
valid if the enhanced security extension is implemented.

–v Prints the default security level of the invoking user. This option is only
valid if the enhanced security extension is implemented.

–g Lists all users belonging to group, sorted by login. Multiple groups can be
specified as a comma-separated list.

–l Lists the user or users specified by logins, sorted by login. Multiple logins
can be specified as a comma-separated list.

USAGE
The –l and –g options can be combined. Users will only be listed once, even if they
belong to more than one of the selected groups.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/listusers
svid

Page: 82

ln (BU_CMD) ln (BU_CMD)

NAME
l n – link files

SYNOPSIS
l n - s [- f] [- n] file1 [file2 . . .] target

DESCRIPTION
The l n command links filen to target by creating a directory entry that refers to tar-
get. By using l n with one or more file names, the user may create one or more links
to target.

The l n command may be used to create both hard links and symbolic links; by
default it creates hard links. A hard link to a file is indistinguishable from the origi-
nal directory entry. Any changes to a file are effective independent of the name
used to reference the file. Hard links may not span file systems and may not refer
to directories.

Without the - s option, l n is used to create hard links. filen is linked to target. If tar-
get is a directory, another file named filen is created in target and linked to the origi-
nal filen. If target is a file that already exists, l n will print an error and go onto the
next filen (unless - f is specified).

There are three options to l n. If multiple options are specified, the one with the
highest priority is used and the remainder are ignored. The options, in descending
order of priority, are:

- s l n will create a symbolic link. A symbolic link contains the name of the file
to which it is linked. Symbolic links may span file systems and may refer to
directories. If the linkname exists, then do not overwrite the contents of the
file. A symbolic link’s permissions are always set to read, write, and execute
permission for owner, group, and world (7 7 7).

- f l n will link files without generating any errors, even if the mode of the file
target forbids writing. Note, however, that if target refers to a directory that
has no write permissions, errors will still occur.

- n If the linkname is an existing file, do not overwrite the contents of the file.
The - f option overrides this option.

If the - s option is used with two arguments, target may be an existing directory or a
non-existent file. If target already exists and is not a directory, an error is returned.
filen may be any path name and need not exist. If it exists, it may be a file or direc-
tory and may reside on a different file system from target. If target is an existing
directory, a file is created in directory target whose name is filen or the last com-
ponent of filen. This file is a symbolic link that references filen. If target does not
exist, a file with the name target is created and it is a symbolic link that references
filen.

If the - s option is used with more than two arguments, target must be an existing
directory or an error will be returned. For each filen, a file is created in target whose
name is filen or its last component; each new filen is a symbolic link to the original
filen. The files and target may reside on different file systems.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/ln
svid

Page: 83

ln (BU_CMD) ln (BU_CMD)

SEE ALSO
c h m o d (BU_CMD), c p (BU_CMD), l i n k (BA_OS), r m (BU_CMD), s t a t (BA_OS),
s y m l i n k (BA_OS)

FUTURE DIRECTIONS
This page is Level 2 to allow for the future - n option.

LEVEL
Level 2.

NOTICES
Doing operations that involve ‘‘. .’’ (such as ‘‘c d . .’’) in a directory that is symbol-
ically linked will reference the original directory not the target.

The - s option does not use the current working directory. In the command

l n - s path target

path is taken literally without being evaluated against the current working direc-
tory.

If the POSIX2 environment variable is set and exported, the behavior of l n with no
options is the same as the current l n - n.

The - n option is for backward compatibility only. It should not be used, since it
may be removed in future releases.

Use the P O S I X 2 environmental variable to get POSIX.2 behavior that is inconsistent
with existing System V behavior. P O S I X 2 requires no prompting in case of existing
target.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/ln
svid

Page: 84

ls (BU_CMD) ls (BU_CMD)

NAME
l s, l c – list contents of directory

SYNOPSIS
l s [- a b C c d e F f g i L l m n o p q R r s t u x 1] [file . . .]

l c [- 1 C F L a b c f g i l m n o p q R r s t u x] [name . . .]

DESCRIPTION
For each directory argument, l s lists the contents of the directory; for each file argu-
ment, l s repeats its name and any other information requested. The output is
sorted alphabetically by default. When arguments are not given, the current direc-
tory is listed. When several arguments are given, the arguments are first sorted
appropriately, but file arguments appear before directories and their contents. l s
processes supplementary code set characters according to the locale specified in the
L C _ C T Y P E and L C _ C O L L A T E environment variables [see L A N G on e n v v a r(BA_ENV)].
except as noted under the - b and - q options below.

There are three major listing formats. The default format for output directed to a
terminal is multi-column with entries sorted down the columns. The options - C
and - x enable multi-column formats; and the - m option enables stream output for-
mat, in which files are listed across the page, separated by commas.

To determine output formats for the - C, - x, and - m options, l s uses an environ-
ment variable, C O L U M N S, to determine the number of positions available on one out-
put line. If this variable is not set, the t e r m i n f o database is used to determine the
number of columns, based on the environment variable T E R M. If this information
cannot be obtained, 80 columns are assumed.

The l s command has the following options:

- a List all entries, including those that begin with a period (.), which are nor-
mally not listed.

- b Force printing of non-printable characters to be in the octal \ddd notation.
All multibyte characters are considered printable.

- C Multi-column output with entries sorted down the columns. This is the
default output format.

- c Use time of last modification of the i-node (file created, mode changed, and
so on) for sorting (- t) or printing (- l).

- d If an argument is a directory, list only its name (not its contents); often used
with - l to get the status of a directory.

- e extent_opt
Specify how to handle a file that has extent attribute information. Extent
attributes include reserved space, a fixed extent size, and extent alignment.
It may not be possible to preserve the information if the destination file sys-
tem does not support extent attributes, has a different block size than the
source file system, or lacks free extents appropriate to satisfy the extent
attribute requirements. Valid values for extent_opt are:

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/ls
svid

Page: 85

ls (BU_CMD) ls (BU_CMD)

w a r n Issue a warning message if extent attribute information cannot
be kept (default).

f o r c e Fail the copy if extent attribute information cannot be kept.

i g n o r e Ignore extent attribute information entirely.

When used with - l, - e displays extent attribute information for files with
reserved space or fixed extent sizes.

- F Put a slash (/) after each filename if the file is a directory, an asterisk (∗) if
the file is executable, a vertical bar (|) if it is a FIFO, and an at sign (@) if the
file is a symbolic link.

- f Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off - l, - t, - s, and - r, and turns on - a;
the order is the order in which entries appear in the directory.

- g The same as - l, except that the owner is not printed.

- i For each file, print the i-node number in the first column of the report.

- L When listing status, if an argument is a symbolic link, list the status of the
file or directory referenced by the link rather than that of the link itself.

- l List in long format, giving mode, number of links, owner, group, size in
bytes, and date and time of last modification for each file. The date is given
in the locale specified by the L C _ T I M E environmental variable. If the file is a
special file, the size field contains the major and minor device numbers
rather than a size. If the file is a symbolic link, the filename is printed fol-
lowed by ‘‘- >’’ and the pathname of the referenced file.

- m Stream output format; files are listed across the page, separated by commas.

- n The same as - l, except that the owner’s U I D and group’s G I D numbers are
printed, rather than the associated character strings.

- o The same as - l, except that the group is not printed.

- p Put a slash (/) after each filename if the file is a directory.

- q Force printing of non-printable characters in file names as the character
question mark (?). All multibyte characters are considered printable.

- R Recursively list subdirectories encountered.

- r Reverse the order of sort to get the reverse of the locale’s collation sequence
or oldest first as appropriate.

- s Give size in blocks, including indirect blocks, for each entry.

- t Sort by time stamp (latest first) instead of by name. The default is the last
modification time. (See - n and - c.)

- u Use time of last access instead of last modification for sorting (with the - t
option) or printing (with the - l option).

- x Multi-column output with entries sorted across rather than down the page.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/ls
svid

Page: 86

ls (BU_CMD) ls (BU_CMD)

- 1 Print one entry per line of output.

- z Print the alias of the security level for each file. (Valid only if the Enhanced
Security Utilities are installed.)

- Z Print the fully qualified security level for each file. (Valid only if the
Enhanced Security Utilities are installed.)

The - z and - Z options are mutually exclusive. If the - z option is specified and
there is not an alias assigned to the level, the decimal value of the level identifier
(LID) is displayed. If the - z or - Z option is specified and the level is in the valid-
inactive state, the decimal value of the LID is displayed. [See l v l n a m e(1M) for a
description of LID states.]

The mode printed under the - l option consists of eleven possible characters. The
first character may be one of the following:

d if the entry is a directory;
l if the entry is a symbolic link;
b if the entry is a block special file;
c if the entry is a character special file;
p if the entry is a fifo (named pipe) special file;
- if the entry is a regular file.

The next 9 characters are interpreted as three sets of three bits each. The first set
refers to the owner’s permissions; the next to permissions of others in the user-
group of the file; and the last to all others. Within each set, the three characters
indicate permission to read, write, and execute the file as a program, respectively.
For a directory, ‘‘execute’’ permission is interpreted to mean permission to search
the directory for a specified file.

l s - l (the long list) prints its output as follows:

- r w x r w x r w x 1 s m i t h d e v 1 0 8 7 6 M a y 1 6 9 : 4 2 p a r t 2

Reading from right to left, you see that the current directory holds one file, named
p a r t 2. Next, the last time that file’s contents were modified was 9:42 A.M. on May
16. The file contains 10,876 bytes. The owner of the file, or the user, belongs to the
group d e v (perhaps indicating ‘‘development’’), and their login name is s m i t h. The
number, in this case 1, indicates the number of links to file p a r t 2 [see
c p(BU_CMD)]. Finally, the dash and letters tell you that user, group, and others
have permissions to read, write, and execute p a r t 2.

The execute (x) symbol here occupies the third position of the three-character
sequence. A - in the third position would have indicated a denial of execution per-
missions.

The permissions are indicated as follows:

r the file is readable
w the file is writable
x the file is executable
- the indicated permission is not granted

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/ls
svid

Page: 87

ls (BU_CMD) ls (BU_CMD)

l mandatory locking occurs during access (the set-group-ID bit is on and
the group execution bit is off)

s the set-user-ID or set-group-ID bit is on, and the corresponding user or
group execution bit is also on

S undefined bit-state (the set-user-ID bit is on and the user execution bit
is off)

t the 1000 (octal) bit, or sticky bit, is on [see c h m o d(BU_CMD)], and exe-
cution is on

T the 1000 bit is turned on, and execution is off (undefined bit-state)

For user and group permissions, the third position is sometimes occupied by a char-
acter other than x or -. s also may occupy this position, referring to the state of the
set-ID bit, whether it be the user’s or the group’s. The ability to assume the same ID
as the user during execution is, for example, used during login when you begin as
root but need to assume the identity of the user you login as.

In the case of the sequence of group permissions, l may occupy the third position.
l refers to mandatory file and record locking. This permission describes a file’s
ability to allow other files to lock its reading or writing permissions during access.

For other permissions, the third position may be occupied by t or T. These refer to
the state of the sticky bit and execution permissions.

The - e option (used with - l) displays extent attribute information as follows:

- r w x r w x r w x 1 s m i t h d e v 1 0 8 7 6 M a y 1 6 9 : 4 2 p a r t 2 : r e s 3 6 e x t 3 a l i g n n o e x t e n d

This output line indicates a file with 36 blocks of reservation, a fixed extent size of 3
blocks, all extents aligned to 3 block boundaries, and the file unable to be grown
once the current reservation is exhausted.

The format of the date given in the long listing is dependent on the environment
variable L C _ T I M E (the examples are in the C locale). [see L A N G on
e n v v a r(BA_ENV)].

USAGE
Examples

An example of a file’s permissions is:

- r w x r - - r - -

This describes a file that is readable, writable, and executable by the user and read-
able by the group and others.

Another example of a file’s permissions is:

- r w s r - x r - x

This describes a file that is readable, writable, and executable by the user, readable
and executable by the group and others, and allows its user-ID to be assumed, dur-
ing execution, by the user presently executing it.

Another example of a file’s permissions is:

- r w - r w l - - -

Page 4

FINAL COPY
June 15, 1995

File: bu_cmd/ls
svid

Page: 88

ls (BU_CMD) ls (BU_CMD)

This describes a file that is readable and writable only by the user and the group
and can be locked during access.

An example of a command line:

l s - a

This command prints the names of all files in the current directory, including those
that begin with a dot (.), which normally do not print.

Another example of a command line:

l s - a i s n

This command provides information on all files, including those that begin with a
dot (a), the i-number—the memory address of the i-node associated with the file—
printed in the left-hand column (i); the size (in blocks) of the files, printed in the
column to the right of the i-numbers (s); finally, the report is displayed in the
numeric version of the long list, printing the UID (instead of user name) and GID
(instead of group name) numbers associated with the files.

When the sizes of the files in a directory are listed, a total count of blocks, including
indirect blocks, is printed.

Files
/ e t c / p a s s w d user IDs for l s - l and l s - o

/ e t c / g r o u p group IDs for l s - l and l s - g

/ u s r / s h a r e / l i b / t e r m i n f o / ? /∗ terminal information database

SEE ALSO

c h m o d (BU_CMD), f i n d (BU_CMD), g e t a c l (ES_CMD), l v l n a m e (ES_CMD),
s e t a c l (ES_CMD)

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995

File: bu_cmd/ls
svid

Page: 89

mail (BU_CMD) mail (BU_CMD)

NAME
mail, rmail – send or read mail

SYNOPSIS
mail [-epqr] [-ffile]

mail [-t] name ...

rmail [-t] name ...

DESCRIPTION
The command mail without arguments prints a user’s mail, message-by-message,
in last-in first-out order. Mail is stored in the user’s mailfile. For each message, the
user is prompted with a ?, and a line is read from the standard input to determine
the disposition of the message:

<newline>
Go on to next message.

+ Same as <newline>.

d Delete message and go on to next message.

p Print message again.

– Go back to previous message.

s [file]
Save message in the named file (mbox is default).

w [file]
Save message, without its header, in the named file (mbox is default).

m [name ...]
Mail the message to the named users (names are user login names; the
default is the user).

q Put undeleted mail back in the mailfile and stop.

EOF (Usually CTRL-D.) Same as q.

x Put all mail back in the mailfile unchanged and stop.

!command
Escape to the command interpreter to execute command.

* Print a command summary.

The optional arguments alter the printing of the mail:

–e causes mail not to be printed. An exit value of 0 is returned if the user has
mail; otherwise, an exit value of 1 is returned.

–p causes all mail to be printed without prompting for disposition.

–q causes mail to terminate after interrupts. Normally an interrupt only
causes the termination of the message being printed.

–r causes messages to be printed in first-in, first-out order.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/mail
svid

Page: 90

mail (BU_CMD) mail (BU_CMD)

–ffile causes mail to use file (e.g., mbox) instead of the default mailfile.

When names (user login names) are given, mail takes the standard input up to an
end-of-file (or up to a line consisting of just a .) and adds it to each recipient’s
mailfile. The message is preceded by three lines:

- a line containing the sender’s name and a postmark,
- a line of the form "Content-Length: XXXXX", and
- a blank line,

where the XXXXX on the Content-Length: line represents the number of characters
in the message after the blank line. The –t option causes the message to be pre-
ceded by all users the mail is sent to. If a user being sent mail is not recognized, or
if mail is interrupted during input, the file dead.letter will be saved to allow
editing and resending. Note that this is regarded as a temporary file in that it is
recreated every time needed, erasing the previous contents of dead.letter.

The command rmail only permits the sending of mail.

FILES
/etc/passwd to identify sender and locate persons

$HOME/mbox saved mail

dead.letter unmailable text

SEE ALSO
sh(BU_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/mail
svid

Page: 91

make (BU_CMD) make (BU_CMD)

NAME
m a k e – maintain, update, and regenerate groups of programs

SYNOPSIS
m a k e [- f makefile] [- e i k n p P q r s t u w] [names]

DESCRIPTION
m a k e allows the programmer to maintain, update, and regenerate groups of com-
puter programs. m a k e executes commands in makefile to update one or more target
names (names are typically programs). If the - f option is not present, then
m a k e f i l e, M a k e f i l e, and the Source Code Control System (SCCS) files
s . m a k e f i l e, and s . M a k e f i l e are tried in order. If makefile is -, the standard input
is taken. More than one - f makefile argument pair may appear.

m a k e updates a target only if its dependents are newer than the target. All prere-
quisite files of a target are added recursively to the list of targets. Missing files are
deemed to be outdated.

The following list of directives can be included in makefiles to modify the behavior
of m a k e. They are used in makefiles as if they were targets:

. D E F A U L T : If a file must be made but there are no explicit commands or relevant
built-in rules, the commands associated with the name . D E F A U L T are
used if it exists.

. I G N O R E : Same effect as the - i option.

. M U T E X : Serialize the updating of specified targets (see the ‘‘Parallel make’’
subsection, below).

. P R E C I O U S :
Dependents of the . P R E C I O U S entry will not be removed when quit or
interrupt are pressed.

. S I L E N T : Same effect as the - s option.

The options for m a k e are listed below:

- e Environment variables override assignments within makefiles.

- f makefile Description filename (makefile is assumed to be the name of a descrip-
tion file).

- i Ignore error codes returned by invoked commands.

- k Abandon work on the current entry if it fails, but continue on other
branches that do not depend on that entry.

- n No execute mode. Print commands, but do not execute them. Even
command lines beginning with an @ are printed.

- p Print out the complete set of macro definitions and target descriptions.

- P Update in parallel more than one target at a time. The number of tar-
gets updated concurrently is determined by the environment variable
P A R A L L E L and the presence of . M U T E X directives in makefiles.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/make
svid

Page: 92

make (BU_CMD) make (BU_CMD)

- q Question. m a k e returns a zero or non-zero status code depending on
whether or not the target file has been updated.

- r Do not use the built-in rules.

- s Silent mode. Do not print command lines before executing.

- t Touch the target files (causing them to be updated) rather than issue
the usual commands.

- u Unconditionally m a k e the target, ignoring all timestamps.

- w Suppress warning messages. Fatal messages will not be affected.

Creating the makefile
The makefile invoked with the - f option (or accessed by default) is a carefully
structured file of explicit instructions for updating and regenerating programs, and
contains a sequence of entries that specify dependencies. The first line of an entry is
a blank-separated, non-null list of targets, then a :, then a (possibly null) list of
prerequisite files or dependencies. Text following a ; and all following lines that
begin with a tab are shell commands to be executed to update the target. The first
non-empty line that does not begin with a tab or # begins a new dependency or
macro definition. Shell commands may be continued across lines with a backslash-
new-line (\ new-line) sequence. Everything printed by make (except the initial tab)
is passed directly to the shell as is. Thus,

e c h o a \
b

will produce

a b

exactly the same as the shell would.

Sharp (#) and new-line surround comments including contained \ new-line
sequences.

The following makefile says that p g m depends on two files a . o and b . o, and that
they in turn depend on their corresponding source files (a . c and b . c) and a com-
mon file i n c l . h:

p g m : a . o b . o
c c a . o b . o - o p g m

a . o : i n c l . h a . c
c c - c a . c

b . o : i n c l . h b . c
c c - c b . c

Command lines are executed one at a time, each by its own shell. The S H E L L
environment variable can be used to specify which shell m a k e should use to execute
commands. The default is / u s r / b i n / s h. The first one or two characters in a com-
mand can be the following: @, -, @ -, or - @. If @ is present, printing of the command
is suppressed. If - is present, m a k e ignores an error. A line is printed when it is
executed unless the - s option is present, or the entry . S I L E N T : is included in the
makefile, or unless the initial character sequence contains a @. The - n option
specifies printing without execution; however, if the command line has the string
$ (M A K E) in it, the line is always executed (see the discussion of the M A K E F L A G S

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/make
svid

Page: 93

make (BU_CMD) make (BU_CMD)

macro in the Environment section below). The - t (touch) option updates the
modified date of a file without executing any commands.

Commands returning non-zero status normally terminate m a k e. If the - i option is
present, if the entry . I G N O R E : is included in the makefile, or if the initial character
sequence of the command contains -, the error is ignored. If the - k option is
present, work is abandoned on the current entry, but continues on other branches
that do not depend on that entry.

Interrupt and quit cause the target to be deleted unless the target is a dependent of
the directive . P R E C I O U S.

Parallel make
If m a k e is invoked with the - P option, it tries to build more than one target at a
time, in parallel. (This is done by using the standard UNIX system process mechan-
ism which enables multiple processes to run simultaneously.) For the makefile
shown in the example in the previous section, it would create processes to build
a . o and b . o in parallel. After these processes were complete, it would build p g m.

The number of targets m a k e will try to build in parallel is determined by the value
of the environment variable P A R A L L E L. If - P is invoked, but P A R A L L E L is not set,
then m a k e will try to build no more than two targets in parallel.

You can use the . M U T E X directive to serialize the updating of some specified targets.
This is useful when two or more targets modify a common output file, such as
when inserting modules into an archive or when creating an intermediate file with
the same name, as is done by l e x and y a c c. If the makefile in the previous section
contained a . M U T E X directive of the form

. M U T E X : a . o b . o

it would prevent m a k e from building a . o and b . o in parallel.

Environment
The environment is read by m a k e. All variables are assumed to be macro
definitions and are processed as such. The environment variables are processed
before any makefile and after the internal rules; thus, macro assignments in a
makefile override environment variables. The - e option causes the environment to
override the macro assignments in a makefile. Suffixes and their associated rules in
the makefile will override any identical suffixes in the built-in rules.

The M A K E F L A G S environment variable is processed by m a k e as containing any legal
input option (except - f, - p and - r) defined for the command line. Further, upon
invocation, m a k e invents the variable if it is not in the environment, puts the current
options into it, and passes it on to invocations of commands. Thus, M A K E F L A G S
always contains the current input options. This feature proves very useful for
‘‘super-makes’’. In fact, as noted above, when the - n option is used, the command
$ (M A K E) is executed anyway; hence, one can perform a m a k e - n recursively on a
whole software system to see what would have been executed. This result is possi-
ble because the - n is put in M A K E F L A G S and passed to further invocations of
$ (M A K E). This usage is one way of debugging all of the makefiles for a software
project without actually doing anything.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/make
svid

Page: 94

make (BU_CMD) make (BU_CMD)

Include Files
If the string i n c l u d e appears as the first seven letters of a line in a makefile, and is
followed by a blank or a tab, the rest of the line is assumed to be a filename and will
be read by the current invocation, after substituting for any macros.

Macros
Entries of the form string1 = string2 are macro definitions. string2 is defined as all
characters up to a comment character or an unescaped new-line. Subsequent
appearances of $ (string1[:subst1= [subst2]]) are replaced by string2. The
parentheses are optional if a single-character macro name is used and there is no
substitute sequence. The optional :subst1=subst2 is a substitute sequence. If it is
specified, all non-overlapping occurrences of subst1 in the named macro are
replaced by subst2. Strings (for the purposes of this type of substitution) are delim-
ited by blanks, tabs, new-line characters, and beginnings of lines. An example of
the use of the substitute sequence is shown in the Libraries section below.

Internal Macros
There are five internally maintained macros that are useful for writing rules for
building targets.

$∗ The macro $∗ stands for the filename part of the current dependent with the
suffix deleted. It is evaluated only for inference rules.

$ @ The $ @ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$ < The $ < macro is only evaluated for inference rules or the . D E F A U L T rule. It is
the module that is outdated with respect to the target (the manufactured
dependent file name). Thus, in the . c . o rule, the $ < macro would evaluate to
the . c file. An example for making optimized . o files from . c files is:

. c . o :
c c - c - O $∗. c

or:
. c . o :

c c - c - O $ <

$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are outdated with respect to the
target, and essentially those modules that must be rebuilt.

$ % The $ % macro is only evaluated when the target is an archive library member
of the form l i b (f i l e . o). In this case, $ @ evaluates to l i b and $ % evaluates
to the library member, f i l e . o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to directory part for D
and file part for F. Thus, $ (@ D) refers to the directory part of the string $ @. If there
is no directory part, . / is generated. The only macro excluded from this alternative
form is $?.

Suffixes
Certain names (for instance, those ending with . o) have inferable prerequisites such
as . c, . s, and so on. If no update commands for such a file appear in the makefile,
and if an inferable prerequisite exists, that prerequisite is compiled to make the

Page 4

FINAL COPY
June 15, 1995

File: bu_cmd/make
svid

Page: 95

make (BU_CMD) make (BU_CMD)

target. In this case, m a k e has inference rules that allow building files from other
files by examining the suffixes and determining an appropriate inference rule to
use. The current default inference rules are:

. c . c ̃ . f . f ̃ . s . s ̃ . s h . s h ̃ . C . C ̃

. c . a . c . o . c ̃ . a . c ̃ . c . c ̃ . o . f . a . f . o . f ̃ . a . f ̃ . f . f ̃ . o

. h ̃ . h . l . c . l . o . l ̃ . c . l ̃ . l . l ̃ . o . s . a . s . o . s ̃ . a . s ̃ . o

. s ̃ . s . s h ̃ . s h . y . c . y . o . y ̃ . c . y ̃ . o . y ̃ . y . C . a . C . o . C ̃ . a

. C ̃ . C . C ̃ . o . L . C . L . o . L ̃ . C . L ̃ . L . L ̃ . o . Y . C . Y . o . Y ̃ . C

. Y ̃ . o . Y ̃ . Y

The internal rules for m a k e are contained in the source file r u l e s . c for the m a k e
program. These rules can be locally modified. To print out the rules compiled into
the m a k e on any machine in a form suitable for recompilation, the following com-
mand is used:

m a k e - p f - 2 > / d e v / n u l l < / d e v / n u l l

A tilde in the above rules refers to an SCCS file [see s c c s f i l e(4)]. Thus, the rule
. c ̃ . o would transform an SCCS C source file into an object file (. o). Because the s .
of the SCCS files is a prefix, it is incompatible with the m a k e suffix point of view.
Hence, the tilde is a way of changing any file reference into an SCCS file reference.

A rule with only one suffix (for example, . c :) is the definition of how to build x
from x. c. In effect, the other suffix is null. This feature is useful for building tar-
gets from only one source file, for example, shell procedures and simple C pro-
grams.

Additional suffixes are given as the dependency list for . S U F F I X E S. Order is
significant: the first possible name for which both a file and a rule exist is inferred as
a prerequisite. The default list is:

. S U F F I X E S : . o . c . c ̃ . y . y ̃ . l . l ̃ . s . s ̃ . s h . s h ̃ . h . h ̃ . f . f ̃ . C

. C ̃ . Y . Y ̃ . L . L ̃

Here again, the above command for printing the internal rules will display the list
of suffixes implemented on the current machine. Multiple suffix lists accumulate;
. S U F F I X E S : with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

p g m : a . o b . o
c c a . o b . o - o p g m

a . o b . o : i n c l . h

This abbreviation is possible because m a k e has a set of internal rules for building
files. The user may add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, C F L A G S, L F L A G S, and
Y F L A G S are used for compiler options to c c(1), l e x(1), and y a c c(1), respectively.
Again, the previous method for examining the current rules is recommended.

Page 5

FINAL COPY
June 15, 1995

File: bu_cmd/make
svid

Page: 96

make (BU_CMD) make (BU_CMD)

The inference of prerequisites can be controlled. The rule to create a file with suffix
. o from a file with suffix . c is specified as an entry with . c . o : as the target and no
dependents. Shell commands associated with the target define the rule for making
a . o file from a . c file. Any target that has no slashes in it and starts with a dot is
identified as a rule and not a true target.

Libraries
If a target or dependency name contains parentheses, it is assumed to be an archive
library, the string within parentheses referring to a member within the library.
Thus, l i b (f i l e . o) and $ (L I B) (f i l e . o) both refer to an archive library that con-
tains f i l e . o. (This example assumes the L I B macro has been previously
defined.)The expression $ (L I B) (f i l e 1 . o f i l e 2 . o) is not legal. Rules pertaining
to archive libraries have the form .XX. a where the XX is the suffix from which the
archive member is to be made. An unfortunate by-product of the current imple-
mentation requires the XX to be different from the suffix of the archive member.
Thus, one cannot have l i b (f i l e . o) depend upon f i l e . o explicitly. The most
common use of the archive interface follows. Here, we assume the source files are
all C type source:

l i b : l i b (f i l e 1 . o) l i b (f i l e 2 . o) l i b (f i l e 3 . o)
@ e c h o l i b i s n o w u p - t o - d a t e

. c . a :
$ (C C) - c $ (C F L A G S) $ <
$ (A R) $ (A R F L A G S) $ @ $ (< F : . c = . o)
r m - f $ (< F : . c = . o)

In fact, the . c . a rule listed above is built into m a k e and is unnecessary in this exam-
ple. A more interesting, but more limited example of an archive library mainte-
nance construction follows:

l i b : l i b (f i l e 1 . o) l i b (f i l e 2 . o) l i b (f i l e 3 . o)
$ (C C) - c $ (C F L A G S) $ (? : . o = . c)
$ (A R) $ (A R F L A G S) l i b $?
r m $?
@ e c h o l i b i s n o w u p - t o - d a t e

. c . a : ;

Here the substitution mode of the macro expansions is used. The $? list is defined
to be the set of object filenames (inside l i b) whose C source files are outdated. The
substitution mode translates the . o to . c. (Unfortunately, one cannot as yet
transform to . c ̃; however, this transformation may become possible in the future.)
Also note the disabling of the . c . a : rule, which would have created each object
file, one by one. This particular construct speeds up archive library maintenance
considerably. This type of construct becomes very cumbersome if the archive
library contains a mix of assembly programs and C programs.

FILES
[M m] a k e f i l e
s . [M m] a k e f i l e
/ u s r / b i n / s h

Page 6

FINAL COPY
June 15, 1995

File: bu_cmd/make
svid

Page: 97

make (BU_CMD) make (BU_CMD)

/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / u x e p u
language-specific message file

SEE ALSO
c c(SD_CMD), c d(BU_CMD), l e x(SD_CMD), p r i n t f(BA_LIB), s h(BU_CMD),
y a c c(SD_CMD)

LEVEL
Level 1.

NOTICES
Some commands return non-zero status inappropriately; use - i or the - command
line prefix to overcome the difficulty.

Filenames with the characters = : @ will not work. Commands that are directly
executed by the shell, notably c d(1), are ineffectual across new-lines in m a k e. The
syntax l i b (f i l e 1 . o f i l e 2 . o f i l e 3 . o) is illegal. You cannot build
l i b (f i l e . o) from f i l e . o.

Page 7

FINAL COPY
June 15, 1995

File: bu_cmd/make
svid

Page: 98

mkdir (BU_CMD) mkdir (BU_CMD)

NAME
mkdir – make a directory

SYNOPSIS
mkdir [–m mode] [–p] [–M] [–l level] dirname ...

DESCRIPTION
The command mkdir creates the specified directories. Standard entries, ., for the
directory itself, and .., for its parent, are made automatically. mkdir cannot
create these entries by name. Creation of a directory requires write permission in
the parent directory. If the parent directory is a Multilevel Directory (MLD) and the
process is in real mode [see mldmode(ES_CMD)], the directory created will be an
effective directory. Note that unlike regular directories, effective directories do not
inherit the default ACLs of the parent.

The owner ID and group ID of the new directories are set to the process’s real user
ID and group ID, respectively.

The mkdir command has the following options:

–m Specifies the mode to be used for new directories. Choices for mode
can be found in chmod(BU_CMD).

–p Creates all non-existing parent directories first.

–M Specifies that dirname is a MLD. This option is only valid when the
caller has appropriate privileges and the Enhanced Security Exten-
sion is implemented.

–l level Specifies that level is to be applied to the named directory. It must be
either a valid level alias name or be in the following format:

h_name [:c_name [,c_name]]...]

where h_name and c_name are described in lvlname(ES_CMD). This
level information is verified against the Level Translation Data Base
(LTDB) and then placed on the named directory. This option is only
valid when the Enhanced Security Extension is implemented.

RETURN VALUE
The command mkdir returns exit code 0 if all directories were successfully made;
otherwise, it prints a diagnostic and returns non-zero.

EXAMPLE
To create the subdirectory structure ltr/jd/jan, type:

mkdir –p ltr/jd/jan

SEE ALSO
intro(BA_OS), mkdir(BA_OS), rm(BU_CMD), sh(BU_CMD), umask(BU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/mkdir
svid

Page: 99

more (BU_CMD) more (BU_CMD)

NAME
more, page – browse or page through a text file

SYNOPSIS
more [-cdflsu] [-lines] [+linenumber] [+/pattern] [filename ...]

page [-cdflsu] [-lines] [+linenumber] [+/pattern] [filename ...]

DESCRIPTION
more is a filter that displays the contents of a text file on the terminal, one screenful
at a time. It normally pauses after each screenful, and prints --More-- at the bot-
tom of the screen. more provides a two-line overlap between screens for con-
tinuity. If more is reading from a file rather than a pipe, the percentage of charac-
ters displayed so far is also shown.

more scrolls up to display one more line in response to a return character; it
displays another screenful in response to a space character. Other commands are
listed below.

page clears the screen before displaying the next screenful of text; it only provides
a one-line overlap between screens.

more sets the terminal to noecho mode, so that the output can be continuous.
Commands that you type do not normally show up on your terminal, except for the
/ and ! commands.

If the standard output is not a terminal, more acts just like cat except that a
header is printed before each file in a series.

If no files are given on the command line, more reads from standard input.

more accepts the following options and arguments:

–c Clear before displaying. Using -c redraws the screen, instead of scrolling it,
for faster displays. This option is ignored if the terminal does not have the
ability to clear to the end of a line.

–d Display error messages rather than ringing the terminal bell if an unrecog-
nized command is used. This option is helpful for inexperienced users.

–f Do not fold long lines. This option is useful when lines contain nonprinting
characters or escape sequences.

–l Do not treat formfeed characters (CTRL-L) as page breaks. If –l is not used,
more pauses to accept commands after any line containing a ˆL character
(CTRL-L). Also, if a file begins with a formfeed, the screen is cleared before
the file is printed.

–s Squeeze. Replace multiple blank lines with a single blank line.

–u Suppress generation of underlining escape sequences. Normally, more
handles underlining in a manner appropriate to the terminal. If the terminal
can perform underlining or has a stand-out mode, more supplies appropri-
ate escape sequences as called for in the text file.

–lines Display the indicated number of lines in each screenful, rather than the
default (the number of lines in the terminal screen less two).

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/more
svid

Page: 100

more (BU_CMD) more (BU_CMD)

+linenumber
Start up at linenumber.

+/pattern
Start up two lines above the line containing the regular expression pattern.
Note: unlike editors, this construct should not end with a ‘ / ’. If it does,
then the trailing slash is taken as a character in the search pattern.

more uses the terminal’s terminfo entry to determine its display characteristics,
and looks in the environment variable MORE for any preset options [see
terminfo(TI_ENV)]. For instance, to page through files using the –c mode by
default, set the value of MORE to –c.

Command Descriptions
The commands take effect immediately; it is not necessary to type a carriage return.
Up to the time when the command character itself is given, the user may type the
line kill character to cancel the numerical argument being formed. In addition, the
user may type the erase character to redisplay the ‘ --More--(xx%) ’ message.

In the following commands, i is a numerical argument (1 by default).

i<space> Display another screenful, or i more lines if i is specified.

i<return> Display another line, or i more lines, if specified.

iˆD (CTRL–D) Display (scroll down) a number of lines equal to half the
screen size. If i is given, the scroll size is set to i lines.

id Same as ˆD.

iz Same as <space>, except that i, if present, becomes the new default
number of lines per screenful.

is Skip i lines and then print a screenful.

if Skip i screenfuls and then print a screenful.

iˆB (CTRL-B) Skip back i screenfuls and then print a screenful.

b Same as ˆB (CTRL-B).

q
Q Exit from more.

= Display the current line number.

v Drop into the vi editor [see vi(AU_CMD)] at the current line of the
current file.

h Help. Give a description of all the more commands.

i/pattern Search for the ith occurrence of the regular expression pattern. Display
the screenful starting two lines prior to the line that contains the ith
match for the regular expression pattern, or the end of a pipe, whichever
comes first. If more is displaying a file and there is no such match, its
position in the file remains unchanged. Regular expressions can be
edited using erase and kill characters. Erasing back past the first column
cancels the search command.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/more
svid

Page: 101

more (BU_CMD) more (BU_CMD)

in Search for the ith occurrence of the last pattern entered.

´ Single quote. Go to the point from which the last search started. If no
search has been performed in the current file, go to the beginning of the
file.

!command
Invoke a shell (determined by the SHELL environment variable with sh
the default) to execute command. The characters % and !, when used
within command are replaced with the current filename and the previous
shell command, respectively. If there is no current filename, % is not
expanded. Prepend a backslash to these characters to escape expansion.

i:n Skip to the ith next filename given in the command line, or to the last
filename in the list if i is out of range.

i:p Skip to the ith previous filename given in the command line, or to the
first filename if i is out of range. If given while more is positioned
within a file, go to the beginning of the file. If more is reading from a
pipe, more simply rings the terminal bell.

:f Display the current filename and line number.

:q
:Q Exit from more (same as q or Q).

. Dot. Repeat the previous command.

ˆ \ Halt a partial display of text. more stops sending output, and displays
the usual --More-- prompt. Some output, however, is lost as a result.

FILES
/etc/terminfo terminal data base
/usr/lib/more.help help file

SEE ALSO
cat(BU_CMD), sh(BU_CMD), terminfo(TI_ENV), vi(AU_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/more
svid

Page: 102

nawk (BU_CMD) nawk (BU_CMD)

NAME
nawk – pattern-directed scanning and processing language

SYNOPSIS
nawk [-F fs] [prog] [inputfile ...]

nawk [-F fs] [-f progfile] [inputfile ...]

DESCRIPTION
nawk scans each input inputfile for lines that match any of a set of patterns specified
literally in prog or in a file specified as -f progfile. With each pattern there can be an
associated action that will be performed when a line of a inputfile matches the pat-
tern. Each line is matched against the pattern portion of every pattern-action state-
ment; the associated action is performed for each matched pattern. The inputfile
name - means the standard input. Any inputfile of the form var=value is treated as
an assignment, not a filename.

An input line is made up of fields separated by white space, or by the regular
expression assigned to special variable FS. The -F fs option defines the input field
separator as the regular expression fs.

The fields are denoted $1, $2, ...; $0 refers to the entire line.

A pattern-action statement has the form

pattern { action }

A missing { action } means print the line; a missing pattern always matches.
Pattern-action statements are separated by newlines or semicolons.

An action is a sequence of statements. A statement can be one of the following:
if(expression) statement [else statement]
while(expression) statement
for(expression ; expression ; expression) statement
for(var in array) statement
do statement while(expression)
break
continue
{ [statement ...] }
expression # commonly var = expression
print [expression-list] [> expression]
printf format [, expression-list] [> expression]
return [expression]
next # skip remaining patterns on this input line
delete array[expression] # delete an array element
exit [expression] # exit immediately; status is expression

Statements are terminated by semicolons, newlines or right braces. An empty
expression-list stands for $0. String constants are quoted " ", with the usual C
language escapes recognized within. Expressions take on string or numeric values
as appropriate, and are built using the operators + - * / % ˆ (exponentiation),
and concatenation (indicated by a blank). The operators ! ++ -- += -= *= /=
%= ˆ= > >= < <= == != ?: are also available in expressions. Variables may be
scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows for

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/nawk
svid

Page: 103

nawk (BU_CMD) nawk (BU_CMD)

a form of associative memory. Multiple subscripts such as [i,j,k] are permitted;
the constituents are concatenated, separated by the value of SUBSEP.

The print statement prints its arguments on the standard output (or on a file if
>file or >>file is present or on a pipe if cmd is present), separated by the current
output field separator, and terminated by the output record separator. file and cmd
may be literal names or parenthesized expressions; identical string values in dif-
ferent statements denote the same open file. The printf statement formats its
expression list according to the format [see printf(BA_LIB)]. The built-in function
close(expr) closes the file or pipe expr .

The customary functions exp, log, sqrt, sin, cos, and atan2 are built in. Other
built-in functions are:

length
the length in characters of its argument taken as a string, or of $0 if no argu-
ment.

rand random number on (0,1)

srand
sets the seed for rand

int truncates to an integer value

substr(s, m, n)
the n-character substring of s that begins at position m counted from 1.

index(s, t)
the position in s where the string t occurs, or 0 if it does not.

match(s, r)
the position in s where the regular expression r occurs, or 0 if it does not.
The variables RSTART and RLENGTH are set to the position and length of
the matched string.

split(s, a, fs)
splits the string s into array elements a[1] , a[2] , . . ., a[n] , and returns n . The
separation is done with the regular expression fs or with the field separator
FS if fs is not given.

sub(r, t, s)
substitutes t for the first occurrence of the regular expression r in the string
s . If s is not given, $0 is used. sub returns the number of replacements.

gsub same as sub except that all occurrences of the regular expression are
replaced; gsub returns the number of replacements.

sprintf(fmt, expr, ...)
the string resulting from formatting expr ... according to the printf format
fmt

system(cmd)
executes cmd and returns its exit status

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/nawk
svid

Page: 104

nawk (BU_CMD) nawk (BU_CMD)

The ‘‘function’’ getline sets $0 to the next input record from the current input
file; getline <file sets $0 to the next record from file . getline x sets variable x
instead. Finally, cmd|getline pipes the output of cmd into getline; each call of
getline returns the next line of output from cmd . In all cases, getline returns 1
for a successful input, 0 for end of file, and –1 for an error.

Patterns are arbitrary Boolean combinations (with ! || &&) of regular expres-
sions and relational expressions. Regular expressions are as in egrep [see
egrep(AU_CMD)]. Isolated regular expressions in a pattern apply to the entire line.
Regular expressions may also occur in relational expressions, using the operators ˜
and !˜. /re/ is a constant regular expression; any string (constant or variable) may
be used as a regular expression, except in the position of an isolated regular expres-
sion in a pattern.

A pattern may consist of two patterns separated by a comma; in this case, the action
is performed for all lines from an occurrence of the first pattern though an
occurrence of the second.

A relational expression is one of the following:
expression matchop regular-expression
expression relop expression
expression in array-name
(expr,expr,...) in array-name

where a relop is any of the six relational operators in C, and a matchop is either ˜
(matches) or !˜ (does not match). A conditional is an arithmetic expression, a rela-
tional expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first
input line is read and after the last. BEGIN and END do not combine with other pat-
terns.

Variable names with special meanings:

FS regular expression used to separate fields; also settable by option -F
fs.

NF number of fields in the current record.

NR ordinal number of the current record.

FNR ordinal number of the current record in the current file.

FILENAME the name of the current input file.

RS input record separator (default newline).

OFS output field separator (default blank).

ORS output record separator (default newline).

OFMT output format for numbers (default %.6g).

SUBSEP separates multiple subscripts (default 034).

ARGC argument count, assignable.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/nawk
svid

Page: 105

nawk (BU_CMD) nawk (BU_CMD)

ARGV argument array, assignable; non-null members are taken as filenames.

Functions may be defined (at the position of a pattern-action statement) thus:

function foo(a, b, c) { ...; return x }

Parameters are passed by value if scalar and by reference if array name; functions
may be called recursively. Parameters are local to the function; all other variables
are global.

EXAMPLE
length > 72

Print lines longer than 72 characters.

{ print $2, $1 }
Print first two fields in opposite order.

BEGIN { FS = ",[\t]*|[\t]+" }
{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs.

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Add up first column, print sum and average.

/start/, /stop/
Print all lines between start/stop pairs.

BEGIN { # Simulate echo(1)
for (i = 1; i < ARGC; i++) printf "%s ", ARGV[i]
printf "\n"
exit }

SEE ALSO
egrep(AU_CMD), lex(SD_CMD), printf(BA_LIB), sed(BU_CMD).

FUTURE DIRECTIONS
In the SVID, 4th Edition, awk has the functionality described above. nawk is now
designated Level 2 in the SVID Fourth Edition and will be removed when the Level
2 period has expired.

LEVEL
Level 2, June 1993.

Page 4

FINAL COPY
June 15, 1995

File: bu_cmd/nawk
svid

Page: 106

nl (BU_CMD) nl (BU_CMD)

NAME
nl – line numbering filter

SYNOPSIS
nl [-htype] [-btype] [-ftype] [-vstart#] [-iincr] [-p]

[-lnum] [-ssep] [-wwidth] [-nformat] [-ddelim] [file]

DESCRIPTION
The command nl reads lines from the named file or the standard input if no file is
named and reproduces the lines on the standard output. Lines are numbered on
the left in accordance with the command options in effect.

nl views the text it reads in terms of logical pages. Line numbering is reset at the
start of each logical page. A logical page consists of a header, a body, and a footer
section. Empty sections are valid. Different line numbering options are indepen-
dently available for header, body, and footer (e.g., no numbering of header and
footer lines while numbering blank lines only in the body).

The start of logical page sections are signaled by input lines containing nothing but
the following delimiter character(s):

Line Start of

\ :\ :\ : header
\ :\ : body
\ : footer

Unless otherwise specified, nl assumes the text being read is in a single logical page
body.

Options may appear in any order and may be intermingled with an optional file
name. Only one file may be named. The options are:

–btype Specifies which logical page body lines are to be numbered. Recognized
types and their meaning are: a, number all lines; t, number lines with
printable text only, where all characters from supplementary code sets
are considered printable; n, no line numbering; pexp, number only
lines that contain the regular expression specified in exp [see
ed(BU_CMD)]. Default type for logical page body is t (text lines num-
bered).

–htype Same as –btype except for header. Default type for logical page header is
n (no lines numbered).

–ftype Same as –btype except for footer. Default for logical page footer is n (no
lines numbered).

–p Do not restart numbering at logical page delimiters.

–vstart# The initial value used to number logical page lines. Default is 1.

–iincr The increment value used to number logical page lines. Default is 1.

–ssep The character(s) used in separating the line number and the correspond-
ing text line. These characters must be single-byte characters. Default
sep is a tab.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/nl
svid

Page: 107

nl (BU_CMD) nl (BU_CMD)

–wwidth The number of columns to be used for the line number. Default width is
6.

–nformat The line numbering format. Recognized values are: ln, left justified,
leading zeroes suppressed; rn, right justified, leading zeroes suppressed;
rz, right justified, leading zeroes kept. Default format is rn (right
justified).

–lnum The number of blank lines to be considered as one. For example, –l2
results in only the second adjacent blank being numbered (if the
appropriate –ha, –ba, and/or –fa option is set). Default is 1.

–dxx The delimiter characters specifying the start of a logical page section may
be changed from the default characters (\:) to two user-specified charac-
ters. These characters must be single-byte characters. If only one charac-
ter is entered, the second character remains the default character (:). No
space should appear between the –d and the delimiter characters.
(Because backslash is a special character to the command interpreter, use
two backslashes to enter one.)

EXAMPLE
The command:

nl –v10 –i10 –d!+ file1

will number file1 starting at line number 10 with an increment of ten. The logical
page delimiters are !+.

SEE ALSO
pr(BU_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/nl
svid

Page: 108

nohup (BU_CMD) nohup (BU_CMD)

NAME
nohup – run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments]

DESCRIPTION
The command nohup executes command with the signals SIGHUP and SIGQUIT
ignored. If output is not re-directed by the user, both standard output and stan-
dard error are sent to nohup.out. If nohup.out is not writable in the current
directory, output is redirected to $HOME/nohup.out.

USAGE
General.

It is frequently desirable to apply nohup to pipelines or lists of commands. This
can be done only by placing pipelines and command lists in a single file; this file can
then be executed as command, and the nohup applies to everything in the file.

SEE ALSO
sh(BU_CMD), signal(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/nohup
svid

Page: 109

pack (BU_CMD) pack (BU_CMD)

The command pcat does for packed files what cat does for regular files, except
that pcat cannot be used as a filter. The specified files are unpacked and written to
the standard output. Thus to view a packed file named name.z use:

pcat name.z
or

pcat name

To make an unpacked copy, called abc, of a packed file named name.z (without des-
troying name.z) use the command:

pcat name >abc

The command pcat returns the number of files it was unable to unpack. Failure
may occur if:

the file name (exclusive of the .z) has more than {NAME_MAX}-2 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

The command unpack expands files created by pack. For each file name specified
in the command, a search is made for a file called name.z (or just name, if name ends
in .z). If this file appears to be a packed file, it is replaced by its expanded version.
The new file has the .z suffix stripped from its name, and has the same access
modes, access and modification dates, and owner as those of the packed file.

The command unpack returns a value that is the number of files it was unable to
unpack. Failure may occur for the same reasons that it may in pcat, as well as for
the following:

a file with the ‘‘unpacked’’ name already exists;
the unpacked file cannot be created.

SEE ALSO
cat(BU_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/pack
svid

Page: 111

paste (BU_CMD) paste (BU_CMD)

NAME
paste – merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste file1 file2 ...
paste -d list file1 file2 ...
paste -s [-d list] file1 file2 ...

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input
files file1, file2, etc. The file-name – means standard input. It treats each file as a
column or columns of a table and pastes them together horizontally (parallel merg-
ing). In the last form above (–s option), paste combines subsequent lines of the
input file (serial merging).

In all cases, lines are glued together with the tab character, unless the –d option is
used (see below).

Output is to the standard output, so that paste can be used as the start of a pipe,
or as a filter, if – is used in place of a file name.

Without the –d option, the newline characters of each but the last file (or last line in
case of the –s option) are replaced by a tab character.

When the –d option is used, a character from the list immediately following –d
replaces the default tab as the line concatenation character. The list is used circu-
larly, i.e., when exhausted, it is reused. In parallel merging (i.e., no –s option), the
lines from the last file are always terminated with a newline character, not from the
list. The list may contain the special escape sequences: \n (newline), \t (tab), \\
(backslash), and \0 (empty string, not a null character). Quoting may be necessary,
if characters have special meaning to the command interpreter.

EXAMPLE
ls  paste – – – –

list directory in four columns

paste –s –d"\t\n" file
combine pairs of lines into lines

SEE ALSO
cut(BU_CMD), grep(BU_CMD), pr(BU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/paste
svid

Page: 112

pfmt (BU_CMD) pfmt (BU_CMD)

NAME
pfmt – display error message in standard format

SYNOPSIS
p f m t [– l label] [– s severity] [– g catalog:msgid] format [args]

DESCRIPTION
p f m t uses format for p r i n t f style formatting of args. p f m t encapsulates the output
in the standard error message format and displays it on stderr.

The following options are available.

– l label Specify the label string to be displayed with the message (e.g.,
" U X : c a t "). label is a character string no more than 25 characters in
length; it will be automatically suffixed with a colon (:). When
unspecified, no label is displayed as part of the message.

– s severity Specify the severity string to be displayed with the message. Accept-
able strings include the standard severities in either their print string
(i.e., H A L T, E R R O R, I N F O, W A R N I N G, and " T O F I X ") or keyword (i.e.,
h a l t, e r r o r, i n f o, w a r n, and a c t i o n) forms, or any other user-
defined string. The severity will be suffixed with a colon (:). The
E R R O R severity will be used if no severity is specified.

– g catalog:msgid
Specify that a localized version of format should be retrieved from a
locale-specific message database. catalog indicates the message data-
base that contains the localized version of the format string. catalog
must be limited to 14 characters. These characters must be selected
from a set of all characters values, excluding \ 0 (null) and the ASCII
codes for / (slash) and : (colon).

msgid is a positive number that indicates the index of the string into
the message database.

If catalog does not exist in the current locale (identified by the
L C _ M E S S A G E S or L A N G environment variables), or if msgid is out of
bounds, p f m t will attempt to retrieve the message from the C locale.
If this second retrieval fails, p f m t uses the format string as passed on
the command line.

p f m t will output M e s s a g e n o t f o u n d ! ! \ n as the format string if cata-
log is not a valid catalog name as defined above and msgid is not a
positive number.

Standard Error Message Format
p f m t displays error messages in the following format:

label: severity: text

If no label was defined using the - l label option, the message is displayed in the for-
mat:

severity: text

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/pfmt
svid

Page: 113

pfmt (BU_CMD) pfmt (BU_CMD)

If p f m t is called twice to display an error message and a helpful action or recovery
message, the output can look like the following:

label: severity: text
label: T O F I X : text

RETURN VALUE
Upon success, p f m t exits with code 0.

Upon failure, p f m t exits with the following codes:

1 write error.

3 syntax error.

EXAMPLE
Example 1:

p f m t – l U X : t e s t – s e r r o r " S y n t a x e r r o r "

displays the message:

U X : t e s t : E R R O R : S y n t a x e r r o r

SEE ALSO
envvar(BA_ENV), gettxt(BU_CMD), lfmt(BU_CMD), printf(BU_CMD),
lfmt(BA_LIB), pfmt(BA_LIB).

LEVEL
Level 2: April 1991.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/pfmt
svid

Page: 114

pg (BU_CMD) pg (BU_CMD)

NAME
p g – file perusal filter for CRTs

SYNOPSIS
p g [-number] [- p string] [- c e f n r s] [+linenumber] [+ /pattern/] [file . . .]

DESCRIPTION
The p g command is a filter that allows the examination of files one screenful at a
time on a CRT. (If no file is specified or if it encounters the file name -, p g reads
from standard input.) Each screenful is followed by a prompt. If the user types a
carriage return, another page is displayed; other possibilities are listed below. p g
processes supplementary code set characters in files, and recognizes supplementary
code set characters in the string given to the - p option (see below) according to the
locale specified in the L C _ C T Y P E environment variable [see L A N G on
e n v v a r(BA_ENV)]. In regular expressions, pattern searches are performed on char-
acters, not bytes, as described on e d(BU_CMD).

This command is different from previous paginators in that it allows you to back up
and review something that has already passed. The method for doing this is
explained below.

To determine terminal attributes, p g scans the t e r m i n f o data base for the terminal
type specified by the environment variable T E R M. If T E R M is not defined, the termi-
nal type d u m b is assumed.

The command line options are:

–number
An integer specifying the size (in lines) of the window that p g is to use
instead of the default. (On a terminal containing 24 lines, the default win-
dow size is 23).

- c Home the cursor and clear the screen before displaying each page. This
option is ignored if c l e a r _ s c r e e n is not defined for this terminal type in
the t e r m i n f o data base.

- e Causes p g not to pause at the end of each file.

- f Normally, p g splits lines longer than the screen width at characters, but
some sequences of characters in the text being displayed (for example,
escape sequences for underlining) generate undesirable results. The - f
option inhibits p g from splitting lines.

- n Normally, commands must be terminated by a newline character. This
option causes an automatic end of command as soon as a command letter is
entered.

- p string
Causes p g to use string as the prompt. If the prompt string contains a % d,
the first occurrence of % d’ in the prompt will be replaced by the current page
number when the prompt is issued. The default prompt string is ‘‘:’’. string
may contain supplementary code set characters.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/pg
svid

Page: 115

pg (BU_CMD) pg (BU_CMD)

- s Causes p g to print all messages and prompts in standout mode (usually
inverse video).

+linenumber
Start up at linenumber.

+ /pattern/
Start up at the first line containing the regular expression pattern.

The responses that may be typed when p g pauses can be divided into three
categories: those causing further perusal, those that search, and those that modify
the perusal environment.

Commands that cause further perusal normally take a preceding address, an option-
ally signed number indicating the point from which further text should be
displayed. This address is interpreted in either pages or lines depending on the com-
mand. A signed address specifies a point relative to the current page or line, and an
unsigned address specifies an address relative to the beginning of the file. Each com-
mand has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+1)<newline> or <blank>
This causes one page to be displayed. The address is specified in pages.

(+1) l With a relative address this causes p g to simulate scrolling the screen, for-
ward or backward, the number of lines specified. With an absolute address
this command prints a screenful beginning at the specified line.

(+1) d or ˆ D
Simulates scrolling half a screen forward or backward.

if Skip i screens of text.

iz Same as newline except that i, if present, becomes the new default number of
lines per screenful.

The following perusal commands take no address.

. or ˆ L
Typing a single period causes the current page of text to be redisplayed.

$ Displays the last windowful in the file. Use with caution when the input is a
pipe.

The following commands are available for searching for text patterns in the text.
The regular expressions described in e d(BU_CMD) are available. They must always
be terminated by a newline, even if the –n option is specified.

i/pattern/
Search forward for the ith (default i=1) occurrence of pattern. Searching
begins immediately after the current page and continues to the end of the
current file, without wrap-around.

iˆpatternˆ
i?pattern?

Search backwards for the ith (default i=1) occurrence of pattern. Searching
begins immediately before the current page and continues to the beginning
of the current file, without wrap-around. The ˆ notation is useful for Adds

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/pg
svid

Page: 116

pg (BU_CMD) pg (BU_CMD)

100 terminals which will not properly handle the ?.

After searching, p g will normally display the line found at the top of the screen.
This can be modified by appending m or b to the search command to leave the line
found in the middle or at the bottom of the window from now on. The suffix t can
be used to restore the original situation.

The user of p g can modify the environment of perusal with the following com-
mands:

in Begin perusing the ith next file in the command line. The i is an unsigned
number, default value is 1.

ip Begin perusing the ith previous file in the command line. i is an unsigned
number, default is 1.

iw Display another window of text. If i is present, set the window size to i.

s filename
Save the input in the named file. Only the current file being perused is
saved. The white space between the s and filename is optional. This com-
mand must always be terminated by a newline, even if the –n option is
specified.

h Help by displaying an abbreviated summary of available commands.

q or Q Quit p g.

!command
Command is passed to the shell, whose name is taken from the S H E L L
environment variable. If this is not available, the default shell is used. This
command must always be terminated by a newline, even if the –n option is
specified.

At any time when output is being sent to the terminal, the user can press the quit
key (normally CTRL-\) or the interrupt (break) key. This causes p g to stop sending
output, and display the prompt. The user may then enter one of the above com-
mands in the normal manner. Unfortunately, some output is lost when this is done,
because any characters waiting in the terminal’s output queue are flushed when the
quit signal occurs.

If the standard output is not a terminal, then p g acts just like c a t except that a
header is printed before each file (if there is more than one).

EXAMPLES
The following command line uses p g to read the system news:

n e w s | p g - p " (P a g e % d) : "

SEE ALSO
e d (BU_CMD), g r e p (BU_CMD), m o r e (BU_CMD),

LEVEL
Level 2, July 1992.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/pg
svid

Page: 117

pg (BU_CMD) pg (BU_CMD)

NOTICES
While waiting for terminal input, p g responds to BREAK, DEL, and CTRL-\ by ter-
minating execution. Between prompts, however, these signals interrupt p g’s
current task and place the user in prompt mode. These should be used with caution
when input is being read from a pipe, since an interrupt is likely to terminate the
other commands in the pipeline.

The terminal /, ˆ, or ? may be omitted from the searching commands.

If terminal tabs are not set every eight positions, undesirable results may occur.

When using p g as a filter with another command that changes the terminal I/O
options, terminal settings may not be restored correctly.

Page 4

FINAL COPY
June 15, 1995

File: bu_cmd/pg
svid

Page: 118

pr (BU_CMD) pr (BU_CMD)

NAME
pr – print files

SYNOPSIS
pr [[-column] [-wwidth] [-a]] [-e[c]k] [-i[c]k] [-dtrfp] [+page] [-n[c]k]

[-ooffset] [-llength] [-sseparator] [-hheader] [-F] [file ...]

pr [[-m] [-wwidth]] [-e[c]k] [-i[c]k] [-dtrfp] [+page] [-n[c]k] [-ooffset]
[-llength] [-sseparator] [-hheader] [-F] file1 file2...

DESCRIPTION
The command pr prints the named files on the standard output. If file is –, or if no
files are specified, the standard input is assumed. By default, the listing is
separated into pages, each headed by the page number, a date and time, and the
name of the file.

For single column output, line width may not be set and is unlimited.

For multi-column output, by default, columns are of equal width, separated by at
least one space; lines which do not fit are truncated. If the –s option is used, lines
are not truncated and columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are withheld
until pr has completed printing.

The options below may appear singly, or may be combined in any order:

+page Begin printing with page page (default is 1).

–column Produce column columns of output (default is 1). This option should
not be used with –m. The options –e and –i are assumed for multi-
column output.

–a Print multi-column output across the page. This option is appropriate
only with the –column option.

–m Merge and print all files simultaneously, one per column. This option
should not be used with –column.

–d Double-space the output.

–e[c]k Expand input tabs to character positions k+1, 2*k+1, 3*k+1, etc. If k is 0
or is omitted, default tab settings at every eighth position are
assumed. Tab characters in the input are expanded into the appropri-
ate number of spaces. If c (any non-digit character) is given, it is
treated as the input tab character (default for c is the tab character).
The tab character c must be a single byte character. k is the tab posi-
tion specified in columns, not in characters.

–i[c]k In output, replace white space wherever possible by inserting tabs to
character positions k+1, 2*k+1, 3*k+1, etc. If k is 0 or is omitted, default
tab settings at every eighth position are assumed. If c (any non-digit
character) is given, it is treated as the output tab character (default for
c is the tab character). The tab character c must be a single byte char-
acter. k is the tab position specified in columns, not in characters.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/pr
svid

Page: 119

pr (BU_CMD) pr (BU_CMD)

–n[c]k Provide k-digit line numbering (default for k is 5). The number occu-
pies the first k+1 character positions of each column of normal output
or each line of –m output. If c (any non-digit character) is given, it is
appended to the line number to separate it from whatever follows
(default for c is a tab). The tab character c must be a single byte char-
acter. k is the tab position specified in columns, not in characters.

–wwidth Set the width of a line to width character positions for output (default
is 72). Note: this applies to both single and multi-column modes.

–ooffset Offset each line by offset character positions (default is 0). The number
of character positions per line is the sum of the width and offset.

–llength Set the length of a page to length lines (default is 66). If length is less
than what is needed for the page header and trailer, then the option
–t is in effect; that is, header and trailer lines are suppressed in order
to make room for text.

–h header Use header as the header to be printed instead of the file name.

–p Pause before beginning each page if the output is directed to a termi-
nal (pr will ring the bell at the terminal and wait for a carriage
return).

–f Use form-feed character for new pages (default is to use a sequence of
line-feeds). Pause before beginning the first page if the standard out-
put is associated with a terminal.

–r Print no diagnostic reports on failure to open files.

–t Print neither the five-line identifying header nor the five-line trailer
normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page.

–sc Separate columns by the single character c instead of by the appropri-
ate number of spaces (default for c is a tab). c must be a single byte
character.

–F Fold the lines of the input file. When used in multi-column mode
(with the –a or –m options) lines will be folded to fit the current
column’s width; otherwise, they will be folded to fit the current line
width.

EXAMPLE
Print file1 and file2 as a double-spaced, three-column listing headed by ‘‘file list’’:

pr –3dh "file list" file1 file2

Write file1 on file2, expanding tabs to columns 10, 19, 28, . . . :

pr –e9 –t <file1 >file2

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/pr
svid

Page: 120

printf (BU_CMD) printf (BU_CMD)

NAME
printf – print a text string

SYNOPSIS
printf format [arg ...]

DESCRIPTION
The printf command converts, formats, and prints its arguments under control
of the format. It fully supports conversion specifications for strings (%s descriptor);
however, the results are undefined for the other conversion specifications [see
printf(BA_LIB)].

format a character string that contains three types of objects:

1) plain characters, which are simply copied to the output stream.

2) conversion specifications, each of which results in fetching of zero or
more arguments.

3) C-language escape sequences, which are translated into the
corresponding characters.

arg string(s) to be printed under the control of format . The results are
undefined if there are insufficient arguments for the format . If the format
is exhausted while arguments remain, the excess arguments are simply
ignored.

Each conversion specification is introduced by the character %. After the %, the
following appear in sequence:

An optional field, consisting of a decimal digit string followed by a $, speci-
fying the next arg to be converted. If this field is not provided, the arg fol-
lowing the last arg converted will be used.

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width. If the
converted value has fewer characters than the field width, it will be padded
on the left (or right, if the left-adjustment flag –, described below, has been
given) to the field width. The padding is with blanks unless the field width
digit string starts with a zero, in which case the padding is with zeros.

An optional precision that gives the maximum number of characters to be
printed from a string in s conversion. The precision takes the form of a
period (.) followed by a decimal digit string; a null digit string is treated as
zero. Padding specified by the precision overrides the padding specified by
the field width.

A field width or precision or both may be indicated by an asterisk (*)
instead of a digit string. In this case, an integer arg supplies the field width
or precision. The arg that is actually converted is not fetched until the
conversion letter is seen, so the arguments specifying field width or preci-
sion must appear before the arg (if any) to be converted. A negative field
width argument is taken as a – flag followed by a positive field width. If
the precision argument is negative, it will be changed to zero.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/printf
svid

Page: 121

printf (BU_CMD) printf (BU_CMD)

The conversion characters and their meanings are:

s The arg is taken to be a string and characters from the string are printed
until a null character (\0) is encountered or the number of characters indi-
cated by the precision specification is reached. If the precision is missing, it
is taken to be infinite, so all characters up to the first null character are
printed. A null value for arg will yield undefined results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result.

EXAMPLES
printf ’%s %s %s\n’ Good Morning World

results in the output:

Good Morning World

printf ’%2$s %s %1$s\n’ World Good Morning

produces the same output.

SEE ALSO
printf(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/printf
svid

Page: 122

ps (BU_CMD) ps (BU_CMD)

NAME
p s – report process status

SYNOPSIS
p s [options]

DESCRIPTION
p s prints information about active processes. Without options, p s prints informa-
tion about processes associated with the controlling terminal. The output contains
only the process ID, terminal identifier, cumulative execution time, and the com-
mand name. Otherwise, the information that is displayed is controlled by the
options.

Some options accept lists as arguments. Items in a list can be either separated by
commas or else enclosed in double quotes and separated by commas or spaces.
Values for proclist and grplist must be numeric.

The options are:

- e Print information about every process now running.
- d Print information about all processes except session leaders.
- a Print information about all processes most frequently requested: all

those except session leaders and processes not associated with a termi-
nal.

- j Print session ID and process group ID.
- f Generate a full listing. (See below for significance of columns in a full

listing.)
- l Generate a long listing. (See below.)
- Z Print the fully qualified Mandatory Access Control level at which the

process is running; valid only if the Enhanced Security Utilities are
installed.

- z Print the alias of the Mandatory Access Control level at which the pro-
cess is running; valid only if the Enhanced Security Utilities are
installed.

- c Print information in a format that reflects scheduler properties as
described in p r i o c n t l(RT_CMD). The - c option affects the output of
the - f and - l options, as described below.

- t termlist List only process data associated with the terminal given in termlist.
Terminal identifiers may be specified in one of two forms: the device’s
file name (for example, t e r m / 0 4) or, if the device’s file name starts
with t e r m, just the digit identifier (for example, 0 4).

- p proclist List only process data whose process I D numbers are given in proclist.
- u uidlist List only process data whose user I D number or login name is given in

uidlist. In the listing, the numerical user I D will be printed unless you
give the - f option, which prints the login name.

- g grplist List only process data whose group leader’s ID number(s) appears in
grplist. (A group leader is a process whose process ID number is
identical to its process group ID number.

- s sesslist List information on all session leaders whose IDs appear in sesslist.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/ps
svid

Page: 123

ps (BU_CMD) ps (BU_CMD)

Under the - f option, p s tries to determine the command name and arguments
given when the process was created by examining the user block. Failing this, the
command name is printed, as it would have appeared without the - f option, in
square brackets.

The column headings and the meaning of the columns in a p s listing are given
below; the letters f and l indicate the option (full or long, respectively) that causes
the corresponding heading to appear; a l l means that the heading always appears.
Note that these two options determine only what information is provided for a pro-
cess; they do not determine which processes will be listed.

F (l) Flags (hexadecimal and additive) associated with the process

00 Process has terminated: process table entry now avail-
able.

01 A system process: always in primary memory.
02 Parent is tracing process.
04 Tracing parent’s signal has stopped process: parent is

waiting
08 Process is currently in primary memory.
10 Process currently in primary memory: locked until an

event completes.
20 Process cannot be swapped.

S (l) The state of the process:

O Process is running on a processor.
S Sleeping: process is waiting for an event to complete.
R Runnable: process is on run queue.
I Idle: process is being created.
Z Zombie state: process terminated and parent not wait-

ing.
T Traced: process stopped by a signal because parent is

tracing it.
X SXBRK state: process is waiting for more primary

memory.

U I D (f,l) The user I D number of the process owner (the login name is
printed under the - f option).

P I D (all) The process I D of the process (This information is necessary to
kill a process).

P P I D (f,l) The process I D of the parent process.

C (f,l) Processor utilization for scheduling. Not printed when the - c
option is used.

C L S (f,l) Scheduling class for the process. Printed only when the - c
option is used.

P R I (l) The priority of the process. Without the - c option, higher
numbers mean lower priority. With the - c option, higher
numbers mean higher priority.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/ps
svid

Page: 124

ps (BU_CMD) ps (BU_CMD)

If no termlist, proclist, uidlist, or grplist is specified, p s checks s t d i n, s t d o u t, and
s t d e r r in that order, looking for the controlling terminal and will attempt to report
on processes associated with the controlling terminal. In this situation, if s t d i n,
s t d o u t, and s t d e r r are all redirected, p s will not find a controlling terminal, so
there will be no report.

p s - e f may not report the actual start of a tty login session, but rather an earlier
time, when a getty was last respawned on the tty line.

The - x option will not be in future releases. It has no effect unless combined with
the - l option.

Page 4

FINAL COPY
June 15, 1995

File: bu_cmd/ps
svid

Page: 126

pwd (BU_CMD) pwd (BU_CMD)

NAME
pwd – working directory name

SYNOPSIS
pwd

DESCRIPTION
The command pwd prints the path name of the working (current) directory.

ERRORS
Cannot open ... and Read error in ... may indicate possible file system
trouble.

SEE ALSO
cd(BU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/pwd
svid

Page: 127

rm (BU_CMD) rm (BU_CMD)

NAME
rm, rmdir – remove files or directories

SYNOPSIS
rm [-fri] file ...

rmdir dir ...

DESCRIPTION
The command rm removes the entries for one or more files from a directory. If an
entry was the last link to the file, the file is destroyed. Removal of a file requires
write permission in its directory as a minimum, and in addition may require write
permission of the file itself.

If a file has no write permission and the standard input is a terminal, its permissions
are printed and the user is asked for a response. If the response begins with y the
file is deleted, otherwise the file remains. No questions are asked when the option
–f is given or if the standard input is not a terminal.

If file is a symbolic link, the link will be removed, but the file or directory to which it
refers will not be deleted. A user does not need write permissions on a symbolic
link to remove it, provided the user has write permissions in the directory.

If a designated file is a directory, an error comment is printed unless the optional
argument –r has been used. In that case, rm recursively deletes the entire contents
of the specified directory, and the directory itself. Symbolic links that are encoun-
tered with this option will not be traversed. If the removal of a non-empty, write-
protected directory is attempted, the command will always fail (even if the -f
option is used), resulting in an error message.

If the option –i (interactive) is in used, rm asks whether to delete each file, and,
under –r, whether to examine each directory.

The command rmdir removes entries for the named directories, which must be
empty.

ERRORS
To avoid the consequences of inadvertently doing something like:

rm –r .*

it is forbidden to remove the files . or ..

SEE ALSO
unlink(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/rm
svid

Page: 128

sed (BU_CMD) sed (BU_CMD)

NAME
sed – stream editor

SYNOPSIS
sed [-n] [-e script] [-f sfile] [files]

DESCRIPTION
The command sed copies the named files (standard input default) to the standard
output, edited according to a script of commands. The –f option causes the script
to be taken from file sfile; these options accumulate. If there is just one –e option
and no –f options, the flag –e may be omitted. The –n option suppresses the
default output. A script consists of editing commands, one per line, of the following
form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space (unless
something is left after a D command), applies in sequence all commands whose
addresses select that pattern space, and at the end of the script copies the pattern
space to the standard output (except under –n) and deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern space for
subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively across
files, a $ that addresses the last line of input, or a context address, i.e., a /regular
expression/ in the style of the ed command modified as follows:

In a context address, the construction \?regular expression?, where ? is any
character, is identical to /regular expression/. Note that in the context
address \xabc\xdefx, the second x stands for itself, so that the regular
expression is abcxdef.

The escape sequence \n matches a newline embedded in the pattern space.

A period . matches any character except the terminal newline of the pat-
tern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches
the address.

A command line with two addresses selects the inclusive range from the
first pattern space that matches the first address through the next pattern
space that matches the second. (If the second address is a number less than
or equal to the line number first selected, only one line is selected.)
Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the
negation function ! (below).

In the following list of functions the maximum number of permissible addresses for
each function is indicated in parentheses.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/sed
svid

Page: 129

sed (BU_CMD) sed (BU_CMD)

The argument text consists of one or more lines, all but the last of which end with \
to hide the newline. Backslashes in text are treated like backslashes in the replace-
ment string of an s command, and may be used to protect initial blanks and tabs
against the stripping that is done on every script line. The argument rfile or the
argument wfile must terminate the command line and must be preceded by exactly
one blank. Each wfile is created before processing begins. There can be, at most, 10
distinct wfile arguments.

(1)a\
text Append. Place text on the output before reading the next input line.

(2)b label Branch to the : command bearing the label. If label is empty, branch to
the end of the script.

(2)c\
text Change. Delete the pattern space. With 0 or 1 address or at the end of a

two-address range, place text on the output. Start the next cycle.

(2)d Delete the pattern space. Start the next cycle.

(2)D Delete the initial segment of the pattern space through the first newline.
Start the next cycle.

(2)g Replace the contents of the pattern space with the contents of the hold
space.

(2)G Append the contents of the hold space to the pattern space.

(2)h Replace the contents of the hold space with the contents of the pattern
space.

(2)H Append the contents of the pattern space to the hold space.

(1)i\
text Insert. Place text on the standard output.

(2)l List the pattern space on the standard output in an unambiguous form.
Non-printing characters are spelled in two-digit ASCII code, and long
lines are folded.

(2)n Copy the pattern space to the standard output. Replace the pattern
space with the next line of input.

(2)N Append the next line of input to the pattern space with an embedded
newline. (The current line number changes.)

(2)p Print. Copy the pattern space to the standard output.

(2)P Copy the initial segment of the pattern space through the first newline
to the standard output.

(1)q Quit. Branch to the end of the script. Do not start a new cycle.

(2)r rfile Read the contents of rfile. Place them on the output before reading the
next input line.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/sed
svid

Page: 130

sed (BU_CMD) sed (BU_CMD)

(2)s/regular expression/replacement/flags
Substitute the replacement string for instances of the regular expression in
the pattern space. Any character may be used instead of /. For a
fuller description see ed(BU_CMD). The value of flags is zero or more
of:

n n=1-512. Substitute for just the nth occurrence of the regular
expression.

g Global. Substitute for all nonoverlapping instances of the regu-
lar expression rather than just the first one.

p Print the pattern space if a replacement was made.

w wfile Write. Append the pattern space to wfile if a replacement was
made.

(2)t label Test. Branch to the : command bearing the label if any substitutions
have been made since the most recent reading of an input line or execu-
tion of a t. If label is empty, branch to the end of the script.

(2)w wfile Write. Append the pattern space to wfile.

(2)x Exchange the contents of the pattern and hold spaces.

(2)y/string1/string2/
Transform. Replace all occurrences of characters in string1 with the
corresponding character in string2. String1 and string2 must have the
same number of characters. When characters from supplementary code
sets are specified for string1 and string2 for the y command, the results
of processing cannot be guaranteed.

(2)! function
Don’t. Apply the function (or group, if function is {) only to lines not
selected by the address(es).

(0): label This command does nothing; it bears a label for b and t commands to
branch to.

(1)= Place the current line number on the standard output as a line.

(2){ Execute the following commands through a matching } only when the
pattern space is selected.

(0) An empty command is ignored.

(0)# If a sharp (#) appears as the first character on the first line of a script
file, that entire line is treated as a comment, with one exception. If the
character after the # is an ’n’, the default output will be suppressed.
The rest of the line after #n is also ignored. A script file must contain at
least one non-comment, non-empty command line.

SEE ALSO
awk(BU_CMD), ed(BU_CMD), grep(BU_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/sed
svid

Page: 131

sh (BU_CMD) sh (BU_CMD)

NAME
sh, jsh, rsh – shell, the standard/restricted command interpreter

SYNOPSIS
sh [flags] [args]
jsh [flags] [args]
rsh [flags] [args]

DESCRIPTION
The command sh is an interface to a shell that interprets and executes commands
read from a terminal or a file. The command jsh is an interface to the shell which
provides all the functionality of sh and enables Job Control (see ‘‘Job Control’’
below). The command rsh provides an interface to a restricted version of the stan-
dard command interpreter sh; it is used to set up login names and execution
environments whose capabilities are more controlled than those of the standard
shell. See ‘‘Invocation’’ below for the meaning of flags and other arguments to the
shell.

Definitions
A blank is a tab or a space.
A name is a sequence of ASCII letters, digits, or underscores, beginning with a letter
or underscore.
A parameter is a name, a digit, or any of the characters ∗, @, #, ?, –, $, and !.

Commands
A simple command is a sequence of non-blank words separated by blanks. The first
word specifies the name of the command to be executed. Except as specified below,
the remaining words are passed as arguments to the invoked command. The com-
mand name is passed as argument 0 [see exec(BA_OS)]. The value of a simple com-
mand is its exit status if it terminates normally, or (octal) 200+status if it terminates
abnormally [see signal(BA_OS) for a list of status values].

A pipeline is a sequence of one or more commands separated by . The standard
output of each command except the last is connected by a ‘‘pipe’’ [see pipe(BA_OS)]
to the standard input of the next command. Each command is run as a separate
process; the shell waits for the last command to terminate. The exit status of a pipe-
line is the exit status of the last command. Note that the above definition of a pipe-
line includes the degenerate case of a single command with no pipeline operator.
We refer to such a case as a pipeline for notational convenience.

A list is a sequence of one or more pipelines separated by ;, &, &&, or , and
optionally terminated by ; or &. Of these four symbols, ; and & have equal pre-
cedence, which is lower than that of && and . The symbols && and  also have
equal precedence. The symbol ; causes sequential execution of the preceding pipe-
line (that is, the shell waits for the pipeline to finish before executing any commands
following the semicolon); the symbol & causes asynchronous execution of the
preceding pipeline (that is, the shell does not wait for that pipeline to finish). The
symbol && () causes the list following it to be executed only if the preceding pipe-
line returns a zero (non-zero) exit status. An arbitrary number of newlines may
appear in a list, instead of semicolons, to delimit commands.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 132

sh (BU_CMD) sh (BU_CMD)

A command is either a simple command or one of the following. Unless otherwise
stated, the value returned by a command is that of the last simple command executed
in the command.

for name [in word . . .] do list done
Each time a for command is executed, name is set to the next word taken
from the in word list. If in word . . . is omitted, the for command exe-
cutes the do list once for each positional parameter that is set (see ‘‘Param-
eter Substitution’’ below). Execution ends when no more words are in the
list.

case word in [pattern [ pattern] . . .) list ;;] . . . esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for
filename generation (see ‘‘Filename Generation’’) except that a slash, a
leading dot, or a dot immediately following a slash need not be matched
explicitly.

if list then list [elif list then list] . . . [else list] fi
The list following if is executed and, if it returns a zero exit status, the list
following the first then is executed. Otherwise, the list following elif is
executed and, if its value is zero, the list following the next then is exe-
cuted. Failing that, the else list is executed. If no else list or then list is
executed, then the if command returns a zero exit status.

while list do list done
A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; other-
wise the loop terminates. If no commands in the do list are executed,
then the while command returns a zero exit status; until may be used
in place of while to negate the loop termination test.

(list) Execute list in a sub-shell.

{list;} list is simply executed. The { must be followed by a space. (The semi-
colon may be replaced by a newline.)

name() {list;}
Define a function which is referenced by name. The body of the function is
the list of commands between { and }. The { must be followed by a
space. (The semicolon may be replaced by a newline.) Execution of func-
tions is described below (see ‘‘Execution’’). The { and } (open and close
braces, respectively) are not required if the body of the function is a simple
command as defined above, under ‘‘Commands.’’

The following words are only recognized as the first word of a command and when
not quoted:

if then else elif fi case esac for
while until do done { }

Comments
A word beginning with # causes that word and all the characters after it, up to a
newline, to be ignored.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 133

sh (BU_CMD) sh (BU_CMD)

Command Substitution
The standard output from a command enclosed in a pair of grave accents (‘ ‘) may
be used as part or all of a word; trailing newlines are removed.

No interpretation is done on the string before the string is read, except to remove
backslashes (\) used to escape other characters. Backslashes may be used to escape
a grave accent (‘) or another backslash (\) and are removed before the command
string is read. Escaping grave accents allows nested command substitution. If the
command substitution lies within a pair of double quotes, a backslash used to
escape a double quote (\") will be removed; otherwise, it will be left intact.

If a backslash is used to escape a newline character (\newline), both the backslash
and the newline are removed (see ‘‘Quoting’’ below). In addition, backslashes used
to escape dollar signs (\$) are removed. Since parameter substitution is not done
on the command string before it is read, inserting a backslash to escape a dollar sign
has no effect. Backslashes that precede characters other than \, ‘, ", newline, and
$ are left intact when the command string is read.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There are two types
of parameters, positional and keyword. If the parameter name is a single digit
(0–9), it is a positional parameter; otherwise, the name must be a legal name as
defined above, and gives a keyword parameter. Positional parameters may be
assigned values by set. Parameter $0 is set from argument zero when the shell is
invoked. Keyword parameters (also known as variables) may be assigned values
by writing:

name=value [name=value] . . .

Pattern matching is not performed on value. A function and a variable cannot have
the same name.

${parameter}
The value, if any, of the parameter is substituted. The braces are required
only when parameter is followed by a letter, digit, or underscore that is not
to be interpreted as part of its name. If parameter is ∗ or @, all the positional
parameters, starting with $1, are substituted (separated by spaces).

${parameter:–word}
If parameter is set and is non-null, substitute its value; otherwise, substitute
word.

${parameter:=word}
If parameter is not set or is null, set it to word; the value of the parameter is
substituted. Positional parameters may not be assigned in this way.

${parameter:?word}
If parameter is set and is non-null, substitute its value; otherwise, print word
and exit from the shell. If word is omitted, the message:

parameter null or not set

is printed.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 134

sh (BU_CMD) sh (BU_CMD)

${parameter:+word}
If parameter is set and is non-null, substitute word; otherwise, substitute
nothing.

In the above, word is not evaluated unless it is to be used as the substituted string,
so that, in the following example, pwd is executed only if d is not set or is null:

echo ${d:–`pwd`}

If the colon (:) is omitted from the above expressions, the shell only checks whether
parameter is set or not.

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.

– Flags supplied to the shell on invocation or by the set command.

? The decimal value returned by the last synchronously executed command.

$ The process number of this shell.

! The process number of the last background command invoked.

The shell uses the following parameters:

HOME The default argument (home directory) for the cd command.

PATH The search path for commands (see ‘‘Execution’’ below). The user may
not change PATH if executing under rsh.

CDPATH The search path for the cd command. The syntax and usage is similar
to that of PATH.

IFS Internal field separators, normally space, tab, and newline (see ‘‘Blank
Interpretation’’ below).

MAIL If this parameter is set to the name of a mail file, then the shell informs
the user of the arrival of mail in the specified file. The user is informed
only if MAIL is set and MAILPATH is not set.

MAILCHECK
This parameter specifies how often (in seconds) the shell will check for
the arrival of mail in the files specified by the MAILPATH or MAIL
parameters. The default value is 600 seconds (10 minutes). If set to 0,
the shell will check before each primary prompt.

MAILPATH A colon (:) separated list of filenames. If this parameter is set, the shell
informs the user of the arrival of mail in any of the specified files. Each
filename can be followed by % and a message that will be printed
when the modification time changes. The default message is:

you have mail.

PS1 Primary prompt string, by default "$ ".

PS2 Secondary prompt string, by default "> ".

Page 4

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 135

sh (BU_CMD) sh (BU_CMD)

LANG If this parameter is set, the shell will use it to determine the current
locale [see env(SD_CMD) and setlocale(BA_OS)].

SHACCT If this parameter is set to the name of a file writable by the user, the
shell writes an accounting record in the file for each shell procedure
executed.

SHELL When the shell is invoked, it scans the environment (see ‘‘Environ-
ment’’ below) for this name. If it is found and an r appears in the
filename part of its value, the shell becomes a restricted shell.

The shell gives default values to PATH, PS1, PS2, MAILCHECK and IFS.

Blank Interpretation
After parameter and command substitution, the results of substitution are scanned
for internal field separator characters (those found in IFS) and are split into distinct
arguments where such characters are found. Explicit null arguments ("" or ‘‘) are
retained. Implicit null arguments (those resulting from parameters that have no
values) are removed.

Filename Generation
Following substitution, each command word is scanned for the characters ∗, ?, and
[. If one of these characters appears, the word is regarded as a pattern. The word is
replaced with alphabetically sorted filenames that match the pattern. If a filename
that matches the pattern is not found, the word is left unchanged. The character .
at the start of a filename or immediately following a /, as well as the character /
itself, must be matched explicitly.

∗ Matches any string, including the null string.

? Matches any single character.

[. . .] Matches any one of the enclosed characters. A pair of characters
separated by – matches any character lexically between the pair,
inclusive. If the first character following the opening [is a !, any
character not enclosed is matched.

Note that all quoted characters (see below) must be matched explicitly in a
filename.

Quoting
The following characters have a special meaning to the shell and cause termination
of a word unless quoted:

; & ()  ˆ < > newline space tab

Any character except $, \, or ‘ may be quoted (that is, made to stand for itself) by
preceding it with a backslash (\) or inserting it between a pair of single or double
quote marks (for example, ‘∗‘ or "∗"). During processing, the shell may quote cer-
tain characters to prevent them from taking on a special meaning. Backslashes used
to quote a single character are removed from the word before the command is exe-
cuted. The pair \newline is removed from a word before command and parameter
substitution.

Page 5

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 136

sh (BU_CMD) sh (BU_CMD)

With the exception of a single quote mark, all characters enclosed between a pair of
single quotes (‘∗‘) are quoted by the shell. Backslash has no special meaning
inside a pair of single quotes. A single quote may be quoted inside a pair of double
quote marks (for example, "‘").

Inside a pair of double quote marks (""), parameter and command substitution
occurs; the shell quotes the results to avoid blank interpretation and filename gen-
eration. If $∗ is within a pair of double quotes, the positional parameters are substi-
tuted and quoted, separated by quoted spaces ("$1 $2 . . . "). However, if $@ is
within a pair of double quotes, the positional parameters are substituted and
quoted, separated by unquoted spaces ("$1" "$2" . . .). \ quotes the characters
\ , ‘, ", and $. The pair \newline is removed before parameter and command sub-
stitution. If a backslash precedes characters other than \, ‘, ", $, and newline,
then the backslash itself is quoted by the shell.

Prompting
When used interactively, the shell prompts with the value of PS1 before reading a
command. If at any time a newline is typed and further input is needed to com-
plete a command, the secondary prompt (that is, the value of PS2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected using a spe-
cial notation interpreted by the shell. The following may appear anywhere in a sim-
ple command or may precede or follow a command and are not passed on to the
invoked command; substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file does not
exist, it is created; otherwise, it is truncated to zero length.

>>word Use file word as standard output. If the file exists, output is appended
to it (by first seeking to the end-of-file); otherwise, the file is created.

<<[-]word After parameter and command substitution is done on word, the shell
input is read up to the first line that literally matches the resulting
word, or to an end-of-file. If, however, - is appended to <<:

1) leading tabs are stripped from word before the shell input is
read (but after parameter and command substitution is done on
word),

2) leading tabs are stripped from the shell input as it is read and
before each line is compared with word, and

3) shell input is read up to the first line that literally matches the
resulting word, or to an end-of-file.

If any character of word is quoted (see ‘‘Quoting’’ above), no addi-
tional processing is done to the shell input. If no characters of word
are quoted:

1) parameter and command substitution occurs,

Page 6

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 137

sh (BU_CMD) sh (BU_CMD)

2) (escaped) \newline pairs are removed, and

The resulting document becomes the standard input.

<&digit Use the file associated with file descriptor digit as standard input.
Similarly, for the standard output using >&digit.

<&- The standard input is closed. Similarly, for the standard output using
>&-.

If any of the above is preceded by a digit, the file descriptor which will be associ-
ated with the file is that specified by the digit (instead of the default 0 or 1). For
example:

& . . . 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates
redirections from left to right. For example:

. . . 1>xxx 2>&1

first associates file descriptor 1 with the file xxx. It associates file descriptor 2 with
the file associated with file descriptor 1 (that is, xxx). If the order of redirections
were reversed, file descriptor 2 would be associated with the terminal (assuming
file descriptor 1 had been) and file descriptor 1 would be associated with file xxx.

Using the terminology introduced on the first page, under ‘‘Commands,’’ if a com-
mand is composed of several simple commands, redirection is evaluated for the entire
command before it is evaluated for each simple command. That is, the shell evaluates
redirection in the following order: for the entire list, each pipeline within the list,
each command within each pipeline, and each list within each command.

If a command is followed by & the default standard input for the command is the
empty file /dev/null. Otherwise, the environment for executing a command
contains the file descriptors of the invoking shell as modified by input/output
specifications.

Redirection of output is not allowed in the restricted shell.

Environment
The environment is a list of name-value pairs that is passed to an executed program
in the same way as a normal argument list. The shell interacts with the environ-
ment in several ways. On invocation, the shell scans the environment and creates a
parameter for each name found, giving it the corresponding value. If the user
modifies the value of any of these parameters or creates new parameters, none of
these affects the environment unless the export command is used to bind the
parameter of the shell to the environment (see also set –a). A parameter may be
removed from the environment with the unset command. The environment seen
by any executed command is thus composed of any unmodified name-value pairs
originally inherited by the shell, minus any pairs removed by unset, plus any
modifications or additions, all of which must be noted in export commands.

The environment for any simple command may be augmented by prefixing it with
one or more assignments to parameters. Thus:

TERM=450 cmd

Page 7

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 138

sh (BU_CMD) sh (BU_CMD)

and

(export TERM; TERM=450; cmd)

(where cmd uses the value of the environmental variable TERM) are equivalent as far
as the execution of cmd is concerned if cmd is not a special command. If cmd is a
Special Command, then

TERM=450 cmd

modifies the TERM variable in the current shell.

If the -k flag is set, all keyword arguments are placed in the environment, even if
they occur after the command name. For example, in the the following sequence,
the first line prints ‘‘a=b c’’; the third line, ‘‘c’’:

echo a=b c
set –k
echo a=b c

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if the com-
mand is followed by &; otherwise, signals have the values inherited by the shell
from its parent, with the exception of the signal SIGSEGV (see also the trap com-
mand below). Likewise, when invoked as sh, the shell ignores the Job Control sig-
nals SIGTSTP, SIGCONT, SIGTTIN and SIGTTOU [see signal(BA_OS)].

Execution
Each time a command is executed, the command substitution, parameter substitu-
tion, blank interpretation, input/output redirection, and filename generation listed
above are carried out. If the command name matches the name of a defined func-
tion, it is executed in the shell process. If the command name does not match a
defined function, but matches one of the Special Commands listed below [see ‘‘Spe-
cial Commands’’], it is executed in the shell process (note how this differs from the
execution of shell procedures). The positional parameters $1, $2, . . . are set to the
arguments of the function. If the command name matches neither a Special Com-
mand nor the name of a defined function, a new process is created and an attempt
is made to execute the command via an exec routine [see exec(BA_OS)].

The variable PATH defines the search path for the directory containing the com-
mand. Alternative directory names are separated by a colon (:). Note that the
current directory is specified by a null pathname, which can appear immediately
after the equal sign or between the colon delimiters anywhere else in the path list.
If the command name contains a / the search path is not used; such commands are
not executed by the restricted shell. Otherwise, each directory in the path is
searched for an executable file. If the file has execute permission but is not an exe-
cutable (a.out) file, it is assumed to be a file containing shell commands. A sub-
shell is spawned to read it. A parenthesized command is also executed in a sub-
shell.

The location in the search path where a command was found is remembered by the
shell. If the command was found in a relative directory, its location must be re-
determined whenever the current directory changes. The shell forgets all remem-
bered locations whenever the PATH variable is changed or the hash -r command
is executed (see below).

Page 8

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 139

sh (BU_CMD) sh (BU_CMD)

Special Commands
Input/output redirection is permitted for these commands. File descriptor 1 is the
default output location. When Job Control is enabled additional commands are
added to the shell’s environment (see ‘‘Job Control’’).

: No effect; the command does nothing. A zero exit code is returned.

. file Read and execute commands from file and return. The search path specified
by PATH is used to find the directory containing file.

break [n]
Exit from the enclosing for or while loop, if any. If n is specified, break n
levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is
specified, resume at the n-th enclosing loop.

cd [arg]
Change the current directory to arg. The variable HOME is the default arg.
The variable CDPATH defines the search path for the directory containing
arg. Alternative directory names are separated by a colon (:). The default
path is null (specifying the current directory). Note that the current direc-
tory is specified by a null pathname, which can appear immediately after the
equal sign or between the colon delimiters anywhere else in the path list. If
arg begins with a / the search path is not used. Otherwise, each directory in
the path is searched for arg. The cd command may not be executed by rsh.

echo [arg . . .]
Echo arguments. [See echo(BU_CMD) for usage and description.]

eval [arg . . .]
The arguments are read as input to the shell and the resulting command(s)
are executed.

exec [arg . . .]
The command specified by the arguments is executed in place of this shell
without creating a new process. Input/output arguments may appear and,
if no other arguments are given, cause the shell input/output to be
modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is omitted, the
exit status is that of the last command executed. (An end-of-file also causes
the shell to exit.)

export [name . . .]
The given names are marked for automatic export to the environment of sub-
sequently executed commands. If no arguments are given, variable names
that have been marked for export during the current shell’s execution are
listed. (Variable names exported from a parent shell are listed only if they
have been exported again during the current shell’s execution.) Function
names may not be exported.

Page 9

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 140

sh (BU_CMD) sh (BU_CMD)

hash [-r] [name . . .]
For each name, the location in the search path of the command specified by
name is determined and remembered by the shell. The -r option causes the
shell to forget all remembered locations. If no arguments are given, infor-
mation about remembered commands is presented. hits is the number of
times a command has been invoked by the shell process. cost is a measure of
the work required to locate a command in the search path. If a command is
found in a ‘‘relative’’ directory in the search path, after changing to that
directory, the stored location of that command is recalculated. Commands
for which this will be done are indicated by an asterisk (∗) adjacent to the
hits information. cost will be incremented when the recalculation is done.

mldmode

mldmode -r [string]

mldmode -v [string]
With no arguments, the current multilevel directory (MLD) mode is
reported. If -r alone is specified, the MLD mode of the interactive shell is
changed to real mode. If -v alone is specified, the MLD mode of the interac-
tive shell is changed to virtual mode. If the -r or -v option is followed by a
string specifying a command, that command alone is executed in the
specified MLD mode. The default mode upon login is virtual mode.

newgrp [arg]
Equivalent to exec newgrp arg. See newgrp(AU_CMD) for usage and
description.

priv [+-priv_name . . .] set_name [. . .]
For each set_name, priv sets or displays the privileges contained in that
privilege set. set_name may be either max for the maximum privilege set or
work for the working set. priv_name is the name of a privilege. If
priv_names are supplied, priv scans the list and turns off thoses privileges
that are preceded by a minus sign and turns on those that are preceded by a
plus sign in each of the sets listed. If priv_names are not supplied, the priv
command prints the current list of privileges for each of the requested sets.

pwd Print the current working directory. [See pwd(BU_CMD) for usage and
description.]

read name1 [name2 . . .]
One line is read from the standard input and, using the internal field separa-
tor, IFS (normally space or tab), to delimit word boundaries, the first word
is assigned to the first name, the second word to the second name, and so on,
with leftover words assigned to the last name. Lines can be continued using
\newline. Characters other than newline can be quoted by preceding them
with a backslash. These backslashes are removed before words are assigned
to names, and no interpretation is done on the character that follows the
backslash. The return code is 0, unless an end-of-file is encountered.

readonly [name . . .]
The given names are marked readonly and the values of these name(s) may
not be changed by subsequent assignment. If arguments are not given, a list
of all readonly names is printed.

Page 10

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 141

sh (BU_CMD) sh (BU_CMD)

return [n]
Causes a function to exit with the return value specified by n. If n is omit-
ted, the return status is that of the last command executed.

set [--aefhkntuvx [arg . . .]]

–– Do not change any of the flags; useful in setting $1 to –.

-a Mark variables which are modified or created for export.

-e Exit immediately if a command exits with a non-zero exit status.

-f Disable filename generation.

-h Locate and remember function commands as functions are defined.
(Function commands are normally located when the function is exe-
cuted.)

-k All keyword arguments are placed in the environment for a com-
mand, not just those that precede the command name.

-n Read commands but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

Using + rather than – causes these flags to be turned off. These flags can
also be used upon invocation of the shell. The current set of flags may be
found in $–. The remaining arguments are positional parameters and are
assigned, in order, to $1, $2, If arguments are not given, the values of
all names are printed.

shift [n]
The positional parameters from $n+1 . . . are renamed $1 If n is not
given, it is assumed to be 1.

test Evaluate conditional expressions [see test(BU_CMD) for usage and descrip-
tion].

times
Print the accumulated user and system times for processes run from the
shell.

trap [arg] [n] . . .
The command arg is to be read and executed when the shell receives
numeric or symbolic signal(s) n. (Note that arg is scanned once when the
trap is set and once when the trap is taken.) Trap commands are executed in
order of signal number or corresponding symbolic names. Any attempt to
set a trap on a signal that was ignored on entry to the current shell is ineffec-
tive. An attempt to trap on the signal SIGSEGV (memory fault) produces an
error. If arg is absent, all trap(s) n are reset to their original values. If arg is
the null string, this signal is ignored by the shell and by the commands it
invokes. If n is 0, the command arg is executed on exit from the shell. The
trap command with no arguments prints a list of commands associated

Page 11

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 142

sh (BU_CMD) sh (BU_CMD)

with each signal number.

type [name . . .]
For each name, indicate how it would be interpreted if used as a command
name.

ulimit [-[HS] [acdfnstv]]

ulimit [-[HS] [cdfnstv]] limit
ulimit prints or sets hard or soft resource limits. These limits are
described in getrlimit(BA_OS).

If limit is not present, ulimit prints the specified limits. Any number of
limits may be printed at one time. The -a option prints all limits.

If limit is present, ulimit sets the specified limit to limit . The string
unlimited requests the largest valid limit. Limits may be set for only one
resource at a time. Any user may set a soft limit to any value below the
hard limit. Any user may lower a hard limit. Only a privileged user may
raise a hard limit [see su(AU_CMD)].

The -H option specifies a hard limit. The -S option specifies a soft limit. If
neither option is specified, ulimit will set both limits and print the soft
limit.

The following options specify the resource whose limits are to be printed or
set. If no option is specified, the file size limit is printed or set.

-c maximum core file size (in 512-byte blocks)

-d maximum size of data segment or heap (in kbytes)

-f maximum file size (in 512-byte blocks)

-n maximum file descriptor plus 1

-s maximum size of stack segment (in kbytes)

-t maximum CPU time (in seconds)

-v maximum size of virtual memory (in kbytes)

umask [nnn]
The user file-creation mask is set to nnn [see umask(BA_OS)]. If nnn is omit-
ted, the current value of the mask is printed.

unset [name . . .]
For each name, remove the corresponding variable or function. The vari-
ables PATH, PS1, PS2, MAILCHECK and IFS cannot be unset.

wait [n]
Wait for the specified process and report its termination status. If n is not
given, all currently active child processes are waited for and the return code
is 0.

Invocation
If the shell is invoked through an exec routine [see exec(BA_OS)] and the first char-
acter of argument zero is -, commands are initially read from /etc/profile and
from $HOME/.profile, if such files exist. Thereafter, commands are read as
described below. The flags below are interpreted by the shell on invocation only;

Page 12

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 143

sh (BU_CMD) sh (BU_CMD)

note that unless the -c or -s flag is specified, the first argument is assumed to be
the name of a file containing commands, and the remaining arguments are passed
as positional parameters to that command file:

-c string If the -c flag is present, commands are read from string.

-s If the -s flag is present or if no arguments remain, commands are read
from the standard input. Any remaining arguments specify the posi-
tional parameters. Shell output (except for Special Commands) is writ-
ten to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a
terminal, this shell is interactive. In this case, TERMINATE is ignored (so
that kill 0 does not kill an interactive shell) and INTERRUPT is caught
and ignored (so that wait is interruptible). In all cases, QUIT is ignored
by the shell.

-p If the -p flag is present, the shell will not set the effective user and
group IDs to the real user and group IDs.

-r If the -r flag is present, the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

Job Control (jsh) Only
When the shell is invoked as jsh, Job Control is enabled in addition to all the func-
tionality described previously for sh. Typically, Job Control is enabled for the login
shell only. Subshells and non-interactive shells typically do not benefit from the
added functionality of Job Control.

With Job Control enabled, every command or pipeline the user enters at the termi-
nal is called a job. All jobs exist in one of the following states: foreground, back-
ground, or stopped. A job in the foreground has read and write access to the con-
trolling terminal. A job in the background only has conditional write access to the
controlling terminal [see stty(AU_CMD)]. A stopped job is one that has been
placed in a suspended state, usually as a result of a SIGTSTP signal [see
signal(BA_ENV)].

Every job the shell starts is assigned a positive integer, called a job number, which is
tracked by the shell and is used as an identifier to indicate a specific job. Addition-
ally the shell keeps track of the current and previous jobs. The current job is the most
recent job to be started or restarted. The previous job is the first non-current job.

The acceptable syntax for a Job Identifier is of the form:

%jobid

where, jobid may be specified in any of the following formats:

% or + for the current job

- for the previous job

?<string> specify the job for which the command line uniquely contains string

n for job number n, where n is a job number

Page 13

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 144

sh (BU_CMD) sh (BU_CMD)

The restrictions above are enforced after .profile is interpreted.

A restricted shell can be invoked in one of the following ways:

• rsh is the filename part of the last entry in the /etc/passwd file [see
passwd(AU_CMD)];

• the environment variable SHELL exists and rsh is the filename part of its value;

• the shell is invoked and rsh is the filename part of argument 0;

• the shell is invoked with the -r option.

When a command to be executed is found to be a shell procedure, rsh invokes sh
to execute it. Thus it is possible to provide the end-user with shell procedures that
have access to the full power of the standard shell, while imposing a limited menu
of commands; this scheme assumes that the end-user does not have write and exe-
cute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete con-
trol over user actions by performing guaranteed setup actions and leaving the user
in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (for example,
/usr/rbin) that can be safely invoked by a restricted shell. Some systems also
provide a restricted editor, red.

NOTES
Words used for filenames in input/output redirection are not interpreted for
filename generation (see ‘‘Filename Generation’’ above). For example, cat file1
>a∗ will create a file named a∗.

Because commands in pipelines are run as separate processes, variables set in a
pipeline do not have an effect on the parent shell.

If you get the error message

cannot fork, too many processes

try using the wait command [see wait(BA_OS)] to clean up your background
processes. If this doesn’t help, the system process table is probably full or you have
too many active foreground processes. (There is a limit to the number of process
IDs associated with your login, and to the number the system can keep track of.)

Only the last process in a pipeline can be waited for.

If a command is executed, and a command with the same name is installed in a
directory in the search path before the directory where the original command was
found, the shell will continue to exec the original command. Use the hash com-
mand to correct this situation.

RETURN VALUE
Errors detected by the shell, such as syntax errors, cause the shell to return a non-
zero exit status. If the shell is being used non-interactively, execution of the shell
file is abandoned. Otherwise, the shell returns the exit status of the last command
executed (see the exit command above).

Page 15

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 146

sh (BU_CMD) sh (BU_CMD)

jsh Only
If the shell is invoked as jsh and an attempt is made to exit the shell while there are
stopped jobs, the shell issues one warning:

There are stopped jobs.

This is the only message. If another exit attempt is made and there are still stopped
jobs, SIGHUP and SIGCONT signals are sent to these jobs from the kernel and the
shell is exited.

FILES
/dev/null
/etc/profile
/tmp/sh*
$HOME/.profile

SEE ALSO
cd(BU_CMD), echo(BU_CMD), env(SD_CMD), exec(BA_OS), getrlimit(BA_OS),
kill(BU_CMD), newgrp(AU_CMD), passwd(AU_CMD), pipe(BA_OS),
pwd(BU_CMD), setlocale(BA_OS), signal(BA_ENV), signal(BA_OS),
stty(AU_CMD), su(AU_CMD), test(BU_CMD), ulimit(BA_OS), umask(BA_OS),
umask(BU_CMD), wait(BA_OS).

LEVEL
Level 1.

Page 16

FINAL COPY
June 15, 1995

File: bu_cmd/sh
svid

Page: 147

sleep (BU_CMD) sleep (BU_CMD)

NAME
sleep – suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
The command sleep suspends execution for time seconds. It is used to execute a
command after a certain amount of time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

command
sleep 37

done

SEE ALSO
alarm(BA_OS), sleep(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/sleep
svid

Page: 148

sort (BU_CMD) sort (BU_CMD)

NAME
sort – sort and/or merge files

SYNOPSIS
sort [-cmu] [-ooutput] [-y[kmem]] [-zrecsz] [-dfinr] [-btx]

[+pos1 [-pos2]] [files]

DESCRIPTION
The command sort sorts lines of all the named files together and writes the result
on the standard output. The standard input is read if – is used as a file name or no
input files are named.

Comparisons are based on one or more sort keys extracted from each line of input.
By default, there is one sort key, the entire input line, and ordering is lexicographic
by bytes in machine collating sequence.

The following options alter the default behavior:

–c Check that the input file is sorted according to the ordering rules; give
no output unless the file is out of sort.

–m Merge only, the input files are already sorted.

–u Unique: suppress all but one in each set of lines having equal keys.

–ooutput The argument given is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs. There
may be optional blanks between –o and output.

–y[kmem] The amount of main memory used by the sort has a large impact on its
performance. Sorting a small file in a large amount of memory is a
waste. If this option is omitted, sort begins using a system default
memory size, and continues to use more space as needed. If this option
is presented with a value, kmem, sort will start using that number of
kilobytes of memory, unless the administrative minimum or maximum
is violated, in which case the corresponding extremum will be used.
Thus, –y0 is guaranteed to start with minimum memory. By conven-
tion, –y (with no argument) starts with maximum memory.

–zrecsz The size of the longest line read is recorded in the sort phase so buffers
can be allocated during the merge phase. If the sort phase is omitted via
the –c or –m options, a popular system default size will be used. Lines
longer than the buffer size will cause sort to terminate abnormally.
Supplying recsz, which is the actual number of bytes in the longest line
to be merged (or some larger value), will prevent abnormal termination.

The following options override the default ordering rules.

–d ‘‘Dictionary’’ order: only letters, digits and blanks (spaces and tabs) are
significant in comparisons. No comparison is performed for multibyte char-
acters.

–f Fold lower case letters into upper case. Only applies to single byte charac-
ters.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/sort
svid

Page: 149

sort (BU_CMD) sort (BU_CMD)

–i Ignore characters not defined as printable and multibyte characters in non-
numeric comparisons.

–n An initial numeric string, consisting of optional blanks, optional minus sign,
and zero or more digits with optional decimal point, is sorted by arithmetic
value. The –n option implies the –b option (see below). Note that the –b
option is only effective when restricted sort key specifications are in effect.

–r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the
requested ordering rules are applied globally to all sort keys. When attached to a
specific sort key (described below), the specified ordering options override all glo-
bal ordering options for that key.

The notation +pos1 –pos2 restricts a sort key to one beginning at pos1 and ending at
pos2. The characters at positions pos1 and pos2 are included in the sort key (pro-
vided that pos2 does not precede pos1). A missing –pos2 means the end of the line.

Specifying pos1 and pos2 involves the notion of a field, a minimal sequence of char-
acters followed by a field separator or a newline. By default, the first blank (space
or tab) of a sequence of blanks acts as the field separator. All blanks in a sequence
of blanks are considered to be part of the next field; for example, all blanks at the
beginning of a line are considered to be part of the first field. The treatment of field
separators can be altered using the options:

–tx Use x as the field separator character; x is not considered to be part of a field
(although it may be included in a sort key). Each occurrence of x is
significant (i.e., xx delimits an empty field).

–b Ignore leading blanks when determining the starting and ending positions
of a restricted sort key. If the –b option is specified before the first +pos1
argument, it will be applied to all +pos1 arguments. Otherwise, the b flag
may be attached independently to each +pos1 or –pos2 argument (see
below).

The arguments pos1 and pos2 each have the form m.n optionally followed by one or
more of the flags bdfinr. A starting position specified by +m.n is interpreted to
mean the n+1st column in the m+1st field. A missing .n means .0, indicating the
first column of the m+1st field. If the b flag is in effect n is counted from the first
non-blank in the m+1st field; +m.0b refers to the first non-blank column in the
m+1st field.

A last position specified by –m.n is interpreted to mean the nth column (including
separators) after the last character of the mth field. A missing .n means .0, indicat-
ing the last column of the mth field. If the b flag is in effect n is counted from the
last leading blank in the m+1st field; –m.1b refers to the first non-blank column in
the m+1st field.

When there are multiple sort keys, later keys are compared only after all earlier
keys compare equal. Lines that otherwise compare equal are ordered with all bytes
significant.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/sort
svid

Page: 150

sort (BU_CMD) sort (BU_CMD)

Characters from supplementary code sets are collated in code order (EUC represen-
tation).

ERRORS
The sort command comments and exits with non-zero status for various trouble
conditions (e.g., when input lines are too long), and for disorder discovered under
the –c option.

When the last line of an input file is missing a newline character, sort appends
one, prints a warning message, and continues.

EXAMPLE
Sort the contents of infile with the second field as the sort key:

sort +1 –2 infile

Sort, in reverse order, the contents of infile1 and infile2, placing the output
in outfile and using the first column of the second field as the sort key:

sort –r –o outfile +1.0 –1.2 infile1 infile2

Sort, in reverse order, the contents of infile1 and infile2 using the first non-
blank column of the second field as the sort key:

sort –r +1.0b –1.1b infile1 infile2

Print the password file sorted by the numeric user ID (the third colon-separated
field):

sort –t: +2n –3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first
occurrence of lines having the same third field (the options –um with just one input
file make the choice of a unique representative from a set of equal lines predictable):

sort –um +2 –3 infile

SEE ALSO
comm(BU_CMD), join(AU_CMD), uniq(BU_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: bu_cmd/sort
svid

Page: 151

spell (BU_CMD) spell (BU_CMD)

NAME
s p e l l, h a s h m a k e, s p e l l i n, h a s h c h e c k, c o m p r e s s – find spelling errors

SYNOPSIS
s p e l l [- v] [- b] [- x] [+local_file] [files]

DESCRIPTION
s p e l l collects words from the named files and looks them up in a spelling list.
Words that neither occur among nor are derivable (by applying certain inflections,
prefixes, and/or suffixes) from words in the spelling list are printed on the standard
output. If no files are named, words are collected from the standard input.

s p e l l ignores most t r o f f, t b l, and e q n constructions. It also ignores punctuation
marks and special characters (for example, _ and =).

- v All words not literally in the spelling list are printed, and plausible
derivations from the words in the spelling list are indicated.

- b British spelling is checked. Besides preferring c e n t r e, c o l o u r,
p r o g r a m m e, s p e c i a l i t y, t r a v e l l e d, and so on, this option insists upon
-ise in words like s t a n d a r d i s e, Fowler and the OED (Oxford English
Dictionary) to the contrary notwithstanding.

- x Every plausible stem is displayed, one per line, with = preceding each
word.

+local_file Words found in local_file are removed from s p e l l’s output. local_file is
the name of a user-provided file that contains a sorted list of words, one
per line. The list must be sorted with the ordering used by
s o r t(BU_CMD) (for example, upper case preceding lower case). If this
ordering is not followed, some entries in local_file may be ignored. With
this option, the user can specify a set of words that are correct spellings
(in addition to s p e l l’s own spelling list) for each job.

The spelling list is based on many sources, and while more haphazard than an ordi-
nary dictionary, is also more effective with respect to proper names and popular
technical words. Coverage of the specialized vocabularies of biology, medicine,
and chemistry is light.

Alternate auxiliary files (spelling lists, stop list, history file) may be specified on the
command line by using environment variables. These variables and their default
settings are shown in the FILES section. Copies of all misspellings and entries that
specify the login, tty, and time of each invocation of spell are accumulated in the
history file. The stop list filters out misspellings (for example, t h i e r = t h y - y + i e r)
that would otherwise pass.

NOTICES
The spelling list’s coverage is uneven; new installations will probably wish to moni-
tor the output for several months to gather local additions. Typically, these are
kept in a separate local file that is added to the hashed spelling_list via s p e l l i n.

SEE ALSO
s e d (BU_CMD), s o r t (BU_CMD), t e e (BU_CMD),

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/spell
svid

Page: 152

spell (BU_CMD) spell (BU_CMD)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/spell
svid

Page: 153

split (BU_CMD) split (BU_CMD)

NAME
split – split a file into pieces

SYNOPSIS
split [–n] [file [name]]

DESCRIPTION
The command split reads file and writes it in n-line pieces (default 1000 lines)
onto a set of output files. The name of the first output file is name with aa
appended, and so on lexicographically, up to zz (a maximum of 676 files). The
argument name cannot be longer than {NAME_MAX}-2 characters. If no output
name is given, x is default.

If no input file is given, or if – is given in its stead, then the standard input is used.

SEE ALSO
csplit(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/split
svid

Page: 154

strchg (BU_CMD) strchg (BU_CMD)

NAME
strchg, strconf – change or query stream configuration

SYNOPSIS
strchg -h module1[,module2 ...]
strchg -p [-a-u module]
strchg -f file
strconf [-t -m module]

DESCRIPTION
These commands are used to alter or query the configuration of the stream associ-
ated with the user’s standard input. The strchg command pushes modules on
and/or pops modules off the stream. The strconf command queries the
configuration of the stream. Only the super-user or owner of a STREAMS device
may alter the configuration of that stream.

With the –h option, strchg pushes (pusHes) modules onto a stream; it takes as
arguments the names of one or more pushable streams modules. These modules
are pushed in order; that is, module1 is pushed first, module2 is pushed second, etc.

The –p option pops (poPs) modules off the stream. With the –p option alone,
strchg pops the topmost module from the stream. With the –p and –a options, all
the modules above the topmost driver are popped. When the –p option is followed
by –u module, then all modules above but not including module are popped off the
stream. The –a and –u options are mutually exclusive.

With the –f option, the user can specify a file that contains a list of modules
representing the desired configuration of the stream. Each module name must
appear on a separate line. The first name represents the topmost module and the
last name represents the module that should be closest to the driver. The strchg
command will determine the current configuration of the stream and pop and push
the necessary modules in order to end up with the desired configuration.

The –h, –f and –p options are mutually exclusive.

Invoked without any arguments, strconf prints a list of all the modules in the
stream as well as the topmost driver. The list is printed with one name per line
where the first name printed is the topmost module on the stream (if one exists) and
the last item printed is the name of the driver. With the –t option, only the top-
most module (if one exists) is printed. The –m option determines if the named
module is present on a stream. If it is, strconf prints the message yes and returns
zero. If not, strconf prints the message no and returns a non-zero value. The –t
and –m options are mutually exclusive.

RETURN VALUES
strchg returns zero on success. It prints an error message and returns non-zero
status for various error conditions, including usage error, bad module name, too
many modules to push, failure of an ioctl() on the stream, or failure to open file
from the –f option.

Strconf returns zero on success (for the –m or –t option, "success" means the
named or topmost module is present). It returns a non-zero status if invoked with
the –m or –t option and the module is not present. It prints an error message and
returns non-zero status for various error conditions, including usage error or failure
of an ioctl() on the stream.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/strchg
svid

Page: 155

strchg (BU_CMD) strchg (BU_CMD)

ERRORS
If modules are pushed in the wrong order, one could end up with a stream that
does not function as expected. For ttys, if the line discipline module is not pushed
in the correct place, one could have a terminal that does not respond to any com-
mands.

USAGE
General.

Only the owner of a stream and the super-user may use strchg to alter the
configuration of that stream. Users with read permissions on a stream (and the
super-user) may use strconf to print the configuration of that stream.

EXAMPLES
The following command pushes the module ldterm on the stream associated with
the user’s standard input:

strchg –h ldterm

The following command pops the topmost module from the stream associated with
/dev/term/24. The user must be the owner of this device or the super-user.

strchg –p < /dev/term/24

If the file fileconf contains the following:

compat
ldterm
ptem

then the command

strchg –f fileconf

will configure the user’s standard input stream so that the module ptem is pushed
over the driver, followed by ldterm and compat closest to the stream head.

The strconf command with no arguments lists the modules and topmost driver
on the stream; for a stream that has only the module ldterm pushed above the
ports driver, it would produce the following output:

ldterm
ports

The following command asks if ldterm is on the stream

strconf –m ldterm

and produces the following output while returning an exit status of 0:
yes

SEE ALSO
ioctl(BA_OS), streams(BA_DEV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/strchg
svid

Page: 156

sum (BU_CMD) sum (BU_CMD)

NAME
sum – print checksum and block count of a file

SYNOPSIS
sum [-r] file

DESCRIPTION
The command sum calculates and prints a checksum for the named file, and also
prints the space used by the file, in 512-byte units. The option –r causes an alter-
nate algorithm to be used in computing the checksum.

The algorithms used are uniform across all System V implementations, so that the
same checksum is obtained for the same file, independent of the hardware and
implementation.

SEE ALSO
wc(BU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/sum
svid

Page: 157

tail (BU_CMD) tail (BU_CMD)

NAME
tail – deliver the last part of a file

SYNOPSIS
tail [±[number][l|b|c] [f]] [file]

tail [±[number][l][r]] [file]

DESCRIPTION
The command tail copies the named file to the standard output beginning at a
designated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning (where +1 signifies the first
line of the file), or –number from the end of the input (if number is null, the value 10
is assumed). The argument number is counted in units of lines, blocks, or characters,
according to the appended option l, b, or c. When no units are specified,
counting is by lines.

Characters from supplementary code sets may not be displayed correctly when
options –b or –c are specified, as they are processed byte-by-byte.

If the input file is not a pipe and the –f (‘‘follow’’) option is used, the program
does not terminate after a line from the input file has been copied. Instead, tail
enters an endless loop, i.e., tail sleeps for a second and then attempts to read and
copy further records from the input file. Thus it may be used to monitor the growth
of a file that is being written by some other process.

The –r option copies lines from the end of the file in reverse order. The default for
-r is to print the entire file in reverse order. numberis the count of lines from the
end of the file regardless of sign.

The -r option may not be used with –b, –c, or –f.

USAGE
General.

tails relative to the end of the file are saved in a buffer, and thus are limited in
length.

EXAMPLE
The command:

tail –f fred

will print the last ten lines of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed. As another
example, the command:

tail –15cf fred

will print the last 15 bytes of the file fred, followed by any lines that are appended
to fred between the time tail is initiated and killed.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/tail
svid

Page: 158

tee (BU_CMD) tee (BU_CMD)

NAME
tee – join pipes and make copies of input

SYNOPSIS
tee [-i] [-a] [file] ...

DESCRIPTION
The command tee transcribes the standard input to the standard output and
makes copies in the files. The –i option ignores interrupts; the –a option causes the
output to be appended to the files rather than overwriting them.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/tee
svid

Page: 159

test (BU_CMD) test (BU_CMD)

NAME
test – condition evaluation command

SYNOPSIS
test expr

[expr]

DESCRIPTION
The command test evaluates the expression expr and, if its value is true, returns a
zero (true) exit status; otherwise, a non-zero (false) exit status is returned; test
also returns a non-zero exit status if there are no arguments. The following primi-
tives are used to construct expr:

–r file true if file exists and is readable.

–w file true if file exists and is writable.

–x file true if file exists and is executable.

–f file true if file exists and is a regular file.

–d file true if file exists and is a directory.

–h file true if file exists and is a symbolic link. With all other primitives, the
symbolic links are followed by default.

–c file true if file exists and is a character special file.

–b file true if file exists and is a block special file.

–p file true if file exists and is a named pipe (fifo).

–u file true if file exists and its set-user-ID bit is set.

–g file true if file exists and its set-group-ID bit is set.

–s file true if file exists and has a size greater than zero.

–t[fildes] true if the open file whose file descriptor number is fildes (1 by default)
is associated with a terminal device.

–z s1 true if the length of string s1 is zero.

–n s1 true if the length of the string s1 is non-zero.

s1 = s2 true if strings s1 and s2 are identical.

s1 != s2 true if strings s1 and s2 are not identical.

s1 true if s1 is not the null string.

n1 –eq n2 true if the integers n1 and n2 are algebraically equal. Any of the com-
parisons –ne, –gt, –ge, –lt, and –le may be used in place of
–eq.

These primaries may be combined with the following operators:

! unary negation operator.

–a binary AND operator.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/test
svid

Page: 160

test (BU_CMD) test (BU_CMD)

–o binary OR operator (–a has higher precedence than –o).

(expr)
parentheses for grouping.

Notice that all the operators and flags are separate arguments to test. Notice also
that parentheses are meaningful to sh and, therefore, must be escaped.

In the second form of the command (i.e., the one that uses [], rather than the
word test), the brackets must be delimited by white space.

SEE ALSO
find(BU_CMD), sh(BU_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: bu_cmd/test
svid

Page: 161

touch (BU_CMD) touch (BU_CMD)

NAME
touch – update access and modification times of a file

SYNOPSIS
touch [-amc] [mmddhhmm[yy]] [file ...]

DESCRIPTION
The command touch causes the access and modification times of each file to be
updated. The file is created if it does not exist. If no time is specified the current
time is used. The –a and –m options cause touch to update only the access or
modification times respectively (default is –am). The –c option silently prevents
touch from creating the file if it does not exist.

RETURN VALUE
The return code from touch is the number of files for which the times could not be
successfully modified (including files that did not exist and were not created).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/touch
svid

Page: 162

tr (BU_CMD) tr (BU_CMD)

NAME
tr – translate characters

SYNOPSIS
tr [-cds] [string1 [string2]]

DESCRIPTION
The command tr copies the standard input to the standard output with substitu-
tion or deletion of selected characters. Input characters found in string1 are
mapped into the corresponding characters of string2. Characters specified are
searched for and translated in character units, not bytes. Any combination of the
options –cds may be used:

–c Complements the set of characters in string1 with respect to the universe of
characters whose octal codes are 001 through 377.

–d Deletes all input characters in string1.

–s Squeezes all strings of repeated output characters that are in string2 to single
characters.

The following abbreviation conventions may be used to introduce ranges of charac-
ters or repeated characters into the strings:

[a-z] Stands for the string of characters whose octal codes run from character a to
character z, inclusive. The semantics of the "[a-z]" notation takes after the
range specification of the regular expression syntax.

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is considered octal;
otherwise, n is taken to be decimal. A zero or missing n is taken to be huge;
this facility is useful for padding string2.

The escape character \ may be used to remove special meaning from any character
in a string. In addition, \ followed by 1, 2, or 3 octal digits stands for the character
whose octal code is given by those digits.

The following example creates a list of all the words in file1, one per line in file2,
where a word is taken to be a maximal string of alphabetics. The strings are quoted
to protect the special characters from interpretation by the command interpreter;
012 is the ASCII code for newline.

tr –cs "[A–Z][a–z]" "[\012*]" <file1 >file2

USAGE
General.

The command tr does not handle ASCII NUL in string1 or string2; it always deletes
NUL from input.

When octal notation with the backslash (\) escape character is used, a backslash is
placed before each byte of multibyte characters.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: bu_cmd/tr

svid

Page: 163

true (BU_CMD) true (BU_CMD)

NAME
true, false – provide truth values

SYNOPSIS
true

false

DESCRIPTION
The command true does nothing, and returns exit code zero. The command
false does nothing, and returns a non-zero exit code. They are typically used to
construct command procedures. For example,

while true
do

command
done

SEE ALSO
sh(BU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/true
svid

Page: 164

umask (BU_CMD) umask (BU_CMD)

NAME
umask – set file-creation mode mask

SYNOPSIS
u m a s k [ooo]

DESCRIPTION
The user file-creation mode mask is set to ooo. The three octal digits refer to
read/write/execute permissions for owner, group, and others, respectively [see
chmod(BU_CMD)]. The value of each specified digit is subtracted from the
corresponding ‘‘digit’’ specified by the system for the creation of a file. For exam-
ple, u m a s k 0 2 2 removes group and others write permission (files normally created
with mode 7 7 7 become mode 7 5 5; files created with mode 6 6 6 become mode 6 4 4).

If ooo is omitted, the current value of the mask is printed.

SEE ALSO
chmod(BU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/umask
svid

Page: 165

uname (BU_CMD) uname (BU_CMD)

NAME
uname – print name of current system

SYNOPSIS
uname [-snrvma]

DESCRIPTION
The command uname prints the current system name on the standard output file.
The options cause selected information returned by the function uname() [see
uname(BA_OS)] to be printed:

–s print the name of the implementation of the operating system

–n print the nodename. The nodename may be a name by which the system is
known to a communications network.

–r print the operating system release.

–v print the operating system version.

–m print the machine hardware name.

–a print all the above information.

SEE ALSO
uname(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/uname
svid

Page: 166

uniq (BU_CMD) uniq (BU_CMD)

NAME
uniq – report repeated lines in a file

SYNOPSIS
uniq [-udc [+n] [-n]] [input [output]]

DESCRIPTION
The command uniq reads the input file comparing adjacent lines. In the normal
case, the second and succeeding copies of repeated lines are removed; the
remainder is written on the output file. The arguments input and output should
always be different. Note that repeated lines must be adjacent to be found [see
sort(BU_CMD)]. If the –u flag is used, just the lines that are not repeated in the ori-
ginal file are output. The –d option specifies that one copy of just the repeated lines
is to be written. The normal mode output is the union of the –u and –d mode out-
puts.

The –c option supersedes –u and –d and generates an output report in default
style but with each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

–n The first n fields together with any blanks before each are ignored. A field is
defined as a string of non-space, non-tab characters separated by tabs and
spaces from its neighbors.

+n The first n columns are ignored.

SEE ALSO
comm(BU_CMD), sort(BU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/uniq
svid

Page: 167

wait (BU_CMD) wait (BU_CMD)

NAME
wait – await completion of process

SYNOPSIS
wait [pid ...]

DESCRIPTION
With no argument, wait waits until all processes started with & have completed,
and reports on abnormal terminations. If a numeric argument pid is given, and is
the process ID of a background process, then wait waits until that process has
completed.

SEE ALSO
sh(BU_CMD), wait(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/wait
svid

Page: 168

wc (BU_CMD) wc (BU_CMD)

NAME
wc – word count

SYNOPSIS
wc [-lwc] [files]

DESCRIPTION
The command wc counts lines, words, and characters in the named files, or in the
standard input if no files appear. It also keeps a total count for all named files. A
word is defined as a maximal string of characters delimited by spaces, tabs, or new-
lines.

The options l, w, and c may be used in any combination to specify that a subset
of lines, words, and characters are to be reported. The default is –lwc.

With the –c option, characters from supplementary code sets are counted in bytes,
not characters. With –w option, characters from supplementary code set are
ignored during counting.

When files are specified on the command line, their names will be printed along
with the counts.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: bu_cmd/wc
svid

Page: 169

FINAL COPY
June 15, 1995

File:

Page: 170

Advanced Utilities Introduction

The Advanced Utilities Extension is intended to be the next expansion step after
the Basic Utilities Extension.

The following are prerequisite for support of the Advanced Utilities Extension:

Base System

Base Utilities Extension

Summary of Commands and Utilities

The following commands and utilities are supported by the Advanced Utilities
Extension. Items marked with a (*) are Level 2, as defined in the General Introduc-
tion to this volume. Items marked with a () are internationalized and may refer-
ence environment variables for localization information. [See envvar(BA_ENV)].
Items marked with a (†) are new to this issue of the SVID. Only those pages
reflecting technical content changes or which are new to the SVID are contained in
this volume.

a t‡ c u‡ l p‡ s u‡ u u s t a t
a t q‡ d d‡ l p s t a t‡ t a b s‡ u u t o
a t r m‡ d i r c m p‡ m a i l x‡ t a r‡ u u x
b a t c h‡ e x‡ m e s g‡ t t y‡ v i‡
c a n c e l‡ g e n c a t ‡ n e w g r p‡ u u c p w a l l‡
c h g r p‡ g r o u p s n e w s‡ u u d e c o d e w h o‡
c h o w n‡ i c o n v ‡ o d‡ u u e n c o d e w r i t e‡
c r o n‡ i d p a s s w d‡ u u l o g
c r o n t a b‡ j o i n‡ p r i o c n t l † u u n a m e
c s p l i t‡ l o g n a m e s t t y‡ u u p i c k

Advanced Utilities Introduction 3-1

FINAL COPY
June 15, 1995
File: au_int.txt

svid

Page: 171

Organization of Technical Information

The ‘‘Advanced Commands and Utilities’’ chapter provides manual page descrip-
tions of commands and utilities supported by this extension.

3-2 ADVANCED UTILITIES INTRODUCTION

FINAL COPY
June 15, 1995
File: au_int.txt

svid

Page: 172

Advanced Commands And Utilities

The following section contains the manual pages for the AU_CMD routines.

Advanced Commands And Utilities 4-1

FINAL COPY
June 15, 1995

File: au_cmd.cov
svid

Page: 173

FINAL COPY
June 15, 1995

File:

Page: 174

at (AU_CMD) at (AU_CMD)

NAME
at, batch – execute commands at a later time

SYNOPSIS
at [–f script] [–m] time [date] [+increment]
at –l [job ...]
at –r job ...
at –d job ...
at –z job ...
at –Z job ...

batch

DESCRIPTION
The commands at and batch read commands from standard input to be executed
at a later time. The command at allows you to specify when the commands should
be executed, while jobs queued with batch will execute when system load level
permits.

The –f option reads commands to be executed from the named script file.

The –m option sends mail after the job has been run. Mail is sent even if the job
does not produce output. Standard output and standard error output are mailed to
the user unless redirected elsewhere.
If the Enhanced Security Extension is implemented, mail is sent at the Mandatory
Access Control level of the at/batch job. –m has no effect on jobs which already
print to standard output or standard error; the mail message will not be duplicated.

The –l option reports all jobs scheduled for the invoking user. When invoked by a
privileged-user, all jobs scheduled are reported.

The –r option removes jobs previously scheduled with at for the invoking user.
When invoked by a privileged-user, any job previously scheduled with at is
removed.

The –d option displays the contents of the job specified.

The –z option displays the alias name of the level of the job specified. This option is
only valid if the security extension is implemented.

The –Z option displays the fully qualified level of the job specified. This option is
only valid if the security extension is implemented.

A normal user is restricted to display only information on jobs which the user owns
and which are at the user’s level. If a user’s process is in MLD real mode [see
mldmode(ES_CMD)], the user can display information on jobs which the user owns
and are at a level that is dominated (meaning equal to or greater than) by the user’s
current level. An administrator is able to display information on all jobs.

The –z and –Z options are mutually exclusive. If the –z option is specified and
there is not an alias assigned to the level, the decimal value of the level identifier
(LID) is displayed. If the –z or –Z option is specified and the level is in the valid-
inactive state, the decimal value of the LID is displayed. LID states are described in
lvlname(ES_CMD).

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/at
svid

Page: 175

at (AU_CMD) at (AU_CMD)

The environment variables, current directory, umask, and ulimit are retained when
the commands are executed. Open file descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file
/etc/cron.d/at.allow. If that file does not exist, the file
/etc/cron.d/at.deny is checked to determine if the user should be denied
access to at. If neither file exists, only a user with appropriate privileges is allowed
to submit a job. If only at.deny exists and is empty, global usage is permitted.
The allow/deny files consist of one user name per line. Modification of these files
should only be permitted to a privileged user.

The time may be specified as 1, 2, or 4 digits. One and two digit numbers are inter-
preted as hours, four digits as hours and minutes. The time may alternately be
specified as two numbers separated by a colon, meaning hour:minute. A suffix
am or pm may be appended; otherwise, a 24-hour clock time is understood. The
suffix zulu may be used to indicate UTC. The special names noon, midnight,
now, and next are also recognized.

An optional date may be specified as either a month name followed by a day
number (and possibly year number preceded by a comma) or a day of the week
(fully spelled or abbreviated to three characters). Two special ’’days’’, today and
tomorrow are recognized. If no date is given, today is assumed if the given hour is
greater than the current hour and tomorrow is assumed if it is less. If the given
month is less than the current month (and no year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

The commands at and batch write the job number and schedule time to standard
error.

The command batch submits a batch job. It is almost equivalent to ’’at now’’, but
not quite. For one, it goes into a different queue. For another, ’’at now’’ does not
work; it is too late (and results in an error message).

The option –r removes jobs previously scheduled by at or batch. The job number
is the number reported at invocation by at or batch. Job numbers can also be
obtained by using the –l option. Only a user with appropriate privileges is
allowed to remove another user’s jobs.

If the environment variable DATEMSK is set, the at command will use it to interpret
the user supplied date/time specification. The environment variable DATEMSK is
set to the full pathname of the template file used to parse and interpret the user
supplied date/time specification. The special names and the increment argument
discussed previously are not recognized in this case.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/at
svid

Page: 176

at (AU_CMD) at (AU_CMD)

The template file named by the DATEMSK environment variable should contain for-
mat lines as defined for the date +format command [see getdate(BA_LIB)]. The
following example shows the possible contents of a template file AT.TEMPL in
/var/tmp.

%I %p, the %est of %B of the year %Y run the following job
%I %p, the %end of %B of the year %Y run the following job
%I %p, the %erd of %B of the year %Y run the following job
%I %p, the %eth of %B of the year %Y run the following job
%d/%m/%y
%H:%M:%S
%I:%M%p

The following are examples of valid invocations if the environment variable
DATEMSK is set to /var/tmp/AT.TEMPL.

at 2 PM, the 3rd of July of the year 2000 run the following job
at 3/4/99
at 10:30:30
at 2:30PM

FILES
/etc/cron.d main cron directory
/etc/cron.d/at.allow list of allowed users
/etc/cron.d/at.deny list of denied users
/etc/cron.d/queuedefs scheduling information
/var/spool/cron/atjobs spool area

USAGE
The –m and –f script options can only be used with the job-queuing form of this
command, and are therefore incompatible with the –l and –r options.

Regardless of whether the –m option is used, mail messages produced by at
include a normal header with a Subject: line to identify the job that produced
the mail.

EXAMPLE
The at and batch commands read from standard input the commands to be exe-
cuted at a later time. It may be useful to redirect standard output within the
specified commands.

This sequence can be used at a terminal:

batch
spell filename > outfile
EOT

This sequence, which demonstrates redirecting standard error to a pipe, is useful in
a command procedure (the sequence of output redirection specifications is
significant):

batch <<!
spell filename 2>&1 > outfile | mail loginid

To have a job reschedule itself, at can be invoked from within the procedure.

Page 3

FINAL COPY
June 15, 1995

File: au_cmd/at
svid

Page: 177

at (AU_CMD) at (AU_CMD)

SEE ALSO
cron(AU_CMD), date(BU_CMD).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: au_cmd/at
svid

Page: 178

atq (AU_CMD) atq (AU_CMD)

NAME
atq – display the queue of jobs to be run at specified times

SYNOPSIS
atq [-c] [username ...]

atq [-n] [username ...]

DESCRIPTION
atq prints the queue of jobs, created with the at command, that are waiting to be
run at a later date.

With no flags, the queue is sorted in chronological order of execution.

If the invoking user is a privileged-user, and no usernames are specified, the entire
queue is displayed; otherwise, only those jobs belonging to the named users are
displayed. If the invoking user is not a privileged-user, then only jobs belonging to
the invoking user are displayed.

The –c option sorts queue entires by their creation time, listing them consecutively
by the time their at commands were given.

The –n option prints the total number of jobs currently in the queue, but does not
list them.

FILES
/var/spool/cron spool area

SEE ALSO
at(AU_CMD), atrm(AU_CMD), cron(AU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/atq
svid

Page: 179

atrm (AU_CMD) atrm (AU_CMD)

NAME
atrm – remove jobs spooled by at or batch

SYNOPSIS
atrm [-f -i] [-a] job-number [[job-number username] ...]

atrm [-f -i] [-a] username [[job-number username] ...]

DESCRIPTION
atrm removes delayed-execution jobs that were created with the at command.
The list of jobs can be displayed by atq [see atq(AU_CMD)].

atrm removes each job-number you specify, and/or all jobs belonging to username,
provided that the user owns the indicated jobs.

Jobs belonging to other users can only be removed by a user with appropriate
privileges.

The –f option forces all information regarding the removal of the specified jobs to
be suppressed.

The –i option is interactive; atrm asks if a job should be removed. A response of
y verifies that the job is to be removed. Any other response cancels the removal.

The –a option removes jobs that were queued by the current user. If invoked by a
user with appropriate privileges, the entire queue will be flushed.

FILES
/var/spool/cron spool area

SEE ALSO
at(AU_CMD), atq(AU_CMD), cron(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/atrm
svid

Page: 180

chgrp (AU_CMD) chgrp (AU_CMD)

NAME
c h g r p – change the group ownership of a file

SYNOPSIS
c h g r p [- R] [- h] group file . . .

DESCRIPTION
c h g r p changes the group ID of the files given as arguments to group. The group
may be either a decimal group ID or a group name found in the group ID file,
/ e t c / g r o u p.

You must be the owner of the file, or have appropriate privilege to use this com-
mand.

The operating system has a configuration option {_ P O S I X _ C H O W N _ R E S T R I C T E D}, to
restrict ownership changes. When this option is in effect, the owner of the file may
change the group of the file only to a group to which the owner belongs. Only a
privileged user can arbitrarily change owner I Ds whether this option is in effect or
not.

c h g r p has two options:

- R Recursive. c h g r p descends through the directory, and any subdirectories,
setting the specified group ID as it proceeds. When symbolic links are
encountered, they are traversed.

- h If the file is a symbolic link, change the group of the symbolic link. Without
this option, the group of the file referenced by the symbolic link is changed.

The L C _ C T Y P E environment variable determines the codesets used in the arguments
[see L A N G on e n v v a r(BA_ENV)].

FILES
/ e t c / g r o u p
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / u x c o r e . a b i

language-specific message file [see L A N G on e n v v a r(BA_ENV)].

SEE ALSO
c h m o d(BA_OS), c h o w n(BA_OS), c h o w n(AU_CMD), i d(AU_CMD),
g r o u p(BA_ENV), p a s s w d(AU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/chgrp
svid

Page: 181

chown (AU_CMD) chown (AU_CMD)

NAME
c h o w n – change file owner

SYNOPSIS
c h o w n [- h] [- R] owner[:group] file . . .

DESCRIPTION
c h o w n changes the owner of the files to owner. The value of owner may be either a
decimal user ID or a login name found in the / e t c / p a s s w d file. Login names in
/ e t c / p a s s w d must begin with a non-numeric character; an alphabetic character or
any special character except colon is acceptable. c h o w n will optionally also change
the group ID of the files to group. The value of group may be either a decimal group
ID or a group name found in the group ID file / e t c / g r o u p.

If c h o w n is invoked by someone other than a privileged user, the set-user-ID bit of
the file mode, 04000, is cleared.

Only the owner of a file (or a privileged user) may change the owner or group of
that file.

Valid options to c h o w n are:

- R Recursive. c h o w n descends through the directory, and any subdirectories,
setting the ownership (and group) ID as it proceeds. When symbolic links
are encountered, they are traversed.

- h If the file is a symbolic link, change the owner (and group) of the symbolic
link. Without this option, the owner (and group) of the file referenced by
the symbolic link is changed. (See NOTICES below.)

The operating system has a configuration option {_ P O S I X _ C H O W N _ R E S T R I C T E D}, to
restrict ownership changes. When this option is in effect the owner of the file is
prevented from changing the owner I D of the file, and may change the group of the
file to a group to which the owner belongs. Only a privileged user can arbitrarily
change owner (and group) I Ds whether this option is in effect or not. When this
option is in effect, only a privileged user can arbitrarily change group I Ds.

FILES
/ e t c / p a s s w d
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / u x c o r e . a b i

language-specific message file [see L A N G on e n v v a r(BA_ENV)].

SEE ALSO
c h g r p(AU_CMD), c h m o d(BU_CMD), c h o w n(BA_OS), p a s s w d(AU_CMD)

LEVEL
Level 1.

NOTICES
c h o w n(AU_CMD) does not check the user ID if it is in decimal form; to check a user
ID in this form, you can use c h o w n(BA_OS). In a Remote File Sharing environment,
you may not have the permissions that the output of the l s - l command leads you
to believe. For more information see the documentation on Network Administra-
tion.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/chown
svid

Page: 182

chown (AU_CMD) chown (AU_CMD)

Note that, with appropriate permissions, the owner of s e t u i d files might inadver-
tantly be changed.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/chown
svid

Page: 183

crontab (AU_CMD) crontab (AU_CMD)

NAME
crontab – user crontab file

SYNOPSIS
crontab [file]
crontab –e [username]
crontab –r [username]
crontab –l [username]

DESCRIPTION
The command crontab copies the specified file, or standard input if a file is not
specified, into a directory that holds all users’ crontabs. Note that if the Enhanced
Security Extension is implemented, the file is stored at the Mandatory Access Con-
trol level of the user executing crontab.

The –e option edits a copy of the current user’s crontab file, or creates an empty
file to edit if the crontab file does not exist. When editing is complete, the file is
installed as the user’s crontab file. If username is given, the specified user’s cron-
tab file is edited, rather than the current user’s crontab file; this may only be done
by a user with the appropriate privileges.

The -r option removes a user’s crontab from the crontab directory. Only a
privileged user can specify a username to remove the crontab file of the specified
user.

The option -l will list the crontab file of the invoking user. Only a privileged
user can specify a username to list the crontab file of the specified user.

Users are permitted to use crontab if their names appear in the file
/etc/cron.d/cron.allow. If that file does not exist, the file
/etc/cron.d/cron.deny is checked to determine if the user should be denied
access to crontab. If neither file exists, only a user with appropriate privileges is
allowed to submit a job. If only cron.deny exists and is empty, global usage is
permitted. The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0–59),
hour (0–23),
day of the month (1–31),
month of the year (1–12),
day of the week (0–6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list
of elements separated by commas. An element is either a number or two numbers
separated by a minus sign (meaning an inclusive range). Note that the specification
of days may be made by two fields (day of the month and day of the week). If both
are specified as a list of elements, each one is effective independent of the other. For
example, 0 0 1,15 * 1 would run a command on the first and fifteenth of each
month, as well as on every Monday. To specify days by only one field, the other
field should be set to * (for example, 0 0 * * 1 would run a command only on
Mondays).

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/crontab
svid

Page: 185

crontab (AU_CMD) crontab (AU_CMD)

The sixth field of a line in a crontab file is a string that is executed by the com-
mand interpreter at the specified times. A percent character in this field (unless
escaped by \) is translated to a newline character. Only the first line (up to a % or
end of line) of the command field is executed by the command interpreter. The
other lines are made available to the command as standard input. The command
cron supplies a default environment, defining the environment variables HOME,
LOGNAME, and PATH.

Any line beginning with a # is a comment and will be ignored.

If you inadvertently enter the crontab command with no argument(s), do not
attempt to get out with a CONTROL-D. This will cause all entries in your crontab
file to be removed. Instead, interrupt the command.

If a privileged user modifies another user’s crontab file, resulting behavior may
be unpredictable. Instead, the privileged user should first su [see su(AU_CMD)]
to the other user’s login before making any changes to the crontab file.

FILES
/etc/cron.d main cron directory

/etc/cron.d/log accounting information

/etc/cron.d/cron.allow list of allowed users

/etc/cron.d/cron.deny list of denied users

/var/spool/cron/crontabs spool area

USAGE
The new crontab file for a user overwrites an existing one.

Note: If standard output and standard error are not redirected, any generated out-
put or errors will be mailed to the user.

SEE ALSO
sh(BU_CMD), su(AU_CMD), atq(AU_CMD), atrm(AU_CMD), cron(AU_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/crontab
svid

Page: 186

csplit (AU_CMD) csplit (AU_CMD)

NAME
csplit – context split

SYNOPSIS
csplit [-s] [-k] [-fprefix] file arg1 [...argn]

DESCRIPTION
The command csplit reads file and separates it into n+1 sections, defined by the
arguments arg1 ... argn. By default the sections are placed in xx00 ... xxnn (nn may
not be greater than 99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line referenced by arg1.

01: From the line referenced by arg1 up to the line referenced by arg2.

.

.

.

n: From the line referenced by argn to the end of file.

If the file argument is a – then standard input is used.

The options to csplit are:

–s csplit normally prints the byte counts for each file created. If the –s
option is used, csplit suppresses the printing of all byte counts.

–k csplit normally removes created files if an error occurs. If the –k option
is used, csplit leaves previously created files intact.

–f prefix
If the –f option is used, the created files are named prefix00 ... prefixn. The
default is xx00 ... xxn.

The arguments (arg1 ... argn) to csplit can be a combination of the following:

/rexp/ A file is to be created for the section from the current line up to
(but not including) the line containing the regular expression rexp.
(Regular expressions as in ed(BU_CMD) are accepted.) The line
containing rexp becomes the current line. This argument may be
followed by an optional + or – some number of lines (e.g.,
/Page/–5).

%rexp% This argument is the same as /rexp/, except that no file is created
for the section.

line_no A file is to be created from the current line up to (but not includ-
ing) the line number line_no. line_no becomes the current line.

{num} Repeat argument. This argument may follow any of the above
arguments. If it follows a rexp type argument, that argument is
applied num more times. If it follows line_no, the file will be split
every line_no lines (num times) from that point.

All rexp type arguments that contain blanks or other characters meaningful to the
shell should be enclosed in the appropriate quotes. Regular expressions may not
contain embedded newlines. The command csplit does not affect the original
file; it is the user’s responsibility to remove it.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/csplit
svid

Page: 187

csplit (AU_CMD) csplit (AU_CMD)

Note that the indicated size of the files created is in bytes, not the number of charac-
ters.

ERRORS
An error is reported if an argument does not reference a line between the current
position and the end of the file.

USAGE
General.

EXAMPLE
This example creates four files, cobol00 ... cobol03:

csplit –fcobol file ′/procedure division/′ /par5./ /par16./

After editing the split files, they can be recombined as follows:

cat cobol0[0–3] > file

Note that this example overwrites the original file.

The following example splits the file at every 100 lines, up to 10,000 lines:

csplit –k file 100 {99}

The –k option causes the created files to be retained if there are less than 10,000
lines; however, an error message would still be printed.

csplit –k prog.c ′%main(%′ ′/ˆ}/+1′ {20}

Assuming that prog.c follows the normal C coding convention of ending routines
with a } at the beginning of the line, this example will create a file containing each
separate C routine (up to 21) in prog.c.

SEE ALSO
ed(BU_CMD), sh(BU_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/csplit
svid

Page: 188

cu (AU_CMD) cu (AU_CMD)

NAME
cu – call another system

SYNOPSIS
cu [-sspeed] [-l line] [-h] [-t] [-d] [-o -e] [-n] telno

cu [-sspeed] [-h] [-d] [-o -e] -lline

cu [-h] [-d] [-o -e] systemname

DESCRIPTION
The command cu calls up another system, which will usually be a System V system,
but may be a terminal, or a non-System V system. It manages an interactive conver-
sation, with possible transfers of files.

The command cu accepts the following options and arguments:

–sspeed Specifies the transmission speed. The default value is "Any" speed
which will depend on the order of the lines in the system devices file.

–lline Specifies a device name to use as the communication line. This can be
used to override the search that would otherwise take place for the first
available line having the right speed. When the –l option is used
without the –s option, the speed of a line is taken from the devices file.
When the –l and –s options are both used together, cu will search the
devices file to check if the requested speed for the requested line is avail-
able. If so, the connection will be made at the requested speed; other-
wise, an error message will be printed and the call will not be made. If
the specified device is associated with an auto dialer, a telephone
number must be provided. Use of this option with systemname rather
than telno is not allowed (see systemname below).

–h Emulates local echo. This option supports calls to other computer sys-
tems which expect terminals to be set to half-duplex mode.

–t Used to dial a terminal which has been set to auto answer. Appropriate
mapping of carriage-return to carriage-return-linefeed pairs is set.

–d Causes diagnostic traces to be printed.

–o Designates that odd parity is to be generated for data sent to the remote
system.

–e Designates that even parity is to be generated for data sent to the remote
system.

–n For added security, this option prompts the user to provide the tele-
phone number to be dialed rather than taking it from the command line.

telno When using an automatic dialer, telno is the telephone number with
equal signs for secondary dial tone or minus signs placed appropriately
for delays of 4 seconds.

systemname
A uucp system name may be used rather than a telephone number; in
this case, cu will obtain an appropriate direct line or telephone number
from a system file. Note that the systemname option should not be used
in conjunction with the –l and –s options as cu will connect to the first

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/cu
svid

Page: 189

cu (AU_CMD) cu (AU_CMD)

available line for the system name specified, ignoring the requested line
and speed.

After making the connection, cu runs as two processes: the transmit process reads
data from the standard input and, except for lines beginning with ˜, passes it to the
remote system; the receive process accepts data from the remote system and, except
for lines beginning with ˜, passes it to the standard output. Normally, an
automatic DC3/DC1 protocol is used to control input from the remote so the buffer
is not overrun. Lines beginning with ˜ have special meanings.

The transmit process interprets the following user initiated commands:

˜. terminate the conversation.

˜CTRL-Z stop cu.

˜! escape to an interactive command interpreter on the local system.

˜!cmd... execute cmd on the local system

˜$cmd... run cmd locally and send its output to the remote system for execution.

˜%cd change the directory on the local system.

˜%take from [to]
copy file from (on the remote system) to file to on the local system. If to
is omitted, the from argument is used in both places.

˜%put from [to]
copy file from (on local system) to file to on remote system. If to is omit-
ted, the from argument is used in both places.

˜˜line send the line ˜line to the remote system.

˜%break transmit a BREAK to the remote system (which can also be specified as
˜%b).

˜%debug toggles the -d debugging option on or off (which can also be specified
as ˜%d).

˜%nostop
toggles between DC3/DC1 input control protocol and no input control.
This is useful in case the remote system is one which does not respond
properly to the DC3 and DC1 characters.

The receive process normally copies data from the remote system to its standard
output.

The use of ˜%put requires stty [see stty(AU_CMD)] and cat [see cat(BU_CMD)]
on the remote side. It also requires that the current erase and kill characters on the
remote system be identical to these current control characters on the local system.
Backslashes are inserted at appropriate places.

The use of ˜%take requires the existence of stty, cat, and echo on the remote
system. Also, tabs mode [see stty(AU_CMD)] should be set on the remote system
if tabs are to be copied without expansion to spaces.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/cu
svid

Page: 190

cu (AU_CMD) cu (AU_CMD)

When cu is used on system X to connect to system Y and subsequently used on sys-
tem Y to connect to system Z, commands on system Y can be executed by using ˜˜.
For example, uname can be executed on Z, X, and Y as follows (the response is given
in brackets):

uname
[Z]
˜[X]!uname
[X]
˜˜[Y]!uname
[Y]

In general, ˜ causes the command to be executed on the original machine; ˜˜ causes
the command to be executed on the next machine in the chain.

cu sets the input and output conversion mode to on or off, as appropriate, to avoid
a character conversion on the local system when accessing the remote system.

On the remote system, the input and output conversion should be set manually, as
cu cannot know whether input conversion is required or not. In most cases, remote
systems can be used with input conversion on; however, when transferring files, it
should be set to off before invoking the file transfer command in order to avoid
unexpected conversion of the file contents.

ERRORS
Exit code is 0 for normal exit, otherwise, non-zero.

USAGE
End-user.

EXAMPLE
To dial a system whose telephone number is 9 1 201 555 2121 using 1200 baud
(where dial tone is expected after the 9):

cu –s 1200 9=12015552121

If the speed is not specified, "Any" is the default value.

To log in to a system connected by a direct line:
cu –l /dev/term/XX

or
cu –l term/XX

To dial a system with the specific line and a specific speed:
cu –s 1200 –l term/XX

To dial a system using a specific line associated with an auto dialer:
cu –l culXX 9=12015552121

To use a system name:
cu systemname

SEE ALSO
cat(BU_CMD), echo(BU_CMD), stty(AU_CMD), uname(BU_CMD),
uucp(AU_CMD).

Page 3

FINAL COPY
June 15, 1995

File: au_cmd/cu
svid

Page: 191

cu (AU_CMD) cu (AU_CMD)

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: au_cmd/cu
svid

Page: 192

dd (AU_CMD) dd (AU_CMD)

NAME
d d – convert and copy a file

SYNOPSIS
d d [option=value] . . .

DESCRIPTION
d d copies the specified input file to the specified output with possible conversions.
The standard input and output are used by default. The input and output block
sizes may be specified to take advantage of raw physical I/O. d d processes supple-
mentary code set characters according to the locale specified in the L C _ C T Y P E
environment variable [see L A N G on e n v v a r(BA_ENV)], except as noted below.

option values

i f =file input file name; standard input is default.

o f =file output file name; standard output is default.

i b s =n input block size n bytes (default 512).

o b s =n output block size n bytes (default 512).

b s =n set both input and output block size, superseding ibs and obs;
also, if no conversion is specified, preserve the input block size
instead of packing short blocks into the output buffer (this is par-
ticularly efficient since no in-core copy need be done).

c b s =n conversion buffer size (logical record length).

f i l e s =n copy and concatenate n input files before terminating (makes
sense only where input is a magnetic tape or similar device).

s k i p =n skip n input blocks before starting copy (appropriate for magnetic
tape, where iseek is undefined).

i s e e k =n seek n blocks from beginning of input file before copying
(appropriate for disk files, where skip can be slow).

o s e e k =n seek n blocks from beginning of output file before copying.

s e e k =n identical to oseek, retained for backward compatibility.

c o u n t =n copy only n input blocks.

c o n v = a s c i i convert EBCDIC to ASCII. Conversion results cannot be assured
when supplementary code set characters are also subject to
conversion.

e b c d i c convert ASCII to EBCDIC. Conversion results cannot be
assured when supplementary code set characters are
also subject to conversion.

i b m slightly different map of ASCII to EBCDIC. Conversion
results cannot be assured when supplementary code set
characters are also subject to conversion.

c o n v = b l o c k convert new-line terminated ASCII records to fixed length.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/dd
svid

Page: 193

dd (AU_CMD) dd (AU_CMD)

u n b l o c k convert fixed length ASCII records to new-line ter-
minated records.

l c a s e map alphabetics to lower case. Multibyte characters
are not converted.

u c a s e map alphabetics to upper case. Multibyte charac-
ters are not converted.

s w a b swap every pair of bytes.

n o e r r o r do not stop processing on an error (limit of 5 con-
secutive errors).

s y n c pad every input block to ibs.

. . . , . . . several comma-separated conversions.

Where sizes are specified, a number of bytes is expected. A number may end with
k, b, or w to specify multiplication by 1024, 512, or 2, respectively; a pair of numbers
may be separated by x to indicate multiplication.

c b s is used only if a s c i i, u n b l o c k, e b c d i c i b m, or l o c k conversion is specified. In
the first two cases, cbs characters are copied into the conversion buffer, any
specified character mapping is done, trailing blanks are trimmed, and a new-line is
added before sending the line to the output. In the latter three cases, characters are
read into the conversion buffer and blanks are added to make up an output record
of size cbs. If c b s is unspecified or zero, the a s c i i, e b c d i c, and i b m options con-
vert the character set without changing the block structure of the input file; the
u n b l o c k and b l o c k options become a simple file copy.

After completion, d d reports the number of whole and partial input and output
blocks.

USAGE
This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card images
per tape block into the ASCII file x:

d d i f = / d e v / r m t * o f = x i b s = 8 0 0 o b s = 8 k c b s = 8 0 c o n v = a s c i i , l c a s e

Note the use of raw magnetic tape. d d is especially suited to I/O on the raw physi-
cal devices because it allows reading and writing in arbitrary block sizes. Note also
that / r m t * represents the raw magnetic tape device name.

Reading from magnetic tape in any fixed-length block length besides the block
length that the media was written in originally will cause an I/O error. If you want
to read a tape that was written using a block-length besides the default of 512, you
must use the t a p e c n t l(1) command (qv) to either set the block-length of the drive
to match the block length of the media or to set the drive into variable block length
mode.

Errors
f+p r e c o r d s i n (o u t) numbers of full and partial blocks read(written)

Files

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/dd
svid

Page: 194

dd (AU_CMD) dd (AU_CMD)

/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / u x c o r e . a b i
language-specific message file [see L A N G on e n v v a r(BA_ENV)].

SEE ALSO
c p(BU_CMD)

LEVEL
Level 1.

NOTICES
Reading from magnetic tape in any fixed-length block length, besides the block
length that the media was written in originally, will cause an I/O error. In order to
read a tape that was written using some block length besides the default of 512, use
the t a p e c n t l(1) command (q v) to either set the block length of the drive to match
the block length of the media, or to set the drive into variable block length mode.

Do not use d d to copy files between file systems having different block sizes.

d d does not always require block sizes that are in multiples of 512 bytes. Block size
is device dependent. If input data blocks are not a multiple of 512, however, the
read side will have no error messages, but the write side might have a ‘‘write error’’
message. d d transfers correctly if the input data block sizes are a multiple of 512.

Using a blocked device to copy a file will result in extra nulls being added to the
file to pad the final block to the block boundary.

Using d d with a cartridge tape is not recommended.

Using variable-length block mode when writing magnetic tapes is discouraged
because it may not work correctly in releases before SVR4.2 MP. Magnetic tape
should always be written in fixed-length block mode, even though you are free to
change the default fixed-block length from 512 bytes to any other fixed-block mode
the tape drive supports.

Page 3

FINAL COPY
June 15, 1995

File: au_cmd/dd
svid

Page: 195

dircmp (AU_CMD) dircmp (AU_CMD)

NAME
d i r c m p – directory comparison

SYNOPSIS
d i r c m p [- d] [- s] [- wn] dir1 dir2

DESCRIPTION
d i r c m p examines dir1 and dir2 and generates various tabulated information about
the contents of the directories. Listings of files that are unique to each directory are
generated for all the options. If no option is entered, a list is output indicating
whether the file names common to both directories have the same contents. d i r c m p
processes supplementary code set characters in directory and file names according
to the locale specified in the L C _ C T Y P E environment variable [see L A N G on
e n v v a r(BA_ENV)].

- d Compare the contents of files with the same name in both directories and
output a list telling what must be changed in the two files to bring them into
agreement. The list format is described in d i f f(BU_CMD).

- s Suppress messages about identical files.

- wn Change the width of the output line to n columns. The default width is 72.

FILES
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / u x d f m

language-specific message file [see L A N G on e n v v a r(BA_ENV)].

SEE ALSO
c m p(BU_CMD), d i f f(BU_CMD), p r(BU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/dircmp
svid

Page: 196

ex (AU_CMD) ex (AU_CMD)

NAME
ex – text editor

SYNOPSIS
ex [-] [-v] [-r] [-R] [+command] [-l] [file ...]

DESCRIPTION
The command ex is a line oriented text editor, which supports both command and
display editing [see vi(AU_CMD)]. The command line options are:

– Suppresses all interactive-user feedback. This is useful in processing editor
scripts.

–v Invokes vi

–r Recovers the named files after an editor or system crash. If no files are
named, a list of all saved files is printed.

–R Read-only mode set, prevents accidentally overwriting the file.

+command
Begins editing by executing the specified editor search or positioning com-
mand.

–l LISP mode; indents appropriately for lisp code; the () {} [[and]] com-
mands in vi are modified to have meaning for lisp.

The file argument(s) indicates files to be edited in the order specified.

The name of the file being edited by ex is the current file. The text of the file is read
into a buffer, and all editing changes are performed in this buffer; changes have no
effect on the file until the buffer is written out explicitly.

The alternate filename is the name of the last file mentioned in an editor command,
or the previous current filename if the last file mentioned became the current file.
The character % in filenames is replaced by the current filename, and the character
#, by the alternate filename.

The named buffers, ASCII a through z, may be used for saving blocks of text dur-
ing the edit. If the buffer name is specified in upper case, the buffer is appended to
rather than being overwritten.

The read-only mode can be cleared from within the edit by setting the
noreadonly edit option (see Edit Options below). Writing to a different file is
allowed in read-only mode; in addition, the write can be forced by using ! (see the
write command below).

When an error occurs, ex sends the BEL character to the terminal (to sound the
bell) and prints a message. If an interrupt signal is received, ex returns to the com-
mand level, in addition to the above actions. If the editor input is from a file, ex
exits at the interrupt. (The bell action may be disabled by the use of an edit option;
see below.)

If the system crashes, ex attempts to preserve the buffer if any unwritten changes
were made. The command line option –r is used to retrieve the saved changes.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/ex
svid

Page: 197

ex (AU_CMD) ex (AU_CMD)

At the beginning, ex is in the command mode, which is indicated by the : prompt.
The input mode is entered by append, insert, or change commands; it is left
(and command mode re-entered) by typing a period (.) alone at the beginning of a
line.

Command lines beginning with the double quote character (") are ignored. (This
may be used for comments in an editor script.)

Addressing
. Dot (.) refers to the current line. There is always a current line; the posi-

tioning may be the result of an explicit movement by the user, or the result
of a command that affected multiple lines (in which case it is usually the last
line affected).

n The nth line in the buffer, with lines numbered sequentially from 1.

$ The last line in the buffer.

% Abbreviation for 1,$, the entire buffer.

+n
–n An offset relative to the current line. (The forms .+3, +3, and +++ are

equivalent.)

/pat/
?pat? Line containing the pattern (regular expression) pat, scanning forward (//)

or backward (??). The trailing / or ? may be omitted if the line is only to be
printed. If the pattern is omitted, the previous pattern specified is used.

’x Lines may be marked using single lower case ASCII letters (see the mark
command below); ’x refers to line marked x. In addition, the previous
current line is marked before each non-relative motion; this line may be
referred to by using ’ for x.

Addresses to commands consist of a series of line addresses (specified as above),
separated by a comma (,) or a semicolon (;). Such address lists are evaluated left-
to-right. When a semicolon (;) is the separator, the current line is set to the value of
the previous address before the next address is interpreted. If more addresses are
given than the command requires, then all but the last one or two are ignored.
Where a command requires two addresses, the first line must precede the second
one in the buffer. A null address in a list defaults to the current line.

Command names and abbreviations
abbrev ab next n unmap unm
append a number # nu version ve
args ar preserve pre visual vi
change c print p write w
copy co put pu xit x
delete d quit q yank ya
edit e read re (window) z
file f recover re (escape) !
global g v rewind rew (lshift) <

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/ex
svid

Page: 198

ex (AU_CMD) ex (AU_CMD)

insert i set se (rshift) >
join j shell sh (resubst) & s
list l source so (scroll) ˆD
map map substitute s (line no) =
mark k or ma unabbrev una
move m undo u

Command descriptions
In the following, line is a single line address, given in any of the forms described in
the Addressing section above; range is a pair of line addresses, separated by a
comma or semicolon (see the Addressing section for the difference between the
two); count is a positive integer, specifying the number of lines to be affected by the
command; flags is one or more of the characters #, p, and l; the corresponding
command to print the line is executed after the command completes. Any number
of + or - characters may also be given with these flags.

When count is used, range is not effective; only a line number should be specified
instead, to indicate the first line affected by the command. (If a range is given, then
the last line of the range is taken as the starting line for the command.)

These modifiers are all optional; the defaults are as follows, unless otherwise stated:
the default for line is the current line; the default for range is the current line only
(.,.); the default for count is 1; the default for flags is null.

When only a line or a range is specified (with a null command), the implied com-
mand is print; if a null line is entered, the next line is printed (equivalent to .+1p)

ab word rhs
Adds the named abbreviation to the current list. In visual mode, if word is
typed as a complete word during input, it is replaced by the string rhs.

line a Enters input mode; places the input text after the specified line. If line 0 is
specified, the text is placed at the beginning of the buffer. The last input line
becomes the current line, or the target line, if no lines are input.

ar Prints the argument list with the current argument inside [and].

range c count
Enters input mode; the input text replaces the specified lines. The last input
line becomes the current line; if no lines are input, the current line becomes
the line before the target line, or the first line of the file if there are no lines
preceding the target.

range co line flags
Places a copy of the specified lines (range) after the specified destination line;
line 0 specifies that the lines are to be placed at the beginning of the buffer.

range d buffer count
Deletes the specified lines from buffer. If a named buffer is specified, the
deleted text is saved in it. The line after the deleted lines becomes the
current line, or the last line if the deleted lines were at the end.

Page 3

FINAL COPY
June 15, 1995

File: au_cmd/ex
svid

Page: 199

ex (AU_CMD) ex (AU_CMD)

e +line file
Begins editing a new file. If the current buffer has been modified since the
last write, then a warning is printed and the command is aborted. This
action may be overridden by appending the character ! to the command
(e.g., e! file). The current line is the last line of the buffer; however, if this
command is executed from within visual, the current line is the first line
of the buffer. If the +line option is specified, the current line is set to the
specified position, where line may be a number (or $) or specified as /pat or
?pat.

f Prints the current filename and other information, including the number of
lines and the current position.

range g /pat/ cmds
First marks the lines within the given range that match the given pattern.
Then the given command(s) is executed with . set to each marked line.

cmds may be specified on multiple lines by hiding newlines with a
backslash. If cmds are omitted, each line is printed. For an append,
change, or insert command, the terminating dot may be omitted if it
ends cmds. visual commands are also permitted, and take input from the
terminal.

The global command itself, and the undo command are not allowed in
cmds. The edit options autoprint, autoindent and report are inhi-
bited.

range v /pat/ cmds
This is the same as the global command, except that cmds is run on the
lines that do not match the pattern.

line i Enters input mode; the input text is placed before the specified line. The last
line input becomes the current line, or the line before the target line, if no
lines were input.

range j count flags
Joins the text from the specified lines together into one line. White space is
adjusted to provide at least one blank character, two if there was a period at
the end of the line, or none if the first following character is a right
parentheses [)]. Extra white space at the start of a line is discarded.

Appending the command with a ! causes a simpler join with no white space
processing.

range l count flags
Prints the specified lines with tabs printed as ˆI and the end of each line
marked with a trailing $. (The only useful flag is #, for line numbers.) The
last line printed becomes the current line.

map x rhs
The map command defines macros for use in visual mode. The first argu-
ment is a single character, or the sequence #n, where n is a digit, to refer to
the function key n. When this character or function key is typed in visual
mode, the action is as if the corresponding rhs had been typed. If ! is
appended to the command map, then the mapping is effective during insert

Page 4

FINAL COPY
June 15, 1995

File: au_cmd/ex
svid

Page: 200

ex (AU_CMD) ex (AU_CMD)

mode rather than command mode. Special characters, white space, and
newline must be escaped with a control-V to be entered in the arguments.

line ma x
(The letter k is an alternative abbreviation for the mark command.) The
specified line is given the specified mark x, which must be a single ASCII
lower case letter. (The x must be preceded by a space or tab.) The current
line position is not affected.

range m line
Moves the specified lines (range) after the target line. The first of the moved
lines becomes the current line.

n Edits the next file from the command line argument list. Appending a ! to
the command overrides the warning about the buffer having been modifed
since the last write (discarding any changes). The argument list may be
replaced by specifying a new one on this command line.

range nu count flags
(The character # is an alternative abbreviation for the number command.)
Prints the lines, each preceded by its line number. (The only useful flag is
l.) The last line printed becomes the current line.

pre The current editor buffer is saved as though the system had just crashed.
This command is for use in emergencies, for example when a write does not
work, and the buffer cannot be saved in any other way.

range p count
Prints the specified lines, with non-printing characters printed as control
characters in the form ˆx; DEL is represented as ˆ?. The last line printed
becomes the current line.

line pu buffer
Puts back deleted or "yanked" lines. A buffer may be specified; otherwise,
the text in the unnamed buffer (where deleted or yanked text is placed by
default) is restored.

q Causes termination of the edit. If the buffer has been modified since the last
write, a warning is printed and the command fails. This warning may be
overridden by appending a ! to the command (discarding changes).

line r file
Places a copy of the specified file in the buffer after the target line (which
may be line 0 to place text at the beginning). If no file is named the current
file is the default. If there is no current file then file becomes the current file.
The last line read becomes the current line; in visual the first line read
becomes the current line.

If file is given as !string then string is taken to be a system command, and
passed to the command interpreter; the resultant output is read into the
buffer. A blank or tab must precede the !.

rec file
Recovers file from the save area, after an accidental hangup or a system
crash.

Page 5

FINAL COPY
June 15, 1995

File: au_cmd/ex
svid

Page: 201

ex (AU_CMD) ex (AU_CMD)

rew Rewinds the argument list, and edits the first file in the list. Warnings may
be overridden by appending a !.

se parameter
With no arguments, the set command prints those options whose values
have been changed from the default settings; with the parameter all, it
prints all of the option values.

Giving an option name followed by a ? causes the current value of that
option to be printed. The ? is necessary only for Boolean valued options.
Boolean options are given values by the form se option to turn them on, or
se nooption to turn them off; string and numeric options are assigned by
the form se option=value. More than one parameter may be given; they are
interpreted left to right.

See Edit Options below for further details about options.

sh Puts the user into the command interpreter [usually sh; see sh(BU_CMD)];
editing is resumed on exit.

so file
Reads and executes commands from the specified file. so commands may
be nested.

range s /pat/repl/ options count flags
On each specified line, the first instance of the pattern pat is replaced by the
string repl. (See Regular Expressions and Replacement Strings below.) If
options includes the letter g (global), then all instances of the pattern in the
line are substituted. If the option letter c (confirm) is included, then before
each substitution the line is typed with the pattern to be replaced marked
with ˆ characters; a response of y causes the substitution to be done, while
any other input aborts it. The last line substituted becomes the current line.

una word
Deletes word from the list of abbreviations.

u Reverses the changes made by the previous editing command. For this pur-
pose, global and visual are considered single commands. Commands
which affect the external environment, such as write, edit and next,
cannot be undone. An undo can itself be reversed.

unm x
Removes the macro definition for x.

ve Prints the current version of the editor.

line vi type count
Enters visual mode at the specified line. The type is optional, and may be -
or ., as in the z command, to specify the position of the specified line on the
screen window. (The default places the line at the top of the screen win-
dow.) A count specifies an initial window size; the default is the value of the
edit option window. The command Q exits visual mode. [For more infor-
mation, see vi(AU_CMD)]

Page 6

FINAL COPY
June 15, 1995

File: au_cmd/ex
svid

Page: 202

ex (AU_CMD) ex (AU_CMD)

range w file
Writes the specified lines (the whole buffer, if range is not given) out to file,
printing the number of lines and characters written. If file is not specified,
the default is the current file. (The command fails with an error message if
there is no current file and no file is specified.)

If an alternate file is specified, and the file exists, then the write will fail; it
may be forced by appending a ! to the command. An existing file may be
appended to by appending >> to the command. If the file does not exist, an
error is reported.

If the file is specified as !string, then string is taken as a system command;
the command interpreter is invoked, and the specified lines are passed as
standard input to the command.

The command wq is equivalent to a w followed by a q; wq! is equivalent to
w! followed by q.

x Writes out the buffer if any changes have been made, and then (in any case)
quits.

range ya buffer count
Places the specified lines in the named buffer. If buffer is not specified, the
unnamed buffer is used (where the most recently deleted or yanked text is
placed by default).

line z type count
If type is omitted, then count lines following the specified line (default
current line) are printed. The default for count is the value of the edit option
window if you are in visual mode. If you are not in visual mode, the default
count is the window length (number of lines in the window).

If type is specified, it must be - or .; a - causes the line to be placed at the
bottom of the screen, while a . causes the line to be placed in the middle.
The last line printed becomes the current line.

! command
The remainder of the line after the ! is passed to the system command inter-
preter for execution. A warning is issued if the buffer has been changed
since the last write. A single ! is printed when the command completes.
The current line position is not affected.

Within the text of command, % and # are expanded as filenames, and !! is
replaced with the text of the previous ! command. (Thus !! repeats the
previous ! command.) If any such expansion is done, the expanded line is
echoed.

range! command
In this form of the ! command, the specified lines (there is no default; see
previous paragraph) are passed to the command interpreter as standard
input; the resulting output replaces the specified lines.

range < count
Shifts the specified lines to the left; the number of spaces to be shifted is
determined by the edit option shiftwidth. Only white space (blanks and
tabs) is lost in shifting; other characters are not affected. The last line

Page 7

FINAL COPY
June 15, 1995

File: au_cmd/ex
svid

Page: 203

ex (AU_CMD) ex (AU_CMD)

changed becomes the current line.

range > count
Shifts the specified lines to the right, by inserting white space (see previous
paragraph for further details).

range & options count flags
Repeats the previous substitute command, as if & were replaced by the pre-
vious s/pat/repl/. (The same effect is obtained by omitting the
/pat/repl/ string in the substitute command.)

CTRL-D
CTRL-D (ASCII EOT) prints the next n lines, where n is the value of the edit
option scroll.

line = Prints the line number of the specified line (default last line). The current
line position is not affected.

Regular Expressions
Regular expressions are interpreted according to the setting of the edit option
magic; the following assumes the setting magic. The differences caused by setting
nomagic are described below.

vi [see vi(AU_CMD)] regular expressions are the same as ed [see ed(BU_CMD)]
except for the following differences:

[string]
Matches any single character in string. Within string, the following have
special meanings: a pair of characters separated by - defines a range (e.g.,
[a-z] defines any ASCII lower case letter); the character ˆ, if it is the first
one in string, causes the construct to match characters other than those
specified in string. These special meanings can be removed by escaping the
characters with \.

˜ Matches the replacement part of the last substitute command. The spe-
cial meaning can be removed by escaping with \.

A concatenation of two regular expressions is a regular expression that matches the
concatenation of the strings matched by each component.

When nomagic is set, the only characters with special meanings are ˆ at the begin-
ning of a pattern, $ at the end of a pattern, and \. The characters ., *, [, and ˜
lose their special meanings, unless escaped by a \.

Replacement Strings
The character & (\& if nomagic is set) in the replacement string stands for the text
matched by the pattern to be replaced. The character ˜ (\˜ if nomagic is set) is
replaced by the replacement part of the previous substitute command. The
sequence \n where n is an integer, is replaced by the text matched by the pattern
enclosed in the nth set of parentheses \(and \). The sequence \u (\l) causes the
immediately following character in the replacement to be converted to upper case
(lower case), if this character is a letter. The sequence \U (\L) turns such conversion
on, until the sequence \E or \e is encountered, or the end of the replacement string
is reached.

Page 8

FINAL COPY
June 15, 1995

File: au_cmd/ex
svid

Page: 204

ex (AU_CMD) ex (AU_CMD)

Edit Options
The command ex has several options that modify its behavior. These options have
default settings, which may be changed using the set command (see above).
Options may also be set at startup by putting a set command string in the environ-
ment variable EXINIT, or in the file .exrc in the HOME directory.

Options are Boolean unless otherwise specified.

autoindent, ai
If autoindent is set, each line in insert mode is indented (using blanks and
tabs) to align with the previous line. (Starting indentation is determined by
the line appended after, or the line inserted before, or the first line changed.)
Additional indentation can be provided as usual; succeeding lines will
automatically be indented to the new alignment. Reducing the indent is
achieved by typing CTRL-D one or more times; the cursor is moved back
shiftwidth spaces for each CTRL-D. (A ˆ followed by a CTRL-D removes
all indentation temporarily for the current line; a 0 followed by a CTRL-D
removes all indentation.)

autoprint, ap
The current line is printed after each command that changes buffer text.
(autoprint is suppressed in globals.)

autowrite, aw
The buffer is written (to the current file) if it has been modified, and a next,
rewind, or ! command is given.

beautify, bf
Causes all control characters other than tab, newline, and formfeed to be
discarded from the input text.

directory, dir
The value of this option specifies the directory in which the editor buffer is
to be placed. If this directory can not be written to by the user, the editor
quits.

edcompatible, ed
Causes the presence of g and c suffixes on substitute commands to be
remembered, and toggled by repeating the suffixes. For example,
"1s/a/A/g" followed by "2s" will substitue all instances of "a" for "A" on line
2.

ignorecase, ic
All upper case characters in the text are mapped to lower case in regular
expression matching. Also, all upper case characters in regular expressions
are mapped to lower case.

lisp autoindent mode, and the () { } [[]] commands in visual are
suitably modified for lisp code.

list All printed lines are displayed with tabs shown as ˆI, and the end of line
marked by a $.

Page 9

FINAL COPY
June 15, 1995

File: au_cmd/ex
svid

Page: 205

ex (AU_CMD) ex (AU_CMD)

magic
Changes interpretation of characters in regular expressions and substitution
replacement strings (see the relevant sections above).

number, nu
Causes lines to be printed with line numbers.

paragraphs, para
The value of this option is a string, in which successive pairs of characters
specify the names of text-processing macros which begin paragraphs. (A
macro appears in the text in the form .XX, where the . is the first character
in the line.)

prompt
When set, command mode input is prompted for with a colon (:); when
unset, no prompt is displayed.

redraw
The editor simulates an intelligent terminal on a dumb terminal. (Since this
is likely to require a large amount of output to the terminal, it is useful only
at high transmission speeds.)

remap
If set, then macro translation allows for macros defined in terms of other
macros; translation continues until the final product is obtained. If unset,
then a one-step translation only is done.

report
The value of this option gives the number of lines that must be changed by a
command before a report is generated on the number of lines affected.

scroll
The value of this option determines the number of lines scrolled on a
CTRL-D, and the number of lines displayed by the z command (twice the
value of scroll).

sections
The value of this option is a string, in which successive pairs of characters
specify the names of text-processing macros which begin sections. (See
paragraphs option above.)

shiftwidth, sw
The value of this option gives the width of a software tab stop, used during
autoindent, and by the shift commands.

showmatch, sm
In visual mode, when a) or } is typed, the matching (or { is shown if it
is still on the screen.

slowopen, slow
In visual mode, prevents screen updates during input to improve
throughput on unintelligent terminals.

Page 10

FINAL COPY
June 15, 1995

File: au_cmd/ex
svid

Page: 206

ex (AU_CMD) ex (AU_CMD)

tabstop, ts
The value of this option specifies the software tab stops to be used by the
editor to expand tabs in the input file.

terse
When set, error messages are shorter.

window
The number of lines in a text window in visual mode.

wrapscan, ws
When set, searches (using // or ??) wrap around the end of the file; when
unset, searches stop at the beginning or the end of the file, as appropriate.

wrapmargin, wm
In visual mode, if the value of this option is greater than zero (say n), then
a newline is automatically added to an input line, at a word boundary, so
that lines end at least n spaces from the right margin of the terminal screen.

writeany, wa
Inhibits the checks otherwise made before write commands, allowing a
write to any file (provided the system allows it).

FILES
$HOME/.exrc editor initialization file

USAGE
End-user.

The undo command causes all marks to be lost on lines that were changed and then
restored.

The z command prints a number of logical rather than physical lines. More than a
screen-ful of output may result if long lines are present.

Null characters are discarded in input files and cannot appear in resultant files.

SEE ALSO
ed(BU_CMD), vi(AU_CMD), terminfo(TI_ENV).

FUTURE DIRECTIONS
To conform to the command syntax standard, the +command option will be
changed to the form -ccommand. The old form will continue to be accepted for
some time.

LEVEL
Level 1.

The option +command is Level 2, effective September 30, 1989.

Page 11

FINAL COPY
June 15, 1995

File: au_cmd/ex
svid

Page: 207

gencat (AU_CMD) gencat (AU_CMD)

NAME
g e n c a t – generate a formatted message catalogue

SYNOPSIS
g e n c a t [– m] catfile msgfile . . .

DESCRIPTION
The g e n c a t utility merges the message text source file(s) msgfile into a formatted
message database catfile. The database catfile will be created if it does not already
exist. If catfile does exist its messages will be included in the new catfile. If set and
message numbers collide, the new message text defined in msgfile will replace the
old message text currently contained in catfile. The message text source file (or set
of files) input to g e n c a t can contain either set and message numbers or simply mes-
sage numbers, in which case the set N L _ S E T D [see n l _ t y p e s(BA_ENV)] is assumed.

The format of a message text source file is defined as follows. Note that the fields of
a message text source line are separated by a single ASCII space or tab character.
Any other ASCII spaces or tabs are considered as being part of the subsequent field.

$ s e t n comment
Where n specifies the set identifier of the following messages until the next
$ s e t, $ d e l s e t or end-of-file appears. n must be a number in the range
(1–{N L _ S E T M A X}). Set identifiers within a single source file need not be con-
tiguous. Any string following the set identifier is treated as a comment. If no
$ s e t directive is specified in a message text source file, all messages will be
located in the default message set N L _ S E T D.

$ d e l s e t n comment
Deletes message set n from an existing message catalogue. Any string follow-
ing the set number is treated as a comment.

(Note: if n is not a valid set it is ignored.)

$ comment
A line beginning with a dollar symbol ($) followed by an ASCII space or tab
character is treated as a comment.

m message text
The m denotes the message identifier, which is a number in the range (1-
{N L _ M S G M A X}). The message text is stored in the message catalogue with the set
identifier specified by the last $ s e t directive, and with message identifier m.
If the message text is empty, and an ASCII space or tab field separator is
present, an empty string is stored in the message catalogue. If a message
source line has a message number, but neither a field separator nor message
text, the existing message with that number (if any) is deleted from the catalo-
gue. Message identifiers need not be contiguous. The length of message text
must be in the range (0–{N L _ T E X T M A X}).

$ q u o t e c
This line specifies an optional quote character c, which can be used to sur-
round message text so that trailing spaces or null (empty) messages are visible
in a message source line. By default, or if an empty $ q u o t e directive is sup-
plied, no quoting of message text will be recognized.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/gencat
svid

Page: 208

gencat (AU_CMD) gencat (AU_CMD)

Empty lines in a message text source file are ignored.

Text strings can contain the special characters and escape sequences defined in the
following table:

_ __
Description Symbol Sequence_ __
newline NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
bit pattern ddd \ddd_ __ 






















If the character following a backslash is not one of those specified, the backslash is
ignored. The escape sequence \ d d d consists of backslash followed by 1, 2, or 3 octal
digits, which are taken to specify the value of the desired character.

Backslash followed by an ASCII newline character is also used to continue a string
on the following line. Thus, the following two lines describe a single message string:

1 T h i s l i n e c o n t i n u e s \
t o t h e n e x t l i n e

which is equivalent to:

1 T h i s l i n e c o n t i n u e s t o t h e n e x t l i n e

SEE ALSO
m k m s g s(AS_CMD) c a t o p e n(BA_LIB), c a t g e t s(BA_LIB), c a t c l o s e(BA_LIB),
g e t t x t(BA_LIB), n l _ t y p e s(BA_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/gencat
svid

Page: 209

groups (AU_CMD) groups (AU_CMD)

NAME
groups – show group memberships

SYNOPSIS
groups [user]

DESCRIPTION
The groups command shows the groups to which you or the optionally specified
user belong. Each user belongs to a group specified in the password file
/etc/passwd and possibly to other groups as specified in the file /etc/group.
If you do not own a file but belong to the group by which it is owned, then you are
granted group access to the file.

FILES
/etc/passwd
/etc/group

SEE ALSO
getgroups(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/groups
svid

Page: 210

iconv (BU_CMD) iconv (BU_CMD)

NAME
i c o n v – code set conversion utility

SYNOPSIS
i c o n v - f fromcode - t tocode [file]

DESCRIPTION
i c o n v converts the characters or sequences of characters in file from one code set to
another and writes the results to standard output. Should no conversion exist for a
particular character then it is converted to the underscore ’_’ in the target code set.

Your system must have the appropriate data files for i c o n v to work. The European
Language Supplement (ELS) provides a large selection of these data files.

The required arguments fromcode and tocode identify the input and output code sets,
respectively. If no file argument is specified on the command line, i c o n v reads the
standard input.

i c o n v will always convert to or from the ISO 8859-1 Latin alphabet No.1, from or to
an ISO 646 ASCII variant code set for a particular language. The ISO 8859-1 code
set will support the majority of 8-bit code sets. The conversions attempted by
i c o n v accommodate the most commonly used languages.

The following table lists the supported conversions.
_ __

Code Set Conversions Supported_ __
Code Symbol Target Code Symbol comment_ __

ISO 646 646 ISO 8859-1 8859 US ASCII_ __
ISO 646de 646de ISO 8859-1 8859 German_ __
ISO 646da 646da ISO 8859-1 8859 Danish_ __
ISO 646en 646en ISO 8859-1 8859 English ASCII_ __
ISO 646es 646es ISO 8859-1 8859 Spanish_ __
ISO 646fr 646fr ISO 8859-1 8859 French_ __
ISO 646it 646it ISO 8859-1 8859 Italian_ __
ISO 646sv 646sv ISO 8859-1 8859 Swedish_ __
ISO 8859-1 8859 ISO 646 646 7 bit ASCII_ __
ISO 8859-1 8859 ISO 646de 646de German_ __
ISO 8859-1 8859 ISO 646da 646da Danish_ __
ISO 8859-1 8859 ISO 646en 646en English ASCII_ __
ISO 8859-1 8859 ISO 646es 646es Spanish_ __
ISO 8859-1 8859 ISO 646fr 646fr French_ __
ISO 8859-1 8859 ISO 646it 646it Italian_ __
ISO 8859-1 8859 ISO 646sv 646sv Swedish_ __ 






































































































































EXAMPLES
Assuming the ELS is installed on your system, the following converts the contents
of file m a i l 1 from code set 8859 to 646fr and stores the results in file m a i l . l o c a l.

i c o n v - f 8 8 5 9 - t 6 4 6 f r m a i l 1 > m a i l . l o c a l

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/iconv
svid

Page: 211

iconv (BU_CMD) iconv (BU_CMD)

FILES
/ u s r / l i b / i c o n v / i c o n v _ d a t a

lists the conversions supported
/ u s r / l i b / i c o n v / *

conversion tables, if any
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / u x m e s g

language-specific message file [See L A N G on e n v v a r(BA_ENV).]

Errors
i c o n v returns 0 upon successful completion, non-zero otherwise.

USAGE
Administrator.

SEE ALSO
i c o n v(BA_LIB), i c o n v _ c l o s e(BA_LIB), i c o n v _ o p e n(BA_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/iconv
svid

Page: 212

id (AU_CMD) id (AU_CMD)

NAME
i d – print the user name and ID, and group name and ID

SYNOPSIS
i d [user]

i d - G [- n] [user]

i d - g [- n r] [user]

i d - u [- n r] [user]

i d [- a]

DESCRIPTION
i d displays information on the calling process’s user and group I Ds. If user is
specified, then information on the user login is displayed instead.

The information displayed is the user I D and name and the group I D and name. If
the real and effective user I Ds do not match, both are printed. The same is true for
real and effective group I Ds. If the user belongs to more than one group, the extra
groups are also displayed.

The output format is a sequence of equality statements of the form, ‘‘id-
title=numeric-id(name)’’, each separated by a singlespace. The numeric-id is the
numeric representation of the group or user, real or effective I D. The name is the
symbolic representation of this I D (the login name of the user, for example). In the
C locale, the id-title is one of the following strings.

id-title description_ __________________________________
u i d user I D
g i d group I D
e u i d effective user I D
e g i d effective group I D
g r o u p s supplementary group I Ds

The equality statements are presented in the order given in the table, with each
statement present according to the conditions explained in the first paragraph.
However, the g r o u p s statement, which is always written last, if at all, is slightly dif-
ferent because each extra supplementary group after the first does not have its own
equality statement but adds ‘‘, numeric-id (name)’’ to the end of the output line.

Options
- a This option does nothing. It is for backward compatibility only, and should

not be used.
- G Display all different (numeric) group I Ds (real, effective, and supplemen-

tary), each separated by a s p a c e.
- g Display only the effective (numeric) group I D.
- n Display the name instead of the numeric I D (when used with - G, - g, or - u).
- r Display the real I D instead of the effective I D (when used with - g or - u).
- u Display only the effective (numeric) user I D.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/id
svid

Page: 213

id (AU_CMD) id (AU_CMD)

SEE ALSO
logname(AU_CMD), getuid(BA_OS)

FUTURE DIRECTIONS
The - a will be removed in the next issue of the SVID. This flag is no longer neces-
sary. Notice must be taken of the default behavior of the command which has
changed for POSIX 1003.2 conformance, and may affect some scripts that parse the
output of the i d command on systems that support multiple group affiliations.

LEVEL
Level 1. The - a flag is moved to Level 2, effective September 30, 1993.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/id
svid

Page: 214

join (AU_CMD) join (AU_CMD)

- 1 field Join on the fieldth field of file1. Fields are positive decimal integers
starting with 1.

- 2 field Join on the fieldth field of file2. Fields are positive decimal integers
starting with 1.

EXAMPLES
The following command line will join the password file and the group file, match-
ing on the numeric group ID, and outputting the login name, the group name, and
the login directory. It is assumed that the files have been sorted in code set collat-
ing sequence on the group ID fields.

j o i n - 1 4 - 2 3 - o 1 . 1 2 . 1 1 . 6 - t : / e t c / p a s s w d / e t c / g r o u p

FILES
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / u x d f m

language-specific message file [see L A N G on e n v v a r(BA_ENV)].

SEE ALSO
a w k (BU_CMD), c o m m (BU_CMD), s o r t (BU_CMD), u n i q (BU_CMD)

LEVEL
Level 1.

NOTICES
With default field separation, the collating sequence is that of s o r t - b; with - t, the
sequence is that of a plain sort.

The conventions of the j o i n, s o r t, c o m m, u n i q, and a w k commands are wildly
incongruous.

Filenames that are numeric may cause conflict when the - o option is used just
before listing filenames.

The - j , - j 1 , and - j 2 options have been made obsolete by POSIX. It is recom-
mended that application authors avoid using these options.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/join
svid

Page: 216

logname (AU_CMD) logname (AU_CMD)

NAME
l o g n a m e – get login name

SYNOPSIS
l o g n a m e

DESCRIPTION
l o g n a m e returns the name of the user running the process.

The L C _ C T Y P E environment variable defines the codesets that are used in the user
name. [See L A N G in e n v v a r (BA_ENV).]

FILES
/ e t c / p r o f i l e
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / u x u e . a b i

language-specific message file [See L A N G in e n v v a r (BA_ENV)].

SEE ALSO
e n v (SD_CMD), e n v v a r (BA_ENV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/logname
svid

Page: 217

lp (AU_CMD) lp (AU_CMD)

NAME
l p, c a n c e l – send/cancel print requests

SYNOPSIS
l p [print-options] [files]

l p - i request-ID print-options

c a n c e l [request-IDs] [printers]

c a n c e l - u login-IDs [printers]

DESCRIPTION
The first form of the l p command arranges for the named files and associated infor-
mation (collectively called a request) to be printed. If filenames are not specified on
the command line, the standard input is assumed. The standard input may be
specified along with named files on the command line by listing the filenames and
specifying - for the standard input. The files will be printed in the order in which
they appear on the command line. l p processes supplementary code set characters
according to the locale specified in the L C _ C T Y P E environment variable [see L A N G on
e n v v a r(BA_ENV)], except as noted under the - t option below.

The LP print service associates a unique request-ID with each request and displays it
on the standard output. This request-ID can be used later when canceling or chang-
ing a request, or when determining its status. See the section on c a n c e l for details
about canceling a request, and l p s t a t(AU_CMD) for information about checking
the status of a print request.

The second form of l p is used to change the options for a request submitted previ-
ously. The print request identified by the request-ID is changed according to the
print-options specified with this command. The print-options available are the same
as those with the first form of the l p command. If the request has finished printing,
the change is rejected. If the request is already printing, it will be stopped and res-
tarted from the beginning (unless the - P option has been given).

If a print job fails because of level range restrictions, the job will be canceled, and
you will be notified by m a i l. In that case, you will need to submit the job to a dif-
ferent printer (one with the appropriate security level range). Ask your system
administrator for information on printer security level ranges.

For printers configured to use the B 2 interface, unless you use the - o n o l a b e l s
option, all paginated output will have a single line of security level information
printed at the top and bottom of each page of the output. (The security level name
is truncated if it is longer than one line.) In addition, the banner and trailer pages
for the print job will contain complete security level information.

The c a n c e l command allows users to cancel print requests previously sent with the
l p command. The first form of c a n c e l permits cancellation of requests based on
their request-ID. The second form of c a n c e l permits cancellation of requests based
on the login-ID of their owner.

Sending a Print Request
The first form of the l p command is used to send a print request either to a particu-
lar printer or to any printer capable of meeting all requirements of the print request.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/lp
svid

Page: 218

lp (AU_CMD) lp (AU_CMD)

Options to l p must always precede filenames, but may be specified in any order.
The following options are available for l p:

- c Make copies of the files to be printed immediately when l p is invoked.
Normally files will not be copied, but will be linked whenever possi-
ble. If the - c option is not specified, the user should be careful not to
remove any of the files before the request has been printed in its
entirety. It should also be noted that if the - c option is not specified,
any changes made to the named files after the request is made but
before it is printed will be reflected in the printed output.

- d dest Choose dest as the printer or class of printers that is to do the printing.
If dest is a printer, then the request will be printed only on that specific
printer. If dest is a class of printers, then the request will be printed on
the first available printer that is a member of the class. If dest is a n y,
then the request will be printed on any printer that can handle it.
Under certain conditions (unavailability of printers, file space limita-
tions, and so on) requests for specific destinations may not be
accepted [see l p s t a t(AU_CMD)]. By default, dest is taken from the
environment variable L P D E S T (if it is set). Otherwise, a default desti-
nation (if one exists) L P D E S T. If L P D E S T is not set, then dest is taken
from the environment variable P R I N T E R. If P R I N T E R is not set, a
default destination (if one exists) for the computer system is used.
Destination names vary between systems [see l p s t a t(AU_CMD)].

- f form-name [- d a n y]
Print the request on the form form-name. The LP print service ensures
that the form is mounted on the printer. If form-name is requested
with a printer destination that cannot support the form, the request is
rejected. If form-name has not been defined for the system, or if the
user is not allowed to use the form, the request is rejected. When the
- d a n y option is given, the request is printed on any printer that has
the requested form mounted and can handle all other needs of the
print request.

- H special-handling
Print the request according to the value of special-handling. Acceptable
values for special-handling are defined below:

h o l d Don’t print the request until notified. If printing has
already begun, stop it. Other print requests will go
ahead of a held request until it is resumed. If the Audit-
ing Utilities are installed, the use of this option is an
auditable event.

r e s u m e Resume a held request. If it had been printing when
held, it will be the next request printed, unless subse-
quently bumped by an i m m e d i a t e request. If the Audit-
ing Utilities are installed, the use of this option is an
auditable event. The - i option (followed by a request-
ID) must be used whenever this argument is specified.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/lp
svid

Page: 219

lp (AU_CMD) lp (AU_CMD)

i m m e d i a t e (Available only to LP administrators)
Print the request next. If more than one request is
assigned i m m e d i a t e, the most recent request will be
printed first. If another request is currently printing, it
must be put on hold to allow this immediate request to
print.

- L locale-name
Specify locale-name as the locale to use with this print request. By
default, locale-name is set to the value of L C _ C T Y P E. If L C _ C T Y P E is not
set, locale-name defaults to the C locale.

- m Send mail [see m a i l(BU_CMD)] after the files have been printed. By
default, mail is not sent upon normal completion of the print request.

- n number Print number copies of the output. The default is one copy.

- o options Specify printer-dependent options. Several such options may be col-
lected by specifying the - o keyletter more than once (that is, - o
option1 - o option 2 . . . - o option n), or by specifying a list of options
with one - o keyletter enclosed in double quotes and separated by
spaces (that is, - o "option 1 option 2 . . . option n").

n o b a n n e r Do not print a banner page with this request. The
administrator can disallow this option at any time. This
option is not supported by printers configured to use the
B 2 interface.

n o f i l e b r e a k
Do not insert a form feed between the files given, if sub-
mitting a job to print more than one file. This option is
not supported by printers configured to use the P S
(PostScript) interface.

n o l a b e l s Do not print security level information at the top and
bottom of each page of the output. If the Auditing Utili-
ties are installed, the use of this option is an auditable
event. This option is not supported by printers
configured to use the s t a n d a r d or P S (PostScript) inter-
face.

l e n g t h =scaled-decimal-number
Print this request with pages scaled-decimal-number long.
A scaled-decimal-number is an optionally scaled decimal
number that gives a size in lines, characters, inches, or
centimeters, as appropriate. The scale is indicated by
appending the letter i for inches, or the letter c for cen-
timeters. For length or width settings, an unscaled
number indicates lines or characters; for line pitch or
character pitch settings, an unscaled number indicates
lines per inch or characters per inch (the same as a
number scaled with i). For example, l e n g t h = 6 6 indi-
cates a page length of 66 lines, l e n g t h = 1 1 i indicates a
page length of 11 inches, and l e n g t h = 2 7 . 9 4 c indicates a

Page 3

FINAL COPY
June 15, 1995

File: au_cmd/lp
svid

Page: 220

lp (AU_CMD) lp (AU_CMD)

page length of 27.94 centimeters. This option may not be
used with the - f option and is not supported by the P S
(PostScript) or B2 interface.

w i d t h =scaled-decimal-number
Print this request with pages scaled-decimal-number wide.
(See the explanation of scaled-decimal-numbers in the dis-
cussion of l e n g t h, above.) This option may not be used
with the - f option and is not supported by the P S
(PostScript) or B2 interface.

l p i =scaled-decimal-number
Print this request with the line pitch set to scaled-decimal-
number. (See the explanation of scaled-decimal-numbers in
the discussion of l e n g t h, above.) This option may not
be used with the - f option and is not supported by the
P S (PostScript) or B2 interface.

c p i = p i c a | e l i t e | c o m p r e s s e d
Print this request with the character pitch set to p i c a
(representing 10 characters per inch), e l i t e (represent-
ing 12 characters per inch), or c o m p r e s s e d (representing
as many characters per inch as a printer can handle).
There is not a standard number of characters per inch for
all printers; see the Terminfo database [t e r m i n f o] for
the default character pitch for your printer. This option
may not be used with the - f option and is not supported
by the P S (PostScript) or B2 interface.

s t t y =stty-option-list
A list of options valid for the s t t y command; enclose
the list with single quotes if it contains blanks.

- P page-list Print the pages specified in page-list. This option can be used only if
there is a filter available to handle it; otherwise, the print request will
be rejected. The page-list may consist of ranges of numbers, single
page numbers, or a combination of both. The pages will be printed in
ascending order.

- q priority-level
Assign this request priority-level in the printing queue. The values of
priority-level range from 0 (highest priority) to 39 (lowest priority). If a
priority is not specified, the default for the print service is used, as
assigned by the system administrator. A priority limit may be
assigned to individual users by the system administrator. If the
Auditing Utilities are installed, the use of this option is an auditable
event.

- r See ‘‘- T content-type [- r]’’ below.

- s Suppress the r e q u e s t i d i s . . . message.

Page 4

FINAL COPY
June 15, 1995

File: au_cmd/lp
svid

Page: 221

lp (AU_CMD) lp (AU_CMD)

- S character-set [- d a n y]
- S print-wheel [- d a n y]

Print this request using the specified character-set or print-wheel. If a
form was requested and it requires a character set or print wheel other
than the one specified with the - S option, the request is rejected.

For printers that take print wheels: if the print wheel specified is not
one listed by the administrator as acceptable for the printer specified
in this request, the request is rejected unless the print wheel is already
mounted on the printer.

For printers that use selectable or programmable character sets: if the
character-set specified is not one defined in the Terminfo database for
the printer [see t e r m i n f o], or is not an alias defined by the adminis-
trator, the request is rejected.

When the - d a n y option is used, the request is printed on any printer
that has the print wheel mounted or any printer that can select the
character set, and that can handle all other needs of the request.

- t title Print title on the banner page of the output. The default is no title.
Enclose title in quotes if it contains blanks. Supplementary code set
characters specified in title are not printed correctly [see
b a n n e r(BU_CMD)].

- T content-type [- r]
Print the request on a printer that can support the specified content-
type. If no printer accepts this type directly, a filter will be used to
convert the content into an acceptable type. If the - r option is
specified, a filter will not be used. If - r is specified but no printer
accepts the content-type directly, the request is rejected. If the content-
type is not acceptable to any printer, either directly or with a filter, the
request is rejected.

In addition to ensuring that no filters will be used, the - r option will
force the equivalent of the - o ’ s t t y = - o p o s t ’ option.

- w Write a message on the user’s terminal after the files have been
printed. If the user is not logged in, or if the printer resides on a
remote system, then mail will be sent instead. Be aware that messages
may be sent to a window other than the one in which the command
was originally entered.

- y mode-list Print this request according to the printing modes listed in mode-list.
The allowed values for mode-list are locally defined. This option may
be used only if there is a filter available to handle it; otherwise, the
print request will be rejected.

The following list describes the mode-list options:

"- y r e v e r s e"
Reverse the order in which pages are printed.

Page 5

FINAL COPY
June 15, 1995

File: au_cmd/lp
svid

Page: 222

lp (AU_CMD) lp (AU_CMD)

"- y l a n d s c a p e"
Change the orientation of a physical page from portrait
to landscape.

"- y x =number, y =number"
Change the default position of a logical page on a physi-
cal page by moving the origin.

"- y g r o u p =number"
Group multiple logical pages on a single physical page.

"- y m a g n i f y =number"
Change the logical size of each page in a document.

"- o l e n g t h =number"
Select the number of lines in each page of the document.

"- P number"
Select, by page numbers, a subset of a document to be
printed.

"- n number"
Print multiple copies of a document.

Canceling a Print Request
The c a n c e l command cancels requests for print jobs made with the l p command.
The first form allows a user to specify one or more request-IDs of print jobs to be
canceled. Alternatively, the user can specify one or more printers, on which only the
currently printing job will be canceled if it is the user’s job.

The second form of c a n c e l cancels all jobs for users specified in login-IDs. In this
form the printers option can be used to restrict the printers on which the users’ jobs
will be canceled. Note that in this form, when the printers option is used, all jobs
queued by the users for those printers will be canceled. A printer class is not a
valid argument.

A user without special privileges can cancel only requests that are associated with
his or her own login ID; To cancel a request, a user issues the following command:

c a n c e l - u login-ID [printer]

This command cancels all print requests associated with the login-ID of the user
making the request, either on all printers (by default) or on the printer specified.

Administrative users with the appropriate privileges can cancel jobs submitted by
any user by issuing the following types of commands:

c a n c e l - u "login-ID-list"
Cancels all requests (on all relevant printers) by the specified users, includ-
ing those jobs currently being printed. Double quotes must be used
around login-ID-list if the list contains blanks. The argument login-ID-list
may include any or all of the following constructs:

login-ID a user on the local system

Page 6

FINAL COPY
June 15, 1995

File: au_cmd/lp
svid

Page: 223

lp (AU_CMD) lp (AU_CMD)

system-name!login-ID a user on system system-name

system-name! a l l all users on system system-name

a l l !login-ID a user on all systems

a l l all users on the local system

a l l ! a l l all users on all systems

Note that a remote job can be canceled only if it originated on the client
system; that is, a server system can cancel jobs that came from a client, and
a client system can cancel jobs it sent to a server.

c a n c e l - u "login-ID-list" printer-1 printer-2 printer-n
Cancels all requests by the specified users for the specified printers, includ-
ing those jobs currently being printed. (For a complete list of printers
available on your system, execute the l p s t a t - p command.)

In any of these cases, the cancellation of a request that is currently printing frees the
printer to print the next request.

If the Auditing Utilities are installed, the use of this command is an auditable event.

Downloading Type 1 PostScript Fonts to PostScript Printers
The desktop metaphor has a feature allowing the installation of retail Type 1 fonts
for use with applications running under the metaphor. These fonts may be down-
loaded to PostScript printers if the application generates PostScript output that uses
them. The l p command handles this automatically using the filter named d o w n -
l o a d.

FILES
/ v a r / s p o o l / l p /∗
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / u x l p

language-specific message file [see L A N G on e n v v a r(BA_ENV)].

SEE ALSO
l p s t a t(AU_CMD), m a i l(BU_CMD)

LEVEL
Level 1.

NOTICES
Printers for which requests are not being accepted will not be considered when the
destination is a n y. (Use the l p s t a t - a command to see which printers are accept-
ing requests.) However, if a request is destined for a class of printers and the class
itself is accepting requests, then all printers in the class will be considered, regard-
less of their acceptance status.

For printers that take mountable print wheels or font cartridges, if you do not
specify a particular print wheel or font with the - S option, whichever one happens
to be mounted at the time your request is printed will be used. The l p s t a t - p
printer - l command is used to see which print wheels are available on a particular
printer. The l p s t a t - S - l command is used to see what print wheels are avail-
able and on which printers. Without the - S option, the standard character set is
used for printers that have selectable character sets.

Page 7

FINAL COPY
June 15, 1995

File: au_cmd/lp
svid

Page: 224

lp (AU_CMD) lp (AU_CMD)

If you experience problems with jobs that usually print but on occasion do not
print, check the physical connections between the printer and your computer. If
you are using an automatic data switch or an A/B switch, try removing it and see if
the problem clears.

Pre-SVR4.2 systems may issue warnings about unrecognized options (such as the
l o c a l e = or f l i s t = options), when processing print requests from remote systems
running a more recent version of the LP Print Server. The request will be printed
normally, however.

Administrators with appropriate privileges can suppress these warnings by adding
the following two lines to the section annotated as ‘‘adding simple options,’’ in the
printer interface program used by the printer issuing the warnings.

l o c a l e = *) ; ;
f l i s t = *) ; ;

(Printer interface programs are found in the / u s r / l i b / l p / m o d e l directory.) An
example of how to do this can be found in the s t a n d a r d interface program.

Page 8

FINAL COPY
June 15, 1995

File: au_cmd/lp
svid

Page: 225

lpstat (AU_CMD) lpstat (AU_CMD)

NAME
lpstat – print information about the status of the LP print service

SYNOPSIS
lpstat [options]

DESCRIPTION
The lpstat command displays information about the current status of the LP print
service. If no options are given, lpstat displays the status of all print requests
made by you. [See lp(AU_CMD) for details.] If the command is issued on a system
running the LP Network Utilities, lpstat displays the status of requests made to
both local and remote printers. Status messages containing supplementary code set
characters are displayed according to the locale specified in the LC_CTYPE environ-
ment variable [see LANG on envvar(BA_ENV)].

Any arguments that are not options are assumed to be request-IDs as returned by lp.
The lpstat command displays the status of such requests. The options may appear
in any order and may be repeated and intermixed with other arguments. Some of
the keyletters below may be followed by an optional list that can be in one of two
forms: a list of items separated by commas or a list of items separated by spaces
(some form of quoting will be needed). For example:

-p printer1,printer2
-u "user1 user2 user3"

Specifying all after any keyletter that takes list as an argument causes all informa-
tion relevant to the keyletter to be displayed. For example, the command

lpstat -o all

displays the status of all output requests.

The omission of a list following such keyletters causes all information relevant to
the keyletter to be displayed. For example, the command

lpstat -o

displays the status of all output requests.

If the Enhanced Security Extension is implemented and running, unprivileged users
can display information only on requests that are associated with their own login
IDs and that have a MAC level dominated by the users’ current MAC level.
Administrative users with the appropriate privileges may override these restric-
tions and report information on all jobs.

The following options and arguments may be used with lpstat:

-a [list] Report whether print destinations are accepting requests. list
is a list of intermixed printer names and class names.

-c [list] Report names of all classes and their members. list is a list of
class names.

-d Report what the system default destination is (if any).

-f [list] [-l] Verify that the forms in list are recognized by the LP print
service. list is a list of forms; the default is all. The -l
option will list the form parameters.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/lpstat
svid

Page: 226

lpstat (AU_CMD) lpstat (AU_CMD)

-o [list] [-l] Report the status of print requests. list is a list of intermixed
printer names, class names, and request-IDs. The keyletter -o
may be omitted. The -l option lists for each request whether
it is queued for, assigned to, or being printed on a printer,
the form required (if any), and the character set or print
wheel required (if any).

-p [list] [-D] [-l] Report the status of printers. list is a list of printer names. If
the -D option is given, a brief description is printed for each
printer in list. If the -l option is given, a full description of
each printer’s configuration is given, including the form
mounted, the acceptable content and printer types, a printer
description, the interface used, and so on.

-r Report the status of the LP request scheduler (whether it is
running).

-R Report a number showing the position of jobs in the print
queue for each printer.

-s [-l] Display a status summary, including the status of the LP
scheduler, the system default destination, a list of class
names and their members, a list of printers and their associ-
ated devices, a list of the systems sharing print services, a list
of all forms and their availability, and a list of all recognized
character sets and print wheels. The -l option displays all
parameters for each form and the printer name where each
character set or print wheel is available.

-S [list] [-l] Verify that the character sets or the print wheels specified in
list are recognized by the LP print service. Items in list can be
character sets or print wheels; the default for list is all. If
the -l option is given, each line is appended by a list of
printers that can handle the print wheel or character set. The
list also shows whether the print wheel or character set is
mounted or specifies the built-in character set into which it
maps.

-t [-l] Display all status information: all the information obtained
with the -s option, plus the acceptance and idle/busy status
of all printers and status of all requests. The -l option
displays more detail as described for the -f, -o, -p, and -s
options. Supplementary code set characters specified may
not be printed correctly.

-u [list] Display the status of output requests for users. The list argu-
ment may include any or all of the following constructs:

login-ID a user on any system

system-name!login-ID a user on system system-name

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/lpstat
svid

Page: 227

lpstat (AU_CMD) lpstat (AU_CMD)

system-name!all all users on system system-name

all!login-ID a user on all systems

all all users on all systems

The default value of list is all.

-v [list] Report the names of printers and the pathnames of the
devices associated with them (for local printers) or remote
system names (if the LP Network Utilities are installed).
Administrative users will also see the device level ranges of
remote printers. list is a list of printer names.

If you select this option for a network printer, then, if possi-
ble, the specified printer range will be displayed by the secu-
rity level aliases. If the level alias cannot be displayed, then
the fully qualified level name will be displayed. If the fully
qualified level name cannot be displayed, then the appropri-
ate level ID number will be displayed.

-z Display the alias name of the MAC level associated with the
print jobs; valid only if the Enhanced Security Extension is
implemented.

-Z Display the fully qualified name of the MAC level associated
with the print jobs; valid only if the Enhanced Security Exten-
sion is implemented.

The -z and -Z options are mutually exclusive. If the -z option is specified and
there is not an alias assigned to the level, the decimal value of the level identifier
(LID) is displayed. If the -z or -Z option is specified and the level is in the valid-
inactive state, the decimal value of the LID is displayed. LID states are described in
lvlname(ES_CMD).

FILES
/etc/lp/∗
/var/spool/lp/∗

SEE ALSO
lp(AU_CMD), lvlname(ES_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: au_cmd/lpstat
svid

Page: 228

mailx (AU_CMD) mailx (AU_CMD)

NAME
mailx – interactive message processing system

SYNOPSIS
mailx [-e]

mailx [-f[filename]] [-H] [-N] [-uuser] [-i] [-n]

mailx [-F] [-hnumber] [-raddress] [-ssubject] [-i] [-n] name ...

DESCRIPTION
The command mailx provides a comfortable, flexible environment for sending
and receiving messages electronically. When reading mail, mailx provides com-
mands to facilitate saving, deleting, and responding to messages. When sending
mail, mailx allows editing, reviewing and other modification of the message as it
is entered.

Incoming mail is stored in a standard file for each user, called the system mailbox
for that user. When mailx is called to read messages, the mailbox is the default
place to find them. As messages are read, they are marked to be moved to a secon-
dary file for storage, unless specific action is taken, so that the messages need not be
seen again. This secondary file is called the mbox and is normally located in the
user’s home directory (see MBOX, in Environment Variables below for a description
of this file). Messages remain in this file until specifically removed.

On the command line, options start with a dash (–) and any other arguments are
taken to be destinations (recipients). If no recipients are specified, mailx will
attempt to read messages from the mailbox.

Option for testing presence of mail:
–e Test for presence of mail. The command mailx prints nothing and exits

with a successful return code if there is mail to read.

Options for receiving mail:
–f[filename]

Read messages from filename instead of mailbox. If no filename is specified,
the mbox is used.

–H Print header summary only.

–N Do not print initial header summary.

–uuser
Read user’s mailbox. This is only effective if user’s mailbox is not read pro-
tected.

Options for sending mail:
–F Record the message in a file named after the first recipient. Overrides the

"record" variable, if set (see Environment Variables).

–hnumber
The number of network "hops" made so far. This is provided for network
software to avoid infinite delivery loops.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/mailx
svid

Page: 229

mailx (AU_CMD) mailx (AU_CMD)

–raddress
Pass address to network delivery software. All tilde commands are disabled.

–ssubject
Set the Subject header field to subject.

Options for both sending and receiving mail:
–i Ignore interrupts. See also "ignore" (Environment Variables).

–n Do not initialize from the system default mailx.rc file.

When reading mail, mailx is in command mode. A header summary of the first
several messages is displayed, followed by a prompt indicating mailx can accept
regular commands (see Commands below). When sending mail, mailx is in input
mode. If no subject is specified on the command line, a prompt for the subject is
printed. As the message is typed, mailx will read the message and store it in a
temporary file. Commands may be entered by beginning a line with the tilde (˜)
escape character followed by a single command letter and optional arguments. See
Tilde Escapes for a summary of these commands.

At any time, the behavior of mailx is governed by a set of environment variables.
These are flags and valued parameters which are set and cleared via the set and
unset commands. See Environment Variables below for a summary of these
parameters.

Regular commands are of the form

[command] [msglist] [arguments]

If no command is specified in command mode, print is assumed. In input mode,
commands are recognized by the escape character, and lines not treated as com-
mands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the notion
of a ’current’ message, marked by a ’>’ in the header summary. Many commands
take an optional list of messages (msglist) to operate on, which defaults to the
current message. A msglist is a list of message specifications separated by spaces,
which may include:

n Message number n.

. The current message.

ˆ The first undeleted message.

$ The last message.

* All messages.

n–m An inclusive range of message numbers.

user All messages from user.

/string All messages with string in the subject line (case ignored).

:c All messages of type c, where c is one of:

d deleted messages

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/mailx
svid

Page: 230

mailx (AU_CMD) mailx (AU_CMD)

n new messages

o old messages

r read messages

u unread messages

Note that the context of the command determines whether this type of message
specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the com-
mand involved. Filenames, where expected, can be specified with metacharacters
understood by the command interpreter. Special characters are recognized by cer-
tain commands and are documented with the commands below.

At start-up time, mailx reads commands from a system-wide file to initialize cer-
tain parameters, then from a private start-up file ($HOME/.mailrc) for personal-
ized variables. Most regular commands are legal inside start-up files, the most
common use being to set up initial display options and alias lists. The following
commands are not legal in the start-up file: !, Copy, edit, followup, Fol-
lowup, hold, mail, preserve, reply, Reply, shell, and visual. Any
errors in the start-up file cause the remaining lines in the file to be ignored.

Commands
The following is a complete list of mailx commands:

!command
Escape to the command interpreter. See SHELL (Environment Variables).

comment
Null command (comment). This may be useful in .mailrc files.

= Print the current message number.

? Prints a summary of commands.

alias alias name ...
group alias name ...

Declare an alias for the given names. The names will be substituted when
alias is used as a recipient. Useful in the .mailrc file.

alternates name ...
Declares a list of alternate names for the user’s login. When responding to a
message, these names are removed from the list of recipients for the
response. With no arguments, alternates prints the current list of alter-
nate names. See also allnet (Environment Variables).

cd [directory]
chdir [directory]

Change directory. If directory is not specified, $HOME is used.

copy [filename]
copy [msglist] filename

Copy messages to the file without marking the messages as saved. Other-
wise equivalent to the save command.

Page 3

FINAL COPY
June 15, 1995

File: au_cmd/mailx
svid

Page: 231

mailx (AU_CMD) mailx (AU_CMD)

Copy [msglist]
Save the specified messages in a file whose name is derived from the author
of the message to be saved, without marking the messages as saved. Other-
wise equivalent to the Save command.

delete [msglist]
Delete messages from the mailbox. If autoprint is set, the next message
after the last one deleted is printed (see Environment Variables).

discard [header-field ...]
ignore [header-field ...]

Suppresses printing of the specified header fields when displaying messages
on the screen. Examples of header fields to ignore are status and cc. The
fields are included when the message is saved. The Print and Type com-
mands override this command.

dp [msglist]
dt [msglist]

Delete the specified messages from the mailbox and print the next message
after the last one deleted. Roughly equivalent to a delete command fol-
lowed by a print command.

echo string ...
Echo the given strings [see echo(BU_CMD)].

edit [msglist]
Edit the given messages. The messages are placed in a temporary file and
the EDITOR variable is used to get the name of the editor (see Environment
Variables). Default editor is ed.

exit

xit Exit from mailx, without changing the mailbox. No messages are saved in
the mbox (see also quit).

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file. Several
special characters are recognized when used as filenames, with the follow-
ing substitutions:

% the current mailbox.
%user the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

folders
Print the names of the files in the directory set by the folder variable (see
Environment Variables).

followup [message]
Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the record variable, if
set. See also the Followup, Save, and Copy commands and outfolder

Page 4

FINAL COPY
June 15, 1995

File: au_cmd/mailx
svid

Page: 232

mailx (AU_CMD) mailx (AU_CMD)

(Environment Variables).

Followup [msglist]
Respond to the first message in the msglist, sending the message to the
author of each message in the msglist. The subject line is taken from the first
message and the response is recorded in a file whose name is derived from
the author of the first message. See also the followup, Save, and Copy
commands and outfolder (Environment Variables).

from [msglist]
Prints the header summary for the specified messages.

group alias name ...
alias alias name ...

Declare an alias for the given names. The names will be substituted when
alias is used as a recipient. Useful in the .mailrc file.

headers [message]
Prints the page of headers which includes the message specified. The
screen variable sets the number of headers per page (see Environment
Variables). See also the z command.

help Prints a summary of commands.

hold [msglist]
preserve [msglist]

Holds the specified messages in the mailbox.

if sr
mail-commands

else
mail-commands

endif Conditional execution, where s will execute mail-commands, up to an else
or endif, if the program is in send mode; r causes the mail-commands to be
executed only in receive mode. Useful in the .mailrc file.

ignore header-field ...
discard header-field ...

Suppresses printing of the specified header fields when displaying messages
on the screen. Examples of header fields to ignore are status and cc. All
fields are included when the message is saved. The Print and Type com-
mands override this command.

list Prints all commands available. No explanation is given.

mail name ...
Mail a message to the specified users.

mbox [msglist]
Arrange for the given messages to end up in the standard mbox save file
when mailx terminates normally. See MBOX (Environment Variables) for a
description of this file. See also the exit and quit commands.

Page 5

FINAL COPY
June 15, 1995

File: au_cmd/mailx
svid

Page: 233

mailx (AU_CMD) mailx (AU_CMD)

next [message]
Go to next message matching message. A msglist may be specified, but in this
case the first valid message in the list is the only one used. This is useful for
jumping to the next message from a specific user, since the name would be
taken as a command in the absence of a real command. See the discussion
of msglists above for a description of possible message specifications.

pipe [msglist] [command]
| [msglist] [command]

Pipe the message through the given command. The message is treated as if it
were read. If no arguments are given, the current message is piped through
the command specified by the value of the cmd variable. If the page vari-
able is set, a form feed character is inserted after each message (see Environ-
ment Variables).

preserve [msglist]
hold [msglist]

Preserve the specified messages in the mailbox.

Print [msglist]
Type [msglist]

Print the specified messages on the screen, including all header fields. Over-
rides suppression of fields by the ignore command.

print [msglist]
type [msglist]

Print the specified messages. If crt is set, the messages longer than the
number of lines specified by the crt variable are paged through the com-
mand specified by the PAGER environment variable. The default command
is pg. (See Environment Variables).

quit Exit from mailx, storing messages that were read in mbox and unread mes-
sages in the mailbox. Messages that have been explicitly saved in a file are
deleted.

Reply [msglist]
Respond [msglist]

Send a response to the author of each message in the msglist. The subject
line is taken from the first message. If record is set to a filename, the
response is saved at the end of that file (see Environment Variables).

reply [message]
respond [message]

Reply to the specified message, including all other recipients of the message.
If record is set to a filename, the response is saved at the end of that file
(see Environment Variables).

Save [msglist]
Save the specified messages in a file whose name is derived from the author
of the first message. The name of the file is taken to be the author’s name
with all network addressing stripped off. See also the Copy, followup,
and Followup commands and outfolder (Environment Variables).

Page 6

FINAL COPY
June 15, 1995

File: au_cmd/mailx
svid

Page: 234

mailx (AU_CMD) mailx (AU_CMD)

unset name ...
Causes the specified variables to be erased. If the variable was imported
from the execution environment (i.e., an environment variable) then it can-
not be erased.

version
Prints the current version and release date.

visual [msglist]
Edit the given messages with a screen editor. The messages are placed in a
temporary file and the VISUAL variable is used to get the name of the editor
(see Environment Variables).

write [msglist] filename
Write the given messages on the specified file, minus the header and trailing
blank line. Otherwise equivalent to the save command.

xit

exit Exit from mailx, without changing the mailbox. No messages are saved in
the mbox (see also quit).

z[+-]
Scroll the header display forward or backward one screen full. The number
of headers displayed is set by the screen variable (see Environment Vari-
ables).

Tilde Escapes
The following commands may be entered only from input mode, by beginning a
line with the tilde escape character (˜). See escape (Environment Variables) for
changing this special character.

˜! command
Escape to the command interpreter.

˜. Simulate end of file (terminate message input).

˜: mail-command
˜_mail-command

Perform the command-level request. Valid only when sending a message
while reading mail.

˜? Print a summary of tilde escapes.

˜A Insert the autograph string Sign into the message (see Environment Vari-
ables).

˜a Insert the autograph string sign into the message (see Environment Vari-
ables).

˜b name ...
Add the names to the blind carbon copy (Bcc) list.

˜c name ...
Add the names to the carbon copy (Cc) list.

Page 8

FINAL COPY
June 15, 1995

File: au_cmd/mailx
svid

Page: 236

mailx (AU_CMD) mailx (AU_CMD)

˜d Read in the dead.letter file. See DEAD (Environment Variables) for a
description of this file.

˜e Invoke the editor on the partial message. See also EDITOR (Environment
Variables).

˜f [msglist]
Forward the specified messages. The messages are inserted into the mes-
sage, without alteration. This command is valid only when sending a mes-
sage while reading mail.

˜h Prompt for Subject line and To, Cc, and Bcc lists. If the field is displayed
with an initial value, it may be edited as if it had just been typed.

˜i string
Insert the value of the named variable into the text of the message. For
example, ˜A is equivalent to ’˜i Sign’.

˜m [msglist]
Insert the specified messages into the letter, shifting the new text to the right
one tab stop. This command is valid only when sending a message while
reading mail.

˜p Print the message being entered.

˜q Quit from input mode by simulating an interrupt. If the body of the mes-
sage is not null, the partial message is saved in dead.letter. See DEAD
(Environment Variables) for a description of this file.

˜r filename

˜<filename

˜<!command
Read in the specified file. If the argument begins with an exclamation point
(!), the rest of the string is taken as an arbitrary system command and is exe-
cuted, with the standard output inserted into the message.

˜s string ...
Set the subject line to string.

˜t name ...
Add the given names to the To list.

˜v Invoke a preferred screen editor on the partial message. See also VISUAL
(Environment Variables).

˜w filename
Write the partial message onto the given file, without the header.

˜x Exit as with ˜q except the message is not saved in dead.letter.

˜| command
Pipe the body of the message through the given command. If the command
returns a successful exit status, the output of the command replaces the mes-
sage.

Page 9

FINAL COPY
June 15, 1995

File: au_cmd/mailx
svid

Page: 237

mailx (AU_CMD) mailx (AU_CMD)

dot Take a period on a line by itself during input from a terminal as end-of-file.
Default is nodot.

EDITOR=command
The command to run when the edit or ˜e command is used. Default is ed.

escape=c
Substitute c for the ˜ escape character.

folder=directory
The directory for saving standard mail files. Filenames used with the copy,
folder, send, and write commands, that begin with a plus (+), are
expanded by preceding the filename with this directory name to obtain the
real filename. If directory does not start with a slash (/), $HOME is
prepended to it. In order to use the plus (+) construct on a mailx com-
mand line, folder must be an exported environment variable. There is no
default for the folder variable. See also outfolder below.

header
Enable printing of the header summary when entering mailx. Enabled by
default.

hold Preserve all messages that are read in the mailbox instead of putting them in
the standard mbox save file. Default is nohold.

ignore
Ignore interrupts while entering messages. Handy for noisy dial-up lines.
Default is noignore.

ignoreeof
Ignore end-of-file during message input. Input must be terminated by a
period (.) on a line by itself or by the ˜. command. Default is noig-
noreeof. See also dot above.

keep When the mailbox is empty, truncate it to zero length instead of removing it.
Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox instead of
deleting them. Default is nokeepsave.

MBOX=filename
The name of the file to save messages which have been read. The xit com-
mand overrides this function, as does saving the message explicitly in
another file. Default is $HOME/mbox.

metoo
If the user’s login appears as a recipient, do not delete it from the list.
Default is nometoo.

LISTER=command
The command (and options) to use when listing the contents of the folder
directory. The default is ls.

Page 11

FINAL COPY
June 15, 1995

File: au_cmd/mailx
svid

Page: 239

mailx (AU_CMD) mailx (AU_CMD)

onehop
When responding to a message that was originally sent to several recipients,
the other recipient addresses are normally forced to be relative to the ori-
ginating author’s machine for the response. This flag disables alteration of
the recipients’ addresses, improving efficiency in a network where all
machines can send directly to all other machines (i.e., one hop away).

outfolder
Causes the files used to record outgoing messages to be located in the direc-
tory specified by the folder variable unless the pathname is absolute.
Default is nooutfolder. See folder above and the Save, Copy, fol-
lowup, and Followup commands.

page Used with the pipe command to insert a form feed after each message sent
through the pipe. Default is nopage.

PAGER=command
The command to use as a filter for paginating output. This can also be used
to specify the options to be used. Default is pg.

prompt=string
Set the command mode prompt to string. Default is ? .

quiet
Refrain from printing the opening message and version when entering
mailx. Default is noquiet.

record=filename
Record all outgoing mail in filename. Disabled by default. See also out-
folder above.

save Enable saving of messages in dead.letter on interrupt or delivery error.
See DEAD for a description of this file. Enabled by default.

screen=number
Sets the number of lines in a screen full of headers for the headers com-
mand.

sendmail=command
Alternate command for delivering messages. Default is mail.

sendwait
Wait for background mailer to finish before returning. Default is
nosendwait.

SHELL=command
The name of a preferred command interpreter. Default is sh.

showto
When displaying the header summary and the message is from the user,
print the recipient’s name instead of the author’s name.

sign=string
The variable inserted into the text of a message when the ˜a (autograph)
command is given. No default (see also ˜i (Tilde Escapes)).

Page 12

FINAL COPY
June 15, 1995

File: au_cmd/mailx
svid

Page: 240

mailx (AU_CMD) mailx (AU_CMD)

Sign=string
The variable inserted into the text of a message when the ˜A command is
given. No default (see also ˜i (Tilde Escapes)).

toplines=number
The number of lines of header to print with the top command. Default is
5.

VISUAL=command
The name of a preferred screen editor. Default is vi.

FILES
$HOME/.mailrc user’s start-up file

$HOME/mbox secondary storage file

USAGE
End-user.

SEE ALSO
ed(BU_CMD), mail(BU_CMD), pg(BU_CMD), ls(BU_CMD), vi(AU_CMD).

LEVEL
Level 1.

Page 13

FINAL COPY
June 15, 1995

File: au_cmd/mailx
svid

Page: 241

mesg (AU_CMD) mesg (AU_CMD)

NAME
mesg – permit or deny messages

SYNOPSIS
m e s g [y | n]

DESCRIPTION
The command mesg with argument n prevents another user from writing to the
invoking user’s terminal, (e.g., by using write [see write(AU_CMD)]). The com-
mand mesg with argument y reinstates write permission. With no arguments,
mesg reports the current state without changing it.

ERRORS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

SEE ALSO
write(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/mesg
svid

Page: 242

newgrp (AU_CMD) newgrp (AU_CMD)

NAME
newgrp – change to a new group

SYNOPSIS
newgrp [–] [group]

DESCRIPTION
The command newgrp changes a user’s group identification. The user remains
logged in and the current directory is unchanged, but calculations of access permis-
sions to files are performed with respect to the new real and effective group IDs.

Exported environment variables retain their values after invoking newgrp; how-
ever, all unexported variables are either reset to their default value or set to null.
Environment variables (such as PS1, PS2, PATH, MAIL, and HOME), unless
exported, are reset to default values.

With no arguments, newgrp changes the group identification back to the group
specified in the user’s password file entry.

If the first argument to newgrp is a –, the environment is changed to what would
be expected if the user actually logged in again.

FILES
/etc/group system’s group file

/etc/passwd system’s password file

USAGE
End-user.

SEE ALSO
sh(BU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/newgrp
svid

Page: 243

news (AU_CMD) news (AU_CMD)

NAME
news – print news items

SYNOPSIS
news [–a] [–n] [–s] [items]

DESCRIPTION
The command news prints files from the system news directory.

When invoked without arguments, news prints the contents of all current files in
the news directory, most recent first, with each preceded by an appropriate header.
news stores the ‘‘currency’’ time as the modification date of a file named
.news_time in the user’s home directory (the identity of this directory is deter-
mined by the environment variable HOME); only files more recent than this
currency time are considered ‘‘current.’’

The –a option causes news to print all items, regardless of currency. In this case,
the stored time is not changed.

The –n option causes news to report the names of the current items without print-
ing their contents, and without changing the stored time.

The –s option causes news to report how many current items exist, without print-
ing their names or contents, and without changing the stored time.

All other arguments are assumed to be specific news items that are to be printed.

If an interrupt (DEL or BREAK) is typed during the printing of a news item, printing
stops and the next item is started. Another interrupt within one second of the first
causes the program to terminate.

FILES
$HOME/.news_time

USAGE
End-user.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/news
svid

Page: 244

od (AU_CMD) od (AU_CMD)

NAME
od – octal dump

SYNOPSIS
od [-bcDdFfOoSsvXx] [file] [[+]offset[.][b][x]]

DESCRIPTION
The command od prints file in one or more formats as selected by the options. If no
file is specified, the standard input is used. If no option is specified, –o is the
default.

For the purposes of this description, word refers to a 16-bit unit, independent of the
word size of the machine.

The meanings of the options are:

–b Interpret bytes in octal.

–c Interpret bytes as single byte characters. Certain non-graphic characters
appear as C language escapes, e.g., NUL=\0, BS=\b, FF=\f, NL=\n,
CR=\r, HT=\t; others appear as 3-digit octal numbers. Multibyte charac-
ters are treated as non-graphic characters.

–D Interpret long words as unsigned decimal.

–d Interpret words in unsigned decimal.

–F Interpret double long words as extended precision.

–f Interpret long words as floating point.

–O Interpret long words as unsigned octal.

–o Interpret words in octal.

–S Interpret long words as signed decimal.

–s Interpret words in signed decimal.

–v Show all data (verbose).

–X Interpret long words in hexadecimal.

–x Interpret words in hexadecimal.

The offset argument specifies the offset in the file where dumping is to commence.
This argument is normally interpreted as octal bytes. If . is appended, the offset is
interpreted in decimal. If b is appended, the offset is interpreted in units of 512
bytes. If x is appended, offset is interpreted in hexadecimal. If offset is omitted, the
. and x can still be used for displaying decimal and hexadecimal addresses respec-
tively. If the file argument is omitted, the offset argument must be preceded by +.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/od
svid

Page: 245

passwd (AU_CMD) passwd (AU_CMD)

NAME
passwd – change login password

SYNOPSIS
p a s s w d [name]

DESCRIPTION
The command p a s s w d changes or installs a password associated with the login
name.

Ordinary users may change only the password which corresponds to their login
name.

The command p a s s w d prompts ordinary users for their old password, if any. It
then prompts for the new password twice. If password aging is in effect, then the
first time the new password is entered, p a s s w d checks to see if the old password
has ‘‘aged’’ sufficiently. If ‘‘aging’’ is insufficient the new password is rejected and
p a s s w d terminates.

If ‘‘aging’’ is sufficient, a check is made to insure that the new password meets con-
struction requirements. When the new password is entered a second time, the two
copies of the new password are compared. If the two copies are not identical the
cycle of prompting for the new password is repeated for at most two more times.

A user with appropriate privileges may change any password; hence, p a s s w d does
not prompt such users for the old password. A user with appropriate privileges is
not forced to comply with password aging and password construction require-
ments. Such users can create a null password by entering a carriage return in
response to the prompt for a new password.

FILES
/ e t c / p a s s w d

USAGE
End-user.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/passwd
svid

Page: 246

priocntl (AU_CMD) priocntl (AU_CMD)

NAME
p r i o c n t l – process scheduler control

SYNOPSIS
p r i o c n t l - l

p r i o c n t l - d [- i idtype] [idlist]

p r i o c n t l - s [- c class] [class-specific options] [- i idtype] [idlist]

p r i o c n t l - e [- c class] [class-specific options] command [argument(s)]

DESCRIPTION
The p r i o c n t l command displays or sets scheduling parameters of the specified
process(es). It can also be used to display the current configuration information for
the system’s process scheduler or execute a command with specified scheduling
parameters.

Processes fall into distinct classes with a separate scheduling policy applied to each
class. The two process classes currently supported are the fixed priority class and
the time-sharing class. The characteristics of these two classes and the class-specific
options they accept are described below under the headings FIXED PRIORITY CLASS
and TIME-SHARING CLASS. With appropriate permissions, the p r i o c n t l command
can change the class and other scheduling parameters associated with a running
process.

In the default configuration, a runnable fixed priority process runs before any other
process. Therefore, inappropriate use of fixed priority processes can have a
dramatic negative impact on system performance.

The command

p r i o c n t l - l

displays a list of classes currently configured in the system along with class-specific
information about each class. The format of the class-specific information displayed
is described under the appropriate heading below.

The - d and - s options to p r i o c n t l allow the user to display or set the scheduling
parameters associated with a set of processes. The - i option and its associated
idtype argument, together with the idlist arguments to p r i o c n t l (if any), specify
one or more processes to which the p r i o c n t l command is to apply. The interpre-
tation of idlist depends on the value of idtype. The valid idtype arguments and
corresponding interpretations of idlist are as follows:

- i p i d idlist is a list of process IDs. The p r i o c n t l command applies to the
specified processes.

- i p p i d idlist is a list of parent process IDs. The p r i o c n t l command applies
to all processes whose parent process ID is in the list.

- i p g i d idlist is a list of process group IDs. The p r i o c n t l command applies
to all processes in the specified process groups.

- i s i d idlist is a list of session IDs. The p r i o c n t l command applies to all
processes in the specified sessions.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/priocntl
svid

Page: 247

priocntl (AU_CMD) priocntl (AU_CMD)

- i c l a s s idlist consists of a single class name (F P for fixed priority or T S for
time-sharing). The p r i o c n t l command applies to all processes in
the specified class.

- i u i d idlist is a list of user IDs. The p r i o c n t l command applies to all
processes with an effective user ID equal to an ID from the list.

- i g i d idlist is a list of group IDs. The p r i o c n t l command applies to all
processes with an effective group ID equal to an ID from the list.

- i a l l The p r i o c n t l command applies to all existing processes. No idlist
should be specified (if one is it is ignored). The permission restric-
tions described below still apply.

If the - i idtype option is omitted when using the - d or - s options the default idtype
of p i d is assumed.

If an idlist is present it must appear last on the command line and the elements of
the list must be separated by white space. If no idlist is present an idtype argument
of p i d, p p i d, p g i d, s i d, c l a s s, u i d, or g i d specifies the process ID, parent process
ID, process group ID, session ID, class, user ID, or group ID respectively of the
p r i o c n t l command itself.

The command

p r i o c n t l - d [- i idtype] [idlist]

displays the class and class-specific scheduling parameters of the process(es)
specified by idtype and idlist.

The command

p r i o c n t l - s [- c class] [class-specific options] [- i idtype] [idlist]

sets the class and class-specific parameters of the specified processes to the values
given on the command line. The - c class option specifies the class to be set. (The
valid class arguments are F P for fixed priority or T S for time-sharing). The class-
specific parameters to be set are specified by the class-specific options as explained
under the appropriate heading below. If the - c class option is omitted, idtype and
idlist must specify a set of processes that are all in the same class, otherwise an error
results. If no class-specific options are specified the process’s class-specific parame-
ters are set to the default values for the class specified by - c class (or to the default
parameter values for the process’s current class if the - c class option is also omit-
ted).

To change the scheduling parameters of a process using p r i o c n t l the real or effec-
tive user ID of the user invoking p r i o c n t l must match the real or effective user ID
of the receiving process the user must be a privileged user. These are the minimum
permission requirements enforced for all classes. An individual class may impose
additional permissions requirements when setting processes to that class or when
setting class-specific scheduling parameters.

When idtype and idlist specify a set of processes, p r i o c n t l acts on the processes in
the set in an implementation-specific order. If p r i o c n t l encounters an error for
one or more of the target processes, it may or may not continue through the set of
processes, depending on the error. If the error is related to permissions, p r i o c n t l
prints an error message and then continues through the process set, resetting the

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/priocntl
svid

Page: 248

priocntl (AU_CMD) priocntl (AU_CMD)

parameters for all target processes for which the user has appropriate permissions.
If p r i o c n t l encounters an error other than permissions, it does not continue
through the process set but prints an error message and exits immediately.

A special s y s scheduling class exists for scheduling the execution of certain special
system processes (such as the swapper process). It is not possible to change the
class of any process to s y s. In addition, any processes in the s y s class that are
included in the set of processes specified by idtype and idlist are disregarded by
p r i o c n t l. For example, if idtype were u i d, an idlist consisting of a zero would
specify all processes with a UID of zero except processes in the s y s class and (if
changing the parameters using the - s option) the i n i t process.

The i n i t process may be assigned to any class configured on the system; but the
time-sharing class is almost always the appropriate choice. (Other choices may be
highly undesirable; see your system administration documentation for more infor-
mation.)

The command

p r i o c n t l - e [- c class] [class-specific options] command [argument(s)]

executes the specified command with the class and scheduling parameters specified
on the command line (arguments are the arguments to the command). If the - c class
option is omitted the command is run in the user’s current class.

FIXED PRIORITY CLASS
The fixed priority class provides a fixed priority preemptive scheduling policy for
those processes requiring fast and deterministic response and absolute
user/application control of scheduling priorities. If the fixed priority class is
configured in the system it should have exclusive control of the highest range of
scheduling priorities on the system. This ensures that a runnable fixed priority pro-
cess is given CPU service before any process belonging to any other class.

The fixed priority class has a range of fixed priority (fppri) values that may be
assigned to processes within the class. Fixed priority priorities range from 0 to x,
where the value of x is configurable and can be displayed for a specific installation
by using the command

p r i o c n t l - l

The fixed priority scheduling policy is a fixed priority policy. The scheduling prior-
ity of a fixed priority process never changes except as the result of an explicit
request by the user/application to change the fppri value of the process.

For processes in the fixed priority class, the fppri value is, for all practical purposes,
equivalent to the scheduling priority of the process. The fppri value completely
determines the scheduling priority of a fixed priority process relative to other
processes within its class. Numerically higher fppri values represent higher priori-
ties. Since the fixed priority class controls the highest range of scheduling priorities
in the system it is guaranteed that the runnable fixed priority process with the
highest fppri value is always selected to run before any other process in the system.

In addition to providing control over priority, p r i o c n t l provides for control over
the length of the time quantum allotted to processes in the fixed priority class. The
time quantum value specifies the maximum amount of time a process may run
assuming that it does not complete or enter a resource or event wait state (s l e e p).

Page 3

FINAL COPY
June 15, 1995

File: au_cmd/priocntl
svid

Page: 249

priocntl (AU_CMD) priocntl (AU_CMD)

Note that if another process becomes runnable at a higher priority the currently
running process may be preempted before receiving its full time quantum.

The command

p r i o c n t l - d [- i idtype] [idlist]

displays the fixed priority and time quantum (in millisecond resolution) for each
fixed priority process in the set specified by idtype and idlist.

The valid class-specific options for setting fixed priority parameters are:

- p fppri Set the fixed priority of the specified process(es) to fppri.

- t tqntm [- r res] Set the time quantum of the specified process(es) to tqntm.
You may optionally specify a resolution as explained
below.

Any combination of the - p and - t options may be used with p r i o c n t l - s or
p r i o c n t l - e for the fixed priority class. If an option is omitted and the process is
currently fixed priority the associated parameter is unaffected. If an option is omit-
ted when changing the class of a process to fixed priority from some other class, the
associated parameter is set to a default value. The default value for fppri is 0 and
the default for time quantum is dependent on the value of fppri and on the system
configuration.

When using the - t tqntm option you may optionally specify a resolution using the
- r res option. (If no resolution is specified, millisecond resolution is assumed.) If
res is specified it must be a positive integer between 1 and 1,000,000,000 inclusive
and the resolution used is the reciprocal of res in seconds. For example, specifying
- t 1 0 – r 1 0 0 would set the resolution to hundredths of a second and the result-
ing time quantum length would be 10/100 seconds (one tenth of a second).
Although very fine (nanosecond) resolution may be specified, the time quantum
length is rounded up by the system to the next integral multiple of the system
clock’s resolution. The system clock’s resolution is hardware-dependent; this reso-
lution can be calculated from the value of H Z, which is defined in the file
/ u s r / i n c l u d e / s y s / p a r a m . h. H Z gives the number of clock ticks per second of the
system clock. For example, an H Z of 100 specifies 100 clock ticks per second, or one
tick every 10 milliseconds (that is, this system clock has a resolution of 10 mil-
liseconds). If the - t and - r options are used to specify a time quantum of 34 mil-
liseconds, it is rounded up to 4 ticks (40 milliseconds) on a machine with an H Z of
100. Requests for time quantums of zero or quantums greater than the (typically
very large) implementation-specific maximum quantum result in an error.

To change the class of a process to fixed priority (from any other class) the user
invoking p r i o c n t l must have appropriate privilege. To change the fppri value or
time quantum of a fixed priority process the user invoking p r i o c n t l must either be
a privileged user, or must currently be in the fixed priority class (shell running as a
fixed priority process) with a real or effective user ID matching the real or effective
user ID of the target process.

The fixed priority and time quantum are inherited across the f o r k(BA_OS) and
e x e c(BA_OS) system calls.

Page 4

FINAL COPY
June 15, 1995

File: au_cmd/priocntl
svid

Page: 250

priocntl (AU_CMD) priocntl (AU_CMD)

EXAMPLES
p r i o c n t l - s - c F P - t 1 - r 1 0 - i idtype idlist

sets the class of any non-fixed priority processes selected by idtype and idlist to fixed
priority and sets their fixed priority to the default value of 0. The fixed priority
priorities of any processes currently in the fixed priority class are unaffected. The
time quantums of all the specified processes are set to 1/10 seconds.

p r i o c n t l - e - c F P - p 1 5 - t 2 0 command

executes command in the fixed priority class with a fixed priority of 15 and a time
quantum of 20 milliseconds.

TIME-SHARING CLASS
The time-sharing scheduling policy provides for a fair and effective allocation of the
CPU resource among processes with varying CPU consumption characteristics. The
objectives of the time-sharing policy are to provide good response time to interac-
tive processes and good throughput to CPU-bound jobs while providing a degree
of user/application control over scheduling.

The time-sharing class has a range of time-sharing user priority (tsupri) values that
may be assigned to processes within the class. User priorities range from –x to +x,
where the value of x is configurable. The range for a specific installation can be
displayed by using the command

p r i o c n t l - l

The purpose of the user priority is to provide some degree of user/application con-
trol over the scheduling of processes in the time-sharing class. Raising or lowering
the tsupri value of a process in the time-sharing class raises or lowers the scheduling
priority of the process. It is not guaranteed, however, that a time-sharing process
with a higher tsupri value will run before one with a lower tsupri value. This is
because the tsupri value is just one factor used to determine the scheduling priority
of a time-sharing process. The system may dynamically adjust the internal schedul-
ing priority of a time-sharing process based on other factors such as recent CPU
usage.

In addition to the system-wide limits on user priority (displayed with p r i o c n t l
- l), there is a per process user priority limit (tsuprilim), which specifies the max-
imum tsupri value that may be set for a given process.

The command

p r i o c n t l - d [- i idtype] [idlist]

displays the user priority and user priority limit for each time-sharing process in
the set specified by idtype and idlist.

The valid class-specific options for setting time-sharing parameters are:

- m tsuprilim Set the user priority limit of the specified process(es) to
tsuprilim.

- p tsupri Set the user priority of the specified process(es) to tsupri.

Page 5

FINAL COPY
June 15, 1995

File: au_cmd/priocntl
svid

Page: 251

priocntl (AU_CMD) priocntl (AU_CMD)

The idtype -i class is designated Level 2, June 1993.

Page 7

FINAL COPY
June 15, 1995

File: au_cmd/priocntl
svid

Page: 253

stty (AU_CMD) stty (AU_CMD)

NAME
stty – set the options for a terminal

SYNOPSIS
stty [–a] [–g] [options]

DESCRIPTION
The command stty sets certain terminal I/O options for the device that is its stan-
dard input; without arguments, it reports the settings of certain options; with the
–a option, it reports all of the option settings; with the –g option, it reports current
settings in a form that can be used as an argument to another stty command. For
detailed information about the modes listed from Control Modes through Local
Modes, below, see termio(BA_DEV). For detailed information about the modes
listed under Hardware Flow Control Modes and Clock Modes, below, see
termiox(BA_DEV). Options in the Combination Modes group are implemented
using options in the groups listed before it. Note that many combinations of
options make no sense, but no sanity checking is performed. options are selected
from the following:

Control Modes
parenb (–parenb)

enable (disable) parity generation and detection.

parext (–parext)
enable (disable) extended parity generation and detection for mark and
space parity.

parodd (–parodd)
select odd (even) parity, or mark (space) parity if parext is enabled.

cs5 cs6 cs7 cs8
select character size.

0 the modem control lines will no longer be asserted. Usually this will discon-
nect the line.

number
set terminal baud rate to the number given, if possible (all speeds are not
supported by all hardware interfaces).

ispeed number
set terminal baud rate to the number given, if possible. (Not all hardware
supports split baud rates.) If the baud rate is set to zero, the input baud rate
will be specified by the value of the output baud rate.

ospeed number
set terminal output baud rate to the number given, if possible (Not all
hardware supports split baud rates.) If the baud rate is set to zero, the
modem control lines will no longer be asserted. Usually this will disconnect
the line.

hupcl (–hupcl)
hang up (do not hang up) modem connection on last close.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/stty
svid

Page: 254

stty (AU_CMD) stty (AU_CMD)

hup (–hup)
same as hupcl (–hupcl).

cstopb (–cstopb)
use two (one) stop bits per character.

cread (–cread)
enable (disable) the receiver.

clocal (–clocal)
assume a line without (with) modem control.

Input Modes
ignbrk (–ignbrk)

ignore (do not ignore) break on input.

brkint (–brkint)
signal (do not signal) INTR on break.

ignpar (–ignpar)
ignore (do not ignore) parity errors.

parmrk (–parmrk)
mark (do not mark) parity errors.

inpck (–inpck)
enable (disable) input parity checking.

istrip (–istrip)
strip (do not strip) input characters to seven bits.

inlcr (–inlcr)
map (do not map) NL to CR on input.

igncr (–igncr)
ignore (do not ignore) CR on input.

icrnl (–icrnl)
map (do not map) CR to NL on input.

iuclc (–iuclc)
map (do not map) upper-case alphabetics to lower case on input.

ixon (–ixon)
enable (disable) START/STOP output control. Output is stopped by sending
an ASCII DC3 and started by sending an ASCII DC1.

ixany (–ixany)
allow any character (only DC1) to restart output.

ixoff (–ixoff)
request that the system send (not send) START/STOP characters when the
input queue is nearly empty/full.

imaxbel (–imaxbel)
echo (do not echo) BEL when the input line is too long.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/stty
svid

Page: 255

stty (AU_CMD) stty (AU_CMD)

Output Modes
opost (–opost)

post-process output (do not post-process output; ignore all other output
modes).

olcuc (–olcuc)
map (do not map) lower-case alphabetics to upper case on output.

onlcr (–onlcr)
map (do not map) NL to CR-NL on output.

ocrnl (–ocrnl)
map (do not map) CR to NL on output.

onocr (–onocr)
do not (do) output CRs at column zero.

onlret (–onlret)
on the terminal NL performs (does not perform) the CR function.

ofill (–ofill)
use fill characters (use timing) for delays.

cr0 cr1 cr2 cr3
select style of delay for carriage returns.

nl0 nl1
select style of delay for linefeeds.

tab0 tab1 tab2 tab3
select style of delay for horizontal tabs.

bs0 bs1
select style of delay for backspaces.

ff0 ff1
select style of delay for form-feeds.

vt0 vt1
select style of delay for vertical tabs.

Local Modes
isig (–isig)

enable (disable) the checking of characters against the special control charac-
ters INTR, QUIT, and SWTCH.

icanon (–icanon)
enable (disable) canonical input (ERASE and KILL processing).

xcase (–xcase)
canonical (unprocessed) upper/lower-case presentation.

echo (–echo)
echo back (do not echo back) every character typed.

echoe (–echoe)
echo (do not echo) ERASE character as a backspace-space-backspace string.
Note: this mode will erase the ERASEed character on many CRT terminals;
however, it does not keep track of column position and, as a result, may be

Page 3

FINAL COPY
June 15, 1995

File: au_cmd/stty
svid

Page: 256

stty (AU_CMD) stty (AU_CMD)

xcibrg get transmit clock from internal baud rate generator.

xctset get the transmit clock from transmitter signal element timing (DCE
source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.

xcrset get transmit clock from receiver signal element timing (DCE source)
lead, CCITT V.24 circuit 115, EIA-232-D pin 17.

rcibrg get receive clock from internal baud rate generator.

rctset get receive clock from transmitter signal element timing (DCE source)
lead, CCITT V.24 circuit 114, EIA-232-D pin 15.

rcrset get receive clock from receiver signal element timing (DCE source)
lead, CCITT V.24 circuit 115, EIA-232-D pin 17.

tsetcoff transmitter signal element timing clock not provided.

tsetcrbrg output receive baud rate generator on transmitter signal element tim-
ing (DTE source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24.

tsetctbrg output transmit baud rate generator on transmitter signal element
timing (DTE source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24.

tsetctset output transmitter signal element timing (DCE source) on transmitter
signal element timing (DTE source) lead, CCITT V.24 circuit 113, EIA-
232-D pin 24.

tsetcrset output receiver signal element timing (DCE source) on transmitter sig-
nal element timing (DTE source) lead, CCITT V.24 circuit 113, EIA-
232-D pin 24.

rsetcoff receiver signal element timing clock not provided.

rsetcrbrg output receive baud rate generator on receiver signal element timing
(DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D pin.

rsetctbrg output transmit baud rate generator on receiver signal element timing
(DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D pin.

rsetctset output transmitter signal element timing (DCE source) on receiver sig-
nal element timing (DTE source) lead, CCITT V.24 circuit 128, no
EIA-232-D pin.

rsetcrset output receiver signal element timing (DCE source) on receiver signal
element timing (DTE source) lead, CCITT V.24 circuit 128, no EIA-
232-D pin.

Control Assignments
control-character c

set control-character to c, where control-character is one of: erase,
kill, intr, quit, eof, eol, eol2, start, stop, susp, dsusp,
werase, or lnext. If c is preceded by a caret (ˆ), then the value used
is the corresponding CTRL character (e.g., ‘‘ˆd’’ is a CTRL-d); ‘‘ˆ?’’ is
interpreted as DEL and ‘‘ˆ–’’ is interpreted as undefined.

Page 5

FINAL COPY
June 15, 1995

File: au_cmd/stty
svid

Page: 258

stty (AU_CMD) stty (AU_CMD)

min, time number
Set the value of min or time to number. min and time are used in
non-Canonical mode input processing (-icanon).

line i set line discipline to i (0 < i < 127).

Combination Modes
evenp or parity

enable parenb and cs7.

oddp enable parenb, cs7, and parodd.

spacep enable parenb, cs7, and parext.

markp enable parenb, cs7, parodd, and parext.

–parity or –evenp
disable parenb, and set cs8.

–oddp disable parenb and parodd, and set cs8.

–spacep disable parenb and parext, and set cs8.

–markp disable parenb, parodd, and parext, and set cs8.

raw (–raw or cooked)
enable (disable) raw input and output (no ERASE, KILL, INTR, QUIT,
SWTCH, EOT, or output post processing).

nl (–nl) unset (set) icrnl, onlcr. In addition –nl unsets inlcr, igncr,
ocrnl, and onlret.

lcase (–lcase)
set (unset) xcase, iuclc, and olcuc.

LCASE (–LCASE)
same as lcase (–lcase).

tabs (–tabs or tab3)
preserve (expand to spaces) tabs when printing.

ek reset ERASE and KILL characters back to normal # and @.

sane resets all modes to some reasonable values.

async set normal asynchronous communications where clock settings are
xcibrg, rcibrg, tsetcoff and rsetcoff.

Window Size
rows n set window size to n rows.

columns n set window size to n columns.

ypixels n set vertical window size to n pixels.

xpixels n set horizontal window size to n pixels.

USAGE
End-user.

Page 6

FINAL COPY
June 15, 1995

File: au_cmd/stty
svid

Page: 259

stty (AU_CMD) stty (AU_CMD)

SEE ALSO
termio(BA_DEV), termios(BA_OS), termiox(BA_DEV).

LEVEL
Level 1.

Page 7

FINAL COPY
June 15, 1995

File: au_cmd/stty
svid

Page: 260

su (AU_CMD) su (AU_CMD)

NAME
su – become super-user or another user

SYNOPSIS
su [–] [name [arg ...]]

DESCRIPTION
The command su allows one to become another user without logging off. The
default user name is root (that is, super-user). Note that if the Enhanced Security
Extension is implemented, special privilege is not associated with UID 0 (root);
becoming UID 0 only gives you access to files owned by root, it does not impart
the ability to override system restrictions (notably, mandatory access control).

To use su, the appropriate password must be supplied (unless one has the
appropriate privilege). If the password is correct, su will execute a new environ-
ment with the real and effective user and group IDs and supplementary group list
set to that of the specified user. The new command interpreter will be the optional
program named in the specified user’s password file entry, or the default if none is
specified. Normal user ID privileges are restored when the command interpreter
exits.

Any additional arguments given on the command line are passed to the command
interpreter.

The following statements are true only if the command interpreter named in the
specified user’s password file entry is sh [see sh(BU_CMD)]. If the first argument
to su is a –, the environment will be changed to what would be expected if the user
actually logged in as the specified user. Otherwise, the environment is passed
along with the possible exception of PATH.

All attempts to become another user using su are logged.

FILES
/etc/security/ia/master

system’s Identification and Authentication (I&A)
data file

/etc/passwd system’s password file

/etc/profile system’s profile

$HOME/.profile user’s profile

SEE ALSO
sh(BU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/su
svid

Page: 261

tabs (AU_CMD) tabs (AU_CMD)

NAME
tabs – set tabs on a terminal

SYNOPSIS
tabs [tabspec] [+mn] [–Ttype]

DESCRIPTION
The command tabs sets the tab stops on the user’s terminal according to the tab
specification tabspec, after clearing any previous settings.

Three types of tab specification are accepted for tabspec: canned, repetitive, and arbi-
trary. If no tabspec is given, the default value is –8, i.e., standard tabs. The lowest
column number is 1. Note that for tabs, column 1 always refers to the leftmost
column on a terminal, even one whose column markers begin at 0.

–code Gives the name of one of a set of canned tabs. The legal codes and their
meanings are as follows:

–a 1,10,16,36,72
Assembler, IBM System/370, first format

–a2 1,10,16,40,72
Assembler, IBM System/370, second format

–c 1,8,12,16,20,55
COBOL, normal format

–c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted).

–c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs than
–c2. This is the recommended format for COBOL.

–f 1,7,11,15,19,23
FORTRAN

–p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I

–s 1,10,55
SNOBOL

–u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these canned formats, three other types exist:

–n A repetitive specification requests tabs at columns 1+n, 1+2∗n, etc. Of par-
ticular importance is the value –8: this represents the standard tab setting,
and is the most likely tab setting to be found at a terminal. Another special
case is the value –0, implying no tabs at all.

n1,n2,...
The arbitrary format permits the user to type any chosen set of numbers,
separated by commas, in ascending order. Up to 40 numbers are allowed.
If any number (except the first one) is preceded by a plus sign, it is taken as
an increment to be added to the previous value. Thus, the tab lists 1,10,20,30
and 1,10,+10,+10 are considered identical.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/tabs
svid

Page: 262

tabs (AU_CMD) tabs (AU_CMD)

Any of the following may be used also; if a given flag occurs more than once, the
last value given takes effect:

–Ttype
The command tabs usually needs to know the type of terminal in order to
set tabs and always needs to know the type to set margins. The argument
type is a terminal name. If no –T flag is supplied, tabs searches for the
environment variable TERM. If no type can be found, tabs tries a sequence
that will work for many terminals.

+mn The margin argument may be used for some terminals. It causes all tabs to
be moved over n columns by making column n+1 the left margin. If +m is
given without a value of n, the value assumed is 10. For a TermiNet, the
first value in the tab list should be 1, or the margin will move even further to
the right. The normal (leftmost) margin on most terminals is obtained by
+m0. The margin for most terminals is reset only when the +m flag is given
explicitly.

Tab and margin setting is performed via the standard output.

USAGE
End-user.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/tabs
svid

Page: 263

tar (AU_CMD) tar (AU_CMD)

NAME
tar – file archiver

SYNOPSIS
tar [options] [file ...]

DESCRIPTION
The command tar creates archives of files; it is often used to save files on (and
restore from) magnetic tape. Its actions are controlled by the option argument. The
option is a string of characters containing at most one function letter and possibly
one or more modifiers. Other arguments to the command are file (or directory)
names specifying which files are to be archived or restored. In all cases, appearance
of a directory name refers to the files and (recursively) subdirectories of that direc-
tory.

The function portion of the option is specified by one of the following letters:

r The named files are written on the end of the archive.

x The named files are extracted from the archive. If a named file matches a
directory whose contents had been written onto the archive, this directory is
(recursively) extracted. If a named file in the archive does not exist on the
system, the file is created with the same mode as the one in the archive,
except that the set-user-ID and set-group-ID modes are not set unless the
user has appropriate privileges. If the files exist, their modes are not
changed except as described above. The owner, group, and modification
time are restored (if possible). If no file argument is given, the entire content
of the archive is extracted. Note that if several files with the same name are
in the archive, the last one overwrites all earlier ones.

t The names of all the files in the archive are listed.

u The named files are added to the archive if they are not already there, or
have been modified since last written into the archive. This option implies
option r.

c Create a new archive; writing begins at the beginning of the archive, instead
of after the last file. This option implies the r option.

The following characters may be used in addition to the letter that selects the
desired function:

v Normally, tar does its work silently. The v (verbose) modifier causes it to
type the name of each file it treats, preceded by the option letter. With the t
option, v gives more information about the archive entries than just the
name.

w Causes tar to print the action to be taken, followed by the name of the file,
and then wait for the user’s confirmation. If a word beginning with y is
given, the action is performed. Any other input means the action is not per-
formed (no). This modifier is invalid with the t option.

f Causes tar to use the next argument as the name of the archive instead of
the default, which is usually a tape drive. If the name of the file is –, tar
writes to the standard output or reads from the standard input, whichever is
appropriate. Thus, tar can be used as the head or tail of a pipeline. The

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/tar
svid

Page: 264

tar (AU_CMD) tar (AU_CMD)

command tar can also be used to move directory hierarchies with the
command:

(cd fromdir; tar cf – .)  (cd todir; tar xf –)

b Causes tar to use the next argument as the blocking factor for tape records.
The default is 1, the maximum is 20. This option should only be used with
(raw) magnetic tape archives (see f above). The block size is determined
automatically when reading tapes (options x and t).

l Tells tar to report if it cannot resolve all of the links to the files being
archived. If l is not specified, no error messages are printed. This modifier
is valid only with the options c, r, and u.

m Tells tar not to restore the modification times. The modification time of the
file will be the time of extraction. This modifier is invalid with the t option.

o Causes extracted files to take on the user and group identifier of the user
running the program rather than those on the archive. This modifier is valid
only with the x option.

L Follow symbolic links. This modifier causes symbolic links to be followed.
By default, symbolic links are not followed. This modifier is valid only with
the c, r, and u options.

The data interchange format used by tar conforms with that specified by the
POSIX 1003.1-1988 standard.

ERRORS
The command tar reports bad option characters and read/write errors.
It also reports an error if enough memory is not available to hold the link tables.

FUTURE DIRECTIONS
The functionality of tar will be eventually provided by cpio [see
cpio(BU_CMD)]. Therefore, support for tar will be discontinued in the future.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/tar
svid

Page: 265

tty (AU_CMD) tty (AU_CMD)

NAME
tty – get the name of the terminal

SYNOPSIS
tty [–s]

DESCRIPTION
The command tty prints the pathname of the user’s terminal. The –s option
suppresses printing of the terminal pathname, allowing one to test just the exit
code.

ERRORS
Exit codes:

0 if standard input is a terminal,

1 otherwise.

2 if invalid options were specified,

An error is reported if the standard input is not a terminal and –s is not specified.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/tty
svid

Page: 266

uucp (AU_CMD) uucp (AU_CMD)

NAME
uucp, uulog, uuname – system-to-system copy

SYNOPSIS
uucp [-c] [-C] [-d] [-f] [-j] [-m] [-nuser] [-r] source-files destination-file

uulog [-ssystem]

uuname [-l]

DESCRIPTION
uucp

The command uucp copies files named by the source-file arguments to the
destination-file argument. A source-filename may be a pathname on your machine,
or may have the form:

system-name!pathname

where system-name is taken from a list of system names that uucp knows about.
The destination system-name may also be a list of names such as

system-name!system-name!...!system-name!pathname

in which case, an attempt is made to send the file via the specified route to the desti-
nation. Care should be taken to ensure that intermediate nodes in the route are wil-
ling to forward information.

The shell metacharacters ?, *, and [...] appearing in pathname will be expanded
on the appropriate system.

Pathnames may be one of:

(1) a full pathname.

(2) a pathname preceded by ˜name where name is a login name on the specified
system and is replaced by that user’s login directory. Note that if an invalid
login is specified, the default will be to the public directory ($PUBDIR).

(3) a pathname specified as ˜/dest, where the destination dest is appended to
$PUBDIR. Note that this destination will be treated as a filename unless
more than one file is being transferred by this request or the destination is
already a directory. To ensure that it is a directory, follow the destination
with a ‘/’. For example, ˜/dan/ as the destination will make the directory
$PUBDIR/dan if it does not exist and put the requested file(s) in that direc-
tory.

(4) anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system, the copy will fail. If
the destination-file is a directory, the last part of the source-file name is used.

The command uucp sets the appropriate read and write permissions and removes
execute permissions across the transmission.

The following options are interpreted by uucp:

–c Do not copy local file to the spool directory for transfer to the remote
machine (default).

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/uucp
svid

Page: 267

uucp (AU_CMD) uucp (AU_CMD)

–C Force the copy of local files to the spool directory for transfer.

–d Make all necessary directories for the file copy (default).

–f Do not make intermediate directories for the file copy.

–j Output the job identification string on the standard output. This job
identification can be used by uustat to obtain the status or terminate a job.

–m Send mail to the requester when the copy is completed.

–nuser
Notify user on the remote system that a file was sent.

–r Do not start the file transfer; just queue the job.

uulog
The command uulog queries a log file of uucp or uux transactions.

If the -s option is specified, then uulog prints information about file transfer work
involving system system.

uuname
The command uuname lists the uucp names of known systems. The –l option
returns the local system name.

USAGE
The domain of remotely accessible files can (and for obvious security reasons, usu-
ally should) be severely restricted.

SEE ALSO
mail(BU_CMD), uustat(AU_CMD), uux(AU_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/uucp
svid

Page: 268

uuencode (AU_CMD) uuencode (AU_CMD)

NAME
uuencode, uudecode – encode a binary file, or decode its ASCII representation

SYNOPSIS
uuencode [source-file] file-label

uudecode [encoded-file]

DESCRIPTION
uuencode converts a binary file into an ASCII-encoded representation that can be
sent using mail(BU_CMD). It encodes the contents of source-file , or the standard
input if no source-file argument is given. The file-label argument is required. It is
included in the encoded file’s header as the name of the file into which uudecode
is to place the binary (decoded) data. uuencode also includes the ownership and
permission modes of source-file, so that file-label is recreated with those same owner-
ship and permission modes.

uudecode reads an encoded-file , strips off any leading and trailing lines added by
mailer programs, and recreates the original binary data with the filename and the
mode and owner specified in the header.

The encoded file is an ordinary ASCII text file and can be edited by any text editor.
But it is best only to change the mode or file-label in the header to avoid corrupting
the decoded binary.

USAGE
Application Program.

The encoded file’s size is expanded by 35% (3 bytes become 4, plus control informa-
tion), causing it to take longer to transmit than the equivalent binary.

The user on the remote system who is invoking uudecode (typically uucp) must
have write permission on the file specified in the file-label .

Because both uuencode and uudecode run with user ID set to uucp, uudecode
can fail with permission denied when attempted in a directory that does not have
write permission allowed for other.

SEE ALSO
mail(BU_CMD), uucp(AU_CMD), uux(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/uuencode
svid

Page: 269

uustat (AU_CMD) uustat (AU_CMD)

NAME
uustat – uucp status inquiry and job control

SYNOPSIS
uustat [–m]
uustat [–q]
uustat [–kjobid]
uustat [–rjobid]
uustat [–ssys] [–uuser]

DESCRIPTION
The command uustat will display the status of, or cancel, previously specified
uucp commands, or provide general status on uucp connections to other systems.

When no options are given, uustat outputs the status of all uucp requests issued
by the current user.

Not all combinations of options are valid. Only one of the following options can be
specified with uustat:

–m List the status for all machines.

–q List the status for each machine for which there are jobs queued.

–kjobid
Kill the uucp request whose job identification is jobid. The killed uucp
request must belong to the person issuing the uustat command unless that
user is the super-user.

–rjobid
Rejuvenate jobid. The files associated with jobid are touched so that their
modification time is set to the current time. This prevents the cleanup dae-
mon from deleting the job until the job’s modification time reaches the limit
imposed by the daemon.

The options below may not be used with the ones listed above; however, these
options may be used singly or together:

–s sys
Report the status of all uucp requests for remote system sys.

–u user
Report the status of all uucp requests issued by user.

SEE ALSO
uucp(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/uustat
svid

Page: 270

uuto (AU_CMD) uuto (AU_CMD)

NAME
uuto, uupick – public system-to-system file copy

SYNOPSIS
uuto [–p] [–m] source-files destination

uupick [–ssystem]

DESCRIPTION
uuto

The command uuto sends source-files to destination. The command uuto uses the
uucp facility to send files, while it allows the local system to control the file access.
A source-file name is a pathname on the user’s machine. Destination has the form:
system!...!system!user where system is taken from a list of system names that uucp
knows about [see uuname in uucp(AU_CMD).] The argument user is the login
name of someone on the specified system.

Two options are available:

–p Copy the source file into the spool directory before transmission.

–m Send mail to the sender when the copy is complete.

The files (or subtrees if directories are specified) are sent to a public directory
($PUBDIR) on system. Specifically, the files are sent to the directory

$PUBDIR/receive/user/fsystem,
where user is the recipient, and fsystem is the sending system.

The recipient is notified by mail of the arrival of files.

uupick
The command uupick may be used by a user to accept or reject the files transmit-
ted to the user. Specifically, uupick searches $PUBDIR on the user’s system for
files sent to the user. For each entry (file or directory) found, one of the following
messages is printed on the standard output:

from system: dir dirname ?
from system: file filename ?

The command uupick then reads a line from the standard input to determine the
disposition of the file. The user’s possible responses are:

<newline> Go on to next entry.

d Delete the entry.

m [dir] Move the entry to named directory dir. If dir is not specified as a com-
plete pathname, a destination relative to the current directory is
assumed. If no destination is given, the default is the current direc-
tory.

a [dir] Same as m except moving all the files sent from system.

p Print the content of the file to standard output.

q Stop and exit.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/uuto
svid

Page: 271

uuto (AU_CMD) uuto (AU_CMD)

EOT (CTRL-D.) Same as q.

!command Escape to the command interpreter to execute command.

* Print a usage summary for uuto.

The command uupick invoked with the –ssystem option will only search for files
(and list any found) sent from system.

SEE ALSO
mail(BU_CMD), uucp(AU_CMD), uustat(AU_CMD), uux(AU_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/uuto
svid

Page: 272

uux (AU_CMD) uux (AU_CMD)

NAME
uux – remote command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION
The command uux will gather zero or more files from various systems, execute a
command on a specified system, and then send the standard output of the com-
mand to a file on a specified system.

The command-string is made up of one or more arguments that are similar to normal
command arguments, except that the command and any filenames may be prefixed
by system-name!. A null system-name is interpreted as the local system.

The following statements are relevant if sh is the command interpreter.

The metacharacter * will not give the desired result.

The redirection tokens >> and << are not implemented.

A filename may be specified as for uucp: it may be a full pathname, a pathname
preceded by ˜name (which is replaced by the corresponding login directory), a
pathname specified as ˜/dest (dest is prefixed by $PUBDIR), or a simple filename
(which is prefixed by the current directory) [see uucp(AU_CMD)].

For example, the command:

uux "!diff a!/usr/dan/file1 b!/a4/dan/file2 > !˜/dan/diff.out"

will get the file1 and file2 files from the usg and pwba machines, execute diff, and
put the results in file.diff in the local PUBDIR/dan directory. (PUBDIR is the
uucp public directory on the local system.)

The execution of commands on remote systems takes place in an execution direc-
tory known to the uucp system. All files required for the execution will be put into
this directory unless they already reside on that machine. Therefore, the non-local
filenames (those without path or machine reference) must be unique within the uux
request. The following command will not work:

uux "a!diff b!/usr/dan/xyz c!/usr/dan/xyz > !xyz.diff"

because the file xyz will be copied from the b system as well as the c system, caus-
ing a name conflict. The command:

uux "a!diff a!/usr/dan/xyz c!/usr/dan/xyz > !xyz.diff"

will work (provided diff is a permitted command), because the local file xyz
(which is not copied) does not conflict with the copied file xyz from the c system.

Any characters special to the command interpreter should be quoted either by quot-
ing the entire command-string or quoting the special characters as individual argu-
ments.

The command uux will attempt to get all files to the execution system. For files that
are output files, the filename must be escaped using parentheses. For example, the
command:

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/uux
svid

Page: 273

uux (AU_CMD) uux (AU_CMD)

uux a!cut -f1 b!/usr/file \(c!/usr/file\)

gets /usr/file from system b, sends it to system a, performs a cut command on that
file, and sends the result of the cut command to system c.

The command uux will notify the user (by mail) if the requested command on the
remote system was disallowed. This notification can be turned off by the –n option.
The response comes by mail from the remote machine.

The following options are interpreted by uux:

– The standard input to uux is made the standard input to the command-string.

–c Do not copy local file(s) to the spool directory for transfer to the remote
machine (default).

–C Force the copy of local file(s) to the spool directory for transfer.

–j Output the job identification string on the standard output. This job
identification can be used by uustat to obtain the status or terminate a job.

–n Do not notify the user if the command fails.

–r Do not start the file transfer, just queue the job.

–z Send success notification to the user.

USAGE
Note that, for security reasons, many installations will limit the list of commands
executable on behalf of an incoming request from uux. Many sites will permit lit-
tle more than the receipt of mail via uux.

Only the first command of a pipeline [see sh(BU_CMD)] may have a system-name!.
All other commands are executed on the system of the first command.

SEE ALSO
mail(BU_CMD), sh(BU_CMD), uucp(AU_CMD), uustat(AU_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/uux
svid

Page: 274

vi (AU_CMD) vi (AU_CMD)

NAME
vi – screen-oriented (visual) display editor

SYNOPSIS
vi [-rfile] [-l] [-wn] [-R] [+command] file ...

DESCRIPTION
vi (visual) is a display-oriented text editor. It is based on the underlying line editor
ex(AU_CMD); it is possible to switch back and forth between the two, and to exe-
cute ex commands from within vi.

When using vi, the terminal screen acts as a window into the file being edited.
Changes made to the file are reflected in the screen display; the position of the cur-
sor on the screen indicates the position within the file.

The environment variable TERM must give the terminal type; the terminal must be
defined in the terminfo database. As with ex, editor initialization scripts can be
placed in the environment variable EXINIT, or the file .exrc in the current or
home directory.

Options
The following options are interpreted by vi:

–rfile Recover file after an editor or system crash. If file is not specified, a list of all
saved files will be printed.

–l set LISP mode (see Edit Options below).

–wn Set the default window size to n lines.

–R Read-only mode; the readonly flag is set, preventing accidental overwrit-
ing of the file.

+command
The specified ex command is interpreted before editing begins.

VI Commands — General Remarks
See ex(AU_CMD) for the complete description of ex. Only the visual mode of the
editor is described here.

When invoked, vi is in command mode; input mode is entered by typing any of
several commands used to insert or change text. When in input mode, ESC
(escape) is used to leave input mode; in command mode, it is used to cancel a par-
tial command. The terminal bell is sounded if the editor is not in input mode and
there is no partially entered command.

The last (bottom) line of the screen is used to echo the input for search commands
(/ and ?), ex commands (:), and system commands (!). It is also used to report
errors or print other messages.

An interrupt (BREAK or DEL) typed during text input, or during the input of a com-
mand on the bottom line, terminates the input (or cancels the command) and
returns the editor to command mode. During command mode an interrupt causes
the bell to be sounded; in general the bell indicates an error (such as unrecognized
key).

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/vi
svid

Page: 275

vi (AU_CMD) vi (AU_CMD)

ˆH (BS) Moves one space to the left (stops at the left margin). A count specifies
the number of spaces to back up. (Same as h.)

In input mode, backs over the last input character without erasing it.

ˆJ (LF) Moves the cursor down one line in the same column. A count specifies
the number of lines to move down. (Same as ˆN and j.)

ˆL (FF) Clears and redraws the screen. (Used when the screen becomes scram-
bled for any reason.)

ˆM (CR) Moves to the first non-white character in the next line. A count specifies
the number of lines to go forward.

ˆN (SO) Same as ˆJ and j.

ˆP (DLE) Moves the cursor up one line in the same column. A count specifies the
number of lines to move up. (Same as k.)

ˆR (DC2) Redraws the current screen, eliminating the false lines marked with ‘@’
(which do not correspond to actual lines in the file).

ˆT (DC4) In input mode, if at the beginning of the line or preceded only by white
space, inserts shiftwidth white space. This inserted space can only be
backed over using ˆD.

ˆU (NAK) Scrolls up a half-window of text. A count gives the number of (logical)
lines to scroll, and is remembered for future ˆD and ˆU commands.

ˆV (SYN) In input mode, quotes the next character to make it possible to insert
special characters (including ESC) into the file.

ˆW (ETB) In input mode, backs up one word; the deleted characters remain on the
display.

ˆY (EM) Scrolls backward one line, leaving the cursor where it is if possible.

ˆ[(ESC) Cancels a partially formed command; sounds the bell if there is none.

In input mode, terminates input mode.

When entering a command on the bottom line of the screen (ex com-
mand line or search pattern with / or ?), terminates input and executes
command.

<space> Moves one space to the right (stops at the end of the line). A count
specifies the number of spaces to go forward. (Same as l.)

! An operator which passes specified lines from the buffer as standard
input to the specified system command, and replaces those lines with
the standard output from the command. The ! is followed by a move-
ment command specifying the lines to be passed (lines from the current
position to the end of the movement) and then the command (ter-
minated as usual by a return). A count preceding the ! is passed on to
the movement command after !.

Doubling ! and preceding it by a count causes that many lines, starting
with the current line, to be passed.

Page 3

FINAL COPY
June 15, 1995

File: au_cmd/vi
svid

Page: 277

vi (AU_CMD) vi (AU_CMD)

} Moves forward to the beginning of the next paragraph. A count
specifies the number of paragraphs to move forward. (See {.)

| Requires a count; the cursor is placed in that column (if possible).

+ Moves to the first non-white character in the next line. A count specifies
the number of lines to go forward. (Same as ˆM.)

, Comma. Reverse of the last f, F, t or T command, looking the other
way in the current line. A count is equivalent to repeating the search
that many times.

- Moves to the first non-white character in the previous line. A count
specifies how many lines to move back.

. Repeats the last command which changed the buffer. A count is passed
on to the command being repeated.

/ Reads a string to be interpreted as a regular expression. The / and
expression are echoed on the bottom line as they are read. The search
begins when return is entered to terminate the pattern. Scans forward
for the next occurrence of a matching string. The search may be ter-
minated with an interrupt (or DEL).

When used with an operator to specify an extent of text, the defined
region is from the current cursor position to the beginning of the
matched string. Whole lines may be specified by giving an offset from
the matched line (using a closing / followed by a +n or -n).

Regular expressions are described in ex(AU_CMD).

0 Moves to the first character on the current line. (Is not interpreted as a
command when preceded by a non-zero digit.)

: Begins an ex command. The :, as well as the entered command, is
echoed on the bottom line; it is executed when the input is terminated
by entering a return.

; Repeats the last f, F, t or T command. A count is equivalent to repeat-
ing the search that many times.

< Shifts lines left one shiftwidth. May be followed by a move to specify
lines. A count is passed through to the move command.

When repeated (<<), shifts the current line (or count lines starting at the
current one).

˜ Changes the case of the current letter from upper to lower or from lower
to upper. A preceding count affects that many characters. If the current
character is not a letter, ˜ has no effect.

> Shifts lines right one shiftwidth. (See <.)

= If the lisp option is set, then reindents the specified lines, as though
they were typed in with lisp and autoindent set. May be preceded by a
count to indicate how many lines to process, or followed by a move
command for the same purpose.

Page 5

FINAL COPY
June 15, 1995

File: au_cmd/vi
svid

Page: 279

vi (AU_CMD) vi (AU_CMD)

? Scans backwards, the reverse of /. (See /.)

A Appends at the end of line. (Same as $a.)

B Backs up a word, where a word is any non-blank sequence, placing the
cursor at the beginning of the word. A count gives the number of words
to go back.

C Changes the rest of the text on the current line. (Same as c$.)

D Deletes the rest of the text on the current line. (same as d$.)

E Moves forward to the end of a word, where a word is any non-blank
sequence. A count gives the number of words to go forward.

F Must be followed by a single character; scans backwards in the current
line for that character, moving the cursor to it if found. A count is
equivalent to repeating the search that many times.

G Goes to the line number given as preceding argument, or the end of the
file if no preceding count is given.

H Moves the cursor to the top line on the screen. If a count is given, then
the cursor is moved to that line on the screen, counting from the top.
The cursor is placed on the first non-white character on the line. If used
as the target of an operator, full lines are affected.

I Inserts at the beginning of a line. (Same as ˆ followed by i.)

J Joins the current line with the next one, supplying appropriate white
space: one space between words, two spaces after a period, and no
spaces at all if the first character of the next line is). A count causes
that many lines to be joined rather than two.

L Moves the cursor to the first non-white character of the last line on the
screen. A count moves to that line counting from the bottom. When
used with an operator, whole lines are affected.

M Moves the cursor to the middle line on the screen, at the first non-white
position on the line.

N Scans for the next match of the last pattern given to / or ?, but in the
reverse direction; this is the reverse of n.

O Opens a new line above the current line and enters input mode.

P Puts the last deleted text back before/above the cursor. The text goes
back as whole lines above the cursor if it was deleted as whole lines.
Otherwise the text is inserted just before the cursor.

May be preceded by a named or numbered buffer specification ("x), to
retrieve the contents of the buffer.

Q Quits from vi and enters ex command mode.

R Replaces characters on the screen with characters entered, until the input
is terminated with ESC.

Page 6

FINAL COPY
June 15, 1995

File: au_cmd/vi
svid

Page: 280

vi (AU_CMD) vi (AU_CMD)

S Changes whole lines (same as cc). A count changes that many lines.

T Must be followed by a single character; scans backwards in the current
line for that character, and if found, places the cursor just after that char-
acter. A count is equivalent to repeating the search that many times.

U Restores the current line to its state before the cursor was last moved to
it.

W Moves forward to the beginning of a word in the current line, where a
word is a sequence of non-blank characters. A count specifies the
number of words to move forward.

X Deletes the character before the cursor. A count repeats the effect, but
only characters on the current line are deleted.

Y Places (yanks) a copy of the current line into the unnamed buffer (same
as yy). A count copies that many lines. May be preceded by a buffer
name to put the copied line(s) in that buffer.

ZZ Exits the editor, writing out the buffer if it was changed since the last
write. (Same as the ex command x.)

a Enters input mode, appending the entered text after the current cursor
position. A count causes the inserted text to be replicated that many
times, but only if the inserted text is all on one line.

b Backs up to the beginning of a word in the current line. A word is a
sequence of alphanumerics, or a sequence of special characters. A count
repeats the effect.

c Deletes the specified region of text, and enters input mode to replace it
with the entered text. If more than part of a single line is affected, the
deleted text is saved in the numeric buffers. If only part of the current
line is affected, then the last character to be deleted is marked with a $.
A count is passed through to the move command. When followed by c,
deletes current line and enters input mode.

d Deletes the specified region of text. If more than part of a line is
affected, the text is saved in the numeric buffers. A count is passed
through to the move command. When followed by d, deletes current
line.

e Moves forward to the end of the next word, defined as for b. A count
repeats the effect.

f Must be followed by a single character; scans the rest of the current line
for that character, and moves the cursor to it if found. A count repeats
the find that many times.

h Moves the cursor one character to the left. (Same as ˆH.) A count
repeats the effect.

i Enters input mode, inserting the entered text before the cursor. (See a.)

Page 7

FINAL COPY
June 15, 1995

File: au_cmd/vi
svid

Page: 281

vi (AU_CMD) vi (AU_CMD)

j Moves the cursor one line down in the same column. (Same as ˆJ and
ˆN.)

k Moves the cursor one line up. (Same as ˆP.)

l Moves the cursor one character to the right (same as <space>).

m Must be followed by a single ASCII lower case letter x; marks the
current position of the cursor with that letter. The exact position is
referred to by `x; the line is referred to by ´x.

n Repeats the last / or ? scanning commands.

o Opens a line below the current line and enters input mode; otherwise
like O.

p Puts text after/below the cursor; otherwise like P.

r Must be followed by a single character; the character under the cursor is
replaced by the specified one. (The new character may be a newline.) A
count replaces each of the following count characters with the single
character given.

s Deletes the single character under the cursor, and enters input mode; the
entered text replaces the deleted character. A count specifies how many
characters from the current line are changed. The last character to be
changed is marked with a $, as for c.

t Must be followed by a single character; scans the rest of the line for that
character. The cursor is moved to just before the character, if it is found.
A count is equivalent to repeating the search that many times.

u Reverses the last change made to the current buffer. If repeated, will
alternate between these two states, thus is its own inverse. When used
after an insert which inserted text on more than one line, the lines are
saved in the numeric buffers.

w Moves forward to the beginning of the next word, where word is the
same as in b. A count specifies how many words to go forward.

x Deletes the single character under the cursor. With a count, deletes that
many characters forward from the cursor position, but only on the
current line.

y Must be followed by a movement command; the specified text is copied
(yanked) into the unnamed temporary buffer. If preceded by a buffer
specification, "x, the text is placed in that buffer also. When followed
by y, same as Y.

z Redraws the screen with the current line placed as specified by the fol-
lowing character; <return> specifies the top of the screen, . the center of
the screen, and - the bottom of the screen. A count may be given after
the z and before the following character to specify the new screen size
for the redraw. A count before the z gives the number of the line to
place in the center of the screen instead of the default current line.

Page 8

FINAL COPY
June 15, 1995

File: au_cmd/vi
svid

Page: 282

vi (AU_CMD) vi (AU_CMD)

SEE ALSO
ex(AU_CMD).

FUTURE DIRECTIONS
To conform to the command syntax standard, the +command option will be changed
to the form -ccommand. The old form will continue to be accepted for some time.

LEVEL
Level 1.

The +command option is Level 2, effective September 30, 1989.

Page 9

FINAL COPY
June 15, 1995

File: au_cmd/vi
svid

Page: 283

wall (AU_CMD) wall (AU_CMD)

NAME
wall – write to all users

SYNOPSIS
wall

DESCRIPTION
The command wall reads its standard input until an end-of-file is received. It then
prints this message on the terminals of all users currently logged in, preceded by:

Broadcast Message from login-id

The wall command must be invoked with appropriate privileges to override any
protections the other users may have invoked [see mesg(AU_CMD)].

The wall command uses the locale of the sender to determine printability. wall
will detect non–printable characters before sending them to the user’s terminal.
Control characters will appear as a ‘ˆ’ followed by the appropriate ASCII character;
non-printable characters with the high-order bit set will appear in meta notation.
For example, ‘\003 ’ is displayed as ‘ˆC’ and ‘\372’ as ‘M–z’.

USAGE
Administrator.

The command wall is used to warn all users, typically prior to shutting down the
system.

SEE ALSO
mesg(AU_CMD), write(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/wall
svid

Page: 284

who (AU_CMD) who (AU_CMD)

–b This option indicates the time and date of the last reboot.

–r This option indicates the current run level of the init process.

–t This option indicates the last change to the system clock.

–a This option turns on all options except the –q, –s, and –H options.

–s This option is the default and lists only the name, line, and time fields.

SEE ALSO
getut(SD_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: au_cmd/who
svid

Page: 286

write (AU_CMD) write (AU_CMD)

NAME
write – write to another user

SYNOPSIS
write user [terminal]

DESCRIPTION
The command write copies lines from the user’s terminal to that of another user.
When first called, it sends the message:

Message from sender-login-id (terminal) [date] ...

to the user addressed. When it has successfully completed the connection, it also
sends two bells to the sender’s terminal to indicate that what the sender is typing is
being sent.

The recipient of the message should write back, by typing write sender-login-id,
on receipt of the initial message. Whatever each user types (except for command
escapes, see below) is printed on the other user’s terminal, until an end-of-file or an
interrupt is sent. At that point write writes EOT on the other terminal and exits.
The recipient can also stop further messages from coming in by executing mesg n.

To write to a user who is logged in more than once, the terminal argument may be
used to indicate which terminal to send to (e.g., term/12); otherwise, the first writ-
able instance of the user found in an implementation-defined database is assumed
and an informational message is written.

A user may deny or grant write permission by use of the mesg command. Certain
commands disallow messages in order to prevent interference with their output.
However, if the sender has appropriate privileges, messages can be forced onto a
write-inhibited terminal.

If the character ! is found at the beginning of a line, write calls the command
interpreter to execute the rest of the line as a command.

write uses the locale of the sender to determine printability. write will detect
non-printable characters before sending them to the user’s terminal. Control char-
acters will appear as a ‘ˆ’ followed by the appropriate ASCII character; non-
printable characters with the high-order bit set will appear in meta notation. For
example, ‘\003’ is displayed as ‘ˆC’ and ‘\372’ as ‘M–z’.

ERRORS
The following errors are reported:

– the user addressed is not logged on.
– the user addressed denies write permission [see mesg(AU_CMD)].
– the user’s terminal is set to mesg n and the recipient cannot respond.
– the recipient changes permission (mesg n) after write had begun.

SEE ALSO
getut(SD_LIB), mesg(AU_CMD), who(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: au_cmd/write
svid

Page: 287

FINAL COPY
June 15, 1995

File:

Page: 288

Administered Systems Introduction

The Administered System Extension is composed primarily of utilities used for
system administration. Many of these are, in fact, restricted to the user with
appropriate privilege.

The following are prerequisite for support of the Administered Systems Exten-
sion:

Base System

Kernel Extension

Basic Utilities Extension

Advanced Utilities Extension

Summary of Commands and Utilities

The following commands and utilities are supported by the Administered Systems
Extension (exception: items marked with a (#) are optional). Items marked with a
(*) are Level 2, as defined in the General Introduction to this volume. Items marked
with a () have been internationalized (see envvar(BA_ENV)). Items marked
with a (†) are new to this edition of the SVID.

Administered Systems Introduction 5-1

FINAL COPY
June 15, 1995
File: as_int.txt

svid

Page: 289

a c c t c m s * f d p l a s t l o g i n * p k g p a r a m s e t m n t *
a c c t c o m * f f i l e l i n k * p k g p r o t o s e t u n a m e
a c c t c o n 1 * f i m a g e l o g i n s p k g r m s h u t a c c t *
a c c t c o n 2 * f m t m s g * l o g k e e p e r p k g t r a n s s r c h t x t
a c c t d i s k * f s c k m i g r a t i o n p r c t m p * s t a r t u p *
a c c t m e r g * f s d b m k f s p r d a i l y * s y n c
a c c t o n * f s t y p m k m s g s p r t a c c t * s y s d e f
a c c t p r c 1 * f u s e r m k n o d p r t c o n f t i m e x *
a c c t p r c 2 * f w t m p * m o d a d m i n † p w c k t u r n a c c t *
a c c t w t m p * g r o u p a d d m o n a c c t * r e m o v e f u m o u n t
b a c k u p g r o u p d e l m o u n t r e s t o r e u n l i n k *
b k e x c e p t g r o u p m o d m s g a l e r t r s n o t i f y u r e s t o r e
b k h i s t o r y g r p c k m s g l o g r s o p e r u r s s t a t u s
b k o p e r i n c f i l e m s g r p t r s s t a t u s u s e r a d d
b k r e g i n i t m v d i r r u n a c c t * u s e r d e l
b k s t a t u s i n s t a l l f n i c e * s a 1 * u s e r m o d
c h a r g e f e e * i p c r m p k g a d d s a 2 * v o l c o p y *
c k p a c c t * i p c s p k g a s k s a c a d m w h o d o
d e v n m k i l l a l l p k g c h k s a d c * w t m p f i x *
d i s k u s g * l a b e l i t p k g i n f o s a d p# * z d u m p
d o d i s k * l a s t p k g m k s a r * z i c
f d i s k

Organization of Technical Information

The ‘‘Administered Systems Commands and Utilities’’ chapter provides manual
page descriptions of commands and utilities supported by this extension.

5-2 ADMINISTERED SYSTEMS INTRODUCTION

FINAL COPY
June 15, 1995
File: as_int.txt

svid

Page: 290

Administered Systems Commands And Utilities

The following section contains the manual pages for the AS_CMD routines.

Administered Systems Commands And Utilities 6-1

FINAL COPY
June 15, 1995

File: as_cmd.cov
svid

Page: 291

FINAL COPY
June 15, 1995

File:

Page: 292

acct (AS_CMD) acct (AS_CMD)

NAME
acct: accton, acctwtmp, chargefee, ckpacct, dodisk, lastlogin, monacct, prdaily,
prtacct, shutacct, startup, turnacct – miscellaneous accounting and support com-
mands

SYNOPSIS
accton [file]

acctwtmp "reason"

chargefee login-name number

ckpacct [blocks]

dodisk [files]

lastlogin

monacct number

prdaily [-l][-c] [mmdd]

prtacct file ["heading"]

shutacct ["reason"]

startup

turnacct on

turnacct off

turnacct switch

DESCRIPTION
The accounting software provides utilities to collect data on: process accounting,
connect accounting, disk usage, command usage, summary command usage, and
users’ last login.

The runnacct and monacct commands [see runacct(AS_CMD)] use the utilities
listed here to produce daily and monthly summary files and reports that can be
printed using prdaily; they use a number of intermediate files and support utili-
ties that can also be used to tailor-make new accounting systems. Many of these
utilities produce or manipulate "total accounting" (tacct) records which can be
summarized by acctmerg [see acctmerg(AS_CMD)] and printed using prtacct.

The command accton without parameters turns process accounting off. If file is
given, accton will turn accounting on. The argument file must be the name of an
existing file (normally /var/adm/pacct), to which the system appends process
accounting records [see acct(KE_OS)].

The command acctwtmp writes a utmp structure to its standard output. The
record contains the current time and a string of characters that describe the reason.
A record type of ACCOUNTING is assigned. The argument reason must be a string of
(11 or less) characters, numbers, $, or spaces. For example, the following are
suggestions for use in startup and shutdown procedures, respectively:

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/acct
svid

Page: 293

acct (AS_CMD) acct (AS_CMD)

acctwtmp "acctg on" >> /var/adm/wtmp
acctwtmp "acctg off" >> /var/adm/wtmp

The command chargefee is invoked to charge a number of units to login-name. A
tacct record is written to /var/adm/fee, to be merged with other accounting
records by acctmerg.

The command ckpacct is typically initiated via the cron command [see
cron(AU_CMD)]. It periodically checks the size of /var/adm/pacct. If the size
exceeds blocks, 1000 by default, turnacct will be invoked with argument switch.
If the number of free disk blocks in the /var file system falls below 500, ckpacct
will automatically turn off the collection of process accounting records via the off
argument to turnacct. The accounting will be activated again on the next invo-
cation of ckpacct when at least this number of blocks is restored.

The command dodisk is typically invoked by cron to perform the disk account-
ing functions. By default, it will do disk accounting on the special files in
/etc/vfstab. If files are used, they should be the special filenames of mountable
file systems; disk accounting will be done on these file systems only.

The command lastlogin is invoked (typically by runacct) to update
/var/adm/acct/sum/loginlog, which shows the last date on which each per-
son logged in.

The command monacct is typically invoked once each month. The argument
number indicates which month or period it is. If number is not given, it defaults to
the current month (01–12). This default is useful if monacct is to be executed via
cron on the first day of each month. The command monacct creates summary
files in /var/adm/acct/fiscal, restarts summary files in
/var/adm/acct/sum, and deletes the previous days’ accounting reports (see
prdaily below).

The command prdaily is invoked (typically by runacct) to format a report of
the previous day’s accounting data. The report resides in
/var/adm/acct/sum/rprtmmdd where mmdd is the month and day of the
report. The current daily accounting reports may be printed by typing prdaily.
Previous days’ accounting reports can be printed by using the mmdd option and
specifying the report date desired. The –l option prints a report of exceptional
usage by login ID for the specified date. Previous daily reports are removed and
therefore inaccessible after each invocation of monacct. The –c option prints a
report of exceptional resource usage by command, and may be used on current
day’s accounting data only.

The command prtacct can be used to format and print any total accounting
(tacct) file.

The command shutacct is typically invoked during a system shutdown (usually
in /sbin/shutdown) to turn process accounting off and append a reason record to
/var/adm/wtmp.

The command startup is typically called by the system initialization routine to
turn on process accounting whenever the system is brought up.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/acct
svid

Page: 294

acct (AS_CMD) acct (AS_CMD)

The command turnacct is an interface to accton to turn process accounting on
or off. The switch argument turns accounting off, moves the current
/var/adm/pacct to the next free name in /var/adm/pacctincr (where incr is a
number starting with 1 and incrementing by one for each additional pacct file),
then turns accounting back on again.

FILES
/var/adm/wtmp login/logoff summary

/etc/passwd used for login name to user ID conversions

/usr/lib/acct directory for accounting commands

/var/adm/fee accumulator for fees

/var/adm/pacct current file for process accounting

/var/adm/acct/sum summary directory

USAGE
Administrator.

SEE ALSO
acct(KE_OS), acctcms(AS_CMD), acctcom(AS_CMD), acctcon(AS_CMD),
acctmerg(AS_CMD), acctprc(AS_CMD), cron(AU_CMD), diskusg(AS_CMD),
fwtmp(AS_CMD), runacct(AS_CMD).

FUTURE DIRECTIONS
There are two specific changes being made in the near future. File sizes will be
reported in terms of a specific unit size, such as 1K, independent of the file system
block size. It will also become unnecessary to turn Process Accounting off and then
on again when switching accounting files.

LEVEL
Level 2: September 30, 1989.

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/acct
svid

Page: 295

acctcms (AS_CMD) acctcms (AS_CMD)

NAME
acctcms – command summary from per-process accounting records

SYNOPSIS
acctcms [-a [-p] [-o]] [-c] [-j] [-n] [-s] files

DESCRIPTION
The command acctcms reads one or more files, normally in the form produced by
acct() [see acct(KE_OS)]. It adds all records for processes that executed
identically-named commands, sorts them, and writes them to the standard output,
normally using an internal summary format.

The options have the following meanings:
–a Print output in a user readable, rather than in the internal summary, format.

The output includes command name, number of times executed, total
kcore-minutes, total CPU minutes, total real minutes, mean size (in K), mean
CPU minutes per invocation, ‘‘hog factor’’, characters transferred, and
blocks read and written, as in acctcom [see acctcom(AS_CMD)]. Output is
normally sorted by total kcore-minutes.

–c Sort by total CPU time, rather than total kcore-minutes.
–j Combine all commands invoked only once under the ***other.
–n Sort by number of command invocations.
–s Any filenames encountered hereafter are already in internal summary for-

mat.
The following options may be used only with the -a option.
–p Output a prime-time-only command summary.
–o Output a non-prime (offshift) time only command summary.

When –p and –o are used together, a combination prime and non-prime time
report is produced. All the output summaries will be total usage except number of
times executed, CPU minutes, and real minutes which will be split into prime and
non-prime.

A typical sequence for performing daily command accounting and for maintaining
a running total is:

acctcms file . . . >today
cp total previoustotal
acctcms –s today previoustotal >total
acctcms –a –s today

USAGE
Administrator.

SEE ALSO
acct(AS_CMD), acct(KE_OS), acctcom(AS_CMD), acctcon(AS_CMD),
acctmerg(AS_CMD), acctprc(AS_CMD), fwtmp(AS_CMD), runacct(AS_CMD).

LEVEL
Level 2: September 30, 1989.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/acctcms
svid

Page: 296

acctcom (AS_CMD) acctcom (AS_CMD)

NAME
acctcom – search and print process accounting file(s)

SYNOPSIS
acctcom [[options] [file]] ...

DESCRIPTION
The command acctcom reads file, the standard input, or /var/adm/pacct, in the
form produced by acct() [see acct(KE_OS)] and writes selected records to the
standard output. Each record represents the execution of one process and shows
the COMMAND NAME, USER, TTYNAME, START TIME, END TIME, REAL (SEC),
CPU (SEC), MEAN SIZE(K), and optionally, F (the fork/exec flag: 1 for fork
without exec), STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU
FACTOR, CHARS TRNSFD, and BLOCKS R/W (total blocks read and written).

The command name is prepended with a # if it was executed with appropriate
privileges. If a process is not associated with a known terminal, a ? is printed in the
TTYNAME field.

If no files are specified, and if the standard input is associated with a terminal or
/dev/null, /var/adm/pacct is read; otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order. Each file is
normally read forward, i.e., in chronological order by process completion time. The
options and arguments for this command are:

–a Show average statistics about the processes selected. The statistics will
be printed after the output records.

–b Read backwards, showing latest commands first. This option has no
effect when the standard input is read.

–f Print the fork/exec flag and system exit status columns in the output.

–h Instead of mean memory size, show the fraction of total available CPU
time consumed by the process during its execution (the "hog factor").

–i Print columns containing total blocks read and written.

–k Instead of memory size, show total kcore-minutes.

–m Show mean core size (the default).

–r Show CPU factor (user time/(system-time + user-time)).

–t Show separate system and user CPU times.

–v Exclude column headings from the output.

–l line Show only processes belonging to terminal /dev/line.

–u user Show only processes belonging to user that may be specified by: a user
ID, a login name that is then converted to a user ID, a # which desig-
nates only those processes executed with appropriate privileges, or ?
which designates only those processes associated with unknown user
IDs.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/acctcom
svid

Page: 297

acctcom (AS_CMD) acctcom (AS_CMD)

–g group Show only processes belonging to group. The group may be designated
by either the group ID or group name.

–s time Select processes existing at or after time

–e time Select processes existing at or before time.

–S time Select processes starting at or after time.

–E time Select processes ending at or before time. Using the same time for both
–S and –E shows the processes that existed at time.

–n pattern
Show only commands matching pattern that may be a regular expression
as in ed except that + means one or more occurrences.

–q Do not print any output records, just print the average statistics as with
the –a option.

–o ofile Copy selected process records in the input data format to ofile; suppress
standard output printing.

–H factor Show only processes that exceed factor, where factor is the ‘‘hog factor’’
as explained in option –h above.

–O sec Show only processes with CPU system time exceeding sec seconds.

–C sec Show only processes with total CPU time, system plus user, exceeding
sec seconds.

–I chars Show only processes transferring more characters than the cut-off
number given by chars.

FILES
/etc/passwd
/etc/group
/var/adm/pacct

USAGE
Administrator.

SEE ALSO
acct(KE_OS), acct(AS_CMD), acctcms(AS_CMD), acctcon(AS_CMD),
acctmerg(AS_CMD), acctprc(AS_CMD), ed(BU_CMD), fwtmp(AS_CMD),
regcmp(BA_LIB), runacct(AS_CMD).

LEVEL
Level 2: September 30, 1989.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/acctcom
svid

Page: 298

acctcon (AS_CMD) acctcon (AS_CMD)

NAME
acctcon: acctcon1, acctcon2, prctmp – connect-time accounting

SYNOPSIS
acctcon1 [-p] [-t] [-l file] [-o file]

acctcon2

prctmp

DESCRIPTION
The command acctcon1 converts a sequence of login/logoff records read from its
standard input to a sequence of session records, one per login session. Its input
should normally be redirected from /var/adm/wtmp. The record format is read-
able, giving device, user ID, login name, prime connect time (seconds), non-prime
connect time (seconds), session starting time (numeric), and starting date and time.

The options and arguments have the following meanings:

–p Print input only, showing line name, login name, and time (in both numeric
and date/time formats).

–t acctcon1 maintains a list of lines on which users are logged in. When it
reaches the end of its input, it emits a session record for each line that still
appears to be active. It normally assumes that its input is a current file, so
that it uses the current time as the ending time for each session still in pro-
gress. The –t flag causes it to use the last time found in its input, instead of
the current time, thus assuring reasonable and repeatable numbers for non-
current files.

–l file
file is created to contain a summary of line usage showing line name,
number of minutes used, percentage of total elapsed time used, number of
sessions charged, number of logins, and number of logoffs. This file helps
track line usage, identify bad lines, and find software and hardware oddi-
ties. Various events during logoff each generate logoff records, so that the
number of logoffs is often three to four times the number of sessions.

–o file
file is filled with an overall record for the accounting period, giving starting
time, ending time, and the count and type of various accounting records
produced by acctwtmp [see acctwtmp in acct(AS_CMD)].

The command acctcon2 expects as input a sequence of login session records (as
produced by acctcon1), and converts them into total accounting records.

The command prctmp can be used to print the session record file as produced by
acctcon1.

FILES
/var/adm/wtmp

USAGE
Administrator.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/acctcon
svid

Page: 299

acctcon (AS_CMD) acctcon (AS_CMD)

The command wtmpfix [see wtmpfix in fwtmp(AS_CMD)] can be used to correct
for the confusion caused by date changes.

EXAMPLE
These commands are typically used as shown below. The file ctmp can be used by
acctprc1 [see acctprc1 in acctprc(AS_CMD)]:

acctcon1 –t –l lineuse –o reboots </var/adm/wtmp 
sort +1n +2 >ctmp

acctcon2 <ctmp  acctmerg >ctacct

SEE ALSO
acct(AS_CMD), acct(KE_OS), acctcms(AS_CMD), acctcom(AS_CMD),
acctmerg(AS_CMD), acctprc(AS_CMD), fwtmp(AS_CMD), runacct(AS_CMD).

FUTURE DIRECTIONS
The commands acctcon1 and acctcon2 will be merged and called acctcon in
the near future.

LEVEL
Level 2: September 30, 1989.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/acctcon
svid

Page: 300

acctmerg (AS_CMD) acctmerg (AS_CMD)

NAME
acctmerg – merge or add total accounting files

SYNOPSIS
acctmerg [-a] [-i] [-p] [-t] [-u] [-v] [file ...]

DESCRIPTION
The command acctmerg reads its standard input and up to nine additional files,
all in the total accounting (tacct) format or a user readable version thereof. It
merges these inputs by adding records whose keys (normally user ID and name)
are identical, and expects the inputs to be sorted on those keys.

The options and arguments have the following meanings:

–a Produce output in a user readable version of tacct.

–i Input files are in a user readable version of tacct.

–p Print input with no processing.

–t Produce a single record that totals all input.

–u Summarize by user ID, rather than user ID and name.

–v Produce output in verbose user readable format, using more precise nota-
tion for floating point numbers.

USAGE
Administrator.

EXAMPLE
The following sequence is useful for making "repairs" to any file kept in this format:

acctmerg –v <file1 >file2
(edit file2 as desired)
acctmerg –i <file2 >file1

SEE ALSO
acct(KE_OS), acct(AS_CMD), acctcms(AS_CMD), acctcom(AS_CMD),
acctcon(AS_CMD), acctprc(AS_CMD), fwtmp(AS_CMD), runacct(AS_CMD).

LEVEL
Level 2: September 30, 1989.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/acctmerg
svid

Page: 301

acctprc (AS_CMD) acctprc (AS_CMD)

NAME
a c c t p r c, a c c t p r c 1, a c c t p r c 2 – process accounting

SYNOPSIS
a c c t p r c

a c c t p r c 1 [ctmp]

a c c t p r c 2

DESCRIPTION
a c c t p r c reads standard input, in the form described by a c c t (AS_CMD) and con-
verts it to total accounting records [see the t a c c t record in a c c t (AS_CMD)]
a c c t p r c divides CPU time into prime time and non-prime time and determines
mean memory size (in memory segment units). a c c t p r c then summarizes the
t a c c t records, according to user IDs, and adds login names corresponding to the
user IDs. The summarized records are then written to standard output. a c c t p r c 1
reads input in the form described by a c c t (AS_CMD) adds login names
corresponding to user IDs, then writes for each process an ASCII line giving user ID,
login name, prime CPU time (tics), non-prime CPU time (tics), and mean memory
size (in memory segment units). If ctmp is given, it is expected to contain a list of
login sessions sorted by user ID and login name. If this file is not supplied, it
obtains login names from the password file, just as a c c t p r c does. The information
in ctmp helps it distinguish between different login names sharing the same user ID.

From standard input, a c c t p r c 2 reads records in the form written by a c c t p r c 1,
summarizes them according to user ID and name, then writes the sorted summaries
to the standard output as total accounting records.

Files
/ e t c / p a s s w d

USAGE
The a c c t p r c command is typically used as shown below:

a c c t p r c < / v a r / a d m / p a c c t > p t a c c t

The a c c t p r c 1 and a c c t p r c 2 commands are typically used as shown below:

a c c t p r c 1 c t m p < / v a r / a d m / p a c c t  a c c t p r c 2 > p t a c c t

SEE ALSO
a c c t (AS_CMD), a c c t c m s (AS_CMD), a c c t c o m (AS_CMD), a c c t c o n (AS_CMD),
a c c t m e r g (AS_CMD), c r o n (AU_CMD), f w t m p (AS_CMD), r u n a c c t (AS_CMD),

LEVEL
Level 2.

NOTICES
Although it is possible for a c c t p r c 1 to distinguish among login names that share
user IDs for commands run normally, it is difficult to do this for those commands
run from c r o n (AU_CMD) for example. A more precise conversion can be done
using the a c c t w t m p program in a c c t (AS_CMD) a c c t p r c does not distinguish
between users with identical user IDs.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/acctprc
svid

Page: 302

acctprc (AS_CMD) acctprc (AS_CMD)

A memory segment of the mean memory size is a unit of measure for the number of
bytes in a logical memory segment on a particular processor.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/acctprc
svid

Page: 303

backup (AS_CMD) backup (AS_CMD)

backup –i establishes interactive mode, which assumes that an operator is present
at the terminal where the backup command was issued. In this mode, bkoper is
automatically invoked at the terminal where the backup command was entered.
The operator responds to the prompts as they arrive.

backup –a establishes automatic mode, which assumes that no operator is avail-
able. In this mode, any backup operation that requires operator intervention fails.
Backups that can be satisfied by mounted media proceed.

Table Validations
A number of backup service databases must be consistent before the backups listed
in a backup table can be performed. These consistencies can only be validated at
the time backup is initiated. If any of them fail, backup will terminate. Invoking
backup –en performs the validation checks in addition to displaying the set of
backup operations to be performed. The validations are:

1. The backup method must be a default method or be an executable file in
/etc/bkup/method/*.

2. The dependencies for an entry are all defined in the table. Circular dependen-
cies (e.g., entry abc depends on entry def; entry def depends on entry
abc) are not allowed.

Options
–a Initiates all backup operations in automatic mode; does not prompt an

operator to service media.

–c week:day
demand Selects from the backup table only those backup operations for the

specified week and day of the backup rotation, instead of the current
day and week of the rotation. If demand is specified, selects only those
backup operations scheduled to be performed on demand.

–e Displays an estimate of the number of media required to perform each
backup operation prior to starting the backup operation.

–i Selects interactive operation.

–j jobid Controls only the backup job identified by jobid. jobid is a backup job ID.

–m user Sends mail to the named user when all backup operations for the backup
job are complete.

–n Displays the set of backup operations that would be performed if the n
were omitted, but does not perform the backup operations. The display
is ordered according to the dependencies and priorities specified in the
backup table.

–o orig Initiates backup operations only on the named originating object [see
bkreg(AS_CMD) for the correct form of orig].

–s Displays a dot (.) for each 100 blocks transferred to the destination
device. The dots are displayed while each backup operation is progress-
ing.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/backup
svid

Page: 305

backup (AS_CMD) backup (AS_CMD)

–t table Initiates backup operations described in the specified backup table, table,
instead of the default table.

–u user Controls backup jobs started by the named user instead of those started
by the user invoking the command. user is a user login ID.

–v While each backup operation is progressing, display the name of each
file, directory, file system partition, or data partition as soon as it has
been transferred to the destination device.

–A Controls backup jobs for all users instead of those started by the user
invoking the command.

–C Cancels backup jobs.

–R Resumes suspended backup jobs.

–S Suspends backup jobs.

ERRORS
The exit codes for backup are the following:

0 = successful completion of the task

1 = one or more parameters to backup are invalid.

2 = an error has occurred which caused backup to fail to complete all portions of
its task.

FILES
/etc/bkup/bkreg.tab the default backup table
/etc/bkup/method/* backup methods

EXAMPLE
Example 1:

backup -i -v -c 2:1 -m admin3

initiates those backups scheduled for Monday of the second week in the rotation
period instead of backups for the current day and week. Performs the backup in
interactive mode and displays on standard output the name of each file, directory,
file system partition, or data partition as soon as it is transferred to the destination
device. When all backups are completed, sends mail notification to the user with
login ID admin3.

Example 2:

backup –o /usr:/dev/rdsk/c1d0s2:usr

initiates only those backups from the usr file system that is mounted on the ori-
ginating device /dev/rdsk/c1d0s2 and is labeled usr.

Example 3:

backup -S

Suspends the backup jobs requested by the invoking user.

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/backup
svid

Page: 306

backup (AS_CMD) backup (AS_CMD)

Example 4:

backup -R -j back-359

resumes the backup operations included in backup job ID back-359.

SEE ALSO
bkhistory(AS_CMD), bkoper(AS_CMD), bkreg(AS_CMD), bkstatus(AS_CMD).

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.

Optional

Page 4

FINAL COPY
June 15, 1995

File: as_cmd/backup
svid

Page: 307

bkexcept (AS_CMD) bkexcept (AS_CMD)

NAME
bkexcept – change or display an exception list for incremental backups

SYNOPSIS
bkexcept -a pattern ... [-t exception_list]

bkexcept -r pattern ... [-t exception_list]

bkexcept [-d pattern ...] [-t exception_list]

DESCRIPTION
The command bkexcept displays a list of patterns describing files that are to be
excluded when backup operations occur using incfile [see incfile(AS_CMD)].
The list is known as the "exception list."

bkexcept –a adds patterns to the list.

bkexcept –r removes patterns from the list.

Patterns
Patterns describe individual files or sets of files. Patterns must conform to path-
name naming conventions specified in the Base System Introduction. A pattern is
taken as a filename and is interpreted in the manner of cpio [see cpio(BU_CMD)].
A pattern can include the shell special characters *, ?, and []. Asterisk (*) and
question mark (?) will match period (.) and slash(/). Because these are shell spe-
cial characters, they must be escaped on the command line.

There are three general methods of specifying entries to an exception list. To
specify all files under a particular directory, specify the directory name (and any
desired subdirectories) followed by an asterisk:

/directory/subdirectories/*

To specify all instances of a filename regardless of its location, specify the filename
preceded by an asterisk:

*/filename

To specify one instance of a particular file, specify the entire pathname to the file:
/directory/subdirectories/filename

If pattern is a dash (–), standard input is read for a list of patterns (one per line until
EOF) to be added or deleted.

Options
–a pattern ...

Adds pattern to the exception list. pattern is one or a list of patterns
(comma-separated or blank-separated and enclosed in quotes) describing
sets of files.

–d pattern ...
Displays entries in the exception list. If pattern begins with a slash (/), –d
displays all entries whose names begin with pattern. If pattern does not
begin with a slash, –d displays all entries that include pattern anywhere in
the entry. If pattern is a dash (–), input is taken from standard input.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/bkexcept
svid

Page: 308

bkexcept (AS_CMD) bkexcept (AS_CMD)

The entries are displayed in a collating sequence of special characters,
numbers, then alphabetical order.

–t exception_list
Designates the exception_list on which action is to be taken. If not specified,
the default exception list is assumed.

–r pattern ...
Removes pattern from the exception list. pattern is one or a list of patterns
(comma-separated or blank-separated and enclosed in quotes) describing
sets of files. pattern must be an exact match of an entry in the exception list
for pattern to be removed. Patterns that are removed are echoed to standard
output.

ERRORS
The exit codes for bkexcept are the following:

0 = successful completion of the task

1 = one or more parameters to bkexcept are invalid.

2 = an error has occurred which caused bkexcept to fail to complete all portions
of its task.

FILES
/etc/bkup/bkexcept.tab default exception list

/var/sadm/bkup/table/bkexcept.tab exception list for non-default backup
tables

EXAMPLE
Example 1:

bkexcept –a /tmp/*,/var/tmp/*,/usr/rje/*,*/trash

adds the four sets of files to the exception list, (all files under /tmp, all files under
/var/tmp, all files under /usr/rje, and any file on the system named trash).

Example 2:

bkexcept –d /tmp

displays the following patterns from those added to the exception list in example 1.

/tmp/*

Example 3:

bkexcept –d tmp

displays the following patterns from those added to the exception list in example 1.

/tmp/*, /var/tmp/*

Example 4:

bkexcept –r /var/tmp/*,/usr/rje/*

removes the two sets of files from the exception list.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/bkexcept
svid

Page: 309

bkexcept (AS_CMD) bkexcept (AS_CMD)

SEE ALSO
backup(AS_CMD), cpio(BU_CMD), incfile(AS_CMD), sh(BU_CMD).

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.

Optional

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/bkexcept
svid

Page: 310

bkhistory (AS_CMD) bkhistory (AS_CMD)

NAME
bkhistory – report on completed backup operations

SYNOPSIS
bkhistory [-lh] [-d dates] [-o origs] [-t tags] [-f c]
bkhistory -p period

DESCRIPTION
The command bkhistory without options reports a summary of the contents of
the backup history log, bkhist.tab. The list of backups is sorted by tag with the
most recent backup operation listed first. backup updates this log after each suc-
cessful backup operation.

bkhistory may only be executed by a user with appropriate privileges.

bkhistory –p assigns a rotation period (in weeks) for the history log; all entries
older than the specified number of weeks are deleted from the log. The default
rotation period is one (1) week.

The options and arguments have the following meanings:

–d dates Restricts the report to backup operations performed on the specified
dates. dates is a list of dates in date format [see date(BU_CMD)].
However, only month is required in the option argument; day, hour,
minute, and year, are optional. The list of dates is either comma-
separated or blank-separated and surrounded by quotes.

–f c Suppresses field wrap on the display and specifies an output field
separator to be used. The value of c is the character that will appear as
the field separator on the display output. For clarity of output, do not
use a separator character that is likely to occur in a field. For example,
do not use the colon as a field separator character if the display will con-
tain dates that use a colon to separate hours from minutes. To use the
default field separator (tab), specify the null character ("") for c.

–h Suppresses headers for the reports.

–l Displays a long form of the report. This produces an ls -l listing [see
ls(BU_CMD)] of the files included in the backup archive (if backup
tables of contents are available on-line).

–o origs Restricts the report to the specified originating objects (file systems or
data partitions). origs is a list of originating object onames or odevices
either comma-separated or blank-separated and surrounded by quotes
[see bkreg(AS_CMD) for the format of onames and odevices].

–p period Sets the number of weeks of information that will be saved in the
backup history table. The minimum value of period is 1; there is no
maximum value. By default, period is 1.

–t tags Restricts the report to backups with the specified tags. tags is a list of tag
values as specified in a backup table. The list of tags is either comma-
separated or blank-separated and surrounded by quotes.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/bkhistory
svid

Page: 311

bkhistory (AS_CMD) bkhistory (AS_CMD)

ERRORS
The exit codes for bkhistory are the following:

0 = successful completion of the task

1 = one or more parameters to bkhistory are invalid.

2 = an error has occurred which caused bkhistory to fail to complete all portions
of its task.

FILES
/etc/bkup/bkhist.tab the backup history log that contains infor-

mation about successfully completed
backup operations

/var/sadm/bkup/table/bkreg.tab describes the backup policy established by
the administrator

/var/sadm/bkup/toc lists directories with on-line tables of con-
tents

EXAMPLE
Example 1:

bkhistory –p 3

sets the rotation period for the history log to three weeks. Entries older than 3
weeks are deleted from the log.

Example 2:

bkhistory –t SpoolDai,UsrDaily,TPubsWed

displays a report of completed backup operations for the three tags listed.

Example 3:

bkhistory –l –t acctsweekly

Displays an ls –l listing of the files that were backed up for the backup operation
with tag acctsweekly.

SEE ALSO
backup(AS_CMD), bkreg(AS_CMD), date(BU_CMD), ls(BU_CMD).

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.

Optional

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/bkhistory
svid

Page: 312

bkoper (AS_CMD) bkoper (AS_CMD)

1. back-111 usrsun /dev/dsk/c1d0s1 disk /dev/dsk/c2d1s9 usrsave
2. back-112 fs2daily /dev/dsk/c1d0s8 ctape /dev/ctape/c4d0s2 -

Backup headers are numbered on the basis of arrival; the oldest header has the
lowest number. If the destination device does not have a media name, a dash is
displayed in the header.

SEE ALSO
bkreg(AS_CMD), bkstatus(AS_CMD), getvol(AS_CMD), mailx(AU_CMD).

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.

Optional

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/bkoper
svid

Page: 314

bkreg (AS_CMD) bkreg (AS_CMD)

Originating Objects
An originating object is a disk partition formatted either as a file system [see
mkfs(AS_CMD)] or as a raw data partition. An originating object is described by its
originating object name, its device name, and optional volume labels.

Several backup operations for different originating objects may be active con-
currently by specifying priorities and dependencies. During a backup session, all
higher-priority backup operations must be active, waiting or suspended before any
lower-priority backup operations are started. All backup operations of a given
priority may proceed concurrently unless dependencies are specified. If one
backup is declared to be dependent on others, it will not be started until all of its
antecedents have completed successfully.

Destination Devices
Each backup is written to a set of storage volumes inserted into a destination
device. A destination device has a destination device group, a destination device
name, media characteristics, and volume labels. Default characteristics for a
medium may be overridden.

Backup Methods
An originating object is backed up to a destination device archive using a method.
The method determines the amount of information backed up and the representa-
tion of that information. Different methods may be used for a given originating
object on different days of the rotation.

Several default methods are provided with the backup service. Others methods
may be added by a UNIX System site. [For descriptions of the default methods, see
incfile(AS_CMD), ffile(AS_CMD), fdisk(AS_CMD), fimage(AS_CMD), and
fdp(AS_CMD).] Each method accepts a set of options that are specific to the
method.

A backup archive may be migrated to a different destination by specifying migra-
tion as the backup method. The device name of the originating object for a migra-
tion must have been the destination device for a previously successful backup
operation. This form of backup does not re-archive the originating object. It copies
an archive from one destination to another, updating the backup service’s databases
so that restores can still be done automatically.

Modes
bkreg has two major modes: changing the contents of a backup table and display-
ing the contents of a backup table.

Changing Contents
bkreg –p changes the rotation period for a backup table. The default rota-

tion period is one week.

bkreg –a adds an entry to a backup table.

bkreg –e edits an existing entry in a backup table.

bkreg –r removes an existing entry from a backup table.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/bkreg
svid

Page: 316

bkreg (AS_CMD) bkreg (AS_CMD)

Displaying Contents
bkreg –C produces a customized display of the contents of a backup table.
bkreg [–A]
bkreg [–O]
bkreg [–R] produces a summary display of the contents of a backup table.

Options
–a Adds a new entry to the default backup table. Options required with –a

are: -o, -c, -m, and -d. If other options are not specified, the following
defaults are used: the default backup table is used, no method options are
specified, the priority is 0, and no dependencies exist between entries.

–b moptions
Each backup method supports a specific set of options that modify its
behavior. moptions is specified as a list of options that are blank-separated
and enclosed in quotes. The argument string provided here is passed to the
method exactly as entered, without modification. [See incfile(AS_CMD),
ffile(AS_CMD), fdisk(AS_CMD), fimage(AS_CMD), and fdp(AS_CMD) for
lists of valid options.]

–c weeks:days
–c demand

Sets the week(s) and day(s) of the rotation period during which a backup
entry should be performed or for which a display should be generated.
weeks is a set of numbers between 1 and 52. The value of weeks cannot be
greater than the value of period. weeks is specified as a combination of lists
or ranges (either comma-separated or blank-separated and enclosed in
quotes). An example set of weeks is

"1 3-10,13"

indicating the first week, each of the third through tenth weeks, and the thir-
teenth week of the rotation period. days is a set of numbers between 0 (Sun-
day) and 6 (Saturday) specified as a combination of lists or ranges (either
comma-separated or blank-separated and enclosed in quotes). demand
indicates that an entry is used only when explicitly requested by:

backup -c demand

[see backup(AS_CMD).]

–d ddev
Specifies ddev as the destination device for the backup operation. ddev is of
the form:

dgroup:ddevice:dchar:dlabels

where either dgroup or ddevice must be specified and dchar and dlabels are
optional. (Both dgroup and ddevice may be specified together.) Colons del-
ineate field boundaries and must be included as indicated above. dgroup is
the device group for the destination device. ddevice is the device name of a
specific destination device. If ddevice is omitted, dgroup must be specified
and any available device in dgroup may be used. dchar describes media
characteristics. If specified, they override the default characteristics for the
device and group. dchar is of the form:

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/bkreg
svid

Page: 317

bkreg (AS_CMD) bkreg (AS_CMD)

keyword=value

where keyword is a valid device characteristic key word (as it appears in the
device table). dchar entries may be separated by commas or blanks. If
separated by blanks, the entire string of arguments to ddev must be enclosed
in quotes. dlabels is a list of volume names of the destination volumes. The
list of dlabels must be either comma-separated or blank-separated. If blank-
separated, the entire ddev argument must be surrounded by quotes. Each
dlabel corresponds to a volumename specified on the labelit command
[see labelit in volcopy(AS_CMD)]. If dlabels is omitted, backup and
restore [see restore(AS_CMD)] do not validate the volume labels on this
entry.

–e Edits an existing entry. If any of the options –b, –c, –d, –m, –o, –D, or
–P are present, they replace the current settings for the specified entry in the
table.

–h Suppresses headers when generating displays.

–m [method]
Performs the backup using the specified method. Default methods are:
incfile, ffile, fdisk, fimage, and fdp. If this is not a default
method, it must appear as the executable file
/etc/bkup/method/METHOD. migration indicates that the –o orig
was a ddev during a prior backup operation. The originating object is not
rearchived; it is simply copied to the –d ddev specified for the entry. The
backup history (if any) and tables of contents (if any) are updated to reflect
the changed destination for the original archive.

–o orig
Specifies orig as the originating object for the backup operation. orig is of the
form:

oname:odevice[:olabel]

oname is an originating object name. For file system partitions, it is the
nodename on which the file system is usually mounted [see
mount(AS_CMD)]. For data partitions, it is any valid pathname. This value
is provided to the backup method and validated by backup. The default
data partition backup methods, fdp and fdisk, do not validate this name.

odevice is the device name for the originating object. In all cases, it is a raw
disk partition device name.

olabel is the volume label for the originating object. For file system parti-
tions, it corresponds to the volumename specified on the labelit com-
mand. A data partition may have an associated volume name. If it does,
the name is only known externally (taped on the volume).

–p period
Sets the rotation period (in weeks) for the backup table to period. The
minimum value is 1; the maximum value is 52. By default the current week
of the rotation is set to 1.

Page 4

FINAL COPY
June 15, 1995

File: as_cmd/bkreg
svid

Page: 318

bkreg (AS_CMD) bkreg (AS_CMD)

–r Removes the specified entry from the table.

–s Suppresses wrap-around behavior when generating displays. Normal
behavior is to wrap long values within each field.

–t table
Uses table instead of the default table, which is:

/var/sadm/bkup/bkreg.tab
Note: the table name "new" is disallowed.

–v Generates displays using (vertical) columns instead of (horizontal) rows.
This allows more information to be displayed without encountering prob-
lems displaying long lines.

–w cweek
Sets the current week of the rotation period to cweek. cweek is an integer
between 1 and the value of period. cweek cannot exceed period. The default is
1.

–A Displays a report describing all fields in the table. The display produced by
this option is best suited as input to a filter, since in horizontal mode it pro-
duces extremely long lines.

–C fields
Generates a display of the contents of a backup table, limiting the display to
the specified fields. The output is a set of lines, one per table entry. Each
line consists of the desired fields, separated by a field separator character.
fields is a list of field names (either comma-separated or blank-separated and
enclosed in quotes) for the fields desired. The valid field names are
period, cweek, tag, oname, odevice, olabel, weeks, days,
method, moptions, prio, depend, dgroup, ddevice, dchar, and
dlabel.

–D depend
Specifies a set of backup operations that must successfully complete before
this operation may begin. depend is a list of tag(s) (either comma-separated
or blank-separated and enclosed in quotes) naming the antecedent backup
operations. A dependence may only exist between entries in the same table.

–f c Overrides the default output field separator. c is the character that will
appear as the field separator on the display output. The default output field
separator is colon (":").

–O Displays a summary of all originating objects with entries in the default
backup table, or the specified backup table.

–P prio
Sets a priority of prio for this backup operation. The default priority is 0; the
maximum priority is 100. Priority describes the relative priority of a backup
operation with respect to the others. A backup operation is not started until
all others with a higher priority are underway. All backup operations with
the same priority may occur simultaneously, unless the priority is 0. All
backups with priority 0 proceed sequentially in an unspecified order.

Page 5

FINAL COPY
June 15, 1995

File: as_cmd/bkreg
svid

Page: 319

bkreg (AS_CMD) bkreg (AS_CMD)

–R Displays a summary of all destination devices with entries in the specified
table.

ERRORS
The exit codes for bkreg are the following:

0 = successful completion of the task

1 = one or more parameters to bkreg are invalid.

2 = an error has occurred which caused bkreg to fail to complete all por-
tions of its task.

Errors are reported on standard error if any of the following occurs:

1. The tag specified in bkreg -e or bkreg -r does not exist in the
backup table.

2. The tag specified in bkreg –a already exists in the table.

FILES
/etc/bkup/bkreg.tab default backup table
/var/sadm/bkup/table/bkreg.tab non-default backup tables
/etc/bkup/method/* backup methods

EXAMPLE
Example 1:

bkreg –p 15 –w 3

establishes a 15-week rotation period in the default backup table and sets the
current week to the 3rd week of the rotation period.

Example 2:

bkreg –a acct5 –t wklybu.tab \
–o /usr:/dev/rdsk/c1d0s2:usr \
–c "2 4-6 8 10:0,2,5" –m incfile –b -txE \
–d diskette:cap=1404:acctwkly1,acctwkly2,acctwkly3

adds an entry named acct5 to the backup table named wklybu.tab. If
wklybu.tab does not already exist, it will be created. The originating object to be
backed up is the /usr file system on the /dev/rdsk/c1d0s2 device which is
known as usr. The backup will be performed each Sunday, Tuesday, and Friday of
the second, fourth through sixth, eighth, and tenth weeks of the rotation period
using the incfile (incremental file) method. The method options specify that a
table of contents will be created on additional media instead of in the backup his-
tory log, the exception list is to be ignored, and an estimate of media usage for the
archive is to be provided before performing the backup. The backup will be done
to the next available diskette device using the three diskette volumes acctwkly1,
acctwkly2, and acctwkly3. These volumes have a capacity of 1404 blocks each.

Example 3:

bkreg –e services2 –t wklybu.tab \
–o /back:/dev/rdsk/c1d0s8:back \
–m migration –c demand –d ctape:/dev/rdsk/c4d0s3

Page 6

FINAL COPY
June 15, 1995

File: as_cmd/bkreg
svid

Page: 320

bkreg (AS_CMD) bkreg (AS_CMD)

changes the specifications for the backup operation named services2 on the
backup table wklybu.tab so that whenever the command

backup –c demand
is executed, the backup that was performed to the destination device
back:dev/rdsk/c1d0s8:back will be migrated from that device (now serving
as the originating device) to a cartridge tape.

Example 4:

bkreg –e pubsfri –P 10 \
–D develfri,marketfri,acctfri

changes the priority level for the backup operation named pubsfri to 10 and
makes this backup operation dependent on the three backup operations devel-
fri, marketfri, and acctfri. Backup of pubsfri will occur only after all
backup operations with priorities greater than 10 have begun and after backup
operations for develfri, marketfri, and acctfri have completed success-
fully.

Example 5:

bkreg –c 1-8:0-6

provides the default display of the contents of the default backup table, for all
weekdays for the first through eighth weeks of the rotation period. The display
takes the following format:

Originating Device: /dev/dsk/c1d0s0

Tag Weeks Days Method Options Priority Dgroup_ __ ___
rootdai 1-8 1–6 incfile diskette
rootsp 1-8 0 ffile -bxt 20 ctape

Originating Device: /dev/rdsk/c1d0s2

Tag Weeks Days Method Options Priority Dgroup__
usrdai 1-8 1–5 incfile diskette
usrsp 1-8 0 ffile -bxt 15 ctape

SEE ALSO
backup(AS_CMD), fdisk(AS_CMD), fdp(AS_CMD), ffile(AS_CMD),
fimage(AS_CMD), incfile(AS_CMD), mkfs(AS_CMD), mount(AS_CMD),
restore(AS_CMD), volcopy(AS_CMD).

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.
Optional

Page 7

FINAL COPY
June 15, 1995

File: as_cmd/bkreg
svid

Page: 321

bkstatus (AS_CMD) bkstatus (AS_CMD)

NAME
bkstatus – display the status of backup operations

SYNOPSIS
bkstatus [–a] [–h] [–f c] [–j jobids] [–u users]

bkstatus [–s states] [–h] [–f c] [–j jobids] [–u users]

bkstatus –p period

DESCRIPTION
Without options, bkstatus displays the status of backup operations that are in
progress: active, pending, waiting or suspended. When used with the –a
option, bkstatus includes failed and completed backup operations in the
display.

bkstatus –p defines the amount of status information, in weeks, that is saved for
display.

bkstatus may only be executed by a user with appropriate privileges.

Each backup operation goes through a number of states as described below. The
key letters listed in parentheses after each state are used with the –s option and also
appear on the display.

pending(p) backup has been invoked and the operations in the backup table
for the specified day are scheduled to occur.

active(a) The backup operation has been assigned a destination device and
archiving is currently underway; or a suspended backup has been
resumed.

waiting(w) The backup operation is waiting for operator interaction, such as
inserting the correct volume.

suspended(s) The backup operation has been suspended by an invocation of
backup –S [see backup(AS_CMD)].

failed(f) The backup operation failed or has been canceled.

completed(c) The backup operation has completed successfully.

The options and arguments have the following meanings:

–a Include failed and completed backup operations in the
display. All backup operations that have occurred within period
are displayed.

–f c Suppresses field wrap on the display and specifies an output field
separator to be used. The value of c is the character that will
appear as the field separator on the display output. For clarity of
output, do not use a separator character that is likely to occur in a
field. For example, do not use the colon as a field separator char-
acter if the display will contain dates that use a colon to separate
hours from minutes. To use the default field separator (tab),
specify the null character ("") for c.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/bkstatus
svid

Page: 322

bkstatus (AS_CMD) bkstatus (AS_CMD)

–h Suppress header on the display.

–j jobids Restrict the display to the specified list of backup jobids [either
comma-separated or blank-separated and enclosed in quotes; see
backup(AS_CMD)].

–p period Define the amount of backup status information that is saved and
made available for display as period. Period is the number of
weeks that information is saved in /etc/bkstatus.tab. Status
information that is older than the number of weeks specified in
period is deleted from the status table. The minimum valid entry
is 1. The maximum is 52. The default is 1 week.

–s states Restrict the report to backup operations with the specified states.
states is a list of state key letters (concatenated, comma-separated
or blank-separated and surrounded by quotes). For example,

apf
a,p,f
"a p f"

all specify that the report should only include backup operations
that are active, pending or failed.

–u users Restrict the display to backup operations started by the specified list of
users (either comma-separated or blank-separated and enclosed in
quotes).

ERRORS
The exit codes for bkstatus are the following:

0 = successful completion of the task

1 = one or more parameters to bkstatus are invalid.

2 = an error has occurred which caused bkstatus to fail to complete all portions
of its task.

FILES
bkstatus.tab lists the current status of backups that have occurred or

are still in progress.

bkreg.tab describes the backup policy decided on by the System
Administrator.

/etc/bkup/bkreg.tab the default backup table.

EXAMPLE
Example 1:

bkstatus –p 4

specifies that backup status information is to be saved for four weeks. Any status
information older than four weeks is deleted from the system.

Example 2:

bkstatus –a –j back-459,back-395

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/bkstatus
svid

Page: 323

bkstatus (AS_CMD) bkstatus (AS_CMD)

produces a display that shows status for the two backup jobs specified, even if they
completed or failed for those jobs.

Example 3:

bkstatus –s a,c –u "oper3 oper4"

produces a display that shows only those backup jobs issued by users oper3 and
oper4 that have a status of either active or completed.

SEE ALSO
backup(AS_CMD), bkhist(AS_CMD), bkreg(AS_CMD).

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.

Optional

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/bkstatus
svid

Page: 324

devnm (AS_CMD) devnm (AS_CMD)

NAME
devnm – device name

SYNOPSIS
devnm pathname

DESCRIPTION
The command devnm identifies the special file associated with the mounted file sys-
tem where the named file or directory resides. The full pathname must be given.

EXAMPLE
The command:

devnm /usr
produces

/dev/dsk/0s1 /usr
if /usr is mounted on /dev/dsk/0s1.

FILES
/dev/dsk/∗
/etc/mnttab

USAGE
Administrator.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/devnm
svid

Page: 325

diskusg (AS_CMD) diskusg (AS_CMD)

NAME
diskusg, acctdisk – generate disk accounting data by user ID

SYNOPSIS
diskusg [-s] [-v] [-i fnmlist] [-p file] [-u file] [special-file ...]

acctdisk

DESCRIPTION
The command diskusg generates disk accounting information for the file system
identified by the special-files. diskusg prints lines on the standard output, one
per user, in the following format:

uid login #blocks

where

uid is the numerical user ID of the user.

login is the login name of the user; and

#blocks is the total number of disk blocks allocated to this user.

The command diskusg is normally run in dodisk [see dodisk in
acct(AS_CMD)].

The options and arguments have the following meanings:

-s The input data is already in diskusg output format. The com-
mand diskusg combines all lines for a single user into a single
line.

-v Verbose; print a list on standard error of all files that are charged
to no one.

-i fnmlist Ignore the data on those file systems whose file system name is in
fnmlist. The argument fnmlist is a list of file system names
separated by commas or enclose within quotes. The command
diskusg compares each name in this list with the file system
name stored in the volume ID [see labelit in
volcopy(AS_CMD)].

-p file Generate login names from password file file. /etc/passwd is
used by default.

-u file Write records to file of files that are charged to no one. Records
consist of the special filename, the i-node number, and the user ID.

The command acctdisk expects a sequence of disk accounting information, as
produced by diskusg (sorted by user ID and login name), and generates total
accounting records that can be merged with other accounting records.

FILES
/etc/passwd used for user ID to login name conversions

/usr/lib/acct directory for accounting commands

USAGE
Administrator.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/diskusg
svid

Page: 326

diskusg (AS_CMD) diskusg (AS_CMD)

SEE ALSO
acct(AS_CMD), acct(KE_OS), volcopy(AS_CMD).

FUTURE DIRECTIONS
In the near future, file sizes will be reported in terms of a specific unit size, such as
1K, independent of the file system block size.

LEVEL
Level 2: September 30, 1989.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/diskusg
svid

Page: 327

fsck (AS_CMD) fsck (AS_CMD)

NAME
fsck – check and repair file systems

SYNOPSIS
fsck [–F FSType] [–V] [–m] [–o specific_options] [special...]

DESCRIPTION
The command fsck audits and interactively repairs inconsistent conditions in file
systems. If the file system is found to be consistent, the number of files, blocks used,
and blocks free are reported. Historically, if the file system is inconsistent the user
is prompted for concurrence before each correction is attempted. It should be noted
that some corrective actions may result in some loss of data. The amount and
severity of data loss may be determined from the diagnostic output. Historically,
the default action for each correction is to wait for the user to respond yes or no. If
the user does not have write permission, fsck defaults to a –n action (see below).

FSType represents the file system type of the file system to be checked. special
represents a special device (e.g., /dev/dsk/c1d0s8). specific_options represent
options specified as a comma-separated list of key words and/or key word attri-
bute pairs which are to be interpreted by the FSType-specific module.

The options have the following meanings:

–F specify the FSType on which to operate. The FSType must be specified on
the command line or must be determinable from an implementation-defined
database. If the FSType is not specified on the command line, then the
implementation-defined database must contain an entry for the special
device.

–o specify FSType-specific options if any.

–m perform a sanity check only. fsck will return 0 if the file system is suit-
able for mounting. If the file system needs additional checking the return
code is 32 and if the file system is mounted the return code is 33. Error
codes larger than 33 indicate that the file system is badly damaged.

–V echo complete command line. The command line is generated by using the
options and arguments provided plus determining the others by a lookup in
an implementation-defined database. The command is not executed.

Historically, implementations have provided the following options:

–p correct inconsistencies that can be fixed automatically. These are incon-
sistencies that are deemed to be harmless and do not require confirmation
by the administrator. Examples are unreferenced i-nodes, incorrect counts in
the superblocks and missing blocks in the free list.

–y Assume a yes response to all questions asked by fsck.

–n Assume a no response to all questions asked by fsck; do not open the file
system for writing.

–sX Ignore the actual free list and (unconditionally) reconstruct a new one. X is
a hardware dependent option, which specifies how the free list is to be
created; if it is not given, the values used when the file system was created,
or other default values, are used.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/fsck
svid

Page: 328

fsck (AS_CMD) fsck (AS_CMD)

–SX Conditionally reconstruct the free list. This option is like –sX above except
that the free list is rebuilt only if there were no discrepancies discovered in
the file system. Using –S will force a no response to all questions asked by
fsck. This option is useful for forcing free list reorganization on uncontam-
inated file systems.

–t file If fsck cannot obtain enough memory to keep its tables, it uses a scratch
file. If the –t option is specified, file is used as the scratch file, if needed.
Without the –t flag, fsck will prompt the user for the name of the scratch
file. The file chosen should not be on the file system being checked, and if it
is not a special file or did not already exist, it is removed when fsck com-
pletes.

–q Quiet fsck. Unreferenced FIFOs will silently be removed. If fsck requires
it, counts in the superblock will be automatically fixed and the free list sal-
vaged.

–D Directories are checked for bad blocks. Useful after system crashes.

–f Fast check. Check block and sizes and check the free list. The free list will
be reconstructed if it is necessary.

–l Identify badly damaged files by their logical name

Inconsistencies checked are as follows:

1. Blocks claimed by more than one i-node or the free list.

2. Blocks claimed by an i-node or the free list outside the range of the file sys-
tem.

3. Incorrect link counts.

4. Size checks:
Incorrect number of blocks.
Directory size not {DIRSIZE} aligned.

5. Bad i-node format.

6. Blocks not accounted for anywhere.

7. Directory checks:
File pointing to unallocated i-node.
i-node number out of range.

8. Super Block checks:
More than {INODE_MAX} i-nodes.
More blocks for i-nodes than there are in the file system.

9. Bad free block list format.

10. Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the user’s con-
currence, reconnected by placing them in the lost+found directory, if the files are
nonempty. The user will be notified if the file or directory is empty or not. If it is
empty, fsck will silently remove them. fsck will force the reconnection of
nonempty directories. The name assigned is the i-node number.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/fsck
svid

Page: 329

fsck (AS_CMD) fsck (AS_CMD)

Checking the raw device is almost always faster and should be used with every-
thing but the root file system.

USAGE
Administrator.

The file system should be unmounted when fsck is used. If this is not possible,
care should be taken that the system is quiescent and that the machine is rebooted
immediately afterwards, if the file system is a critical one, for example, root.

SEE ALSO
mkfs(AS_CMD).

FUTURE DIRECTIONS
Support for the options -p, -y, -n, -s, -S, -t, -q, -D, -f, and -l will be discon-
tinued in a future issue of the SVID.

LEVEL
Level 1.

The following options have been moved to level 2 effective September 30, 1989:

-p, -y, -n, -s, -S, -t, -q, -D, -f, and -l

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/fsck
svid

Page: 330

fsdb (AS_CMD) fsdb (AS_CMD)

NAME
fsdb – file system debugger

SYNOPSIS
fsdb [–F FSType] [–V] [–o specific_options] special

DESCRIPTION
The command fsdb is a file system debugger which allows for the manual repair of
a file system after a crash. It is intended for experienced users only. FSType is the
File System type of the special device to be debugged. specific_options are a comma
separated list of key words and/or key word attribute pairs which are interpreted
by the FSType-specific fsdb. special is the device (e.g. /dev/dsk/c1d0s2) on
which the file system resides.

The options have the following meanings:

–F specify the FSType on which to operate. The FSType must be specified or
must be determinable by searching an implementation-defined database
for an entry matching the special specified.

–o specify FSType-specific options, if any.

–V echo complete command line. This includes additional information
determined by a lookup in an implementation-defined database. This
option is used to verify and validate a command line. The command is
not executed.

USAGE
Administrator.

SEE ALSO
fsck(AS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/fsdb
svid

Page: 331

fstyp (AS_CMD) fstyp (AS_CMD)

NAME
fstyp – determine file system type

SYNOPSIS
fstyp [–v] special

DESCRIPTION
The command fstyp allows the user to determine the file system type of
unmounted file systems using heuristic programs.

fstyp invokes a number of file system type specific modules. Each of these
modules applies some appropriate heuristic program to determine whether the
supplied special file is of the type for which it checks. If it is, the program prints on
standard output the usual file system type for that type and exits with a return code
of 0; if none of the modules succeeds, the error message

unknown_fstyp (no matches)
is returned and the exit status is 1. If more than one module succeeds the error
message

unknown_fstyp (multiple matches)
is returned and the exit status is 2.

The option has the following meaning:

–v Produce verbose output. Usually superblock information.

USAGE
Administrator.

WARNING: The use of heuristic programs implies that the result of fstyp is not
guaranteed to be accurate.

In the case that multiple matches are found fsck should be run on the file system
with the –n option with different FSTypes to determine the file system type [see
fsck(AS_CMD)].

SEE ALSO
fsck(AS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/fstyp
svid

Page: 332

fuser (AS_CMD) fuser (AS_CMD)

NAME
f u s e r – identify processes using a file or file structure

SYNOPSIS
/ u s r / s b i n / f u s e r [- [c | f] k u] files | resources [[-] [- [c | f] k u] files |

resources] . . .

DESCRIPTION
f u s e r outputs the process IDs of the processes that are using the files or remote
resources specified as arguments. Each process ID is followed by one of these letter
codes, which identify how the process is using the file:

c as its current directory.

r as its root directory, which was set up by the c h r o o t(SD_CMD) command.

o as an open file.

t as its text file.

For block special devices with mounted file systems, processes using any file on that
device are listed. For remote resource names, processes using any file associated
with that remote resource are reported. For all other types of files (text files, execut-
ables, directories, devices, and so on) only the processes using that file are reported.

The following options may be used with f u s e r:

- c may be used with files that are mount points for file systems. With that
option the report is for use of the mount point and any files within that
mounted file system.

- f when this is used, the report is only for the named file, not for files within a
mounted file system.

- u the user login name, in parentheses, also follows the process ID.

- k the S I G K I L L signal is sent to each process. Since this option spawns kills for
each process, the kill messages may not show up immediately [see
k i l l(BU_CMD)].

If more than one group of files are specified, the options may be respecified for each
additional group of files. A lone dash cancels the options currently in force.

The process IDs are printed as a single line on the standard output, separated by
spaces and terminated with a single new line. All other output is written on stan-
dard error.

Any user with permission to read / d e v / k m e m can use f u s e r. Only a privileged
user can terminate another user’s process.

EXAMPLES
f u s e r - k u / d e v / d s k / 1 s ?

if typed by a user with appropriate privileges, terminates all processes that
are preventing disk drive one from being unmounted, listing the process ID
and login name of each as it is killed.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/fuser
svid

Page: 333

fuser (AS_CMD) fuser (AS_CMD)

f u s e r - u / e t c / p a s s w d
lists process IDs and login names of processes that have the password file
open.

f u s e r - k u / d e v / d s k / 1 s ? - u / e t c / p a s s w d
executes both of the above examples in a single command line.

f u s e r - c u / h o m e
if the / d e v / d s k / c 1 d 0 s 9 device is mounted on / h o m e, lists process IDs and
login names of processes that are using / d e v / d s k / c 1 d 0 s 9.

FILES
/ s t a n d / u n i x for system namelist
/ d e v / k m e m for system image
/ d e v / m e m also for system image

NOTE
If an RFS resource from a pre System V Release 4 server is mounted, f u s e r can only
report on use of the whole file system, not on individual files within it. This RFS
interface is no longer supported.

Because f u s e r works with a snapshot of the system image, it may miss processes
that begin using a file while f u s e r is running. Also, processes reported as using a
file may have stopped using it while f u s e r was running. These factors should
discourage the use of the - k option.

f u s e r does not report all possible usages of a file (for example, a mapped file).

SEE ALSO
c h r o o t (SD_CMD), k i l l (BU_CMD), m o u n t (AS_CMD), p s (BU_CMD), s i g n a l
(BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/fuser
svid

Page: 334

fwtmp (AS_CMD) fwtmp (AS_CMD)

NAME
fwtmp, wtmpfix – manipulate connect accounting records

SYNOPSIS
fwtmp [–ic]

wtmpfix [files]

DESCRIPTION
The command fwtmp reads from the standard input and writes to the standard out-
put, converting binary records of the type found in /var/adm/wtmp to formatted
readable records. The readable version is useful in editing bad records or general
purpose maintenance of the file.

The option –ic is used to denote that input is in readable form, and output is to be
written in binary form.

The command wtmpfix examines the standard input or named files in wtmp for-
mat, corrects the time/date stamps to make the entries consistent, and writes to the
standard output. A – can be used in place of files to indicate the standard input. If
time/date corrections are not performed, acctcon1 [see acctcon1 in
acctcon(AS_CMD)] will fault when it encounters certain date-change records.

Each time the date is set, a pair of date change records are written to
/var/adm/wtmp. The first record is the old date denoted by the string old time
placed in the line field and the flag OLD_TIME placed in the type field of the
<utmp.h> structure. The second record specifies the new date and is denoted by
the string new time placed in the line field and the flag NEW_TIME placed in the
type field. The command wtmpfix uses these records to synchronize all time
stamps in the file.

In addition to correcting time/date stamps, wtmpfix will check the validity of the
name field to ensure that it consists solely of alphanumeric characters or spaces. If
it encounters a name that is considered invalid, it will change the login name to
INVALID and write a diagnostic to the standard error. In this way, wtmpfix
reduces the chance that acctcon1 will fail when processing connect accounting
records.

FILES
/var/adm/wtmp

USAGE
Administrator.

SEE ALSO
acct(AS_CMD), acct(KE_OS). acctcms(AS_CMD), acctcom(AS_CMD),
acctcon(AS_CMD), acctmerg(AS_CMD), acctprc(AS_CMD), runacct(AS_CMD),

LEVEL
Level 2: September 30, 1989.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/fwtmp
svid

Page: 335

groupadd (AS_CMD) groupadd (AS_CMD)

NAME
groupadd – add (create) a new group definition on the system

SYNOPSIS
groupadd [–g gid [–o]] group

DESCRIPTION
The command groupadd creates a new group definition on the system.

The options and arguments have the following meanings:

–g gid The group ID for the new group should be gid. It must be a non-negative
integer less than {MAXUID}. It defaults to the next available, i.e., unique,
group ID above 99.

–o This option overrides the default unique UID enforcement and allows the
gid to be non-unique.

group A unique string of printable characters that specifies the name of the new
group. It may not include a colon (:).

FILES
/etc/group

SEE ALSO
groupdel(AS_CMD), groupmod(AS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/groupadd
svid

Page: 336

groupdel (AS_CMD) groupdel (AS_CMD)

NAME
groupdel – delete a group definition from the system

SYNOPSIS
groupdel group

DESCRIPTION
The command groupdel deletes a group definition from the system.

The argument has the following meaning:

group A string of printable characters that specifies the group to be deleted. It
must identify an existing group.

FILES
/etc/group

SEE ALSO
groupadd(AS_CMD), groupmod(AS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/groupdel
svid

Page: 337

groupmod (AS_CMD) groupmod (AS_CMD)

NAME
groupmod – modify a group definition on the system

SYNOPSIS
groupmod [-g gid [-o]] [-n name] group

DESCRIPTION
The command groupmod modifies the definition of the specified group.

The options and arguments have the following meanings:

–g gid The new group ID for the group should be gid. It must be a non-negative
integer less than {MAXUID}. It defaults to the next available, i.e., unique,
group ID above 99.

–o This option allows the gid to be non-unique, i.e., overrides the default
unique gid enforcement.

–n name A string of printable characters that specifies a new name for the group.
It may not include a colon (:) and must be unique.

group The current name of the group to be modified. It must exist as a valid
group.

SEE ALSO
groupadd(AS_CMD), groupdel(AS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/groupmod
svid

Page: 338

init (AS_CMD) init (AS_CMD)

NAME
init – change system run level

SYNOPSIS
init [0123456sSqQ]

DESCRIPTION
The command init is used to direct the actions of the init process, which is the
system process spawner. (The init command provides the init process with cer-
tain directives; it is important to keep in mind the distinction between the two.)

The system is in a particular run level at any given time. The current run level can
be retrieved using who -r [see who(AU_CMD)]. The processes spawned by the
init process for each of these run levels is defined in the /etc/inittab file. The
system can be in one of eight run levels, 0–6 and s (or S). The run level is changed
when the System Administrator runs the init command.

If the run level s (or S) is specified, the init process goes into the SINGLE-USER
level. This is the only run level that does not require the existence of a properly for-
matted /etc/inittab file. (If that file does not exist, then by default the
SINGLE-USER level is entered.)

If a run level of 0 through 6 is specified, the init process enters the corresponding
run level.

The following arguments are accepted by init:

0–6 tells init to place the system in one of the run levels 0–6.

q (or Q) tells init to re-examine the /etc/inittab file. It is often
used to check the correctness of that file after it has been changed.

s (or S) tells init to enter the SINGLE-USER level. When this level
change is effected, the virtual system terminal, /dev/console, is
changed to the terminal from which the command was executed.

FILES
/etc/inittab

USAGE
Administrator.

SEE ALSO
who(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/init
svid

Page: 339

installf (AS_CMD) installf (AS_CMD)

NAME
i n s t a l l f – add a file to the software installation database

SYNOPSIS
i n s t a l l f [- c class] pkginst pathname [ftype [major minor]

[mode owner group]]

i n s t a l l f [- c class] pkginst -

i n s t a l l f - f [- c class] pkginst

i n s t a l l f [[- c class] pkginst path1=path2 [l | s]

DESCRIPTION
i n s t a l l f is a tool available for use from within custom procedure scripts such as
p r e i n s t a l l, p o s t i n s t a l l, p r e r e m o v e, and p o s t r e m o v e. When these scripts
create or modify files, i n s t a l l f should be used to register the addition or change
into the system’s contents database.

When the second synopsis is used, the pathname descriptions will be read from
standard input. These descriptions are the same as would be given in the first
synopsis but the information is given in the form of a list. (The descriptions should
be in the form: pathname [ftype [[major minor] [mode owner group]].)

When the last synopsis is invoked, the pathname argument is used to specify a link,
where path1 indicates the link and path2 the file being linked to. The f t y p e s l and s
are used to specify a hard link or symbolic link, respectively. If ftype is not
specified, i n s t a l l f defaults to type 1.

After all files have been appropriately created and/or modified, i n s t a l l f should
be invoked with the - f synopsis to indicate that installation is final. Links will be
created at this time and, if attribute information for a pathname was not specified
during the original invocation of i n s t a l l f or was not already stored on the sys-
tem, the current attribute values for the pathname will be stored. Otherwise,
i n s t a l l f verifies that attribute values match those given on the command line,
making corrections as necessary. In all cases, the current content information is cal-
culated and stored appropriately.

- c class Class with which installed objects should be associated. Default class is
n o n e.

pkginst Name of package instance with which the pathname should be associ-
ated.

pathname Pathname that is being created or modified. Special characters, such as
an equal sign (=), are included in pathnames by surrounding the entire
pathname in single quotes (as in, for example, ’ / u s r / l i b / ̃ = ’). When a
pathname is specified on a shell command line, the single quotes must
be preceded by backslashes so they’re not interpreted by the shell.

ftype A one-character field that indicates the file type. Possible file types
include:

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/installf
svid

Page: 340

installf (AS_CMD) installf (AS_CMD)

f a standard executable or data file
e a file to be edited upon installation or removal
v volatile file (one whose contents are expected to change)
d directory
x an exclusive directory
l linked file
p named pipe
c character special device
b block special device
s symbolic link

Once a file has the file type attribute v, it will always be volatile. For
example, if a file being installed already exists and has the file type attri-
bute v, then even if the version of the file being installed is not specified
as volatile, the file type attribute will remain volatile.

major The major device number. The field is only specified for block or charac-
ter special devices.

minor The minor device number. The field is only specified for block or char-
acter special devices.

mode The octal mode of the file (for example, 0664). A question mark (?) indi-
cates that the mode will be left unchanged, implying that the file already
exists on the target machine. If the directory doesn’t exist, the default is
0755. If it’s a file, the default is 0644. This field is not used for linked or
symbolically linked files.

owner The owner of the file (for example, b i n or r o o t). The field is limited to
14 characters in length. A question mark (?) indicates that the owner
will be left unchanged, implying that the file already exists on the target
machine. If it doesn’t exist, owner defaults to r o o t. This field is not used
for linked or symbolically linked files.

group The group to which the file belongs (for example, b i n or s y s). The field
is limited to 14 characters in length. A question mark (?) indicates that
the group will be left unchanged, implying that the file already exists on
the target machine. If it doesn’t exist, group defaults to o t h e r. This field
is not used for linked or symbolically linked files.

- f Indicates that installation is complete. This option is used with the final
invocation of i n s t a l l f (for all files of a given class).

EXAMPLES
The following example shows the use of i n s t a l l f invoked from an optional pre-
install or postinstall script:

c r e a t e / d e v / x t d i r e c t o r y
(n e e d s t o b e d o n e b e f o r e d r v i n s t a l l)
i n s t a l l f $ P K G I N S T / d e v / x t d 7 5 5 r o o t s y s | |

e x i t 2
m a j n o = ‘ / u s r / s b i n / d r v i n s t a l l - m / e t c / m a s t e r . d / x t

- d $ B A S E D I R / d a t a / x t . o - v 1 . 0 ‘ | |
e x i t 2

i = 0 0

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/installf
svid

Page: 341

installf (AS_CMD) installf (AS_CMD)

w h i l e [$ i - l t $ l i m i t]
d o
f o r j i n 0 1 2 3 4 5 6 7
d o
e c h o / d e v / x t $ i $ j c $ m a j n o ‘ e x p r $ i * 8 + $ j ‘ 6 4 4 r o o t s y s
e c h o / d e v / x t $ i $ j = / d e v / x t / $ i $ j

d o n e
i = ‘ e x p r $ i + 1 ‘
[$ i - l e 9] & & i = " 0 $ i " # a d d l e a d i n g z e r o

d o n e | i n s t a l l f $ P K G I N S T - | | e x i t 2
f i n a l i z e d i n s t a l l a t i o n , c r e a t e l i n k s
i n s t a l l f - f $ P K G I N S T | | e x i t 2

FILES
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / u x p k g

language-specific message file [See L A N G on e n v v a r(BA_ENV).]

SEE ALSO
p k g a d d (AS_CMD), p k g a s k (AS_CMD), p k g c h k (AS_CMD), p k g i n f o (AS_CMD),
p k g m k (AS_CMD), p k g p a r a m (AS_CMD), p k g p r o t o (AS_CMD), p k g r m (AS_CMD),
p k g t r a n s (AS_CMD), r e m o v e f (AS_CMD)

LEVEL
Level 1.

NOTICES
When ftype is specified, the required fields shown below must be defined:

ftype Required Fields_ __
p x d f v e mode owner group
c b major minor mode owner group

The i n s t a l l f command will create directories, named pipes and special devices on
the original invocation. Links are created when i n s t a l l f is invoked with the - f
option to indicate installation is complete.

For symbolically linked files, path2 can be a relative pathname, such as . / or . . /.
For example, if you enter a line such as

i n s t a l l f - c n o n e p k g x / f o o / b a r / e t c / m o u n t = . . / u s r / s b i n / m o u n t s

path2 (/ f o o / b a r / e t c / m o u n t) will be a symbolic link to . . / u s r / s b i n / m o u n t.

When a link is specified, the directory in which the link is to reside must exist,
otherwise i n s t a l l f - f will fail for that entry.

Files installed with i n s t a l l f will be placed in the class none, unless a class is
defined with the command. Subsequently, they will be removed when the associ-
ated package is deleted. If this file should not be deleted at the same time as the
package, be certain to assign it to a class which is ignored at removal time. To do
this, associate the file to a class which will be handled by a removal class action
script delivered with the package.

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/installf
svid

Page: 342

installf (AS_CMD) installf (AS_CMD)

When classes are used, i n s t a l l f must be used as follows:

i n s t a l l f - c c l a s s 1
i n s t a l l f - c c l a s s 2
i n s t a l l f - f

Using multiple invocations is discouraged if standard input style invocations can be
used with a list of files. This will be much faster because the c o n t e n t s file must be
processed for each entry.

Page 4

FINAL COPY
June 15, 1995

File: as_cmd/installf
svid

Page: 343

ipcrm (AS_CMD) ipcrm (AS_CMD)

NAME
ipcrm – remove a message queue, semaphore set or shared memory ID

SYNOPSIS
ipcrm [-q msqid] [-m shmid] [-s semid] [-Q msgkey] [-M shmkey] [-S semkey]

DESCRIPTION
The command ipcrm will remove one or more specified message, semaphore or
shared memory identifiers.

The options and arguments have the following meanings:

–q msqid Removes the message queue identifier msqid from the system and des-
troys the message queue and data structure associated with it.

–m shmid Removes the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are des-
troyed after the last detach operation.

–s semid Removes the semaphore identifier semid from the system and destroys
the set of semaphores and data structure associated with it.

–Q msgkey Removes the message queue identifier, created with key msgkey, from
the system and destroys the message queue and data structure associ-
ated with it.

–M shmkey Removes the shared memory identifier, created with key shmkey, from
the system. The shared memory segment and data structure associ-
ated with it are destroyed after the last detach operation.

–S semkey Removes the semaphore identifier, created with key semkey, from the
system and destroys the set of semaphores and data structure associ-
ated with it.

The details of the removes are described in msgctl(), shmctl(), and
semctl(). The identifiers and keys can be found by using ipcs.

SEE ALSO
ipcs(AS_CMD), msgctl(KE_OS), msgget(KE_OS), msgop(KE_OS), semctl(KE_OS),
semget(KE_OS), semop(KE_OS), shmctl(KE_OS), shmget(KE_OS), shmop(KE_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/ipcrm
svid

Page: 344

ipcs (AS_CMD) ipcs (AS_CMD)

NAME
ipcs – report inter-process communication facilities status

SYNOPSIS
ipcs [options]

DESCRIPTION
The command ipcs prints certain information about active inter-process communi-
cation facilities. Note that information is displayed only for objects to which the
user has read access. Without options, information is printed in short format for
message queues, shared memory, and semaphores that are currently active in the
system. Otherwise, the options and arguments for this command are as follows:

–q Print information about active message queues.

–m Print information about active shared memory segments.

–s Print information about active semaphores.

If any of the options –q, –m, or –s are specified, information about only those
indicated is printed. If none of these three are specified, information about all three
will be printed subject to these options:

–b Print maximum allowable size information. (Maximum number of
bytes in messages on queue for message queues, size of segments for
shared memory, and number of semaphores in each set for sema-
phores.) See below for meaning of columns in a listing.

–c Print creator’s login name and group name. See below.

–o Print information on outstanding usage. (Number of messages on
queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory seg-
ments.)

–p Print process number information. (Process ID of last process to send a
message, process ID of last process to receive a message on message
queues, process ID of creating process, process ID of last process to
attach or detach on shared memory segments.) See below.

–t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last
msgsnd() and last msgrcv() operations [see msgop(KE_OS)] on
message queues, last shmat() and last shmdt() operations [see
shmop(KE_OS)] on shared memory, last semop() operation [see
semop(KE_OS)] on semaphores.) See below.

-z Print alias name of security level. This option is only valid if the
Enhanced Security Extension is implemented.

-Z Print fully qualified security level. This option is only valid if the
Enhanced Security Extension is implemented.

–a Use all print options. (This is a shorthand notation for –b, –c, –o, –p,
–t, and –Z.)

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/ipcs
svid

Page: 345

ipcs (AS_CMD) ipcs (AS_CMD)

–C corefile The argument is taken as the name of an alternate corefile file, to be
used instead of the default.

–N namelist
The argument is taken as the name of an alternate namelist file, to be
used instead of the default.

The -z and -Z options are mutually exclusive. If the -z option is specified and
there is not an alias assigned to the level, the decimal value of the level identifier
(LID) is displayed. If the -z or -Z option is specified and the level is in the valid-
inactive state, the decimal value of the LID is displayed. LID states are described in
lvlname(ES_CMD).

The column headings and the meaning of the columns in an ipcs listing are given
below; the letters in parentheses indicate the options that cause the corresponding
heading to appear; all means that the heading always appears. Note that these
options only determine what information is provided for each facility; they do not
determine which facilities will be listed.

T (all) Type of facility:

q message queue

m shared memory segment

s semaphore

ID (all) The identifier for the facility entry.

KEY (all) The key used as an argument in calls to msgget(), semget(),
or shmget() to create the facility entry. (Note: The key of a
shared memory segment is changed to IPC_PRIVATE when the
segment has been removed until all processes attached to the
segment detach it.)

MODE (all) The facility access modes and flags. The mode consists of 11
characters, interpreted as follows.

The first character is:

S if a process is waiting on a msgsnd() operation;

D if the associated shared memory segment has been
removed. It will disappear when the last process attached
to the segment detaches it.

– if neither of the above are true.

The second character is:

R if a process is waiting on a msgrcv() operation;

C if the associated shared memory segment is to be cleared
when the first attach operation is executed.

– if neither of the above are true.

The next nine characters are interpreted as three sets of three bits
each. The first set refers to the owner’s permissions; the next, to
permissions of others in the user-group of the facility entry; and
the last, to all others. Within each set, the first character

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/ipcs
svid

Page: 346

ipcs (AS_CMD) ipcs (AS_CMD)

indicates permission to read, the second character indicates per-
mission to write or alter the facility entry, and the last character
is currently unused.

The permissions are indicated as follows:

r if read permission is granted.

w if write permission is granted.

a if alter permission is granted.

– if the indicated permission is not granted.

OWNER (all) The login name of the owner of the facility entry.

GROUP (all) The group name of the owner of the facility entry.

LEVEL (all) The level identifier of the facility entry.

CREATOR (a,c) The login name of the creator of the facility entry.

CGROUP (a,c) The group name of the creator of the facility entry.

CBYTES (a,o) The number of bytes in messages currently outstanding on the
associated message queue.

QNUM (a,o) The number of messages currently outstanding on the associated
message queue.

QBYTES (a,b) The maximum number of bytes allowed in messages outstand-
ing on the associated message queue.

LSPID (a,p) The process ID of the last process to send a message to the asso-
ciated queue.

LRPID (a,p) The process ID of the last process to receive a message from the
associated queue.

STIME (a,t) The time the last message was sent to the associated queue.

RTIME (a,t) The time the last message was received from the associated
queue.

CTIME (a,t) The time the associated entry was created or changed.

NATTCH (a,o) The number of processes attached to the associated shared
memory segment.

SEGSZ (a,b) The size of the associated shared memory segment.

CPID (a,p) The process ID of the creator of the shared memory entry.

LPID (a,p) The process ID of the last process to attach or detach the shared
memory segment.

ATIME (a,t) The time the last attach on the associated shared memory seg-
ment was completed.

DTIME (a,t) The time the last detach on the associated shared memory seg-
ment was completed.

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/ipcs
svid

Page: 347

ipcs (AS_CMD) ipcs (AS_CMD)

NSEMS (a,b) The number of semaphores in the set associated with the sema-
phore entry.

OTIME (a,t) The time the last semaphore operation on the set associated with
the semaphore entry was completed.

FILES
/stand/unix system namelist

/dev/kmem memory

/etc/passwd user names

/etc/group group names

USAGE
Things can change while ipcs is running; therefore the status it reports may no
longer be accurate at the time it is seen.

SEE ALSO
lvlname(ES_CMD), msgop(KE_OS), semop(KE_OS), shmop(KE_OS).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: as_cmd/ipcs
svid

Page: 348

killall (AS_CMD) killall (AS_CMD)

NAME
killall – kill all active processes

SYNOPSIS
killall [signal]

DESCRIPTION
The command killall is a procedure used to kill all active processes not directly
related to the killall procedure.

The command killall is chiefly used to terminate all processes with open files, so
that the mounted file systems will be unbusied and can be unmounted.

The command killall sends signal to all remaining processes not belonging to the
above group of exclusions. If no signal is specified, SIGKILL is used.

USAGE
Administrator.

SEE ALSO
kill(BA_OS), kill(BU_CMD), signal(BA_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/killall
svid

Page: 349

last (AS_CMD) last (AS_CMD)

NAME
last – indicate last logins by user or terminal

SYNOPSIS
last [- number] [-f filename] [name/tty] ...

DESCRIPTION
The command last looks back in the wtmp file which records all logins and
logouts for information about a user, a teletype or any group of users and teletypes.
Arguments specify names of users or teletypes of interest. Names of teletypes may
be given fully or abbreviated. For example last 0 is the same as last tty0. If
multiple arguments are given, the information which applies to any of the argu-
ments is printed. For example last root console would list all of ‘‘root’s’’
sessions as well as all sessions on the console terminal. last displays the sessions
of the specified users and teletypes, most recent first, indicating the times at which
the session began, the duration of the session, and the teletype which the session
took place on. If the session is still continuing or was cut short by a reboot, last
so indicates.

The pseudo-user reboot logs in at reboots of the system, thus

last reboot

will give an indication of mean time between reboot.

last with no arguments displays a record of all logins and logouts, in reverse
order.

If last is interrupted, it indicates how far the search has progressed in wtmp. If
interrupted with a quit signal (generated by a CTRL-\) last indicates how far the
search has progressed so far, and the search continues.

– number limit the number of entries displayed to that specified by number.

–f filename Use filename as the name of the accounting file instead of
/var/adm/wtmp.

FILES
/var/adm/wtmp login data base

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/last
svid

Page: 350

link (AS_CMD) link (AS_CMD)

NAME
link, unlink – exercise link and unlink system calls

SYNOPSIS
link file1 file2

unlink file

DESCRIPTION
The commands link and unlink perform their respective system calls on their
arguments, without any error checking.

FILES
/usr/sbin commands directory.

USAGE
Only a user with appropriate privileges may execute these commands.

SEE ALSO
link(BA_OS), unlink(BA_OS).

FUTURE DIRECTIONS
link and unlink will be removed from the SVID when the Level 2 period has
elapsed. Their functionality has been replaced by the ln command.

LEVEL
Level 2, July 1992.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/link
svid

Page: 351

logins (AS_CMD) logins (AS_CMD)

NAME
logins – list user and system login information

SYNOPSIS
logins [–abdhmopstuvx] [–g groups] [–l logins]

DESCRIPTION
The command logins displays information on user and system logins. Content of
the output is controlled by the command options and can include: user or system
login, user ID number, /etc/passwd account field value (user name or other infor-
mation), primary group name, primary group ID, multiple group names, multiple
group IDs, home directory, login shell, user security level, user audit events, and
four password aging parameters. The default information is: login ID, user ID, pri-
mary group name, primary group ID and the account field value from
/etc/passwd. Output is sorted by user ID, displaying system logins followed by
user logins.

The options and arguments have the following meanings:

–a Adds two password expiration fields to the display. The fields
show how many days a password can remain unused before it
automatically becomes inactive and the date that the password will
expire.

–b Prints the user’s auditable events. This option is only valid when
the Auditing Extension is implemented.

–d Selects logins with duplicate UIDs.

–h Prints the valid login levels for the users. The levels are displayed
one per line, with the default level first. This option is only valid
when the Enhanced Security Extension is implemented.

–m Displays multiple group membership information.

–o Formats output into one line of colon-separated fields.

–p Selects logins with no passwords.

–s Selects all system logins.

–t Sorts output by login instead of by UID.

–u Selects all user logins.

–v Prints the user’s default login level. This option is only valid when
the Enhanced Security Extension is implemented.

–x Prints an extended set of information about each selected user. The
extended information includes home directory, login shell and pass-
word aging information, each displayed on a separate line. The
password information consists of password status (PS for pass-
worded, NP for no password or LK for locked). If the login is pass-
worded, status is followed by the date the password was last
changed, the number of days required between changes, and the
number of days allowed before a change is required.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/logins
svid

Page: 352

logins (AS_CMD) logins (AS_CMD)

–g groups Selects all users belonging to groups, sorted by login. Multiple
groups can be specified as a comma-separated list.

–l logins Selects the requested logins. Multiple logins can be specified as a
comma-separated list.

FILES
/etc/security/ia/master
/etc/passwd
/etc/group

USAGE
Options may be used together. If so, any login matching any criteria will be
displayed. When the –l and –g options are combined, a user will only be listed
once, even if they belong to more than one of the selected groups.

SEE ALSO
passwd(AU_CMD), useradd(AS_CMD), usermod(AS_CMD), userdel(AS_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/logins
svid

Page: 353

mkfifo (AS_CMD) mkfifo (AS_CMD)

NAME
mkfifo – make FIFO special file

SYNOPSIS
mkfifo path ...

DESCRIPTION
The command mkfifo creates the FIFO special files named by its argument list.
The arguments are taken sequentially, in the order specified; and each FIFO special
file is either created completely or, in the case of an error or signal, not created at
all.

For each path argument, the mkfifo command behaves as if the function
mkfifo() [see mkfifo(BA_OS)] was called with the argument path set to path and
the mode set to the bitwise inclusive OR of S_IRUSR, S_IWUSR, S_IRGRP,
S_IWGRP, S_IROTH and S_IWOTH.

If errors are encountered in creating one of the special files, mkfifo writes a diag-
nostic message to the standard error and continues with the remaining arguments,
if any.

ERRORS
The command mkfifo returns exit code 0 if all FIFO special files were created nor-
mally; otherwise it prints a diagnostic and returns a value greater than 0.

SEE ALSO
mkfifo(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/mkfifo
svid

Page: 354

mkfs (AS_CMD) mkfs (AS_CMD)

NAME
mkfs – construct a file system

SYNOPSIS
mkfs [-F FSType] [-V] [-m] [current_options] [-o specific_options] special [operands]

DESCRIPTION
The command mkfs constructs a file system by writing on special; special must be
the first argument after the options are given. The file system is created based on
the FSType, specific_options and operands specified on the command line. If the
FSType is not specified using the –F option, it is determined by a /etc/vfstab
lookup by matching entries based on the special device.

The mkfs command waits 10 seconds before starting to construct the file system.
During this time the command can be aborted by entering a delete (DEL).

The options and arguments have the following meanings:

–F FSType Specify the FSType to be constructed. The FSType must be
specified or must be determinable by a /etc/vfstab lookup
by matching an entry on the special specified.

–V Echo complete command line. This includes additional infor-
mation as determined by an /etc/vfstab lookup. It can be
used to verify and validate the command line. The command is
not actually executed.

–m Return the command line which was used to create the file sys-
tem. The file system must already exist and this option pro-
vides a means of determining the command used in construct-
ing the file system. It cannot be used with current_options,
specific_options, or operands. It must be invoked by itself.

–o specific_options Specify FSType-specific options, if any. specific_options are a list
of keywords and/or keyword-attribute pairs (separated by
commas) which are interpreted by the FSType-specific module
of mkfs.

The current_options are options supported by the s5-specific module of mkfs. Other
FSTypes do not necessarily support these options.

The operands are FSType-specific.

ERRORS
File systems do not need to be constructed for all FSTypes. Specifying these FSTypes
on the command line will cause mkfs to fail.

The mkfs command does not determine whether the special file is block special.
Some file system types require that it be a block special device whereas network file
system types do not have this constraint.

FILES
/etc/vfstab default table of file system information

USAGE
Administrator.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/mkfs
svid

Page: 355

mkfs (AS_CMD) mkfs (AS_CMD)

SEE ALSO
makefsys(AS_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/mkfs
svid

Page: 356

mkmsgs (AS_CMD) mkmsgs (AS_CMD)

NAME
mkmsgs – create message files for use by gettxt

SYNOPSIS
mkmsgs [–o] [–i locale] inputstrings msgfile

DESCRIPTION
The mkmsgs utility is used to create a file of text strings that can be accessed using
the text retrieval commands and function [see gettxt(BU_CMD), srchtxt(AS_CMD),
and gettxt(BA_LIB)]. It will take as input a file of text strings for a particular geo-
graphic locale [see setlocale(BA_OS)] and create a file of text strings in a format that
can be retrieved by the gettxt command and gettxt() routine. By using the –i
option, the created file can be installed in the
/usr/lib/locale/locale/LC_MESSAGES directory (locale corresponds to the
language in which the text strings are written).

The options and arguments have the following meanings:

inputstrings the name of the file that contains the original text strings.

msgfile the name of the output file where mkmsgs writes the strings in a for-
mat that is readable by the command gettxt and the routine
gettxt(). msgfile can be up to 14 characters in length, but may not
contain \ 0 (null) or the ASCII code for / (slash) or : (colon).

–i locale install msgfile in the /usr/lib/locale/locale/LC_MESSAGES direc-
tory. Only a user with appropriate privileges, such as a member of
the group bin, can create or overwrite files in this directory. The
command should be run at S Y S _ P U B L I C level so that message files
will be accessible to applications. Directories under
/usr/lib/locale will be created if they don’t exist.

–o overwrite msgfile , if it exists.

The input file contains a set of text strings for the particular geographic locale. Text
strings are separated by a newline character. Nongraphic characters must be
included as alphabetic escape sequences. Messages are transformed and copied
sequentially from inputstrings to msgfile . To generate an empty message in msgfile ,
leave an empty line at the correct place in inputstrings .

Strings can be changed simply by editing the file inputstrings . New strings must be
added only at the end of the file; then a new msgfile file must be created and
installed in the correct place. If this procedure is not followed, the retrieval func-
tion will retrieve the wrong string and software compatibility will be broken.

The messages in the inputstrings must be in the following form:

string1
string2
.
.
.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/mkmsgs
svid

Page: 357

mkmsgs (AS_CMD) mkmsgs (AS_CMD)

EXAMPLE
The following example shows an input message source file

File %s:\t cannot be opened\n
%s: Bad directory\n

.

.

.
write error\n

.

.

The following command uses the input strings from C.str to create text strings in
the appropriate format on the file UX in the current directory:

mkmsgs C.str UX

The following command uses the input strings from FR.str to create text strings
in the appropriate format on the file UX in the directory
/usr/lib/locale/french/LC_MESSAGES/UX.

mkmsgs –i french FR.str UX

FILES
/usr/lib/locale/locale/LC_MESSAGES/∗ message files created by mkmsgs

SEE ALSO
gettxt(BA_LIB), gettxt(BU_CMD), setlocale(BA_OS), srchtxt(AS_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/mkmsgs
svid

Page: 358

mknod (AS_CMD) mknod (AS_CMD)

NAME
mknod – build special file

SYNOPSIS
mknod name b major minor

mknod name c major minor

mknod name p

DESCRIPTION
The command mknod makes a directory entry and corresponding i-node for a spe-
cial file.

The command mknod can also be used to create FIFOs (named pipes) (third case in
SYNOPSIS above).

The first argument, name, is the name of the entry. The second argument is b if the
special file is block-type (disks, tape) or c if it is character-type (other devices). The
last two arguments are numbers specifying the major device type and the minor
device (e.g., unit, drive, or line number), which may be either decimal or octal (any
number with a leading zero).

The assignment of major device numbers is specific to each system.

The command mknod may only be used by a user with appropriate privileges, to
make special files.

USAGE
Administrator.

SEE ALSO
mknod(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/mknod
svid

Page: 359

modadmin (AS_CMD) modadmin (AS_CMD)

NAME
m o d a d m i n – loadable kernel module administration

SYNOPSIS
m o d a d m i n - l modname . . . | pathname . . .

m o d a d m i n - u modid . . .

m o d a d m i n - U modname . . .

m o d a d m i n - q modid . . .

m o d a d m i n - Q modname . . .

m o d a d m i n - s | S

m o d a d m i n - d dirname | D

DESCRIPTION
m o d a d m i n is the administrative command for loadable kernel modules. It performs
the following functions:

load a loadable module into a running system

unload a loadable module from a running system

display the status of a loadable module(s) that is currently loaded

modify the loadable modules search path

The loadable modules feature lets you add a module to a running system without
rebooting the system or rebuilding the kernel. When the module is no longer
needed, this feature also lets you dynamically remove the module, thereby freeing
system resources for other use.

Types of modules that can be dynamically loaded include:

device drivers (block, character, STREAMS and pseudo)

Host Bus Adapter (HBA) drivers

Direct Coupled Device (DCD) controller drivers

STREAMS modules

file systems

exec modules

system calls

miscellaneous modules, such as modules containing code for support rou-
tines shared among multiple loadable modules which are not needed in the
statically configured kernel

Loadable modules are maintained in individual object files (. o files) in the same
manner as statically configured modules. Unlike static modules, loadable modules:

are not linked to the kernel until they are needed

must be configured into the system and registered with the running kernel

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/modadmin
svid

Page: 360

modadmin (AS_CMD) modadmin (AS_CMD)

must be configured in loadable form (requires writing additional module
initialization or ‘‘wrapper’’ code)

can be loaded and unloaded by the user, as required, using the m o d a d m i n
command, or by i n i t(AS_CMD), during every system reboot,

can be loaded and unloaded by the kernel itself (called an auto
load/unload—see NOTICES section)

The m o d a d m i n options have the following meanings:

- l modname Load the named module(s) modname using the current value of
the loadable modules search path to locate the module’s object
file on disk.

This option searches for a matching file in all directories specified
in the loadable modules search path. By default, the search path-
name is / e t c / c o n f / m o d . d.

The load operation performs all tasks associated with link editing
the module to the kernel and making the module accessible to the
system. If the module depends on other loadable modules (as
defined in / e t c / c o n f / m d e v i c e . d), and these modules are not
currently loaded, m o d a d m i n will automatically load the depen-
dent modules during the load operation.

When loading completes, an integer modid prints on the standard
output to identify the module(s) that was loaded.

- l pathname Same as - l modname, except the absolute pathname pathname is
used to locate the module’s object file.

- u modid Unload the module(s) identified by the integer value modid.

If modid specifies 0 (zero), m o d a d m i n attempts to unload all load-
able modules.

The unload operation performs all tasks associated with discon-
necting the module from the kernel and releasing any memory
acquired by the module. When unloading completes, an integer
modid prints on the standard output to identify the module(s) that
was unloaded.

If the module(s) to be unloaded are currently in-use, are depen-
dents of a loadable module that is currently loaded, or are
currently being loaded or unloaded, the unload request will fail.

- U modname Same as - u modid, except the module(s) to be unloaded is
specified by name modname.

- q modid Print the status of the loaded module(s) identified by the integer
value modid.

Information returned by this option includes:

module identifier (modid)

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/modadmin
svid

Page: 361

modadmin (AS_CMD) modadmin (AS_CMD)

the module’s pathname

the module’s virtual load address

amount of memory the module occupies

the module’s reference count

the module’s dependent count

the module’s unload delay value

the module’s descriptive name

the type of module

depending on the type of module, either the module’s
character major number, block major number, file system
switch number, or STREAMS switch number

- Q modname Same as - q modid, except the module(s) for which status informa-
tion is to be reported is specified by name modname.

- s Print an abbreviated status for all modules currently loaded.

This option returns a listing of module names and module
identifiers only.

- S Print the full status for all modules currently loaded.

This option returns status information of the form returned by the
- q option.

- d pathname Prepend the pathname pathname to the current loadable modules
search path, where pathname specifies directories that should be
searched:

for all subsequent demand loads initiated by a m o d a d m i n
command with the option - l and a named modname

for all subsequent loads performed by the kernel’s auto-
load mechanism (see NOTICES section)

prior to searching any directories already prepended to
the search path by a prior m o d a d m i n command with the
option - d

prior to searching the default search path
/ e t c / c o n f / m o d . d, which is always searched, and is
always searched last

pathname must specify an absolute pathname or a list of absolute
pathnames delimited by colons. The directories identified by
pathname do not have to exist on the system at the time the
request to modify the search path using m o d a d m i n is made. If
these directories do not exist at the time a load takes place, the
load operation ignores them.

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/modadmin
svid

Page: 362

modadmin (AS_CMD) modadmin (AS_CMD)

All modifications to the search path made using this option take
effect immediately and affect all subsequent loads (demand and
auto-load) and all users on the system.

- D Reset the loadable modules search path to its default value,
/ e t c / c o n f / m o d . d. The reset takes effect immediately and affects
all subsequent loads (demand and auto-load) and all users on the
system.

Errors
In the following conditions, m o d a d m i n fails and sets e r r n o to:

E N O L O A D
failure in loading a loadable exec module

NOTICES
Auto Loading

Auto-load occurs when the kernel detects a particular loadable module is required
to accomplish some task, but is not currently loaded. For example, if the task were
a mount of a file system, and the loadable module that supports the file system was
not loaded, the kernel would automatically load the file system module. Once the
module was loaded, the mount would take place.

Auto-unload occurs when the kernel detects that the amount of available memory is
low. At this time, the kernel begins unloading all modules that are not currently
in-use—and that have not been used for some predetermined amount of time—to
reclaim the memory allocated to these modules. Unloading continues until the
amount of available memory reaches a predetermined high water mark, or the list
of modules that are candidates for unloading is exhausted. The amount of time that
must elapse before unused modules are considered candidates for unloading is con-
trolled by the value of the global tunable parameter D E F _ U N L O A D _ D E L A Y in
/ e t c / c o n f / m t u n e . d. Individual modules can override the value of the global
auto-unload delay by specifying their own auto-unload delay value in their M t u n e
files.

Modules that are demand loaded using the m o d a d m i n command cannot be auto
unloaded by the kernel. If a demand-loaded module is no longer needed in the sys-
tem, it must be demand-unloaded. If a demand unload for a loaded module fails
(because the module is in-use, for example) the unload mechanism will add the
module to a list of modules that are candidates for the next auto-unload.

Loadable HBA Driver Considerations
Loadable HBA drivers:

must be demand loaded by the user via the m o d a d m i n command, or (during
system reboot) demand loaded by i n i t via the i d m o d l o a d command

can not be auto loaded

can not be unloaded (demand or auto)

Loadable DCD Controller Driver Considerations
Loadable DCD controller drivers can not be demand loaded. They are auto
loaded/unloaded by the kernel as required.

Page 4

FINAL COPY
June 15, 1995

File: as_cmd/modadmin
svid

Page: 363

modadmin (AS_CMD) modadmin (AS_CMD)

System Profiler
When the system profiler p r f is turned on, loadable modules are locked into
memory and cannot be unloaded. Modules can continue to be loaded with
profiling enabled, but these modules will also become locked. When profiling is
disabled, the locks for all loadable modules are removed.

SEE ALSO
i n i t(AS_CMD), m o d l o a d(KE_OS), m o d u l o a d(KE_OS), m o d p a t h(KE_OS),
m o d s t a t(KE_OS)

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995

File: as_cmd/modadmin
svid

Page: 364

mount (AS_CMD) mount (AS_CMD)

NAME
mount, umount – mount or unmount file systems and remote resources

SYNOPSIS
mount [–v]
mount [–p]
mount [–z]
mount [–Z]
mount [–llevel] [–F FSType] [–V] [–r] [–o specific_options] special
mount [–llevel] [–F FSType] [–V] [–r] [–o specific_options] mount_point
mount [–llevel] [–F FSType] [–V] [–r] [–o specific_options] special mount_point

umount [–V] [–o specific_options] special
umount [–V] [–o specific_options] mount_point

DESCRIPTION
File systems other than root (/) are considered removable in the sense that they
can be either available to users or unavailable. The command mount makes avail-
able to users special, a block special device, or a remote resource from the
mount_point. The mount_point must already exist; it then becomes the name of the
root of the newly mounted special or remote resource. A unique resource may be
mounted only once (no multiple mounts).

When entered with arguments, mount validates all arguments except for the special
device and invokes an FSType-specific mount module. If invoked with no argu-
ments, mount lists all the mounted file systems from the mount table. If invoked
with special, mount_point or both arguments but without FSType, then mount will
search /etc/vfstab to fill in the missing arguments: FSType, special,
specific_options, mount_point, or level. The level field is populated only when the
Enhanced Security Extension is implemented. It will then invoke the FSType-
specific mount module.

When the Enhanced Security Extension is implemented, if special is a block special
device, then the MAC level of the mount_point must be enclosed by the device (spe-
cial) level range stored in the Device Database. The root level of the new mounted
file system is set to the level of the mount_point and the file system level floor and
ceiling are initialized to the level of the mount_point. If the -l option is invoked,
then the level ceiling of the mounted file system is set to the level specified, after ver-
ifying that this level matches or dominates the level floor of the file system. Other-
wise, if the vfstab is queried by the mount command and a level ceiling is stored
in the vfstab for that entry, then the level ceiling of the mounted file system is set
to the level stored in the vfstab after verifying that this level matches or dom-
inates the level floor of the mounted file system. The mounted file system level
range restricts the creation of file system objects to be within that level range.

Most FSTypes do not have a umount specific module. If one exists it is executed;
otherwise the generic will unmount the file systems. If the -o option is specified,
the umount specific module is always executed.

special indicates the block special device that is to be mounted on mount_point. It
may also be a remote resource. mount_point indicates the mount point where special
will be mounted. The mount_point is a directory which must already exist.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/mount
svid

Page: 365

mount (AS_CMD) mount (AS_CMD)

The options and arguments have the following meanings:

–v Prints output in a way similar to mount with no options or
arguments, except that the FSType and flags are displayed, and
the mount_point and special fields are reversed.

–p Prints the list of mounted file systems in the vfstab format.

–z Displays the alias level of the level ceiling of each mounted file
system. This option is only valid if the Enhanced Security
Extension is implemented.

–Z Displays the fully qualified level of the level ceiling of each
mounted file system. This option is only valid if the Enhanced
Security Extension is implemented.

–l level Sets the level ceiling of the mounted file system. The level must
be either a valid security level alias or a valid fully qualified
level name in the format:

h_name[:c_name[,c_name]...]

where h_name is a hierarchical classification name and c_name is
a non-hierarchical category name. A fully qualified level is
valid if the classification and categories compromising the level
are named and if the level has been assigned a system level
identifier (LID) using the lvlname command. An alias name is
valid if the alias has been assigned to a fully qualified level
using the lvlname command.

The level must be dominated (meaning equal to or greater than)
by the high range of the device on which the file system is to be
mounted. The level must also match or dominate the low range
of the device. The level range of the device is stored in the
Device Database (DDB). Note that the low range of the file sys-
tem is the level of the mount point on which the file system is
to be mounted.

This option is only valid when the Enhanced Security Extension
is implemented.

–F FSType Specify the FSType on which to operate. The FSType must be
specified or must be determinable from /etc/vfstab while
mounting the file system.

–V Echo the complete command line. This includes additional
information as determined by an /etc/vfstab lookup. This
option can be used to verify and validate a command line. The
command is not actually executed.

–r Indicates that special is to be mounted read-only. If special is
write-protected or read-only, this flag must be used.

–o specific_options Specify FSType-specific options, if any. specific_options are a list
of keywords and/or keyword-attribute pairs (separated by
commas) which are interpreted by the FSType-specific module
of mount/umount.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/mount
svid

Page: 366

mount (AS_CMD) mount (AS_CMD)

mount can be used by any user to list mounted file systems and resources. Only a
process with appropriate privileges can mount or unmount file systems.

The -z and -Z options are mutually exclusive. If the -z option is specified and
there is not an alias assigned to the level, the decimal value of the level identifier
(LID) is displayed. If the -z or -Z option is specified and the level is in the valid-
inactive state, the decimal value of the LID is displayed. LID states are described in
lvlname(ES_CMD).

FILES
/etc/mnttab mount table

/etc/vfstab table of file system information

USAGE
Administrator.

SEE ALSO
lvlname(ES_CMD), mount(BA_OS), umount(BA_OS), setmnt(AS_CMD).

FUTURE DIRECTIONS
The old output format will be phased out in a future release and all output will be
in the new –v format. The most significant changes are in the addition of two new
fields to show the FSType and flags and the reversal of the mount_point and special
name.

Support for the -r option will be removed in a future issue of the SVID.

LEVEL
Level 1.

The following option has been moved to level 2 effective September 30, 1989:

-r

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/mount
svid

Page: 367

msgalert (AS_CMD) msgalert (AS_CMD)

NAME
msgalert – message alerting facility

SYNOPSIS
m s g a l e r t – a [– c classification[,classification . . .]] [– l label]

[– s severity[,severity . . .]]
[– m msg_text] [– n num] [– p period] [– S time] [– E time] [– e com-

mand]
[– d system[,system . . .]] ident

m s g a l e r t – r  – R ident . . .

m s g a l e r t [– o] [ident . . .]

m s g a l e r t [– b o n o f f] [– g o n o f f]
DESCRIPTION

m s g a l e r t is a tool for monitoring kernel messages and standard format messages
and directing alerts to the console of the local or a remote system. A standard for-
mat message is a message defined by a programmer in an application program and
sent to the alerting facility via the l f m t command, or the l f m t or v l f m t library rou-
tines. An alert is itself a standard format message, and includes a date/time stamp,
the system name, and the text of the message that generated the alert. For example:

U X : l o g a l e r t _ p r o c : W A R N I N G : a l e r t c o n d i t i o n a t date/time o n system -
whole message generating the alert gets displayed here (bells)

Monitoring of messages is enabled or disabled using the – g option. An alerting
request is created using the – a option; it can be restricted to a subset of messages by
specifying any combination of the options which identify components of standard
format messages. When an alerting request is created, monitoring begins immedi-
ately by default, and when the request’s criteria are matched num times, an alert is
generated. Following that, an alert is generated for each successive occurrence of
the message until one of the following occurs:

• the criteria are no longer met (that is, period or the time frame elapses without
the message reoccurring).

• the administrator removes the request causing the alert to be generated.

• the administrator resets the request causing the alert to be generated.

An alerting request is removed from the current set of requests using the – r option.
An alerting request is reset using the – R option. That is, the request remains in the
current set of requests, but its occurrence and period tallies are reset to zero.

If the Remote Operation Interface is available on both the local and remote
system(s), the administrator on the local system can use the – d option to generate
alerts on the remote system(s) for messages occurring on the local system.

When the – o option, or no option, is specified, a report of the current state of the
alerting facility and a list of the current set of alerting requests is displayed. Speci-
fying ident produces a report on only that alerting request.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/msgalert
svid

Page: 368

msgalert (AS_CMD) msgalert (AS_CMD)

– S time Specify a start time, on or after which num
occurrences of the specified message within the
optional period will cause an alert. The format of
time is hhmm, where hh is the hour in the range
[0 0–2 3] and mm is the minute in the range [0 0–5 9].
If – S is specified and – E is not, the end time defaults
to 2 3 5 9.

– E time Specify an end time, before which n u m occurrences
of the specified message within the optional period
will cause an alert. The format of time is hhmm,
where hh is the hour in the range [0 0–2 3] and mm is
the minute in the range [0 0–5 9]. If – E is specified
and – S is not, the start time defaults to 0 0 0 0.

– e command Specifies a command line syntax to be executed
locally when the message alerting criteria are met.
command must be a full pathname. If it is not, an
error message will be generated. command is exe-
cuted in addition to the alert sent to the console.
The alert itself is passed as the last argument to com-
mand.

– d system Specify the system to which the alert will be sent.
NOTE: this option is only available when the
Remote Operation Interface is running on the local
system and the remote system(s). By default, an
alert is sent to the local system only. However,
when this option is used, the local system must be
explicitly named on the command line, as well as
the remote system(s), in order to receive the alert.

ident A unique identifier you assign to an alerting request when you add it
to the current set of requests. The identifier must be the operand to
m s g a l e r t when removing or resetting an alerting request, and can
be used to restrict the report of the current set of requests. Where
multiple identifiers are allowed, a comma-separated list can be input.

RETURN VALUE
0 Successful completion of command
1 0 Invalid syntax
2 0 Invalid argument
3 0 Internal system error
4 0 Unable to communicate with associated daemon process

FILES
/ v a r / s a d m / m s g m g t / l o g a l e r t (daemon)

EXAMPLE
Example 1:

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/msgalert
svid

Page: 370

msgalert (AS_CMD) msgalert (AS_CMD)

m s g a l e r t – a – s H A L T – c o p s y s , u t i l i d e n t 1

This example specifies that all messages from the operating system or from system
utilities, with the severity level of H A L T generate alerts on the local system console.

Example 2:

m s g a l e r t – a – c s o f t – l U X : l p – s w a r n i n g – d s y s A i d e n t 2

This example specifies that all messages with the classification of s o f t, the label
U X : l p, and the severity level of w a r n i n g generate alerts on the console of system
s y s A. Assuming that s y s A is a remote system, the local system console is excluded,
in this case, from receiving the alert.

Example 3:

m s g a l e r t – a – m " t h i s i s a n e x a m p l e " – n 3 – p 0 1 0 0 i d e n t 3

This example specifies that alert(s) will be generated on the local console if the mes-
sage, t h i s i s a n e x a m p l e, occurs three or more times in any one-hour period.

SEE ALSO
lfmt(BA_OS), addsev(BA_LIB), lfmt(BA_LIB), setlabel(BA_LIB), msgrpt(AS_CMD),
remop(RA_CMD).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: as_cmd/msgalert
svid

Page: 371

msgrpt (AS_CMD) msgrpt (AS_CMD)

– B date Specify an end date. Only messages occurring before date will be
included in the report. The form of date is mmdd[yy]. If yy is not
specified, it defaults to the current year.

– c classification Specify the classification of messages to be reported. Acceptable
values can be one from each of the keyword sets [s o f t  h a r d 
f i r m], [o p s y s  u t i l  a p p l], and [c o n s o l e].

– m msg_text Specify the text of messages to be reported. Regular expressions
may be used in msg_text.

– l label Specify the label component of messages to be reported. Regular
expressions may be used in label.

– s severity Specify the severity level of messages to be reported. Acceptable
values include h a l t, e r r o r, w a r n i n g, i n f o, t o f i x, and any
additional severity levels defined by an application via the a d d s e v
library routine. This field is case-insensitive.

logfile Specify the logfile to be used to generate the report. If a filename
(versus a full pathname) is specified, m s g r p t assumes the file is
located in the default logfile directory, / v a r / s p o o l / l o g / c u r r e n t.
If no logfile is named as the operand, all active logfiles currently
managed by the message logging and monitoring facility will be
processed.

RETURN VALUE
The command return codes are:

0 Successful completion of command
1 0 Invalid syntax
2 0 Invalid argument
3 0 Internal system error

FILES
/ v a r / s p o o l / l o g / c u r r e n t
/ v a r / s p o o l / l o g / o l d

USAGE
Each message in the report is displayed in the language in which it was logged.
Thus, a report may contain messages in one or more languages or character sets.

The absence of options to m s g r p t causes all messages in all active logfiles to be
selected. This usually causes more output than is desired.

EXAMPLE
Example 1:

m s g r p t – l ’ U X : * ’

In this example, a regular expression is used as the argument to – l to look for
matches on the label component of standard format messages. To use a regular
expression as an argument, you must enclose the string in quotes, as the example
illustrates. Messages in active logfiles with labels that match the regular expression
’ U X : * ’ will be displayed in chronological order with a header for each field. Each
message in the report is presented as a unique (multiline, if needed) entry in the
report, as shown below:

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/msgrpt
svid

Page: 373

msgrpt (AS_CMD) msgrpt (AS_CMD)

DATE/TIME,
MESSAGE

01/03/90 14:25:31
UX:appl: ERROR: message for application

01/03/90 14:25:34
UX:appl: ERROR: message for application

Example 2:

m s g r p t – o l o g 1 1 0 9

In this example, a report of the contents of l o g 1 1 0 9 is created with no headers (data
format).

01/03/90 14:25:31;UX:appl: ERROR: message for application\n
01/03/90 14:25:34;UX:appl: ERROR: message for application\n

Since m s g r p t sends its output to standard output, this data can be piped to another
process as the input. Note that multiple values in a field are delimited by a comma,
and fields are delimited by a semicolon.

In the formatted report the actual date is displayed according to the user’s locale
setting, regardless of how the date/time stamp is stored internally.

Example 3:

m s g r p t – r

In this example, the messages in all active logfiles will be displayed in reverse chro-
nological order.

SEE ALSO
lfmt(BU_CMD), lfmt(BA_LIB), setlabel(BA_LIB), addsev(BA_LIB),
msgalert(AS_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/msgrpt
svid

Page: 374

mvdir (AS_CMD) mvdir (AS_CMD)

NAME
mvdir – move a directory

SYNOPSIS
mvdir dirname name

DESCRIPTION
The command mvdir moves directories within a file system. The argument dirname
must be a directory; name must not be an existing file. If name is a directory, then
dirname is moved to name/dirname, provided no such file or directory already exists.
Neither name may be a sub-set of the other (/x/y cannot be moved to /x/y/z,
nor vice versa).

Use of mvdir is restricted to a user with appropriate privileges.

USAGE
Administrator.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/mvdir
svid

Page: 375

nice (AS_CMD) nice (AS_CMD)

NAME
nice – run a command at low priority

SYNOPSIS
nice [–increment] command

DESCRIPTION
The command nice executes command with a lower CPU scheduling priority.

The command nice requires that the invoking process (generally the user’s shell)
be in the time-sharing scheduling class and causes command to be executed in the
time-sharing class.

increment is a positive integer less than {NZERO}; if it is not given, the default is half
of {NZERO} (rounded up).

When invoked with appropriate privileges, the nice command may run com-
mands with a higher than normal priority by using a negative increment, e.g., nice
––2.

An increment larger than the maximum is equivalent to the maximum.

The command nice returns the exit status of the subject command.

ERRORS
The command nice will fail if the invoking process is in a scheduling class other
than time-sharing.

SEE ALSO
nice(KE_OS), priocntl(RT_CMD), priocntl(RT_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/nice
svid

Page: 376

pkgadd (AS_CMD) pkgadd (AS_CMD)

pkginst A short string used to designate a package/set. It is composed of
one or two parts: pkg (an abbreviation for the package/set name) or,
if more than one instance of that package exists, pkg plus inst (an
instance identifier). (The term ‘‘package instance’’ is used loosely: it
refers to all instantiations of pkginst, even those that do not include
instance identifiers.)

The package name abbreviation (pkg) is the mandatory part of
pkginst.

The second part (inst), which is required only if you have more than
one instance of the package in question, is a suffix that identifies the
instance. This suffix is either a number (preceded by a period) or any
short mnemonic string you choose. If you don’t assign your own
instance identifier when one is required, the system assigns a
numeric one by default. For example, if you have three instances of
the Advanced Commands package and you don’t create your own
mnemonic identifiers (such as o l d and b e t a), the system adds the
suffixes . 2 and . 3 to the second and third packages, automatically.

To indicate all instances of a package, specify ’pkginst. * ’, enclosing
the command line in single quotes, as shown, to prevent the shell
from interpreting the * character. Use the token a l l to refer to all
packages available on the source medium.

- s spool Reads the package into the directory spool instead of installing it.

USAGE
The - r option can be used to indicate a directory name as well as a filename. The
directory can contain numerous response files, each sharing the name of the package
with which it should be associated. This would be used, for example, when adding
multiple interactive packages with one invocation of p k g a d d. Each package that
had a request script would need a response file. If you create response files with the
same name as the package (for example, package1 and package2) then, after the - r
option, name the directory in which these files reside.

The - n option will cause the installation to halt if any interaction is needed to com-
plete it.

The p k g a d d command checks to see if any of the files in pkginst are already installed
on the system and, if any are, saves this fact before continuing with installation.
Later, p k g a d d won’t reinstall these files on the system. If one of the package’s ins-
tallation scripts removes such a file, the result will be that the file will no longer be
on the system when package installation completes.

The p k g a d d command does not uncompress any files that were already compressed
(that is, only those in ". Z" form) before being processed by p k g m k.

SEE ALSO
p k g a s k(AS_CMD), p k g c h k(AS_CMD), p k g i n f o(AS_CMD), p k g r m(AS_CMD),
p k g t r a n s(AS_CMD)

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/pkgadd
svid

Page: 378

pkgadd (AS_CMD) pkgadd (AS_CMD)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/pkgadd
svid

Page: 379

pkgask (AS_CMD) pkgask (AS_CMD)

NAME
pkgask – stores answers to a request script

SYNOPSIS
pkgask [-d device] -r response pkginst [pkginst ...]

DESCRIPTION
The command pkgask allows the administrator to store answers to an interactive
package (one with a request script). Invoking this command generates a response
file that is then used as input at installation time. The use of this response file
prevents any interaction from occurring during installation since the file already
contains all of the information the package needs.

The options and arguments have the following meanings:

–d device Runs the request script from device. device can be a directory path-
name or the identifiers for tape, floppy disk or removable disk (for
example, /var/tmp, /dev/diskette, and /dev/dsk/c1d0s0).
The default device is the installation spool directory.

–r response Identifies a file or directory, which should be created to contain the
responses to interaction with the package. The name must be a full
pathname. The file, or directory of files, can later be used as input
to the pkgadd command. If response is a directory, pkgask creates
a response file in that directory for each pkginst, using the package
instance name as the response filename.

pkginst Specifies the package instance or list of instances to be installed.
The token all may be used to refer to all packages available on
the source medium.

USAGE
The –r option can be used to indicate a directory name as well as a filename. The
directory name is used to create numerous response files, each sharing the name of
the package with which it should be associated. This would be used, for example,
when adding multiple interactive packages with one invocation of pkgadd. Each
package would need a response file. To create multiple response files with the same
name as the package instance, name the directory in which the files should be
created and supply multiple instance names with the pkgask command. When ins-
talling the packages, you will be able to identify this directory to the pkgadd com-
mand.

SEE ALSO
installf(AS_CMD), pkgadd(AS_CMD), pkgchk(AS_CMD), pkginfo(AS_CMD),
pkgmk(AS_CMD), pkgparam(AS_CMD), pkgproto(AS_CMD), pkgrm(AS_CMD),
pkgtrans(AS_CMD), removef(AS_CM).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/pkgask
svid

Page: 380

pkgchk (AS_CMD) pkgchk (AS_CMD)

NAME
pkgchk – check accuracy of installation

SYNOPSIS
pkgchk [-l -acfqv] [-nx] [-p path1[,path2 ...] [-i file] [pkginst...]

pkgchk -d device [-l v] [-p path1[,path2 ...] [-i file] [pkginst...]

pkgchk -m pkgmap [-e envfile] [-l -acfqv] [-nx] [-i file]
[-p path1[,path2 ...]]

DESCRIPTION
pkgchk checks the accuracy of installed files or, by use of the –l option, displays
information about package files. The command checks the integrity of directory
structures and the files. Discrepancies are reported on stderr along with a
detailed explanation of the problem.

The first synopsis defined above is used to list or check the contents and/or attri-
butes of objects that are currently installed on the system. Package names may be
listed on the command line, or by default the entire contents of a machine will be
checked.

The second synopsis is used to list or check the contents of a package which has
been spooled on the specified device, but not installed. Note that attributes cannot
be checked for spooled packages.

The third synopsis is used to list or check the contents and/or attributes of objects
which are described in the indicated pkgmap.

The option definitions are:

–l Lists information on the selected files that make up a package. It is not com-
patible with the a, c, f, g, and v options.

–a Audits the file attributes only, does not check file contents. Default is to
check both.

–c Audits the file contents only, does not check file attributes. Default is to
check both.

–f Corrects file attributes if possible. If used with the –x option, it removes
hidden files. When pkgchk is invoked with this option it creates direc-
tories, named pipes, links and special devices if they do not already exist.

–q Quiet mode. Does not give messages about missing files.

–v Verbose mode. Files are listed as processed.

–n Does not check volatile or editable files. This should be used for most post-
installation checking.

–x Searches exclusive directories, looking for files which exist that are not in
the installation software database or the indicated pkgmap file.

–p Only checks the accuracy of the pathname or pathnames listed. pathname
can be one or more pathnames separated by commas (or by white space, if
the list is quoted).

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/pkgchk
svid

Page: 381

pkgchk (AS_CMD) pkgchk (AS_CMD)

–i Reads a list of pathnames from file and compares this list against the instal-
lation software database or the indicated pkgmap file. Pathnames which are
not contained in inputfile are not checked.

–d Specifies the device on which a spooled package resides. device can be a
directory pathname or the identifiers for tape, floppy disk or removable disk
(for example, /var/tmp or /dev/diskette).

–m Requests that the package be checked against the pkgmap file pkgmap.

–e Requests that the pkginfo file named as envfile be used to resolve parameters
noted in the specified pkgmap file.

pkginst
Specifies the package instance or instances to be checked. The format
pkginst.* can be used to check all instances of a package. The default is to
display all information about all installed packages.

SEE ALSO
pkgadd(AS_CMD), pkgask(AS_CMD), pkginfo(AS_CMD), pkgrm(AS_CMD),
pkgtrans(AS_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/pkgchk
svid

Page: 382

pkginfo (AS_CMD) pkginfo (AS_CMD)

NAME
pkginfo – display software package information

SYNOPSIS
pkginfo [-q x l] [-p i] [-a arch] [-v version] [-r]

[-c category1[,category2 ...]] [pkginst[,pkginst ...]]

pkginfo [-d device [-q x l] [-a arch] [-v version]
[-c category1[,category2 ...]] [pkginst[,pkginst ...]]

DESCRIPTION
pkginfo displays information about software packages which are installed on the
system (with the first synopsis) or uninstalled packages which reside on a particular
device or directory (with the second synopsis). Only the package name and abbre-
viation for pre-SVR4 packages will be included in the display.

The options for this command are:

–q Does not list any information, but can be used from a program to check
(i.e., query) whether or not a package has been installed.

–x Designates an extracted listing of package information. It contains the
package abbreviation, package name, package architecture (if available)
and package version (if available).

–l Designates long format, which includes all available information sup-
plied in the package(s) pkginfo fields.

–p Designates that information should be presented only for partially
installed packages.

–i Designates that information should be presented only for fully installed
packages.

–a Specifies the architecture of the package as arch.

–v Specifies the version of the package as version. "All compatible versions"
can be requested by preceding the version name with a tilde (˜). Multi-
ple white space is replaced with a single space during version com-
parison.

-r If the package is relocatable, lists the installation base for the specified
package.

–c Selects packages to be displayed based on the category category.
(Categories are defined in the category field of the pkginfo file.) If more
than one category is supplied, the package must only match one of the
list of categories. The match is not case specific.

pkginst Designates a package by its instance. An instance can be the package
abbreviation or a specific instance (for example, inst.1 or
inst.beta). All instances of package can be requested by inst.*.

–d Defines a device, device, on which the software resides. device can be a
directory pathname or the identifiers for tape, floppy disk, removable
disk, etc. The special token spool may be used to indicate the default
installation spool directory.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/pkginfo
svid

Page: 383

pkginfo (AS_CMD) pkginfo (AS_CMD)

USAGE
Without options, pkginfo lists the primary category, package instance, and name
of all completely installed and partially installed packages. One line per package
selected is produced.

The –p and –i options cannot be used with the –d option.

The options –q, –x, and –l are mutually exclusive.

pkginfo cannot tell if a pre-SVR4 package is only partially installed. It assumes
that all pre-SVR4 packages are fully installed.

SEE ALSO
pkgadd(AS_CMD), pkgask(AS_CMD), pkgchk(AS_CMD), pkginfo(AS_LIB),
pkgrm(AS_CMD), pkgtrans(AS_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/pkginfo
svid

Page: 384

pkgmk (AS_CMD) pkgmk (AS_CMD)

NAME
pkgmk – produce an installable package

SYNOPSIS
pkgmk [–o] [–d device] [–r rootpath] [–b basdir] [–l limit] [–a arch]

[–v version] [–p pstamp] [–f prototype] [variable=value ...] [pkginst]

DESCRIPTION
The command pkgmk produces an installable package to be used as input to the
pkgadd command. The package contents will be in directory structure format.

The command uses the package prototype file as input [see pkgproto(AS_CMD)] and
creates a pkgmap file. The contents for each entry in the prototype file is copied to
the appropriate output location. Information concerning the contents (checksum,
file size, modification date) is computed and stored in the pkgmap file, along with
attribute information specified in the prototype file.

The options and arguments have the following meanings:

–o Overwrites the same instance. Package instance will be overwrit-
ten if it already exists.

–d device Creates the package on device. device can be a directory pathname
or the identifiers for a floppy disk or removable disk (for example,
/dev/diskette). The default device is the installation spool
directory.

–r rootpath Ignores destination paths in the prototype file. Instead, uses the
indicated rootpath with the source pathname appended to locate
objects on the source machine.

–b basdir Prepends the indicated basdir to locate relocatable objects on the
source machine.

–l limit Specifies the maximum size of the output device as limit. By
default, if the output file is a directory or a mountable device,
pkgmk will employ the df command to dynamically calculate the
amount of available space on the output device.

–a arch Overrides the architecture information provided in the pkginfo
file with arch.

–v version Overrides version information provided in the pkginfo file with
version.

–p pstamp Overrides the production stamp definition in the pkginfo file
with pstamp.

–f prototype Uses the file prototype as input to the command. The default proto-
type filename is either of Prototype or prototype.

variable=value Places the indicated variable in the packaging environment. (e.g.,
BIN=$HOME/bin).

pkginst Specifies the package by its instance. An instance can be the pack-
age abbreviation or a specific instance (for example, inst.1).

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/pkgmk
svid

Page: 385

pkgmk (AS_CMD) pkgmk (AS_CMD)

USAGE
Architecture information is provided on the command line with the –a option or in
the prototype file. If no architecture information is supplied at all, the output of
uname –m will be used.

Version information is provided on the command line with the –v option or in the
prototype file. If no version information is supplied, a default based on the current
date will be provided.

Command line definitions for both architecture and version override the prototype
definitions.

SEE ALSO
df(BU_CMD), installf(AS_CMD), pkgparam(AS_CMD), pkgproto(AS_CMD),
pkgtrans(AS_CMD), removef(AS_CMD), uname(BU_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/pkgmk
svid

Page: 386

pkgparam (AS_CMD) pkgparam (AS_CMD)

NAME
pkgparam – display package parameter values

SYNOPSIS
pkgparam [-v] [-d device] pkginst [param ...]
pkgparam -f file [-v] [param ...]

DESCRIPTION
The command pkgparam displays the value associated with the parameter or
parameters requested on the command line. The values are located in either the
pkginfo file for pkginst or from the specific file named with the –f option.

One parameter value is shown per line. Only the value of a parameter is given
unless the –v option is used. With this option, the output of the command is in this
format:

parameter1=’value1’
parameter2=’value2’
parameter3=’value3’

If no parameters are specified on the command line, values for all parameters asso-
ciated with the package are shown.

The options and arguments have the following meanings:
–v Specifies verbose mode. Display shows name of parameter and its

value.
–d device Specifies a device name. device can be a directory name or the

identifier for tape, floppy diskette, etc. The special token spool may
be used to represent the default installation spool directory. Parame-
ter information for all packages residing in device are shown.

–f file Requests that the command read file for parameter values.
pkginst Defines a specific package instance for which parameter values should

be displayed.
param Defines a specific parameter whose value should be displayed.

ERRORS
If parameter information is not available for the indicated package, the command
exits with a non-zero status.

USAGE
The –f synopsis allows you to specify the file from which parameter values should
be extracted. This file should be in the same format as a pkginfo file. As an exam-
ple, such a file might be created during package development and used while test-
ing software during this stage.

SEE ALSO
installf(AS_CMD), pkgmk(AS_CMD), pkgparam(AS_LIB), pkgproto(AS_CMD),
pgktrans(AS_CMD), removef(AS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/pkgparam
svid

Page: 387

pkgproto (AS_CMD) pkgproto (AS_CMD)

NAME
pkgproto – generate prototype file entries

SYNOPSIS
pkgproto [-i] [-c class] [path1[=path2] ...]

DESCRIPTION
The command pkgproto scans the indicated paths and generates prototype file
entries that may be used as input to the pkgmk command [see pkgmk(AS_CMD)].

The options and arguments have the following meanings:

–i Ignores symbolic links and records the paths as ftype=f (a file) versus
ftype=s (symbolic link)

–c class Maps the class of all paths to class.

path1 Pathname where objects are located.

path2 Pathname which should be substituted on output for path1.

If no paths are specified on the command line, standard input is assumed to be a list
of paths. If the pathname listed on the command line is a directory, the contents of
the directory is searched. However, if input is read from stdin, a directory
specified as a pathname will not be searched.

USAGE
By default, pkgproto creates symbolic link entries for any symbolic link encoun-
tered (ftype=s). When invoked with the –i option, pkgproto creates a file entry
for symbolic links (ftype=f). The resulting prototype file entries will have to be
modified to assign such file types as "v" (volatile), "e" (editable), or "x" (exclusive
directory). pkgproto detects linked files. If multiple files are linked together, the
first path encountered is considered the source of the link. The output should be
saved in a file (named Prototype or prototype, for convenience) to be used as
input to the pkgmk command.

EXAMPLES
Example 1:

$ pkgproto /bin=bin /usr/bin=usrbin /etc=etc
f none bin/sed=/bin/sed 0775 bin bin
f none bin/sh=/bin/sh 0755 bin daemon
f none bin/sort=/bin/sort 0755 bin bin
f none usrbin/sdb=/usr/bin/sdb 0775 bin bin
f none usrbin/shl=/usr/bin/shl 4755 bin bin
d none etc/master.d 0755 root daemon
f none etc/master.d/kernel=/etc/master.d/kernel 0644 root daemon
f none etc/rc=/etc/rc 0744 root daemon

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/pkgproto
svid

Page: 388

pkgproto (AS_CMD) pkgproto (AS_CMD)

Example 2:

$ find / –type d –print | pkgproto
d none / 755 root root
d none /bin 755 bin bin
d none /usr 755 root root
d none /usr/bin 775 bin bin
d none /etc 755 root root
d none /tmp 777 root root

SEE ALSO
installf(AS_CMD), pkgmk(AS_CMD), pkgparam(AS_CMD), pkgtrans(AS_CMD),
removef(AS_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/pkgproto
svid

Page: 389

pkgrm (AS_CMD) pkgrm (AS_CMD)

NAME
pkgrm – removes a package from the system

SYNOPSIS
pkgrm [-n] [-a admin] [pkginst1[,pkginst2[, ...]]]

pkgrm -s spool [pkginst]

DESCRIPTION
The command pkgrm will remove a previously installed or partially installed pack-
age from the system. A check is made to determine if any other packages depend
on the one being removed. The action taken if a dependency exists is defined in the
admin file.

The default state for the command is in interactive mode, meaning that prompt
messages are given during processing to allow the administrator to confirm the
actions being taken. Non-interactive mode can be requested with the –n option.

The –s option can be used to specify the directory from which spooled packages
should be removed.

The options and arguments have the following meanings:

–n Non-interactive mode. If there is a need for interaction, the command
will exit. Use of this option requires that at least one package instance
be named upon invocation of the command.

–a admin Defines an installation admin file, admin, to be used in place of the
(implementation dependent) default admin file.

–s spool Removes the specified package(s) from the directory spool.

pkginst Specifies the package to be removed. The format pkginst can be used
to remove all instances of a package.

SEE ALSO
installf(AS_CMD), pkgadd(AS_CMD), pkgask(AS_CMD), pkgchk(AS_CMD),
pkginfo(AS_CMD), pkgmk(AS_CMD), pkgparam(AS_CMD), pkgproto(AS_CMD),
pkgtrans(AS_CMD), removef(AS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/pkgrm
svid

Page: 390

pkgtrans (AS_CMD) pkgtrans (AS_CMD)

NAME
pkgtrans – translate package format

SYNOPSIS
pkgtrans [-i] [-o n] device1 device2 [pkginst1[,pkginst2[,...]]]

DESCRIPTION
The command pkgtrans translates an installable package from one format to
another. It will translate the following:

– a spool directory to a datastream,
– a datastream to a spool directory,
– a spool directory to a removable device,
– a removable device to a spool directory.

The options and arguments have the following meanings:

–i Copies only the pkginfo and pkgmap files.

–o Overwrites the same instance on the destination device (package
instance will be overwritten if it already exists).

–n Creates a new instance if any instance of this package already exists.

device1 Indicates the source device. The package or packages on this device will
be translated and placed on device2.

device2 Indicates the destination device. Translated packages will be placed on
this device.

pkginst Specifies which package instance or instances on device1 should be
translated. The token all may be used to indicate all packages.
pkginst.* can be used to indicate all instances of a package. If no pack-
ages are defined, a prompt shows all packages on the device and asks
which to translate.

USAGE
Device specifications can be either the special node name (e.g. /dev/diskette) or
the device identifier (e.g. diskette1). The device spool indicates the default
spool directory. Source and destination devices may not be the same.

By default, pkgtrans will not transfer any instance of a package if any instance of
that package already exists on the destination device. Use of the –n option will
create a new instance if an instance of this package already exists. Use of the –o
option will overwrite the same instance if it already exists. Neither of these options
are useful if the destination device is a datastream.

EXAMPLE
The following example translates all packages on the floppy drive /dev/diskette
and places the translations on /tmp.

pkgtrans /dev/diskette /tmp all

The next example translates packages pkg1 and pkg2 on /tmp and places their
translations on the 9track1 output device.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/pkgtrans
svid

Page: 391

pkgtrans (AS_CMD) pkgtrans (AS_CMD)

pkgtrans /tmp 9track1 pkg1 pkg2

SEE ALSO
installf(AS_CMD), pkgadd(AS_CMD), pkgask(AS_CMD), pkginfo(AS_CMD),
pkgmk(AS_CMD), pkgparam(AS_CMD), pkgproto(AS_CMD), pkgrm(AS_CMD),
removef(AS_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/pkgtrans
svid

Page: 392

prtconf (AS_CMD) prtconf (AS_CMD)

NAME
prtconf – print system configuration

SYNOPSIS
prtconf

DESCRIPTION
The command prtconf prints the system configuration information which
includes the memory and peripheral configuration. This information is displayed
every time the system is initialized to multiuser mode.

EXAMPLE
To print a computer’s configuration, execute:

$ prtconf<CR>
SYSTEM CONFIGURATION:
Memory size: 2 Megabytes
System Peripherals:
Device Name Subdevices Extended Subdevices
SBD

Floppy Disk
30 Megabyte Disk
72 Megabyte Disk

SCSI
SD00 ID1

67 Megabyte Disk ID0
67 Megabyte Disk ID1
135 Megabyte Disk ID2
135 Megabyte Disk ID3

NI
PORTS
CTC

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/prtconf
svid

Page: 393

pwck (AS_CMD) pwck (AS_CMD)

NAME
pwck, grpck – password/group file checkers

SYNOPSIS
pwck [file]

grpck [file]

DESCRIPTION
The command pwck scans the password file and notes any inconsistencies. The
checks include validation of the number of fields, login name, user ID, group ID,
and whether the login directory and optional program name exist. The default
password file is /etc/passwd.

The command grpck verifies all entries in the group file. This verification includes
a check of the number of fields, group name, group ID, and whether all login names
appear in the password file and whether the file contains more than
{NGROUPS_MAX} entries for an individual. In addition, group entries in
/etc/group with no login names are flagged. The default group file is
/etc/group.

FILES
/etc/group
/etc/passwd

USAGE
Administrator.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/pwck
svid

Page: 394

removef (AS_CMD) removef (AS_CMD)

NAME
removef – remove a file from the installation software database

SYNOPSIS
removef pkginst path1 [path2 ...]

removef –f pkginst

DESCRIPTION
The command removef informs the system that the user, or software, intends to
remove a pathname. Output from removef is a list of pathnames that may be
safely removed (no other packages have a dependency on them).

After all files have been processed, removef should be invoked with the –f option
to indicate that the removal phase is complete.

EXAMPLE
The following shows the use of removef in a script:

echo "The following files are no longer part of
this package and are being removed."
removef $PKGINST /dev/xt[0-9][0-9][0-9] |
while read pathname
do

echo "$pathname"
rm –f $pathname

done
removef –f $PKGINST || exit 2

SEE ALSO
installf(AS_CMD), pkgadd(AS_CMD), pkgask(AS_CMD), pkgchk(AS_CMD),
pkginfo(AS_CMD), pkgmk(AS_CMD), pkgparam(AS_CMD), pkgproto(AS_CMD),
pkgtrans(AS_CMD), removef(AS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/removef
svid

Page: 395

restore (AS_CMD) restore (AS_CMD)

NAME
restore – initiate restores of file systems, data partitions, or disks

SYNOPSIS
restore [–o target] [–d date] [–m] [–s] –P partdev

restore [–o target] [–d date] [–n] [–s] –P partdev

restore [–o target] [–d date] [–m] [–v] –P partdev

restore [–o target] [–d date] [–n] [–v] –P partdev

restore [–o target] [–d date] [–m] [–s] –S odevice

restore [–o target] [–d date] [–n] [–s] –S odevice

restore [–o target] [–d date] [–m] [–v] –S odevice

restore [–o target] [–d date] [–n] [–v] –S odevice

restore [–o target] [–d date] [–m] [–s] –A partdev

restore [–o target] [–d date] [–n] [–s] –A partdev

restore [–o target] [–d date] [–m] [–v] –A partdev

restore [–o target] [–d date] [–n] [–v] –A partdev

DESCRIPTION
The command restore posts requests for the restore of a data partition, a file sys-
tem partition, or a disk from system-maintained archives. If the appropriate
archive containing the required partition is online, the partition is restored immedi-
ately. If not, a request to restore the specified archive of the partition is posted to a
restore status table. The default status table is /etc/bkup/rsstatus.tab. The
restore request is assigned a restore job ID that can be used to monitor the progress
of the restore or to cancel it. A restore request that has been posted must later be
resolved by an operator [see rsoper(AS_CMD)].

restore may only be executed by a user with appropriate privileges.

If restore –A partdev is issued, the fdisk (full disk recovery) method [see
fdisk(AS_CMD)] is used to repartition and repopulate disk partdev. partdev is the
name of the device that refers to the entire disk.

The options and arguments have the following meanings:

–d date Restores the partition as of date . This may or may not be the latest
archive. [See at(AU_CMD) for valid date formats.]

–m If the restoration cannot be carried out immediately, this option
notifies the invoking user via mail [see mail(AS_CMD)] when the
request has been completed.

–n Displays a list of all archived versions of the object contained in the
backup history log, but does not attempt to restore the object.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/restore
svid

Page: 396

restore (AS_CMD) restore (AS_CMD)

–o target Instead of restoring directly to the specified object (partdev or odevice),
this option restores the archive to target. target is of one of the follow-
ing forms:

oname:odev
oname
:odev

where oname is the name of the file system to which the archive will be
restored (for –S archives) and odev is the name of the partition to
which the archive will be restored (for –P and –A archives).

–s While a restore operation is occurring, displays a dot (.) for each
100 blocks transferred from the destination device.

–v Displays the name of each object as it is restored. Only those archiv-
ing methods that restore named directories and files [see
incfile(AS_CMD) and ffile(AS_CMD)] support this option.

–A partdev Initiates restore of the entire disk, partdev.

–P partdev Initiates restore of the data partition partdev.

–S odevice Initiates restore of the file system partition odevice.

ERRORS
The exit codes for restore are the following:

0 = successful completion of the task

1 = one or more parameters to restore are invalid.

2 = an error has occurred which caused restore to fail to complete all portions of
its task.

FILES
/etc/bkup/bkhist.tab keeps track of the location (by volume label) of all

the volumes of backup archives available for use
in restoring lost files as well as (optionally) the
contents of each archive.

/etc/bkup/rsstatus.tab lists the status of all restore requests from users.

/etc/bkup/rsnotify.tab lists the email address of the operator to be
notified whenever restore requests require opera-
tor intervention.

EXAMPLE
Example 1:

restore –m –S /usr

posts a request to restore the most current archived version of /usr. If the restore
cannot be carried out immediately, notify the invoking user when the request has
been completed.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/restore
svid

Page: 397

restore (AS_CMD) restore (AS_CMD)

Example 2:

restore –o /dev/rdsk/c1d0s8 –P /dev/rdsk/c1d1s2

posts a request that the archived data partition /dev/rdsk/c1d1s2 be restored to
the target device partition /dev/rdsk/c1d0s8.

Example 3:

restore –d "december 1, 1987" –A /dev/rdsk/c1d0s6

posts a request for the restore of the entire disk /dev/rdsk/c1d0s6. The restore
should be made as of December 1, 1987.

Example 4:

restore –n –P /dev/rdsk/c1d0s1

requests the system to display the backup date and an ls -l listing [see
ls(BU_CMD)] from the backup history log of all archived versions of the data parti-
tion /dev/rdsk/c1d0s1. The data partition is not restored.

SEE ALSO
at(AU_CMD), fdisk(AS_CMD), ffile(AS_CMD), getdate(BA_LIB), incfile(AS_CMD),
ls(BU_CMD), mail(BU_CMD), rsnotify(AS_CMD), rsoper(AS_CMD),
rsstatus(AS_CMD), urestore(AS_CMD), ursstatus(AS_CMD).

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.

Optional

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/restore
svid

Page: 398

rsnotify (AS_CMD) rsnotify (AS_CMD)

NAME
rsnotify – display or modify the identity of the individual in charge of restore
requests

SYNOPSIS
rsnotify [–a user]

DESCRIPTION
The command rsnotify, without options, displays the name of the person who is
to receive mail notifications [see mail(BU_CMD)] whenever restore requests
require operator intervention. The display includes the date the individual was
assigned.

rsnotify may only be executed by a user with appropriate privileges.

The option and argument have the following meaning:

–a user assigns a user to be the one to receive restore notifications. user is the
user’s login ID. If user is null, rsnotify sends the notices to root’s
mail.

ERRORS
The exit codes for rsnotify are the following:

0 = successful completion of the task

1 = one or more parameters to rsnotify are invalid.

2 = an error has occurred which caused rsnotify to fail to complete all portions
of its task.

FILES
/etc/bkup/rsnotify.tab provides the email address of the operator to be

notified whenever restore requests require operator
intervention.

/etc/bkup/rsstatus.tab tracks the status of all restore requests.

EXAMPLE
Example 1:

rsnotify –a oper3

assigns the individual with login ID oper3 as the one to be notified when a restore
request needing operator intervention is initiated.

SEE ALSO
restore(AS_CMD), rsstatus(AS_CMD), urestore(AS_CMD).

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.
Optional

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/rsnotify
svid

Page: 399

rsoper (AS_CMD) rsoper (AS_CMD)

If mntpt=dir is specified, ddevice is assumed to be a file system parti-
tion and dir is the place in the directory structure where ddevice will be
mounted. This is only valid for fimage archives [see
fimage(AS_CMD)]. dlabels is a list of volume labels either comma-
separated or blank-separated. If blank separated, the entire ddev argu-
ment must be surrounded by quotes.

–j jobids Limits the scope of the request to the specified jobs. jobids is a list of
restore job IDs (either comma-separated or blank-separated and sur-
rounded by quotes).

–m method Assumes the archive on the first medium in the destination device was
created by the method archiving operation. Valid methods are:
incfile, ffile, fimage, fdp, fdisk, and any customized
methods. This option is required if the backup history log is not avail-
able, does not include information about the specified archive or if
rsoper cannot determine the format of the archive.

–o oname[:odevice]
Specifies the originating file system partition or data partition to be
restored. oname is the name of the the originating file system. It may
be null. odevice is the device name of the originating file system or
data partition. This option is required if the backup history log is not
available or does not include information about the specified archive.

–r jobids Removes the restore request for the specified jobs. jobids is a list of
restore job IDs (either comma-separated or blank-separated and sur-
rounded by quotes).

–s While a restore operation is occurring, this option displays a dot (.) for
each 100 blocks transferred from the destination device.

–t Assumes that the media inserted in the destination device contain a
table of contents for an archive. This option is required if the backup
history log is not available, does not include information about the
specified archive or if rsoper cannot determine the format of the
medium.

–u users Restricts restores to restore requests issued by the specified users.

–v Displays the name of each object as it is restored. Only those archiv-
ing methods that restore named directories and files [see
incfile(AS_CMD) and ffile(AS_CMD)] support this option.

ERRORS
The exit codes for rsoper are the following:

0 = successful completion of the task

1 = one or more parameters to rsoper are invalid.

2 = an error has occurred which caused rsoper to fail to complete all portions of
its task.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/rsoper
svid

Page: 401

rsoper (AS_CMD) rsoper (AS_CMD)

If a method reports that no part of a restore request was completed, rsoper reports
this fact to the user.

FILES
/etc/bkup/bkhist.tab record of backup history and location of archives.
/etc/bkup/rsstatus.tab status of all restore requests.
/etc/bkup/rsnotify.tab email address of operator to be notified when

restore requests require operator intervention.

EXAMPLE
Example 1:

rsoper –d /dev/tape/c4d0s2

asks the restore service to read the archive volume that has been inserted into the
device /dev/tape/c4d0s2. The service will attempt to resolve any restore
requests that can be satisfied by the archive volume.

Example 2:
The following example assumes that the backup history table contains a record of
backups performed and that the restore status table has a record of the restore
requests. With these assumptions:

rsoper –d /dev/ctape:density=1600:USRLBL1 –v –u clerk1

instructs the restore service to perform only those pending restore requests from the
rsstatus.tab issued by user clerk1. The restorals are to be done from the car-
tridge tape labeled USRLBL1, with a density of 1600 bps. The restore service will
display on the operator terminal the names of the files and directories as they are
successfully restored.

Example 3:
The following example assumes that the backup history table no longer contains a
log of the requested backup operations. With that assumption:

rsoper –d \
/dev/diskette2:blk_fac=2400:arc.dec79.a,arc.dec79.b,\
arc.dec79.c –m incfile –o /usr2

instructs the restore service to perform a restore of the /usr2 file system using the
incremental restore method. The /usr2 file system is to be restored from archived
diskettes with a blocking factor of 2400. The diskettes containing the archive are
labeled arc.dec79.a, arc.dec79.b, and arc.dec79.c.

Example 4:
rsoper –c rest-737b

cancels the restore request with job ID rest-737b.

SEE ALSO
fimage(AS_CMD), ffile(AS_CMD), fdp(AS_CMD), fdisk(AS_CMD),
getdate(BA_LIB), incfile(AS_CMD), mail(BU_CMD), restore(AS_CMD),
rsnotify(AS_CMD), rsstatus(AS_CMD), urestore(AS_CMD), ursstatus(AS_CMD).

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/rsoper
svid

Page: 402

rsoper (AS_CMD) rsoper (AS_CMD)

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.

Optional

Page 4

FINAL COPY
June 15, 1995

File: as_cmd/rsoper
svid

Page: 403

rsstatus (AS_CMD) rsstatus (AS_CMD)

NAME
rsstatus – report the status of posted restore requests

SYNOPSIS
rsstatus [–h] [–d ddev] [–j jobids] [–u users] [–f c]

DESCRIPTION
With no options, the command rsstatus reports the status of all pending restore
requests that are posted in the restore status table.

rsstatus may only be executed by a user with appropriate privileges.

Note: volume labels marked with an asterisk(∗) in the output of this command are
table of contents volumes.

The options and arguments have the following meanings:

–d ddev Restricts the report to pending restore jobs that could be satisfied by the
specified device or volumes. ddev describes the device or volumes used
to select requests to be restored. ddev is of the form:

[dtype][:dlabels]

dtype or dlabels may be null, but not both.

dtype is a device type, (such as diskette, ctape, 9track). If specified, res-
trict the report to posted requests that could be satisfied by media of the
specified type.

dlabels is a list of volumes corresponding to a volumename on the
labelit command [see labelit in volcopy(AS_CMD)]. dlabels may
either be comma-separated or blank-separated and surrounded by
quotes. If specified, restrict the report to posted requests that could be
satisfied by an archive residing on the specified volumes.

–f c Suppresses field wrap and specifies an output field separator to be used.
c is the character that will appear as the field separator on the display
output. For clarity of output, do not use a separator character that is
likely to occur in a field. For example, do not use the colon as a field
separator character if the display will contain dates that use a colon to
separate hours from minutes.

–h Suppresses headers for the report.

–j jobids Restricts the report to the specified jobs. jobids is a list of restore job IDs
(either comma-separated or blank-separated and surrounded by quotes)
[see restore(AS_CMD)].

–u users Restricts the report to requests submitted by the specified users (either
comma-separated or blank-separated and surrounded by quotes).

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/rsstatus
svid

Page: 404

rsstatus (AS_CMD) rsstatus (AS_CMD)

ERRORS
The exit codes for rsstatus are the following:

0 = successful completion of the task

1 = one or more parameters to rsstatus are invalid.

2 = an error has occurred which caused rsstatus to fail to complete all portions
of its task.

FILES
/etc/bkup/rsstatus.tab tracks the status of all restore requests from users

EXAMPLE
Example 1:

rsstatus –d diskette

reports the status of those posted restore requests that can be satisfied by inserting
diskettes into a diskette drive.

Example 2:

rsstatus –j rest-354a,rest-429b

reports the status only of the two posted restore requests with the specified job IDs.

SEE ALSO
restore(AS_CMD), urestore(AS_CMD), ursstatus(AS_CMD), volcopy(AS_CMD).

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.

Optional

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/rsstatus
svid

Page: 405

runacct (AS_CMD) runacct (AS_CMD)

EXAMPLES
To start r u n a c c t:

n o h u p r u n a c c t 2 > / v a r / a d m / a c c t / n i t e / f d 2 l o g &

To restart r u n a c c t:

n o h u p r u n a c c t 0 6 0 1 2 > > / v a r / a d m / a c c t / n i t e / f d 2 l o g &

To restart r u n a c c t at a specific state:

n o h u p r u n a c c t 0 6 0 1 M E R G E 2 > > / v a r / a d m / a c c t / n i t e / f d 2 l o g &

SEE ALSO
a c c t (AS_CMD), a c c t c m s (AS_CMD), a c c t c o m (AS_CMD), a c c t c o n (AS_CMD),
a c c t m e r g (AS_CMD), c r o n (AU_CMD), f w t m p (AS_CMD), m a i l (BU_CMD),

LEVEL
Level 2.

NOTICES
Normally it is not a good idea to restart r u n a c c t in the S E T U P state. Run S E T U P
manually and restart via:

r u n a c c t mmdd W T M P F I X

If r u n a c c t failed in the P R O C E S S state, remove the last p t a c c t file because it will
not be complete.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/runacct
svid

Page: 407

sa1 (AS_CMD) sa1 (AS_CMD)

NAME
sa1, sa2, sadc – system activity report package

SYNOPSIS
sadc [t n] [ofile]

sa1 [t n]

sa2 [options] [–s time] [–e time] [–i sec]

DESCRIPTION
System activity data can be accessed at the special request of a user [see
sar(AS_CMD)] and automatically on a routine basis as described here. The operat-
ing system contains several counters that are incremented as various system actions
occur. These include counters for CPU utilization, buffer usage, disk and tape I/O
activity, TTY device activity, switching and system-calls, file-access, queue activity,
and interprocess communications, paging, and remote file sharing.

The commands sa1, sa2, and sadc, are used to sample, save, and process this
data, respectively.

The command sa1, a variant of sadc, is used to collect and store data in the binary
file /var/adm/sa/sadd where dd is the current day. The options t and n cause
records to be written n times at an interval of t seconds (once if the options are
omitted).

The command sa2, a variant of sar, writes a daily report in the file
/var/adm/sa/sardd. The options are explained in sar(AS_CMD).

The command sadc, the data collector, samples system data n times with an inter-
val of t seconds between samples. If t and n are omitted, a special record is written.
This facility is typically used at system boot time to mark the time at which the
counters restart from zero.

FILES
/var/adm/sa/sadd daily data file

/var/adm/sa/sardd daily report file

USAGE
Administrator.

SEE ALSO
sar(AS_CMD).

LEVEL
Level 2: September 30, 1989.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/sa1
svid

Page: 408

sacadm (AS_CMD) sacadm (AS_CMD)

NAME
sacadm – service access controller administration

SYNOPSIS
sacadm -a -p pmtag -t type -c cmd -v ver [-f flags] [-n count]

[-y comment] [-z script]

sacadm -r -p pmtag

sacadm -s -p pmtag

sacadm -k -p pmtag

sacadm -e -p pmtag

sacadm -d -p pmtag

sacadm -l [-p pmtag]

sacadm -l [-t type]

sacadm -L [-p pmtag]

sacadm -L [-t type]

sacadm -g -p pmtag [-z script]

sacadm -G [-z script]

sacadm -x [-p pmtag]

DESCRIPTION
The command sacadm handles the administration of the top level of the Service
Access Facility hierarchy. The functions provided by this command are:

Add/Remove a port monitor

Start/Stop a port monitor

Enable/Disable a port monitor

Miscellaneous requests

Normally, sacadm may only be executed by the system administrator or by admin-
istrative command scripts. However, requests about the status of port monitors, or
displaying the per-port monitor and per-system configuration scripts, may be exe-
cuted by any user on the system.

The options and arguments have the following meanings:

–a This option is used to add an entry to the system’s list of port moni-
tors.

–c cmd This option is used to specify the command string, cmd, that is to be
executed to start the port monitor.

–d This option is used to disable a port monitor.

–e This option is used to enable a port monitor.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/sacadm
svid

Page: 409

sacadm (AS_CMD) sacadm (AS_CMD)

–f flags This option is used to specify which flags should be set for the port
monitor entry. If not specified, no flags are set. The flags must be one
or both of d or x and have the following meanings:

d — When started, the port monitor should be placed into the dis-
abled state. (Default: the port monitor starts in the enabled state).

x — The port monitor should not be started. (Default: the port moni-
tor should be started).

A -f with no following argument is illegal.

–g This option is used to indicate that a per-port monitor configuration
script should be replaced or displayed.

–G This option is used to indicate that the per-system configuration script
should be replaced or displayed.

–k This option is used to stop a port monitor.

–l This option is used to display port monitor information.

–L This option is used to display port monitor information in a con-
densed format.

–n count This option is used to specify the restart count. If not specified, a
count of 0 will be used (i.e. do not restart the port monitor if it fails).

–p pmtag This option is used to specify the tag associated with the port monitor.

–r This option is used to remove a port monitor entry from the system’s
list of port monitors.

–s This option is used to start a port monitor.

–t type This option is used to specify the type of the port monitor.

–v ver This option is used to specify the version number of the port
monitor’s database file.

–x This option is used to indicate that database information should be
read.

–y comment This option is used to specify a comment that should be associated
with the port monitor entry.

–z script This option is used to specify the name of the file that contains a
configuration script. This file will be copied to the appropriate place.

When adding a port monitor, sacadm will create the supporting directory structure
in /etc/saf/sac.d and will add an entry for the port monitor in the Service
Access Controller (SAC) administrative file. The new port monitor will be started if
that action was specified.

When removing a port monitor, sacadm will remove the port monitor’s entry from
SAC’s administrative file. If the removed port monitor is not running, then no
further action is taken. If the removed port monitor is running, the Service Access
Controller will send it SIGTERM [see signal(BA_ENV)] to indicate that it should
shut down.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/sacadm
svid

Page: 410

sacadm (AS_CMD) sacadm (AS_CMD)

A request to start a port monitor will cause the SAC to start the port monitor
specified by pmtag. A request to stop a port monitor will cause the SAC to send
SIGTERM to the port monitor specified by pmtag.

A request to enable a port monitor will cause the SAC to send an enable message to
the port monitor specified by pmtag. A request to disable a port monitor will cause
the SAC to send a disable message to the port monitor specified by pmtag.

When requesting status information or updating configuration scripts, the options
may be specified in the following combinations. The –l by itself will cause a listing
of all port monitors on the system. A –l in combination with a –p will cause a list-
ing of the specified port monitor only. A –l in combination with a –t will cause a
listing of all port monitors of the specified type. Other combinations with –l are
implementation dependent, and may be invalid.

The –L option is identical to the –l option specified above except that the output
appears in a condensed format.

The –g option in combination with the –p option will cause the configuration script
for the specified port monitor to be displayed. The –g option in combination with
the –p option and –z option will cause the specified file to be installed as the per-
port monitor configuration script for the designated port monitor. Other combina-
tions with –g are implementation dependent, and may be invalid.

The –G option by itself will cause the per-system configuration script to be
displayed. The –G option in combination with the –z option will cause the
specified file to be installed as the per-system configuration script. Other combina-
tions with –G are implementation dependent, and may be invalid.

The –x option by itself specifies that the SAC should read its administrative file.
The –x option in combination with the –p option specifies that the designated port
monitor should read its administrative file.

RETURN VALUE
If successful, this command will exit with a status of 0. If it fails for any reason, it
will exit with a nonzero status. Options that request information will result in that
information being written on the standard output. In the condensed format, port
monitor information will appear in colon-separated columns and the comment field
will be preceded by the character #. In the regular format, a header identifying the
columns will be output and the port monitor information will be aligned under the
appropriate heading.

EXAMPLE
To add a port monitor whose tag is npack, whose type is listen, which will res-
tart 3 times before failing, whose administrative command is pmspec, and whose
configuration script is in the file script, use:

sacadm –a –p npack –t listen –c "/usr/lib/saf/listen npack"\
–v `pmspec –V` –n 3 –z script

To remove a port monitor whose tag is foo use:

sacadm –r –p foo

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/sacadm
svid

Page: 411

sacadm (AS_CMD) sacadm (AS_CMD)

To start the port monitor whose tag is foo use:

sacadm –s –p foo

To stop the port monitor whose tag is foo use:

sacadm –k –p foo

To enable the port monitor whose tag is foo use:

sacadm –e –p foo

To disable the port monitor whose tag is foo use:

sacadm –d –p foo

To list the status information about all port monitors use:

sacadm –l

To list the status information about the port monitor whose tag is foo use:

sacadm –l –p foo

To list the same information as above in condensed format use:

sacadm –L –p foo

To list the status information about all port monitors whose type is listen use:

sacadm –l –t listen

To change the configuration script associated with the port monitor whose tag is
foo to be what is in the file file.config use:

sacadm –g –p foo –z /var/tmp/file.config

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: as_cmd/sacadm
svid

Page: 412

sadp (AS_CMD) sadp (AS_CMD)

NAME
sadp – disk access profiler

SYNOPSIS
sadp [–th] [–d device [–drive]] s [n]

DESCRIPTION
The command sadp reports disk access location and seek distance, in tabular or
histogram form. It samples disk activity once every second during an interval of s
seconds. This is repeated n times if n is specified.

The argument drive specifies the disk drives and it may be:

a drive number in the range supported by device,
or

two numbers separated by a minus (indicating an inclusive range),
or

a list of drive numbers separated by commas.

The –d option may be omitted, if the system has only one device type.

The –t option (default) causes the data to be reported in tabular form. The –h
option produces a histogram.

USAGE
Administrator.

LEVEL
Level 2: September 30, 1989.

Optional.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/sadp
svid

Page: 413

sar (AS_CMD) sar (AS_CMD)

NAME
sar – system activity reporter

SYNOPSIS
sar [options] [–o file] t [n]

sar [options] [–s time] [–e time] [–i sec] [–f file]

DESCRIPTION
In the first synopsis above, the sar command samples cumulative activity counters
in the operating system at n intervals of t seconds. If the –o option is specified, it
saves the samples in file in binary format. The default value of n is 1. In the second
form, with no sampling interval specified, sar extracts data from a previously
recorded file, either the one specified by the –f option or, by default, the standard
system activity daily data file /var/adm/sa/sadd for the current day dd. The
starting and ending times of the report can be bounded via the –s and –e time
arguments of the form hh[:mm[:ss]]. The –i option selects records at sec second
intervals. Otherwise, all intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by the following options:

–u Report CPU utilization (the default):
%usr, %sys, %wio, %idle – portion of time running in user mode, running
in system mode, idle with some process waiting for block I/O, and other-
wise idle.

–b Report buffer activity:
bread/s, bwrit/s – transfers per second of data between system buffers
and disk or other block devices;
lread/s, lwrit/s – accesses of system buffers;
%rcache, %wcache – cache hit ratios, i.e., 1 – bread/lread;
pread/s, pwrit/s – transfers via raw (physical) device mechanism.

–d Report activity for each block device, e.g., disk or tape drive. When data is
displayed, the device specification dsk- is generally used to represent a
disk drive. The device specification used to represent a tape drive is
machine dependent. The activity data reported is:
%busy, avque – portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time;
r+w/s, blks/s – number of data transfers from or to device, number of
bytes transferred in 512-byte units;
avwait, avserv – average time in milliseconds. that transfer requests wait
idly on queue, and average time to be serviced (which for disks includes
seek, rotational latency and data transfer times).

–y Report TTY device activity:
rawch/s, canch/s, outch/s – input character rate, input character rate
processed by canon, output character rate;
rcvin/s, xmtin/s, mdmin/s – receive, transmit and modem interrupt
rates.

–c Report system calls:
scall/s – system calls of all types;
sread/s, swrit/s, fork/s, exec/s – specific system calls;
rchar/s, wchar/s – characters transferred by read and write system calls.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/sar
svid

Page: 414

sar (AS_CMD) sar (AS_CMD)

–w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s – number of transfers and number
of 512-byte units transferred for swapins and swapouts (including initial
loading of some programs);
pswch/s – process switches.

–a Report use of file access system routines:
iget/s, namei/s, dirblk/s.

–q Report average queue length while occupied, and percent of time occupied:
runq-sz, %runocc – run queue of processes in memory and runnable;
swpq-sz, %swpocc – swap queue of processes swapped out but ready to
run.

–v Report status of process, i-node, file, and record lock tables:
proc-sz, inod-sz, file-sz, lock-sz – entries/size for each table,
evaluated once at sampling point;
ov – overflows that occur between sampling points for each table.

–m Report message and semaphore activities:
msg/s, sema/s – primitives per second.

–A Report all data (all options effective).

EXAMPLE
To see today’s CPU activity so far:

sar

To watch CPU activity evolve for 10 minutes and save data:

sar –o temp 60 10

To later review disk and tape activity from that period:

sar –d –f temp

FILES
/var/adm/sa/sadd daily data file, where dd are digits representing the day

of the month.

USAGE
Administrator.

SEE ALSO
sa1(AS_CMD).

LEVEL
Level 2: September 30, 1989.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/sar
svid

Page: 415

setmnt (AS_CMD) setmnt (AS_CMD)

NAME
setmnt – establish mount table

SYNOPSIS
setmnt

DESCRIPTION
The command setmnt creates the /etc/mnttab table, which is needed for both
the mount and umount [see mount(AS_CMD)] commands. The command
setmnt reads standard input and creates a mnttab entry for each line. Input lines
have the format:

filesys node

where filesys is the name of the special file of the file system and node is the root name
of that file system. Thus, filesys and node become the first two strings in the
/etc/mnttab entry.

FILES
/etc/mnttab

USAGE
Administrator.

SEE ALSO
mount(AS_CMD).

FUTURE DIRECTIONS
In the future, the mnttab file will be replaced by a kernel table access mechanism.
This will make setmnt obsolete.

LEVEL
Level 2: September 30, 1989.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/setmnt
svid

Page: 416

setuname (AS_CMD) setuname (AS_CMD)

NAME
setuname – changes machine information

SYNOPSIS
setuname -s name [-n node] [-t]

setuname [-s name] -n node [-t]

DESCRIPTION
The command setuname changes the parameter value for the system name and
node name. Each parameter can be changed using setuname and the appropriate
option. Both values may be changed at the same time. At least one value option
must be given.

The options and arguments have the following meanings:

–s name Changes the system name. name specifies new system name and may
consist of alphanumeric characters and the special characters dash,
underscore, and dollar sign (which has significance to the shell, and
should therefore be escaped).

–n node Changes the node name. node specifies the new network node name
and may consist of alphanumeric characters and the special characters
dash, underscore, and dollar sign.

-t Temporary change. No attempt will be made to preserve the change
across reboots.

Either or both the -s and -n options must be given when invoking setuname.

The maximum size of the elements will be SYS_NMNL (defined in limits.h). The
command will issue a warning message if the name entered is incompatible with
the system requirements.

USAGE
setuname attempts to change the parameter values in two places: the running ker-
nel and, as necessary per implementation, to cross system reboots. A temporary
change changes only the running kernel.

SEE ALSO
uname(BA_OS), uname(BU_CMD).

FUTURE DIRECTIONS
Programmatic interfaces have been assured a consistent value for the string that
reflects the operating system implementation name. By convention this should
reflect the fact that this implementation is UNIX System V. Since, by definition, it is
inappropriate to change the name of the operating system implementation without
recompiling the kernel, the -s option will be eliminated in a future release.

LEVEL
Level 1.

The setuname -s name option has been moved to Level 2, July 1992.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/setuname
svid

Page: 417

srchtxt (AS_CMD) srchtxt (AS_CMD)

NAME
srchtxt – display contents of, or search for a text string in, message data bases

SYNOPSIS
srchtxt [-s] [-l locale] [-m msgfile[,msgfile ...]] [text]

DESCRIPTION
The command srchtxt is used to display all the text strings in message data bases,
or to search for a text string in message data bases [see mkmsgs(AS_CMD)]. These
data bases are files in the directory /usr/lib/locale/locale/LC_MESSAGES [see
setlocale(BA_OS)], unless a file name given with the –m option contains a slash (/).
The directory locale can be viewed as the language in which the text strings are writ-
ten. If the –l option is not specified, the files accessed will be determined by the
value of the environment variable LC_MESSAGES. If LC_MESSAGES is not set, the
files accessed will be determined by the value of the environment variable LANG. If
LANG is not set, the files accessed will be in the directory
/usr/lib/locale/C/LC_MESSAGES, which contains U. S. English strings.

If no text argument is present, then all the text strings in the files accessed will be
displayed.

The options and arguments have the following meanings:

–s suppress printing of the message sequence numbers of the messages
being displayed

–l locale access files in the directory
/usr/lib/locale/locale/LC_MESSAGES

–m msgfile access file(s) specified by one or more msgfiles. If msgfile contains a
slash (/), then msgfile is interpreted as a pathname; otherwise, it will
be assumed to be in the directory determined as described above. To
specify more than one msgfile , the file names are separated using com-
mas.

text search for the text string specified by text and display each one that
matches. text can take the form of a regular expression [see
ed(BU_CMD)].

If the –s option is not specified, the displayed text is prefixed by message sequence
numbers. The message sequence numbers are enclosed in angle brackets:
<msgfile:msgnum>.

msgfile name of the file where the displayed text occurred

msgnum sequence number in msgfile where the displayed text occurred

This display is in the format used by the command gettxt [see gettxt(BU_CMD)]
and the routine gettxt() [see gettxt(BA_LIB)].

EXAMPLE
The following examples show uses of srchtxt.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/srchtxt
svid

Page: 418

srchtxt (AS_CMD) srchtxt (AS_CMD)

Example 1:

If message files have been installed in a locale named french by using mkmsgs,
then you could display the entire set of text strings in the french locale
(/usr/lib/locale/french/LC_MESSAGES/*) by typing:

srchtxt –l french

Example 2:

If a set of error messages associated with the operating system had been installed in
the file UX, then you could search for the pattern open.*file in the file UX in
the french locale (/usr/lib/locale/french/LC_MESSAGES/UX), using the
value of the LANG environment variable to determine the locale to be searched, by
typing:

LANG=french; export LANG
srchtxt –m UX "open.*file"

If /usr/lib/locale/french/LC_MESSAGES/UX contained the following
strings:

I/O error\n
file %s:\texists\n
Too many open files\n
Error: %s open file error\n

.

.

.

then two strings would be displayed:

<UX:3>Too many open files\n
<UX:4>Error: %s open file error\n

Example 3:

If a set of error messages associated with the operating system had been installed in
the file UX and a set of error messages associated with a data base product had
been installed in the file ingress, both in the german locale, then you could
search for the pattern close.*file in both the files UX and ingress in the
german locale by typing:

srchtxt –l german –m UX,ingress "close.*file"

FILES
/usr/lib/locale/C/LC_MESSAGES/* default message files created by

mkmsgs

/usr/lib/locale/locale/LC_MESSAGES/* message files created by mkmsgs

SEE ALSO
ed(BU_CMD), gettxt(BA_LIB), gettxt(BU_CMD), mkmsgs(AS_CMD),
setlocale(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/srchtxt
svid

Page: 419

sync (AS_CMD) sync (AS_CMD)

NAME
sync – flush system buffers

SYNOPSIS
sync

DESCRIPTION
The command sync executes the sync() system routine. If the system is to be
stopped, sync must be executed to ensure file system integrity. It flushes all previ-
ously unwritten system buffers out to disk, thus assuring that all file modifications
up to that point are saved.

USAGE
Administrator.

SEE ALSO
sync(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/sync
svid

Page: 420

sysdef (AS_CMD) sysdef (AS_CMD)

NAME
sysdef – system definition

SYNOPSIS
sysdef [opsys [master]]

DESCRIPTION
The command sysdef analyzes the named operating system file opsys (or the
default file if none is specified) and extracts configuration information. The master
file contains hardware and software specifications used to create the operating sys-
tem file opsys. (The default master file is used if one is not specified.) The master file
may include hardware configuration as well as software devices and tunable
parameters. The format of the master file is implementation defined.

USAGE
Administrator.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/sysdef
svid

Page: 421

timex (AS_CMD) timex (AS_CMD)

NAME
timex – time a command; report process data and system activity

SYNOPSIS
timex [-pos] command

timex -p[fhkmrt] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system time spent
in execution are reported in seconds. Optionally, process accounting data for the
command and all its children can be listed or summarized, and total system activity
during the execution interval can be reported.

The output of timex is written on standard error.

The options have the following meanings:

–p List process accounting records for command and all its children. Suboptions
f, h, k, m, r, and t modify the data items reported, as defined in
acctcom(AS_CMD). The number of blocks read or written and the number
of characters transferred are always reported.

–o Report the total number of blocks read or written and total characters
transferred by command and all its children.

–s Report total system activity (not just activity due to command) that occurred
during the execution interval of command. All the data items listed in
sar(AS_CMD) are reported.

SEE ALSO
acctcom(AS_CMD), sar(AS_CMD).

LEVEL
Level 2: September 30, 1989.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/timex
svid

Page: 422

urestore (AS_CMD) urestore (AS_CMD)

NAME
urestore – request restore of files and directories

SYNOPSIS
urestore [-o target] [-d date] [-m] [-s] -F file ...

urestore [-o target] [-d date] [-n] [-s] -F file ...

urestore [-o target] [-d date] [-m] [-v] -F file ...

urestore [-o target] [-d date] [-n] [-v] -F file ...

urestore [-o target] [-d date] [-m] [-s] -D dir ...

urestore [-o target] [-d date] [-n] [-s] -D dir ...

urestore [-o target] [-d date] [-m] [-v] -D dir ...

urestore [-o target] [-d date] [-n] [-v] -D dir ...

urestore -c jobid

DESCRIPTION
The command urestore posts requests for the restore of files or directories from
system-maintained archives. If the appropriate archive containing the requested
files or directories is on-line, the files or directories are restored immediately. If not,
a request to restore the specified files or directories is posted to a restore status
table. A restore request that has been posted must later be resolved by an operator
[see rsoper(AS_CMD)]. Each file or directory to be restored is assigned a restore
jobid that can be used to monitor the progress of the restore [see
ursstatus(AS_CMD)] or to cancel it.

The user must have write permission for the current directory and any subdirec-
tories to be traversed in storing the restored files or directories. Requests for
restores may be made only by the user who owned the files or directories at the
time the archive containing the files or directories was made, or by a user with
appropriate privileges.

urestore –c cancels a previously issued restore request.

The options and arguments have the following meanings:

–d date Restores the file system or directory as of date. (This may or may not be
the latest archive.) [See at(AU_CMD) for valid date formats.]

–m If the restore cannot be carried out immediately, this option notifies the
invoking user via mail [see mail(BU_CMD)] when the request has been
completed.

–n Displays a list of all archived versions of the file system or directory con-
tained in the backup history log but does not attempt to restore the file
system or directory.

–o target Instead of restoring directly to the specified file or directory, this option
replaces the file target with the archive of the specified file or directory.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/urestore
svid

Page: 423

urestore (AS_CMD) urestore (AS_CMD)

–s While a restore operation is occurring, displays a dot (.) for each 100
blocks transferred from the destination device.

–v Displays the name of each object as it is restored. Only those archiving
methods that restore named directories and files [see incfile(AS_CMD)
and ffile(AS_CMD)] support this option.

–D dir Initiates restore of directories.

–F file Initiates restore of files.

ERRORS
The exit codes for urestore are the following:

0 = successful completion of the task

1 = one or more parameters to urestore are invalid.

2 = an error has occurred which caused urestore to fail to complete all portions
of its task.

FILES
/etc/bkup/bkhist.tab keeps track of the location (by volume label) of all

the volumes of backup archives available for use
in restoring lost files as well as (optionally) the
contents of each archive.

/etc/bkup/rsstatus.tab lists the status of all restore requests from users.

/etc/bkup/rsnotify.tab lists the email address of the operator to be
notified whenever restore requests require opera-
tor intervention.

EXAMPLE
Example 1:

urestore –m –F bigfile

posts a request to restore the most current archived version of the file bigfile. If
the restore cannot be carried out immediately, it notifies the invoking user when the
request has been completed.

Example 2:

urestore –c rest-256a,rest-256b

cancels restore requests with job ID numbers rest-256a and rest-256b.

Example 3:

urestore –o /testfiles/myfile.b –F /testfiles/myfile.a

posts a request for the archived file /testfiles/myfile.a to be restored as
/testfiles/myfile.b.

Example 4:

urestore –d "december 1, 1987" –D /user1

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/urestore
svid

Page: 424

urestore (AS_CMD) urestore (AS_CMD)

posts a request for the archived directory structure /user1, with all its files and
subdirectories, to be restored as of December 1, 1987. If the restore is done immedi-
ately from an on-line archive, the name of each file will be displayed on standard
output while the restore is occurring.

Example 5:

urestore –n –D /pr3/reports

requests the system to display the backup dates and an ls -l listing [see
ls(BU_CMD)] from the backup history log of all archived versions of the directory
/pr3/reports. A restore of the directory is not performed.

SEE ALSO
ffile(AS_CMD), getdate(BA_LIB), incfile(AS_CMD), ls(BU_CMD), mail(BU_CMD),
restore(AS_CMD), ursstatus(AS_CMD).

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.

Optional

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/urestore
svid

Page: 425

ursstatus (AS_CMD) ursstatus (AS_CMD)

NAME
ursstatus – report the status of posted user file and directory restore requests

SYNOPSIS
ursstatus [–f c] [–h] [–j jobids]

DESCRIPTION
With no options, ursstatus reports the status of all pending restore requests
issued by the user that are posted in the restore status table.

The options and arguments have the following meanings:

–f c Suppresses field wrap and specifies an output field separator to be used.
c is the character that will appear as the field separator on the display
output.

–h Suppresses headers for the report.

–j jobids Restricts the report to the specified jobs. jobids is a list of restore job IDs
(either comma-separated or blank-separated and surrounded by quotes).

ERRORS
The exit codes for ursstatus are the following:

0 = successful completion of the task

1 = one or more parameters to ursstatus are invalid.

2 = an error has occurred which caused ursstatus to fail to complete all portions
of its task.

FILES
/etc/bkup/rsstatus.tab tracks the status of all restore requests from users

EXAMPLE
ursstatus –j rest-354a,rest-429b

reports the status only of the two posted restore requests with the specified job IDs.

SEE ALSO
restore(AS_CMD), rsstatus(AS_CMD), urestore(AS_CMD).

FUTURE DIRECTIONS
This command will be modified in the future in a way that provides compliance
with any eventual POSIX and X/Open standards and an orderly migration from
current practice.

LEVEL
Level 2, April 1991.

Optional

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/ursstatus
svid

Page: 426

useradd (AS_CMD) useradd (AS_CMD)

NAME
useradd – add a new user login on the system

SYNOPSIS
useradd [-u uid [-o] [-i]] [-g group] [-G group[[,group] . . .]] [-d dir]

[-s shell] [-c comment] [-m [-k skel_dir] -f inactive] [-e expire]
[-h level [-h level [. . .]]] [-v def_level] [-w hd_level] [-a event[, . . .]]
login

DESCRIPTION
The useradd command adds a new user entry to the Identification and Authenti-
cation (I&A) data files. It also creates supplementary group memberships for the
user and creates the home directory for the user if requested. The new login
remains locked until the passwd command [see passwd(AU_CMD)] is executed to
set the password.

The following options are available:

-u uid Specifies the UID of the new user. It must be a non-negative decimal
integer below {MAXUID}. It defaults to the next available UID
greater than 99.

-o This option allows a UID to be duplicated (non-unique). Because the
security of the system in general, and the integrity of the audit trail
and accounting information in particular, depends on every UID
being uniquely associated with a specific individual, never use this
feature to assign more than one user the same UID.

-i Allows a UID currently being aged to be used.

-g group Specifies an existing group’s integer ID or character string name. It
defines the new user’s primary group membership and defaults to the
default group defined for the system.

-G group Specifies a set of existing groups by integer ID or by character string
name. It defines the new user’s supplementary group membership.
Duplicates are ignored. No more than NGROUPS_MAX groups should
be specified.

-d dir Specifies the home directory of the new user. This field is limited to
{PATH_MAX} characters. dir is a pathname, the default value of which
is HOMEDIR/login, where HOMEDIR is the base directory for new
login home directories and login is the new login.

-s shell Specifies the full pathname of the program that will be used as the
user’s shell on login. This field is limited to {PATH_MAX} characters.
It defaults to sh [see sh(BU_CMD)]. The shell must be a valid execut-
able file.

-c comment Specifies any text string. It is generally a short description of the
login, and is currently used as the field for the user’s full name. It is
limited to 128 printable characters and should not include colons (:).

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/useradd
svid

Page: 427

useradd (AS_CMD) useradd (AS_CMD)

-m Creates the new user’s home directory if it doesn’t already exist. If the
directory already exists, the user being added must have read, write,
and execute permissions for the directory.

-k skel_dir Specifies a directory that contains skeleton information (such as a
.profile file) to copy into the new user’s home directory. The direc-
tory must exist. The system provides a ‘‘skel’’ directory that can be
used for this purpose.

-f inactive The maximum number of days allowed between uses of a login before
that login is declared invalid. Normal values are positive integers. A
value of -1 overrides the value of inactive previously set with -f.

-e expire The date on which a login can no longer be used; after this date, no
user will be able to access this login. (This option is useful for creating
temporary logins.) You may type the value of the argument expire
(which is a date) in any format you like (except a Julian date). For
example, you may enter 10/6/90 or October 6, 1990. A value
of ‘‘ ’’ overrides the value of expire previously set with -e.

-h level Specifies the security level at which the user can log in. Repeat the -h
option as many times as necessary to specify every level at which the
user may log in. This option is valid only if the Enhanced Security
Extension is implemented.

-v def_level Specifies the default security level for the user. It must be one of the
levels specified by the -h option. This option is valid only if the
Enhanced Security Extension is implemented.

-w hd_level Specifies the security level for the user’s home directory. This option
is valid only if the Enhanced Security Extension is implemented.

-a event Specifies an event type or class (or a comma-separated list of event
types or classes) that compose the user’s audit mask. This option is
valid only if the Auditing Extension is implemented.

login A string of printable characters that specifies the new login name of
the user. It may not contain a colon (:) or a newline (\n) and must be
unique.

RETURN VALUE
Upon successful completion, useradd returns a value of 0. Otherwise, it returns a
non-zero value.

FILES
/etc/default/useradd
/etc/group
/etc/passwd
/etc/security/ia/ageduid
/etc/security/ia/audit
/etc/security/ia/index
/etc/security/ia/master
/etc/security/ia/level/logname
/etc/skel

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/useradd
svid

Page: 428

useradd (AS_CMD) useradd (AS_CMD)

SEE ALSO
defadm(BU_CMD), groupadd(AS_CMD), groupdel(AS_CMD),
groupmod(AS_CMD), logins(AS_CMD), passwd(AS_CMD), passwd(AU_CMD),
sh(BU_CMD), userdel(AS_CMD), usermod(AS_CMD), users(AU_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/useradd
svid

Page: 429

usermod (AS_CMD) usermod (AS_CMD)

NAME
usermod – modify a user’s login information on the system

SYNOPSIS
usermod [-u uid [-o]] [-g group] [-G group[[,group] . . .]] [-d dir[-m]] [-s
shell]

[-c comment] [-l new_logname] [-f inactive] [-e expire]
[-h [operator] level [-h level [. . .]]] [-v def_level]
[-a [operator] event [, . . .]] login

DESCRIPTION
The command usermod modifies a user’s login definition on the system. It changes
the definition of the specified login and makes the appropriate login-related system
file and file system changes.

The options and arguments have the following meanings:

-u uid Specifies a new UID for the user. It must be a unique non-
negative decimal integer below {MAXUID}.

-o This option allows the specified UID to be duplicated (non-
unique). Because the security of the system depends on every
UID being uniquely associated with a specific individual, never
use this feature to assign more than one user the same UID.

-g group Specifies an existing group’s integer ID, or character string name.
It redefines the user’s primary group membership.

-G group Specifies an existing group’s integer ID, or character string name.
It redefines the user’s supplementary group membership. Dupli-
cates are ignored. No more than NGROUPS_MAX groups should
be specified.

-d dir Specifies the new home directory of the user. This field is limited
to {PATH_MAX} characters. It defaults to HOMEDIR/login, where
HOMEDIR is the base directory for new login home directories
and login is the new login.

-s shell Specifies the full pathname of the program that will be used as
the user’s shell on login. This field is limited to {PATH_MAX}
characters. The shell must be a valid executable file.

-c comment Specifies any text string. It is generally a short description of the
login, and is currently used as the field for the user’s full name. It
is limited to 128 printable characters and should not include
colons (:).

-l new_logname Specifies a string of printable characters that make up the new
login name for the user. It may not contain a colon (:) or a new-
line (\n) and must be unique.

-m Moves the user’s home directory to the new directory specified
with the –d option. If the directory already exists, the specified
login must have access to it.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/usermod
svid

Page: 431

usermod (AS_CMD) usermod (AS_CMD)

-f inactive The maximum number of days allowed between uses of a login
ID before that login ID is declared invalid. Normal values are
positive integers. A value of -1 overrides the value of inactive
previously set with -f.

-e expire The date on which a login can no longer be used; after this date,
no user will be able to access this login. (This option is useful for
creating temporary logins.) You may type the value of the argu-
ment expire (which is a date) in any format you like (except a
Julian date). For example, you may enter 10/6/90 or October
6, 1990. A value of " " overrides the value of expire previously
set with -e.

-h operator level Specifies the levels at which a user can log in. An operator can be
any of the following three: + (to add), - (to delete), or = (to
replace). The levels specified are processed based on the opera-
tor. If the operator is not given, the = (replace) operator is
assumed. To add, delete or replace several levels, specify multi-
ple -h options. However, an operator may be specified only on
the first -h option; the same operation is assumed for any subse-
quent -h options. This option is valid only if the Enhanced Secu-
rity Extension is implemented.

-v def_level Changes the user’s default level to the one specified. This option
is valid only if the Enhanced Security Extension is implemented.

-a operator event
Sets the user’s audit mask based on the event(s) specified. An
operator can be any of the following three: + (to add), - (to
delete), or = (to replace). If an operator is not given, the =
(replace) operator is assumed. This option is valid only if the
Auditing Extension is implemented.

login Specifies a string of printable characters that make up the existing
login to be modified.

RETURN VALUE
Upon successful completion, usermod returns a value of 0. Otherwise, it returns a
non-zero value.

FILES
/etc/group
/etc/passwd
/etc/security/ia/audit
/etc/security/ia/index
/etc/security/ia/master
/etc/security/ia/level/logname

SEE ALSO
groupadd(AS_CMD), groupdel(AS_CMD), groupmod(AS_CMD),
logins(AS_CMD), passwd(AS_CMD), passwd(AU_CMD), useradd(AS_CMD),
userdel(AS_CMD), users(AS_CMD).

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/usermod
svid

Page: 432

usermod (AS_CMD) usermod (AS_CMD)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/usermod
svid

Page: 433

volcopy (AS_CMD) volcopy (AS_CMD)

NAME
volcopy, labelit – copy file systems with label checking

SYNOPSIS
volcopy [–F FSType] [–V] [options] [–o specific_options] fsname special1 volname1
special2 volname2
labelit [–F FSType] [–V] [–o specific_options] special [fsname volume [–n]]

DESCRIPTION
The command volcopy makes a literal copy of the file system using a block size
matched to the device. The options and arguments for this command are:
–F FSType specify the FSType on which to operate. The FSType must be specified

or must be determinable by searching an implementation-defined
database for an entry matching the special specified.

–V echo complete command line. This includes additional information
determined by a lookup in an implementation-defined database. This
option is used to verify and validate a command line. The command
is not executed.

–o specify FSType-specific options, if any
–a invoke a verification sequence requiring a positive operator response

instead of the standard delay before the copy is made
–s (default) invoke the DEL if wrong verification sequence.

Other options are used only with 9-track magnetic tapes:
–bpidensity bits per inch
–feetsize size of reel in feet
–reelnum beginning reel number for a restarted copy
–buf use double buffered I/O.

The program requests length and density information if this is not given on the
command line or if it is not recorded on an input tape label. If the file system is too
large to fit on one reel, volcopy prompts for additional reels. Labels of all reels
are checked. Tapes may be mounted alternately on two or more drives. If vol-
copy is interrupted, it asks if the user wants to quit or wants to escape to the com-
mand interpreter. In the latter case, the user can perform other operations (e.g.,
labelit) and return to volcopy by exiting the command interpreter.

The fsname argument represents the file system name on the device (e.g., root, u1)
being copied.

The special should be the physical disk section or tape and is hardware specific (e.g.,
/dev/rdsk/1s5, /dev/rmt/c0s0).

The volname is the physical volume name; it should match the external label sticker.
Such label names are limited to six or fewer characters. The argument volname may
be – to use the existing volume name.

The arguments special1 and volname1 are the device and volume, respectively, from
which the copy of the file system is being extracted. The arguments special2 and vol-
name2 are the target device and volume, respectively.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/volcopy
svid

Page: 434

volcopy (AS_CMD) volcopy (AS_CMD)

The command labelit can be used to provide initial labels for unmounted disk or
tape file systems. With the optional arguments omitted, labelit prints current
label values. The –n option provides for initial labeling of new tapes only (this des-
troys previous contents).

volume may be used to equate an internal name to a volume name applied exter-
nally to the disk pack, diskette, or tape.

USAGE
Administrator.

FUTURE DIRECTIONS
Support for the -s option will be eventually discontinued.

volcopy has been designated Level 2 as of July 1992. It will be removed from the
SVID after the Level 2 period has expired. The functionality of volcopy has been
replaced by backup(AS_CMD).

LEVEL
Level 2, July 1992.

The following option has been moved to level 2 effective September 30, 1989:

-s

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/volcopy
svid

Page: 435

whodo (AS_CMD) whodo (AS_CMD)

NAME
whodo – who is doing what

SYNOPSIS
whodo [–h] [–l] [-z -Z] [user]

DESCRIPTION
The command whodo produces merged, reformatted, and dated output from the
who and ps commands [see who(AU_CMD) and ps(BU_CMD), respectively].

The –h option suppresses printing of the header.

The –l option displays a summary of the current activity on the system, including
what each user is doing. The heading line shows the current time of day, how long
the system has been up, the number of users logged into the system, and the load
averages. The load average numbers give the number of jobs in the run queue aver-
aged over 1, 5 and 15 minutes.

The -z option prints the alias name of the level of each process. This option is only
valid if the Enhanced Security Extension is implemented.

The -Z option prints the fully qualified level of each process. This option is only
valid if the Enhanced Security Extension is implemented.

If user is specified, output is restricted to that user. If user is logged in on multiple
terminals, all sessions for that user will be displayed.

A normal user is restricted to display only information on processes which the user
owns and with a level that is dominated by the user’s current level. An administra-
tor is able to display information about all processes.

If the -l option is specified, the -z and -Z options are ignored. The -z and -Z
options are mutually exclusive. If the -z option is specified and there is not an alias
assigned to the level, the decimal value of the level identifier (LID) is displayed. If
the -z or -Z option is specified and the level is in the valid-inactive state, the decimal
value of the LID is displayed. LID states are described in lvlname(ES_CMD).

FILES
/etc/passwd
/etc/ps_data
/proc/pid
/var/adm/utmp

USAGE
General.

SEE ALSO
lvlname(ES_CMD), ps(BU_CMD), who(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/whodo
svid

Page: 436

zdump (AS_CMD) zdump (AS_CMD)

NAME
zdump – time zone dumper

SYNOPSIS
zdump [–v] [–c cutoffyear] [zonename ...]

DESCRIPTION
The command zdump prints the current time in each zonename named on the com-
mand line.

The options and arguments have the following meanings:

–v For each zonename on the command line, print the current time, the time at
the lowest possible time value, the time one day after the lowest possible
time value, the times both one second before and exactly at each time at
which the rules for computing local time change, the time at the highest pos-
sible time value, and the time at one day less than the highest possible time
value. Each line ends with isdst=1 if the given time is daylight saving
time or isdst=0 otherwise.

–c cutoffyear
Cut off the verbose output near the start of the year cutoffyear.

FILES
/usr/share/lib/zoneinfo standard zone information directory

USAGE
End-user.

SEE ALSO
ctime(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/zdump
svid

Page: 437

zic (AS_CMD) zic (AS_CMD)

NAME
zic – time zone compiler

SYNOPSIS
zic [–v] [–d directory] [–l localtime] [filename ...]

DESCRIPTION
The command zic reads text from the file(s) named on the command line and
creates the time conversion information files specified in this input. If filename is –,
the standard input is read.

The options and arguments have the following meanings:

–v Complain if a year that appears in a data file is outside the range of
years representable by system time values (0:00:00 AM UTC, January
1, 1970, to 3:14:07 AM UTC, January 19, 2038).

–d directory Create time conversion information files in the directory directory
rather than in the standard directory

/usr/share/lib/zoneinfo.

–l timezone Use the time zone timezone as local time. zic will act as if the file
contained a link line of the form

link timezone localtime

Input lines are made up of fields. Fields are separated from one another by any
number of white space characters. Leading and trailing white space on input lines
is ignored. An unquoted sharp character (#) in the input introduces a comment
which extends to the end of the line the sharp character appears on. White space
characters and sharp characters may be enclosed in double quotes (") if they’re to
be used as part of a field. Any line that is blank (after comment stripping) is
ignored. Non-blank lines are expected to be of one of three types: rule lines, zone
lines, and link lines.

A rule line has the form:
rule name from to type in on at save letter/s

For example:
rule USA 1969 1973 – Apr lastSun 2:00 1:00 D

The fields that make up a rule line are:

name Gives the (arbitrary) name of the set of rules this rule is part of.

from Gives the first year in which the rule applies. The word minimum (or an
abbreviation) means the minimum year with a representable time value.
The word maximum (or an abbreviation) means the maximum year with a
representable time value.

to Gives the final year in which the rule applies. In addition to minimum
and maximum (as above), the word only (or an abbreviation) may be
used to repeat the value of the from field.

type Gives the type of year in which the rule applies. If type is – then the rule
applies in all years between from and to inclusive; if type is uspres, the
rule applies in U.S. Presidential election years; if type is

Page 1

FINAL COPY
June 15, 1995

File: as_cmd/zic
svid

Page: 438

zic (AS_CMD) zic (AS_CMD)

nonpres, the rule applies in years other than U.S. Presidential election
years.

in Names the month in which the rule takes effect. Month names may be
abbreviated.

on Gives the day on which the rule takes effect. Recognized forms include:

5 the fifth of the month

lastSun the last Sunday in the month

lastMon the last Monday in the month

Sun>=8 first Sunday on or after the eighth

Sun<=25 last Sunday on or before the 25th

Names of days of the week may be abbreviated or spelled out in full.
Note: there must be no spaces within the on field.

at Gives the time of day at which the rule takes effect. Recognized forms
include:

2 time in hours

2:00 time in hours and minutes

15:00 24-hour format time (for times after noon)

1:28:14 time in hours, minutes, and seconds

Any of these forms may be followed by the letter w if the given time is
local wall clock time or s if the given time is local standard time; in the
absence of w or s, wall clock time is assumed.

save Gives the amount of time to be added to local standard time when the rule
is in effect. This field has the same format as the at field (the w and s
suffixes are not used).

letter/s Gives the variable part (for example, the S or D in EST or EDT) of time
zone abbreviations to be used when this rule is in effect. If this field is –,
the variable part is null.

A zone line has the form

zone name gmtoff rules/save format [until]

For example:

zone Australia/South–west 9:30 Aus CST 1987 Mar 15 2:00

The fields that make up a zone line are:

name The name of the time zone. This is the name used in creating the time
conversion information file for the zone.

gmtoff The amount of time to add to UTC to get standard time in this zone.
This field has the same format as the at and save fields of rule lines;
begin the field with a minus sign if time must be subtracted from
UTC.

Page 2

FINAL COPY
June 15, 1995

File: as_cmd/zic
svid

Page: 439

zic (AS_CMD) zic (AS_CMD)

rules/save The name of the rule(s) that apply in the time zone or, alternately, an
amount of time to add to local standard time. If this field is –, then
standard time always applies in the time zone.

format The format for time zone abbreviations in this time zone. The pair of
characters %s is used to show where the variable part of the time zone
abbreviation goes.

until The time at which the UTC offset or the rule(s) change for a location.
It is specified as a year, a month, a day, and a time of day. If this is
specified, the time zone information is generated from the given UTC
offset and rule change until the time specified.

The next line must be a continuation line; this has the same form as a
zone line except that the string zone and the name are omitted, as the
continuation line will place information starting at the time specified
as the until field in the previous line in the file used by the previous
line. Continuation lines may contain an until field, just as zone lines
do, indicating that the next line is a further continuation.

A link line has the form

link link-fromlink-to

For example:

link US/EasternEST5EDT

The link-from field should appear as the name field in some zone line; the link-to field
is used as an alternate name for that zone.

Except for continuation lines, lines may appear in any order in the input.

Note: for areas with more than two types of local time, you may need to use local
standard time in the at field of the earliest transition time’s rule to ensure that the
earliest transition time recorded in the compiled file is correct.

FILES
/usr/share/lib/zoneinfo standard directory used for created files

SEE ALSO
ctime(BA_LIB), time(SD_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: as_cmd/zic
svid

Page: 440

