System V Interface Definition,
Fourth Edition
Volume 1

FINAL COPY
June 15, 1995
File

Page: 2

Copyrightd 1983, 1984, 1985, 1986,1987, 1988, 1995 Novell, Inc.
All Rights Reserved. No part of this publication may be reproduced, photocopied, stored
on aretrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.

122 East 1700 South
Provo, UT 84606
U.S.A.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document,
Novell assumes no liability to any party for any loss of damage caused by errors or omissions or
by statements of any kind in the System V Interface Definition, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence,
accident, or any other cause. Novell further assumes no liability arising out of the application or
use of any product or system described herein; nor any liability for incidental or consequential
damages arising from the use of this document. Novell disclaims all warranties regarding the
information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

Novell makes no representation that the interconnection of products in the manner described
herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting or license to make, use or sell equipment constructed in accordance
with this description.

Novell reserves the right to make changes without further notice to any products herein to
improve reliability, function, or design.

TRADEMARKS

Ann Arbor is a trademark of Ann Arbor Terminals, Inc.

Beehive is a trademark of Beehive International.

Concept is a trademark of Human Designed Systems, Inc.

HP is a trademark of Hewlett—Packard Co.

LSl is a trademark of Lear Siegler, Inc.

Micro—Term, ACT and MIME are trademarks of Micro—Term, Inc.
OSF/Moatif is a trademark of the Open Software Foundation

PostScript is a trademark of Adobe Systems.

Tektronix and Tektronix 4010 are registered trademarks of Tektronix, Inc.
TeleVideo is a registered trademark of TeleVideo Systems, Inc.

Teleray is a trademark of Research, Inc.

Teletype is a registered trademark of AT&T.

The X Window System is a trademark of MIT.

UNIX is a registered trademark in the USA and other countries, licensed
exclusively through X/Open Company, Ltd.

VT100 is a trademark of Digital Equipment Corporation.

X/Open is a trademark of X/Open Company Limited.

FINAL COPY
June 15, 1995
File:

Page: 4

Volume 1 Table of Contents

Preface

GENERAL INTRODUCTION

BASE SYSTEM INTRODUCTION

BASE SYSTEM DEFINITIONS

BASE SYSTEM ENVIRONMENT ROUTINES

BASE OS SERVICE ROUTINES

BASE OS LIBRARY ROUTINES

BASE SYSTEM DEVICES INTRODUCTION

~N OO O B~ WD

Table of Contents

FINAL COPY
June 15, 1995
File: MasterToc

svid

Page: 5

BASE SYSTEM DEVICES

9 KERNEL EXTENSION INTRODUCTION

10 KERNEL EXTENSION ENVIRONMENT
ROUTINES

11 KERNEL EXTENSION OS SERVICE
ROUTINES

12 MULTITHREADING EXTENSION
INTRODUCTION

13 MULTITHREADING EXTENSION OS
SERVICE ROUTINES

14 MULTITHREADING EXTENSION LIBRARY

ROUTINES

Volume 1 Table of Contents

FINAL COPY
June 15, 1995
File: MasterToc
svid

Page: 6

PREFACE

The System V Interface Definition (SVID) specifies an operating system environment
that allows users to create applications software that is independent of any partic-
ular computer hardware. The System V Interface Definition applies to computers
that range from personal computers to mainframes. Applications that conform to
this specification will allow users to take advantage of changes in technology and
to choose the computer that best meets their needs from among many manufactur-
ers while retaining a common computing environment.

The System V Interface Definition specifies the operating system components avail-
able to both end-users and application programs. It defines the functionality of
components, but not the implementation. The System V Interface Definition
specifies the source code interfaces of each operating system component, as well
as the run-time behavior seen by an application program or an end-user. The
emphasis is on defining a common computing environment for application pro-
grams and end-users, not on the internals of the operating system, such as the
scheduler or memory manager.

An application program using only components defined in the System V Interface
Definition will be compatible with, and portable to, any computer that supports the
System V Interface. While the source code may have to be re-compiled to move an
application program to a new computer system that supports the System V Inter-
face, the presence and behavior of the operating system components as defined by
the System V Interface Definition would be assured.

The System V Interface Definition is organized into a Base System Definition plus a
series of Extension Definitions. The Base System Definition specifies the com-
ponents that all System V operating systems must provide. The Extensions to the
Base System are not required to be present in a System V operating system, but
when a component is present, it must conform to the specified functionality. The
System V Interface Definition allows end-users and application developers to iden-
tify the features and functions available to them on any System V operating sys-
tem.

The System V Interface Definition is compliant with POSIX 1003.1-1990 Full Use
Standard, X3.159-1992 (ANSI C), ISO/IEC 9899-1992 (ISO C), X/Open Portability
Guide Isse 4 (XPG4) System Interfaces and Headers (XSH4), and will continue to
evolve towards compliance with other industry standards as they are approved.

PREFACE 1

FINAL COPY

June 15, 1995

File: preface
svid

Page: 7

FINAL COPY
June 15, 1995
File

Page: 8

General Introduction

Audience and Purpose

The System V Interface Definition (SVID) is intended for use by anyone who must
understand the operating system components that are consistent across all System
V environments. As such, its primary audience is the application developer who
is building C language application programs having source code that must be
portable from one System V environment to another. A system builder should
also view these volumes as necessary tools for supporting a System V environ-
ment that will host such applications.

This publication is intended to fulfill the following major purposes:

m To serve as a single reference source for the definition of the external inter-
faces to services that are provided by all System V environments. These ser-
vices are designated as the Base System. This includes source-code inter-
faces and run-time behavior as seen by an application program. It does not
include the details of how the operating system implements these functions.

m To define all additional services (such as graphics, networking and data
management) at an equivalent external interface level and to group these
services into Extensions to the Base System.

m To serve as a complete definition of System V external interfaces, so that
application source code that conforms to these interfaces and is compiled in
an environment that conforms to these interfaces, will execute as defined in
a System V environment. It is assumed that source code is recompiled for
the proper target hardware. The basic objective of this document is to facili-
tate the writing of application program source code that is directly portable
across all System V implementations. Facilities outside the Base System
would require installation of the appropriate Extension on the target
environment.

General Introduction 1-1

FINAL COPY

June 15, 1995

File: intro.svid
svid

Page: 9

Structure and Content

Partitioning into Base System and Extensions

The System V Interface Definition partitions System V components into a Base Sys-
tem and the Extensions to that Base System. This does not change the definition of
System V. Instead, the approach recognizes that the entire functionality of System
V may be unnecessary in certain environments, especially on small hardware
configurations. It also recognizes that different computing environments require
some functions that others do not.

The Base System functionality has been structured to provide a minimal, stand-
alone run-time environment for application programs originally written in a
high-level language, such as C. In this environment, the end-user is not expected
to interact directly with the traditional System V shell and commands. An exam-
ple of such a system would be a dedicated-use system, that is, one devoted to a
single application, such as a vertically integrated application package for manag-
ing a legal office. To execute, many applications programs require only the com-
ponents in the Base System; other applications require one or more Extensions.

The Extensions to this Base System have been structured to provide a growth
path, in natural functional increments, that leads to a full System V configuration,
and to provide a mechanism for the introduction of new technology. The division
between the Base System and the Extensions allows system builders to create
machines, tailored for different purposes and markets, in an orderly fashion.
Thus, a small business/professional computer system designed for novice single-
users might include only the Base System and the Basic Utilities Extension. A sys-
tem for advanced business/professional users might add the Advanced Utilities
Extension to this. A system designed for high-level language software develop-
ment would include the Base System, the Kernel Extension, and the Basic Utilities,
Advanced Utilities, and Software Development Extensions. Although the Exten-
sions are not meant to specify the physical packaging of System V for a particular
product, it is expected that the Extensions will lead to a fairly consistent packaging
scheme.

This partitioning allows an application to be built using a basic set of components
that are consistent across all System V implementations. This basic set is the Base
System. Where necessary, an application developer can choose to use components
from an Extension and require the run-time environment to support that Exten-
sion in addition to the Base System.

Facilities or side effects that are not explicitly stated in the SVID are not
guaranteed, and should not be used by applications that require portability.

1-2 GENERAL INTRODUCTION

FINAL COPY

June 15, 1995

File: intro.svid
svid

Page: 10

Conforming Systems

All conforming systems must support the source-code interfaces and runtime
behavior of all the components of the Base System. A system may conform to
none or some Extensions. All the components of an Extension must be present for
a system to meet the requirements of the Extension. This does not preclude a sys-
tem from including only a few components from some Extension, but the system
would not then be said to have the Extension. Some Extensions require that other
Extensions be present on a system. For example, the Advanced Ultilities Extension
requires the Basic Utilities Extension. In rare instances particular routines are
explicitly marked in the SVID as optional and may not be present on all conform-
ing systems.

An implementation of System V may conform to earlier issues of the SVID.

Organization of Technical Information

SVID, Fourth Edition (SVID 4) is composed of Volumes 1 through 4. The volumes
are organized as follows:

Volume 1 Base System
Kernel Extension
Multithreading Extension

Volume 2 Basic Utilities Extension
Advanced Utilities Extension
Administered Systems Extension

Volume 3 Programming Language Specification
Software Development Extension
Terminal Interface Extension
Real Time and Memory Management Extension
Remote Services Extension
Window System Extension
Enhanced Security Extension
Auditing Extension
Remote Administration Extension

The SVID defines the source-code interface and the run-time behavior of the com-
ponents that constitute the Base System and each Extension. Components include,
for example, operating system service routines, general library routines, system
data files, special device files, and end-user utilities (commands).

When referred to individually, components are identified by a suffix of the form
(XX_YYY) where XX identifies the Base System or the Extension containing the
component and YYY identifies the type of the component. For example, com-
ponents defined in the Operating System Service Routines section of the Base Sys-
tem are identified by (BA_OS), components defined in General Library Routines

General Introduction 1-3

FINAL COPY

June 15, 1995

File: intro.svid
svid

Page: 11

of the Base System are identified by (BA_LIB), and components defined in the
Operating System Service Routines section of the Kernel Extension are identified
by (KE_OS).

The definition of the Base System includes an introduction, followed by chapters
that provide detailed definitions of each component in the Base System. Similarly,
the definition of each Extension includes an introduction, followed by chapters
that provide detailed definitions of each component in the Extension.

Pages containing the detailed component definitions are labeled with the name of
the component being defined. Some utilities and routines are described with
other related utilities or routines and, therefore, do not have detailed definition
pages of their own.

Each component definition follows the same structure. The sections are listed
below; not all the following sections may be present in each description. Sections
entitled EXAMPLE and USAGE are not considered part of the formal definition of
a component.

m NAME — name of component
m SYNOPSIS — summary of source code or user-level interface
m DESCRIPTION — interface and run-time behavior
m RETURN VALUE — value returned by the function
m ERRORS — possible error conditions
m FILES — names of files used
m USAGE — guidance on use
m EXAMPLE — example
m SEE ALSO — list of related components
m Future Directions — planned enhancements
m LEVEL — see Mechanism For Evolution below
In general, components that are utilities do not have a RETURN VALUE section.

Except as noted in the detailed definition for a particular utility, utilities return a
zero exit code for success, and non-zero for failure.

The component definitions are similar in format to AT&T System V manual pages,
but have been extended or modified as follows:

m Function prototype format has been used as the presentation format in the
SYNOPSIS for SVID 4. The consistent use of function prototypes is
intended to provide an easy to use interface to users of the SVID and is not
required for conformance.

1-4 GENERAL INTRODUCTION

FINAL COPY

June 15, 1995

File: intro.svid
svid

Page: 12

m All machine-specific information has been removed. All implementation-
specific constants have been replaced by symbolic names, which are defined
in a separate section. The symbolic names correspond to those defined by
the the IEEE 1003.1-1990 Standard to be in a<l i m t s. h> header file; how-
ever, in this document, they are not meant to be read as symbolic constants
defined in header files. For maximum portability, applications should not
depend upon any particular behavior that is implementation-defined.

m A section entitled USAGE has been added to guide application developers
in the expected or recommended usage of certain components. Operating
system services and library routines are used only by programs, but utilities
may be used by programs, end-users or administrators. The USAGE para-
graph indicates which of these three is appropriate for a particular utility
(this is not meant to be prescriptive, but rather to give guidance). The fol-
lowing terms are used in the USAGE paragraph: application program, end-
user, administrator, or general. The term general indicates that the utility may
be used by all three: application programs, end-users and administrators.

m A section entitled Future Directions has been added to selected component
definitions. This section indicates the way in which a component will
evolve. The information ranges from specific changes in functionality to
more general indications of proposed development.

m A section entitled LEVEL defines the commitment level of each component.

Level 1 components will remain in the SVID and can be modified only in
upwardly compatible ways. Any change in the definition of the component
will preserve the previous source-code interface and run-time behavior to
ensure that the component remains upwardly compatible. A Level 1 com-
ponent may however contain some features that are defined as Level 2. This
occurs in cases in which a portion of a component is evolving in a non-
upwardly compatible way, but the basic functionality of the component
remains unchanged.

Level 2 components will remain unchanged for at least three years follow-
ing entry into Level 2, after which time the component may be modified in a
non-upwardly compatible way or may be dropped from the SVID. This
mechanism also applies to Level 2 portions of a Level 1 component. Level 2
components are labeled with the starting date of this three-year period.

General Introduction 1-5

FINAL COPY

June 15, 1995

File: intro.svid
svid

Page: 13

Mechanism For Evolution

The SVID will be reissued as necessary to reflect developments in the System V
Interface. In conjunction with these updates, the following changes may be made
to the definitions:

m Level 1 components may be moved to Level 2. The date of their entry into
Level 2 will be the date of the reissue of the SVID in which the change is
made.

m In cases in which a published Industry Standard has specified behavior that
is not upwardly compatible with the behavior documented in the SVID for a
Level 1 component, the component will change to reflect the behavior
specified by the standard. Wherever possible both the behavior defined by
the Industry Standard and the behavior documented in the SVID will be
supported. The behavior documented in the SVID will be preserved for the
Level 2 migration period.

m Components may move from existing Extensions into the Base System.
Components will not move from the Base System into an Extension.

m New Extensions may be introduced with completely new functionality.

m Notification of changes to SVID components may be done as required to
facilitate conformance to industry standards. This will allow customers a
more orderly migration to the standard.

Evolution Toward Industry Standards

Novell is committed to compliance with standards published by IEEE, ANSI, ISO,
X/0pen and other major standards bodies. Where conformance to an industry
standard causes an incompatibility with SVID, the incompatible component, or the
incompatible feature of the component will move to Level 2 (see Mechanism For
Evolution). The Future Directions section for the affected component will
describe how the component will change in the future. In this case, compliance to
the current SVID behavior or the new industry standard behavior will satisfy
SVID compliance. The incompatible component, or component feature will be
indicated by a (%).

C Language Definition

Source code interfaces described in the SVID are for the C language.

1-6 GENERAL INTRODUCTION

FINAL COPY

June 15, 1995

File: intro.svid
svid

Page: 14

Major Features
The content changes in the SVID, 4th Edition, reflect the major feature changes in
UNIX System V, namely:
m Multiprocessing
m Dynamically Loadable Modules (DLM)
m Internationalization Enhancements and Standards conformance
— conformance to the ISO C Multibyte Support Extensions,

— conformance to XPG4 Systems Interfaces, Headers, and Compila-
tion System components,

— conformance to portions of the NCEG extension to the nat h and
systems libraries,

— more extensive POSIX .2 functionality,

— support for the XPG4 Transport Interface Specification.

m Graphics

Future Directions

The following describes some areas in the SVID where changes or evolution are
expected. Refer also to the Future Directions sections that appear in the SVID
manual page descriptions.

Internationalization

The SVID, 4th Edition, reflects the support provided in UNIX System V, in sup-
port of the ISO C Multibyte Support Extension (I SO C MSE) for wide-character
and multibyte-character handling; as well provision of the XPG4 Worldwide Por-
tability Interfaces, required for XPG4 conformance. As in earlier releases, more
System V commands have been modified to use internationalized messaging and
localization facilities.

In the future, support for the POSIX 1003.2 enhanced regular expression handling
will be provided,as well as further internationalization of commands and utilities.

General Introduction 1-7

FINAL COPY

June 15, 1995

File: intro.svid
svid

Page: 15

Pthreads

POSIX 1003.1c Threads ("Pt hr eads) are not yet finalized. In the SVID, 4th Edition,
UNIX System V threads are represented. UNIX System V threads interfaces offer
greater functionality than Pt hr eads provides, and will thus fill application needs
for a considerable period of time after the initial standardization of Pt hr eads.

The UNIX System V threads will be given the fullest support for compatibility and
migration standard that is granted to other Level 1 interfaces in the SVID. The
future evolution of these interfaces, where known, will be noted in the appropriate
sections of the SVID 4th Edition.

Real Time
Novell is committed to support the standardization of a Real Time interface as

defined by POSIX. Full conformance to this standard will be considered in the
future.

Security

Novell is working in conjunction with the POSIX P1003.6 security working group
in developing an IEEE security standard. Full conformance to the IEEE standard
will be strongly considered after its formal approval.

Asynchronous 1/O

This version of the SVID includes the asynchronous 170 interfaces that are in full
conformance to the POSIX 1003.1c interfaces.

DCE

DCE and Systems Management functionality may be included in the SVID in the
future.

1-8 GENERAL INTRODUCTION

FINAL COPY

June 15, 1995

File: intro.svid
svid

Page: 16

Base System Introduction

The Base System supports a minimal run-time environment for executable appli-
cations. The Base System defines a basic set of System V components needed by
applications programs. This basic set would be supported by any conforming sys-
tem. It defines each component’s source-code interface and run-time behavior,
but does not specify its implementation. Source code interfaces described are for
the C language. While only the run-time behavior of these components is sup-
ported by the Base System, the source-code interfaces to these components are
defined because an objective of the SVID is to facilitate application program
source-code portability across all System V implementations. It is assumed that an
application program targeted to run on a system that provides only the Base Sys-
tem (a run-time environment) would be compiled on a system supporting software
development.

No end-user level utilities (commands) are defined in the Base System. Executable
application programs designed for maximum portability are expected to use
library routines rather than System V end-user level utilities. For example, an
application program written in C would use the chnod() routine to change the
owner of a file rather than using the chnmod user-level utility. This does not say
that an application program running in a target environment that supports only
the Base System cannot execute another program. Using the syst emroutine, an
application can execute another program or application.

It should be noted that some Extensions may add features to components defined
in the Base System. Additional features that are supported in an extended
environment are described with the Extension in a section titled

ef fect s(xXxX_ENV) . [See, for example, ef f ect s(KE_ENV) .]

OS Service Routines

The Base OS Service routines provide access to and control over system resources
such as memory, files and process execution. Some System V routines that pro-
vide operating system services are not supported by the Base System. An
application-program that uses any of these would require an extended environ-
ment. [See, for example, the Kernel Extension Definition.]

There are three groups of Base OS Service Routines (listed below), which reflect
recommended usage by application programs.

Base System Introduction 2-1

FINAL COPY

June 15, 1995

File: ba_int.txt
svid

Page: 17

Group 1 should fulfill the needs of most application programs.

Group 2 should be used by application programs only when some special need
requires it. For example, application programs, when possible, should use the
routine syst en() rather than the routines f or k() and exec because it is easier to
use and supplies more functionality. The corresponding Standard Input/Output,
stdio routines [see "stdio routines" in the Base System Definitions chapter] should be
used instead of the routines cl ose(),creat (), | seek(), open(),read() and
write() (for example, the stdio routine f open() should be used rather than the
routine open()).

Group 3 routines, although defined as part of the basic set of routines supported
by any System V operating system, are not expected to be used by application pro-
grams. These routines are used by other components of the Base System.

The following OS service routines are supported by a SVID-compliant Base sys-
tem. Items marked with a star (*) are Level 2, as defined in the General Introduction
to this volume. Items marked with a dagger (1) are new to this issue of the SVID.

Base OS Service Routines (group 1)

abort f chown get cont ext nmal | oc rew nddir
access fcl ose get cwd nmal | opt * rodir
adjtine* fentl getegi d nkdi r seekdir
alarm f dopen geteui d nkfifo set cont ext
atexi t f eof getgid nknod setgid
calloc ferror get gr oups opendi r set gr oups
cfgeti speed fflush get nsg pat hconf setl ocal e
cf get ospeed f get pos get pgi d pause set pgi d
cf seti speed fileno get pgrp pcl ose setrlimt
cf set ospeed filepriv get pi d pi pe setsid
chdir f open get pnsg pol | setuid
chmod f pat hconf get ppi d popen si gaction
chown fread getrlimt procpriv si gaddset
clearerr free getsid put msg si gal t st ack
closedir f reopen get ui d put prsg si gdel set
confstrt f seek ioctl rai se si genpt yset
cuserid f set pos kill readdir sigfillset
dup fstat [chown readl i nk si gi snenber
dup2 fstatvfs ['ink real | oc si gnal
exit fsync | ockf renove si gpendi ng
fchdir ftell | stat r enamre si gpr ocrmask
f chrmod fwite mallinfo* rew nd si gsend
2-2 BASE SYSTEM INTRODUCTION

FINAL COPY

June 15, 1995

File: ba_int.txt

svid

Page: 18

si gsendset
si gsuspend
sigwait T
sl eep

st at
statvfs

cl ose
creat
dl cl oset
dlerrort
dl opent

_exit

Base OS Service Routines (group 1)

stine

syni i nk
sysconf
system
tcdrain
tcfl ow

tcfl ush
tcgetattr
tcget pgrp
tcgetsid

t csendbr eak
tcsetattr

tcset pgrp
telldir
tine
tinmes
ulimt
unmask

Base OS Service Routines (group 2)

dl symr
execl

execl e
execl p

execv
execve
execvp
fork

| seek
nount
open
read

Base OS Service Routines (group 3)

sync

Base System Introduction

FINAL COPY

June 15, 1995

File: ba_int.txt
svid

Page: 19

unane
unl i nk
utine
wai t
waitid
wai t pi d

r eadv
unount
wite
wWitev

2-3

Library Routines

The Base System library routines perform a wide range of useful tasks, including
m mathematical functions

m string and character handling, including XPG4 Worldwide Portability Inter-
faces and functions in the ISO C Multibyte Support Extension (MSE).

m networking functions

m general library functions (including 170, searching and sorting routines)

The run-time behavior of these routines, as defined in the SVID, must be supported
by any System V operating system. The libraries themselves are not required to
be present on a system that consists only of the Base System. While the Base Sys-
tem is required to support the execution of application programs that use these
routines, the Software Development Extension is required to support the compila-
tion of those application programs.

The following routines are supported by the Base System (exception: items marked
with a sharp (#) are optional and may not be present on all conforming systems).
Items marked with a star (*) are Level 2, as defined in the General Introduction to
this volume. Items marked with a dagger () are new to this issue of the SVID.

Mathematical Functions

abs cei l f mod I div scal b
acos cos frexp | ganma sin
acosh cosh gamma * | og si nh
asin div hypot | 0g10 sgrt
asi nh erf io0 | ogb tan
at an erfc il nodf tanh
at an2 exp jin next af t er yO0
at anh f abs | abs pow yn
chrt f1 oor | dexp r enai nder
2-4 BASE SYSTEM INTRODUCTION

FINAL COPY

June 15, 1995

File: ba_int.txt

svid

Page: 20

_tol ower
_t oupper
advance*
ascti me
at of

at oi

at ol
conpil e*
crypt #
ctine
difftinme
encrypt #
fgetwct
fogetwsT
f put wet
fputwst
ftok*
fwprintff
fwscanf T
getwct
get wchar t
gnine

i conv_cl oset
i conv_opent

i sal num
i sal pha
i sasci
isatty
iscntrl
isdigit

get _t_errnot
set _t_errnot

t _accept
t_alloc
t_bind

t_close

String and Character Handling

i sgraph

i sl ower

i shan

i sprint

i spunct

i sspace

i supper

i swal numt
i swal phat
iswentrl t
i swct ypet
iswdigitt
i swgr apht
i sw ower t
i swprintt
i swpunct t
i swspacet
i swupper t
iswdigitt
isxdigit

| ocal econv
[ocal time
nbl en

nbrl ent
nbrt owct
nbsi nit T
nbsrt owcst
nbst owcs
nbt owc
nenccpy

Networking Functions

t _connect
t_error
t free
t_getinfo
t _get protaddr T
t_getstate

Base System Introduction

nmenchr
nencnp
nencpy
nenmove
nmenset
nkti me
put wet
put wchar t
set key #
snprintfft
step*
strcat
strchr
strenp
strcol |
strcpy
strcspn
strdup
strerror
strfnont
strftine
strlen
strlistt
st rncat
strncnp
strncpy
st r pbrk
strptinet
strrchr
strspn

t listen
t | ook
t _open
t _opt ngn
t_rcv

t _rcvconnect

FINAL COPY

June 15, 1995

File: ba_int.txt
svid

Page: 21

strstr wesenpt
strtod wescol | T
strtof T wescpyt
strtok wescspnt
strtol wesftinet
strtol dt wesl ent
strtoul wcsncat T
strxfrm wesnenpt
swprintft wesnepyt
swscanf t wespbr kt
toasci i wesr chr
t ol ower wesrt onbs T
t oupper wesspnt

t owl ower T wesstr T

t owupper T west odt

t zset west of T
unget wet west ok T
vfscanf t west ol dt
viwprintff wecst onbs
vfwscanf T west oul T
vscanf T weswes* t
vsnprintft weswi dt ht
vsscanf t wesxfrmt
vswprintft wct obt
vswscanf t wct onb
vwprintft wct ypet
vwscanf t wewi dt ht
wert onbt wprintft
wcscat T wscanf T
weschr T

t_revdis t_sndre
t_rcvrel t _sndudat a
t rcvudata t_strerrort
t_rcvuderr t_sync
t_snd t _unbi nd
t_snddi s

addsev *
assert
bsear ch
cat cl ose
catgets
cat open
cl ock
ctermd
drand48*
endgr ent
endpwent
erand48*
fattach
fdet ach
fgetc

f get grent
f get pwent
fgets
frmnsg*
f nmat cht
fprintf
fputc
fputs

f scanf
ftok*
ftw

getc

get char
getdate*
get env
get grent
getgrgid
get gr nam
getl ogi n
get opt
get pwent
get pwnam
get pwui d
gets

get subopt
get t xt
get w

gl obt

gl obfreet
gr ant pt
hcreat e

hdest r oy
hsear ch

i ni tgroups
j rand48*

| cong48*

| find

[fm*

| ongj np

| rand48 *

| search

makecont ext

nkt enp
nT and48 *
nftw

nl _l angi nf o

nrand48 *
perror *
pf m *
printf
procpri vl
pt snane
put c

put char

General Library Functions

put env
put s

put w
gsort
rand
regconpt
regerrort
regexect
regfreet
scanf
seed48*
set buf
set cat *
set grent
setjnp
set | abel *
set pwent
set vbuf

si gl ongj np
si gsetjnp
sprintf
srand48*

srand*
sscanf
stdio
swab
swapcont ext
tdel ete

t enpnam
tfind
trpfile

t npnam

t search
ttyname
twal k
unget c
unl ockpt
viprintff
vlifm *
vpfnt *
vprintf
vsprint f
wor dexpt
wor df r eet

Organization of Technical Information
The “Base OS Service Routines’ chapter provides manual page descriptions of
operating system service routines supported by this extension.

The “Base OS Library Routines” chapter provides manual page descriptions of
general purpose library routines supported by this extension.

2-6 BASE SYSTEM INTRODUCTION

FINAL COPY

June 15, 1995

File: ba_int.txt
svid

Page: 22

Base System Definitions

Active Transport User

A transport user that initiates a transport connection.

Appropriate Privileges

An implementation-defined means of associating privileges with a process with
regard to functions that need special privileges. There may be zero or more such

means.

ASCII Character Set

Maps of the ASCII character set, giving octal and hexadecimal equivalents of each
character, appear below. Although the ASCII code does not use the eighth-bit in
an octet, this bit must not be used for other purposes because codes for other
languages may need to use it (see the section on Internationalization in the General
Introduction to this volume.)

000
010
020
030
040
050
060
070
100
110
120
130
140
150
160

nul
bs

d e
can

TXTIQ®OY

T T

001
011
021
031
041
051
061
071
101
111
121
131
141
151
161

Octal map of ASCII character set.

soh 002
ht 012
dcl 022
em 032
042
052
062
072
102
112
122
132
142
152
162

o T <O T >ORrT T

Base System Definitions

st X
nl
dc2
sub
*

2

—oNT&m:

r

003
013
023
033
043
053
063
073
103
113
123
133
143
153
163

etx 004 eot
vt 014 np
dc3 024 dc4
esc 034 fs
044 $
+ 054 ,

3 064 4

: 074 <
C 104 D
K 114 L
S 124 T

[134 \

c 144 d
k 154

S 164 t
FINAL COPY

June 15, 1995
File: ba_def.txt

svid

Page: 23

005
015
025
035
045
055
065
075
105
115
125
135
145
155
165

enq 006
cr 016
nak 026
gs 036
% 046
- 056
5 066
= 076
E 106
M 116
U 126
| 136
e 146
m 156
u 166

bel
S
etb

SO0V~

s oaQ]

ack 007
so 017
syn 027
rs 037
& 047"
. 057
6 067
> 077
F 107
N 117
vV 127
- 137
f 147
n 157
\ 167

3-1

170 x

171 y

172 z

173 { 174 |

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 24

175} 176 = 177 del

BASE SYSTEM DEFINITIONS

Hexadecimal map of ASCII character set.
00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel

08 bs 09 ht Oa nl Ob vt Ocnp Odcr Oeso Of si
10 dle 11 dcl 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em la sub 1lb esc 1c fs 1dgs 1lers 1f us
20 sp 21! 22 " 23 # 24 $ 25 % 26 & 27
28 (29) 2a * 2b + 2c , 2d — 2e . 2f /
300 311 32 2 33 3 34 4 355 36 6 37 7
38 8 39 9 3a : 3b ; 3c < 3d = 3e > 3f ?
10 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 | 4a J 4b K 4c L 4d M 4e N 4f O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5a Z 5b [5¢c \ 5d] 5e 5f _
60 ° 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6a j 6b k 6c | 6d m 6e n 6f o
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 X 79y 7a z 7b { 7c | 7d } Te 7f del

Asynchronous Execution

The mode of execution in which transport service functions do not wait for
specific events to occur before returning control to the user, but instead return
immediately if the event is not pending.

Background Process Group

A background process group is any process group that is a member of a session
which has established a connection with a controlling terminal that is not in the
foreground process group.

Connection Mode
A connection mode is a mode of transfer in which data is passed from one process

to another over an established connection in a reliable, sequenced fashion. The
connection may also be called a virtual circuit.

Base System Definitions 3-3

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 25

Connectionless (datagram) Mode

A connectionless (datagram) mode is a mode of transfer in which data is passed
from one process to another in self-contained units (datagrams) with no logical
relationship required among multiple units.

Controlling Process

A controlling process is a session leader that establishes a connection to a control-
ling terminal. Should the terminal subsequently cease to be a controlling terminal
for the session leader’s session, the session leader shall cease to be a controlling
process.

Controlling Terminal

A controlling terminal is a terminal that is associated with one session. Each ses-
sion may have at most one controlling terminal associated with it and vice versa.
Certain input sequences from the controlling terminal cause signals to be sent to
processes associated with the controlling terminal.

Directory

Directories organize files into a hierarchical system where directories are the
nodes in the hierarchy. A directory is a file that catalogues the list of files, includ-
ing directories (sub-directories), that are directly beneath it in the hierarchy.
Entries in a directory file are called links. A link associates a file identifier with a
filename. By convention, a directory contains at least two links, . (dot) and . .
(dot-dot). The link called dot refers to the directory itself while dot-dot refers to
its parent directory. The root directory, which is the top-most node of the hierar-
chy, has itself as its parent directory. The pathname of the root directory is/ and
the parent directory of the root directory is/ .

3-4 BASE SYSTEM DEFINITIONS

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 26

Execution-time Symbolic Constants

The following constants may be used by applications at execution time to deter-
mine which optional facilities are present and what actions shall be taken by the
implementation in implementation defined circumstances [see

f pat hconf (BA_0S)].

POSIX CHOWN_RESTRICTED If true, and the calling process is not
super-user, the chown function cannot
be used to modify the user ID of a file,
and may only be used to modify the
group of a file to the effective group ID
or one of the supplementary group I1Ds
of the calling process.

_POSIX_NO_TRUNC If true, pathname components longer
than { NAME_MAX} generate an error.

_POSIX_VDISABLE If true, terminal special characters can
be disabled.

Effective User ID and Effective Group ID

An active process has an effective user ID and an effective group ID that are used
to determine file access permissions. The effective user ID and effective group ID
are equal to the process’s real user ID and real group ID respectively, unless the
process, or one of its ancestors, evolved from a file that had the set user ID bit or
set group ID bit set [see exec(BA_0S)]. In addition, they can be reset with the
set ui d and set gi d routines, respectively [see set ui d(BA_OS)].

Environmental Variables

When a process begins, an array of strings called the environment is made available
by an exec routine [see syst em(BA_QOS)]. By convention, these strings have the
form variable=value, for example, PATH=: / usr/ sbi n. These environmental vari-
ables provide a way to make information about an end-user’s environment avail-
able to programs [see envvar (BA_ENV)].

Base System Definitions 35

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 27

ETSDU

The Expedited Transport Service Data Unit (ETSDU), is the expedited data
transmitted over a transport connection and whose identity is preserved from one
end of a transport connection to the other (i.e., an expedited message).

File

A file is an object that can be written to, or read from, or both. A file has certain
attributes, including access permissions and type. File types include regular, char-
acter special, block special, FIFO special and directory.

File Access Permissions

Read, write, and execute/search permissions [see chnmod(BA_0OS)] on a file are
granted to a process if one or more of the following are true;

m The effective user ID of the process is a user with appropriate permissions
(such as a super-user).

m The effective user ID of the process matches the user ID of the owner of the
file and the appropriate access bit of the owner portion of the file mode is set.

m The effective user ID of the process does not match the user ID of the owner
of the file and the effective group ID of the process matches the group of the
file and the appropriate access bit of the group portion of the file mode is set.

m The effective user ID of the process does not match the user ID of the owner
of the file and the effective group ID of the process does not match the
group ID of the file and the appropriate access bit of the other portion of the
file mode is set.

Otherwise, the corresponding permissions are denied.

File Descriptor

A file descriptor is a non-negative integer used to identify a file for the purposes of
doing 1/0. An open file descriptor is obtained (for example) from a call to the
creat, dup, fcntl, open, or pi pe routines.

A file descriptor has associated with it information used in performing 170 on the
file: a file pointer that marks the current position within the file where 170 will
begin; file status and access modes (e.g., read, write, read/write) [see
open(BA_OS)]; and close-on-exec flag [see f cnt | (BA_OS)]. Multiple file descrip-
tors may identify the same file. The file descriptor is used as an argument by such

3-6 BASE SYSTEM DEFINITIONS

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 28

routines astheread, wite,ioctl,andcl ose routines.

Filename

Strings consisting of 1 to { NAME_NMAX} characters may be used to name, for exam-
ple, a regular file, a special file or a directory. { NAVE_MAX} must be at least 14.
These characters may be selected from the set of all character values excluding the
characters "null” and slash (/).

Note that it is generally unwise touse * , $,?,! ,[, or] as part of a filename
because of the special meaning attached to these characters for filename expansion
by the command interpreter [see syst em{BA_OS)]. Other characters to avoid are
the hyphen, blank, tab, <, >, backslash, single and double quotes, grave accent,
vertical bar, circumflex, curly braces, and parentheses. It is also advisable to avoid
the use of non-printing characters in filenames. A filename is sometimes referred
to as a pathname component. The interpretation of a pathname component is
dependent on the values of { NAME_NMAX} and { PGSl X NO TRUNG} associated with
the path prefix of that component. If any pathname component is longer than
{NAME_MAX} and { _PCBI X_NO TRUNG s in effect for the path prefix of that com-
ponent [see f pat hconf (BA_OS)], an error condition exists in that implementation.
Otherwise, the implementation uses the first { NAME_NMAX} bytes of the pathname
component.

File Times Update

Each file has three associated time values that are updated when file data has been
accessed, file data has been modified, or file status has been changed, respectively.
These values are returned in the file characteristics structure [see st at (BA_OS)].

Many functions in this interface definition that read or write file data or change
the file status specify that the appropriate time-related fields are marked for
update. At an update point in time, any marked fields are set to the current time
and the update marks cleared. Two such update points are when the file is no
longer open by any process and when st at or f st at are performed on the file.
Additional update points are unspecified. Updates are not done for files on read-
only file systems.

Base System Definitions 3-7

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 29

Foreground Process Group

Each session that has established a connection with a controlling terminal distin-
guishes one process group of the session as the foreground process group of that
controlling terminal. The foreground process group has certain privileges when
accessing its controlling terminal that are denied to background process groups
[see t er m o(BA_DEV)].

Foreground Process Group ID

The foreground process group ID is the process group ID of the foreground pro-
cess group.

Group ID

Each system user is a member of at least one group. A group is identified by a
group ID, which is a non-negative integer that can be contained in an object of
type gi d_t. When the identity of a group is associated with a process, a group 1D
value is referred to as a real group ID, an effective group ID, a saved set-group-ID,
or one of the supplementary group IDs. When the identity of a group is associ-
ated with a file, it is used to verify its access by processes. The group ID of a
newly created file is initialized to the effective group ID of the process that created
it unless the set-group-1D flag of the file’s parent directory is set; in that case, it is
initialized to the group ID of the parent directory.

Implementation-specific Symbolic Names

In detailed definitions of components, it is sometimes necessary to refer to sym-
bolic names that are implementation-specific, but which are not necessarily
expected to be accessible to an application program. Many of these symbolic
names describe boundary conditions and system limits.

In the SVID, for readability, these implementation-specific values are given sym-
bolic names. These names always appear enclosed in curly brackets to distinguish
them from symbolic names of other implementation-specific constants that are
accessible to application programs by header files. These names are not neces-
sarily accessible to an application-program through a header file, although they
may be defined in the documentation for a particular system.

3-8 BASE SYSTEM DEFINITIONS

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 30

In general, a portable application program should not refer to these symbolic
names in its code. For example, an application-program would not be expected to
test the length of an argument list given to an exec routine to determine if it was
greater than { ARG MAX} . The following is a list of the implementation-specific
symbolic names that may be used in System V component definitions:

Name Description

{ ARG_MAX} max. length of argument list to exec

{CHAR BI T} number of bits in a char

{CHAR_MVAX} max. integer value of a char

{ SCHAR_MAX} max. integer value of a si gned char

{ UCHAR_MAX} max. integer value of a unsi gned char

{CH LD_MAX} max. number of processes per user ID

{ALK T} number of clock ticks per second

{ FCHR_MVAX} max. size of a file in bytes

{1 NT_NAX} max. decimal value of an i nt

{U NT_NMAX} max. decimal value of an unsi gned i nt

{ LI NK_VAX} max. number of links to a single file

{LOOK_NMAX} max. number of entries in system lock table

{LONG BI T} number of bitsin al ong

{LONG_MVAX} max. decimal value of al ong

{ ULONG_MAY} max. decimal value of an unsi gned | ong

{ MAXDOUBLE} max. decimal value of a doubl e

{ MAX_CANCN} max. number of bytes in a terminal canonical input line

{ MAX | NPUT} max. number of bytes required as input

{ MAX_CHAR} max. size of character input buffer

{NAXU D} max. value for a user ID

{MB_LEN NAX} max. number of bytes in a multibyte character for any sup-
ported locale

{ NAME_NVAX} max. number of characters in a filename

Base System Definitions 3-9

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 31

{ NGROUPS_AX}
{ FI LENAME_NAX}

{ CPEN_MAX}
{ FCPEN_MAX}
{ PASS_MAX}
{ PATH_MAX}
{PI D M}

{ Pl PE_BUF}
{ PROC_MAX}
{ SHRT_MAX}
{ USHRT_MAX}
{STD BLK}
{SYS NN}
{SYS_CPEN}
{ TMP_MVAX}
{WRD BI T}
{CGHARMN
{SCHAR M N}
{INT_MN
{LONG M N}
{SHRT_M N

max. number of supplementary group IDs per process

size needed for an array of char large enough to hold the
longest filename string that can be opened

max. number of files a process can have open

max. number of files that can be open simultaneously
max. number of significant characters in a password
max. number of characters in a pathname

max. value for a process ID

max. humber bytes atomic in write to a pipe

max. number of simultaneous processes, system wide
max. decimal value of a short

max. decimal value of an unsi gned short

number of bytes in a physical 1/O block

number of characters in string returned by unarmne
max. number of files open on system

max. number of unigue names generated by t npnam
number of bits in awor d ori nt

min. integer value of a char

min. integer value of a si gned char

min. decimal value of ani nt

min. decimal value of al ong

min. decimal value of a short

Named Stream

A STREAMS-based file descriptor can be attached to any name in the file system
namespace by means of the f at t ach routine. This new object is a named stream.
All subsequent opens and operations on the named stream act on the stream that
was associated with the file descriptor until the name is disassociated from the
stream by using the f det ach routine.

3-10

BASE SYSTEM DEFINITIONS

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 32

netbuf Structure

The net buf structure is used by many of the library functions and is defined by
the ti user. h header file. This structure includes the following members:

unsigned int maxlen; /* max buffer length */

unsi gned int |en; /* length of data in buffer */
char *buf; /* pointer to data buffer */
voi d *buf;

Orphaned Process

An orphaned process is a process whose creator’s lifetime has ended.

Orphaned Process Group

An orphaned process group is a process group in which the parent of every
member is either itself a member of the group or is not a member of the group’s
session.

Parent Process ID

The parent process ID of a process is the process ID of its creator, for the lifetime
of its creator [see exi t (BA_OS)]. A new process is created by a currently active
process [see f or k(BA_OS)]. After the creator’s lifetime has ended, the parent pro-
cess ID is set to the process ID of a special system process.

Passive Transport User

A passive transport user is a transport user that listens for an incoming connect
indication.

Base System Definitions 3-11

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 33

Pathname and Path Prefix

In a C program, a pathname is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory-names separated by slashes,
optionally followed by a filename. A null string is undefined and may be con-
sidered an error.

A pathname is used to identify a file. It consists of at most, { PATH MAX} bytes,
including the terminating null character. It has an optional beginning slash, fol-
lowed by zero or more filenames separated by slashes. If the pathname refers to a
directory, it may also have one or more trailing slashes. Multiple consecutive
slashes may be interpreted in an implementation-defined manner, although more
than two leading slashes are treated as a single slash.

If a pathname begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory. If a pathname
refers to a directory, it may also have one or more trailing slashes. Multiple con-
secutive slashes are considered the same as a single slash.

A slash by itself names the root directory. An attempt to create or delete the path-
name slash by itself is undefined and may be considered an error.

The meanings of . (dot) and .. (dot-dot) are defined under di rectory.

Persistent Link

A persistent link is a "link" created between a multiplexer and a driver by the

I _PLINK ioctl request. This differs from a normal link created by the | _LI NK

i octl request in that a persistent link remains intact even after the file descriptor
associated with the stream above the multiplexer has been closed.

Process

A process is an address space and single thread of control that executes within
that address space and its required system resources. A process is created by
another process issuing the f or k function. The process that issues the f or k is
known as the parent process, and the new process created by the f or k is known as
the child process.

3-12 BASE SYSTEM DEFINITIONS

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 34

Process Group

Each process in the system is a member of a process group that is identified by a
process group ID. This grouping permits the signaling of related processes. A
newly-created process joins the process group of its creator. A process may
change its process group via the set pgi d function [see set pgi d(BA_0S)].

Process Group ID

Each process group in the system is uniquely identified by a positive integer that
can be contained in an object of type pi d_t , called a process group ID.

Process Group Leader

A process group leader is a process that creates a new process group. The process
group ID of a process group is equal to the process ID of the process group leader.

Process Group Lifetime

After a process group is created with the set pgi d or set si d functions, it is con-
sidered active. During its lifetime, other processes may join and leave the process
group [see set pgi d(BA_OS)]. The lifetime of the process group ends when the
last remaining process in the group either leaves the process group or terminates.

Process ID

Each process in the system is uniquely identified by a positive integer that can be
contained in an object of type pi d_t, called a process ID. A process ID may not be
reused by the system until the lifetimes of any process, process group, or session
whose IDs are equal to the process ID are ended.

Process Lifetime

After a process is created with a f or k function, it is considered active. Its thread
of control and address space exist until it terminates. It then enters an inactive or
zombie state, where certain resources may be returned to the system, although
some resources such as process 1Ds, are still in use. When another process exe-
cutes awai t function for an inactive process, the remaining resources are returned
to the system, and the lifetime of the process ends.

Base System Definitions 3-13

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 35

Protocol Address

An address, also known as the Transport Service Access Point (TSAP) address,
that identifies the transport user.

pseudo-tty

A pseudo-tty consists of a slave side and a master side. The slave side presents a
terminal interface to the user and the master side implements the terminal func-
tions as if an actual terminal device were present. Any data written to the slave
side is given to the master side as input and vice versa.

Real User ID and Real Group ID

Each user allowed on the system is identified by a positive integer called a real
user ID. Each user is also a member of a group. The group is identified by a
positive-integer called the real group ID.

An active process has a real user ID and real group ID that are set to the real user
ID and real group ID, respectively, of the user responsible for the creation of the
process. They can be reset with the set ui d and set gi d routines, respectively.

Root Directory and Current Working Directory

Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving path searches. The root directory
of a process need not be the root directory of the root file system [see

chr oot (KE_OS)].

Saved Set-user-ID and Saved Set-group-ID
The saved set-user-1D and saved set-group-ID are the values of the effective user

ID and effective group ID prior to an exec of a file whose set-user or set-group file
mode bit has been set [see exec(BA_OS)].

3-14 BASE SYSTEM DEFINITIONS

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 36

Scheduling class

A scheduling class is a process attribute that determines the scheduling policy
applied to the process. Every active process in a system has a class associated with
it, i.e. belongs to a scheduling class.

Session

Each process group is a member of a session. A process is considered to be a
member of the session of which its process group is a member. A newly created
process joins the session of its creator. A process can alter its session
membership[see set si d(BA_OS)].

Session ID

Each session in the system is uniquely identified by a positive integer that can be
contained in an object of type pi d_t, called a session ID.

Session Leader

A session leader is a process that creates a new session. The session ID of a session
is equal to the process ID of the session leader. Session leaders may allocate con-
trolling terminals to their session, thereby becoming controlling processes [see

set si d(BA_OS)].

Session Lifetime

After a session is created by a session leader, it is considered active. The lifetime
of the session ends when the last remaining process in the session either leaves the
session or terminates.

Signal

A signal is a mechanism by which a process may be notified of, or affected by, an
event occurring in the system. Examples of such events include hardware excep-
tions and specific actions by processes. The term signal is also used to refer to the
event itself [see si gnal (BA_ENV)].

Base System Definitions 3-15

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 37

Special Processes

All special processes are system processes (e.g., a system’s swapper process). Cer-
tain process IDs are reserved for special processes.

stdio Routines

A set of routines described as Standard 170 (stdio) routines constitute an efficient,
user-level 1/0 buffering scheme. The complete set of stdio routines is shown
below [see the definition of st di o- st r eanj. Detailed component definitions of
each can be found in either the Base OS Service Routines chapter or in the Base Sys-
tem Library Routines chapter.

(BA_OS)
clearerr,fcl ose, fdopen,feof,ferror,fileno,fflush,fopen,
fread, freopen,fseek,ftell,fwite, popen,pclose,rew nd.

(BA_LIB)
ctermd,fgetc,fgets,fprintf,fputc,fputs,fscanf,getchar,
gets,getw printf,putc,putchar, puts, putw scanf, set buf,
set vbuf , t enpnam t npnam unget c, vprintf,vfprintf,vsprintf.

The Standard 170 routines and constants are declared in the st di 0. h header file
and need no further declaration.

The st di 0. h header file also defines three symbolic constants used by the stdio
routines:

The defined constant NULL designates a nonexistent null pointer.

The integer constant ECF is returned upon end-of-file or error by most integer
functions that deal with streams (see the individual component definitions for
details).

The integer constant BUFS| Z specifies the size of the buffer required by the set buf
routine [see set buf (BA_LIB)].

Any application program that uses the stdio routines must include the st di 0. h
header file.

3-16 BASE SYSTEM DEFINITIONS

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 38

stdio-stream

A file with associated stdio buffering is called a stdio-stream. A stdio-stream is a
pointer to a type Fl LE defined by the st di 0. h header file. The f open routine [see
f open(BA_OS)] creates certain descriptive data for a stream and returns a pointer
that identifies the stream in all further transactions with other stdio routines.

Most stdio routines manipulate either a stream created by the function f open or
one of three streams that are associated with three files that are expected to be
open in the Base System [see t er m o(BA_ENV)]. These three streams are declared
in the st di 0. h header file:

stdin the standard input.
st dout the standard output.

stderr the standard error.

Output streams, with the exception of the standard error stream st der r, are by
default buffered if the output refers to a file and line-buffered if the output refers
to aterminal. The standard error output stream st der r is by default unbuffered.
When an output stream is unbuffered, information is queued for writing on the
destination file or terminal immediately; when it is buffered, many characters are
saved up and written as a block. When it is line-buffered, each line of output is
gqueued for writing on the destination terminal as soon as the line is completed
(that is, as soon as a newline character is written or terminal input is requested).
The set buf and set vbuf routines [see set buf (BA_LIB)] may be used to change
the stream’s buffering strategy.

Stream

A stream is a full duplex connection between a user process and an open device or
pseudo-device. The stream itself exists entirely within the kernel and provides a
general character 1/0 interface for user processes. It optionally includes one or
more intermediate processing modules that are interposed between the user pro-
cess end of the stream and the device driver (or pseudo-device driver) end of the
stream.

Base System Definitions 3-17

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 39

Stream head and stream end

The stream head is the beginning of the stream and is at the kernel/user boun-
dary. This is also known as the upstream end of the stream.

The stream end is the driver end of the stream and is also known as the down-
stream end of the stream.

Data generated as a result of a system call and destined for the driver end of the
stream moves downstream; and data moving from the driver end of the stream
toward the stream head is moving upstream. Also, an intermediate Module A is
said to be upstream from Module B when it is interposed between Module B and
the stream head (upstream) end of the stream, and downstream from Module B
when it is between Module B and the driver end of the stream.

STREAMS messages

STREAMS 1/0 is based on messages. A message may contain a data part, control
part, or both. The data part is information that is sent out to a device and the con-
trol information is used by the local STREAMS modules. Some messages are used
between modules and are not accessible to users. Message types are classified
according to their queuing priority and may be normal (non-priority), priority, or
high priority messages. A message belongs to a particular priority band that
determines its ordering when placed in a queue. Normal messages are always
placed at the end of the queue following all other messages in the queue. High
priority messages are always placed at the head of a queue but after any other
high priority messages already in the queue. Priority messages are always placed
after any messages of the same priority or other priority messages but before nor-
mal messages. High priority and priority messages are used to send control and
data information outside the normal flow of control.

STREAMS module and STREAMS driver

A STREAMS component may be a module or a driver that conforms to the rules
specified for STREAMS. A STREAMS device driver or pseudo-device driver is
always "opened"” and may be "linked" if it is a multiplexing driver. A STREAMS
module is any other type of software module such as a line discipline or protocol
module and is always "pushed" onto the stream.

3-18 BASE SYSTEM DEFINITIONS

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 40

STREAMS queue

Each STREAMS module contains two queues, one for messages moving in each
direction. A queue structure is defined for STREAMS and is important to the
module implementer.

Super-user

The functional implementation means of associating all appropriate privileges to a
process. A process is recognized as a super-user process if its effective user ID is 0.

Supplementary Group ID

A process has up to { NGROUPS_NMAX} supplementary group IDs used in determin-
ing file access permissions in addition to the effective group ID. The supplemen-
tary group IDs of a process are set to the supplementary group IDs of the parent
process when the process is created, and can be initialized with the set gr oups
function [see set gr oups in get gr oups(BA_0OS)].

symbolic link

A symbolic link is a special type of file that symbolically represents another file.
The contents of a symbolic link are the pathname of the file to which it refers
where the referenced file may be any type of file. The use of this mechanism
allows directories as well as files to be linked together and permits linking across
file systems.

Synchronous Execution

Synchronous execution is the mode of execution in which transport service func-
tions wait for specific events to occur before returning control to the user.

Base System Definitions 3-19

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 41

Transport Endpoint

A transport endpoint is the communication path, which is identified by a local file
descriptor, between a transport user and a specific transport provider. A tran-
sport endpoint is manifested as an open device special file.

Transport Provider

A transport provider is an implementation of a transport protocol that provides
the services of the transport layer as defined by the Open Systems Interconnection
(OSI) Reference Model. All requests to the transport provider must pass through
a transport endpoint.

Transport User

A transport user is a user-level application or protocol that is accessing the ser-
vices of the transport interface.

TSDU

The Transport Service Data Unit (TSDU), which is the user data transmitted over a
transport connection and whose identity is preserved from one end of a transport
connection to the other (i.e., a message).

User ID

Each system user is identified by a user ID, which is a non-negative integer that
can be contained in an object of type ui d_t . When the identity of a user is associ-
ated with a process, a user ID value is referred to as a real user 1D, an effective
user ID, or a saved set-user-ID. The user ID of a newly created file is initialized to
the effective user ID of the process that created it.

3-20 BASE SYSTEM DEFINITIONS

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 42

Zombie Process

A zombie process is an inactive process which will be deleted at some later time

when its parent process waits for it [see wai t (BA_OS) and wai t pi d(BA_OS)].

Base System Definitions

FINAL COPY

June 15, 1995

File: ba_def.txt
svid

Page: 43

3-21

FINAL COPY
June 15, 1995
File:

Page: 44

Base Syetem Environment Routines

The following section contains the manual pages for the BA_ENV routines.

Base Syetem Environment Routines

FINAL COPY
June 15, 1995
File: ba_env.cov
svid

Page: 45

4-1

FINAL COPY
June 15, 1995
File:

Page: 46

assert (BA_ENV) assert (BA_ENV)

NAME
assert; assert.h — verify program assertion

SYNOPSIS
#i ncl ude <assert. h>

DESCRIPTION
The <assert. h> header defines the macro assert () and refers to the macro
NDEBUG which is not defined in the header. If NDEBUG s defined as a macro name
before the inclusion of this header, the assert () macro is defined simply as:
#define assert(ignore) ((void) 0)

otherwise, the macro behaves as described in assert(BA_LIB).

The assert () macro is implemented as a macro, not as a function. If the macro
definition is suppressed in order to access an actual function, the behavior is
undefined.

SEE ALSO
assert(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/assert
svid

Page: 47

cpio (BA_ENV)

NAME

cpio: cpio.h —cpio archive values
SYNOPSIS

#i ncl ude <cpi o. h>
DESCRIPTION

cpio (BA_ENV)

Values needed by the c_nbde field in the header of the cpio archive format are

described by:

U Name

0 Description

Py
@
Py

o0 0G0 0]

| éﬁgﬂgiF%
§
I

SHeFoReReR
23
X

REG

(ORORONORONON))]

EﬂgiF%

1 SCTG
1 SLNK
| SSOCK

Sner

Hread by owner
Oyvrite by owner
[jexecute by owner
Qread by group
Owrite by group
[Jexecute by group
Oread by others
Owrite by others
Uexecute by others
Uset uid
Bset gid
reserved
ndirectory
OFIFO
Oregular file
Oblock special
Ocharacter special
Ureserved
reserved
Ereserved

UValue (octal)
0

t
g
t
g
t
g
t
g
t
g
t
g
t
g
t
g
t
g
t
g
H

0000400
0000200
0000100
0000040
0000020
0000010
0000004
0000002
0000001
0004000
0002000
0001000
0040000
0010000
0100000
0060000
0020000
0110000
0120000
0140000

0
O
0
O
0
O
0
O
0
O
0
O
0
O
0
O
0
O
0
O
0
O
H

The header defines the symbolic constant:

MAG C

SEE ALSO

LEVEL

cpio(BU_CMD).

Level 1.

"070707"

FINAL COPY
June 15, 1995
File: ba_env/cpio
svid

Page: 48

Page 1

ctype (BA_ENV) ctype (BA_ENV)

NAME
ctype: ctype.h —character types
SYNOPSIS
#i ncl ude <ctype. h>
DESCRIPTION
The <ct ype. h>header declares the following as functions or macros:
i sal num() i sgraph() i supper ()
i sal pha() i sl owner () i sxdigit()
isascii() isprint() toasciil()
iscntrl () i spunct () tolower()
isdigit() i sspace() toupper()
The following are declared as macros:
_toupper ()
_tolower ()
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_envi/ctype
svid

Page: 49

dirent (BA_ENV) dirent (BA_ENV)

NAME
dirent: dirent.h — format of directory entries
SYNOPSIS
#i ncl ude <dirent. h>
DESCRIPTION
The <di r ent . h> header defines the following data type through t ypedef:
DI R A type representing a directory stream.
Defines the structure di r ent which includes the following members:
ino_t d_ino; /* file serial nunber */
char d_narme[{ NAME_MAX}]; /* nanme of entry */
The type i no_t isdefined in <sys/types. h>[see types(BA_ENV)].
The character array d_nane is of unspecified size, but the number of characters
preceding the terminating null character shall not exceed { NAMVE_MAX} .
The following are declared as the functions:
closedir() rewi nddir()
opendir () seekdir ()
readdir () telldir()
SEE ALSO
directory(BA_OS), types(BA_ENV).
LEVEL
Level 1.
Page 1
FINAL COPY

June 15, 1995
File: ba_env/dirent
svid

Page: 50

envvar (BA_ENV) envvar (BA_ENV)

NAME
envvar — environment variables

DESCRIPTION
When a process begins execution, exec routines make available an array of strings
called the environment [see exec(BA_OS)]. By convention, these strings have the
form vari abl e=val ue, for example, PATH=/ sbi n: / usr/ sbi n. These environ-
mental variables provide a way to make information about a program’s environ-
ment available to programs. The following environmental variables can be used by
applications and are expected to be set in the target run-time environment.

Variable Use

HOVE Full pathname of the user’s home directory, the user’s initial working
directory [see passwd(BA_ENV)].

PATH Colon-separated, ordered list of pathnames that determines the search
sequence used in locating files [see system(BA_OS)].

LANG The string used to specify localization information that allows users to

work with different national conventions. The set| ocal e() function
[see setlocale(BA_OS)] looks for the LANGenvironment variable when it
is called with "" as the locale argument. LANG is used as the default
locale if the corresponding environment variable for a particular
category is unset.

For example, when set | ocal e() isinvoked as
setl ocal e(LC_CTYPE, "")

set | ocal e() will query the LC_CTYPE environment variable first to
see if it is set and non-null. If LC_CTYPE is not set or null, then
set | ocal e() will check the LANG environment variable to see if it is
set and non-null. If both LANG and LC _CTYPE are unset or null, the
default Clocale will be used to set the LC_CTYPE category.

Most commands will invoke
setl ocal e(LC_ALL, ""),

prior to any other processing. This allows the command to be used with
different national conventions by setting the appropriate environment
variables.

The following environment variables are supported to correspond with
each category of setl ocal e():

LC _COLLATE This category specifies the collation sequence being
used. This category affects strcoll() and
strxfrm) [see strcoll(BA_LIB) and strxfrm(BA_LIB),
respectively].

LC _CTYPE This category specifies character classification, charac-
ter conversion, and widths of multibyte characters. The
default C locale corresponds to the 7-bit ASCII charac-
ter set. This category affects ctype() and nbchar ()

Page 1

FINAL COPY
June 15, 1995
File: ba_env/envvar
svid

Page: 51

envvar (BA_ENV) envvar (BA_ENV)

[see ctype(BA_LIB) and mbchar(BA_LIB), respectively].

LC_MESSAGES This category specifies the language of the message
database being used. For example, an application may
have one message database with French messages, and
another database with German messages [see
gettxt(BA_LIB)].

LC_MONETARY This category specifies the monetary symbols and
delimiters used for a particular locale. This category
affects | ocal econv() [see localeconv(BA_LIB)].

LC_NUMERI C This category specifies the decimal and thousandths
delimiters. The default Clocale corresponds to . as the
decimal delimiter and no thousands delimiter. This
category affects | ocal econv(), printf() [see
printf(BA_LIB)], scanf() [see scanf(BA_LIB)] and
strtod() [see strtod(BA_LIB)].

LC TI ME This category specifies date and time formats. The
default C locale corresponds to U.S. date and time for-
mats. This category affects strftine() [see
strftime(BA_LIB)].

SEV_LEVEL Define severity levels and associates and print strings
with them in standard format error messages [see
fmtmsg(BA_LIB)].

VSGVERB Controls which standard format message components
fmneg() selects when messages are displayed to
stderr[see also fmtmsg(BA_LIB)].

NETPATH A colon-separated list of network identifiers. A network identifier is a
character string used by the Network Selection component of the sys-
tem to provide application-specific default network search paths. A
network identifier must consist of non-NULL characters and must
have a length of at least 1. No maximum length is specified. Network
identifiers are normally chosen by the system administrator.

NLSPATH Contains a sequence of templates which catopen() uses when
attempting to locate message catalogues. Each template consists of an
optional prefix, one or more substitution fields, a filename and an
optional suffix.

For example:
NLSPATH="/ systeni nl sl i b/ %\. cat "

defines that cat open() should look for all message catalogues in the
directory /systeni nl slib, where the catalogue name should be
constructed from the name parameter passed to catopen(), 9%,
with the suffix . cat .

Page 2

FINAL COPY
June 15, 1995
File: ba_env/envvar
svid

Page: 52

envvar (BA_ENV)

PATH

TERM

TZ

envvar (BA_ENV)

Substitution fields consist of a %symbol, followed by a single-letter
keyword. The following keywords are currently defined:

LN The value of the name parameter O
O passed to cat open(). Q
[bg The value of LANG 0
Lhs The language element from LANG B
%/ﬁ The territory element from LANG 0

Y€ The codeset element from LANG
86 A single %character. O

An empty string is substituted if the specified value is not currently
defined. The separators *“_"" and ““. ”’ are not included in % and %
substitutions.

Templates defined in NLSPATH are separated by colons (:). A lead-
ing colon or two adjacent colons (: :) is equivalent to specifying %\.

For example:
NLSPATH=": %N. cat : / nl sl i b/ %./ %\. cat "

indicates to cat open() that it should look for the requested message
catalogue in name, name. cat and / nl sl i b/ $LANG name. cat .

The sequence of directory prefixes that are applied in searching for a
file known by an incomplete path name. The prefixes are separated
by colons (:).

The kind of terminal for which output is to be prepared. This infor-
mation is used by commands which may exploit special capabilities of
that terminal.

Time zone information.

The contents of the environment variable named TZ are used by the
functions ctinme(), localtime(), strftinme() and nktime()
to override the default timezone. If the first character of TZ is a colon
(:), the behavior is implementation defined, otherwise TZ has the
form:

std offset [dst [offset], [start[/time],end [/time]]]

Where:

std and dst
Three or more bytes that are the designation for the standard
(std) and summer (dst) timezones. Only std is required, if dst is
missing, then summer time does not apply in this locale.
Upper- and lower-case letters are explicitly allowed. Any
characters except a leading colon (:), digits, a comma (,), a
minus (-) or a plus (+) are allowed.

Page 3

FINAL COPY
June 15, 1995
File: ba_env/envvar
svid

Page: 53

envvar (BA_ENV)

offset

envvar (BA_ENV)

Indicates the value one must add to the local time to arrive at
Coordinated Universal Time. The offset has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour
(hh) is required and may be a single digit. The offset following
std is required. If no offset follows dst , summer time is
assumed to be one hour ahead of standard time. One or more
digits may be used; the value is always interpreted as a
decimal number. The hour must be between 0 and 24, and the
minutes (and seconds) if present between 0 and 59. Out of
range values may cause unpredictable behaviour. If preceded
by a “~”’, the timezone is east of the Prime Meridean; other-
wise it is west (which may be indicated by an optional preced-
ing “+” sign).

start/time, end/time

SEE ALSO

Indicates when to change to and back from summer time,
where start/time describes when the change from standard time
to summer time occurs, and end/time describes when the
change back happens. Each time field describes when, in
current local time, the change is made.

The formats of start and end are one of the following:

Jn The Julian day n (1 < n < 365). Leap days are not
counted. That is, in all years, February 28 is day
59 and March 1 is day 60. It is impossible to refer
to the occasional February 29.

n The zero-based Julian day (0 < n < 365). Leap
days are counted, and it is possible to refer to
February 29.

Mm.n.d th
Thed"™ day, (0 <d < 6) of week n of month m of

the year (1 £ n <5 1< m< 12), where week 5
means ‘‘the last d-day in month m” which may
occur in either the fourth or the fifth week).
Week 1 is the week in which the first day of the
month falls. Day zero is Sunday.

Implementation specific defaults are used for start and end if
these optional fields are not given.

The time has the same format as offset except that no leading
sign (=" or “+”) is allowed. The default, if time is not given is
02:00:00.

ctype(BA_LIB), exec(BA_OS), filsys(BA_ENV), getenv(BA_LIB), gettxt(BA_LIB),
localeconv(BA_LIB), mbchar(BA_LIB), printf(BA_LIB), putenv(BA_LIB),
setlocale(BA_OS), strcoll(BA_LIB), strftime(BA_LIB), strtod(BA_LIB),
strxfrm(BA_LIB), system(BA_OS).

Page 4

FINAL COPY
June 15, 1995
File: ba_env/envvar
svid

Page: 54

envvar (BA_ENV)

FUTURE DIRECTIONS

LEVEL

envvar (BA_ENV)

The number in TZ will be defined as an optional minus sign followed by two hour
digits and two minute digits, hhmm, in order to represent fractional time-zones.

Level 1.

FINAL COPY
June 15, 1995
File: ba_env/envvar
svid

Page: 55

Page 5

errno (BA_ENV) errno (BA_ENV)

NAME
errors — error code and condition definitions

SYNOPSIS
#i ncl ude <errno. h>

errno

DESCRIPTION
The numerical value represented by the symbolic name of an error condition is
assigned to er r no for errors that occur when executing a system service routine or
general library routine.

To be consistent with the C Standard, the interface definition of errno has been
change in the SIVD, Fourth Edition. Programs should obtain the value of er r no by
including <err no. h>.

The macro errno expands to a modifiable Ivalue that has type i nt, the value of
which is set to a positive error number by several library functions. errno need
not be the identifier of an object, e.g., it might expand to a modifiable Ivalue result-
ing from a function call. It is unspecified whether er r no is a macro or an identifier
declared with external linkage. If an errno macro definition is suppressed to
access an actual object, or if a program defines an identifier with the name err no,
the behavior is undefined.

The component definitions given in the BASE OS SERVICE ROUTINES chapter and
in the BASE LIBRARY ROUTINES chapter, list possible error conditions for each
routine and the meaning of the error in that context. The order in which possible
errors are listed is not significant and does not imply precedence. The value of
er r no should be checked only after an error has been indicated; that is, when the
return value of the component indicates an error, and the component definition
specifies that er rno be set. The errno value O is reserved; no error condition is
equal to zero. An application that checks the value of errno must include the
<err no. h> header file.

Additional error conditions may be defined by Extensions to the Base System or by
particular implementations.

The following list describes the general meaning of each error:

E2BI G Argument list is too long.
An argument list longer than { ARG_MAX} bytes was presented to a
member of the exec family of routines.

EACCES Permission is denied.
An attempt was made to access a resource in a way forbidden by the
protection system.

EAGAI N Resource is temporarily unavailable; try again later.
For example, the fork() routine failed because the process table of
the system is full.

EBADF File number is bad.
Either a file descriptor refers to no open file, or a read (respectively,
write) request was made to a file that is open only for writing (respec-
tively, reading).

Page 1

FINAL COPY
June 15, 1995
File: ba_env/errno
svid

Page: 56

errno (BA_ENV)

EBADMSG

EBUSY

ECANCELED

ECH LD

EDEADLK

EDOM

EEXI ST

EFAULT

EFBI G

El DRM

Page 2

errno (BA_ENV)

Bad message.

Duringa read(), getnsg(),or ioctl () |_RECVFDsystem call
to a STREAMS device, something has come to the head of the queue
that can’t be processed. That something depends on the system call:
read() - control information or a passed file descriptor.

get nsg() - passed file descriptor.

i octl () -control or data information.

Device or resource busy or unavailable.

An attempt was made to make use of a system resource that is not
currently available, as it is being used by another process in a manner
that would have conflicted with the request being made by this pro-
cess. For example attempting to mount a device that was already
mounted or to unmount a device on which there is an active file (open
file, current directory, mounted on file, active text segment).

Asynchronous 1/0 canceled.
The requested 170 was canceled before the 1/0 completed because of
aio_cancel.

No child processes.

An attempt was made to obtain the status of a child process or
processes, by a process that had no existing child process in the
appropriate state.

Deadlock avoided.
The request would have caused a deadlock; the situation was detected
and avoided.

Math argument.
The argument of a function in the math package is out of the domain
of the function.

File exists.
An existing file was mentioned in an inappropriate context (e.g., a call
to the |ink() routine).

Address is bad.

The system encountered a hardware fault in attempting to use an
argument of a routine. For example, er r no potentially may be set to
EFAULT any time an invalid address is passed a routine that takes a
pointer argument if the system can detect the condition. Because sys-
tems differ in their ability to reliably detect a bad address, on some
implementations passing a bad address to a routine will result in
undefined behavior.

File is too large.
The size of a file exceeded the maximum file size limit [see
getrlimit(BA_OS)].

Identifier removed.
An identifier has been removed from the system.

FINAL COPY
June 15, 1995
File: ba_env/errno
svid

Page: 57

errno (BA_ENV)

errno (BA_ENV)

El NPROGRESS

The operation requested is now in progress.
An operation that takes a long time to complete was attempted on a
non-blocking object.

El NTR Interrupted system service.
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system service routine. If execu-
tion is resumed after processing the signal, it will appear as if the
interrupted routine returned this error condition.

El NVAL Invalid argument.
An invalid argument (e.g., unmounting a non-mounted device; men-
tioning an undefined signal in a call to the signal () or kill()
routine). Also set by math routines.

El O 170 error.
Some physical 1/0 error has occurred, or access to controlling termi-
nal denied to a background process. For physical 1/0 errors, this
error may, in some cases, occur on a call following the one to which it
actually applies.

El SDI R Is a directory.
An invalid operation on a directory was attempted. For example, an
attempt was made to write on a directory.

ELI BACC Reserved for system use.

ELI BBAD Reserved for system use.

ELI BEXEC Reserved for system use.

ELI BMAX Reserved for system use.

ELI BSCN Reserved for system use.

ELOOP Too many levels of symbolic links.
Too many symbolic links were encountered in translating pathname.

EMFI LE Too many open files in a process.
No process may have more than { OPEN_MAX} file descriptors open at
atime.

EMLI NK Too many links.
An attempt was made to make more than the maximum number of
links {LI NK_MAX} to a file.

ENAVETOOLONG
if the filename is too long. if the length of a pathname exceeds
{PATH _MAX}, or the length of a path component exceeds
{NAME_MAX} while {_PGOsSI X_NO_TRUNC} is in effect.

ENFI LE Too many open files in the system.

The system file table is full (i.e., { SYS_OPEN} files are open, and tem-
porarily no more opens can be accepted).

Page 3

FINAL COPY
June 15, 1995
File: ba_env/errno
svid

Page: 58

errno (BA_ENV)

ENCDEV

ENCENT

ENCEXEC

ENCLCK

ENOLOAD

ENOVEM

ENOVSG

ENCPKG

ENGCSPC

ENCSR

ENCSTR

ENCSYS

Page 4

errno (BA_ENV)

No such device.
An inappropriate operation to a device is attempted. (e.g., read a
write-only device).

No such file or directory.
A filename is specified and the file should exist but doesn’t, or one of
the directories in a pathname does not exist.

Exec format error.
A request is made to execute a file which, despite appropriate permis-
sions, does not start with a valid format.

No locks available.
A system-imposed limit on the number of simultaneous file and
record locks was reached and no more are available at that time.

Failure in loading a loadable exec module.
An attempt was made to dynamically load an executable module and
the attempt failed.

Not enough space.

During execution of an exec routine, a program asks for more space
than the system is able to supply. This is not a temporary condition
until other processes release resources. The error may also occur if the
arrangement of text, data, and stack segments requires too many seg-
mentation registers, or if there is not enough swap space during exe-
cution of the fork() routine.

No message of the desired type.
The message queue does not contain a message of the required type.

Package not installed.
An attempt was made to use a system call from a package which has
not been installed.

No space is left on the device.
While writing a regular file or creating a directory entry, no free space
is left on the device.

No stream resources.

Insufficient STREAMS memory resources are available to perform a
STREAMS related system call. This is a temporary condition; one may
recover from it if other processes release resources.

Not a stream.
put meg() or getnsg() system call is attempted on a file descriptor
that is not a STREAMS device.

Operation not applicable.

A non-existing system operation is requested from a file system type,
or an attempt was made to use a function that is not available in this
implementation.

FINAL COPY
June 15, 1995
File: ba_env/errno
svid

Page: 59

errno (BA_ENV)

ENOTBLK

ENOTDI R

ENOTEMPTY

ENOTTY

ENXI O

errno (BA_ENV)

Block device is required.
A non-block file is mentioned where a block device is required (e.g., in
acall to the mount () routine).

Not a directory.
A non-directory is specified where a directory is required (e.g. in a
path-prefix or as an argument to the chdi r () routine).

Directory not empty.
A directory with entries other than . and .. was supplied when an
empty directory was expected.

Not a character device.
A call is made to a character special device system server routine,
specifying a file that is not a character special device.

No such device or address.

1/0 on a special file refers to a subdevice which does not exist, or
exists beyond the limits of the device. It may also occur when, for
example, a tape drive is not on-line or no disk pack is loaded on a
drive.

EOVERFLOW Reserved for system use.

EPERM

EPI PE

EPROTO

ERANGE

ERESTART
ERCFS

ESPI PE

ESRCH

Operation not permitted.

Typically this error indicates an attempt to modify a file in some way
forbidden except to its owner or a process with appropriate privileges.
It is also returned for attempts by processes to do things allowed only
to processes with appropriate privileges.

Broken pipe.

A write on a pipe for which no process can read the data. This condi-
tion generates a Sl GPI PE signal; the error is returned if the signal is
ignored.

Protocol error.
Some protocol error occurred. This error is device specific, but is gen-
erally not related to a hardware failure.

Result is too large.
The value of a function in the math package is not representable
within machine precision.

Reserved for system use.

Read-only file system.
An attempt to modify a file or directory is made on a device mounted
read-only.

Illegal seek.
A call to the | seek() routine is issued to a pipe or a named
STREAMS pipe [see Iseek(BA_OS)].

No such process.
No process can be found corresponding to the specified search cri-
teria.

Page 5

FINAL COPY
June 15, 1995
File: ba_env/errno
svid

Page: 60

errno (BA_ENV) errno (BA_ENV)

ESTRPI PE Reserved for system use.

ETXTBSY Text file busy.
An attempt made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing a
pure-procedure program that is being executed.

ETI ME Streami oct | () timeout.
The timer set for a STREAMS i octl () call has expired. The cause
of this error is device specific and could indicate either a hardware or
software failure, or a timeout value that is too short for the specific
operation. The status of the i oct| () operation is indeterminate.

EXDEV Cross-device link.
A link to a file on another device is attempted.

USAGE
Some routines do not have an error return value. Because no routine sets err no to
zero, an application may, in this case, set er r no to zero, call a routine, and then if
the component definition specifies that er r no be set, check whether errno has been
set to indicate an error. A routine can save the value of errno on entry and then
set it to zero, as long as the original value is restored if er r no is still zero just before
return.

SEE ALSO
chdir(BA_OS), exec(BA_0OS), fork(BA_OS), getmsg(BA_0OS), ioctl(BA_OS),
kill(BA_OS), link(BA_OS), Iseek(BA_OS), mount(BA_OS), ptrace(KE_OS),
putmsg(BA_OS), read(BA_OS), ulimit(BA_OS), wait(BA_OS).

LEVEL
Level 1.

Page 6

FINAL COPY
June 15, 1995
File: ba_env/errno
svid

Page: 61

fentl (BA_ENV) fentl (BA_ENV)

NAME

fentl: fentl.h — file control options
SYNOPSIS

#i nclude <fcntl. h>
DESCRIPTION

The <f cnt | . h> header defines the following requests and arguments for use by
the functions fcntl () [see fentl(BA_OS)] and open() [see open(BA_OS)].

Values for cmd used by f cnt | () (the following values are unique):

F_DUPFD Duplicate file descriptor
F_GETFD Get file descriptor flags
F_SETFD Set file descriptor flags
F_GETFL Get file status flags

F_SETFL Set file status flags

F_CETLK Get record locking information
F_SETLK Set record locking information

F_SETLKW Set record locking information;
wait if blocked

File descriptor flags used for f cnt | () :
FD_CLOEXEC Close the file descriptor upon
execution of an exec function [see exec(BA_OS)]

Values for | _t ype used for record locking with f cnt | ()
(the following values are unique):

F_RDLCK Shared or read lock
F_UNLCK Unlock
F_WRLCK Exclusive or write lock

The following three sets of values are bitwise distinct:
Values for of | ag used by open():

O _CREAT Create file if it does not exist
O_EXCL Exclusive use flag
O_NOCTTY Do not assign controlling tty
O TRUNC Truncate flag

File status flags used for open() andfcntl ():
O_APPEND Set append mode
O_NONBLOCK Non-blocking mode
O_SYNC Synchronous writes

Mask for use with file access modes:
O_ACCMODE Mask for file access modes

Page 1

FINAL COPY
June 15, 1995
File: ba_env/fcntl
svid

Page: 62

fentl (BA_ENV) fentl (BA_ENV)

File access modes used for open() andfcntl ():
O_RDONLY Open for reading only
O _RDWR Open for reading and writing
O WRONLY Open for writing only

The structure f | ock describes a file lock. It includes the following members:

short | _type; /* Type of lock */

short | _whence; /* Flag for starting offset */

of f _t | _start; /* Relative offset in bytes */

of f _t I _len; /* Size; if 0 then until EOF */
pid_t | _pid; /* Process |ID of the process hol di ng

the | ock; returned with F_GETLK */
The following are declared as either functions or macros:

creat() fentl()
open()
SEE ALSO
creat(BA_OS), exec(BA_OS), fentl(BA_OS), open(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_env/fcntl
svid

Page: 63

filsys (BA_ENV) filsys (BA_ENV)

NAME
file system — directory tree structure

DESCRIPTION
Directory Tree Structure
The file system on any System V operating system is a tree-like structure, and is
divided into a "root" file system and a collection of mountable file systems.

All System V conforming systems must have a "root" (/), a "user" (/ usr) and a
"var" (/ var) subtree accessible to user-level programs. The user, root and var sub-
trees may or may not be different physical file systems, but their appearance to user
programs will always be the same.

The root file system contains machine-specific information (i.e., system data files,
log files, etc.) and files necessary to boot and run the system.

The directory / usr of the root file system is the point of access to the / usr subtree,
whether it is a real, mounted file system or a subtree of the root file system. All files
under the / usr directory can be shared between machines of the same architecture,
while all files under / usr/ shar e can be shared between all machines of the same
and disparate architectures.

The directory / var is the point of access to the / var subtree, whether it is a real,
mounted file system or a subtree of the root file system. The / var subtree contains
files that vary in size and presence during normal system operations, including log-
ging, accounting and temporary files created by the system and applications.

Below is a diagram of the minimal directory tree structure expected to be on any
System V operating system.

dev etc opt proc tmp sbin usr var

|
]

bi n sbin share lib

The following guidelines apply to the contents of these directories:

/dev,/etc,/proc,/tnp,/sbin,and/ usr/shin
primarily for the use of the system. Most applications should
never create files in any of these directories, though they may read
and execute them. Applications, as well as the system, can use
[usr/binand/var.

/ dev holds special device files.

Page 1

FINAL COPY
June 15, 1995
File: ba_envf/filsys
svid

Page: 64

filsys (BA_ENV) filsys (BA_ENV)

letc holds system data files, such as / et ¢/ passwd.

/ opt root directory for add-on application packages. For example,
/ opt / x would contain the root of the directory tree for applica-
tion x. Application x should place varying files (such as log files
and temporary files) in/ var/ opt / x.

/ proc place holder for the pr oc file system type.

/[t holds temporary files created by utilities in / sbi n and by other
system processes.

/sbin holds executable system commands (utilities), if any, needed to
bring the system up to a usable state.

[usr/bin holds (user-level) executable application and system commands.

lfusr/lib holds libraries and machine architecture-dependent databases.

[usr/shin holds the bulk of executable system commands (utilities).

/usr/share holds machine-architecture independent database files (such as
manual page files). These files many be shared between machines
of different hardware types.

[var holds system varying files, such as log files and temporary files.

Applications should install or create files only in designated places within the tree.
The primary locations are the /opt and /var/opt subtrees. Temporary files
should always be created using the library routines provided for this purpose [see
tmpnam(BA_LIB), tenpnan() in tmpnam(BA_LIB), tmpfile(BA_LIB), and
mktemp(BA_LIB), for example].

Some extensions to the Base System will have additional requirements on the tree

structure when the extension is installed on a system. Directory tree requirements
specific to an extension will be identified when the extension is defined in detail.

System Data Files

Page 2

The Base System Definition specifies only these system-resident data files:
[etc/ group
/ et c/ passwd
letc/profile

The / etc/ passwd and /etc/profile files are owned by the system and are
readable but not writable by ordinary users.

/ et c/ passwd is a generally useful file, readable by applications, that makes avail-
able to application programs some basic information about end-users on a system.
It has one entry for each user. Minimally, each user’s entry contains a string that is
the name by which the user is known on the system, a numerical user-1D, and the
home directory or initial working directory of the user. [See passwd(BA_ENV) for
file format and content details.]

Conventionally, the information in this file is used during the initialization of the
environment for a particular user. However, the / et ¢/ passwd file is also useful as
a database with a standard format containing information about users, which can
be used independently of the mechanisms that maintain the data file.

FINAL COPY
June 15, 1995
File: ba_envf/filsys
svid

Page: 65

filsys (BA_ENV)

filsys (BA_ENV)

The / et c/ profil e file may contain a string assignment of the PATH and TZ vari-

ables [see envvar(BA_ENV)].

SEE ALSO
envvar(BA_ENV), passwd(BA_ENV).

LEVEL

Level 1.

FINAL COPY
June 15, 1995
File: ba_envf/filsys
svid

Page: 66

Page 3

float (BA_ENV)

NAME

float: float.h — numerical limits
SYNOPSIS

#i ncl ude <float.h>
DESCRIPTION

The <fl oat. h>header provides for the following constants.

float (BA_ENV)

The rounding mode for floating point addition is characterized by the value of

FLT_ROUNDS:
-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDS characterize implementation-defined behavior.

The values given in the following list shall be replaced by implementation-defined
expressions that shall be equal or greater in magnitude (absolute value) to those

shown, with the same sign.
#define DBL_DI G
#defi ne DBL_MANT_DI G
#defi ne DBL_MAX_10_EXP
#def i ne DBL_MAX_EXP
#define DBL_M N_10_EXP
#defi ne DBL_M N_EXP
#define FLT_D G
#define FLT_MANT_DI G
#define FLT_MAX_10_EXP
#defi ne FLT_MAX_EXP
#define FLT_M N_10_EXP
#define FLT_M N_EXP
#defi ne FLT_RADI X
#define LDBL_DI G
#defi ne LDBL_MANT_DI G
#defi ne LDBL_MAX_10_EXP
#defi ne LDBL_MAX_EXP
#define LDBL_M N_10_EXP
#defi ne LDBL_M N_EXP

10

+37

- 37

+37

- 37

+37

-37

The values given in the following list shall be replaced by implementation-defined
expressions that shall be equal to or greater than those shown.

#defi ne DBL_MAX
#define FLT_MAX
#defi ne LDBL_MAX

1E+37
1E+37
1E+37

The values given in the following list shall be replaced by implementation-defined
expressions that shall be equal to or less than those shown.

#define DBL_EPSI LON
#define DBL_M N
#define FLT_EPSI LON

FINAL COPY
June 15, 1995
File: ba_env/float
svid

Page: 67

1E-9
1E- 37
1E-5

Page 1

float (BA_ENV) float (BA_ENV)

#define FLT_M N 1E-37
#defi ne LDBL_EPSI LON 1E-9
#define LDBL_M N 1E- 37

The value of FLT_RADI X shall be a constant expression suitable for use in prepro-
cessing directives. Values that need not be constant expressions shall be supplied
for all other components.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_env/float
svid

Page: 68

ftw (BA_ENV) ftw (BA_ENV)

NAME
ftw: ftw.h — file tree traversal
SYNOPSIS
#i ncl ude <ftw. h>
DESCRIPTION
The <ftw. h> header defines codes for the third argument to the user-supplied
function which is passed as the second argumentto ftw() [see ftw(BA_LIB)]:
FTW F File
FTW D Directory
FTWDNR Directory without read permission
FTW NS Unknown type, st at () failed
Declares the following as a function or a macro:
ftw) nftw)
SEE ALSO
ftw(BA_LIB).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/ftw
svid

Page: 69

group (BA_ENV) group (BA_ENV)

NAME
group — group file
DESCRIPTION
The file gr oup contains for each group the following information:
group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group
The file gr oup is an ASCII file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is null, no password is
demanded.
This file resides in directory / et c. Because of the encrypted passwords, it can and
does have general read permission and can be used, for example, to map numerical
group ID’s to names.
During user identification and authentication, the supplementary group access list
is initialized sequentially from information in this file. If a user is in more groups
than the system is configured for, {NGROUPS_MAX}, subsequent group
specifications will be ignored.
FILES
[etc/ group
SEE ALSO
groups(AU_CMD), passwd(AU_CMD), getgroups(BA_OS), initgroups(BA_LIB)
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/group
svid

Page: 70

grp (BA_ENV) grp (BA_ENV)

NAME
grp: grp.h —group structure
SYNOPSIS
#i ncl ude <grp. h>
DESCRIPTION
The <grp. h> header declares struct group which includes the following
members:
char *gr _name; /* name */
gid_t gr_gid, /* numerical group ID */
char **gr_mem /* pointer to a null termnated
array of character pointers
to nenber names */
The following are declared as either a function or macro:
getgrgid() getgrnam)
SEE ALSO
getgrent(BA_LIB).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/grp
svid

Page: 71

langinfo (BA_ENV) langinfo (BA_ENV)

0 e o o s w1

NAME
langinfo: langinfo.h — language information constants
SYNOPSIS
#i ncl ude <l angi nfo. h>
DESCRIPTION
The <l angi nf 0. h> header contains the constants used to identify items of lan-
ginfo data [see nl_langinfo(BA_LIB)]. The mode of the constants is given in
<nl _types. h> [see nl_types(BA_ENV)].
The entries under the Category column of the table below indicate in which set | o-
cal e() category each item is defined [see setlocale(BA_OS)].
The following constants are defined on all systems:
HConstant Category Meaning
(D T FMI LC TI ME string for formatting date and time
b FMr LC TIME date format string
|j]’_FI\/rI' LC TI ME time format string
Cam STR LC TI ME Ante Meridiem affix
M _STR LC TI ME Post Meridiem affix
Y_1 LC TI ME name of the first day of the week (e.g., Sunday)
PAY_2 LC TI ME name of the second day of the week (e.g., Monday)
[PAY_3 LC TI ME name of the third day of the week (e.g., Tuesday)
[DAY_4 LC TI ME name of the fourth day of the week (e.g., Wednesday)
DAY 5 LC TI ME name of the fifth day of the week (e.g., Thursday)
LbAY_6 LC TIME name of the sixth day of the week (e.g., Friday)
Y_7 LC TI ME name of the seventh day of the week (e.g., Saturday)
leBDAY_l LC TI ME abbreviated name of the first day of the week
BDAY_2 LC TI ME abbreviated name of the second day of the week
ABDAY_3 LC TI ME abbreviated name of the third day of the week
[ABDAY_4 LC TI ME abbreviated name of the fourth day of the week
CABDAY_5 LC TI ME abbreviated name of the fifth day of the week
CABDAY_6 LC TI ME abbreviated name of the sixth day of the week
CABDAY_7 LC TI ME abbreviated name of the seventh day of the week
CVON_1 LC TI ME name of the first month in the Gregorian calendar
| 2 LC TI ME name of the second month
| 3 LC TI ME name of the third month
| 4 LC TI ME name of the fourth month
| 5 LC TI ME name of the fifth month
CMON_6 LC TI ME name of the sixth month
CMONL_7 LC TI ME name of the seventh month
[MON_8 LC TI ME name of the eighth month
CVON_9 LC TI ME name of the ninth month
CMON_10 LC TIME name of the tenth month
[11 LC TI ME name of the eleventh month
[12 LC TI ME name of the twelfth month
#\BI\/D\I_l LC TI ME abbreviated name of the first month
Page 1
FINAL COPY

June 15, 1995
File: ba_env/langinfo
svid

Page: 72

langinfo (BA_ENV) langinfo (BA_ENV)

HConstant Category Meaning g
CABMON 2 LC TI ME abbreviated name of the second month 0
CABMON_3 LC TIME abbreviated name of the third month g
BMON_4 LC TI ME abbreviated name of the fourth month 0
UABI\/[N_S LC TI ME abbreviated name of the fifth month g
ABMON_6 LC TI ME abbreviated name of the sixth month 0
[ABMON_7 LC TI ME abbreviated name of the seventh month 0
ABMON_8 LC TI ME abbreviated name of the eighth month 0
CABMON_9 LC TI ME abbreviated name of the ninth month O
CABMON_10 LC TI ME abbreviated name of the tenth month g
CABMON 11 LC TI ME abbreviated name of the eleventh month 0
CABMON 12 LC TIME abbreviated name of the twelfth month g
DI XCHAR LC_NUMERI C radix character O
HOUSEP LC_NUMERI C separator for thousands g
Eg(ESSTR LC ALL affirmative response for yes/no queries 0
TR LC ALL negative response for yes/no queries 0
[CRNCYSTR LC_MONETARY currency symbol, preceded by — if the symbol should
O appear before the value, + if the symbol should [
O appear after the value, or . if the symbol should O
= replace the radix character

Declares the following as a function:
nl _I angi nfo()
SEE ALSO
nl_langinfo(BA_LIB), nl_types(BA_ENV), setlocale(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_env/langinfo
svid

Page: 73

limits (BA_ENV) limits (BA_ENV)

NAME

limits: limits.h — implementation specific constants
SYNOPSIS

#include <limts. h>
DESCRIPTION

The <l i mi ts. h> header defines various names which are used throughout the
descriptive text of the System V Interface Definition. Different categories of names
are described in the tables below.

The names represent various limits on resources which the system imposes on
applications.

Implementations may choose any appropriate value for each limit, provided it is
not more restrictive than the values listed in the column headed “Minimum Accept-
able Value” in the table below.

Applications should not assume any particular value for a limit. To achieve max-
imum portability, an application should not require more resource than the quan-
tity listed in the “Minimum Acceptable Value” column. However, an application
wishing to avail itself of the full amount of a resource available on an implementa-
tion may make use of the value given in <l i m ts. h> on that particular system, by
using the symbolic names listed in the first column of the table. It should be noted,
however, that many of the listed limits are not invariant, and at run-time, the value
of the limit may differ from those given in this header, for the following reasons: the
limit is pathname dependent and the limit differs between the compile and run-time
machines.

For these reasons, an application may use the fpathconf() [see
fpathconf(BA_OS)], pat hconf () [see pat hconf () in fpathconf(BA_OS)] and
sysconf () [see sysconf(BA_OS)] functions to determine the actual value of a limit
at run-time.

The items in the list ending in “_MIN" give the most negative values that the
mathematical types are guaranteed to be capable of representing. Numbers of a
more negative value may be supported on some systems, as indicated by the
<l i m ts. h> header on the system, but applications requiring such numbers are
not guaranteed to be portable to all systems.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/limits
svid

Page: 74

limits (BA_ENV)

limits (BA_ENV)

The symbol Oin the “*Minimum Acceptable Value” column indicates that there is no
guaranteed value across all compliant systems.

The definition for any of the following names may be omitted from <l imts. h>if
the actual value of the limit is indeterminate but equal to or greater than the

stated minimum. Applications should therefore only use these symbols in code
conditionally compiled on the existence of the symbol, or in calls to f pat hconf (),
pat hconf () or sysconf ().

E[\lame

Description

Minimum
Acceptable Value

ETARG_I\/AX
HCH LD_vax
LI NK_VAX
CVAX_CANON
0

M| NPUT

a\/B_L EN_MAX
NAVE_MAX

0O
COPEN_MAX
O
[PASS_MAX
O
O

SDATH_I\/AX

Pl PE_BUF
0

Max length of argument to the exec
functions including environment data
Max number of processes per user 1D
Max number of links to a single file
Max number of bytes in a terminal
canonical input line

Max number of bytes allowed in a ter-
minal input queue

Max number of bytes in a multibyte
character, for any supported locale

Max number of characters in a filename
(not including terminating null)

Max number of files that one process
can have open at any one time

Max number of significant characters in
a password (not including terminating
null)

Max number of characters in a path-
name (not including terminating null)
Max number bytes that is guaranteed
to be atomic when writing to a pipe

_POSI X_ARG_NMAX
_POSI X_CHI LD_MAX
“POSI X_LI NK_MAX
_POSI X_MAX_CANON
_POSI X_MAX_| NPUT
1

_POSI X_NAME_MAX
_POSI X_OPEN_MAX

8

_POSI X_PATH_MAX

_POSI X_PI PE_BUF

OOoooooooooooooooooooooooodg

The following constant will always be defined in <l imits. h>and will also be
available from sysconf ().

E[\lame

Description

Minimum
Acceptable Value

E\IGROJPS_I\/AX

Max number of simultaneous supple-
mentary group IDs per process

_POSI X_NGROUPS_MAX

MoOoO

Page 2

FINAL COPY
June 15, 1995
File: ba_env/limits
svid

Page: 75

limits (BA_ENV)

The following constants will always be definedin <limts. h>

limits (BA_ENV)

— Minimum
ﬁ\lame Description Acceptable Value
H\IL_ARGMAX Max value of “digit” in calls to the 9

printf() andscanf () functions

S\IL_LANGNAX Max number of bytes in a LANG hame 14
NL_MSGVAX Max message number 32767
CNL_NVAX Max number of bytes in N-to-1 map- O
O ping characters
CNL_SETMAX Max set number 255
CNL_TEXTMAX Max number of bytes in a message 2048
o string

ERO default process priority 20
CFMP_MAX Max number of unique names gen- 10000
0 erated by t npnam()

OOOoooooooooooooo

The following constants are specified by POSIX 1003.1-1988 and will always be
defined in <limits. h>. They are invariant:

MmOooooOoooooooooooooOoOooao

[Name Description Value
U posi X_ARG MAX The length of the argument strings for 4096
ET_ the exec functions in bytes, including
0 environment data
PGSl X_CHI LD_MAX The number of simultaneous processes 6
0 per real user ID.
[POSI X_LI NK_NMAX the value of a file’s link count. 8
0 PCsI X_MAX_CANON The number of bytes in a terminal 255
O canonical input queue
U POSI X_MAX_| NPUT The number of bytes for which space 255
o will be available in a terminal input
O
0 queue.) _
G_POSI X_NAME_VAX The number of bytes in a filename. 14
.PCSI X_NGROUPS_NMAX The number of simultaneous supple- 0
0 mentary group IDs per process.
[PCSI X_OPEN_NMAX The number of files that one process 16
O can have open at one time.
0 POSI X_PATH_MAX The number of bytes in a pathame. 255
O posl X_PI PE_BUF The number of bytes that can be writ- 512
H ten atomically when writing to a pipe.

Page 3

FINAL COPY
June 15, 1995
File: ba_env/limits
svid

Page: 76

limits (BA_ENV)

USAGE

LEVEL

Page 4

limits (BA_ENV)

The following constants will always be defined in <l inits. h> They are invari-

ant:
A Minimum

E[\lame Description Acceptable Value
RBIT Number of bits in a char 8
R_MAX Max integer value of a char 127
L DIG Digits of precision of a doubl e 10
PBL_MAX Max decimal value of a doubl e 1E+37
[FLT_DI G Digits of precision of a f | oat 6
CFLT_MAX Max decimal value of af | oat 1E+37
0 NT_MAX Max decimal value of an i nt 32767
LLONG BIT Number of bitsinal ong 32
ONG_MAX Max decimal value of al ong 2147 483647
CHAR_MAX Max value of a signed char 127
HRT_MAX Max decimal value of a shor t 32767
R MAX Max value of an unsi gned char 255
U NT_MAX Max value of an unsi gned i nt 65535
[ULONG_MAX Max value of an unsi gned | ong i nt 4294967 295
[USHRT_MAX Max value for an unsi gned short int 65535
BAORD BI T Number of bits in a “‘word” or i nt 16

o Maximum

E[\Iame Description Acceptable Value
R M N Min integer value of a char 0
L MN Min decimal value of a doubl e 1E-37
LT_MN Min decimal value of a f | oat 1E-37
00 NT_MN Min decimal value of ai nt -32768
[(LONG_ M N Min decimal value of al ong —2147483648
[(BCHAR_M N Min value of a signed char =127
EBHRT M N Min decimal value of a short -32768

mooooooood mOoOoooooooooooooooooo

If the value of an object of type char sign-extends when used in an expression, the
value of CHAR_M Nis the same as that of SCHAR_M Nand the value of CHAR_MAX
is the same as that of SCHAR_MAX. Otherwise, the value of CHAR_M Nis 0 and the
value of CHAR MAX will be the same as that of UCHAR MAX.

SEE ALSO
fpathconf(BA_OS), sysconf(BA_OS).

Level 1.

FINAL COPY
June 15, 1995
File: ba_env/limits
svid

Page: 77

locale (BA_ENV) locale (BA_ENV)

NAME
locale: locale.h — category macros
SYNOPSIS
#i ncl ude <l ocal e. h>
DESCRIPTION
The <I ocal e. h> header defines at least the following as macros:
LC ALL
LC COLLATE
LC _CTYPE
LC_MONETARY
LC _NUMERI C
LC TIME
LC_MESSAGES
NULL
which expand to distinct integral-constant expressions, for use as the first argument
to the setl ocal e() function [see setlocale(BA_OS)].
Declares the structure | conv which includes at least the following members:
char *deci mal _point; [*onr o]
char *thousands_sep; [x o
char *groupi ng; [|
char *int_curr_synbol; [|
char *currency_synbol ; [* o]
char *non_deci mal _poi nt; [|
char *mon_t housands_sep; I |
char *non_groupi ng; [|
char *positive_sign; [* o]
char *negative_sign; [|
char int_frac_digits; /* CHAR MAX */
char frac_digits; /* CHAR_MAX */
char p_cs_precedes; /* CHAR_MAX */
char p_sep_by_space; /* CHAR_MAX */
char n_cs_precedes; /* CHAR_MAX */
char n_sep_by_space; /* CHAR_MAX */
char p_sign_posn; /* CHAR_MAX */
char n_sign_posn; /* CHAR_MAX */
Declares set| ocal e() and | ocal econf () as a function.
Additional macro definitions, beginning with the characters LC_ and an upper case
letter, may also be given here.
SEE ALSO
setlocale(BA_OS).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/locale
svid

Page: 78

math (BA_ENV) math (BA_ENV)

NAME

math: math.h — mathematical declarations

SYNOPSIS

#i ncl ude <math. h>

DESCRIPTION

The <mat h. h> header provides for the following constants. The values are of type
doubl e and are accurate within the precision of the doubl e type.

ME Value of e

M LORE Val ue of Iogze
M _LOGLOE Val ue of | og, e
M_LN2 Val ue of 1og %
M _LN10 Val ue of 10g°10
M_PI value of m °
MPI_2 Val ue of 12
MPI_4 Val ue of w4
M1 Pl Val ue of 1/ 1
M2 Pl Val ue of 2/
M2 _SQRTPI Val ue of 2/vm
M _SQRT2 Val ue of V2

M SQRT1_2 Val ue of 1/V2

The header contains a define statement for the MAXFLOAT symbol which is system
dependent, and the value HUGE_VAL which is returned for error conditions found
in the math library.

MAXFLOAT Value of maximum non-infinite single-precision floating point
number
HUGE_VAL Error value returned by the math library

The macro HUGE_VAL is defined to represent error values returned by the math
functions. HUGE_VAL will return either +inf on a system supporting IEEE Std
754-1985 or +{ DBL_MAX} on a system that does not support the standard.

The following are declared as functions or macros:

acos() cosh() 1 0() pow()
acosh() erf() j1() scal b()
asin() exp() in() sin()
asi nh() fabs() I dexp() si nh()
at an2() floor() | gamma() sqrt()
atan() f nod() 0g10() tan()
at anh() frexp() I og() tanh()
cbrt () i snan() I ogb() y0()
ceil () gamma() nmodf () y1()
cos() hypot () next after() yn()
Declares si gngamas an external i nt.
Page 1

FINAL COPY
June 15, 1995
File: ba_env/math
svid

Page: 79

math (BA_ENV)

SEE ALSO
Bessel(BA_LIB), erf(BA_LIB), exp(BA_LIB), floor(BA_LIB), frexp(BA_LIB),
hyperbolic(BA_LIB), hypot(BA_LIB), lIgamma(BA_LIB), trig(BA_LIB).

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: ba_env/math
svid

Page: 80

math (BA_ENV)

nl_types (BA_ENV) nl_types (BA_ENV)

NAME

nl_types: nl_types.h — data types
SYNOPSIS

#i ncl ude <nl _types. h>
DESCRIPTION

The <nl _types. h> header contains definitions of at least the following types:

nl _catd used by the message catalogue functions to identify a catalogue.

nl _item usedby nl _I angi nfo() [see nl_langinfo(BA_LIB)] to identify items
of langinfo data. Values of objects of type nl _it emare defined in
<l angi nf 0. h>[see langinfo(BA_ENV)].

and at least the following constant:

NL_SETD used by the catalogue compiler when no $set directive is specified
in a message text source file. This constant can be passed as the value
of set _i d on subsequent calls to cat gets() [see catgets(BA_LIB)]
(i.e., to retrieve messages from the default message set). The value of
NL_SETD is implementation defined.

The following functions are declared:

catcl ose()
catgets()
cat open()
SEE ALSO
catopen(BA_LIB), catgets(BA_LIB), nl_langinfo(BA_LIB), langinfo(BA_ENV).
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/nl_types
svid

Page: 81

passwd (BA_ENV) passwd (BA_ENV)

NAME

passwd — password file

SYNOPSIS

/ et c/ passwd

DESCRIPTION

USAGE

The file / et ¢/ passwd contains the following information for each user:

name
encrypted password (may be empty)

numerical user-1D

numerical group-1D (may be empty)

free field

initial-working-directory

program to use as command interpreter (may be empty)

This text file resides in directory / et c. It has general read permission and can be
used, for example, to map numerical user-IDs to names.

Each field within each user’s entry is separated from the next by a colon. The field
encrypted password may contain the encrypted password, nothing, or a lock string.
The fields numerical group-ID, and program to use as command interpreter may be
empty. However, if these fields are not empty, they must be used for their stated
purpose. free field is a free field that is implementation-specific. Fields beyond the
program to use as command interpreter field are also free but may be standardized in
the future. Each user’s entry is separated from the next by a newline.

The name is a character string that identifies a user.

By convention, the last element in the pathname of the initial-working-directory is
typically name.

In secure installations the / et ¢/ passwd file may not contain the users actual pass-
word. Applications should not assume that the password in / et ¢/ passwd is the
user’s actual password and should not use it for user authentication.

SEE ALSO

LEVEL

crypt(BA_LIB).

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/passwd
svid

Page: 82

pwd (BA_ENV) pwd (BA_ENV)

NAME

pwd: pwd.h — password structure

SYNOPSIS

#i ncl ude <pwd. h>

DESCRIPTION

The <pwd. h> header provides a definition for struct passwd, which includes
the following members:

char *pw_nane: /* user’s login name */

char *pw_passwd; /* encrypted password */

char *pw_dir; /* initial working directory */
char *pw_shel | ; /* programto use as shell */

The following are declared as either functions or macros:
get pwnan() get pwui d()

SEE ALSO
getpwent(SD_LIB).
Level
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/pwd
svid

Page: 83

regexp (BA_ENV) regexp (BA_ENV)

NAME

regexp: regexp.h — regular-expression declarations
SYNOPSIS

#i ncl ude <regexp. h>
DESCRIPTION

The <r egexp. h> header declares the following functions as macros:
advance() conpile() step()

and declares the following as external variables:
locl loc2 Ilocs

SEE ALSO
regexp(BA_LIB).

FUTURE DIRECTIONS
The functionality of the regexp functions will eventually be replaced by a more
complete interface and the regexp functions will be discontinued.

LEVEL
Level 2: September 30, 1989.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/regexp
svid

Page: 84

search (BA_ENV) search (BA_ENV)

NAME

search: search.h —search tables
SYNOPSIS

#i ncl ude <search. h>
DESCRIPTION

The <sear ch. h> header provides at ypedef, ENTRY, for struct entry which
includes the following members:

char *key;

char *data;

and defines ACTI ONand VI SI T as enumeration data types through t ypedef s as
follows:

enum { FIND, ENTER } ACTION;
enum { preorder, postorder, endorder, leaf } VST,

The following are declared as either functions or macros:

hcreat e() I find() tdel ete()
hdestroy() I search() tfind()
hsear ch() tsearch() twal k()

SEE ALSO
hsearch(BA_LIB), Isearch(BA_LIB), tsearch(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/search
svid

Page: 85

setjmp (BA_ENV) setjmp (BA_ENV)

NAME
setjmp: setjmp.h — stack environment declarations
SYNOPSIS
#i ncl ude <setjnp. h>
DESCRIPTION
The <setj np. h> header contains the typedefs for types jnp_buf and
si gj np_buf.

The following are declared as functions: | ongj np() and si gl ongj nmp() .
Declares setj np() and si gsetj np() as either functions or macros.

SEE ALSO
setimp(BA_LIB), sigsetjmp(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/setjimp
svid

Page: 86

siginfo (BA_ENV) siginfo (BA_ENV)

NAME

siginfo — signal generation information
SYNOPSIS

#i ncl ude <sigi nfo. h>
DESCRIPTION

If a process is catching a signal, it may request a record detailing why the system
has generated that signal [see sigaction (BA_OS)]. If a process is monitoring its chil-
dren, it may receive a record detailing the cause of any child’s change of state [see
waitid(BA_OS)]. In either case, the system will return that information in a struc-
ture of type si gi nf o_t that includes the following members:

/* signal nunber */
/* error nunber */
/* signal code */

int si_signo;
int si_errno;
int si_code;

si _si gno contains the system generated signal number. (For the wai ti d() func-
tion, si _si gno will always be equal to SI GCHLD.)

If si _errno is non-zero, it contains an error number associated with this signal, as
defined in errno. h.

si _code contains a code identifying the cause of the signal. If the value of
si _code is less than or equal to 0, then the signal was generated by a user process
[see kill(BA_OS) and sigsend(BA_0OS)] and the siginfo structure will contain the fol-
lowing additional members:

pid_t si_pid;
uid_t si_uid;

/* sending process ID */
/* sending user ID */

Otherwise, si _code contains a signal-specific reason why the signal was gen-
erated as follows:

Signal Code Reason

SIGLL I LL_I LLOPC illegal opcode
I LL_I LLOPN illegal operand
I LL_I LLADR illegal addressing mode
ILL_I LLTRP illegal trap
| LL_PRVOPC privileged opcode
| LL_PRVREG privileged register
| LL_COPRCC COprocessor error
| LL_BADSTK internal stack error

S| GFPE FPE_I NTDI V integer divide by zero
FPE_I NTOVF integer overflow
FPE_FLTDI V floating point divide by zero
FPE_FLTOVF floating point overflow
FPE_FLTUND floating point underflow
FPE_FLTRES floating point inexact result

Page 1

FINAL COPY
June 15, 1995
File: ba_envi/siginfo
svid

Page: 87

siginfo (BA_ENV)

LEVEL

Page 2

siginfo (BA_ENV)

FPE_FLTI NV invalid floating point operation
FPE_FLTSUB subscript out of range
SI GSEGV SEGV_MAPERR address not mapped to object
SEGV_ACCERR invalid permissions for mapped object
SI GBUS BUS_ADRALN invalid address alignment
BUS_ADRERR non-existent physical address
BUS OBJERR object specific hardware error
SI GTRAP TRAP_BRKPT process breakpoint
TRAP_TRACE process trace trap
SIGCHLD CLD_EXI TED child has exited
CLD_KI LLED child was killed
CLD_DUWPED child has terminated abnormally
CLD_TRAPPED traced child has trapped
CLD_STOPPED child has stopped
CLD_CONTI NUED stopped child has continued
SIGPOLL POLL_IN data input available
POLL_QUT output buffers available
POLL_MSG input message available
POLL_ERR 170 error
POLL_PRI high priority input available
PCOLL_HUP device disconnected

In addition, the following signal dependent information will be available:

Signal Field

Value

SIG LL caddr _t si_addr

S| GFPE

address of faulting instruction

SI GSEGY caddr _t si_addr

Sl GBUS

address of faulting memory reference

SIGCHLD pid_t si_pid
int si_status

child process ID
exit value or signal

SIGPOLL long si_band

band event for POLL_I N, POLL_QUT, or
POLL_MSG

For some implementations, the exact value of si _addr may not be available; in
that case, si _addr is guaranteed to be on the same page as the faulting instruction
or memory reference.

SEE ALSO
kill(BA_OS), sigaction(BA_OS), signal(BA_ENV), sigsend(BA_OS), waitid(BA_OS).

Level 1.

FINAL COPY
June 15, 1995
File: ba_envi/siginfo

svid

Page: 88

signal (BA_ENV) signal (BA_ENV)

NAME
signal — base signals

SYNOPSIS
#i ncl ude <signal . h>

DESCRIPTION
The <si gnal . h> header defines the following data type through t ypedef :

sig_atomc_t Integral type of an object that can be accessed as an atomic entity,
even in the presence of asynchronous interrupts.

and defines at least the following macros:

S| G DFL
SI G ERR
SIGIQN

DESCRIPTION

A signal is an asynchronous notification of an event. A signal is said to be gen-
erated for (or sent to) a process when the event associated with that signal first
occurs. Examples of such events include hardware faults, timer expiration and ter-
minal activity, as well as the invocation of the ki || or si gsend system calls. In
some circumstances, the same event generates signals for multiple processes. The
receiver may request a detailed notification of the source of the signal and the rea-
son why it was generated [see si gi nf o(BA_ENV)].

Each process may a system action specified to be taken in response to each signal
sent to it, called the signal’s disposition. The set of system signal actions for a pro-
cess is initialized from that of its parent. Once an action is installed for a specific
signal, it usually remains installed until another disposition is explicitly requested
by a call to either si gacti on, signal or sigset, or until the process execs [see
si gacti on(BA_OS) and si gnal (BA_OS)]. When a process execs, all signals whose
disposition has been set to catch the signal will be set to SI G DFL. Alternatively, on
request, the system will automatically reset the disposition of a signal to SI G DFL
after it has been caught [see si gacti on(BA_OS) and si gnal (BA_OS)].

A signal is said to be delivered to a process when the appropriate action for the pro-
cess and signal is taken. During the time between the generation of a signal and its
delivery, the signal is said to be pending [see si gpendi ng(BA_OS)]. Ordinarily, this
interval cannot be detected by an application. However, a signal can be blocked
from delivery [see si gnal (BA_OS) and si gpr ocrmask(BA_QOS)]. If the action associ-
ated with a blocked signal is anything other than to ignore the signal, and if that
signal is generated for the process, the signal remains pending until either it is
unblocked or the signal’s disposition requests that the signal be ignored. If the sig-
nal disposition of a blocked signal requests that the signal be ignored, and if that
signal is generated for the process, the signal is discarded immediately upon gen-
eration.

Each process has a signal mask that defines the set of signals currently blocked from
delivery to it [see si gpr ocmask(BA_OS)]. The signal mask for a process is initial-
ized from that of its creator.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/signal
svid

Page: 89

signal (BA_ENV)

signal (BA_ENV)

The determination of which action is taken in response to a signal is made at the
time the signal is delivered, allowing for any changes since the time of generation.
This determination is independent of the means by which the signal was originally

generated.

The signals currently defined in sys/ si gnal . h are as follows:

Name Default Event

S| GHP Exit Hangup [see t er m o(7)]

SIA NT Exit Interrupt [see t er m o(7)]

SIGQUT Core Quit [see t er m 0o(7)]

SIdLL Core Illegal Instruction

S| GTRAP Core Trace/Breakpoint Trap

S| GABRT Core Abort

S| GEMI Core Emulation Trap

S| GFPE Core Arithmetic Exception

SI &I LL Exit Killed

Sl GBUS Core Bus Error

S| GSEGV Core Segmentation Fault

Sl GSYS Core Bad System Call

S| GPl PE Exit Broken Pipe

S| GALRM Exit Alarm Clock

S| GTERM Exit Terminated

S| AUSRL Exit User Signal 1

S| AUSR2 Exit User Signal 2

S| GCHLD Ignore Child Status

S| GPWR Ignore Power Fail/Restart

S| GV NCH Ignore Window Size Change

Sl ARG Ignore Urgent Socket Condition

SI GPALL Ignore Socket 1/0 Possible

Sl GSTCP Stop Stopped (signal)

S| GTSTP Stop Stopped (user) [see t er m o(7)]

S| GOONT Ignore Continued

SIGITIN Stop Stopped (tty input) [see t er mi 0o(7)]
S GITQU Stop Stopped (tty output) [see t er m o(7)]
SI GVTALRM Exit Virtual Timer Expired

S| GPRCF Exit Profiling Timer Expired

Sl GXCPU Core CPU time limit exceeded [see getrlimt (2)]
Sl GXFSZ Core File size limit exceeded [see getrlim t (2)]

The si gnal , si gset or si gacti on system calls, can be used to specify one of three
dispositions for a signal: take the default action for the signal, ignore the signal, or

catch the signal.

Default Action: SI G DFL

A disposition of SI G DFL specifies the default action. The default action for each
signal is listed in the table above and is selected from the following:

Exit When it gets the signal, the receiving process is to be terminated with all
the consequences outlined in exi t (BA_OS).

Page 2

FINAL COPY
June 15, 1995
File: ba_env/signal
svid

Page: 90

signal (BA_ENV) signal (BA_ENV)

Core When it gets the signal, the receiving process is to be terminated with all
the consequences outlined in exi t (BA_OS). In addition, a ‘““‘core image’ of
the process is constructed in the current working directory.

Stop When it gets the signal, the receiving process is to stop.

Ignore When it gets the signal, the receiving process is to ignore it. This is identi-
cal to setting the disposition to SI G_| G\.

Note that to support compatibility for applications written before this functionality
in System V, typical configurations have init ignore SI GXCPU and S| GXFSZ
Processes wanting to receive S| GXCPU and S| GXFSZ must explicitly set the disposi-
tion to SI G DFL.

Ignore Signal: SI G | GN
A disposition of SI G_| G\ specifies that the signal is to be ignored.

Catch Signal: function address

A disposition that is a function address specifies that, when it gets the signal, the
receiving process is to execute the signal handler at the specified address. Nor-
mally, the signal handler is passed the signal number as its only argument; if the
disposition was set with the si gacti on function however, additional arguments
may be requested [see si gacti on(BA_OS)]. When the signal handler returns, the
receiving process resumes execution at the point it was interrupted, unless the sig-
nal handler makes other arrangements. If an invalid function address is specified,
results are undefined.

If the disposition has been set with the si gset or si gacti on function, the signal is
automatically blocked by the system while the signal catcher is executing. If a
| ongj np [see setj np(BA_LIBC)] is used to leave the signal catcher, then the signal
must be explicitly unblocked by the wuser [see signal (BA_OS) and
si gpr ocnmask(BA_0S)].

If execution of the signal handler interrupts a blocked system call, the handler is
executed and the interrupted system call returns a -1 to the calling process with
errno set to El NTR However, if the SA RESTART flag is set the system call will be
transparently restarted.

NOTICES

Signal Disposition
The dispositions of the SI &I LL and Sl GSTCP signals cannot be altered from their
default values. The system will generate an error if this is attempted.

The SI &Kl LL and SI GSTCP signals cannot be blocked. The system silently enforces
this restriction.

Whenever a process receives a S| GSTCP, SI GTSTP, SI GI'TIN, or Sl GITQU signal,
regardless of its disposition, any pending SI GOONT signal will be discarded. A pro-
cess stopped by the above four signals is said to be in a job control stop.

Whenever a process receives a S| GOONT signal, regardless of its disposition, any
pending SI GSTCP, SI GTSTP, SI GITI N, and Sl GI'TQU signals will be discarded. In
addition, if the process was stopped, it will be continued.

Page 3

FINAL COPY
June 15, 1995
File: ba_env/signal
svid

Page: 91

signal (BA_ENV) signal (BA_ENV)

SI GPCLL is issued when a file descriptor corresponding to a STREAMVS [see BASE
SYSTEM INTRODUCTION] file has a "selectable" event pending. A process must
specifically request that this signal be sent using the | _SETSI Gi oct | () call. Other-
wise, the process will never receive S| GPCLL.

If the disposition of the SI GCHLD signal has been set with the si gnal () or si g-
set () functions, or with the si gacti on() function and the SA_ NOCLDSTCP flag has
been specified, it will only be sent to the calling process when its children exit; oth-

erwise, it will also be sent when its children are stopped or continued due to job
control.

If the signal occurs other than as the result of calling the abort () orrai se() func-
tion, the behavior is undefined if the signal handler calls any function in the stan-
dard library, other than the si gnal () function itself, or refers to any object with
static storage duration other than by assigning a value to a storage duration vari-
able of typevol atile sig_atomc_t.

When signal-catching functions are invoked asynchronously with process execu-
tion, the behavior of some of the functions defined by this interface definition is
unspecified if they are called from a signal-catching function. The following table
defines a set of functions that are guaranteed to be either re-entrant or not interrup-
tible by signals. Therefore applications may invoke them, without restriction, from
signal-catching functions:

Page 4

abort () fork() read() tcdrain()
access() fstat() rename() tcflow)

al arm() get egi d() rodir() tcfl ush()
cfgetispeed() geteuid() set gi d() tcgetattr()
cfgetospeed() getgid() set pgi d() t cget pgrp()
cfsetispeed() getgroups() setsid() t csendbr eak()
cfsetospeed() getpgrp() set ui d() tcsetattr()
chdir () get pi d() si gaction() t cset pgrp()
chmod() get ppi d() si gaddset () time()
chown() get ui d() si gdel set () times()
chroot () kill() sigenptyset () umask()

cl ose() l'ink() sigfillset() unane()
creat () | ongj np() sigi smenber () unlink()
dup2() | seek() si gnal () ustat ()
dup() nkdi r () si gpendi ng() utime()
execl e() nkfifo() sigprocrmask() wait()
execve() open() si gsuspend() wai t pi d()
_exit() pat hconf () sl eep() wite()
exit() pause() stat ()

fentl () pi pe() sysconf ()

All functions not in the above tables are considered to be unsafe with respect to sig-
nals. If any function that is unsafe is interrupted by a signal-catching function that
then calls any function that is unsafe, the behavior is undefined.

FINAL COPY
June 15, 1995

File

ba_env/signal
svid

Page: 92

signal (BA_ENV) signal (BA_ENV)

The structure si gact i on and the constants:

SA ONSTACK
SA_RESETHAND
SA_RESTART
SA Sl G NFO
SA_NOCLDWAI T
SA_NOCLDSTCP

are defined for use with the function si gacti on() [see sigaction(BA_OS)].
The constants:

SI G BLOXK
SI G UNBLOK
Sl G_SETMASK

are defined for use with the function si gpr ocrmask() [see sigprocmask(BA_OS)].
The following are declared as functions or macros:

kill() si genptyset () sigpending()
sigaction() sigfillset() si gpr ocrrask()
sigaddset () sigisnmenber() sigsuspend()
sigdel set() signal ()

Considerations for Threads Programming
Signal disposition (that is, to default or to ignore or to trap by function a given sig-
nal type) is maintained at the process level and is shared by all threads. Signal
masks, on the other hand, are maintained per thread.

Depending on circumstances (outlined below), caught signals are handled either by
a specific thread or an arbitrary thread.

Synchronous Signals
Signals that are initiated by a specific thread (for example, division by zero,
a request for a S| GALRM signal, a reference to an invalid address) are
delivered to and handled by that thread. (Note: that thread will use the
common handler function currently defined for the containing process.)

Asynchronous Signals
Signals that are not initiated by a specific thread (for example, a SI G NT sig-
nal from a terminal, a signal from another process via ki | | (BA_OS)) are
handled by an arbitrary thread of the process that meets either of the follow-
ing conditions.

The thread has a signal mask that does not include the type of the
caught signal.

The thread is blocked is a si gwai t (BA_OS) system call whose argu-
ment does include the type of the caught signal.

A caught signal will be delivered to only one thread of a process. Applications can-
not predict which of several eligible threads will receive a caught signal. If this
behavior is undesirable, applications should maintain only a single eligible thread
per signal type.

Page 5

FINAL COPY
June 15, 1995
File: ba_env/signal
svid

Page: 93

signal (BA_ENV) signal (BA_ENV)

Signal handling occurs only when a thread is scheduled to run. That latency can be
reduced by having signals caught by (permanently) bound threads.

SEE ALSO
exit(BA_OS), getrlimit(BA_OS), kill(BA_OS), pause(BA_0OS), raise(BA_OS),
sigaction(BA_OS), sigalstack(BA_OS), siginfo(BA_ENV), signal(BA_OS),
sigprocmask(BA_OS), sigsend(BA_OS), sigsetops(BA_OS), sigsuspend(BA_OS),
streams(BA_DEV), termio(BA_DEV), wait(BA_OS).

LEVEL
Level 1.

Page 6

FINAL COPY
June 15, 1995
File: ba_env/signal
svid

Page: 94

stat (BA_ENV)

NAME

stat (BA_ENV)

stat: sys/stat.h — data returned by stat function

SYNOPSIS
#i ncl ude <sys/stat.h>

DESCRIPTION

The <sys/ st at . h> header defines the structure of the data returned by the func-
tions stat() andfstat() [see stat(BA_QOS)].

The structure st at contains at least the following members:

dev _t st _dev;
ino_t st _i no;
mode_t st _node;
nlink t st _nlink;
uid_t st _ui d;
gid_t st _gid;
dev _t st _rdev;
of f _t st _si ze;
time_t st_atine;
time_t st_ntine;
time_t st _ctine;

| ong st _bl ksi ze;
| ong st bl ocks;

/* ID of device containing file */
/* file serial nunmber */

/* type of file (see below */
nunber of |inks */

/* user IDof file owner */

/* group ID of file owner */

device ID (if file is character
or block special) */

/* file size in bytes (if fileis a
regular file) */

/* time of |ast access */

/* time of |ast data nodification */
/* time of |ast status change */

/* the preferred I/0O block size for
this object */

/* nunber of st _bl ksize bl ocks all ocated
for this object */

The following symbolic names for the values of st _node are also defined:

File type:
S | FMT type of file
S | FBLK block special
S | FCHR character special
S IFD R directory
S I FIFO FIFO special
S | FREG regular
S | FLNK symbolic link
File modes:
S | R\KU read, write, execute/search by owner
S I RUSR read permission, owner
S I WSR write permission, owner
S | XUSR execute/search permission, owner
S | RW\KG read, write, execute/search by group
S | RGRP read permission, group
S | WGRP write permission, group

Page 1

FINAL COPY

June 15, 1995
File: ba_env/stat

svid

Page: 95

stat (BA_ENV) stat (BA_ENV)

S | XGRP execute/search permission, group
S | RWKO read, write, execute/search by others
S | ROTH read permission, others
S | WOTH write permission,others
S | XOTH execute/search permission, others
S ISUD set user ID on execution
S 1SE@D set group ID on execution
S | SVTX reserved

File type test macros:

I SBLK () test for a block special file

I SCHR() test for a character special file
1 SDI R() test for a directory

| SFI FO() testfor a FIFO special file

S | SREG() test for a regular file

S_
S_
S

S_

The following are declared as either functions or macros:

chrmod() nkfifo()
fstat() nmknod()
Istat() stat()
nkdir() umask()

USAGE
Use of the macros is recommended for determining the type of a file.

SEE ALSO
chmod(BA_0OS), mkdir(BA_0OS), mknod(BA_OS), stat(BA_OS), umask(BA_OS),
types(BA_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_env/stat
svid

Page: 96

stdarg (BA_ENV) stdarg (BA_ENV)

NAME

stdarg: va_start, va_arg, va_end — handle variable argument list

SYNOPSIS

#i ncl ude <stdarg. h>

void va_start(va_list ap, parmN);
type va_arg(va_list ap, type);

void va_end(va_list ap);

DESCRIPTION

USAGE

This set of macros allows portable procedures that accept variable argument lists to
be written. Routines that have variable argument lists [see printf(BA_LIB)] but do
not use the stdarg macros are inherently nonportable, because different machines
use different argument-passing conventions.

va_l i st isatype defined for the variable used to traverse the list.

The va_start () macro is invoked before any access to the unnamed arguments
and initializes ap for subsequent use by va_ar g() and va_end() . The parameter
parmN is the identifier of the rightmost parameter in the variable parameter list in
the function definition (the one just before the, ...). If this parameter is declared
with the r egi st er storage class or with a function or array type, the behavior is
undefined.

The parameter parmN is required under strict ANSI C compilation. In other compi-
lation modes, parmN need not be supplied and the second parameter to the
va_start () macro can be left empty [e.g., va_start(ap,);]. This allows for
routines that contain no parameters before the . . . in the variable parameter list.

The va_ar g() macro expands to an expression that has the type and value of the
next argument in the call. The parameter ap should have been previously initialized
by va_start (). Each invocation of va_ar g() modifies ap so that the values of
successive arguments are returned in turn. The parameter type is the type name of
the next argument to be returned. The type name must be specified in such a way
so that the type of a pointer to an object that has the specified type can be obtained
simply by postfixing a * to type. If there is no actual next argument, or if type is not
compatible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined.

The va_end() macro is used to clean up.
Multiple traversals, each bracketed by va_start () ... va_end(), are possible.

It is up to the calling routine to specify how many arguments there are, because it is
not always possible to determine this from the stack frame. For example, execl ()
is passed a zero pointer to signal the end of the list. printf () can tell how many
arguments are there by the format. It is non-portable to specify a second argument
of char, short, or fl oat to va_arg(), because arguments seen by the called
function are not char, short, or fl oat. C converts char and short arguments
to i nt and converts f | oat arguments to doubl e before passing them to a func-
tion.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/stdarg
svid

Page: 97

stdarg (BA_ENV) stdarg (BA_ENV)

EXAMPLE

The function f 1() gathers into an array a list of arguments that are pointers to
strings (but not more than MAXARGS arguments), then passes the array as a single
argument to function f 2() . The number of pointers is specified by the first argu-
menttof 1().

#i ncl ude <stdarg. h>

#def i ne MAXARGS 31
void fi1(int n_ptrs, ...)
{

va_list ap;
char *array[MAXARGS] ;
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)
array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);
}

Each call to f 1() should have visible the definition of the function or a declaration
such as

void fi(int, ...);
SEE ALSO
exec(BA_OS), printf(BA_LIB), vprintf(BA_LIB).
LEVEL
Level 1.
Page 2

FINAL COPY
June 15, 1995
File: ba_env/stdarg
svid

Page: 98

stddef (BA_ENV) stddef (BA_ENV)

NAME

stddef: stddef.h — standard definitions

SYNOPSIS

#i ncl ude <stddef. h>

DESCRIPTION

LEVEL

The following types and macros are defined in the standard header <st ddef. h>.
Some are also defined in other headers.

The types are:
ptrdiff_t signed integral type of the result of subtracting two pointers
size_t unsigned integral type of the result of the si zeof operator

wchar _t integral type whose range of values can represent distinct codes for all
members of the largest extended character set specified among the
supported locales; the null character shall have the code value zero.
The space character, control characters representing horizontal tab,
vertical tab and form feed, and each member of

[A-Za- z0- Q! "#U& () *+,-./:;<=>?[\]1" _{|}"1

shall have a code value equal to its value when used as the lone char-
acter in an integer character constant.

The macros are NULL and

of f set of (type, member-designator)
which expands to an integral constant expression that has type si ze_t, the value
of which is the offset, in bytes, to the structure member (designated by member-
designator), from the beginning of its structure (designated by type). The member-
designator shall be such that given

static type t;
then the expression (t. member-designator) evaluates to an address constant. (If
the specified member is a bit-field, the behavior is undefined.)

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/stddef
svid

Page: 99

stdio (BA_ENV)

NAME
stdio: stdio.h — standard buffered input/output
SYNOPSIS
#i ncl ude <stdio. h>
DESCRIPTION
The <st di 0. h> header defines the following symbolic names:
BUFSI Z Size of stdio buffers
ECF End-of-file return value
FI LENAME_MAX Maximum size of character array
to hold longest filename string
FOPEN_IVAX Maximum number of open streams
_| OFBF Input/output fully buffered
_I OLBF Input/output line buffered
_| ONBF Input/output unbuffered
L_ctermd Maximum size of character
array to hold ct er mi d() output
L_cuserid Maximum size of character
array to hold cuseri d() output
L_t npnam Maximum size of character
array to hold t npnan() output
NULL Null pointer
P_tnpdir Path prefix used by t npnan() and
t enpnan() for generated file names.
SEEK_CUR Seek relative to current position
SEEK END Seek relative to end-of-file
SEEK_SET Seek relative to start-of-file
stderr Standard error output stream
stdin Standard input stream
st dout Standard output stream
TMP_MAX Minimum number of unique filenames
generated by t npnam()
NAME_MAX maximum number of characters

in a filename

The following data type is defined through t ypedef :

FI LE A structure containing information about a file

f pos_t

An object type capable of recording all the information

needed to specify uniquely every position within a file

size t

Type returned by si zeof C-Language operator

FINAL COPY
June 15, 1995
File: ba_env/stdio
svid

Page: 100

stdio (BA_ENV)

Page 1

stdio (BA_ENV)

The following are declared, as either functions or macros:

SEE ALSO

clearerr()
cterm d()
cuserid()
fcl ose()
f dopen()
feof ()
ferror()
fflush()
fgetc()

f get pos()
fgets()
fileno()
f open()
fprintf()
fputc()
fputs()
fread()
freopen()

fscanf ()
fseek()
fset pos()
ftell ()
fwite()
getc()
get char ()
gets()
get w()
pcl ose()
perror()
popen()
printf()
putc()
put char ()
put s()
put w()

remove()

renanme()
rew nd()
scanf ()
set buf ()
set vbuf ()
sprintf()
sscanf ()

t empnamn()
tnpfile()
t npnam()
unget c()
viprintf()
vprintf()
vsprintf()
put w()

renove()

stdio (BA_ENV)

ctermid(BA_LIB), cuserid(BA_OS), fclose(BA_OS), ferror(BA_OS), fopen(BA_OS),

fread(BA_OS),
perror(BA_LIB),

fseek(BA_OS),
popen(BA_OS),

getc(BA_LIB),
printf(BA_LIB),

getopt(BA_LIB),
putc(BA_LIB),

gets(BA_LIB),
puts(BA_LIB),

rename(BA_0OS), scanf(BA_LIB), setbuf(BA_LIB), stdio(BA_LIB), system(BA_OS),
tmpfile(BA_LIB), tmpnam(BA_LIB), ungetc(BA_LIB), vprintf(BA_LIB).

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995

File: ba_env/stdio

svid

Page: 101

stdlib (BA_ENV) stdlib (BA_ENV)

NAME
stdlib: stdlib.h — standard library definitions
SYNOPSIS
#i ncl ude <stdlib. h>
DESCRIPTION
The <st dl i b. h> header defines the following symbolic names:
EXI T_FAI LURE Unsuccessful termination
EXI T_SUCCESS Successful termination
MB_CUR_MAX Maximum number of bytes in a multibyte character for the
extended character set specified by the current locale
NULL null pointer
RAND_MAX Maximum value returned by r and()
The following data type is defined through t ypedef :
div_t Type returned by the di v() function
I div_t Type returned by the | di v() function
size_t Type returned by si zeof C-language operator
wchar _t Type whose range can represent distinct codes for all members of
the largest extended character set specified among supported locales
The following are declared as either functions or macros:
abort () cal l oc() mal | oc() srand()
abs() div() nmbl en() strtod()
atexit() exit() nmbstowcs() strtol ()
at of () free() bt owe () strtoul ()
at oi () getenv() qgsort() systen()
atol () I abs() rand() west onbs()
bsear ch() I div() real | oc() wet onb()
SEE ALSO
bsearch(BA_LIB), malloc(BA_OS), gsort(BA_LIB), rand(BA_LIB), setlocale(BA_OS),
strtod(BA_LIB).
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/stdlib
svid

Page: 102

string (BA_ENV) string (BA_ENV)

NAME
string: string.h — string operations
SYNOPSIS
#i ncl ude <string. h>
DESCRIPTION
The <st ri ng. h> header defines the following symbolic name:
NULL null pointer
and the following data type through t ypedef :
size_t Unsigned integral return of si zeof C-language operator.
The following are declared, as either functions or macros:
menccpy() strenp() strncnp()
menchr () strcoll () strncpy()
mencnp() strecpy() strpbrk()
mencpy() strcspn() strrchr()
memove() strdup() strspn()
menset () strerror() strstr()
strcat () strlen() strtok()
strchr() strncat () strxfrm)
SEE ALSO
memory(BA_LIB), string(BA_LIB), strcoll(BA_LIB), strerror(BA_LIB),
strxfrm(BA_LIB).
LEVEL

Level 1.

FINAL COPY
June 15, 1995
File: ba_env/string
svid

Page: 103

Page 1

tar (BA_ENV) tar (BA_ENV)

NAME
tar: tar.h —extended tar definitions
SYNOPSIS
#i ncl ude <tar. h>
DESCRIPTION
Header block definitions are:
General definitions:
Name Description Value
TMAG C "ustar" ustar plus null byte
TMAGLEN 6 Length of the above
TVERSION " 00" 00 without a null byte
TVERSLEN 2 Length of the above
Typeflag field definitions:
Name Description Value
REGTYPE o Regular file
AREGTYPE '\ (O’ Regular file
LNKTYPE 1 Link
SYMI'YPE 12 Reserved
CHRTYPE '3 Character special
BLKTYPE 4 Block special
DI RTYPE ' 5’ Directory
FI FOTYPE '6’ FIFO special
CONTTYPE ' 7’ Reserved
Mode field bit definitions (octal) :
Name Description Value
TSU D 04000 Set UID on execution
TSGE D 02000 Set GID on execution
TSVTX 01000 Reserved
TUREAD 00400 Read by owner
TUWRI TE 00200 Write by owner special
TUEXEC 00100 Execute/search by owner
TGREAD 00040 Read by group
TGARI TE 00020 Write by group
TGEXEC 00010 Execute/search by group
TOREAD 00004 Read by other
TOMNRI TE 00002 Write by other
TOEXEC 00001 Execute/search by other
SEE ALSO
tar(AU_CMD).
LEVEL
Level 1.
Page 1
FINAL COPY

June 15, 1995
File: ba_env/tar
svid

Page: 104

termios (BA_ENV) termios (BA_ENV)

NAME
termios: termios.h — define values for termios

SYNOPSIS
#i ncl ude <term os. h>

DESCRIPTION
The <t erm os. h> header contains the definitions used by the termios interfaces
[see termios(BA_OS)].

Termios Structure
Unsigned integral type definitions exist for:

cc t
speed_t
tcflag_t

The t er m os structure includes the following members:
tcflag_t c_iflag; /* input nodes */
tcflag_t c_oflag; /* output nodes */
tcflag_t c_cflag; /* control nodes */
tcflag_t c_Iflag; /* local nodes */
cc_t c_cc[NCCS]; [/* control chars */

A definition is given for:
NCCS size of the array c_cc for control characters
The special control characters are defined by the array c¢_cc:

o Subscript Usage B
Elpal\r)lgr&gzal Non I\Cﬂtzr&gmcal Description B
OVEOF ECF character 0O
L/EOL EOL character U
L/ERASE ERASE character J
B NTR VI NTR | NTR character B
E{/KI LL KI LL character 0
O VM N M Nvalue 0
VQUI T VQUI T QUI T character [
VSTART VSTART START character O
OVSTOP VSTCOP STOP character [
Ov/SUSP VSUSP SUSP character O

VTI MVE TI ME character H

The subscript values are unique, except that the VM Nand VTI ME subscripts may
have the same values as the VEOF and VEQOL subscripts, respectively.

Input Modes
The c_i f | ag field describes the basic terminal input control:

BRKI NT Signal interrupt on break

I CRNL Map CRto NL on input

| GNBRK Ignore break condition

I GNCR Ignore CR

Page 1
FINAL COPY

June 15, 1995
File: ba_env/termios
svid

Page: 105

termios (BA_ENV) termios (BA_ENV)

| GNPAR Ignore characters with parity errors

I NLCR Map NL to CRon input

I NPCK Enable input parity check

| STRI P Strip character

I UCLC Map upper case to lower case on input
I XANY Enable any character to restart output
| XOFF Enable start/stop input control

I XON Enable start/stop output control
PARVRK Mark parity errors

Output Modes
The c_of | ag field specifies the system treatment of output:

OoPCST Postprocess output
aLcuc Map lower case to upper on output
ONLCR Map NL to CR-NL on output
OCRNL Map CRto NL on output
ONCCR No CRoutput at column 0
ONLRET NL performs CR function
OFl LL Use fill characters for delay
OFDEL Fill is DEL, else NUL
NLDLY Select newline delays:
NLO Newline character type 0
NL1 Newline character type 1
CRDLY Select carriage-return delays:
CRO Carriage-return delay type 0
CR1 Carriage-return delay type 1
CR2 Carriage-return delay type 2
CR3 Carriage-return delay type 3
TABDLY Select horizontal-tab delays:
TABO Horizontal-tab delay type 0
TAB1 Horizontal-tab delay type 1
TAB2 Horizontal-tab delay type 2
TAB3 Expand tabs to spaces
BSDLY Select backspace delays:
BSO Backspace-delay type 0
BS1 Backspace-delay type 1
VTDLY Select vertical-tab delays:
VTO Vertical-tab delay type 0
VT1 Vertical-tab delay type 1
FFDLY Select form-feed delays:
FFO Form-feed delay type 0
FF1 Form-feed delay type 1
Page 2
FINAL COPY

June 15, 1995
File: ba_env/termios
svid

Page: 106

termios (BA_ENV)

Baud Rate Selection

termios (BA_ENV)

The input and output baud rates are stored in the term os structure. These are
the valid values for objects of type speed_t . The following values are defined, but
not all baud rates need be supported by the underlying hardware.

BO

B50
B75
B110
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
B19200
B38400

Control Modes

Hang up
50 baud

75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
19200 baud
38400 baud

The c_cfl ag field describes the hardware control of the terminal; not all values
specified are required to be supported by the underlying hardware:

Csl ZE
CS5
CSs6
cs7
CS8
CSTOPB
CREAD
PARENB
PARCDD
HUPCL
CLOCAL

Local Modes

Character size:

5 bits

6 bits

7 bits

8 bits
Send two stop bits, else one
Enable receiver
Parity enable
Odd parity, else even
Hang up on last close
Local line, else dial-up

The c_Ifl ag field of the argument structure is used to control various terminal

functions:

ECHO
ECHCE
ECHOK
ECHONL
| CANON
| EXTEN
1SIG
NOFLSH
TOSTOP
XCASE

Enable echo

Echo erase character as error-correcting backspace
Echo KI LL

Echo NL

Canonical input (erase and Kill processing)

Enable extended input character processing
Enable signals

Disable flush after interrupt or quit

Send SI GTTQU for background output

Canonical upper/lower presentation

Page 3

FINAL COPY
June 15, 1995
File: ba_env/termios
svid

Page: 107

termios (BA_ENV) termios (BA_ENV)

Attribute Selection
The following symbolic constants for use with tcsetattr() [seetcsetattr()
in termios(BA_OS)] are defined:

TCSANOW change attributes immediately
TCSADRAI N change attributes when output has drained
TCSAFLUSH change attributes when output has drained; also

flush pending input

Line Control
The following symbolic constants for use with tcfl ush() [see tcflush() in
termios(BA_OS)] are defined:

TCl FLUSH flush pending input
TCOFLUSH flush untransmitted output
TCl OFLUSH flush both pending input and untransmitted output

The following symbolic constants for use with tcflow() [see tcflow() in
termios(BA_OS)] are defined:

TCl OFF transmit a STOP character, intended to suspend input data
TCl ON transmit a START character, intended to restart input data
TCOOFF suspend output
TCOON restart output

The following are declared as either functions or macros:
cfgetispeed() tcflow) t csendbr eak()
cfgetospeed() tcflush() tcsetattr()

cfsetispeed() tcgetattr() tcsetgrp()
cfsetospeed() tcgetgrp()

tcdrain() tcgetsid()
SEE ALSO
termios(BA_OS), termio(BA_DEV).
LEVEL
Level 1.
Page 4
FINAL COPY

June 15, 1995
File: ba_env/termios
svid

Page: 108

time (BA_ENV) time (BA_ENV)

NAME
time: time.h — time types
SYNOPSIS
#i ncl ude <time. h>
DESCRIPTION
The <ti me. h> header declares the structure t m which includes at least the fol-
lowing members:
int tmsec; /* seconds [0, 61] */
int tmmn; /* minutes [0, 59] */
int tmhour; /* hour [0, 23] */
int tmnday; /* day of nmonth [1, 31] */
int tm.non; /* nonth of year [0, 11] */
int tmyear; /* year since 1900 */
int tmwday; /* day of week [0, 6] (Sunday = 0) */
int tmyday; /* day of year [0, 365] */
int tmisdst; /* daylight savings flag */
This header defines the following symbolic names:
NULL null pointer
CLK_TCK number of clock ticks per second
CLOCKS_PER_SEC number of units per second returned by cl ock()
and the following data types through t ypedef :
clock_t Arithmetic type capable of representing time in CLOCKS_PER_SEC
size_t Unsigned integral return of si zeof operator
time_t Arithmetic type capable of representing time in seconds
The value of CLK_TCK may be variable and it should not be assumed that CLK_TCK
is a compile-time constant. The value of CLK_TCK is the same as the value of
sysconf (_SC _CLK_TCK) [see sysconf(BA_OS)].
The following are declared as either functions or macros:
asctine() difftime() nkti me() time()
cl ock() gntime() strftime() tzset()
ctime() | ocal time()
and the following are declared as variables:
daylight tinezone tznange[]
SEE ALSO
clock(BA_LIB), ctime(BA_LIB), mktime(BA_LIB), strftime(BA_LIB),
sysconf(BA_OS), time(BA_OS).
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/time
svid

Page: 109

times (BA_ENV) times (BA_ENV)

NAME

times: sys/times.h — process and child process times structure
SYNOPSIS

#i ncl ude <sys/tines. h>
DESCRIPTION

The <sys/times. h> header defines the structure returned by tinmes() [see
times(BA_OS)], struct tns, and includes the following members:

clock_t tns_utine; /* User CPU tinme */

cl ock_t tns_stine; /* System CPU tine

clock t tnms_cutine; /* User CPU tinme of termn nated
child processes */

cl ock_t tns_cstine; /* System CPU tine of tern nated

child processes */
The type cl ock_t is defined through at ypedef .
Declares the following as a function:

times()
SEE ALSO
times(BA_OS).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/times
svid

Page: 110

types (BA_ENV) types (BA_ENV)

NAME

types: sys/types.h — data types
SYNOPSIS

#i ncl ude <sys/types. h>
DESCRIPTION

The <sys/types. h> header define data types and includes definitions for at least
the following types:

cl ock_t Used for system times in CLK_TCKs or CLOCKS_PER_SEC

dev_t Used for device IDs
gid_t Used for group I1Ds
ino_t Used for file serial numbers
tkey_t Used for inter-process communication
node_t Used for some file attributes
nlink_t Used for link counts
of f _t Used for file sizes
pid_t Used for process IDs
size_t Used for sizes of objects
ssi ze_t Used for count of bytes or error indication
time_t Used for time in seconds
uid_t Used for user IDs

tAIl of the types except those marked above are defined as arithmetic types of an
appropriate length. Additionally, si ze_t isunsigned, and pi d_t is signed.

USAGE
The following names are commonly used as extensions to the above. They are
therefore reserved and portable applications should not use them:

addr _t
caddr _t

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/types
svid

Page: 111

ucontext (BA_ENV) ucontext (BA_ENV)

NAME

ucontext — user context

SYNOPSIS

#i ncl ude <ucontext. h>

DESCRIPTION

The ucont ext structure defines the context of a thread of control within an exe-
cuting process.

This structure includes at least the following members:

ucont ext t *uc_link
sigset _t uc_si gnmask
stack_t uc_st ack
ncontext _t uc_ntont ext

uc_l i nk is a pointer to the context that will be resumed when this context returns.
If uc_li nk is equal to 0, then this context is the main context, and the process will
exit when this context returns.

uc_si gnmask defines the set of signals that are blocked when this context is active
[see sigprocmask(BA_OS)].

uc_st ack defines the stack used by this context [see sigaltstack(BA_OS)].

uc_ncont ext contains the saved set of machine registers and any implementation
specific context data. Portable applications should not modify or access
uc_nctont ext .

SEE ALSO

LEVEL

getcontext(BA_OS), sigaction(BA_OS), sigprocmask(BA_OS), sigaltstack(BA_OS).

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/ucontext
svid

Page: 112

ulimit (BA_ENV)

NAME

ulimit; ulimit.h — ulimit commands
SYNOPSIS

#include <ulimt.h>

DESCRIPTION
The <ulimt.h> header defines the symbolic constants used in the ulimt()

function [see ulimit(BA_OS)].
Symbolic constants:

UL_GETFSI ZE get maximum file size
UL_SETFSI ZE set maximum file size

Declares the following as either a function or a macro:

ulimt()

SEE ALSO

LEVEL

ulimit(BA_OS).

Level 2: September 30, 1989.

FINAL COPY
June 15, 1995
File: ba_env/ulimit
svid

Page: 113

ulimit (BA_ENV)

Page 1

unistd (BA_ENV) unistd (BA_ENV)

NAME

unistd: unistd.h — standard symbolic constants and structures
SYNOPSIS

#i ncl ude <uni std. h>
DESCRIPTION

The <uni st d. h> header defines the symbolic constants and structures which are
referenced elsewhere in the System V Interface Definition and which are not
already defined or declared in some other header. The contents of this header are
shown below.

The following symbolic constants are defined for the access() function [see
access(BA_OS)]:

R _OK Test for read permission

W OK Test for write permission

X_OK Test for execute (search) permission
F_OK Test for existence of file

The constants F_OK, R_OK, WOK and X_CK and the expressions R_OK| W CK,
R K| X_OKand R _OK| W.OK]| X_OKall have distinct values.
Declares the constant

NULL null pointer

The following symbolic constants are defined for the | seek() [see Iseek(BA_OS)]
and fcntl () [see fentl(BA_OS)] functions (they have distinct values):

SEEK_SET Set file offset to offset
SEEK _CUR Set file offset to current plus offset
SEEK_END Set file offset to EOF plus offset

The following symbolic constants are defined (with fixed values):

_PGCsI X_VERSI ON Integer value indicating version
of the POSIX standard

_XOPEN_VERSI ON integer value indicating version of the XPG
to which system is compliant

Page 1

FINAL COPY
June 15, 1995
File: ba_env/unistd
svid

Page: 114

unistd (BA_ENV)

Page 2

unistd (BA_ENV)

The following symbolic constants are defined if that option is present:
_PGsSI X_CHOWN_RESTRI CTED

_POSI X_JOB_CONTROL

_POSI X_NO_TRUNC

_POSI X_SAVED _| DS

_POSI X_VDI SABLE

The following symbolic
sysconf(BA_OS)]:

_SC_ARG_MAX
~SC_CHI LD_MAX
~SC_CLK_TCK
~SC_JOB_CONTROL
~SC_NGROUPS_MAX
~SC_OPEN_MAX
_SC_PAGESI ZE
_SC_PASS_MAX
~SC_SAVED | DS
_SC_VERSI ON

~SC_XOPEN_VERSI ON

The following symbolic
fpathconf(BA_OS)]:

constants

constants

_PC_CHOMN_RESTRI CTED

“PC_LI NK_MAX
~PC_MAX_CANON
“PC_MAX_I NPUT
“PC_NAME_NMAX
“PC_NO_TRUNC
“PC_PATH_MAX
_PC_PI PE_BUF
“PC_VDI SABLE

the use of chown() is res-
tricted to a process with
appropriate privileges
implementation supports job
control (will be defined on all
compliant systems)

pathname components longer
than {NAME_MAX} generate
an error

causes the exec functions [see
exec(BA_0OS)] to save effective
user and group (will be
defined on all compliant sys-
tems)

terminal special characters
defined in <t er m os. h> [see
termios(BA_ENV)] can be dis-
abled using this character

are defined for sysconf()

are defined for pathconf ()

FINAL COPY
June 15, 1995
File: ba_env/unistd
svid

Page:

115

[see

[see

unistd (BA_ENV) unistd (BA_ENV)

The following symbolic constants are defined for conf str () [see confstr(BA_OS)]:

_CS_SYSNAME
~CS_HOSTNAME
_CS_RELEASE
~CS_VERSI ON
~CS_MACHI NE
~CS_ARCHI TECTURE
~CS_HW SERI AL
~CS_HW PROVI DER
~CS_SPRC_DOMVAI N

The following symbolic constants are defined for file streams:

STDI N_FI LENO File number of st di n. ItisO.
STDOUT_FI LENO File number of st out . Itis 1.
STDERR_FI LENO File number of stderr. Itis 2.

The following are declared as either functions or macros:

access() execv() get pgrp() rmdir()

al arm() execve() get pi d() setgid()
chdir () execvp() get ppi d() set pgi d()
chown() _exit() get ui d() setsid()

cl ose() fork() isatty() set ui d()
ctermd() f pat hconf () Iink() sl eep()
cuserid() get cwd() | seek() sysconf ()
dup2() get egi d() pat hconf () tcget pgrp()
dup() get eui d() pause() tcset pgrp()
execl () getgid() pi pe() ttyname()
execl e() get groups() read() unl i nk()
execl p() getl ogi n() rename() wite()

USAGE
The following values for constants are defined for systems compliant to this issue of
the System V Interface Definition:

_POSI X_VERSI ON 198808L
~XOPEN_VERSI ON 3

SEE ALSO
access(BA_0OS), alarm(BA_OS), chdir(BA_OS), chown(BA_OS), close(BA_OS),
ctermid(BA_LIB), cuserid(BA_OS), dup(BA_OS), exec(BA_OS), exit(BA_OS),
fentl(BA_OS), fork(BA_OS), fpathconf(BA_OS), getcwd(BA_QOS),
getgroups(BA_OS), getlogin(BA_LIB), getpid(BA_OS), getuid(BA_OS), kill(BA_OS),
link(BA_OS), Iseek(BA_0OS), open(BA_0OS), pause(BA_OS), pipe(BA_OS),
read(BA_OS), rmdir(BA_OS), setpgid(BA_QOS), setsid(BA_OS), setuid(BA_OS),
sleep(BA_OS), sysconf(BA_OS), termios(BA_OS), termios(BA_ENV),
ttyname(BA_LIB), unlink(BA_OS), utime(BA_OS), write(BA_OS), limits(BA_ENV).

Page 3

FINAL COPY
June 15, 1995
File: ba_env/unistd
svid

Page: 116

unistd (BA_ENV)

LEVEL

Page 4

Level 1.

FINAL COPY
June 15, 1995
File: ba_env/unistd
svid

Page: 117

unistd (BA_ENV)

utime (BA_ENV) utime (BA_ENV)

NAME
utime: utime.h — access and modification times structure
SYNOPSIS
#i ncl ude <utinme. h>
DESCRIPTION
The <ut i ne. h> header declares the structure ut i mbuf , which includes the follow-
ing members:
tinme_t actineg; /* access tinme */
time_t nodtine; /* nodification tine */
The times are measured in seconds since the Epoch.
The typeti me_t isdeclared in <sys/types. h> [see types(BA_ENV)].
Declares the following as a function.
utinme()
SEE ALSO
utime(BA_OS), types(BA_ENV).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/utime
svid

Page: 118

utsname (BA_ENV) utsname (BA_ENV)

NAME
utsname: sys/utsname.h — system name structure
SYNOPSIS
#i ncl ude <sys/utsnane. h>
DESCRIPTION
The <sys/utsnane. h> header defines struct utsnane, which includes the
following members:
char sysnane[{ SYS_NWMLN}]; /* Name of this inplenmentation of
the operating system*/
char nodenane[{ SYS_ NM_N}] ; /* Name of this node within an
i mpl enent ati on-specified
communi cati ons network */
char rel ease[{SYS_ NM.N}]; /* Current release level of this
i mpl ementation */
char version[{SYS_ NM.N}]; /* Current version level of this
rel ease */
char machi ne[{ SYS_NWMLN}] ; /* Name of the hardware type that
the systemis running on */
The data stored in the character arrays is terminated by a null character.
Declares the following as a function:
unane()
SEE ALSO
uname(BA_OS).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/utsname
svid

Page: 119

wait (BA_ENV) wait (BA_ENV)

NAME
wait: sys/wait.h — declarations for waiting
SYNOPSIS
#i ncl ude <sys/wait.h>
DESCRIPTION
The <sys/wai t. h> header defines the following symbolic constants for use with
the wai t pi d() function [see wait(BA_OS)]:
VWNOHANG do not hang if no status is available, return immediately
WUNTRACED report status of stopped child process
and the following macros for analysis of process status values:
VEXI TSTATUS() return exit status
W FEXI TED() true if child exited normally
W FSI GNALED() true if child exited due to uncaught signal
W FSTOPPED() true if child is currently stopped
WSTOPSI G() return signal number that caused process to stop
WIERMSI G() return signal number that caused process to terminate
The following are declared as either functions or macros.
wait() waitpid() waitid()
SEE ALSO
wait(BA_OS).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_env/wait
svid

Page: 120

wchar (BA_ENV)

wchar (BA_ENV)

NAME

wchar - extended wide character utilities
SYNOPSIS

#i ncl ude <wchar. h>
DESCRIPTION

The wchar . h header defines the data types listed below through t ypedef s:

wchar _t

wuchar _t
nbstate t

wint _t
wect ype_t

size t

Integral type whose range of values can represent distinct wide char-
acter codes for all members of the largest character set specified
among the locales supported by the compilation environment: the null
character has the code value zero and each member of the Portable
Character Set has a code value equal to its value when used as the
lone character in an integer character constant.

The unsigned version of wchar _t .

A type that can represent the state of the conversion between wide
and multibyte characters.

An integral type that is able to store any valid wide character value
and VECF.

A scalar type (pointer or integer) that can hold values which represent
locale specific character classification categories.

Unsigned integral type which is the result of the sizeof operator.

The following functions are declared by the wchar header:

i nt i swascii(wnt_t wc);

i nt i swal nun{wi nt _t wc);

int i swal pha(w nt _t wc);

int iswentrl(wint_t wc);

i nt i swdigit(wnt_t wc);

i nt i swgraph(w nt _t wc);

int i swower(wnt_t wc);

int i swprint(wnt_t wc);

i nt i swpunct (wi nt_t wc);

i nt i swspace(w nt_t wc);

int i swupper (wi nt _t wc);

int i swxdigit(wnt_t wc);

i nt i swetype(w nt_t wc, wctype_t prop);

i nt fwprintf(FlILE *stream, const wchar_t *format, ...);

int fwscanf (FI LE *stream, const wchar _t *format, ...);

i nt wprintf(const wchar_t *format, ...);

int wscanf (const wchar _t *format, ...);

int swprintf(wchar_t *s, size t n,
const wchar_t *format, ...);

i nt swscanf (const wchar _t *s, const wchar _t *format,

int viwprintf(FI LE *stream, const wchar _t *format,
va_|list arg);

i nt vfwscanf (FI LE *stream, const wchar _t *format,

Page 1

FINAL COPY
June 15, 1995
File: ba_env/wchar
svid

Page: 121

wchar (BA_ENV)

Page 2

nt
nt
nt

i nt

nt
nt
nt
nt

int
size_t

size t

wint _t
wchar _t
wnt _t

i nt
wnt_t
wnt_t
wint _t
wnt_t
wnt_t
wnt _t
wint_t
wect ype_t
wchar _t
wchar _t
i nt

i nt
wchar _t
size_t
size_t

size_t
wchar _t
int

wchar _t
wchar _t
wchar _t
size_t
doubl e

f1 oat

| ong doubl e
wchar _t

wchar (BA_ENV)

va_list arg);
vwprintf(const wchar _t *format, va_ list arg);
vwscanf (const wchar _t *format, va_list arg);
vswprintf(wchar _t *s, size_ t n,
const wchar _t *format, va_list arg);
vswscanf (const wchar _t *s, const wchar _t *format,
va_listarg);
wctob(wint _t ¢);
nbsinit(const nbstate t *ps);
nbrl en(const char *s, size_t n, nbstate_ t *ps);
nbrt owc(wchar _t *pwc, const char *s, size_t n,
nbstate_t *ps);
wertonb(char *s, wchar_t we, nbstate_t *ps);
nbsrtowcs(wchar _t *dst, const char **src, size_t len,
nbstate_t *ps);
wesrtonbs(char *dst, const wchar_t **src, size_t len,
nbstate_t *ps);
fgetwc(Fl LE *stream);
*fgetws(wchar _t *s, int n, FILE *stream);
fputwec(w nt _t c, FI LE stream);
f putws(const wchar_t s, FILE *stream);
get wc(FI LE *stream) ;
getwchar (voi d);
putwc(wi nt _t c, FI LE *stream);
putwchar (wint _t c);
tow ower (wint_t wc);
t owupper (Wi nt _t wc);
ungetwc(w nt _t c, FI LE *stream);
wct ype(const char *property) ;
*wescat (wehar _t *wsl, const wchar _t *ws2);
*wcschr (const wchar _t *ws, wint _t wc);
wesenp(const wchar _t *wsl, const wchar _t *ws2);
wescol | (const wchar _t *wsl, const wchar _t *ws2);
*wescpy(wechar _t *wsl, const wchar _t *ws2);
wescspn(const wechar _t *wsl, const wchar _t *ws2);
wef sti ne(wechar _t *wecs, si ze_t maxsize,
const wchar _t *fmt, const struct tm *timptr);
wesl en(const wchar _t *wsl);
*wesncat (wchar _t *wsl, const wchar _t *ws2, size t n);
wesnenp(const wchar _t *wsl, const wchar _t *ws2,
size_t n);
*wesncpy(wehar _t *wsl, const wchar _t *ws2, size t n);
*wespbrk(const wehar _t *wsl, const wchar_t *ws2);
*wesr chr(const wchar _t *ws,wintr_t wc);
wecsspn(const wchar _t *wsl, const wchar _t *ws2);
west od(const wchar _t *nptr, wchar _t **endptr) ;
west of (const wchar _t *nptr, wchar _t **endptr) ;
west ol d(const wchar _t *nptr, wchar _t **endptr) ;
*west ok(wechar _t *wsl, const wchar _t *ws2,

FINAL COPY
June 15, 1995
File: ba_env/wchar
svid

Page: 122

wchar (BA_ENV) wchar (BA_ENV)

wchar _t **savept) ;

long int west ol (const wchar _t *nptr, wehar _t **endptr,
i nt base) ;
unsi gned | ong west oul (const wchar _t *nptr, wchar _t **endptr,
i nt base);
wchar _t *wesst r(const wchar _t *wsl, const wchar _t *ws2);
i nt weswi dt h(const wchar _t *pwes, size t n);
size_t wesxfrim(wechar _t *wsl, const wchar _t *ws2,
size_t n);
i nt wewi dt h(wint _t) ;
wchar defines the following macro names:
VECF Constant expression that is returned by some of the above functions to
indicate end-of-file.
NULL Null pointer constant.
LEVEL
Level 1.
NOTICES

If the feature test macro _XOPEN_SOURCE is defined, the following are available:

wchar _t *wcstok(wchar _t wsl, const wchar _t *ws2);
wchar _t *weswes(const wchar _t *wsl, const wchar _t *ws2);
size_t wesftime(wehar_t *wcs, size_t maxsize,

const char *fmt, const struct tm *timptr);

and all the symbols from st di 0. h.

Page 3

FINAL COPY
June 15, 1995
File: ba_env/wchar
svid

Page: 123

FINAL COPY
June 15, 1995
File:

Page: 124

Base OS Service Routines

The following section contains the manual pages for the BA_OS service routines.

Base OS Service Routines

FINAL COPY

June 15, 1995

File: ba_os.cov
svid

Page: 125

5-1

FINAL COPY
June 15, 1995
File

Page: 126

abort (BA_OS) abort (BA_OS)

NAME
abort —generate an abnormal termination signal

SYNOPSIS
#i nclude <stdlib. h>

void abort (void);

DESCRIPTION
abort first closes all open files, stdi o streams, directory streams and message
catalogue descriptors, if possible, then causes the signal S| GABRT to be sent to the
calling process.

USAGE
The signal sent by abort (), S| GABRT, should not be caught or ignored by applica-
tions. [see sh(BU_CMD)].

SEE ALSO
cat open(BA_LIB), exit (BA_OS), kill (BU_CMD), sdb(SD_CMD), sh(BU_CMD)
si gnal (BA_OS), si gacti on(BA_OS), stdi o(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/abort
svid

Page: 127

access (BA_OS)

NAME

access (BA_OS)

access — determine accessibility of a file

SYNOPSIS

#i ncl ude <uni std. h>
int access(const char *path, int amode);

DESCRIPTION

The function access() checks the accessibility of the file named by the pathname
pointed to by the path argument, for the file access permissions indicated by amode,
using the real user ID in place of the effective user ID, and the real group ID in place
of the effective group ID.

The symbolic constants for the argument amode are defined by the <uni std. h>
header file and are as follows:

Name Description

R_OK test for read permission.
W OK test for write permission.
X_OK test for execute (search) permission.

F_OK test for existence of file.

The argument amode is either the bitwise inclusive OR of one or more of the values
of the symbolic constants for R_OK, W OK, and X_OK or is the value of the symbolic

constant F_OK.
RETURN VALUE

Upon successful completion, the function access() returns a value of 0; other-
wise, it returns a value of —1 and sets er r no to indicate an error.

ERRORS

Under the following conditions, the function access() fails and sets er r no to:

ENOTDI R
ENCENT

EACCES

ERCFS
ENAVMETOOLONG

ELOOP

SEE ALSO

if a component of the path prefix is not a directory.
if the named file does not exist or the path argument points to an
empty string.

if a component of the path prefix denies search permission, or if
the permission bits of the file mode do not permit the requested
access.

if write access is requested for a file on a read-only file system.

if the length of a pathname exceeds { PATH_MAX} , or a pathname
component is longer than { NAME_MAX} while
{_PGCsI X_NO TRUNC} is in effect.

if too many symbolic links are encountered in translating the
path.

chmod(BA_0OS), stat(BA_OS).

Page 1

FINAL COPY
June 15, 1995
File: ba_os/access
svid

Page: 128

access (BA_OS)

FUTURE DIRECTIONS

LEVEL

Page 2

access (BA_OS)

El NVAL will be returned in er r no if the argument amode is invalid.

Level 1.

FINAL COPY
June 15, 1995
File: ba_os/access
svid

Page: 129

adjtime(BA_OS) adjtime(BA_OS)

NAME
adjtime — correct the time to synchronize the system clock

SYNOPSIS
#i ncl ude <sys/tine. h>

int adjtime(struct tineval *delta, struct timeval *olddelta);

DESCRIPTION
The function adjtine() adjusts the system’s notion of the current time, as
returned by getti neof day(), advancing or retarding it by the amount of time
specified inthe struct timeval pointed to by delta.

The adjustment is effected by speeding up (if that amount of time is positive) or
slowing down (if that amount of time is negative) the system’s clock by some small
percentage, generally a fraction of one percent. Thus, the time is always a
monotonically-increasing function. A time correction from an earlier call to adj -
ti me() may not be finished when adj ti me() is called again. The second call to
adj tinme() cancels the first call to adj ti me(). If delta is O, then olddelta returns
the status of the effects of the previous adj ti ne() call and there is no effect upon
time correction as a result of this call. If olddelta is not a null pointer, then the struc-
ture it points to will contain, upon return, the number of seconds and/or
microseconds still to be corrected from the earlier call. If olddelta is a null pointer,
the corresponding information will not be returned.

This call may be used in time servers that synchronize the clocks of computers in a
local area network. Such time servers would slow down the clocks of some
machines and speed up the clocks of others to bring them to the average network
time.

The adjustment value will be silently rounded to the resolution of the system clock.

RETURN VALUE
Upon successful completion, the function adj ti ne() returns a value of O; other-
wise, it returns a value —1 and sets er r no to indicate an error.

ERRORS
Under the following condition, the function adj t i me() fails and sets er r no to:

EPERM if the process does not have the appropriate privilege.

SEE ALSO
date(BU_CMD), gettimeofday(RT_OS).

FUTURE DIRECTIONS
The functionality of adj ti ne() will be supported in the future, but the means of
expressing terms will be changed to POSIX P1003.4-compatible types when that
standard is available.

LEVEL
Level 2: September 30, 1989.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/adjtime
svid

Page: 130

alarm (BA_OS) alarm (BA_OS)

NAME
al ar m- set process alarm clock

SYNOPSIS
#i ncl ude <uni std. h>

unsi gned al ar n{ unsi gned sec) ;

DESCRIPTION
al ar minstructs the alarm clock of the process to send the signal S| GALRMto the
process after the number of real time seconds specified by sec have elapsed [see
si gnal (BA_OS)].

Alarm requests are not stacked; successive calls reset the alarm clock of the calling
process.

If sec is 0, any previously made alarm request is canceled.

The f or k routine sets the alarm clock of a new process to 0 [see fork(BA_OS)]. A
process created by the exec family of routines inherits the time left on the old
process’s alarm clock.

Return Values
al ar mreturns the amount of time previously remaining in the alarm clock of the
calling process.

SEE ALSO

exec(BA_OS), f or k(BA_OS), pause(BA_OS), si gnal (BA_OS)
LEVEL

Level 1.

NOTICES
Considerations for Threads Programming
In multithreaded applications, the alarm signal is delivered to only the requesting
thread, no other.

A thread cannot respond to a signal until it is scheduled for execution. For multi-
plexed threads, there may be a time lag between delivery of the signal and the time
it is scheduled to run. For improved response, consider using bound threads.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/alarm
svid

Page: 131

atexit(BA_OS) atexit(BA_OS)

NAME
atexit — add program termination routine

SYNOPSIS
#i nclude <stdlib. h>
int atexit(void (*func)(void));

DESCRIPTION
The function at exi t () adds the function func to a list of functions to be called
without arguments upon normal termination of the program. Normal termination
occurs by either a call to exi t () or a return from mai n(). At least 32 functions
may be registered by at exit () and the functions will be called in the reverse
order of their registration.

RETURN VALUE
Upon successful completion, the function at exi t () returns a value of zero; other-
wise, it returns a non-zero value.

SEE ALSO
exit(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/atexit
svid

Page: 132

chdir (BA_OS)

NAME

chdir (BA_OS)

chdir, fchdir — change working directory

SYNOPSIS
#i ncl ude <unistd. h>

i nt chdir(const char *path);
int fchdir(int fildes);

DESCRIPTION
The functions chdir () and fchdir() cause a directory pointed to by path or
referenced by the file descriptor fildes to become the current working directory, a
directory that is the starting point for path searches of pathnames not beginning

with slash.

For a directory to become the current working directory, a process must have exe-
cute (search) access to the directory. path points to the pathname of a directory.
The fildes argument to f chdi r () is a file descriptor of a directory obtained from a
call to open() [see open(BA_OS)].

RETURN VALUE
Upon successful completion, the function chdi r () returns a value of O; otherwise,
it returns a value of —1 and sets er r no to indicate an error. On failure the current
working directory remains unchanged.

ERRORS
Under the following conditions, the function chdi r () fails and sets er r no to:

EACCES

ENOTDI R
ENCENT

ELOOP
ENAMETOOLONG

if search permission is denied for any component of the path
name.

if a component of the pathname is not a directory.

if the named directory does not exist, or path points to an empty
string.

if too many symbolic links were encountered in translating path.
if the length of a pathname exceeds { PATH_MAX}, or pathname

component is longer than { NAME_MAX} while
{ _PCSI X_NO_TRUNC} is in effect.

Under the following conditions, the function f chdi r () fails and sets er r no to:

EACCES
EBADF
ENOTDI R

SEE ALSO
chroot(KE_OS), open(BA_OS).

LEVEL

Level 1.

if search permission is denied for fildes.
if fildes is not an open file descriptor.
if the open file descriptor fildes does not refer to a directory.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/chdir
svid

Page: 133

chmod (BA_OS) chmod (BA_OS)

NAME
chnod, f chnod - change mode of file

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

int chnod(const char [path, nmode_t mode);
int fchnod(int fildes, node_t mode);

DESCRIPTION
chnod and f chimod set the access permission portion of the mode of the file whose
name is given by path or referenced by the descriptor fildes to the bit pattern con-
tained in mode. If path or fildes are symbolic links, the access permissions of the tar-
get of the symbolic links are set. Access permission bits are interpreted as follows:

S ISUD 04000 Setuser ID on execution.

S I1SE@D 020#0 Setgroup ID on execution if #is7,5,3,0or1
Enable mandatory file/record locking if #is 6, 4, 2, or 0

S ISVTX 01000 Save textimage after execution.

S IRWKU 00700 Read, write, execute by owner.

S IRUSR 00400 Read by owner.

S IWUSR 00200 Write by owner.

S IXUSR 00100 Execute (search if a directory) by owner.

S IRWKG 00070 Read, write, execute by group.

S IRGRP 00040 Read by group.

S IWERP 00020 Write by group.

S I XGRP 00010 Execute by group.

S RO 00007 Read, write, execute (search) by others.

S IROTH 00004 Read by others.

S IWOTH 00002 Write by others

S I XOrH 00001 Execute by others.

Modes are constructed by an OR of the access permission bits.

The effective user ID of the process must match the owner of the file or the process
must have the appropriate privilege to change the mode of a file.

If the process does not have appropriate privilege and the file is not a directory,
mode bit 01000 (save text image on execution) is cleared.

If the effective group ID of the process does not match the group ID of the file, and
the process does not have appropriate privilege mode bit 02000 (set group ID on
execution) is cleared.

If a 0410 executable file has the sticky bit (mode bit 01000) set, the operating system
will not delete the program text from the swap area when the last user process ter-
minates. If a 0413 or ELF executable file has the sticky bit set, the operating system
will not delete the program text from memory when the last user process ter-
minates. In either case, if the sticky bit is set the text will already be available
(either in a swap area or in memory) when the next user of the file executes it, thus
making execution faster.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/chmod
svid

Page: 134

chmod (BA_OS) chmod (BA_OS)

If a directory is writable and the sticky bit, S_| SVTX, is set on the directory, a pro-
cess may remove or rename files within that directory only if one or more of the fol-
lowing is true:

the effective user ID of the process is the same as that of the owner ID of the
file

the effective user ID of the process is the same as that of the owner ID of the
directory

the process has write permission for the file.

the process has appropriate privileges

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010 (exe-
cute or search by group) is not set, mandatory file/record locking will exist on a
regular file. This may affect future calls to open(BA_OS), creat (BA_OS),
read(BA_OS), and wri t e(BA_OS) on this file.

The following environment variables affect the execution of chrod [see
envvar(BA_ENV)I:

LC _MESSAGES
Determines the locale to be used for diagnostic messages. If available,
these messages will be retrieved from the message data base,

uxcore. abi .

LC ALL If a non-empty string, this overrides the values of all the other interna-
tionalization variables.

LANG The default value for internationalization variables that are unset or
null.

Return Values

On success, chnod and f chnod return 0 and mark for update the st _cti ne field of
the file. On failure, chnod and f chrod return -1, set errno to identify the error,
and the file mode is unchanged.

Errors

Page 2

In the following conditions, chnod fails and sets er r no to:
EACCES Search permission is denied on a component of the path prefix of path.
EACCES Write permission on the named file is denied.

El NTR A signal was caught during execution of the system call.
ELOCP Too many symbolic links were encountered in translating path.
ENAVETOCLONG

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_NAX} while _PCSI X NO TRUNC is in
effect.

ENOTD R A component of the prefix of path is not a directory.

ENCENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

FINAL COPY
June 15, 1995
File: ba_os/chmod
svid

Page: 135

chmod (BA_OS) chmod (BA_OS)

EPERM The effective user ID does not match the owner of the file and the pro-
cess does not have appropriate privilege (P_OMER).

ERCFS The file referred to by path resides on a read-only file system.

In the following conditions, f chnod fails and sets er r no to:

EBADF fildes is not an open file descriptor

El NTR A signal was caught during execution of the f chrmod system call.

ENCLI NK path points to a remote machine and the link to that machine is no
longer active.

EPERM The effective user ID does not match the owner of the file and the pro-
cess does not have appropriate privilege (P_OMER).
ERCFS The file referred to by fildes resides on a read-only file system.
SEE ALSO

chown(BA_OS), creat (BA_OS), exec(BA_OS), fcntl (BA_OS), nkfi fo(AS_CMD),
nknod(BA_OS), open(BA_OS), read(BA_OS), st at (BA_OS), wite(BA_OS)

LEVEL
Level 1.

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

Page 3

FINAL COPY
June 15, 1995
File: ba_os/chmod
svid

Page: 136

chown (BA_OS) chown (BA_OS)

NAME
chown, | chown, f chown — change owner and group of a file

SYNOPSIS
#i ncl ude <uni std. h>
#i ncl ude <sys/stat. h>

int chown(const char [path, uid_t owner, gid_t group);
i nt | chown(const char [path, uid_t owner, gid_t group);
int fchown(int fildes, uid_t owner, gid_t group);

DESCRIPTION
The owner | D and group | D of the file specified by path or referenced by the
descriptor fildes, are set to owner and group respectively. If owner or group is
specified as -1, the corresponding | D of the file is not changed.

The function | chown sets the owner | Dand group | D of the named file just as chown
does, except in the case where the named file is a symbolic link. In this case | chown
changes the ownership of the symbolic link file itself, while chown changes the own-
ership of the file or directory to which the symbolic link refers.

If chown, | chown, or f chown is invoked by a process without the P_OMER privilege,
the set-user-1D and set-group-ID bits of the file mode, S | SU Dand S_| SG Drespec-
tively, are cleared [see chmod(BA_OS)].

The operating system has a configuration option, {_PCSl X_CHONN_RESTRI CTED},
that restricts ownership changes for the chown, | chown, and f chown system calls.

When {_ PC8l X_CHOM RESTR CTED} is not in effect, the effective user | D of the cal-
ling process must match the owner of the file or the process must have the P_OMER
privilege to change the ownership of a file.

When {_PCSI X CHOMNN_RESTRI CTED} is in effect, the chown, | chown, and f chown
system calls prevent the owner of the file from changing the owner | D of the file
and restrict the change of the group of the file to the list of supplementary group
IDs. This restriction does not apply to calling processes with the P_OMER privilege.

Return Values
On success, chown, f chown and | chown return 0 and mark for update the st _cti ne
field of the file. On failure, chown, f chown and | chown return -1, set er r no to iden-
tify the error, and the owner and group of the file are unchanged.

ErrcI)rr1sthe following conditions, chown and | chown fail and set er r no to:
EACCES Search permission is denied on a component of the path prefix of path.
EACCES Write permission on the named file is denied.
El NVAL group or owner is out of range.
ELOCP Too many symbolic links were encountered in translating path.
ENAVETOOLONG

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_NAX} while _PCSI X NO TRUNC is in
effect.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/chown
svid

Page: 137

chown (BA_OS) chown (BA_OS)

ENOTD R A component of the path prefix of path is not a directory.

ENCENT Either a component of the path prefix or the file referred to by path
does not exist or is a null pathname.

EPERM The effective user ID of the calling process does not match the owner
of the file and the calling process does not have the appropriate
privilege (P_OMER) for changing file ownership.

ERCFS The named file resides on a read-only file system.

In the following conditions, f chown fails and sets er r no to:

EBADF fildes is not an open file descriptor.

El NVAL group or owner is out of range.

EPERM The effective user ID of the calling process does not match the owner

of the file and the calling process does not have the appropriate
privilege (P_OMER) for changing file ownership.

ERCFS The named file referred to by fildes resides on a read-only file system.
SEE ALSO
chgr p(AU_CMD), chrnod(BA_OS), chown(AU_CMD)
LEVEL
Level 1.
Page 2
FINAL COPY

June 15, 1995
File: ba_os/chown
svid

Page: 138

close(BA_OS) close(BA_OS)

NAME
cl ose — close a file descriptor

SYNOPSIS
#i ncl ude <uni std. h>

int close(int fildes);

DESCRIPTION
cl ose closes a file. fildes is a file descriptor obtained from a creat, open, dup,
fentl, pipe, oriocntl system call. ¢l ose closes the file descriptor indicated by
fildes. All outstanding record locks owned by the process (on the file indicated by
fildes) are removed.

Closing a file descriptor removes one reference to the associated file. When there
are no more outstanding references to the file, if the link count of the file is zero, the
space occupied by the file shall be freed and the file shall no longer be accessible.

If a STREAMS-based fildes is closed, and the calling process had previously
registered to receive a S| GPCLL signal [see si gnal (BA_ENV)] for events associated
with that stream [see st r eans(BA_DEV)], the calling process will be unregistered
for events associated with the stream. The last cl ose for a stream causes the stream
associated with fildes to be dismantled. If O NONBLOCK are clear and there have been
no signals posted for the stream, and if there are data on the module’s write queue,
cl ose waits up to 15 seconds (for each module and driver) for any output to drain
before dismantling the stream. The time delay can be changed viaan | _SETCLTI ME
i octl request [see streans(BA_DEV)]. If O NONBLOXK is set, or if there are any
pending signals, cl ose does not wait for output to drain, and dismantles the
stream immediately.

If fildes is associated with one end of a pipe, the last cl ose causes a hangup to occur
on the other end of the pipe. In addition, if the other end of the pipe has been
named [see f at t ach(BA_LIB)], the last cl ose forces the named end to be detached
[see f det ach(BA_LIB)]. If the named end has no open processes associated with it
and becomes detached, the stream associated with that end is also dismantled.

Return Values
On success, cl ose returns 0. On failure, cl ose returns -1 and sets err no to iden-
tify the error.

Errors
In the following conditions, cl ose fails and sets er r no to:

EBADF fildes is not a valid open file descriptor.
El NTR A signal was caught during the cl ose system call.
SEE ALSO

creat (BA_OS), dup(BA_OS), exec(BA_0OS), fcntl (BA_OS), open(BA_OS),
pi pe(BA_OS), si gnal (BA_OS), si gnal (BA_ENV), st reans(BA_ENV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/close
svid

Page: 139

close(BA_OS) close(BA_OS)

NOTICES
Considerations for Threads Programming
Open file descriptors are global to the process and accessible to any sibling thread.
If used concurrently, actions by one thread can interfere with those of a sibling.

A cl ose executed by one thread will render the file descriptor unusable by all
siblings. The cl ose system call will block a thread that attempts to close a file
descriptor that is in use (mid-system call) by a sibling.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/close
svid

Page: 140

confstr (BA_OS)

NAME

confstr (BA_OS)

conf st r — obtain configurable string values

SYNOPSIS

#i ncl ude <uni std. h>

size_t confstr(int name, char *buf, size_t len);

DESCRIPTION

The conf str function provides a way for applications to obtain string values that
are configuration-defined. There may be be similarities in terms of purpose and use
with the sysconf function, although confstr is used with string return values
rather than numeric return values. The argument name is the system variable that is

being queried.

The conf str function provides the following valid values for name:

_CS_SYSNAME

_CS_HOSTNAME

_CS RELEASE

_CS_VERSI ON

_CS_MACH NE

Copy the string that would be returned by unane [see unane(2)] in
the sysname field, into the array pointed to by buf. This is the name
of the implementation of the operating system, for example,
UNl X_SV.

Copy a string that names the present host machine into the array
pointed to by buf. This is the string that would be returned by
unane in the nodename field. This hostname or nodename is often
the name the machine is known by locally.

The hostname is the name of this machine as a node in some net-
work; different networks may have different names for the node,
but presenting the nodename to the appropriate network Directory
or name-to-address mapping service should produce a transport
end point address. The name may not be fully qualified.

Internet host names may be up to 256 bytes in length (plus the ter-
minating null).

Copy the string that would be returned by unane in the release field
into the array pointed to by buf. Typical values might be 4. 2, 4. 0,
3.2.

Copy the string that would be returned by unare in the version field
into the array pointed to by buf. The syntax and semantics of this
string are defined by the system provider.

Copy the string that would be returned by unane in the machine
field into the array pointed to by buf. For example, i 486.

_CS_ARCH TECTURE

Copy a string describing the instruction set architecture of the
current system into the array pointed to by buf. For example,
nt68030, i 80486. These names may not match predefined names
in the C language compilation system.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/confstr
svid

Page: 141

confstr (BA_OS) confstr (BA_OS)

The initial reason for having this function was to provide a way of finding the
configuration-defined default value for the environment variable PATH. Applica-
tions need to be able to determine the system-supplied PATH environment variable
value which contains the correct search paths for the various standard utilities. This
is because PATH can be altered by users so that it can include directories that may
contain utilities that replace standard utilities.

Examples

Here is an example of the use of conf st r by an application:
confstr(name, (char *)NULL, (size_t)0);

In the example the conf st r function is being used by the application to determine
how big a buffer is needed for the string value. mal | oc could be used to allocate a
buffer to hold the string. To obtain the string, conf str must be called again. An
alternative is to allocate a fixed static buffer which is large enough to hold most
answers, perhaps 512 or 1024 bytes. nal | oc could then be used to allocate a buffer
that is larger in size if it finds that this is too small.

SEE ALSO

LEVEL

sysconf (BA_OS), uni st d(BA_DEV)

Level 1.

Page 3

FINAL COPY
June 15, 1995
File: ba_os/confstr
svid

Page: 143

creat (BA_OS) creat (BA_OS)

EAGAI N The file exists, mandatory file/record locking is set, and there are out-
standing record locks on the file [see chnod(BA_OS)].

El SD R The named file is an existing directory.

El NTR A signal was caught during the cr eat system call.

ELOCP Too many symbolic links were encountered in translating path.

EMFI LE The process has too many open files

ENAMETOOLONG

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAVE NAX} while _PCSI X NO TRUNC is in
effect.

ENOTD R A component of the path prefix is not a directory.

ENCENT A component of the path prefix does not exist.

ENCENT The pathname is null.

ERCFS The named file resides or would reside on a read-only file system.
ENFI LE The system file table is full.

ENCSPC The file system is out of inodes.

SEE ALSO
chnmod(BA_OS), cl ose(BA_0OS), fcntl (BA_OS), |seek(BA_OS), open(BA_OS),
read(BA_OS), umask(BA_OS), wi t e(BA_OS)

LEVEL
Level 1.

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

NOTICES
Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/creat
svid

Page: 145

cuserid(BA_OS) cuserid(BA_OS)

NAME
cuserid — get character login name of the user

SYNOPSIS
#i ncl ude <unistd. h>
#i ncl ude <stdio. h>

char *cuserid(char *s);

DESCRIPTION
The function cuseri d() generates a character representation of the login name of
the owner of the current process.

If s is a null pointer, this representation is generated in an internal static area, the
address of which is returned. Otherwise, s is assumed to point to an array of at
least L_cuseri d characters; the representation is left in this array. The constant
L_cuseri d is defined in the <st di 0. h> header file, and has a value greater than
zero.

RETURN VALUE
If the login name cannot be found, the function cuseri d() returns a null pointer;
if s is not a null pointer, a null character (\ 0) will be placed at s[0] .

SEE ALSO
getlogin(BA_LIB), getpwent(BA_LIB), loghame(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/cuserid
svid

Page: 146

directory (BA_OS) directory (BA_OS)

NAME
directory: opendir, readdir, readdir_r, rew nddir, closedir - directory
operations

SYNOPSIS
#i ncl ude <dirent. h>

#i ncl ude <sys/types. h>

D R [bpendir(const char [filename);
struct dirent [feaddir(D R [irp);
voi d rew nddi r (D R Cdirp);

int closedir(D R irp);

DESCRIPTION
opendi r opens the directory named by filename and associates a directory stream
with it. opendir returns a pointer to be used to identify the directory stream in
subsequent operations. The directory stream is positioned at the first entry. A null
pointer is returned if filename cannot be accessed or is not a directory, or if it cannot
nmal | oc enough memory to hold a DI Rstructure or a buffer for the directory entries.

readdi r returns a pointer to the next active directory entry and positions the direc-
tory stream at the next entry. No inactive entries are returned. It returns NULL
upon reaching the end of the directory or upon detecting an invalid location in the
directory. readdir buffers several directory entries per actual read operation;
readdi r marks for update the st _at i ne field of the directory each time the direc-
tory is actually read. The structure di rent defined by the <di r ent . h> header file
describes a directory entry. It includes the filename (d_nane), which is a null-
terminated string of at most { NAME_MAX} characters:

char d_nane[{NAME MAX}]; /* nane of file */

rew nddi r resets the position of the named directory stream to the beginning of the
directory. It also causes the directory stream to refer to the current state of the
corresponding directory, as a call to opendi r would.

cl osedi r closes the named directory stream and frees the DI Rstructure.

Errors
The following errors can occur as a result of these operations.

opendi r returns NULL on failure and sets er r no to one of the following values:

ENOTD R A component of filename is not a directory.
EACCES A component of filename denies search permission.
EACCES Read permission is denied on the specified directory.
EMFI LE The maximum number of file descriptors are currently open.
ENFI LE The system file table is full.
ELOCP Too many symbolic links were encountered in translating
filename.
Page 1
FINAL COPY

June 15, 1995
File: ba_os/directory
svid

Page: 147

directory (BA_OS) directory (BA_OS)

ENAMETOOLONG The length of the filename argument exceeds { PATH MAX}, or the
length of a filename component exceeds {NAME MAX} while
{_PCBI X_NO TRUNC} is in effect.

ENCENT A component of filename does not exist or is a null pathname.

readdi r returns NULL on failure and sets er r no to one of the following values:

ENCENT The current file pointer for the directory is not located at a valid
entry.

EBADF The file descriptor determined by the DI R stream is no longer

valid. This result occurs if the DI Rstream has been closed.
cl osedi r returns -1 on failure and sets er r no to the following value:

EBADF The file descriptor determined by the DI R stream is no longer
valid. This results if the Dl Rstream has been closed.
USAGE
Here is a sample program that prints the names of all the files in the current direc-
tory:
#i ncl ude <stdio. h>
#i ncl ude <dirent. h>
mai n()
DR Odirp;
struct dirent [irentp;
dirp = opendir(".");
while ((direntp = readdir(dirp)) != NJL)
(void)printf("%\n", direntp—>d_nane);
closedir(dirp);
return (0);
}
SEE ALSO
di rent (BA_ENV), nkdi r (BA_OS), r ndi r (BA_OS)
LEVEL
Level 1.
Page 2

FINAL COPY
June 15, 1995
File: ba_os/directory
svid

Page: 148

diclose (BA_OS) diclose (BA_OS)

NAME
dl cl ose - close a shared object

SYNOPSIS
#i ncl ude <dl fcn. h>

int dlclose(void [handle);

DESCRIPTION
dl cl ose disassociates a shared object previously opened by dl open from the
current process. Once an object has been closed using dl cl ose, its symbols are no
longer available to dl sym All objects loaded automatically as a result of invoking
dl open on the referenced object [see dI open(BA_OS)] are also closed. handle is the
value returned by a previous invocation of dl open.

Return Values
If the referenced object was successfully closed, dl cl ose returns 0. If the object
could not be closed, or if handle does not refer to an open object, dl cl ose returns a
non-0 value. More detailed diagnostic information is available through dl error. If
the system does not support dynamic linking of shared objects, dlI cl ose returns -1
and sets er r no to ENCBYS.

SEE ALSO
dl error (BA_OS), dl open(BA_OS), dl symBA_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/dIclose
svid

Page: 149

dlerror (BA_OS) dlerror (BA_OS)

NAME
dl error — get diagnostic information

SYNOPSIS
#i ncl ude <dl fcn. h>

char [dlerror(void);

DESCRIPTION
dl error returns a null-terminated character string (with no trailing newline) that
describes the last error that occurred during dynamic linking processing. If no
dynamic linking errors have occurred since the last invocation of dl error, dl error
returns NULL. Thus, invoking dl error a second time, immediately following a
prior invocation, results in NULL being returned.

Return Values

If the system does not support dynamic linking of shared objects, dl error returns
NULL and sets er r no to ENCSYS.

SEE ALSO
dl cl ose(BA_OS), dl open(BA_OS), dl symBA_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/dlerror
svid

Page: 150

dlopen (BA_OS) dlopen (BA_OS)

NAME
dl open - open a shared object

SYNOPSIS
#i ncl ude <dl fcn. h>

voi d *dl open(const char [pathname, int mode);

DESCRIPTION
Some implementations support the concept of a shared object. A shared object is an
executable object file that another executable object file may load in constructing its
own process image. A shared object may be loaded at different virtual addresses
for different processes. A shared object may either be loaded when a process is
created, if it was linked with the a. out form which the process was derived (see
| d(SD_CMD)) or it may be loaded during the execution of the process.

dl open makes a shared object available to a running process. dl open returns to the
process a handle the process may use on subsequent calls to dl symand dl cl ose.
This value should not be interpreted in any way by the process. pathname is the
path name of the object to be opened; it may be an absolute path or relative to the
current directory. If the value of pathname is 0, dl open makes the symbols con-
tained in the original a. out, all of the objects that were loaded at program startup
with the a. out, and all objects loaded with the RTLD G.CBAL mode, available
through dl sym

A shared object may specify other objects that it ‘““needs’ in order to execute prop-
erly. These needed objects are specified by special entries in the object file. Each
needed object may, in turn, specify other needed objects. All such objects are
loaded along with the original object as a result of the call to dl open.

When a shared object is brought into the address space of a process, it may contain
references to symbols whose addresses are not known until the object is loaded.
These references must be relocated before the symbols can be accessed. The mode
parameter governs when these relocations take place and may have the following
values:

RTLD LAZY
Under this mode, only references to data symbols are relocated when the
object is loaded. References to functions are not relocated until a given
function is invoked for the first time. This mode should result in better per-
formance, since a process may not reference all of the functions in any given
shared object.

RTLD_NOW
Under this mode, all necessary relocations are performed when the object is
first loaded. This may result in some wasted effort, if relocations are per-
formed for functions that are never referenced, but is useful for applications
that need to know as soon as an object is loaded that all symbols referenced
during execution will be available.

Normally, a dl open’d object’s exported symbols are directly available only to those
other objects that were loaded as a result of the same call to dl open. If the mode
argument is logically or’'d with the value RTLD A.CBAL, however, the exported
symbols of all objects loaded via this call to dl open are directly available to all other
dl open’d objects.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/dlopen
svid

Page: 151

dlopen (BA_OS) dlopen (BA_OS)

When searching for symbols to resolve a reference in one of the objects it is loading,
the dynamic linker looks in the symbol tables of the objects it has already loaded. It
uses the first occurence of the symbol that it finds. The first object searched is the
a. out. Then come the a. out ’s list of needed objects, in the order specified by the
special entries in the a. out . Then come the second level list of needed entries, and
so on. After all entries loaded on startup have been searched, the dynamic linker
searches all objects loaded as the result of a call to dl open (following the rules men-
tioned above for RTLD @.(BAL). For each group, the object actually specified to
dl open is searched first, then that object’s needed list, in order, then the second
level needed entries, and so on. Since an object is loaded only once and may appear
in the needed list of any number of objects, an object loaded with one call to dl open
or loaded on startup may be searched before the objects loaded for the current invo-
cation of dl open, even if it appears on the chain of dependencies for the object
currently being dl open’d.

Return Values
If pathname cannot be found, cannot be opened for reading, is not a shared object, or
if an error occurs during the process of loading pathname or relocating its symbolic
references, dl open returns NULL. More detailed diagnostic information is available
through dl error. If the system does not support dynamic linking of shared
objects, dl open returns NULL and sets er r no to ENOSYS.

SEE ALSO

dl cl ose(BA_OS), dl error (BA_OS), dl syn{(BA_OS),
LEVEL

Level 1.
Page 2

FINAL COPY
June 15, 1995
File: ba_os/dlopen
svid

Page: 152

dlysm (BA_OS) dlysm (BA_OS)

NAME
dl sym- get the address of a symbol in shared object

SYNOPSIS
#i ncl ude <dl fcn. h>

void *dl syn{voi d [handle, const char [hame);

DESCRIPTION
dl symallows a process to obtain the address of a symbol defined within a shared
object previously opened by dl open. handle is a value returned by a call to dl open;
the corresponding shared object must not have been closed using dl cl ose. name is
the symbol’s name as a character string. dl symsearches for the named symbol in
all shared objects loaded automatically as a result of loading the object referenced
by handle [see dI open(BA_OS)].

Return Values
If handle does not refer to a valid object opened by dl open, or if the named symbol
cannot be found within any of the objects associated with handle, dl sym returns
NULL. More detailed diagnostic information is available through dl error. If the
system does not support dynamic linking of shared objects, dl symreturns NULL and
sets er r no to ENCSYS.

SEE ALSO

dl cl ose(BA_OS) dl error (BA_OS), dl open(BA_OS),
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/dlsym
svid

Page: 153

dup (BA_OS) dup (BA_OS)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
#i ncl ude <uni std. h>

int dup(int fildes);
dup, dup2 — duplicate an open file descriptor

DESCRIPTION
dup duplicates an open file descriptor. fildes is a file descriptor obtained from a
creat, open, dup, fcntl, pipe, or ioctl system call. dup returns a new file
descriptor having the following in common with the original:

Same open file (or pipe).
Same file pointer (i.e., both file descriptors share one file pointer).
Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls [see
fentl (BA_OS)].

The file descriptor returned is the lowest one available. The dup2 argument fildes2
is set to refer to the same file as the dup2 argument fildes. If fildes2 already refers to
an open file, not fildes, this file descriptor is first closed. If fildes2 refers to fildes, or
if fildes is not a valid open file descriptor, fildes2 will not be closed first.

Return Values
On success, dup returns a non-negative integer, namely the file descriptor. On
failure, dup returns —1 and sets er r no to identify the error.

Errors
In the following conditions, dup fails and sets er r no to:
EBADF fildes is not a valid open file descriptor.
El NTR A signal was caught during the dup system call.
EMFI LE The process has too many open files [see getrl i ni t (BA_OS)].
ENCLI NK fildes is on a remote machine and the link to that machine is no

longer active.
In addition, the function dup2 may return one of the following errors:

EBADF if fildes2 is negative or greater than or equal to { CPEN_MAX} .
EMFI LE if no file descriptors above fildes2 are available.

SEE ALSO
cl ose(BA_OS), creat (BA_OS), exec(BA_OS), fcnt| (BA_OS), getrlimt (BA_OS),
open(BA_OS), pi pe(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/dup

svid

Page: 154

exec (BA_OS) exec (BA_OS)

NAME
exec: execl , execv, execl e, execve, execl p, execvp — execute a file

SYNOPSIS
#i ncl ude <uni std. h>

int execl (const char [path, const char [&rgo,
const char [Cargn, (char *)0);

int execv (const char [path, char [tonst [argv);

int execle (const char [path, const char [&rgo, ...,
const char [hrgn, (char *0), const char [envp[]);

i nt execve (const char [path, char [tonst [&rgy,
char [tonst [envp);

int execlp (const char [ile, const char [&rgo, ...,
const char [hrgn, (char *)0);

int execvp (const char [file, char [tonst [&rgv);

DESCRIPTION
exec in all its forms overlays a new process image on an old process. The new pro-
cess image is constructed from an ordinary executable file. This file is either an exe-
cutable object file or a file of data for an interpreter. There can be no return from a
successful exec because the calling process image is overlaid by the new process
image.

An interpreter file begins with a line of the form
#!' pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument.
When you exec an interpreter file, the system execs the specified interpreter. The
pathname specified in the interpreter file is passed as arg0 to the interpreter. If arg
was specified in the interpreter file, it is passed as argl to the interpreter. The
remaining arguments to the interpreter are arg0 through argn of the originally exe-
cuted file.

When a C program is executed, it is called as follows:
int main (int arge, char Cargv[], char Cenvp[]);

where argc is the argument count, argv is an array of character pointers to the argu-
ments themselves, and envp is an array of character pointers to null-terminated
strings that constitute the environment for the new process. The value of the argu-
ment argc is conventionally at least one. The initial member of the array argv points
to a string containing the name of the file.

The argument path points to a pathname that identifies the new process file. For
execl p and execvp, the argument file points to the new process file. If the file argu-
ment does not contain a slash character, the path prefix for this file is obtained by
searching the directories passed as the environment variable PATH [see
envvar (BA_ENV) and syst en(BA_OS)]. The environment is supplied typically by
the shell [see sh(BU_CMD)].

Page 1

FINAL COPY
June 15, 1995
File: ba_os/exec
svid

Page: 155

exec (BA_OS)

If exec succeeds, it marks for update the st _at i ne field of the file.

process ID
parent process 1D
process group 1D
supplementary group ID
semadj values
[see senop(KE_OS)]
session ID
[see exi t (BA_OS) and si gnal (BA_0OS)]
trace flag
[see pt race(KE_OS) request 0]
time left until an alarm clock signal
[see al ar M{BA_OS)]
current directory
root directory
file mode creation mask
[see unask(BA_OS)]
resource limits
[seegetrlinmt(BA_OS), ulint(BA_OS)]
utine,stine, cutine,andcstine
[seeti nes(BA_OS)].
file-locks
[seefcnt] (BA_OS) and | ockf (BA_OS)]
controlling terminal
process signal mask
[see si gpr ocmask(BA_0OS)]
pending signals
[see sigpending(BA_OS)]

exec (BA_OS)

If exec succeeds, an internal reference to the process image file is created. This
reference is removed some time later, but not later than process termination or suc-

cessful completion of a subsequent call to one of the exec functions.

Return Values
On success, exec overlays the calling process image with the new process image
and there is no return to the calling process. If exec fails while it can still return to
the calling process, it returns -1 and sets er r no to identify the error. If exec fails
after a point of no return to the calling process, the calling process is sent a SI &I LL

signal.
Errors

In the following conditions, exec fails and sets er r no to:

EACCES

EACCES
EACCES

Search permission is denied for a directory listed in the new

executable file’s path prefix.

The new executable file is not an ordinary file.

Execute permission on the new executable file is denied.

FINAL COPY
June 15, 1995
File: ba_os/exec
svid

Page: 157

Page 3

exec (BA_OS) exec (BA_OS)

E2Bl G The number of bytes in the argument list of the new process
image is greater than the system-imposed limit of {ARG_NAX}
bytes. The argument list limit is sum of the size of the argu-
ment list plus the size of the environment’s exported shell

variables.

ELOCP Too many symbolic links were encountered in translating
path or file.

ENAVETOOLONG The length of the file or path argument exceeds { PATH_MAX},

or the length of a file or path component exceeds
{NAVE_MAX} while _POSI X_NO TRUNCiis in effect.

ENCENT One or more components of the pathname of the executable
file do not exist, or path or file points to an empty string.

ENOTD R A component of the pathname of the executable file is not a
directory.

ENCEXEC The exec is not an execl p or execvp, and the new execut-

able file has the appropriate access permission but an invalid
magic number in its header.

ENQVEM The new process image requires more memory than allowed
by RLIM T_VMEM

USAGE
Two interfaces are available for these functions. The list (ell) versions execl , exe-
cl e, and execl p are useful when a known file with known arguments is being
called. The arguments are the character strings that include the filename and the
arguments. The variable (v) versions: execv, execve, and execvp are useful when
the number of arguments is unknown. The arguments include a filename and a
vector of strings containing the arguments.

If possible, applications should use the syst emroutine, which is easier to use and
supplies more functions than the f or k and exec routines.

SEE ALSO
al ar mMBA_OS), envvar (BA_ENV), exit(BA_OS), fcntl (BA_OS), fork(BA_OS),
getrlimt (BA_OS), | ockf (BA_OS), ni ce(KE_OS), priocnt | (KE_OS),

ps(BU_CMD), T)t race(KE_OS), senop(KE_OS), sh(BU_CMD), si gnal (BA_ENV),
si gacti on(BA_OS), si gpendi ng(BA_OS), si gpr ocmask(BA_OS), syst en{BA_OS),
times(BA_OS), ul i mt (BA_OS), umask(BA_OS)

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995
File: ba_os/exec
svid

Page: 158

exit (BA_OS) exit (BA_OS)

NAME

exit, _exit — terminate process

SYNOPSIS

#i nclude <stdlib. h>
voi d exit(int status);
#i ncl ude <unistd. h>
void _exit(int status);

DESCRIPTION
The functions exi t () and _exi t() terminate the calling process. The function
exit () may cause additional processing to be done before the process exits [see
atexit(BA_OS) and fclose(BA_0S)]. All functions registered by the at exi t () func-
tion are called, in the reverse order of the registration. The function _exi t () does
not do additional processing before exiting.

In addition, the following consequences will occur:

All of the file descriptors, directory streams and message catalogue descriptors
are closed.

A S| GCHLDsignal is sent to the calling process’s parent process.

If the calling process’s parent process is executing either wai t (), wai t pi d(),
or waitid() [see wait(BA_OS), waitpid() in wait(BA_OS), and
waitid(BA_OS), respectively], and has not set its SA NOCLDWAI T flag [see
sigaction(BA_OS)], it is notified of the calling process’s termination, the calling
process’s status is made available to it, and the lifetime of the calling process
ends.

If the parent process is not executing either wait(), waitpid(), or
wai tid(), and has not set its SA_ NOCLDWAI T flag, the calling process is
transformed into a zombie process. The status of the child process will be made
available to it when it subsequently executes a wait function. At that time, the
lifetime of the calling process will end.

If the parent process has set its SA_ NOCLDWAI T flag, the status will be dis-
carded, and the lifetime of the calling process will end immediately.

The parent process ID of all of the calling process’s child processes is set to the
process ID of a special system process. That is, these processes are inherited by
a special system process.

If the process is a controlling process, a SI GHUP signal is sent to each process in
the foreground process group of the controlling terminal allocated to the calling
process and the controlling terminal is deallocated.

If the exit of the calling process causes a process group to become orphaned, and
if any member of the newly orphaned process group is stopped, then a SI GHUP
and SI GCONT signal will be sent to each member of that process group.

If the value of status is zero or EXI T_SUCCESS, an implementation defined form
of the status successful termn nation is returned. If the value of status is
EXI T_FAI LURE, an implementation defined form of status unsuccessf ul
term nation is returned. Otherwise the status returned is implementation
defined.

Page 1

FINAL COPY

June 15, 1995

File: ba_os/exit
svid

Page: 159

exit (BA_OS)

RETURN VALUE

USAGE

The functions exi t () and _exi t () do not return values.

Normally, applications should use exi t () ratherthan _exit().

SEE ALSO
atexit(BA_OS), catopen(BA_LIB), fclose(BA_OS), signal(BA_ENV), termios(BA_OS),

LEVEL

Page 2

wait(BA_OS), waitid(BA_OS).

Level 1.

FINAL COPY

June 15, 1995

File: ba_os/exit
svid

Page: 160

exit (BA_OS)

fclose (BA_OS) fclose (BA_OS)

NAME

fclose, fflush — close or flush a stdio-stream

SYNOPSIS

#i ncl ude <stdio. h>
int fclose(FlLE *strm);
int fflush(FlILE *strm);

DESCRIPTION

The function f cl ose() causes any buffered data for strm to be written out, and the
stdio-stream to be closed. If the underlying file is not already at EOF, and the file is
one capable of seeking, the file pointer is adjusted so that the next operation on the
open file pointer deals with the byte after the last one read from or written to the
file being closed.

The function f cl ose() is performed automatically for all open files upon calling
the exi t () routine.

If strm points to an output stdio-stream or an update stdio-stream on which the
most recent operation was not input, the function f f | ush() causes any buffered
data for strm to be written to that file. Any unread data buffered in strm is dis-
carded. The stdio-stream remains open. If strm is NULL, all open for writing stdio-
streams are flushed.

The functions fcl ose() and fflush() mark for update the st _ctine and
st _nti ne fields of the underlying file, if the stream was writable, and if buffered
data had not been written to the file yet.

RETURN VALUE

Upon successful completion, the functions fcl ose() and fflush() return a
value of 0; otherwise, they return ECF if an error is detected.

ERRORS

Under the following conditions, the functions f cl ose() and ffl ush() fail and
set er r no to:

EAGAI N if the O_NONBLOCK flag is set for the underlying file descriptor and the
process would have blocked.

EBADF if the file descriptor underlying strm is not a valid file descriptor.

EPI PE if an attempt is made to write to a FIFO that is not open for reading by
any process. A Sl GPI PE signal is also sent to the process.

EFBI G if an attempt was made to write a file that exceeds the process’s file size
limit [see getrlimit(BA_OS)].

El NTR if a signal was caught during the f cl ose() or ffl ush() operation.

ENOSPC if there is no free space remaining on the device containing the file.

El O if a physical 170 error has occurred, or if the process is a member of a
background process group attempting to write to its controlling termi-
nal, TOSTOP is set, the process is neither ignoring nor blocking
SI GTTQU and the process group of the process is orphaned.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/fclose
svid

Page: 161

fclose (BA_OS)

SEE ALSO
close(BA_OS), exit(BA_OS), fopen(BA_0OS), setbuf(BA_LIB), write(BA_OS).

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: ba_os/fclose
svid

Page: 162

fclose (BA_OS)

fentl (BA_OS)

NAME

fentl (BA_OS)

fcntl —file control

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/fcntl.h>
#i ncl ude <uni std. h>

int fcntl

DESCRIPTION

(int fildes, int ecmd, . . . [/* arg */);

fent | provides for control over open files. fildes is an open file descriptor

fcntl may take a third argument, arg, whose data type, value and use depend
upon the value of cmd. cmd specifies the operation to be performed by fcntl and
may be one of the following:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL

F_GETOMW
F_SETOM
F_FREESP

Return a new file descriptor with the following characteristics:

Lowest numbered available file descriptor greater than or
equal to the integer value given as the third argument.

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both file
descriptors share one file pointer).

Same access mode (read, write, or read/write) as the origi-
nal file.

Shares any locks associated with the original file descriptor.

Same file status flags (that is, both file descriptors share the
same file status flags) as the original file.

The close-on-exec flag [see F_CGETFD] associated with the
new file descriptor is set to remain open across
exec(BA_OS) system calls.

Get the close-on-exec flag associated with fildes. If the low-order bit
is 0, the file will remain open across exec. Otherwise, the file will
be closed upon execution of exec.

Set the close-on-exec flag associated with fildes to the low-order bit
of the integer value given as the third argument (0 or 1 as above).

Get fildes status flags.

Set fildes status flags to the integer value given as the third argu-
ment. Only certain flags can be set [see f cnt | (BA_ENV)].

Get the designated owner of the file.
Set the owner field of the file descriptor.

Free storage space associated with a section of the ordinary file
fildes. The section is specified by a variable of data type struct
f1 ock pointed to by the third argument arg. The data type st ruct
f1ock is defined in the sys/fcntl . h header file and contains the
following members: | _whence is 0, 1, or 2 to indicate that the rela-
tive offset | _start will be measured from the start of the file, the

Page 1

FINAL COPY
June 15, 1995
File: ba_os/fcntl
svid

Page: 163

fentl (BA_OS) fentl (BA_OS)

Page 2

current position, or the end of the file, respectively. | _start is the
offset from the position specified in | _whence. | _| en is the size of
the section. An | _I en of 0 frees up to the end of the file; in this
case, the end of file (that is, file size) is set to the beginning of the
section freed. Any data previously written into this section is no
longer accessible.

The following commands are used for record-locking. Locks may be placed on an
entire file or on segments of a file.

F_SETLK Set or clear a file segment lock according to the f | ock structure that
arg points to The cmd F_SETLK is used to establish read (F_RDLCK)
and write (F_WRLCK) locks, as well as remove either type of lock
(F_UNLCK). If a read or write lock cannot be set, fcnt| will return
immediately with an error value of —1.

F_SETLKW This cmd is the same as F_SETLK except that if a read or write lock is
blocked by other locks, f cnt| will block until the segment is free to
be locked.

F_GETLK Get the first lock which blocks the lock description pointed to by the
third argument arg, taken as a pointer to the type struct fl ock.
The information retrieved overwrites the information passed to
fentl in the structure flock. If no lock is found that would
prevent this lock from being created, the structure is left unchanged
except for the lock type which is set to F_UNLCK.

If the lock request described by the f | ock structure that arg points
to could be created, then the structure is passed back unchanged
except that the lock type is set to F_UNLCK and the | _whence field
will be set to SEEK SET.

This command never creates a lock; it tests whether a particular lock
could be created.

F_RSETLK Used by the network lock daemon, to communicate with the NFS
server kernel to handle locks on NFS files.

F_RSETLKW Used by the network lock daemon, to communicate with the NFS
server kernel to handle locks on NFS files.

F_RCGETLK Used by the network lock daemon, to communicate with the NFS
server kernel to handle locks on NFS files.

F_RSETLK, F_RSETLKWand F_RCGETLK are used by the f sl ock daemon and should
not be used by regular applications.

A read lock prevents any other process from write locking the protected area. More
than one read lock may exist for a given segment of a file at a given time. The file
descriptor on which a read lock is being placed must have been opened with read
access.

A write lock prevents any other process from read locking or write locking the pro-
tected area. Only one write lock and no read locks may exist for a given segment of
a file at a given time. The file descriptor on which a write lock is being placed must
have been opened with write access.

FINAL COPY

June 15, 1995

File: ba_os/fcntl
svid

Page: 164

fentl (BA_OS) fentl (BA_OS)

The f | ock structure describes the type (I _t ype), starting offset (I _whence), relative
offset (I _start), size (I _I en), process ID (I _pi d), and system ID (I _sysi d) of the
segment of the file to be affected. The process ID and system ID fields are used only
with the F_CGETLK cmd to return the values for a blocking lock. Locks may start and
extend beyond the current end of a file, but may not be negative relative to the
beginning of the file. A lock may be set to always extend to the end of file by
setting | _| en to 0. If such a lock also has | _whence and | _start set to O, the
whole file will be locked. Changing or unlocking a segment from the middle of a
larger locked segment leaves two smaller segments at either end. Locking a seg-
ment that is already locked by the calling process causes the old lock type to be
removed and the new lock type to take effect. All locks associated with a file for a
given process are removed when a file descriptor for that file is closed by that pro-
cess or the process holding that file descriptor terminates. Locks are not inherited
by a child process in a f or k(BA_OS) system call.

When mandatory file and record locking is active on a file [see chnod(BA_OS)],
creat (BA_OS), open(BA_OS), read(BA_0OS) and wite(BA_OS) system calls
issued on the file will be affected by the record locks in effect.

Return Values
On success, f cnt | returns a value that depends on cmd:

F_DUPFD A new file descriptor.

F_CGETFD Value of flag (only the low-order bit is defined). The return value
will not be negative.

F_SETFD Value other than -1.

F_FREESP Value of 0.

F_CGETFL Value of file status flags. The return value will not be negative.

F SETFL Value other than -1.

F_CGETOMN Value of the owner field.

F_SETOMW Value other than -1.

F_GETLK Value other than -1.

F_SETLK Value other than 1.

F_SETLKW Value other than -1.

On failure, f cnt | returns -1 and sets er r no to identify the error.

Errors
In the following conditions, f cnt | fails and sets er r no to:

EACCES cmd is F_SETLK, the type of lock (I _type) is a read lock (F_RDLCK)
and the segment of a file to be locked is already write locked by
another process, or the type is a write lock (F_WRLCK) and the seg-
ment of a file to be locked is already read or write locked by another
process.

Page 3

FINAL COPY
June 15, 1995
File: ba_os/fcntl
svid

Page: 165

fentl (BA_OS) fentl (BA_OS)

SEE ALSO
chown(BA_0OS), cl ose(BA_0OS), creat(BA_0OS), exec(BA_0OS), open(BA_O0S),
pi pe(BA_OS)

LEVEL
Level 1

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

NOTICES
Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

File and record locks are based on process ID; consequently, all siblings share locks.
It is possible for a record lock placed by one thread to be overlaid with a lock by a
sibling. Other mechanisms should be used to coordinate concurrent access by mul-
tiple threads.

A new command, F_DUP2, has been added. See description above.

Page 5

FINAL COPY
June 15, 1995
File: ba_os/fcntl
svid

Page: 167

ferror(BA_OS) ferror(BA_OS)

NAME

ferror, feof, clearerr, fileno — stdio-stream status inquiries

SYNOPSIS

#i ncl ude <stdio. h>

int ferror(FlILE *strm);
int feof (FILE *strm);

voi d cl earerr(FILE *strm);
int fileno(FlILE *strm);

DESCRIPTION

The function ferror () determines if an 1/0 error has occurred when reading
from or writing to the file associated with the named stream.

The function f eof () determines if ECF is detected when reading strm.

The function cl earerr () resets both the error and EOF indicator on strm. The
EOF indicator is reset when the file pointer associated with strm is repositioned, e.g.,
by the fseek() or rew nd() routines [see fseek(BA_OS) and rew nd() in
fseek(BA_OS), respectively], or can be reset with cl earerr ().

The function fil eno() gets the integer file descriptor associated with strm [see
open(BA_OS)].

RETURN VALUE

USAGE

The function ferror () will return non-zero when an 1/0 error has previously
occurred reading from or writing to strm; otherwise, the function ferror () will
return zero.

The function f eof () will return non-zero when EOF has previously been detected
reading strm; otherwise, the function f eof () will return zero.

The function fil eno() will return the integer file descriptor number associated
with strm.

The function fil eno() returns a file descriptor that can be used with non-stdio
routines, such as write() and | seek() routines, to manipulate the associated
file, but these routines are not recommended for use by application-programs.

SEE ALSO

LEVEL

fseek(BA_OS), fopen(BA_0S), Iseek(BA_OS), open(BA_OS), write(BA_OS).

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/ferror
svid

Page: 168

fopen(BA_OS) fopen(BA_OS)

NAME
fopen, freopen, fdopen — open a stdio-stream

SYNOPSIS
#i ncl ude <stdio. h>

FI LE *fopen(const char *path, const char *type);

FI LE *freopen(const char *path, const char *type,
FI LE *strm);

FI LE *fdopen(int fildes, const char *type);

DESCRIPTION
The function f open() opens the file named by path and associates a stdio-stream
with it. The function f open() returns a pointer to the FI LE structure associated
with the stdio-stream.

The function f r eopen() substitutes the named file in place of the open strm. A
flush is first attempted and then the original strm is closed, regardless of whether
the open ultimately succeeds. Failure to flush or close strm successfully is ignored.
The function freopen() returns a pointer to the FI LE structure associated with
strm.

The function freopen() is typically used to attach the preopened stdio-streams
associated with st di n, st dout and st der r to other files. The standard error out-
put stream st derr is by default unbuffered but use of the function f r eopen()
will cause it to become buffered or line-buffered.

The function f dopen() associates a stream with a file descriptor, fildes. The type of
stream given to f dopen() must agree with the mode of the already open file.
File-descriptors are obtained from routines which open files but do not return
pointers to a FI LE structure [open(), for example; see open(BA_OS)]. The file
position indicator associated with the new stream is set to the position indicated by
the file offset associated with the file descriptor. The error and ECF indicators for
the stream are cleared. Streams are necessary input for many of the stdio routines.

The argument path points to a character-string that names the file to be opened.
The argument type is a character-string having one of the following values:

r open text file for reading.
truncate to zero length or create text file for writing.
a appgnd; open for writing at the end of the text file, or create for
writing.
rb open binary file for reading.
wb truncate to zero length or create binary file for writing.
ab append; open or create binary file for writing at end-of-file.
r+ open text file for update (reading and writing).
WH truncate or create text file for update.
Page 1
FINAL COPY

June 15, 1995
File: ba_os/fopen
svid

Page: 169

fopen(BA_OS) fopen(BA_OS)

a+ append; open or create text file for writing at end-of-file.
r+bor

rb+ open binary file for update (reading and writing).

w+b or

wh+ truncate or create binary file for update.

atb or

ab+ append; open or create binary file for writing at end-of-file.

When a file is opened for update, both input and output may be done on the result-
ing stream. However, output may not be directly followed by input without an
intervening call to the fseek(), fflush(), rewind() or fsetpos() routine
[see fseek(BA_OS), ffl ush() in fclose(BA_OS), rew nd() in fseek(BA_OS), and
fsetpos(BA_OS), respectively]; and input may not be directly followed by output
without an intervening call to the fseek(), rewi nd() or fsetpos() routine,
unless the input operation encountered end-of-file.

If a file is opened for writing (i.e., when type is w, wb, w+ or wb+) and the file previ-
ously existed the st _cti me and st _nti ne fields of the file will be updated. If a
file is opened for writing or appending (i.e., when type is w, wb, w+ wb+, a, ab, a+
or ab+) and the file did not previously exist, the st _atine, st_ctine and
st _nti me fields of the file and the st _cti ne and st _nti e fields of the parent
directory will be updated.

When a file is opened for append (i.e., when type is a, ab, a+, a+b, or ab+) it is
impossible to overwrite information already in the file. The fseek() routine may
be used to reposition the file-pointer to any position in the file, but when output is
written to the file, the current file-pointer is disregarded. All output is written at
the end of the file. For example, if two separate processes open the same file for
append, each process may write to the file without overwriting output being writ-
ten by the other, and the output from the two processes would be interleaved in the
file.

When opened, a stdio-stream is fully buffered if and only if it can be determined
not to refer to an interactive device. The error and end-of-file indicators are cleared
for the stdio-stream.

RETURN VALUE

The functions f open() and freopen() return a null pointer if path cannot be
accessed, or if type is invalid, or if the file cannot be opened.

The function f dopen() returns a null pointer if type is invalid or if the file cannot
be opened.

The functions f open() or f dopen() may fail and not set er r no if there are no
free stdio streams.

ERRORS

Page 2

Under the following conditions, the functions f open() and freopen() fail and
seterrno to:

FINAL COPY
June 15, 1995
File: ba_os/fopen
svid

Page: 170

fopen(BA_OS)

USAGE

LEVEL

fopen(BA_OS)

ENOTDI R if a component of the path-prefix in path is not a directory.

ENCENT if the named file does not exist or a component of the pathname
should exist but does not, or path points to an empty string.

EACCES if a component of the path-prefix denies search permission, or type
permission is denied for the named file, or the file does not exist and
write permission is denied for the parent directory.

ELOOP if too many symbolic links are encountered in translating the path.

El SDI R if the named file is a directory and type is write or read/write.

ENAMETOOLONG
if the length of a pathname exceeds { PATH_MAX}, or pathname com-
ponent is longer than { NAVE_MAX} while {_PGCSI X_NO TRUNC} is
in effect.

El NTR if a signal was caught during the open operation.

EMFI LE if { OPEN_MAX} file descriptors are currently open in the calling pro-
cess.

ENFI LE if the system file table is full, meaning { SYS_OPEN} files are open in
the system.

ENGSPC if the directory that would contain the file cannot be extended, the file
does not exist, and it was to be created.

ERCFS if the named file resides on a read-only file system and type requires
write access.

ENXI O if the named file is a character special or block special file and the
device associated with this special file does not exist.

In System V, there is no difference between opening text and binary files, i.e., open-
ing a file with type " r b" is no different from opening a file with type"r".

SEE ALSO
creat(BA_OS), dup(BA_OS), fclose(BA_0OS), fseek(BA_0OS), open(BA_OS),
pipe(BA_OS).

Level 1.

Page 3

FINAL COPY
June 15, 1995
File: ba_os/fopen
svid

Page: 171

fork (BA_OS) fork (BA_OS)

NAME
f or k — create a new process

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

pid_t fork(void);

DESCRIPTION
f or k causes creation of a new process. The new process (child process) is an exact
copy of the calling process (parent process). This means the child process inherits
the following attributes from the parent process:

real user ID, real group 1D, effective user 1D, effective group ID
environment

close-on-exec flag [see exec(BA_0S)]

signal handling settings (that is, SIG DFL, SIG I G\, SI G HOLD, function
address)

supplementary group IDs

set-user-1D mode bit

set-group-1D mode bit

profiling on/off status

nice value [see ni ce(AS_CMD)]

scheduler class [see pri ocnt | (RT_OS)]

all attached shared memory segments

process group | D

session | D

current working directory

root directory

file mode creation mask [see umask(BA_OS)]

resource limits

controlling terminal

working and maximum privilege sets

Scheduling priority and any per-process scheduling parameters that are specific to a
given scheduling class may or may not be inherited according to the policy of that
particular class [see pri ocnt | (RT_OS)].

The child process differs from the parent process in the following ways:

The child process has a unique process | D which does not match any active
process group | D.

The child process has a different parent process | D (that is, the process | D of
the parent process).

The child process has its own copy of the parent’s file descriptors and direc-
tory streams. Each of the child’s file descriptors shares a common file
pointer with the corresponding file descriptor of the parent.

All senadj values are cleared

Page 1

FINAL COPY
June 15, 1995
File: ba_os/fork

svid

Page: 172

fork (BA_OS) fork (BA_OS)

Process locks, text locks and data locks are not inherited by the child

The child process’s t s structure is cleared: t ns_ut i me, sti ne, cuti me, and
cstinmearesetto0

The time left until an alarm clock signal is reset to 0.

The set of signals pending for the child process is initialized to the empty
set.

Record locks set by the parent process are not inherited by the child process
[seefcnt] (BA_OS)].

Return Values
On success, fork returns 0 to the child process and returns the process | D of the
child process to the parent process. On failure, f or k returns a value of (pid_t)-1
to the parent process, sets errno to identify the error, and no child process is

created.
Errors

In the following conditions, f or k fails and sets er r no to:

EAGAI N The system-imposed limit on the total number of processes under
execution by a single user would be exceeded and the calling pro-
cess does not have the P_SYSCPS privilege. The system lacked the
necessary resources to create another process.

EAGAI N Total amount of system memory available when reading via raw
170 is temporarily insufficient.

SEE ALSO

exec (BA_OS), fcntl (BA_OS), nice (AS_CMD), priocntl (RT_OS), signal
(BA_OS), umask (BA_OS), wai t (BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY

June 15, 1995

File: ba_os/fork
svid

Page: 173

fpathconf (BA_OS) fpathconf (BA_OS)

4. The behavior is undefined if path or fildes does not refer to a directory.

5. If path or fildes refers to a directory, the value returned is the maximum length of
a relative pathname when the specified directory is the working directory.

6. If path or fildes refers to a pipe or FIFO, the value returned applies to the FIFO
itself. If path or fildes refers to a directory, the value returned applies to any
FIFOs that exist or can be created within the directory. If path or fildes refers to
any other type of file, the behavior is undefined.

7. If path or fildes refers to a directory, the value returned applies to any files, other
than directories, that exist or can be created within the directory.

The value of the configurable system limit or option specified by name will not
change during the lifetime of the calling process.

RETURN VALUE

If the functions f pat hconf () or pat hconf () are invoked with an invalid sym-
bolic constant, or if the symbolic constant corresponds to a configurable system
limit or the option that is not supported on the system, a value of —1 will be
returned to the invoking process. If the function fails because the configurable sys-
tem limit or option corresponding to name is not supported on the system the value
of er r no remains unchanged.

Otherwise, the functions f pat hconf () and pat hconf () return the current value
for the file or directory.

ERRORS

Page 2

Under the following conditions, the functions f pat hconf () and pat hconf () fail
and set er r no to:

El NVAL if name is an invalid value.

El NVAL if the implementation does not support an association of the
variable name with the specified file.

The function pat hconf () fails and sets er r no to:

EACCES if search permission is denied for a component of the path
prefix

ELOOP if too many symbolic links are encountered while translating
path.

ENAMETOOLONG if the length of a pathname exceeds { PATH_MAX} , or pathname
component is longer than { NAME_MAX} while
{_PCSI X_NO_TRUNC} is in effect.

ENCENT if path is needed for the command specified and the named file
does not exist or if the path argument points to an empty string.
ENCTDI R if a component of the path prefix is not a directory.
FINAL COPY

June 15, 1995
File: ba_os/fpathconf
svid

Page: 175

fpathconf (BA_OS) fpathconf (BA_OS)

The function f pat hconf () fails and sets er r no to:

EBADF if the argument fildes is not a valid file descriptor.
SEE ALSO
sysconf(BA_OS).
LEVEL
Level 1.
Page 3
FINAL COPY

June 15, 1995
File: ba_os/fpathconf
svid

Page: 176

fread (BA_OS) fread (BA_OS)

NAME

fread, fwite - binary input/output

SYNOPSIS

#i ncl ude <stdi o. h>
size_t fread (void [ptr, size_t size, size_t nitems, FlILE [btream);

size_t fwite (const void [btr, size_ t size, size_t nitems, FILE
Cktream) ;

DESCRIPTION

fread reads into an array pointed to by ptr up to nitems items of data from stream,
where an item of data is a sequence of bytes (not necessarily terminated by a null
byte) of length size. fread stops reading bytes if an end-of-file or error condition is
encountered while reading stream, or if nitems items have been read. fread incre-
ments the data pointer in stream to point to the byte following the last byte read if
there is one. fread does not change the contents of stream. fread returns the
number of items read.

fwrite writes to the named output stream at most nitems items of data from the
array pointed to by ptr, where an item of data is a sequence of bytes (not necessarily
terminated by a null byte) of length size. fwr it e stops writing when it has written
nitems items of data or if an error condition is encountered on stream. fw it e does
not change the contents of the array pointed to by ptr. fwite increments the
data-pointer in stream by the number of bytes written. fw it e returns the number
of items written.

If size or nitems is zero, then fread and f wr i t e return a value of 0 and do not effect
the state of stream.

The ferror or feof routines must be used to distinguish between an error condi-
tion and end-of-file condition.

Return Values

On successful completion, the functions fread and fwrite return the number of
items read or written, respectively. If size or nitems is non-positive, no characters
are read or written, and both fread and fwite() return a value of 0. If an error
occurs the error indicator for strm is set and er r no is set to indicate the error.

Errors

If an error occurs, the error indicator for stream is set.

SEE ALSO

LEVEL

cl ose (BA_OS), open (BA_OS), getc (BA_LIB), gets (BA_LIB), | seek (BA_OS),
printf (BA_LIB), putc (BA_LIB), puts (BA_LIB), read (BA_OS), scanf (BA_LIB),
stdi o (BA_LIB), wite (BA_OS)

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/fread
svid

Page: 177

fseek(BA_OS) fseek(BA_OS)

NAME
fseek, rewind, ftell — reposition a file-pointer in a stdio-stream

SYNOPSIS
#i ncl ude <stdio. h>

int fseek(FILE *strm, |ong int offset, int whence);
voi d rew nd(FI LE *strm);
long int ftell (FILE *strm);

DESCRIPTION
The function f seek() sets the position of the next input or output operation on
strm. The new position is at the signed distance offset bytes from the beginning,
from the current position, or from the end of the file, according to the value of
whence, which is defined in the <st di 0. h> header file as follows:

Name Description

SEEK_SET set position equal to offset bytes.
SEEK_CUR set position to current location plus offset.
SEEK_END set position to EOF plus offset.

The function f seek() allows the file position indicator to be set beyond the end of
the existing data in the file. If data is later written at this point, subsequent reads of
data in the gap will return zero until data is actually written into the gap. The func-
tion fseek(), by itself, does not extend the size of the file. The behavior of
f seek() on devices incapable of seeking is implementation defined.

The call r ewi nd(strm) is equivalent to the following:
(voi d) f seek(strm, OL, SEEK_ SET)
except that the function r ewi nd() clears the error indicator on strm.

The functions f seek() and rewi nd() clear the end-of-file indicator for strm and
undo any effects of the unget ¢c() routine on the same stream. After f seek() or
rew nd(), the next operation on a file opened for update may be either input or
output.

The function ftel | () returns the offset of the current byte relative to the begin-
ning of the file associated with strm. The offset is always measured in bytes.

If strm is writable and buffered data had not been written to the underlying file, the
function f seek() will cause the unwritten data to be written to the file and mark
the st _cti me and st _nt i ne fields of the file for update.

RETURN VALUE
Upon successful completion, the function fseek() returns a value of 0. For
improper seeks, it returns a value of - 1 and sets er r no to indicate an error. An
improper seek is, for example, an f seek() on a file that has not been opened via
the f open() routine or on a stream opened via the popen() routine.

Upon failure, the function ftel | () returns a value of —1 and sets er r no to indi-
cate an error.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/fseek
svid

Page: 178

fsync(BA_OS) fsync(BA_OS)

NAME

fsync — synchronize a file’s in-memory state with that on the physical medium

SYNOPSIS

int fsync(int fildes);

DESCRIPTION

The function f sync() moves all modified data and attributes of fildes to a storage
device; all in-memory modified copies of buffers for the associated file will have
been written to the physical medium when the call returns. Note that this is dif-
ferent from sync(), which schedules disk 170 for all files but returns before the
1/0 completes. fsync() should be used by programs that require a file to be in a
known state; for example, a program that contains a simple transaction facility
might use it to ensure that all modifications to a file or files caused by a transaction
were recorded on the storage medium.

The way the data reaches the physical medium is implementation- and hardware-
dependent. fsync() returns when the device driver tells it that the write has
taken place.

RETURN VALUE

Upon successful completion, the function f sync() returns a value of O; otherwise,
it returns a value of —1 and sets er r no to indicate an error.

ERRORS
Under the following conditions, the function f sync() fails and sets er r no to:
EBADF if fildes is not a valid file descriptor open for writing.
El NTR if a signal was caught during execution of the system call.
El NVAL if the fildes argument does not refer to a file on which this opera-
tion is possible.
El O if an 1/0 error occurred while reading from or writing to the file
system.
SEE ALSO
sync(BA_OS).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/fsync
svid

Page: 181

getcontext (BA_OS) getcontext (BA_OS)

NAME
get cont ext , set cont ext — get and set current user context

SYNOPSIS
#i ncl ude <ucont ext. h>

i nt getcontext(ucontext _t [Cucp);
int setcontext(ucontext _t [lcp);

DESCRIPTION
These functions, along with those defined in are useful for implementing user level
context switching between multiple threads of control within a process.

get cont ext initializes the structure pointed to by ucp to the current user context of
the calling process. The user context is defined by and includes the contents of the
calling process’s machine registers, signal mask and execution stack.

set cont ext restores the user context pointed to by ucp. The call to set cont ext
does not return; program execution resumes at the point specified by the context
structure passed to setcontext. The context structure should have been one
created either by a prior call to get cont ext or makecont ext or passed as the third
argument to a signal handler [see si gacti on(BA_OS)]. If the context structure was
one created with get cont ext , program execution continues as if the corresponding
call of get cont ext had just returned. If the context structure was one created with
nmakecont ext , program execution continues with the function specified to nakecon-
text.

Return Values
On success, set cont ext does not return and get cont ext returns 0. On failure,
set cont ext and get cont ext return -1 and set er r no to identify the error.

SEE ALSO

setj np(BA_LIB), si gacti on(BA_OS), si gpr ocnask(BA_OS)
LEVEL

Level 1.

NOTICES
When a signal handler is executed, the current user context is saved and a new con-
text is created by the kernel. If the process leaves the signal handler via | ongj np
[see set j np(BA_LIB)] the original context will not be restored, and future calls to
get context will not be reliable. Signal handlers should use si gl ongj np [see
set j np(BA_LIB)] or set cont ext instead.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/getcontext
svid

Page: 182

getcwd (BA_OS) getcwd (BA_OS)

NAME
getcwd — get pathname of current working directory

SYNOPSIS
#i ncl ude <unistd. h>

char *getcwd(char *buf, size_t size);

DESCRIPTION
The function get cwd() places an absolute pathname of the current working direc-
tory in the array pointed to by buf. The value of size is the size in bytes of buf.

RETURN VALUE
Upon successful completion, the function get cwd() returns a pointer to the string
containing the absolute pathname of the current working directory. Otherwise, the
function get cwd() returns NULL if size is not large enough, or if an error occurs in
a lower-level function.

ERRORS
Under the following conditions, the function get cwd() fails and sets er r no to:

EACCES if a parent directory cannot be read to get its name.
El NVAL if size is less than or equal to zero.

ERANGE if size is greater than zero and less than the length of the pathname, plus
1.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/getcwd
svid

Page: 183

getgroups (BA_OS) getgroups (BA_OS)

NAME
getgroups, setgroups — get or set supplementary group I1Ds

SYNOPSIS
#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>

int getgroups(int gidsetsize, gid_t *grouplist);
i nt setgroups(int ngroups, const gid_t *grouplist);

DESCRIPTION
The get gr oups() function fills in the array grouplist with the current supplemen-
tary group IDs of the calling process. The gidsetsize argument specifies the number
of elements in the array grouplist and must be less than { NGROUPS_MAX}. The
actual number of supplementary group IDs is returned. If gidsetsize is zero, get -
groups() returns the number of supplementary group IDs associated with the
calling process without modifying grouplist.

The function set gr oups() sets the supplementary group access list of the calling
process from the array of group IDs specified by grouplist. The number of entries is
specified by ngroups and cannot be greater than { NGROUPS_MAX} . This function
may be invoked only by a user with appropriate privileges.

RETURN VALUE
Upon successful completion, the function get gr oups() returns the number of
supplementary group IDs set for the calling process; otherwise, it returns a value of
—1 and sets er r no to indicate an error.

The function set gr oups() returns the value 0 upon successful completion. Oth-
erwise, a value of —1 is returned and er r no is set to indicate an error.

ERRORS
Under the following condition, the function get gr oups() fails and sets err no to:
El NVAL if the value of gidsetsize is non-zero and is less than the number of

supplementary group IDs set for the calling process.
The function set gr oups() fails and sets er r no to:

El NVAL if the value of ngroups is greater than { NGROUPS_MAX} .
EPERM if the effective user ID is not that of a user with appropriate
privileges.
SEE ALSO
chmod(BA_OS), getuid(BA_OS), initgroups(BA_LIB), setuid(BA_OS).
LEVEL
Level 1.
Page 1
FINAL COPY

June 15, 1995
File: ba_os/getgroups
svid

Page: 184

getmsg (BA_OS) getmsg (BA_OS)

NAME

get nsg, get pnsg — get next message off a stream

SYNOPSIS

#i ncl ude <stropts. h>

int getnsg(int fd, struct strbuf *ctlptr,
struct strbuf *dataptr, int *flagsp);

int getprsg(int fd, struct strbuf *ctlptr,
struct strbuf *dataptr, int *bandp, int *flagsp);

DESCRIPTION

get nsg retrieves the contents of a message located at the stream head read queue
from a STREAMS file, and places the contents into user specified buffer(s). The mes-
sage must contain either a data part, a control part, or both. The data and control
parts of the message are placed into separate buffers, as described below. The
semantics of each part is defined by the STREAMS module that generated the mes-
sage.

The function get pnsg does the same thing as get nsg, but provides finer control
over the priority of the messages received. Except where noted, all information per-
taining to get nsg also pertains to get pnsg.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each
point to a st r buf structure, which contains the following members:

int maxl en; /* maxi mum buffer length */
int len; /* length of data */
char *buf; /* ptr to buffer */

buf points to a buffer in which the data or control information is to be placed, and
max| en indicates the maximum number of bytes this buffer can hold. On return,
| en contains the number of bytes of data or control information actually received,
or 0 if there is a zero-length control or data part, or -1 if no data or control informa-
tion is present in the message. flagsp should point to an integer that indicates the
type of message the user is able to receive. This is described later.

ctlptr is used to hold the control part from the message and dataptr is used to hold
the data part from the message. If ctlptr (or dataptr) is NULL or the max! en field is
-1, the control (or data) part of the message is not processed and is left on the
stream head read queue. If ctlptr (or dataptr) is not NULL and there is no correspond-
ing control (or data) part of the messages on the stream head read queue, | en is set
to -1. If the nmax| en field is set to 0 and there is a zero-length control (or data) part,
that zero-length part is removed from the read queue and | en is set to 0. If the
max| en field is set to 0 and there are more than zero bytes of control (or data) infor-
mation, that information is left on the read queue and | en is set to 0. If the nax| en
field in ctlptr or dataptr is less than, respectively, the control or data part of the mes-
sage, nmax| en bytes are retrieved. In this case, the remainder of the message is left
on the stream head read queue and a non-zero return value is provided, as
described in Errors.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/getmsg
svid

Page: 185

getmsg (BA_OS) getmsg (BA_OS)

By default, get nsg processes the first available message on the stream head read
queue. However, a user may choose to retrieve only high priority messages by set-
ting the integer pointed by flagsp to RS_H PRI . In this case, get nsg processes the
next message only if it is a high priority message. If the integer pointed by flagsp is
0, get nsg retrieves any message available on the stream head read queue. In this
case, on return, the integer pointed to by flagsp will be set to RS_H PR if a high
priority message was retrieved, or 0 otherwise.

For get prsg, the flags are different. flagsp points to a bitmask with the following
mutually-exclusive flags defined: M5SG H PR, MG BAND, and MSG ANY. Like
get nsg, get pnsg processes the first available message on the stream head read
queue. A user may choose to retrieve only high-priority messages by setting the
integer pointed to by flagsp to MG H PR and the integer pointed to by bandp to 0.
In this case, get pnsg will only process the next message if it is a high-priority mes-
sage. In a similar manner, a user may choose to retrieve a message from a particu-
lar priority band by setting the integer pointed to by flagsp to M5SG BAND and the
integer pointed to by bandp to the priority band of interest. In this case, get pnsg
will only process the next message if it is in a priority band equal to, or greater than,
the integer pointed to by bandp, or if it is a high-priority message. If a user just
wants to get the first message off the queue, the integer pointed to by flagsp should
be set to MSG_ANY and the integer pointed to by bandp should be set to 0. On return,
if the message retrieved was a high-priority message, the integer pointed to by
flagsp will be set to MSG_H PRI and the integer pointed to by bandp will be set to 0.
Otherwise, the integer pointed to by flagsp will be set to MG BAND and the integer
pointed to by bandp will be set to the priority band of the message.

If O NONBLOCK is clear, get msg blocks until a message of the type specified by flagsp
is available on the stream head read queue. If O NONBLOXK has been set and a mes-
sage of the specified type is not present on the read queue, get nsg fails and sets
errno to EAGAI N.

If a hangup occurs on the stream from which messages are to be retrieved, get nsg
continues to operate normally, as described above, until the stream head read
queue is empty. Thereafter, it returns 0 in the | en fields of ctlptr and dataptr.

Return Values

Page 2

On success, get nsg and get pnsg return a non-negative value:
0 indicates that a full message was read successfully.
MORECTL indicates that more control information is waiting for retrieval.
MOREDATA indicates that more data is waiting for retrieval.
(MORECTL | MOREDATA) indicates that both types of information remain.

Subsequent get nsg calls retrieve the remainder of the message. However, if a mes-
sage of higher priority has come in on the stream head read queue, the next call to
get nsg will retrieve that higher priority message before retrieving the remainder of
the previously received partial message.

On failure, get nsg and get pnsg return -1 and set er r no to identify the error.

FINAL COPY
June 15, 1995
File: ba_os/getmsg
svid

Page: 186

getmsg (BA_OS) getmsg (BA_OS)

Emi;sthe following conditions, get nsg and get pnsg fail and set er r no to:

EAGAI N The O_NDELAY flag is set, and no messages are available.

EBADF fd is not a valid file descriptor open for reading.

EBADVSG Queued message to be read is not valid for get nsg.

EFAULT ctlptr, dataptr, bandp, or flagsp points to a location outside the allo-
cated address space.

El NTR A signal was caught during the get nsg system call.

El NVAL An illegal value was specified in flagsp, or the stream referenced by
fd is linked under a multiplexor.

ENCSTR A stream is not associated with fd.

get nsg can also fail if a STREAMS error message had been received at the stream
head before the call to get nsg. The error returned is the value contained in the
STREAMS error message.

SEE ALSO

pol | (BA_OS), put nsg(BA_OS), read(BA_OS), wri t e(BA_OS)
LEVEL

Level 1.
NOTICES

Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling. In
this case, data input by one thread will not be available to others.

While one thread is blocked, siblings might still be executing.

Page 3

FINAL COPY
June 15, 1995
File: ba_os/getmsg
svid

Page: 187

getpid (BA_OS) getpid (BA_OS)

NAME

get pi d, get pgr p, get ppi d, get pgi d — get process, process group, and parent pro-
cess IDs

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

pid_t getpid(void);
pi d_t getpgrp(void);
pi d_t get ppi d(void);
pid_t getpgid(pid_t pid);
DESCRIPTION
get pi d returns the process | D of the calling process.

get pgr p returns the process group | D of the calling process.
get ppi d returns the parent process | D of the calling process.

get pgi d returns the process group | D of the process whose process ID is equal to
pi d, or the process group | Dof the calling process, if pi d is equal to zero.
Return Values

On success, get pgi d returns a process group | D. On failure, get pgi d returns
(pi d_t) -1 and sets er r no to identify the error.

Errors

In the following conditions, get pgi d fails and sets er r no to:

EPERM The process whose process | D is equal to pid is not in the same
session as the calling process, and the implementation does not
allow access to the process group | D of that process from the call-
ing process.

ESRCH There is no process with a process | Dequal to pid.

NOTICES

Considerations for Threads Programming
These ID numbers are attributes of the containing process and are shared by sibling
threads.
SEE ALSO
exec(BA_0S), for k(BA_OS), get si d(BA_0S), si gnal (BA_OS)
LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995
File: ba_os/getpid
svid

Page: 188

getrlimit (BA_OS)

getrlimit (BA_OS)

getrlimit, setrlimit — control maximum system resource consumption

SYNOPSIS

#i ncl ude <sys/tine. h>
#i ncl ude <sys/resource. h>

int getrlimt(int resource, struct rlimt *rlp);

int setrlimt(int resource, const struct rlimt *rlp);

DESCRIPTION

Limits on the consumption of a variety of system resources by a process and each
process it creates may be obtained with getrlimt() and set with setr-
limt().
Each call to either getrlimit() or setrlimt() identifies a specific resource to
be operated upon as well as a resource limit. A resource limit is a pair of values:
one specifying the current (soft) limit, the other a maximum (hard) limit. Soft limits
may be changed by a process to any value that is less than or equal to the hard
limit. A process may (irreversibly) lower its hard limit to any value that is greater
than or equal to the soft limit. Only a user with appropriate privileges can raise a
hard limit. Both hard and soft limits can be changed in a single call to setr-
Iimt() subject to the constraints described above. Limits may have an infinite
value of RLI M_I NFI NI TY. rlp is a pointer to struct rlimnit thatincludes the
following members:
rliimt limt */
riimt

rlimcur;
rlimmex; /*

/* current (soft)
hard limt */

rlimt isan arithmetic data type to which objects of type i nt and of f _t can be
cast without loss of value.

The possible resources, their descriptions, and the actions taken when current limit
is exceeded, are summarized in the table below:

Resources Description Action

RLIM T_CORE The maximum size of a The writing of a core file
core file in bytes that may will terminate at this size.
be created by a process. A
limit of O will prevent the
creation of a core file.

RLIM T_CPU The maximum amount of SI GXCPU is sent to the
CPU time in seconds used process. If the process is
by a process. holding or ignoring

S| GXCPU, the behavior is
scheduling class defined.

RLI M T_DATA The maximum size of a The malloc() function

process’s heap in bytes.

FINAL COPY
June 15, 1995

File: ba_os/getrlimit

svid

Page: 189

will fail with errno set to
ENOVEM

Page 1

getrlimit (BA_OS)

Resources

Description

getrlimit (BA_OS)

Action

RLI M T_FSI ZE

RLI M T_NOFI LE

RLI M T_STACK

TRLI M T_AS

The maximum size of a file
in bytes that may be
created by a process. A
limit of O will prevent the
creation of a file.

The maximum number of
open file descriptors that
the process can have.

The maximum size of a
process’s stack in bytes.
The system will not
automatically grow the
stack beyond this limit.

The maximum amount of
a process’s address space
that is defined (in bytes).

SI GXFSZ is sent to the

process. If the process is
holding or ignoring
S| GXFSZ, continued

attempts to increase the
size of a file beyond the
limit will fail with errno
set to EFBI G

Functions that create new
file descriptors will fail
with errno set to EMFI LE.

SI GSEGV is sent to the
process. If the process is
holding or ignoring SI G
SEGV, or is catching SI G
SEGV and has not made
arrangements to use an
alternate stack [see
sigaltstack(BA_OS)], the
disposition of Sl GSEGV
will be set to SI G DFL
before it is sent.

The mal | oc() and
mrap() functions will fail
with errno set to ENOVEM
In addition, the automatic
stack growth will fail with
the effects outlined above.

Because limit information is stored in the per-process information, the shell builtin
ul i mt must directly execute this system call if it is to affect all future processes
created by the shell.

The value of the current limit of the following resources affect these implementation
defined constants:

Limit Implementation Defined Constant
RLIM T_FSI ZE FCHR_MAX
RLI M T_NOFI LE OPEN_MAX

RETURN VALUE
Upon successful completion, the function getrlim t () returns a value of 0; oth-
erwise, it returns a value of —1 and sets err no to indicate an error.

ERRORS
Under the following conditions, the functions getrlimt() and setrlinmt()
fail and set er r no to:

Page 2

FINAL COPY
June 15, 1995
File: ba_os/getrlimit
svid

Page: 190

getrlimit (BA_OS) getrlimit (BA_OS)

El NVAL if an invalid resource was specified; or in a setrlimt() call, the
new rlimcur exceedsthenew rli m nmax.

EPERM if the limit specified to setrlimt() would have raised the max-
imum limit value, and the caller is not a user with appropriate
privileges.

SEE ALSO

malloc(BA_OS), open(BA_OS), sigaltstack(BA_OS), signal(BA_ENV).

FUTURE DIRECTIONS
The resource RLI M T_AS is marked level 2, and should be deprecated. It is not
useful in all implementations since different implementations treat address space
and size differently.

LEVEL
Level 1.

RLI M T_AS is marked Level 2, effective September 30, 1993. It will be removed
after the three year waiting period has expired.

Page 3

FINAL COPY
June 15, 1995
File: ba_os/getrlimit
svid

Page: 191

getsid (BA_OS) getsid (BA_OS)

NAME
getsid — get session 1D

SYNOPSIS
#i ncl ude <sys/types. h>

pid_t getsid(pid_t pid);
DESCRIPTION
The function get si d() returns the session ID of the process whose process ID is

equal to pid. If pid is equal to (pi d_t) 0, getsi d() returns the session ID of the
calling process.

RETURN VALUE
Upon successful completion, the function get si d() returns the session ID of the
specified process; otherwise, it returns a value of (pi d_t)—1 and sets errno to
indicate an error.

ERRORS
Under the following conditions, the function get si d() fails and sets er r no to:

EPERM if the process whose process ID is equal to pid is not in the same session
as the calling process, and the implementation does not allow access to
the session ID of that process from the calling process.

ESRCH if there is no process with a process ID equal to pid.

SEE ALSO
exec(BA_OS), fork(BA_OS), getpid(BA_OS), getpgid(BA_OS), setpgid(BA_OS),
setsid(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/getsid
svid

Page: 192

getuid (BA_OS) getuid (BA_OS)

NAME

get ui d, get eui d, get gi d, get egi d — get real user, effective user, real group, and
effective group 1Ds

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

uid_t getuid (void);
uid_t geteuid (void);
gid_t getgid (void);
gid_t getegid (void);

DESCRIPTION
get ui d returns the real user ID of the calling process.

get eui d returns the effective user ID of the calling process.
get gi d returns the real group ID of the calling process.
get egi d returns the effective group ID of the calling process.
SEE ALSO
set ui d(BA_OS)
LEVEL
Level 1.

NOTICES
Considerations for Threads Programming
These ID numbers are attributes of the containing process and are shared by sibling
threads.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/getuid
svid

Page: 193

ioctl (BA_OS) ioctl (BA_OS)

NAME
ioctl — control device

SYNOPSIS
#i ncl ude <sys/types. h>

int ioctl(int fildes, int request, ... /* arg */);

DESCRIPTION

The function ioctl () performs a variety of control functions on devices and
STREAMS. For non-STREAMS files, the functions performed by this call are
device-specific control functions. request and an optional third argument (with vary-
ing type) are passed to the file designated by fildes and are interpreted by the device
driver. This control is not frequently used on non-STREAMS devices, where the
basic input/output functions are usually performed by the read() and wite()
functions.

For STREAMS files, specific functions are performed by the i oct| call as described
instreans(BA DEV).

The argument fildes is an open file descriptor that refers to a device.

The argument request selects the control function to be performed and will depend
on the device being addressed.

The argument arg represents additional information that is needed by this specific
device to perform the requested function. The data type of arg depends upon the
particular control request, but it is either an integer or a pointer to a device-specific
data structure.

In addition to device-specific and STREAMS functions, there are generic functions
that are provided by more than one device driver, for example, the general terminal
interface [seet er m o(BA_DEV)].

When Mandatory Access Controls are running on the system, the invoking process
must have MAC write access on fildes to do ani oct | ().

RETURN VALUE
Upon successful completion, the function i octl () returns a value other than -1
that depends upon the device control function; otherwise, a value of —1 is returned
and err no is set to indicate an error.

ERRORS
Under the following conditions, the functioni oct | () fails and sets er r no to:

EBADF if fildes is not a valid open file descriptor.

ENOITY if fildes is not associated with a character-special file that accepts control
functions.

El NTR if a signal was caught during the i oct | () operation.

The functioni oct | () will also fail if the device driver detects an error. In this case,
the error is passed through ioctl () without change to the caller. A particular
device driver might not have all of the following error cases. Under the following
conditions, requests to standard device drivers may fail and er r no will be set to:

Page 1

FINAL COPY

June 15, 1995

File: ba_oslioctl
svid

Page: 194

ioctl (BA_OS) ioctl (BA_OS)

El NVAL if request or arg is not valid for this device.
El O if some physical 1/0 error has occurred.

ENXI O if request and arg are valid for this device driver, but the service
requested can not be performed on this particular sub-device.
SEE ALSO
termio(BA_DEV), termios(BA_QOS), streams(BA_DEYV).

See also the specific device reference documents and generic devices such as the
general terminal interface.

LEVEL
Level 1.

Page 2

FINAL COPY

June 15, 1995

File: ba_oslioctl
svid

Page: 195

kill (BA_OS) kill (BA_OS)

NAME

ki Il —send a signal to a process or a group of processes

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <signal . h>

int kill (pid_t pid, int sig);

DESCRIPTION

ki l'l sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by pid. The signal that is to be
sent is specified by sig and is either one from the list given in signal [see
si gnal (BA_OS)], or 0. If sig is 0 (the null signal), error checking is performed but
no signal is actually sent. This can be used to check the validity of pid.

In order to send the signal to the target process (pid), the sending process must have
permission to do so, subject to the following ownership restrictions:

The real or effective user ID of the sending process must match the real or
saved [from exec] user ID of the receiving process, unless the sending pro-
cess has the P_OANER privilege, or sig is SI GCONT and the sending process
has the same session ID as the receiving process.

The process with | D0 and the process with | D 1 are special processes and will be
referred to below as proc0 and procl, respectively.

If pid is greater than 0, sig will be sent to the process whose process ID is equal to
pid, subject to the ownership restrictions, above. pid may equal 1.

If pid is negative but not (pi d_t) -1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid and for which the process has permis-
sion to send a signal.

If pid is O, sig will be sent to all processes excluding proc0 and procl whose process
group ID is equal to the process group ID of the sender. Permission is needed to
send a signal to process groups.

If pid is (pi d_t)—1 and the sending process does not have the P_OMER privilege,
sig will be sent to all processes excluding procO and procl whose real user ID is
equal to the effective user ID of the sender.

If pid is (pi d_t)—1 and the sending process has the P_OMER privilege, sig will be
sent to all processes excluding proc0 and procl.

Return Values

On success, ki | | returns 0. On failure, ki | | returns -1, sets er r no to identify the
error, and sends no signal.

Errors

In the following conditions, ki | | fails and sets err no to:
El NVAL sig is not a valid signal number.
EPERM sig is SI &KI LL and pid is (pi d_t) 1 (i.e., pid specifies procl).

Page 1

FINAL COPY

June 15, 1995

File: ba_os/kill
svid

Page: 196

kill (BA_OS) kill (BA_OS)

EPERM The sending process does not have the P_ONER privilege, the real
or effective user ID of the sending process does not match the real
or saved user ID of the receiving process, and the calling process is
not sending SI GCONT to a process that shares the same session ID.

ESRCH No process or process group can be found corresponding to that
specified by pid.

SEE ALSO

get si d(BA_OS), si gact i on(BA_OS), si gnal (BA_OS) si gsend(BA_OS)
LEVEL

Level 1.

NOTICES

sigsend is a more versatile way to send signals to processes. The user is
encouraged to use si gsend instead of ki | | .

Page 2

FINAL COPY

June 15, 1995

File: ba_os/kill
svid

Page: 197

link (BA_OS) link (BA_OS)

NAME
link — link to a file

SYNOPSIS
#i ncl ude <unistd. h>

int link(const char *pathl, const char *path2);

DESCRIPTION
The function | i nk() atomically creates a new link (directory entry) for the existing
file.

The pathl argument points to a pathname naming an existing file. The path2 argu-
ment points to a pathname naming the new directory entry to be created. The
I'i nk() function will atomically create a new link for the existing file and the link
count of the file is incremented by one.

If pathl names a directory, | i nk() will fail unless the process has appropriate
privileges and the implementation supports making links to directories.

Upon successful completion, the function [|ink() marks for update the
st _cti e field of the file. Also, the st _cti nme and st _nt i e fields of the direc-
tory that contains the new entry are marked for update.

RETURN VALUE
Upon successful completion, the function | i nk() returns a value of 0; otherwise, it
returns a value of —1, no link is created, and the link count of the file will remain
unchanged after the call. The function sets er r no to indicate an error.

ERRORS
Under the following conditions, the function | i nk() fails and sets er r no to:

ENOTDI R if a component of either path prefix is not a directory.

ENCENT if a component of either pathname should exist but does not, or the
file named by pathl does not exist or pathl or path2 points to an
empty string.

EACCES if a component of either path prefix denies search permission, or if
the requested link requires writing in a directory with a mode that
denies write permission.

EEXI ST if the link named by path2 exists.

ELOOP if too many symbolic links are encountered while translating either
path.

EPERM if the file named by pathl is a directory and the process does not
have appropriate privileges.

EXDEV if the link named by path2 and the file named by pathl are on dif-

ferent logical devices (file systems) and the implementation does
not permit cross-device links, or if path refers to a named stream.

ERCFS if the requested link requires writing in a directory on a read-only
file system.

Page 1

FINAL COPY

June 15, 1995

File: ba_os/link
svid

Page: 198

link (BA_OS) link (BA_OS)

EMLI NK if the number of links after execution would exceed { LI NK_MAX},
the maximum number of links to a single file.

ENCSPC if the directory that would contain the link cannot be extended.

ENAVETOOLONG

if the length of a pathname exceeds { PATH_MAX}, or pathname
component is longer than { NAMVE_MAX} while
{_PCsI X_NO_TRUNC} is in effect.

SEE ALSO
rename(BA_OS), symlink(BA_OS), unlink(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY

June 15, 1995

File: ba_os/link
svid

Page: 199

lockf (BA_OS) lockf (BA_OS)

NAME
| ockf - record locking on files

SYNOPSIS
#i ncl ude <uni std. h>

int lockf (int fildes, int function, |ong size);

DESCRIPTION
| ockf locks sections of a file. Advisory or mandatory write locks depend on the
mode bits of the file; see chnmod(BA_OS). Other processes that try to lock the locked
file section either get an error or go to sleep until the resource becomes unlocked.
All the locks for a process are removed when the process terminates. See fcnt| for
more information about record locking.

fildes is an open file descriptor. The file descriptor must have O VWRONLY or O RDVWR
permission to establish locks with this function call.

function is a control value that specifies the action to be taken. The permissible
values for function are defined in uni st d. h as follows:

#define F_ULOCK 0 /Ounlock previously |ocked section O
#define F LOK 1 /Olock section for exclusive use O
#define F_TLOCK 2 /DOtest & lock section for exclusive use O
#define F_ TEST 3 /Otest section for other |locks O

All other values of function are reserved for future extensions and will result in an
error return if not implemented.

F_TEST is used to detect if a lock by another process is present on the specified sec-
tion. F_LOXK and F_TLOX both lock a section of a file if the section is available.
F_WLOCK removes locks from a section of the file.

size is the number of contiguous bytes to be locked or unlocked. The resource to be
locked or unlocked starts at the current offset in the file and extends forward for a
positive size and backward for a negative size (the preceding bytes up to but not
including the current offset). If size is zero, the section from the current offset
through the largest file offset is locked (that is, from the current offset through the
present or any future end-of-file). An area need not be allocated to the file to be
locked as such locks may exist past the end-of-file.

The sections locked with F_LOXK or F_TLOCK may, in whole or in part, contain or be
contained by a previously locked section for the same process. Locked sections will
be unlocked starting at the the point of the offset through size bytes or to the end of
file if size is (of f _t) 0. When this occurs, or if this occurs in adjacent sections, the
sections are combined into a single section. If the request requires that a new ele-
ment be added to the table of active locks and this table is already full, an error is
returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not
available. F_LOCK will cause the calling process to sleep until the resource is avail-
able. F_TLOXK will cause the function to return a -1 and set er r no to EACCES if the
section is already locked by another process.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/lockf
svid

Page: 200

lockf (BA_OS) lockf (BA_OS)

F_UWLOCK requests may, in whole or in part, release one or more locked sections con-
trolled by the process. When sections are not fully released, the remaining sections
are still locked by the process. Releasing the center section of a locked section
requires an additional element in the table of active locks. If this table is full, an
errno is set to EDEADLK and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put to
sleep by requesting another process’s locked resource. Thus calls to | ockf or
fcntl scan for a deadlock before sleeping on a locked resource. An error return is
made if sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The al ar msystem call may
be used to provide a timeout facility in applications that require this facility.

Return Values

On success, | ockf returns 0. On failure, | ockf returns -1 and sets err no to indi-
cate the error.

Errors

| ockf will fail if one or more of the following are true:
EBADF fildes is not a valid open descriptor.

EAGAI N cmd is F_TLOCK or F_TEST and the section is already locked by
another process.

EDEADLK cmd is F_LOCK and a deadlock would occur.

EDEADLK cmd is F_LOCK, F_TLOCK, or F_ULQOCK and the number of entries in the
lock table would exceed the number allocated on the system.

EACCES If function is F_TLOCK or F_TEST and the section is already locked by
another process.

SEE ALSO

LEVEL

chnod (BA_OS), cl ose (BA_OS), creat (BA_OS), fcntl (BA_OS), open (BA_OS),
read (BA_OS), wite (BA_OS)

Level 1

NOTICES

Page 2

Unexpected results may occur in processes that do buffering in the user address
space. The process may later read/write data that is/was locked. The standard 170
package is the most common source of unexpected buffering.

Because in the future the variable errno will be set to EAGAI N rather than EACCES
when a section of a file is already locked by another process, portable application
programs should expect and test for either value.

FINAL COPY
June 15, 1995
File: ba_os/lockf
svid

Page: 201

Iseek (BA_OS) Iseek (BA_OS)

NAME
| seek — move read/write file pointer

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

off t Iseek (int fildes, off _t offset, int whence);
DESCRIPTION
| seek moves a read/write file pointer. fildes is a file descriptor returned from a
creat, open, dup, fentl, pi pe, orioctl system call. | seek sets the file pointer
associated with fildes as follows:
If whence is SEEK_SET, the pointer is set to offset bytes.
If whence is SEEK_CUR, the pointer is set to its current location plus offset.
If whence is SEEK_END, the pointer is set to the size of the file plus offset.

On success, | seek returns the resulting pointer location, as measured in bytes from
the beginning of the file.

| seek allows the file pointer to be set beyond the existing data in the file. If data is
later written at this point, subsequent reads in the gap between the previous end of
data and the newly written data return bytes of value 0 until data is written into the
gap.
Return Values

On success, | seek returns a non-negative integer indicating the file pointer value.
On failure, | seek returns -1, sets errno to identify the error, and the file pointer
remains unchanged.

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

Errors

In the following conditions, | seek fails and sets er r no to:

EBADF fildes is not an open file descriptor.

ESPI PE fildes is associated with a pipe or fifo.

El NVAL The resulting file pointer would be negative.
fildes is a remote file descriptor accessed using NFS, the Network
File System, and the resulting file pointer would be negative.

ENCSYS The device for f st ype does not support | seek.

USAGE

Normally, applications should use the stdio routines to open, close, read, write, and
manipulate files. Therefore, an application using the f open stdio routine to open a
file would use the f seek stdio routine rather than the function | seek. The function
| seek allows the file pointer to be set beyond the existing data in the file. If data
are later written at this point, subsequent reads in the gap between the previous end
of data and the newly written data will return bytes of value 0 until data are written
into the gap.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/lseek
svid

Page: 202

Iseek (BA_OS) Iseek (BA_OS)

SEE ALSO

creat (BA_OS), fcntl (BA_OS), open (BA_OS)
LEVEL

Level 1.

NOTICES
On systems that support Remote File Sharing (RFS), the behavior of | seek is dif-
ferent for files accessed using RFS. For other files, the file pointer can be positioned
to negative values where attempts to wr i t e will fail. For FIFOs, | seek returns suc-
cessfully, for both positive and negative offsets, instead of failing with ESPI PE.
These semantics can be used to identify files that are being accessed using RFS.

Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling. For

example, the position of the file pointer is maintained per file descriptor, not per
thread.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/lseek
svid

Page: 203

malloc (BA_OS) malloc (BA_OS)

NAME
mal | oc,free,real | oc, cal | oc, — memory allocator

SYNOPSIS
#i nclude <stdlib. h>

void [hall oc (size_t size);

void free (void [ptr);

void [tealloc (void [Cptr, size_t size);
void [talloc (size_t nelem, size_t elsize);

fint mallopt(int cmd, int value);
fstruct mallinfo mallinfo(void);

DESCRIPTION
nmal | oc and free provide a simple general-purpose memory allocation package.
mal | oc returns a pointer to a block of at least size bytes suitably aligned for any use.

The argument to f r ee is a pointer to a block previously allocated by nal | oc, cal -
I oc orreall oc. After free is performed, this space is made available for further
allocation. If ptr is NULL, no action occurs.

Undefined results will occur if the space assigned by mal | oc is overrun or if some
random pointer is handed to f r ee.

real | oc changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If ptris NULL, r eal | oc behaves like nal | oc for the
specified size. If size is zero and ptr is not a null pointer, the object pointed to is
freed.

cal | oc allocates space for an array of nelem elements of size elsize. The space is ini-
tialized to zeros.

The functions mal | opt and mal | i nf o are marked Level 2 in this issue of SVID. The
use of these functions should be discouraged.

The function mal | opt plus the function nal | i nf o allow tuning the allocation algo-
rithm at execution time.

The function mal | opt initiates a mechanism that can be used to allocate small
blocks of memory quickly. Using this scheme, a large-group (called a holding-block)
of these small-blocks is allocated at one time. Then, each time a program requests a
small amount of memory from mal | oc, a pointer to one of the pre-allocated small-
blocks is returned. Different holding-blocks are created for different sizes of small-
blocks and are created when needed.

The function nmal | opt allows the programmer to set three parameters to maximize
efficient small-block allocation for a particular application.

The function mal | opt may be called repeatedly, but the parameters may not be
changed after the first small-block is allocated from a holding-block. If nal | opt is
called again after the first small-block is allocated using the small-block algorithm,
it will return an error.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/malloc
svid

Page: 204

malloc

(BA_OS) malloc (BA_OS)

The function nal | i nf o can be used during program development to determine the
best settings of these parameters for a particular application. The function nal -
I'i nf o should not be called until after some storage has been allocated using nal -
I oc. The function nal li nf o provides information describing space usage. It
returns anal | i nf o structure.

Errors

USAGE

If there is no available memory, nal |l oc, real |l oc, and cal | oc return a null
pointer. When real | oc returns NULL, the block pointed to by ptr is left intact. If
size, nelem, or elsize is 0, a unique pointer to the arena is returned. If mal | opt is
called after any allocation from a holding-block or if the arguments cmd or value are
invalid, mal | opt returns a non-zero value; otherwise, it returns a value of 0.

You can control whether the contents of the freed space are destroyed or left undis-
turbed [see nal | opt].

FUTURE DIRECTIONS

LEVEL

Page 2

The functions nal | opt and nal | i nf o are marked Level 2 effective September 30,
1993. The use of these functions is deprecated; they will be removed from the next
issue of SVID.

Level 1.

The functions nal | opt and nal | i nf o are marked Level 2 effective, September 30,
1993.

FINAL COPY
June 15, 1995
File: ba_os/malloc
svid

Page: 205

mkdir (BA_OS) mkdir (BA_OS)

NAME
nkdi r — make a directory

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

int nkdir(const char [path, nmode_t mode);

DESCRIPTION
nkdi r creates a new directory named by the pathname pointed to by path. The
mode of the new directory is initialized from mode [see chnod(BA_OS) for the
values of mode.]

The protection part of the mode argument is modified by the process’s file create
mask.

The directory’s owner ID is set to the process’s effective user ID. The directory’s
group ID is set to the process’s effective group ID, or if the S | SA D bit is set in the
parent directory, then the group ID of the directory is inherited from the parent.
The S_| SA Dbit of the new directory is inherited from the parent directory.

If path is a symbolic link, it is not followed.

The newly created directory is empty with the exception of entries for itself (.) and
its parent directory (. .).

Return Values
On success, nkdi r returns 0 and marks for update the st _ati e, st_cti ne and
st _ntime fields of the directory. Also, the st_cti ne and st_nti ne fields of the
directory that contains the new entry are marked for update.

On failure, nkdi r returns -1 and sets er r no to identify the error.

Errors
In the following conditions, nkdi r fails and sets er r no to:
EACCES Search permission is denied on a component of the path prefix.
EACCES Write permission is denied on the parent directory in which the direc-

tory is to be created.
EEX ST The named file already exists.

El O An 1/0 error has occurred while accessing the file system.

ELOCP Too many symbolic links were encountered in translating path.

EMLI NK The maximum number of links to the parent directory would be
exceeded.

ENAVETOOLONG

The length of the path argument exceeds {PATH _MAX}, or the length of a
path component exceeds {NAME_NAX} while _POSI X NO TRUNC is in
effect.

ENCENT A component of the path prefix does not exist or is a null pathname.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/mkdir
svid

Page: 206

mkdir (BA_OS) mkdir (BA_OS)

ENCSPC No free space is available on the device containing the directory.
ENOTD R A component of the path prefix is not a directory.
ERCFS The path prefix resides on a read-only file system.
SEE ALSO
chnod(BA_OS), di rect or y(BA_OS) r ndi r (BA_OS) umask(BA_OS).
LEVEL
Level 1.
Page 2
FINAL COPY

June 15, 1995
File: ba_os/mkdir
svid

Page: 207

mkfifo (BA_OS) mkfifo (BA_OS)

NAME
mkfifo — create a new FIFO

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>

int nmkfifo(const char *path, node_t mode);

DESCRIPTION
The nkfifo() routine creates a new FIFO special file named by the pathname
pointed to by path. The mode of the new FIFO is initialized from mode. The file per-
mission bits of the mode argument are modified by the process’s file creation mask.

The FIFO’s owner ID is set to the process’s effective user ID. The FIFO’s group ID is
set to the process’s effective group ID unless the set-group-ID flag of the FIFO’s
parent directory is set; in that case it is initialised to the group ID of the parent
directory.

Bits other than the file permission bits in mode are ignored.

Upon successful completion, the function nkfifo() marks for update the
st _atine, st_ctinme and st _nti ne field of the file. Also, the st_cti me and
st _ntime fields of the directory that contains the new entry are marked for
update.

RETURN VALUE
Upon successful completion, a value of zero is returned; otherwise, a value of - 1 is
returned and er r no is set to indicate an error.

ERRORS
EACESS A component of the path prefix denies search permission, or write
permission is denied on the parent directory.
EEXI ST The named file already exists.
El O An 170 error occurred while accessing the file system.
ELOCP if too many symbolic links are encountered in translating path.
ENCENT A component of the path prefix does not exist, or path points to an
empty string.
ENOSPC if the directory that would contain the FIFO cannot be extended or
the file system is out of file allocation resources.
ENOTDI R A component of the path prefix is not a directory.
ERCFS The directory in which the file is to be created is located on a read-
only file system.
ENAMETOOLONG
if the length of a pathname exceeds { PATH_MAX}, or pathname
component is longer than { NAVE_NVAX} while
{ _PCSI X_NO_TRUNC} is in effect.
SEE ALSO

chmod(BA_0S), exec(BA_0S), mkdir(BA_OS), mknod(BA_OS), umask(BA_OS)

Page 1

FINAL COPY
June 15, 1995
File: ba_os/mkfifo
svid

Page: 208

mkfifo (BA_OS)

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: ba_os/mkfifo
svid

Page: 209

mkfifo (BA_OS)

mknod (BA_OS) mknod (BA_OS)

NAME
nknod — make a directory, or a special or ordinary file

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

int nknod(const char [path, nmode_t mode,

DESCRIPTION
nknod creates a new file named by the path name pointed to by path. The file type
and permissions of the new file are initialized from mode.

The file type is specified in mode by the S_| FMT bits, which must be set to one of the

dev_t dev);

following values:

S IFIFO fifo special

S IFGHR character special
S IFD R directory

S I FBLK block special

S IFREG ordinary file

The file access permissions are specified in mode by the 0007777 bits, and may be
constructed by an OR of the following values:

S ISUD SetuserID on execution.

S 1SA@D Setgroup ID on execution if#is7,5,3,0or1
Enable mandatory file/record locking if #is 6, 4, 2, or O

S I SVTX Save text image after execution.

S IRWKU Read, write, execute by owner.

S IRUSR Read by owner.

S IWSR Write by owner.

S I XUSR Execute (search if a directory) by owner.

S IRMG Read, write, execute by group.

S IRGRP Read by group.

S IWERP Write by group.

S | XGRP Execute by group.

S I|RWKO Read, write, execute (search) by others.

S |ROTH Read by others.

S IWOTH Write by others

S I XOTH Execute by others.

The owner ID of the file is set to the effective user ID of the process. The group ID of
the file is set to the effective group ID of the process. However, if the S_| SA Dbit is
set in the parent directory, then the group 1D of the file is inherited from the parent.
If the group ID of the new file does not match the effective group ID or one of the
supplementary group IDs, the S_| SA Dbit is cleared.

The access permission bits of mode are modified by the process’s file mode creation
mask: all bits set in the process’s file mode creation mask are cleared [see
unask(BA_OS)]. If mode indicates a block or character special file, dev is a
configuration-dependent specification of a character or block 1/0 device. If mode
does not indicate a block special or character special device, dev is ignored.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/mknod
svid

Page: 210

mknod (BA_OS) mknod (BA_OS)

nmknod checks to see if the driver has been installed and whether or not it is an old-
style driver. If the driver is installed and it is an old-style driver, the minor number
is limited to 255. If it’s not an old-style driver, then it must be a new-style driver or
uninstalled, and the minor number is limited to the current value of the NAXM NCR
tunable. Of course, this tunable is set to 255 by default. If the range check fails,
nknod fails with El NVAL.

nknod may be invoked only by a privileged user for file types other than FIFO spe-
cial.

If path is a symbolic link, it is not followed.

Return Values
If nknod succeeds, it returns 0. If nknod fails, it returns —1 and sets er r no to iden-
tify the error.

Errors
nknod fails and creates no new file if one or more of the following are true:

EEX ST The named file exists.

El NVAL dev is invalid.

EFAULT path points outside the allocated address space of the process.
ELOCP Too many symbolic links were encountered in translating path.

EMLTI HOP Components of path require hopping to multiple remote machines and
the file system type does not allow it.

ENAMETOCLONG

The length of the path argument exceeds {PATH MAX}, or the length of a
path component exceeds {NAME_NAX} while _PCSI X NO TRUNC is in

effect.
ENOTD R A component of the path prefix is not a directory.
ENCENT A component of the path prefix does not exist or is a null pathname.
EPERM The effective user ID of the process is not super-user.
ERCFS The directory in which the file is to be created is located on a read-

only file system.
ENCSPC No space is available.
El NTR A signal was caught during the nknod system call.

ENCLI NK path points to a remote machine and the link to that machine is no
longer active.

SEE ALSO
chnod(BA_OS), exec(BA_0OS), nkdi r (BU_CMD), st at (BA_OS), umask(BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/mknod
svid

Page: 211

mount (BA_OS) mount (BA_OS)

NAME
nount — mount a file system

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/ nmount. h>

int mount (const char [bpec, const char [dir, int mflag,

DESCRIPTION
nount requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. spec and dir are
pointers to path names. fstyp is the file system type number. If both the M5_DATA
and M5_FSS flag bits of mflag are off, the file system type defaults to the root file sys-
tem type. Only if either flag is on is fstyp used to indicate the file system type.

If the M5_DATA flag is set in mflag the system expects the dataptr and datalen argu-
ments to be present. Together they describe a block of file-system specific data at
address dataptr of length datalen. This is interpreted by file-system specific code
within the operating system and its format depends on the file system type. If a
particular file system type does not require this data, dataptr and datalen should
both be zero. Note that M5_FSS is obsolete and is ignored if M5_DATA is also set, but
if MB_FSSis set and M5_DATA is not, dataptr and datalen are both assumed to be zero.

After a successful call to nount, all references to the file dir refer to the root direc-
tory on the mounted file system.

The low-order bit of mflag is used to control write permission on the mounted file
system: if 1, writing is forbidden; otherwise writing is permitted according to indi-
vidual file accessibility.

nount may be invoked only by a process with the P_MOUNT privilege. It is intended
for use only by the nount utility.

Return Values
On success, nount returns 0. On failure, nount returns -1 and sets err no to iden-
tify the error.

Errors
In the following conditions, mount fails and sets er r no to:

EPERM The calling process does not have the appropriate privilege.

EBUSY dir is currently mounted on, is someone’s current working
directory, or is otherwise busy.

EBUSY The device associated with spec is currently mounted.

EBUSY There are no more mount table entries.

El NVAL The super block has an invalid magic number or the fstyp is
invalid.

ELOCP Too many symbolic links were encountered in translating
spec or dir.

Page 1
FINAL COPY

June 15, 1995
File: ba_os/mount
svid

Page: 212

mount (BA_OS)

USAGE

LEVEL

Page 2

ENAVETOOLONG

ENCENT
ENOTD R
ENOTBLK
ENXI O
ENOTD R
ERCFS
ENGSPC

mount (BA_OS)

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAMVE MAX} while
_PO8I X_NO_ TRUNC is in effect.

None of the named files exists or is a null pathname.

A component of a path prefix is not a directory.

spec is not a block special device.

The device associated with spec does not exist.

dir is not a directory.

spec is write protected and mflag requests write permission.

The file system state in the super-block is not FsCKAY and
there is no space left on the device.

nmount is not recommended for use by application programs.

SEE ALSO
nmount (AS_CMD), unount (BA_QOS)

Level 1.

FINAL COPY
June 15, 1995
File: ba_os/mount
svid

Page: 213

open (BA_OS) open (BA_OS)

the group ID of the new file does not match the effective group 1D
or one of the supplementary groups IDs, the S | SA D bit is
cleared. The access permission bits of the file mode are set to the
value of mode, modified as follows [see cr eat (BA_OS)]:

All bits set in the file mode creation mask of the process are
cleared [see umask(BA_OS)].

The “‘save text image after execution bit” of the mode is cleared
[see chmod(BA_OS)].

O TRUNC If the file exists, its length is truncated to 0 and the mode and
owner are unchanged. O TRUNC has no effect on special files or
directories.

O EXCL If O EXCL and O_CREAT are set, open will fail if the file exists. The

check for the existence of the file and the creation of the file if it
does not exist is atomic with respect to other processes executing
open naming the same filename in the same directory with O EXCL
and O_CREAT set.

When opening a STREAMS file, oflag may be constructed from O NCNBLOCK OR-ed
with either O RDONLY, O WRONLY , or O RDWR Other flag values are not applicable
to STREAMS devices and have no effect on them. The value of O NONBLOCK affects
the operation of STREAMS drivers and certain system calls [see read(BA_OS),
get nsg(BA_OS), put nsg(BA_0OS), and w i t e(BA_OS)]. For drivers, the implemen-
tation of O NONBLOK is device specific. Each STREAMS device driver may treat
these options differently.

When open is invoked to open a named stream, and the connl d module [see
connl d] has been pushed on the pipe, open blocks until the server process has
issued an| _RECVFD i oct| [see st reans(BA_DEV)] to receive the file descriptor.

If path is a symbolic link and O_CREAT and O _EXCL are set, the link is not followed.

The file pointer used to mark the current position within the file is set to the begin-
ning of the file.

The new file descriptor is the lowest numbered file descriptor available and is set to
remain open across exec system calls [see f cnt | (BA_OS)].

Certain flag values can be set following open as described infcnt | .

Using open on a file adds a reference to the file. This guarantees that the file will
continue to be visible to the process until it closes it, even if the file is removed from
the directory by unl i nk.

Return Values

Page 2

On success, open returns the file descriptor of the open file and:

If O_CREAT is set and the file did not previously exist, open marks for update
the st _atine, st _ctine and st_nti ne fields of the file and the st _cti ne
and st _nti ne fields of the parent directory.

If O TRUNC s set and the file did previously exist, open marks for update the
st _ctimeandst_nti ne fields of the file.

FINAL COPY
June 15, 1995
File: ba_os/open
svid

Page: 215

open (BA_OS)

open (BA_OS)

On failure, open returns -1 and sets er r no to identify the error.

Errors

In the following conditions, open fails and sets er r no to:

EACCES The file does not exist and write permission is denied by the parent
directory of the file to be created.

EACCES O_CREAT or O_TRUNC is specified and write permission is denied.

EACCES A component of the path prefix denies search permission.

EACCES oflag permission is denied for an existing file.

EAGAI N The file exists, mandatory file/record locking is set, and there are out-
standing record locks on the file [see chnod(BA_OS)].

EEXI ST O _CREAT and O_EXCL are set, and the named file exists.

El NTR A signal was caught during the open system call.

El O A hangup or error occurred during the open of the STREAMS-based
device.

El SD R The named file is a directory and oflag is write or read/write.

ELOCP Too many symbolic links were encountered in translating path.

EMFI LE The process has too many open files

ENAVETOOLONG
The length of the path argument exceeds {PATH _MAX}, or the length of a
path component exceeds {NAME_NAX} while { PGSl X_NO TRUNC} is in
effect.

ENFI LE The system file table is full.

ENCENT O _CREAT is not set and the named file does not exist.

ENCENT O _CREAT is set and a component of the path prefix does not exist or is
the null pathname.

ENGCSPC O _CREAT and O _EXCL are set, and the file system is out of inodes.

ENCSPC O _CREAT is set and the directory that would contain the file cannot be
extended.

ENOSR Unable to allocate a stream.

ENOTD R A component of the path prefix is not a directory.

ENXI O The named file is a character special or block special file, and the
device associated with this special file does not exist.

ENXI O O NONBLOCK is set, the named file is a FIFO, O WRO\LY is set, and no
process has the file open for reading.

ENXI O A STREAMS module or driver open routine failed.

ERCFS The named file resides on a read-only file system and either

O WRA\LY, O RDWR, O_CREAT, or O_TRUNC is set in oflag (if the file does
not exist).

Page 3

FINAL COPY
June 15, 1995
File: ba_os/open
svid

Page: 216

open (BA_OS) open (BA_OS)

ETXTBSY The file is a pure procedure (shared text) file that is being executed
and oflag is write or read/write.

USAGE
The O EXCL flag is only a modifier to the O CREAT flag and has no other meaning.
The concept of excl usive open is not supported by the operating system.
Cooperating processes can coordinate their access to a file by file and record locking
or by other mechanisms.

SEE ALSO

chnod(BA_OS), cl ose(BA_0S), creat (BA_OS), fcnt | (BA_OS), f open(BA_OS),

| seek(BA_OS), read(BA_OS), streans(BA_DEV), unask(BA_OS), wi t e(BA_OS).
LEVEL

Level 1.

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

NOTICES
Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Access rights are an attribute of the containing process and are shared by sibling
threads.

Page 4

FINAL COPY
June 15, 1995
File: ba_os/open
svid

Page: 217

pause (BA_OS) pause (BA_OS)

NAME
pause - suspend process until signal

SYNOPSIS
#i ncl ude <uni std. h>

i nt pause(void);
DESCRIPTION

pause suspends the calling process until it receives a signal of any type. The signal
must be one that is not currently set to be ignored.

If the signal causes termination of the process, pause does not return.

Return Values
If the signal is caught by the calling process and control is returned from the
signal-catching function [see si gnal (BA_OS)], the calling process resumes execu-
tion from the point of suspension with a return value of -1 from pause and errno
set to El NTR

Errors

In the following conditions, the calling process resumes from the point of suspen-
sion with er r no set to:

El NTR A signal was caught by the calling process.
SEE ALSO

al ar mM(BA_OS), ki I | (BA_OS), si gnal (BA_OS), wai t (BA_OS)
LEVEL

Level 1.

NOTICES
Considerations for Threads Programming
While one thread is blocked, siblings might still be executing. See si gnal (BA_OS)
for further details of signal delivery.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/pause
svid

Page: 218

pipe (BA_OS) pipe (BA_OS)

NAME
pi pe — create an interprocess channel

SYNOPSIS
#i ncl ude <uni std. h>

int pipe(int fildes[2]);
DESCRIPTION
pi pe creates an 1/0 mechanism called a pipe and returns two file descriptors,

fildes[0] and fildes[1] . The files associated with fildes[0] and fildes[1] are streams
and are both opened for reading and writing. The O NONBLOCK flag is cleared.

A read from fildes[0] accesses the data written to fildes[1] on a first-in-first-out
(FIFO) basis and a read from fildes[1] accesses the data written to fildes[O] also on a
FIFO basis.

The FD_CLCEXECflag will be clear on both file descriptors.

If pi pe succeeds, it marks for update the st _ati ne, st _cti ne, and st _nti ne fields
of the pipe.

Return Values
On success, pi pe returns 0. On failure, pi pe returns -1 and sets er r no to identify

the error.
Errors
In the following conditions, pi pe fails and sets er r no to:
EMFI LE The maximum number of file descriptors are currently open.
ENFI LE A file table entry could not be allocated.
SEE ALSO
fcntl (BA_OS), read(BA_OS), streans(BA_DEV), wite(BA_OS)
LEVEL
Level 1.
NOTICES

Since a pipe is bi-directional, there are two separate flows of data. Therefore, the
size (st _si ze) returned by a call to fstat with argument fildes[O] or fildes[1] is
the number of bytes available for reading from fildes[O] or fildes[1] respectively.
Previously, the size (st _si ze) returned by a call to f st at with argument fildes[1]
(the write-end) was the number of bytes available for reading from fildes[O] (the
read-end). See st at (2).

Page 1

FINAL COPY
June 15, 1995
File: ba_os/pipe

svid

Page: 219

poll (BA_OS) poll (BA_OS)

POLLRDBAND, or POLLPRI are not mutually exclusive. This flag is
only valid in the r event s bitmask; it is not used in the events
field.

POLLNVAL The specified fd value is invalid. This flag is only valid in the
revent s field; it is not used in the event s field.

For each element of the array pointed to by fds, pol | () examines the given file
descriptor for the event(s) specified in event s. The number of file descriptors to be
examined is specified by nfds.

If the value of f d is less than zero, event s is ignored and r event s is set to zero in
that entry on return from pol | ().

The results of the pol | () query are stored in the revents field in the pol | fd
structure. Bits are set in the r event s bitmask to indicate which of the requested
events are true. If none of the requested events are true, none of the specified bits is
setinrevent s when the pol | () call returns. The event flags POLLHUP, POLLERR,
and POLLNVAL are always set in r event s if the conditions they indicate are true;
this occurs even though these flags were not present in event s.

If none of the defined events have occurred on any selected file descriptor, pol | ()
waits at least timeout milliseconds for an event to occur on any of the selected file
descriptors. On a computer where millisecond timing accuracy is not available,
timeout is rounded up to the nearest legal value available on that system. If the
value of timeout is 0, pol | () returns immediately. If the value of timeout is —1,
pol | () blocks until a requested event occurs or until the call is interrupted.
pol I () is not affected by the O_NDELAY and O_NONBLOCK flags.

RETURN VALUE
Upon successful completion, the function pol | () returns a non-negative value. A
positive value indicates the total number of file descriptors that have been selected
(i.e., file descriptors for which the r event s field is non-zero). A value of 0 indi-
cates that the call timed out and no file descriptors have been selected. Upon
failure, the function pol | () returns a value of —1 and sets er r no to indicate an
error.

ERRORS
Under the following conditions, the function pol | () fails and sets er r no to:

EAGAI N if the allocation of internal data structures failed but request should be
attempted again.

El NTR if a signal was caught during the pol | () system call.
El NVAL if the argument nfds is less than zero or greater than { OPEN_MAX} .

SEE ALSO
getmsg(BA_OS), putmsg(BA_OS), read(BA_OS), streams(BA_DEV), write(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY

June 15, 1995

File: ba_os/poll
svid

Page: 221

popen (BA_OS) popen (BA_OS)

NAME
popen, pclose — initiate pipe to/from a process

SYNOPSIS
#i ncl ude <stdio. h>

FI LE *popen(const char *command, const char *type);

i nt pclose(FlLE *strm);

DESCRIPTION
The function popen() creates a pipe between the calling program and the com-
mand to be executed.

The arguments to popen() are pointers to null-terminated strings containing,
respectively, a command line [see system(BA_OS)] and an 1/0 mode, either "r " for
reading or " w" for writing.

The function popen() returns a stdio-stream pointer such that one can write to the
standard input of the command if the /0 mode is " W' by writing to the file strm;
and one can read from the standard output of the command if the /O mode is"r"
by reading from the file strm. If command cannot be executed, the read or write will
fail.

A stdio-stream opened by the function popen() should be closed by the function
pcl ose(), which waits for the associated process to terminate and returns the exit
status of the command.

Because open files are shared, a type "r" command may be used as an input filter
and a type "w' command as an output filter.

RETURN VALUE
If files or processes cannot be created the function popen() returns NULL.

If strm is not associated with a popen() command, the function pcl ose() returns
a value of —1.

ERRORS
Under the following conditions, the function pcl ose() fails and sets er r no to:

ECHI LD if the status of the child process could not be obtained.

USAGE
The fseek() routine should not be used with a stdio-stream opened by the func-
tion popen().

SEE ALSO
fclose(BA_OS), fopen(BA_OS), fseek(BA_OS), pipe(BA_0OS), system(BA_OS),
wait(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/popen
svid

Page: 222

pread (BA_OS) pread (BA_OS)

NAME

pr ead — atomic position and read
SYNOPSIS

int pread(int fd, char *buf, int nbytes, off _t offset);
DESCRIPTION

The pr ead system call does an atomic position-and-read, eliminating the necessity
of using a locking mechanism when both operations are desired and file descriptors
are shared. pread is analogous to read but takes a fourth argument, offset. The
read is done as if an | seek to offset (from the beginning of the file) were done first.
Note that (though the semantics are analogous) an | seek is not actually performed,;
the file pointer is not affected by pread. The read of nbytes then starts at the
specified offset.

The atomicity of pr ead enables processes or threads that share file descriptors to
read from a shared file at a particular offset without using a locking mechanism that
would be necessary to achieve the same result in separate | seek and r ead system
calls. Atomicity is required as the file pointer is shared and one thread might move
the pointer using Iseek after another process completes an | seek but prior to the
read.

Return Values
Upon successful completion, pread returns the number of bytes actually read and
placed in buf. A value of 0 is returned when an end-of-file has been reached. Other-
wise a -1 and an error is returned.

Errors

In the following conditions, pr ead fails and set er r no to:

EACCES fildes is open to a dynamic device and read permission is denied.

EAGAI N Mandatory file/record locking was set, O NDELAY or O NCNBLOCK
was set, and there was a blocking record lock.

EAGAI N Total amount of system memory available when reading via raw
170 is temporarily insufficient.

EACGAI N No data is waiting to be read on a file associated with a tty device
and O NONBLOCK was set.

EAGAI N No message is waiting to be read on a stream and O NDELAY or
O NONBLOCK was set.

EBADF fildes is not a valid file descriptor open for reading.

EBADVEG Message waiting to be read on a stream is not a data message.

EDEADLK The pr ead was going to go to sleep and cause a deadlock to occur.

EFAULT buf points outside the allocated address space.

El NTR A signal was caught during the pr ead system call.

El NVAL Attempted to read from a stream linked to a multiplexor.

Page 1
FINAL COPY

June 15, 1995
File: ba_os/pread
svid

Page: 223

pread (BA_OS)

El NVAL
El NVAL

El O

El O
ENCLCK

ENCLI NK

ESPI PE
ENCBYS
SEE ALSO

pread (BA_OS)

The resulting file pointer would be negative.

fildes is a remote file descriptor accessed using NFS, the Network
File System, and the resulting file pointer would be negative.

A physical 1/0 error has occurred, or the process is in a back-
ground process group and is attempting to read from its control-
ling terminal, and either the process is ignoring or blocking the
S| GI'TI Nsignal or the process group of the process is orphaned.

fildes is open to a device that is in the process of closing.

The system record lock table was full, so the pr ead could not go to
sleep until the blocking record lock was removed.

fildes is on a remote machine and the link to that machine is no
longer active.

fildes is associated with a pipe or fifo.
The device for fstype does not support seek operations.

| seek(BA_OS), pwite(BA_OS), read(BA_OS)

LEVEL
Level 1

NOTICES

pr ead updates the time of last access [see st at (BA_OS)] of the file.

Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/pread
svid

Page: 224

putmsg (BA_OS) putmsg (BA_OS)

and sets errno to El NVAL. If flags is set to MSG_BAND, then a message is sent in the
priority band specified by band. If a control part and data part are not specified and
flags is set to MSG_BAND, no message is sent and 0 is returned.

Normally, put msg will block if the stream write queue is full due to internal flow
control conditions. For high-priority messages, put nsg does not block on this con-
dition. For other messages, put nsg does not block when the write queue is full and
O NONBLOCK is set. Instead, it fails and sets er r no to EAGAI N.

put msg or put pnsg also blocks, unless prevented by lack of internal resources,
waiting for the availability of message blocks in the stream, regardless of priority or
whether O_NONBLOCK has been specified. No partial message is sent.

Return Values

On success, put msg returns 0. On failure, put msg returns -1 and sets errno to
identify the error.

Errors

In the following conditions, put nsg fails and sets er r no to:

EAGAI N A non-priority message was specified, the O NONBLOCK flag is set and
the stream write queue is full due to internal flow control conditions.

EBADF fd is not a valid file descriptor open for writing.

El NTR A signal was caught during the put nsg system call.

El NVAL An undefined value was specified in flags, or flags is set to RS_H PRI
and no control part was supplied.

El NVAL The stream referenced by fd is linked below a multiplexor.

El NVAL For put prsg, if flags is set to MSG_H PR and band is nonzero.

ENCSR Buffers could not be allocated for the message that was to be created
due to insufficient STREAMS memory resources.

ENOSTR A stream is not associated with fd.

El O A hangup condition was generated downstream for the specified
stream, or the other end of the pipe is closed.

ERANGE The size of the data part of the message does not fall within the range

specified by the maximum and minimum packet sizes of the topmost
stream module. This value is also returned if the control part of the
message is larger than the maximum configured size of the control
part of a message, or if the data part of a message is larger than the
maximum configured size of the data part of a message.

put nsg also fails if a STREAMS error message had been processed by the stream
head before the call to put nsg. The error returned is the value contained in the
STREAMS error message.

SEE ALSO

Page 2

get nsg (BA_OS), pol | (BA_OS), put msg (BA_OS), read (BA_OS), wite (BA_OS)

FINAL COPY
June 15, 1995
File: ba_os/putmsg
svid

Page: 226

putmsg (BA_OS) putmsg (BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Page 3

FINAL COPY
June 15, 1995
File: ba_os/putmsg
svid

Page: 227

pwrite (BA_OS) pwrite (BA_OS)

NAME
pw it e —atomic position and write

SYNOPSIS
int pwite(int fd, char *buf, int nbytes, off _t offset);

DESCRIPTION

The pwri t e system call does an atomic position-and-write, eliminating the neces-
sity of using a locking mechanism when both operations are desired and file
descriptors are shared. pwite is analogous to wi t e but takes a fourth argument,
offset. The write is done as if an | seek to offset (from the beginning of the file) were
done first. Note that (though the semantics are analogous) an | seek is not actually
performed; the file pointer is not affected by pwri t e. The write of nbytes then starts
at the specified offset.

The atomicity of pwr i t e enables processes or threads that share file descriptors to
write to the shared file at a particular offset without using a locking mechanism that
would be necessary to achieve the same result in separate | seek and wri t e system
calls. Atomicity is required as the file pointer is shared and one thread might move
the pointer using Iseek after another process completes an | seek but prior to the
wite.

Return Values
Upon successful completion, pwri t e returns the number of bytes actually written
from buf. Otherwise a -1 and an error is returned.

Errors

In the following conditions, pwri t e fail and set er r no to:

EAGAI N Mandatory file/record locking is set, O NDELAY or O NONBLOCK is
set, and there is a blocking record lock.

EAGAI N Total amount of system memory available when reading via raw
170 is temporarily insufficient.

EAGAI N An attempt is made to write to a stream that can not accept data
with the O_NDELAY or O NONBLOXK flag set.

EBADF fildes is not a valid file descriptor open for writing.

EDEADLK The pwite was going to go to sleep and cause a deadlock to
occur.

EFALLT buf points outside the process’s allocated address space.

EFBI G An attempt is made to write a file that exceeds the process’s file
size limit or the maximum file size [see ul i m t (BA_OS)].

El NTR A signal was caught during the pwri t e system call.

El NVAL An attempt is made to write to a stream linked below a multi-
plexor.

El NVAL The resulting file pointer would be negative.

fildes is a remote file descriptor accessed using NFS, the Network
File System, and the resulting file pointer would be negative.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/pwrite
svid

Page: 228

pwrite (BA_OS)

B O

E O
ENOLCK

ENCLI NK
ENCSR
ENGCSPC
ENXI O

ERANCE

ENOLCK

ESPI PE
ENCSYS
SEE ALSO

creat (BA_OS),

wite(BA_OS)

LEVEL
Level 1.

NOTICES

pwrite (BA_OS)

The process is in the background and is attempting to write to its
controlling terminal whose TCSTCP flag is set; the process is neither
ignoring nor blocking SI GTTQU signals, and the process group of
the process is orphaned.

fildes points to a device special file that is in the closing state.

The system record lock table was full, so the pw it e could not go
to sleep until the blocking record lock was removed.

fildes is on a remote machine and the link to that machine is no
longer active.

An attempt is made to write to a stream with insufficient STREAMS
memory resources available in the system.

During a pwr i t e to an ordinary file, there is no free space left on
the device.

The device associated with the file descriptor is a block-special or
character-special file and the file-pointer value is out of range.

An attempt is made to write to a stream with nbyte outside
specified minimum and maximum write range, and the minimum
value is non-zero.

Enforced record locking was enabled and { LOOK_MAX} regions are
already locked in the system.

fildes is associated with a pipe or fifo.
The device for fstype does not support | seek.

fcntl (BA_OS), | seek(BA_OS), open(BA_OS), pread(BA_OS),

Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/pwrite
svid

Page: 229

raise(BA_OS) raise(BA_OS)

NAME
raise — send signal to program

SYNOPSIS
#i ncl ude <signal . h>

int raise(int sig);

DESCRIPTION
rai se() sends the signal sig to the executing program.

rai se() returns zero if the operation succeeds. Otherwise, rai se() returns —1
and er r no is set to indicate an error. rai se() useskill () tosend the signal to
the executing program:

Kill(getpid(), sig);
[See kill(BA_OS) for a detailed list of failure conditions.]

ERRORS
Under the following conditions, the function r ai se() fails and sets er r no to indi-
cate an error.

El NVAL if sig is not a valid signal number.

SEE ALSO
getpid(BA_OS), kill(BA_OS), signal(BA_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/raise
svid

Page: 230

read (BA_OS) read (BA_OS)

Page 2

In STREAMS message-nondiscard mode, read and readv retrieve data until they
have read nbyte bytes, or until they reach a message boundary. If read or r eadv
does not retrieve all the data in a message, the remaining data is replaced on the
stream and can be retrieved by the next r ead or r eadv call. Message-discard mode
also retrieves data until it has retrieved nbyte bytes, or it reaches a message boun-
dary. However, unread data remaining in a message after the read or readv
returns is discarded, and is not available for a later r ead, r eadv, or get nsg [see
get nsg(BA_OS9)].

When attempting to read from a regular file with mandatory file/record locking set

[see chmod(BA_OS)], and there is a write lock owned by another process on the seg-
ment of the file to be read:

If O NONBLOK is set, r ead returns —1 and sets er r no to EAGAI N.

If O NONBLOCK is clear, read sleeps until the blocking record lock is
removed.

When attempting to read from an empty pipe (or FIFO):

If no process has the pipe open for writing, r ead returns 0 to indicate end-
of-file.

If some process has the pipe open for writing r ead returns 0.

If some process has the pipe open for writing and O NONBLOXK is set, r ead
returns —1 and sets er r no to EAGAI N

If O NONBLOK is clear, read blocks until data is written to the pipe or the
pipe is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently
available:

If O NONBLOCK is set, r ead returns —1 and sets er r no to EAGAI N
If O NONBLOCK is clear, r ead blocks until data becomes available.

When attempting to read a file associated with a stream that is not a pipe or FIFO, or
terminal, and that has no data currently available:

If O_ NONBLOCK is set, r ead returns —1 and sets er r no to EAGAI N.
If O NONBLOK is clear, r ead blocks until data becomes available.

When reading from a STREAMS file, handling of zero-byte messages is determined
by the current read mode setting. In byte-stream mode, r ead accepts data until it
has read nbyte bytes, or until there is no more data to read, or until a zero-byte mes-
sage block is encountered. read then returns the number of bytes read, and places
the zero-byte message back on the stream to be retrieved by the next read or
get nsg [see get msg(BA_OS)]. In the two other modes, a zero-byte message returns
a value of 0 and the message is removed from the stream. When a zero-byte mes-
sage is read as the first message on a stream, a value of 0 is returned regardless of
the r ead mode.

A read or r eadv from a STREAMS file returns the data in the message at the front of
the stream head read queue, regardless of the priority band of the message.

FINAL COPY
June 15, 1995
File: ba_os/read
svid

Page: 232

read (BA_OS) read (BA_OS)

Normally, a read from a STREAMS file can only process messages with data and
without control information. The read fails if a message containing control infor-
mation is encountered at the stream head. This default action can be changed by
placing the stream in either control-data mode or control-discard mode with the
| _SRDCPT ioctl (BA_OS). In control-data mode, control messages are converted
to data messages by r ead. In control-discard mode, control messages are discarded
by r ead, but any data associated with the control messages is returned to the user.

Return Values

On success, r ead and r eadv return a non-negative integer indicating the number of
bytes actually read. On failure, r ead and r eadv return -1 and set er r no to identify
the error.

A read from a STREAMS file also fails if an error message is received at the stream
head. In this case, errno is set to the value returned in the error message. If a
hangup occurs on the stream being read, r ead continues to operate normally until
the stream head read queue is empty. Thereafter, it returns 0.

Errors
In the following conditions, r ead and r eadv fail and set er r no to:

EAGAI N
Mandatory file/record locking was set, O NCNBLOCK was set, and there was
a blocking record lock.

EAGAI N
Total amount of system memory available when reading via raw 170 is tem-
porarily insufficient.

EAGAI N
No data is waiting to be read on a file associated with a tty device and
O_NONBLOCK was set.

EAGAI N
No message is waiting to be read on a stream and O_NONBLOCK was set.

EBADF fildes is not a valid file descriptor open for reading.

EBADVSG
Message waiting to be read on a stream is not a data message.

EDEADLK
The r ead was going to go to sleep and cause a deadlock to occur.

El NTR A signal was caught during the r ead or r eadv system call.

El NVAL
Attempted to read from a stream linked to a multiplexor.

El O A physical 170 error has occurred, or the process is in a background process
group and is attempting to read from its controlling terminal, and either the
process is ignoring or blocking the Sl GI'TI N signal or the process group of
the process is orphaned.

El O fildes is open to a device that is in the process of closing.

Page 3

FINAL COPY
June 15, 1995
File: ba_os/read
svid

Page: 233

read (BA_OS) read (BA_OS)

In addition, r eadv may return one of the following errors:

El NVAL
iovent was less than or equal to 0 or greater than 16.

El NVAL
The sum of the i ov_| en values in the iov array overflowed a 32-bit integer.

SEE ALSO
creat (BA_OS), fcntl (BA_OS), get nsg(BA_OS), open(BA_OS), pread(BA_OS),
streans(BA_DEV),types(BA_ENV), wite(BA_OS)

LEVEL
Level 1.

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

NOTICES
r ead updates the time of last access [see st at (BA_OS)] of the file.

Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Page 4

FINAL COPY
June 15, 1995
File: ba_os/read

svid

Page: 234

readlink(BA_OS) readlink(BA_OS)

NAME
readlink — read value of a symbolic link

SYNOPSIS
#i ncl ude <unistd. h>

int readlink(const char *path, void *buf, size_t bufsiz);

DESCRIPTION
The function readl i nk() places the contents of the symbolic link referred to by
path in the buffer buf which has size bufsiz. The contents of the link are not null-
terminated when returned.

RETURN VALUE
Upon successful completion, the function readl i nk() returns the count of char-
acters placed in the buffer; otherwise, it returns a value of —1 and sets errno to
indicate an error.

ERRORS
Under the following conditions, the function r eadl i nk() fails, the buffer remains
unchanged, and er r no is set to:

EACCES if SEarch permission is denied for a component of the path prefix of
path.

El NVAL if path is not a symbolic link.

El O if an 1/0 error occurred while reading from or writing to the file
system.

ENCENT if the path does not exist.

ELOOP if too many symbolic links are encountered in translating path.

ENAMVETOOLONG

if the length of a path exceeds { PATH_MAX}, or pathname com-
ponent is longer than { NAME_MAX} while {_PGCSI X_NO_TRUNC}

is in effect.
ENOSYS if this operation is not applicable for this file system type.
SEE ALSO
stat(BA_OS), symlink(BA_OS).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/readlink
svid

Page: 235

remove(BA_OS) remove(BA_OS)

NAME
remove — remove file

SYNOPSIS
#i ncl ude <stdio. h>

i nt renove(const char *path);

DESCRIPTION
The function r emove() causes the file or empty directory whose name is the string
pointed to by path to be no longer accessible by that name. A subsequent attempt to
open that file using that name will fail, unless the file is created anew.

For files, r enove() isidentical to unl i nk() . For directories, r enove() is identi-
caltormdir().

RETURN VALUE
Upon successful completion, the function r enove() returns a value of 0; other-
wise, it returns a value of —1 and sets er r no to indicate an error.

ERRORS
Under the following conditions, the function r enove() fails and sets er r no to:

EEXI ST if the directory to be removed contains directory entries other than .
(the directory itself) and . . (the parent directory).

ENOTDI R if a component of the path-prefix is not a directory.

EACCES if a component of the path-prefix denies search permission, or if write
permission is denied on the parent directory of the directory or file to
be removed.

EBUSY if the directory to be removed is currently in use by the system.

ERCFS if the directory or file to be removed is located on a read-only file sys-
tem.

ELOOP if too many symbolic names are encountered in translating path.

ENAMVETOOLONG

if the length of a pathname exceeds { PATH_MAX}, or pathname com-
ponent is longer than { NAME_MAX} while {_PGOSI X_NO_TRUNC} isin
effect.

ENCENT if the path argument names a non-existent directory or points to an
empty string.

EPERM if the named file is a directory and the effective user ID of the process
does not have appropriate privileges.

SEE ALSO
rmdir(BA_OS), unlink(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/remove
svid

Page: 236

rename (BA_OS) rename (BA_OS)

NAME
rename — change the name of a file

SYNOPSIS
#i ncl ude <unistd. h>

i nt rename(const char *old, const char *new);

DESCRIPTION
The function r enanme() changes the name of a file. The old argument points to the
pathname of the file to be renamed. The new argument points to the new pathname
of the file.

If the old argument and the new argument both refer to and link to the same existing
file, the r ename() function returns successfully and performs no other action.

If the old argument points to the pathname of a file that is not a directory, the new
argument must not point to the pathname of a directory. If the link named by the
new argument exists, it will be removed and old will be renamed to new. In this
case, a link named new must remain visible to other processes throughout the
renaming operation and will refer either to the file referred to by new or old before
the operation began. Write access permission is required for both the directory con-
taining old and the directory containing new.

If the old argument points to the pathname of a directory, the new argument must
not point to the pathname of a file that is not a directory. If the directory named by
the new argument exists, it will be removed and old will be renamed to new. In this
case, a link named new will exist throughout the renaming operation and will refer
either to the file referred to by new or old before the operation began. Thus, if new
names an existing directory, it will be required to be an empty directory.

The new pathname must not contain a path prefix that names old. Write access per-
mission is required for the directory containing old and the directory containing
new. If the old argument points to the pathname of a directory, write access permis-
sion may be required for the directory named by old, and, if it exists, the directory
named by new.

If the link named by the new argument exists and the file’s link count becomes zero
when it is removed and no process has the file open, the space occupied by the file
will be freed and the file will no longer be accessible. If one or more processes have
the file open when the last link is removed, the link will be removed before
rename() returns, but the removal of the file contents will be postponed until all
references to the file have been closed.

Upon successful completion, the renane() function will mark for update the
st _ctinme and st _nti e fields of the parent directory of each file.

RETURN VALUE
Upon successful completion, the function r ename() returns a value of 0; other-
wise, it returns a value of —1 and sets er r no to indicate an error.

ERRORS
Under the following conditions, the function r enane() fails and sets er r no to:

Page 1

FINAL COPY
June 15, 1995
File: ba_os/rename
svid

Page: 237

rename (BA_OS) rename (BA_OS)

EACCES if a component of either path prefix denies search permission; or
one of the directories containing old or new denies write permis-
sions; or write permission is denied by a directory pointed to by
the old or new parameters.

EBUSY if the new is a directory and the mount point for a mounted file
system.

EEXI ST if the link named by new is a directory containing entries other
than . (the directory itself) and .. (the parent directory).

El NVAL if old is a parent directory of new, or an attempt is made to rename
. (the directory itself) or . . (the parent directory).

El SDI R if the new parameter points to a directory but the old parameter
points to a file that is not a directory.

ELCOP if too many symbolic links were encountered in translating the
pathname.

ENAMVETOOLONG

if the length of a pathname exceeds { PATH_MAX}, or pathname
component is longer than { NAMVE_MAX} while
{_PCsI X_NO_TRUNC} is in effect.

ENCENT if a component of either old or new does not exist, or the file
referred to by either old or new does not exist, or either old or new
point to an empty string.

ENGCSPC if the directory that would contain new cannot be extended.

ENOTDI R if a component of either path prefix is not a directory; or the old
parameter names a directory and the new parameter names a non-
directory file.

ERCFS if the requested operation requires writing in a directory on a
read-only file system.
EXDEV if the links named by old and new are on different file systems.
SEE ALSO
link(BA_OS), unlink(BA_OS).
LEVEL
Level 1.
Page 2

FINAL COPY
June 15, 1995
File: ba_os/rename
svid

Page: 238

rmdir (BA_OS) rmdir (BA_OS)

NAME
rmdir — remove a directory

SYNOPSIS
#i ncl ude <unistd. h>

int rmdir(const char *path);

DESCRIPTION
The function r mdi r () removes a directory.

The argument path specifies the path-name of the directory to be removed.

The directory must be empty, that is, not have any directory entries other than, .
(the directory itself) and . . (the parent directory).

If the directory’s link count becomes zero and no process has the directory open,
the space occupied by the directory is freed and the directory is no longer accessi-
ble. If one or more processes have the directory open when the last link is removed,
the . and .. entries, if present, are removed before r ndi r () returns and no new
entries may be created in the directory, but the directory is not removed until all
references to the directory have been closed.

If path is a symbolic link, it is not followed.

Upon successful completion the function rndir() marks for update the
st_cti me and st _nt i ne fields of the parent directory.
RETURN VALUE

Upon successful completion, the function r ndi r () returns a value of 0; otherwise,
it returns a value of —1 and sets er r no to indicate an error.

ERRORS
Under the following conditions, the function r ndi r () fails and sets er r no to:

EEXI ST if the directory to be removed contains directory entries other than
. (the directory itself) and . . (the parent directory).

ENOTDI R if a component of the path-prefix is not a directory.

EACCES if a component of the path-prefix denies search permission, or if

write permission is denied on the parent directory of the directory
to be removed.

EBUSY if the directory to be removed is currently in use by the system.
ERCFS if the directory to be removed is located on a read-only file system.
El O if a physical 170 error has occurred.

ELOOP if too many symbolic links were encountered in translating path.
ENAMETOOLONG

if the length of a pathname exceeds { PATH_MAX}, or pathname
component is longer than { NAVE_VAX} while
{_POSI X_NO _TRUNC} is in effect.

ENCENT if the path argument names a non-existent directory or points to an
empty string.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/rmdir
svid

Page: 239

rmdir (BA_OS)

SEE ALSO
directory(BA_OS) mkdir(BA_OS)

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: ba_os/rmdir
svid

Page: 240

rmdir (BA_OS)

seekdir (BA_OS) seekdir (BA_OS)

NAME
seekdir — set position of directory stream

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>
voi d seekdir (DI R *dirp, |ong loc);

DESCRIPTION
The function seekdi r () sets the position of the next r eaddi r () operation on the
directory stream specified by the dirp to the position specified by loc. The value of
loc should have been returned from an earlier call to tel I dir (). The position
reverts to the one associated with directory stream when thet el | di r () operation
was performed.

SEE ALSO
directory(BA_OS), telldir(BA_OS).

LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/seekdir
svid

Page: 241

setlocale (BA_OS) setlocale (BA_OS)

NAME
setlocale — modifies and queries a program’s locale

SYNOPSIS
#i ncl ude <l ocal e. h>

char *setl ocal e(int category, const char [locale);

DESCRIPTION
set | ocal e() selects the appropriate piece of the program’s locale as specified by
the category and locale arguments. The category argument may have the following
values (defined in <l ocal e. h>):

LC CTYPE affects the behavior of the character handling functions (i sdi -
git(), tolower(), etc.) and the multibyte character functions,

nmbt owc() and wet onmb() .

LC_NUMERI C affects the decimal-point character for the formatted input/output
functions and the string conversion functions, as well as the non-
monetary formatted information returned by | ocal econv() .

LC TI ME affects the behavior of time related functions, such as get dat e()

andstrftine().

LC_COLLATE affects the behavior of collating functions, such as strcol | () and
strxfrm’).

LC_MONETARY
affects the monetary formatted information returned by
| ocal econv().

LC_MESSAGES
affects the behavior of message functions, such as get t xt () .

LC ALL names the program’s entire locale.

Each category corresponds to a set of databases which contain the relevant informa-
tion for each defined locale. The location of a database is given by a path ending in
[usr/1i b/ locale/ category, where locale and category are the names of locale and
category, respectively.

A value of " C" for the locale argument specifies the default environment.

A value of "" for the locale argument specifies that the locale should be taken from
environment variables. The order in which the environment variables are checked
for the various categories is given below:

Category 1st Env. Var. 2nd

LC _CTYPE: LC CTYPE LANG
LC COLLATE: LC COLLATE LANG
LC TI ME: LC TI ME LANG
LC_NUMERI C: LC_NUMERI C LANG
LC_MONETARY: LC_MONETARY LANG
LC_MESSAGES: LC MESSAGES LANG

Page 1
FINAL COPY

June 15, 1995
File: ba_os/setlocale
svid

Page: 242

setlocale (BA_OS) setlocale (BA_OS)

At program startup, the equivalent of
setl ocal e(LC_ALL, "C");

is executed. This has the effect of initializing each category to the locale described
by the environment " C".

If a pointer to a string is given for locale, set | ocal e() attempts to set the locale for
the given category to locale. If set | ocal e() succeeds, locale is returned. If set | o-
cal e() fails, a null pointer is returned and the program’s locale is not changed.

For category LC_ALL, the behavior is slightly different. If a pointer to a string is
given for locale and LC_ALL is given for category, set | ocal e() attempts to set the
locale for all the categories to locale. The locale may be a simple locale, consisting of
a single locale, or a composite locale. A composite locale is a string beginning with
a/ followed by the locale of each category separated by a/ . If the locales for all the
categories are the same after all the attempted locale changes, then set | ocal e()
will return a pointer to the common simple locale. If there is a mixture of locales
among the categories, then set | ocal e() will return a composite locale.

A null pointer for locale causes set | ocal e() to return the current locale associated
with the category. The program’s locale is not changed. If LC_ALL is given as the
category and all the other categories do not have the same locale, then a composite
locale is returned as above. If category is LC_ALL and the specified locale does not
have files for all the categories (see table, above), set| ocal e() returns null.

SEE ALSO
conv(BA_LIB), ctime(BA_LIB), ctype(BA_LIB), getdate(BA_LIB), gettxt(BA_LIB),
localeconv(BA_LIB), mbchar(BA_LIB), printf(BA_LIB), strcoll(BA_LIB),
strftime(BA_LIB), strtod(BA_LIB), strxfrm(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/setlocale
svid

Page: 243

setpgid(BA_OS)

NAME

RETURN VALUE

setpgid(BA_OS)

setpgid — set process group 1D

SYNOPSIS
#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>

int setpgid(pid_t pid, pid_t pgid);

DESCRIPTION
The function set pgi d() is used to join an existing process group or create a new
process group within the session of the calling process. The process group ID of a
session leader will not change. Upon successful completion, the process group ID
of the process with a process ID that matches pid will be set to pgid. As a special
case, if pid is zero, the process ID of the calling process will be used. If pgid is zero
the process ID of the indicated process will be used.

Upon successful completion, the function set pgi d() returns a value of O; other-
wise, it returns a value of —1 and sets er r no to indicate an error.

ERRORS
Under the following conditions, the function set pgi d() fails and sets er r no to:

EACCES

El NVAL
EPERM
EPERM

EPERM

ESRCH

SEE ALSO
exec(BA_OS), exit(BA_OS), fork(BA_OS), getpid(BA_OS), getpgid(BA_OS),
setsid(BA_OS).

LEVEL

Level 1.

if the value of the pid argument matches the process ID of a child process
of the calling process and the child process has successfully executed an
exec routine.

if pgid is less than (pi d_t) 0, or greater than or equal to { Pl D_MAX} .
if the process indicated by the pid argument is a session leader.

if the value of the pid argument matches the process ID of a child process
of the calling process and the child process is not in the same session as
the calling process.

if the value of the pgid argument does not match the process ID of the
process indicated by the pid argument and there is no process with a
process group ID that matches the value of the pgid argument in the
same session as the calling process.

if the value of the pid argument does not match the process ID of the cal-
ling process or of a child process of the calling process.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/setpgid
svid

Page: 244

setsid(BA_OS) setsid(BA_OS)

NAME
setsid — set session ID

SYNOPSIS
#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>

pid_t setsid (void);

DESCRIPTION
The function set si d() sets the process group ID and session ID of the calling pro-
cess to the process ID of the calling process, and releases the calling process’s con-
trolling terminal.

Upon returning, the calling process will be the session leader of a new session, will
be the process group leader of a new process group, and will have no controlling
terminal. The calling process will be the only process in the new process group and
the only process in the new session.

RETURN VALUE
Upon successful completion, the function set si d() returns the calling process’s
session ID; otherwise, it returns a value of (pi d_t)—1 and sets err no to indicate
an error.

ERRORS
Under the following condition, set si d() fails and sets err no to:

EPERM if the calling process is already a process group leader, or the process
group ID of a process other than the calling process matches the process
ID of the calling process.

USAGE

If the calling process is the last member of a pipeline started by a job-control shell,
the shell may make the calling process a process group leader and the other
processes of the pipeline members of that process group. In this case, the call to
set si d() will fail. For this reason, a process that calls set si d() and expects to
be part of a pipeline should always first fork; the parent should exit and the child
should call setsi d(). This will insure that the process will work reliably when
started by both job-control shells and non-job control shells.

SEE ALSO
exec(BA_OS), exit(BA_OS), fork(BA_OS), getpid(BA_OS), getpgid(BA_OS),
getsid(BA_OS), setpgid(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/setsid
svid

Page: 245

setuid (BA_OS) setuid (BA_OS)

NAME

set ui d, set gi d — set user and group IDs

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

int setuid(uid_t uid);
int setgid(gid_t gid);

DESCRIPTION

The set ui d system call sets the real user ID, effective user ID, and saved user | D of
the calling process. The set gi d system call sets the real group ID, effective group
ID, and saved group 1D of the calling process.

At login time, the real user ID, effective user ID, and saved user ID of the login pro-
cess are set to the login ID of the user responsible for the creation of the process.
The same is true for the real, effective, and saved group IDs; they are set to the
group ID of the user responsible for the creation of the process.

When a process calls exec(BA_C5) to execute a file (program), the user and/or
group identifiers associated with the process can change:

The real user and group IDs are always set to the real user and group IDs of
the process calling exec.

The saved user and group 1Ds of the new process are always set to the effec-
tive user and group IDs of the process calling exec.

If the file executed is not a set-user-1D or set-group-ID file, the effective user
and group IDs of the new process are set to the effective user and group 1Ds
of the process calling exec.

If the file executed is a set-user-ID file, the effective user ID of the new pro-
cess is set to the owner ID of the executed file.

If the file executed is a set-group-ID file, the effective group ID of the new
process is set to the group 1D of the executed file.

If the calling process has appropriate privileges, the real group ID, effective group
ID and the saved set-group-ID are set to gid.

If the calling process does not have appropriate privileges, but its real group ID or
saved set-group-ID is equal to gid, the effective group ID is set to gid; the real group
ID and saved set-group-ID remain unchanged.

Return Values

On success, set ui d and set gi d return 0. On failure, set ui d and set gi d return -1
and set er r no to identify the error.

Errors

In the following conditions, set ui d and set gi d fail and set er r no to:

EPERM For set ui d, the calling process does not have the appropriate privilege
and the uid parameter does not match either the real or saved user IDs.
For set gi d, the calling process does not have the appropriate privilege
and the gid parameter does not match either the real or saved group IDs.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/setuid
svid

Page: 246

setuid (BA_OS) setuid (BA_OS)

El NVAL The uid or gid is out of range.

SEE ALSO

exec (BA_OS), get gr oups(BA_OS), get ui d (BA_OS), st at (BA_OS)
LEVEL

Level 1.

NOTICES
Considerations for Threads Programming
This ID number is an attribute of the containing process and is shared by sibling
threads.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/setuid
svid

Page: 247

sigaction (BA_OS)

SA RESTART

SA SI A NFO

SA NOCLDWAI T

SA NOCLDSTCP

Return Values

sigaction (BA_OS)

If set and the signal is caught, a system call that is interrupted by
the execution of this signal’s handler is transparently restarted by
the system. Otherwise, that system call returns an El NTR error.
Not all system calls can be restarted, for example, sl eep(2) and
pause(2) cannot be restarted.

If cleared and the signal is caught, sig is passed as the only argu-
ment to the signal-catching function. If set and the signal is
caught, two additional arguments are passed to the signal-
catching function. If the second argument is not equal to NULL, it
points to a si gi nfo_t structure containing the reason why the
signal was generated the third argument points to a ucont ext _t
structure containing the receiving process’s context when the sig-
nal was delivered

If set and sig equals SI GCHLD, the system will not create zombie
processes when children of the calling process exit. If the calling
process subsequently issues a wai t (BA_OS), it blocks until all of
the calling process’s child processes terminate, and then returns a
value of -1 with er r no set to ECH LD.

If set and sig equals S| GCHLD, sig will not be sent to the calling
process when its child processes stop or continue. underlying
execution entities kernel execution entities

On success, si gacti on returns 0. On failure, si gacti on returns -1 and sets er r no
to identify the error.

Errors

In the following conditions, si gact i on fails and sets er r no to:

El NVAL

EFAULT

SEE ALSO
exi t (BA_OS),

The value of the sig argument is not a valid signal number or an
attempt is made to catch a signal that cannot be caught or ignore
a signal that cannot be ignored.

act or oact points outside the process’s allocated address space.

kil (BU_CMD), kill (BA_OS), pause(BA_OS),

si gal t st ack(BA_0OS), si gnal (BA_OS), si gnal (BA_ENV), si gpr ocmask(BA_QOS),
si gsend(BA_OS), si gset ops(BA_OS), si gsuspend(BA_OS), wai t (BA_OS)

LEVEL
Level 1.

NOTICES

If the system call is reading from or writing to a terminal and the terminal’s NCFLSH
bit is cleared, data may be flushed.

Considerations for Threads Programming
The handler defined by act is common to all threads in a process.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/sigaction
svid

Page: 249

sigaction (BA_OS) sigaction (BA_OS)

The Threads Library does not support alternate signal handling stacks for threads.

The SA WAl TSI G flag (see description above) can be used in support of threads
libraries.

Further details can be found in si gnal (BA_ENV).

Page 3

FINAL COPY
June 15, 1995
File: ba_os/sigaction
svid

Page: 250

sigaltstack (BA_OS) sigaltstack (BA_OS)

NAME
si gal t st ack — set or get signal alternate stack context

SYNOPSIS
#i ncl ude <signal . h>

int sigaltstack(const stack_t *ss, stack_t *oss);

DESCRIPTION

si gal t st ack allows users to define an alternate stack area on which signals are to
be processed. If ss is non-zero, it specifies a pointer to, and the size of a stack area
on which to deliver signals, and tells the system if the process is currently executing
on that stack. When a signal’s action indicates its handler should execute on the
alternate signal stack [specified with a si gacti on(2) call], the system checks to see
if the process is currently executing on that stack. If the process is not currently
executing on the signal stack, the system arranges a switch to the alternate signal
stack for the duration of the signal handler’s execution.

The structure si gal t st ack includes the following members.

char *ss_sp
int Ss_si ze
i nt ss_fl ags

If ss is not NULL, it points to a structure specifying the alternate signal stack that will
take effect upon return from si gal t st ack. The ss_sp and ss_si ze fields specify
the new base and size of the stack, which is automatically adjusted for direction of
growth and alignment. The ss_fl ags field specifies the new stack state and may
be set to the following:

SS DI SABLE The stack is to be disabled and ss_sp and ss_si ze are ignored. If
SS Dl SABLE is not set, the stack will be enabled. SS DI SABLE is the
only way users can disable the alternate signal stack.

If oss is not NULL, it points to a structure specifying the alternate signal stack that
was in effect prior to the call to sigal tstack. The ss_sp and ss_si ze fields
specify the base and size of that stack. The ss_f | ags field specifies the stack’s
state, and may contain the following values:

SS ONSTACK The process is currently executing on the alternate signal stack.
Attempts to modify the alternate signal stack while the process is
executing on it will fail. SS_ONSTACK cannot be modified by users.

SS DI SABLE The alternate signal stack is currently disabled.

Return Values
On success, si gal t st ack returns 0. On failure, si gal t st ack returns -1 and sets
errno to identify the error.

Errors
In the following conditions, si gal t st ack fails and sets er r no to:
EFAULT Either ss or oss points outside the process’s allocated address space.
El NVAL ss is non-null and the ss_fl ags field pointed to by ss contains

invalid flags. The only flag considered valid is SS_Dl SABLE.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/sigaltstack
svid

Page: 251

sigaltstack (BA_OS) sigaltstack (BA_OS)

EPERM An attempt was made to modify an active stack.

ENOVEM The size of the alternate stack area is less than M NSI GSTKSZ.
USAGE

The value S| GSTKSZ is defined to be the number of bytes that would be used to

cover the usual case when allocating an alternate stack area. The value

M NSI GSTKSZ is defined to be the minimum stack size for a signal handler. In com-

puting an alternate stack size, a program should add that amount to its stack

requirements to allow for the operating system overhead.

The following code fragment is typically used to allocate an alternate stack.

if ((sigstk.ss_sp = (char *)mall oc(SI GSTKSZ)) == NULL)
/* error return */;

si gstk. ss_si ze = Sl GSTKSZ,
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk, (stack_t *)0) < 0)
perror("sigal tstack");
SEE ALSO
get cont ext (BA_OS), si gacti on(BA_OS),
LEVEL
Level 1.
NOTICES
Considerations for Threads Programming

The Threads Library does not support alternate signal handling stacks for threads.
See si gnal (BA_OS) for further details.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/sigaltstack
svid

Page: 252

signal (BA_OS) signal (BA_OS)

NAME
si gnal , sigset, sighold, sigrel se, sigignore, sigpause — simplified signal
management

SYNOPSIS

#i ncl ude <signal . h>

void (kignal (int sig, void (Cdisp)(int)))(int);
void ([sigset(int sig, void (disp)(int)))(int);
int sighold(int sig);

int sigrelse(int sig);

int sigignore(int sig);

int sigpause(int sig);

DESCRIPTION
These functions provide simplified signal management for application processes.
See si gnal (BA_OS) for an explanation of general signal concepts.

si gnal and si gset are used to modify signal dispositions. sig specifies the signal,
which may be any signal except S| &I LL and S| GSTCP. disp specifies the signal’s
disposition, which may be SI G DFL, SI G_| GN, or the address of a signal handler. If
signal is used, disp is the address of a signal handler, and sig is not SI d LL,
S| GTRAP, or SI GPWR the system first sets the signal’s disposition to SI G DFL before
executing the signal handler. If si gset is used and disp is the address of a signal
handler, the system adds sig to the calling process’s signal mask before executing
the signal handler; when the signal handler returns, the system restores the calling
process’s signal mask to its state prior to the delivery of the signal. In addition, if
si gset is used and disp is equal to SI G_ HOLD, sig is added to the calling process’s
signhal mask and the signal’s disposition remains unchanged. However, if si gset is
used and disp is not equal to SI G HOLD, sig will be removed from the calling
process’s signal mask.

si ghol d adds sig to the calling process’s signal mask.
si gr el se removes sig from the calling process’s signal mask.
si gi gnor e sets the disposition of sigto SI G_| G\.

si gpause removes sig from the calling process’s signal mask and suspends the cal-
ling process until a signal is received.

Return Values
On success, si gnal returns the signal’s previous disposition. On failure, si gnal
returns SI G_ERRand sets er r no to identify the error.

Errors
In the following conditions, this function fails and set er r no to:

El NVAL The value of the sig argument is not a valid signal or is equal to
SI &I LL or SI GSTCP.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/signal
svid

Page: 253

signal (BA_OS) signal (BA_OS)

El NTR A signal was caught during the system call si gpause.

USAGE
If si gnal is used to set S| GCHLD's disposition to a signal handler, SI GCHLD will not
be sent when the calling process’s children are stopped or continued.

If any of the above functions are used to set S| GCHLD's disposition to S| G | G\, the
calling process’s child processes will not create zombie processes when they ter-
minate. If the calling process subsequently waits for its children, it blocks until all
of its children terminate; it then returns a value of -1 with errno set to ECH LD.
[see wai t (BA_OS), wai ti d(BA_OS)].

SEE ALSO
kil'l (BA_OS), pause(BA_OS), si gacti on(BA_OS), si gnal (BA_ENV),
si gsend(BA_OS), wai t (BA_OS), wai ti d(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming
Signal dispositions (that is, default/ignore/handler) are a process attribute and are
shared by all threads. Signal masks, on the other hand, are maintained indepen-
dently per thread.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/signal
svid

Page: 254

sigpending (BA_OS) sigpending (BA_OS)

NAME
si gpendi ng — examine signals that are blocked and pending

SYNOPSIS
#i ncl ude <signal . h>

i nt sigpendi ng(sigset_t *set);
DESCRIPTION
The si gpendi ng function retrieves those signals that have been sent to the calling

process but are being blocked from delivery by the calling process’s signal mask.
The signals are stored in the space pointed to by the argument set.

Return Values
On success, si gpendi ng returns 0. On failure, si gpendi ng returns -1 and sets
err no to identify the error.

SEE ALSO
si gacti on(BA_OS), si gpr ocrmask(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming
The set returned is the union of

Signals pending to the calling thread but blocked by that thread’s signal
mask.

Signals pending to the process but blocked by every currently running
thread in the process.

In general, the status from si gpendi ng is only advisory. A signal pending to the
containing process might be delivered to a sibling thread (if any become eligible)
after the return of this system call. See si gnal (BA_ENV) for further details.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/sigpending
svid

Page: 255

sigprocmask (BA_OS) sigprocmask (BA_OS)

NAME
si gpr ocnask — change or examine signal mask

SYNOPSIS
#i ncl ude <signal . h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

DESCRIPTION

The si gpr ocnask function is used to examine and/or change the calling process’s
signal mask. If the value is SI G BLOCK, the set pointed to by the argument set is
added to the current signal mask. If the value is SI G UNBLOCK, the set pointed by
the argument set is removed from the current signal mask. If the value is
Sl G_SETMASK, the current signal mask is replaced by the set pointed to by the argu-
ment set. If the argument oset is not NULL, the previous mask is stored in the space
pointed to by oset. If the value of the argument set is NULL, the value how is not
significant and the process’s signal mask is unchanged; thus, the call can be used to
enquire about currently blocked signals.

If there are any pending unblocked signals after the call to si gpr ocnask, at least
one of those signals will be delivered before the call to si gpr ocnask returns.

It is not possible to block those signals that cannot be ignored [see
si gacti on(BA_OS)]. This restriction is silently imposed by the system.
If si gpr ocnask fails, the process’s signal mask is not changed.

Return Values

On success, si gpr ocnmask returns 0. On failure, si gpr ocnask returns -1 and sets
errno to identify the error.

Errors
In the following conditions, si gpr ocnmask fails and sets er r no to:
El NVAL The value of the how argument is not equal to one of the defined
values.
EFALLT The value of set or oset points outside the process’s allocated
address space.
SEE ALSO
si gacti on(BA_OS), si gnal (BA_OS), si gset ops(BA_OS)
LEVEL
Level 1.
NOTICES

Considerations for Threads Programming
Signal masks are maintained per thread. See si gnal (BA_OS) for further details.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/sigprocmask
svid

Page: 256

sigsend (BA_OS) sigsend (BA_OS)

NAME
si gsend, si gsendset —send a signal to a process or a group of processes

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <signal . h>
#i ncl ude <sys/ procset. h>

int sigsend(idtype_t idtype, id_t id, int sig);
i nt sigsendset(const procset_t *psp, int sig);

DESCRIPTION
si gsend sends a signal to the process or group of processes specified by id and
idtype. The signal to be sent is specified by sig and is either zero or one of the values
listed in si gnal (BA_OS). If sig is zero (the null signal), error checking is performed
but no signal is actually sent. This value can be used to check the validity of id and
idtype.
In order to send the signal to the target process (pid), the sending process must have
permission to do so, subject to the following ownership restrictions:

The real or effective user ID of the sending process must match the real or
saved [from exec(BA_OS)] user ID of the receiving process, unless the send-
ing process has the P_OMER privilege, or sig is S| GOONT and the sending
process has the same session ID as the receiving process.

If idtype is P_PI D, sig is sent to the process with process ID id.

If idtype is P_PQ D, sig is sent to any process with process group 1D id.
If idtype is P_SI D, sig is sent to any process with session ID id.

If idtype is P_U D, sig is sent to any process with effective user ID id.

If idtype is P_Q D, sig is sent to any process with effective group ID id.

If idtype is P_A D, sig is sent to any process with scheduler class ID id [see
priocnt| (KE_OS)].

If idtype is P_ALL, sig is sent to all processes and id is ignored.

If id is P_IW1 D, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a process
ID of 1 is excluded unless idtype is equal to P_PI D.

si gsendset provides an alternate interface for sending signals to sets of processes.
This function sends signals to the set of processes specified by psp. psp is a pointer
to a structure of type procset _t, defined in sys/ procset. h, which includes the
following members:

i dop_t p_op;

i dtype_t p_lidtype;
id_t p_lid;

i dtype_t p_ridtype;
id_t p_rid;

Page 1

FINAL COPY
June 15, 1995
File: ba_os/sigsend
svid

Page: 257

sigsend (BA_OS) sigsend (BA_OS)

p_lidtype and p_l i d specify the ID type and ID of one (*‘left”’) set of processes;
p_ridtype and p_rid specify the ID type and ID of a second (“right”) set of
processes. ID types and IDs are specified just as for the idtype and id arguments to
si gsend. p_op specifies the operation to be performed on the two sets of processes
to get the set of processes the system call is to apply to. The valid values for p_op
and the processes they specify are:

PCP_DI FF set difference: processes in left set and not in right set
PCP_AND set intersection: processes in both left and right sets
PCP_CR set union: processes in either left or right set or both
PCP_XCR set exclusive-or: processes in left or right set but not in both

Return Values
On success, si gsend and si gsendset return 0. On failure, si gsend and si g-
sendset return -1 and set er r no to identify the error.

Errors
In the following conditions, si gsend and si gsendset fail and set er r no to:
El NVAL sig is not a valid signal number.
El NVAL idtype is not a valid idtype field.
EPERM The calling process does not have the appropriate privilege, the real or
effective user ID of the sending process does not match the real or
effective user ID of the receiving process, and the calling process is not
sending S| GOONT to a process that shares the same session.
ESRCH No process can be found corresponding to that specified by id and
idtype.
In addition, si gsendset fails if:
EFAULT psp points outside the process’s allocated address space.
SEE ALSO

ki l'l (BA_OS), priocntl (KE_OS), si gnal (BA_OS),
LEVEL

Level 1.
NOTICES

Considerations for Threads Programming
Signals can be posted from one process to the designated processes via the si gsend
system call but not to specific threads within those processes. See si gnal (BA_OS)
for further details. See thr_kill (MT_LIB) for details of intra-process signaling
between threads.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/sigsend
svid

Page: 258

sigsetops (BA_OS) sigsetops (BA_OS)

MAME sigsetops: sigemptyset, sigfillset, sigaddset, sigdelset, sigismember — manipulate
sets of signals.
SYNOPSIS
#i ncl ude <signal . h>
int sigenptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int signo);
int sigdel set(sigset_t *set, int signo);
i nt sigismenber(const sigset_t *set, int signo);
DESCRIPTION

The above primitives manipulate the si gset _t data types, representing the sets of
signals supported by the implementation. Examples of sets of signals known to the
system are the set blocked from delivery to a process and the set pending a process.

The si genpt yset () function excludes all signals from the set pointed to by the
argument set. The sigfillset() function initializes the set pointed to by the
argument set so that all signals are included. The sigaddset() and
si gdel set () functions respectively add and delete the individual signal specified
by the value of the argument signo from the set pointed to by the argument set. The
si gi smenber () function checks whether the signal specified by the value of the
argument signo is a member of the set pointed to by the argument set.

Any object of type sigset_t must be initialized by applying -either
sigenptyset () orsigfillset() beforeapplying any other operation.

RETURN VALUE

Upon successful completion, the function si gi smenber () returns a value of 1 if
the specified signal is a member of the specified set, or a value of 0 if it is not. Upon
successful completion, the other functions return a value of 0; otherwise, they
return a value of —1 and sets er r no to indicate an error.

ERRORS

Under the following condition, the functions si gset ops(), si gaddset (), si g-
del set (), and si gi smenber () fail and set er r no to:

El NVAL if the value of the signo argument is not a valid signal.

SEE ALSO

LEVEL

sigaction(BA_OS), signal(BA_ENV), sigprocmask(BA_OS), sigpending(BA_OS),
sigsuspend(BA_OS).

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/sigsetops
svid

Page: 259

sigsuspend (BA_OS) sigsuspend (BA_OS)

NAME
si gsuspend - install a signal mask and suspend process until signal

SYNOPSIS
#i ncl ude <signal . h>

i nt sigsuspend(const sigset_t *set);

DESCRIPTION
si gsuspend replaces the process’s signal mask with the set of signals pointed to by
the argument set and then suspends the process until delivery of a signal whose
action is either to execute a signal catching function or to terminate the process.

If the action is to terminate the process, si gsuspend does not return. If the action is
to execute a signal catching function, si gsuspend returns after the signal catching
function returns. On return, the signal mask is restored to the set that existed
before the call to si gsuspend.

It is not possible to block those signals that cannot be ignored [see si gnal (BA_OS)];
this restriction is silently imposed by the system.

Return Values
Because si gsuspend suspends process execution indefinitely, there is no successful
return value. On failure, si gsuspend returns -1 and sets errno to identify the

error.
Errors
In the following conditions, si gsuspend fails and sets er r no to:
El NTR A signal is caught by the calling process and control is returned
from the signal catching function.
SEE ALSO
si gnal (BA_OS), si gpr ocnask(BA_OS), si gset ops(BA_OS),
LEVEL
Level 1.
NOTICES

Considerations for Threads Programming
In multithreaded programs, signal masks are defined per thread. See
si gnal (BA_OS) for further details.

While one thread is blocked, siblings might still be executing.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/sigsuspend
svid

Page: 260

sigwait (BA_OS) sigwait (BA_OS)

NAME

si gwai t — wait for a signal to be posted

SYNOPSIS

#i ncl ude <signal . h>

int sigwait(sigset_t *set);

DESCRIPTION

This function atomically chooses and clears a pending masked signal from set and
returns the number of the signal chosen. If no signal in set is pending at the time of
the call, the calling function shall be suspended until one or more signals become
pending. This suspension is indefinite in extent.

The set of signals remains blocked after return.

An application should not mix use of si gwait and si gacti on for a given signal
number because the results may be unpredictable.

Return Values

Upon successful completion, si gwai t returns the signal number of the received sig-
nal. Otherwise, a negative value is returned and er r no is set to indicate the error.

Errors

If any of the following conditions occurs, si gwai t returns a negative value and sets
err no to the corresponding value:

El NVAL set contains an invalid or unsupported signal number
EFAULT set points to an illegal address.

SEE ALSO

kill(BA_OS), sigaction(BA_OS), signal(BA_ENV), sigpending(BA_OS),
sigsend(BA_OS), sigsuspend(BA_OS)

NOTICES
Considerations for Threads Programming

The si gwai t system call allows a multithreaded application to use a synchronous
organization for signal handling.

Usage

The semantics of si gwai t make it ideal for a thread that will be dedicated to han-
dling certain signal types for a process. The functionality that might have been
placed in a separate handler function could be placed after the return from si gwai t
to be executed once a signal arrives. Once handling is complete, the thread could
call si gwai t again to block itself until arrival of the next signal.

To be sure that signals are delivered to the intended thread:

All threads in the process (including the thread that will be using si gwai t)
should mask the relevant signal numbers.

Multiple si gwai t system calls for a given signal number compete for each
single delivery of that signal number.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/sigwait
svid

Page: 261

sigwait (BA_OS) sigwait (BA_OS)

No thread should define a handler function for those signal numbers.
See si gnal (BA_ENV) for further details.

Code to handle a signal type on return from si gwai t is not considered a handler in
the containing process’ disposition for that signal type. It is important that signal
types handled by a thread using si gwai t (BA_OS) be included in the signal mask of
every thread, otherwise, the default response for the process will be triggered. Even
the thread calling si gwai t must mask that signal type because a signal of that type
may arrive while the thread is between calls to si gwai t (BA_OS).

While one thread is blocked, siblings might still be executing.

sigwai t for signals that are normally synchronously generated (e.g. SI GFPE) wiill
not return because the waiting thread cannot execute code that will generate that
fault. However, an externally and/or asynchronously, generated S| G-PE would
cause a waiting thread to return.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/sigwait
svid

Page: 262

sleep(BA_OS) sleep(BA_OS)

NAME

sleep — suspend execution for interval

SYNOPSIS

#i ncl ude <unistd. h>

unsi gned sl eep(unsi gned seconds) ;

DESCRIPTION

The function sl eep() suspends the current process from execution for the number
of seconds specified by the argument seconds. The actual suspension time may be
less than that requested for two reasons: (1) Because scheduled wakeups occur at
fixed 1-second intervals (on the second, according to an internal clock) and (2)
because any signal caught will terminate the sl eep() following execution of that
signal-catching routine. Also, the suspension time may be longer than requested by
an arbitrary amount due to the scheduling of other activity in the system.

The current process is suspended by calling the alarn() function [see
alarm(BA_OS)] and pausing until the SI GALRM signal (or some other signal) is
delivered. The previous disposition of the SI GALRMsignal is saved before calling
al arm(), and restored before returning from sl eep() . If the calling process had
set up an alarm before calling sl eep(), and if the argument seconds exceeds the
time left until that alarm would expire, the process sleeps only until the original
alarm expires.

RETURN VALUE

The function sl eep() returns the unslept amount (the requested time minus the
time actually slept) in case the caller had an alarm set to go off earlier than the end
of the requested suspension time or premature arousal due to another caught sig-
nal. The function sl eep() is always successful.

SEE ALSO

LEVEL

alarm(BA_OS), pause(BA_0S), sigaction(BA_0OS), signal(BA_OS), signal(BA_ENV),
sigsetimp(BA_LIB), sigsuspend(BA_OS).

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/sleep
svid

Page: 263

stat (BA_OS) stat (BA_OS)

NAME
stat, | stat, fstat — get file status

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

int stat(const char [path, struct stat [huf);
int |stat(const char [path, struct stat [buf);
int fstat(int fildes, struct stat [buf);

DESCRIPTION
The st at system calls get information about a file. path points to a pathname nam-
ing a file. Read, write, or execute permission of the named file is not required, but
all directories listed in the pathname leading to the file must be searchable.

Note that in a Remote File Sharing environment, the information returned by st at
depends on the user/group mapping set up between the local and remote comput-
ers. [Seei dl oad(RS_CMD)]

| stat obtains file attributes similar to st at, except when the named file is a sym-
bolic link; in that case | st at returns information about the link, while st at returns
information about the file the link references.

fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful cr eat , open, dup, fcnt |, pi pe, ori oct| system call.

buf is a pointer to a st at structure into which information is placed concerning the
file.

The contents of the structure pointed to by buf includes the following members:

node_t st_node; /OFile node [see nknod)] O

i no_t st _i no; O I node nunber O

dev_t st _dev; I D of device containing O

a directory entry for this file O

ID of device O

This entry is defined only for O

char special or block special files OO
Nunber of links O

|

O
dev_t st _rdev; ad
O
O
g
OUser IDof the file's owner O
ad
]
O
O
d
O

nlink_t st_nlink;
uidt st _uid,;
gid_t st _gid;
of f_t st _si ze;

/
/
/
/
/
/
/
/
/O0Goup IDof the file' s group O
/
tine_t st _ating /
/
/
/
/
/
/
[TA
/
/
/

File size in bytes O
Tine of |ast access [0
Time of last data nodification O
Time of last file status change O
Ti mes measured in seconds since [

time_t st_mtineg,
time_t st_ctine;

00: 00: 00 UTC, Jan. 1, 1970 O
Preferred I/O block size OO
Nunber of 512 bl ocks allocated O
files residing on an s500

g
| ong st_blksize; /0
g
dile systemreports nunber of 0
b
th

| ong st _bl ocks;

| ocks al | ocat ed assum ng nold
oles in the filel

Page 1

FINAL COPY
June 15, 1995
File: ba_os/stat

svid

Page: 264

stat (BA_OS)

st _node

st_ino

st _dev

st _rdev

st_nlink
st_uid
st_gid
st_si ze
st_atime

st_nmime

st_ctime

st _bl ksi ze

st _bl ocks

Return Values
On success, stat, | stat, and f st at return 0. On failure, stat, | stat, and f st at
return -1 and set er r no to identify the error.

Errors
In the following conditions, st at and | st at fail and seterr no to:

Page 2

EACCES
EACCES

stat (BA_OS)

The mode of the file as described in nknod(1M). In addition to
the modes described in nknod(1M), the mode of a file may also be
S | FLNK if the file is a symbolic link. (Note that S_| FLNK may
only be returned by | stat .)

This field uniquely identifies the file in a given file system. The
pair st _i no and st _dev uniquely identifies regular files.

This field uniquely identifies the file system that contains the file.
Its value may be used as input to the ust at system call to deter-
mine more information about this file system. No other meaning
is associated with this value.

This field should be used only by administrative commands. It is
valid only for block special or character special files and only has
meaning on the system where the file was configured.

This field should be used only by administrative commands.
The user ID of the file’s owner.
The group ID of the file’s group.

For regular files, this is the address of the end of the file. Defined
for block devices, although the size may be zero if the device size
is unknown. See also pi pe(BA_OS).

Time when file data was last accessed. Changed by the following
system calls: cr eat , nknod, pi pe, uti ne, and r ead.

Time when data was last modified. Changed by the following
system calls: cr eat , nknod, pi pe, utinme,andwite.

Time when file status was last changed. Changed by the follow-
ing system calls; chnod, chown, creat, |ink, nknod, pipe,
unlink,utime,andwite.

A hint as to the ““best’ unit size for 1/0 operations. This field is
not defined for block-special or character-special files.

The total number of physical blocks of size 512 bytes actually allo-
cated on disk. This field is not defined for block-special or
character-special files. A file residing on an s5 filesystem reports
number of blocks allocated assuming no holes in the file.

Search permission is denied for a component of the path prefix.
Read permission is denied on the named file.

FINAL COPY

June 15, 1995

File: ba_os/stat
svid

Page: 265

stat (BA_OS) stat (BA_OS)

ELOCP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds {PATH MAX}, or the
length of a path component exceeds {NAME MAX} while
_PC8l X_NO_ TRUNC is in effect.

ENCENT The named file does not exist or is the null pathname.
ENOTD R A component of the path prefix is not a directory.
In the following conditions, f st at fails and sets er r no to:
EBADF fildes is not a valid open file descriptor.
SEE ALSO

chnod (BA_OS), chown (BA_OS), creat (BA_OS), fattach (BA_LIB), |ink
(BA_0OS), nknod (BA_OS), pi pe (BA_OS), read (BA_OS), stat (BA_OS), tine
(SD_CMD), unl i nk (BA_OS), uti ne (BA_OS), wite (BA_OS)

LEVEL
Level 1.

Page 3

FINAL COPY

June 15, 1995

File: ba_os/stat
svid

Page: 266

statvfs (BA_OS) statvfs (BA_OS)

NAME
statvfs, fstatvfs — get file system information

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/statvfs. h>

int statvfs(const char *path, struct statvfs *buf);
int fstatvfs(int fildes, struct statvfs *buf);

DESCRIPTION
The function st at vf s() returns descriptive information about a mounted file sys-
tem containing the file referenced by path. buf is a pointer to a structure (described
below) which will be filled by the system call.

path must name a file which resides on the file system. The file system type must be
known to the operating system. Read, write, or execute permission of the named
file is not required, but all directories listed in the pathname leading to the file must
be searchable.

The st at vfs() structure pointed to by buf includes the following members:

ul ong f_bsize; /* preferred file system bl ock size */
ulong f_frsize; [/* fundamental file system bl ock size
(i f supported) */
ulong f_blocks; [/* total # of blocks of f_frsize
on file system*/

ulong f_bfree; /* total # of free blocks */
ulong f_bavail; [/* # of free blocks avail to non-super-user */
ulong f_files; /* total # of file nodes (inodes) */
ulong f_ffree; /* total # of free file nodes */
ulong f_favail; [/* # of file nodes (inodes) avail to
non- super - user */
ulong f_fsid; /* file systemid */

char f_basetype[FSTYPSZ]; [/* target fs type nane,
null-termnated */

ulong f_flag; /* bit mask of flags */

ulong f_nanmenex; /* maxi mum filenanel ength */

char f fstr[32];/* file systemspecific string */

f _baset ype contains a null-terminated file system type name. The constant
FSTYPSZ is defined in the header file <st at vfs. h>.
The following flags can be returned in the f _f | ag field:

ST_RDONLY /* read-only file system*/
ST_NOSUI D /* does not support setuid/setgid semantics */

Similarly, the function f st at vf s() obtains information about a mounted file sys-
tem containing the file referenced by fildes.

RETURN VALUE
Upon successful completion, the function st at vf s() returns a value of 0; other-
wise, it returns a value of —1 and sets er r no to indicate an error.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/statvfs
svid

Page: 267

statvfs (BA_OS) statvfs (BA_OS)

ERRORS
Under the following conditions, the function st at vf s() fails and sets er r no to:
EACCES if search permission is denied on a component of the path prefix.
ELOOP if too many symbolic links were encountered in translating path.
ENAMETOOLONG
if the length of a pathname exceeds { PATH_MAX}, or pathname
component is longer than { NAME_MAX} while
{_POSI X_NO_TRUNC} is in effect.
ENCENT if the file referred to by path does not exist.
ENOTDI R if a component of the path prefix of path is not a directory.
The function f st at vf s() fails and sets er r no to:
EBADF if fildes is not an open file descriptor.
SEE ALSO

chmod(BA_OS), chown(BA_OS), creat(BA_OS), dup(BA_OS), fcntl(BA_OS),
link(BA_0OS), mknod(BA_OS), open(BA_OS), pipe(BA_OS), read(BA_0OS),
time(BA_OS), unlink(BA_OS), ustat(BA_OS), utime(BA_OS), write(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/statvfs
svid

Page: 268

stime (BA_OS) stime (BA_OS)

NAME
sti me —set time

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <tine. h>
#i ncl ude <uni std. h>

int stine(const tine_t [ip);

DESCRIPTION

sti ne sets the system’s idea of the time and date. tp points to the value of time as
measured in seconds from 00:00:00 UTC January 1, 1970.

Return Values
On success, sti ne returns 0. On failure, sti me returns -1 and sets err no to iden-
tify the error.

Errors
In the following conditions, st i ne fails and sets er r no to:

EPERM The calling process does not have the appropriate privilege

SEE ALSO
ti me (SD_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/stime
svid

Page: 269

symlink (BA_OS) symlink (BA_OS)

NAME

symlink — make symbolic link to a file
SYNOPSIS

int symink(const char *pathl, const char *path2);
DESCRIPTION

A symbolic link path2 is created to pathl (path2 is the name of the file created, pathl
is the pathname used to create the symbolic link). Either name may be an arbitrary
pathname and pathl need not exist; the files need not be on the same file system.

The file to which the symbolic link points is used when an open() [see
open(BA_OS)] operation is performed on the link.

RETURN VALUE
Upon successful completion, the function sym i nk() returns a value of zero; oth-
erwise, it returns a value of - 1 and sets er r no to indicate an error.

ERRORS
Under the following conditions, the function sym i nk() fails and sets err no to:

EACCESS if write permission is denied in the directory where the symbolic
link is being created.

ENOTDI R if a component of the path prefix of path2 is not a directory.

ENAMVETOOLONG

if the length of a pathname exceeds { PATH_MAX}, or pathname
component is longer than { NAMVE_MAX} while
{_POSI X_NO_TRUNC} is in effect.

ENCENT if a component of the path prefix of path2 does not exist.

EACCES if search permission is denied for a component of the path prefix of
path2.

ELOOP if too many symbolic links are encountered in translating path2.

EEXI ST if the file referred to by path2 already exists.

ERCFS if the file path2 would reside on a read-only file system.

ENCSPC if the directory in which the entry for the new symbolic link is

being placed cannot be extended because no space is left on the file
system containing the directory.

ENGSPC if the new symbolic link cannot be created because no space is left
on the file system which will contain the link.
ENGCSPC if no free inodes are on the file system on which the file is being
created.
ENCSYS if this operation is not applicable for this file system type.
USAGE

A st at () on asymbolic link returns the linked-to file, while an | st at () returns
information about the link itself [see stat(BA_OS)]. This can lead to unexpected
results when a symbolic link is made to a directory. To avoid confusion in pro-
grams, the readlink() call can be used to read the contents of a symbolic link
[see readlink(BA_OS)].

Page 1

FINAL COPY
June 15, 1995
File: ba_os/symlink
svid

Page: 270

symlink (BA_OS)

SEE ALSO

LEVEL

Page 2

link(BA_OS), readlink(BA_QS), stat(BA_OS), unlink(BA_OS).

Level 1.

FINAL COPY
June 15, 1995
File: ba_os/symlink
svid

Page: 271

symlink (BA_OS)

sync (BA_OS) sync (BA_OS)

NAME
sync — update super-block
SYNOPSIS
voi d sync(void);
DESCRIPTION
The function sync() causes all information in transient memory that updates a file
system to be written out to the file system. This includes modified super-blocks,
modified i-nodes, and delayed block 1/0.
The function sync() should be used by programs which examine a file system.
The writing, although scheduled, is not necessarily complete upon return from the
function sync() .
USAGE
The function sync() is not recommended for use by application-programs.
SEE ALSO
fsync(BA_OS).
LEVEL
Level 1.
Page 1
FINAL COPY

June 15, 1995
File: ba_os/sync
svid

Page: 272

sysconf(BA_OS) sysconf(BA_OS)

NAME
sysconf — get configurable system variables

SYNOPSIS
#i ncl ude <unistd. h>

I ong sysconf (int name);

DESCRIPTION
The sysconf () function provides a method for the application to determine the
current value of a configurable system limit or option (variable).

The name argument represents the system variable to be queried. The following
table lists the minimal set of system variables from <l i m ts. h>, <uni std. h> or
<ti me. h> (for CLK_TCK) that can be returned by sysconf (), and the symbolic
constants, defined in <uni st d. h> that are the corresponding values used for name.

B Variable Value of name B
TARG _MAX _SC_ARG_MAX g

| LD_MAX ~SC_CHI LD_MAX 0
CCLK_TCK ~SC_CLK_TCK 0
CNGROUPS_MAX “SC_NGROUPS_MAX 3
COPEN_MAX _SC_OPEN_MAX 0
[PASS_MAX _SC_PASS_MAX 0
[PAGES| ZE _SC_PAGESI ZE 0
U posI X JOB CONTROL _SC JOB CONTROL U
0"posi X_SAVED | DS " SC_SAVED | DS 0
gpoa X_VERSI ON ~SC_VERSI ON B
£ XOPEN_VERS! ON _SC_XOPEN_VERSI ON

The value of CLK_TCK may be variable and it should not be assumed that CLK_TCK
is a compile-time constant. The value of CLK_TCK is the same as the value of
sysconf (_SC _CLK_TCK).

sysconf can also return the following values:

B Name Return Value B
B_SC_NPROCESSO?S_CO\IF Nurber of configured processors g
B_SC_NPRCX:ESSCRS_CNLN Nurmber of online processors 0
E_SC_NPROCESSES g

RETURN VALUE
Upon successful completion, the function sysconf () returns the current variable
value on the system. The value returned will not be more restrictive than the
corresponding value described to the application when it was compiled with the
implementation’s <l i mi t s. h> or <uni st d. h>. The value will not change during
the lifetime of the calling process. If name is an invalid value, sysconf () will
return —1 and set er r no to indicate the error. If sysconf () fails due to a value of

Page 1

FINAL COPY
June 15, 1995
File: ba_os/sysconf
svid

Page: 273

sysconf(BA_OS) sysconf(BA_OS)

name that is not defined on the system, the function will return a value of -1
without changing the value of errno. Additionally, a call to setrlimt() may
cause the value of OPEN_MAX to change.

ERRORS
Under the following condition, the function sysconf () fails and sets er r no to:

El NVAL if the value of the argument name is invalid.

SEE ALSO
fpathconf(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/sysconf
svid

Page: 274

system(BA_OS) system(BA_OS)

Comments

A word beginning with the character # causes that word and all the following char-
acters up to a newline to be ignored.

Command Substitution

The standard output from a command enclosed within grave-accents (* ‘) may be
used as part or all of a word; trailing newlines are removed.

Parameter Substitution

The character $ is used to introduce substitutable keyword-parameters.

${ parameter} The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name.

Keyword-parameters (also known as variables) may be assigned values by writing:
parameter-name = value

The following parameters are automatically set:

Parameter Description

? The decimal value returned by the last synchronously executed
command in this call to syst en() .

$ The process-number of this process.

! The process-number of the last background command invoked in
this call to systen().

The following parameters are used by the command execution process:

Parameter Description
HOVE The initial working (home) directory.
PATH The search path for commands (see Execution, below).

Blank Interpretation

After parameter and command substitution, the results of substitution are scanned
for internal field separator characters (space, tab and newline) and split into distinct
arguments where such characters are found. Explicit null arguments ("" or’ ') are
retained. Implicit null arguments (those resulting from parameters that have no
values) are removed.

File Name Generation

Page 2

Following substitution, each word in the command is scanned for the characters *,
?,and [. If one of these characters appears the word is regarded as a pattern. The
word is replaced with alphabetically sorted file names that match the pattern. If no
filename is found that matches the pattern, the word is left unchanged. The charac-
ter . at the start of a filename or immediately following the character /, as well as
the character / itself, must be matched explicitly.

FINAL COPY
June 15, 1995
File: ba_os/system
svid

Page: 276

system(BA_OS) system(BA_OS)

first associates file descriptor 1 with file xxx. It associates file descriptor 2 with the
file associated with file descriptor 1 (i.e., xxx). If the order of redirections were
reversed, file descriptor 2 would be associated with the terminal (assuming file
descriptor 1 had been) and file descriptor 1 would be associated with file xxx.

If a command is followed by the character & the default standard input for the com-
mand is the empty file / dev/ nul | . Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking process as modified by
input/output specifications.

Environment

The environment [see exec(BA_OS)] is a list of parameter name-value pairs passed to
an executed program in the same way as a normal argument list. On invocation,
the environment is scanned and a parameter is created for each name found, giving
it the corresponding value.

The environment for any simple-command may be augmented by prefixing it with
one or more assignments to parameters. For example:

TERME450 cmd ;

Signals

The SI A NT and SI GQUI T signals for an invoked command are ignored if the com-
mand is followed by the character &; otherwise signals have the values inherited by
the command execution process from its parent.

Execution

The above substitutions are carried out each time a command is executed. A new
process is created and an attempt is made to execute the command via the exec rou-
tines [see exec(BA_OS)].

The parameter PATH defines the search path for the directory containing the com-
mand. The character : separates pathnames. NOTE: The current directory is
specified by a null pathname, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If the command name
contains the character / the search path is not used. Otherwise, each directory in
the path is searched for an executable file until the first such executable is found or
until the last directory in the path is searched.

RETURN VALUE

If the argument is a null pointer, syst en() returns non-zero only if a command
processor is available. If the argument is not a null pointer, and upon successful
completion, the function systen() returns the exit status of the command
language interpreter in the format specified by wai t pi d() [see wait(BA_OS)].
Errors, such as syntax errors, cause a non-zero return value and execution of the
command is abandoned. Otherwise the function syst em() returns a value of - 1
and sets er r no to indicate the error.

ERRORS

Page 4

Under the following conditions, the function syst en{() fails and sets err no to:

EAGAI N if the system imposed limit on the total number of processes under
execution system wide {PROC _MAX} or by a single user ID
{CHI LD_MAX} would be exceeded.

FINAL COPY
June 15, 1995
File: ba_os/system
svid

Page: 278

system(BA_OS) system(BA_OS)

El NTR if the function syst enm() was interrupted by a signal.

ENOVEM if the process requires more space than the system is able to supply.
FILES

/ dev/ nul |
USAGE

If possible, applications should use the the function syst enm(), which is easier to
use and supplies more functions, rather than the f or k() and exec routines.

SEE ALSO
dup(BA_OS), exec(BA_OS), fork(BA_OS), passwd(BA_ENV), pipe(BA_OS),
signal(BA_ENV), ulimit(BA_0OS), umask(BA_OS), wait(BA_OS).

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995
File: ba_os/system
svid

Page: 279

telldir (BA_OS) telldir (BA_OS)

NAME
telldir — current location of a named directory stream
SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <dirent. h>

long telldir (D R *dirp);
DESCRIPTION
The function t el | di r () returns the current location associated with the named
directory.
RETURN VALUE
Upon successful completion, the functiont el | di r () returns the current location.

SEE ALSO
directory(BA_OS), seekdir(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/telldir
svid

Page: 280

termios (BA_OS) termios (BA_OS)

NAME

termios: tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfgetospeed,
cfgetispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp, tcgetsid — get and set ter-
minal attributes, line control, get and set baud rate, get and set terminal foreground
process group ID, get terminal session ID

SYNOPSIS

#i ncl ude <term os. h>
#i ncl ude <unistd. h>

int tcgetattr(int fildes, struct term os *termios_p);

int tcsetattr(int fildes, int optional_actions, struct terni os *termios_p);
int tcsendbreak(int fildes, int duration);

int tcdrain(int fildes);

int tcflush(int fildes, int queue_ selector);

int tcflow(int fildes, int action);

speed_t cfgetospeed(struct termn os *termios_p);

int cfsetospeed(struct term os *termios_p, speed_t speed);
speed_t cfgetispeed(struct term os *termios_p);

int cfsetispeed(struct term os *termios_p, speed_t speed);
#i ncl ude <sys/types. h>

#i ncl ude <term os. h>

pid_t tcgetpgrp(int fildes);

int tcsetpgrp(int fildes, pid_t pgid);

pid_t tcgetsid(int fildes);

DESCRIPTION

The termios functions describe a general terminal interface that is provided to con-
trol asynchronous communications ports. A more detailed overview of the termi-
nal interface can be found in termio(BA_DEV). That section also describes an
i octl () interface that can be used to access the same functionality. However, the
function interface described here is the preferred user interface.

Many of the functions described here have a termios_p argument that is a pointer to
a term os structure. This structure contains the following members:

tcflag_t c_iflag; /* input nodes */
tcflag_t c_oflag; /* output nodes */
tcflag_t c_cflag; /* control nodes */
tcflag_t c_Iflag; /* 1ocal nodes */
cc_t c_cc[NCCs] ; /* control chars */

These structure members are described in detail in termio(BA_DEV).

Page 1

FINAL COPY
June 15, 1995
File: ba_os/termios
svid

Page: 281

termios (BA_OS) termios (BA_OS)

Page 2

Thetcgetattr () function gets the parameters associated with the object referred
by fildes and stores them in the t er m os structure referenced by termios_p. This
function may be invoked from a background process; however, the terminal attri-
butes may be subsequently changed by a foreground process.

The tcsetattr() function sets the parameters associated with the terminal
(unless support is required from the underlying hardware that is not available)
from the t er m os structure referenced by termios_p as follows:

If optional_actions is TCSANOW the change occurs immediately.

If optional_actions is TCSADRAI N, the change occurs after all output written
to fildes has been transmitted. This function should be used when changing
parameters that affect output.

If optional_actions is TCSAFLUSH, the change occurs after all output written
to the object referred by fildes has been transmitted, and all input that has
been received but not read will be discarded before the change is made.

The symbolic constants for the values of optional_actions are defined in
<term o0s. h>.

If the terminal is wusing asynchronous serial data transmission, the
t csendbreak() function causes transmission of a continuous stream of zero-
valued bits for a specific duration. If duration is zero, it causes transmission of
zero-valued bits for at least 0.25 seconds, and not more than 0.5 seconds. If duration
is not zero, zero-valued bits are not transmitted.

If the terminal is not using asynchronous serial data transmission, the
t csendbreak() function sends data to generate a break condition or returns
without taking any action.

The t cdrai n() function waits until all output written to the object referred to by
fildes has been transmitted.

Thet cf | ush() function discards data written to the object referred to by fildes but
not transmitted, or data received but not read, depending on the value of
queue_selector:

If queue_selector is TCl FLUSH, it flushes data received but not read.
If queue_selector is TCOFLUSH, it flushes data written but not transmitted.

If queue_selector is TCI OFLUSH, it flushes both data received but not read,
and data written but not transmitted.

The t cf I om() function suspends transmission or reception of data on the object
referred to by fildes, depending on the value of action:

If action is TCOOFF, it suspends output.
If action is TCOQN, it restarts suspended output.

If action if TCl OFF, the system transmits a STOP character, which is
intended to cause the terminal device to stop transmitting data to the sys-
tem.

FINAL COPY
June 15, 1995
File: ba_os/termios
svid

Page: 282

termios (BA_OS) termios (BA_OS)

If action is TClI ON, the system transmits a START character, which is
intended to cause the terminal device to start transmitting data to the sys-
tem.

The baud rate functions are provided for getting and setting the values of the input
and output baud rates in the t er mi os structure. The effects on the terminal device
described below do not become effective until the tcsetattr() function is suc-
cessfully called.

The input and output baud rates are stored in the t er m os structure. The values
shown in the table are supported. The names in this table are defined in
<term os. h>.

Name Description Name Description
BO Hang up B600 600 baud
B50 50 baud B1200 1200 baud
B75 75 baud B1800 1800 baud
B110 110 baud B2400 2400 baud
B134 134.5 baud B4800 4800 baud
B150 150 baud B9600 9600 baud
B200 200 baud B19200 19200 baud
B300 300 baud B38400 38400 baud

cf get ospeed() gets the output baud rate and stores it in the t er m os structure
pointed to by termios_p.

cfsetospeed() sets the output baud rate stored in the term os structure
pointed to by termios_p to speed. The zero baud rate, BO, is used to terminate the
connection. If BO is specified, the modem control lines are no longer asserted. Nor-
mally, this will disconnect the line.

cf geti speed() returns the input baud rate stored in the termni os structure
pointed to by termios_p.

cf seti speed() sets the input baud rate stored in the t er mi os structure pointed
to by termios_p to speed. If the input baud rate is set to zero, the input baud rate will
be specified by the value of the output baud rate. Attempts to set unsupported
baud rates will be ignored. This refers both to changes to baud rates not supported
by the hardware, and to changes setting the input and output baud rates to dif-
ferent values if the hardware does not support this.

t cset pgrp() sets the foreground process group ID of the terminal specified by
fildes to pgid. The file associated with fildes must be the controlling terminal of the
calling process and the controlling terminal must be currently associated with the
session of the calling process. The value of pgid must match a process group ID of a
process in the same session as the calling process.

t cget pgr p() returns the foreground process group 1D of the terminal specified by
fildes. The function t cget pgr p() is allowed from a process that is a member of a
background process group; however, the information may be subsequently
changed by a process that is a member of a foreground process group.

Page 3

FINAL COPY
June 15, 1995
File: ba_os/termios
svid

Page: 283

termios (BA_OS) termios (BA_OS)

t cget si d() returns the session ID of the terminal specified by fildes.

RETURN VALUE

Upon successful completion, the function t cget pgr p() returns the process group
ID of the foreground process group associated with the terminal; otherwise, it
returns a value of —1 and sets er r no to indicate an error.

Upon successful completion, tcgetsi d() returns the session ID associated with
the terminal. Otherwise, a value of —1 is returned and err no is set to indicate an
error.

Upon successful completion, cf geti speed() returns the input baud rate stored
inthe t er m os structure.

Upon successful completion, cf get ospeed() returns the output baud rate stored
inthe t er m os structure.

Upon successful completion, all other functions return a value of 0. Otherwise, a
value of —1 is returned and er r no is set to indicate an error.

ERRORS

Page 4

Under the following conditions, the described functions fail and set er r no to:
EBADF if the fildes argument is not a valid file descriptor.
ENOTTY if the file associated with fildes is not a terminal.

Additionally, specific functions fail and set er r no as follows:
Under the following conditions, the functiont cset attr () fails and sets err no to:

El NVAL if the optional_actions argument is not a proper value, or an attempt
was made to change an attribute represented in the term os
structure to an unsupported value.

Under the following conditions, the function t csendbr eak() fails and sets er r no
to:

El NVAL if the device does not support the t csendbr eak() function.
Under the following conditions, the function t cdr ai n() fails and sets er r no to:

El NTR if a signal interrupted the t cdr ai n() function.

El NVAL if the device does not support the t cdr ai n() function.

Under the following conditions, the function t cf | ush() fails and sets er r no to:

El NVAL if the device does not support the t cfl ush() function, or the

queue_selector argument is not a proper value.
Under the following conditions, the function t cf | ow() fails and sets er r no to:

El NVAL if the device does not support the t cf | ow() function or the action
argument is not a proper value.

Under the following conditions, the function t cget pgr p() fails and sets er r no to:

ENOTTY if the calling process does not have a controlling terminal, or the
file is not the controlling terminal.

FINAL COPY
June 15, 1995
File: ba_os/termios
svid

Page: 284

termios (BA_OS) termios (BA_OS)

Under the following conditions, the function t cset pgr p() fails and sets er r no to:

EPERM if pgid does not match the process group of an existing process in
the same session as the calling process.

El NVAL if the value of the pgid argument is not a valid process group ID.

ENOTTY if the calling process does not have a controlling terminal, or the

file is not the controlling terminal, or the controlling terminal is no
longer associated with the session of the calling process.

Under the following conditions, the function t cget si d() fails and sets er r no to:

EACCES if fildes is a terminal that is not allocated to a session.
SEE ALSO
setsid(BA_OS), setpgid(BA_OS), termios(BA_ENV).
LEVEL
Level 1.
Page 5
FINAL COPY

June 15, 1995
File: ba_os/termios
svid

Page: 285

time(BA_OS) time(BA_OS)

NAME
time — get time

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <tinme. h>

tinme_t time(time_t *tloc);

DESCRIPTION
The function t i me() returns the value of time in seconds since 00:00:00 UTC, Janu-
ary 1, 1970.

As long as the argument tloc is not a null pointer, the return value is also stored in
the location to which the argument tloc points.

The actions of the function ti me() are undefined if the argument tloc points to an
invalid address.

RETURN VALUE
Upon successful completion, the function ti ne() returns the value of time; other-
wise, it returns (time_t)-1.

SEE ALSO
stime(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/time

svid

Page: 286

times (BA_OS) times (BA_OS)

NAME
ti mes — get process and child process times

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/tines. h>

clock t tines(struct tns [huffer);

DESCRIPTION
ti mes fills the t s structure pointed to by buffer with time-accounting information.
The t s structure is defined in sys/ ti nes. h and includes the following fields:

cl ock_t tms_utime;
cl ock_t tms_stine;
clock_t tns_cuti e;
cl ock_t tms_csti ne;

This information comes from the calling process and each of its terminated child
processes for which it has executed a wait routine. All times are reported in clock
ticks. The clock ticks at a system-dependent rate. The specific value of this rate for
an implementation is defined, in ticks per second, by the variable CLK_TCK, found in
the include filel imts. h.

tms_ut i me is the SMtime used while executing instructions in the user space of the
calling process.

t ms_sti me is the SMtime used by the system on behalf of the calling process.

tms_cutime is the sum of the tnms_utime and the tns_cutine of the child
processes.

tms_cstime is the sum of the tns_stime and the tns_cstime of the child
processes.

Return Values
On success, times returns the elapsed real time in clock ticks from an arbitrary
point in the past (for example, system start-up time). This point does not change
from one invocation of ti mes to another. On failure, times returns -1 and sets
err no to identify the error.

Errors
In the following conditions, t i mes fails and sets er r no to:

EFAULT buffer points to an invalid address.
SEE ALSO

exec(BA_OS), fork(BA_OS), wai t (BA_OS), wai ti d(BA_OS), wai t pi d(BA_OS),
LEVEL

Level 1.

NOTICES
Considerations for Threads Programming
Statistics are gathered at the process level and represent the combined usage of all
contained threads.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/times
svid

Page: 287

ulimit (BA_OS) ulimit (BA_OS)

NAME
ulimit — get and set user limits

SYNOPSIS
#include <ulimt.h>

long ulimt(int emd, ... /* arg */);

DESCRIPTION
The function ul i mi t () provides for control over process limits.

Values available for the argument cmd are:

UL_CETFSI ZE
Get the file size limit of the process. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be
read.

UL_SETFSI ZE

Set the file size limit of the process equal to arg, taken as a | ong.
Any process may decrease this limit, but only a process with
appropriate privileges may increase the limit. The new file size
limit is returned.

RETURN VALUE
Upon successful completion, the function ul i m t () returns a non-negative value;
otherwise, it returns a value of —1, the limit is unchanged and er r no is set to indi-
cate an error.

ERRORS
Under the following condition, the function ul i mi t () fails and sets er r no to:

El NVAL if the cmd argument is not valid.
EPERM if a process not having appropriate privileges attempts to increase its file
size limit.
SEE ALSO
getrlimit(BA_OS), write(BA_OS).

FUTURE DIRECTIONS
To be removed in a future issue of the SVID.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/ulimit
svid

Page: 288

ustat (BA_OS) ustat (BA_OS)

NAME
ust at — get file system statistics

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <ustat. h>

int ustat(dev_t dev, struct ustat [huf);

DESCRIPTION
ust at returns information about a mounted file system. dev is a device number
identifying a device containing a mounted file system [see nakedev(3C)]. buf is a
pointer to a ust at structure that includes the following elements:

daddr_t f_tfree; /O Total free blocks O
ino t f _tinode; / O Nunber of free inodes [0
char f fnane[6]; /OFilsys nanme O

char f_fpack[6]; /0OFilsys pack nane 00

Return Values
On success, ust at returns 0. On failure, ust at returns -1 and sets err no to iden-
tify the error.

Errors
In the following conditions, ust at fails and sets er r no to:

El NVAL dev is not the device number of a device containing a mounted file sys-
tem.
EFAULT buf points outside the process’s allocated address space.
El NTR A signal was caught during a ust at system call.
ENCLI NK dev is on a remote machine and the link to that machine is no longer
active.
ECOW dev is on a remote machine and the link to that machine is no longer
active.
SEE ALSO
st at (BA_OS)
LEVEL
Level 2.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/ustat
svid

Page: 289

umask (BA_OS) umask (BA_OS)

NAME
unask — set and get file creation mask

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

node_t unask(node_t cmask) ;

DESCRIPTION
unask sets the process’s file mode creation mask to cmask and returns the previous
value of the mask. Only the access permission bits of cmask and the file mode crea-
tion mask are used.

Return Values
unask returns the previous value of the file mode creation mask.

SEE ALSO
chnod (BA_OS), creat (BA_OS), nkdir (BA_OS), nknod (BA_OS), open (BA_OS),
sh (BU_CMD), st at (BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming
The file creation mask is an attribute of the containing process and is shared by
sibling threads.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/umask
svid

Page: 290

umount (BA_OS)

NAME

umount (BA_OS)

unount —unmount a file system

SYNOPSIS

#i ncl ude <sys/ nount. h>
i nt umount (const char [file) ;

DESCRIPTION

unount requests that a previously mounted file system contained on the block spe-
cial device or directory identified by file be unmounted. file is a pointer to a path
name. After unmounting the file system, the directory upon which the file system
was mounted reverts to its ordinary interpretation.

unount may be invoked only by a process with appropriate privileges.

Return Values

On success, unount returns 0. On failure, unount returns -1 and sets errno to

identify the error.

Errors

In the following conditions, umount fails and sets er r no to:

EBUSY
El NVAL
El NVAL
ELCCP

ENAMETOOLONG

ENOID R

ENCENT

ENOTBLK
EPERM
NOTICES

A file on file is busy.
file does not exist.
file is not mounted.

Too many symbolic links were encountered in translating the
path pointed to by file.

The length of the file argument exceeds {PATH _MAX}, or the
length of a file component exceeds {NAME NMAX} while
PC8l X NO TRUNC is in effect.

file does not point to a directory.

A component of the path prefix does not exist or is a null
pathname.

file is not a block special device.
The calling process does not have the appropriate privilege.

unount will now resolve the nount _poi nt argument using r eal pat h(3C) before
any processing is performed.

USAGE

The function unount is not recommended for use by application programs.

SEE ALSO
nmount (BA_QOS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/umount
svid

Page: 291

uname(BA_OS) uname(BA_OS)

NAME

uname — get name of current operating system

SYNOPSIS

#i ncl ude <sys/utsnane. h>

i nt unanme(struct utsname *name);

DESCRIPTION

The function unane() stores information identifying the current operating system
in the structure pointed to by the argument name.

The function unanme() wuses the utsnane structure defined by the
<sys/ ut snane. h> header file whose members include:

char sysnanme[{ SYS_NMLN}];
char nodenane[{ SYS_NVMLN}] ;
char rel ease[{SYS_ NMLN}];
char version[{SYS_ NM.N}];
char machi ne[{ SYS_NMLN}] ;

The function unane() returns a null-terminated character string naming the
current operating system in the character array sysnarne.

Similarly, the character array nodenane contains the name that the system is
known by on a communications network.

The members r el ease and ver si on further identify the operating system.

The member machi ne contains a standard name that identifies the hardware on
which the operating system is running.

RETURN VALUE

LEVEL

Upon successful completion, the function unane() returns a non-negative value;
otherwise, it returns a value of —1 and sets er r no to indicate an error.

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/uname
svid

Page: 292

unlink (BA_OS) unlink (BA_OS)

NAME
unlink — remove directory entry

SYNOPSIS
#i ncl ude <unistd. h>

i nt unlink(const char *path);

DESCRIPTION

The function unl i nk() removes the directory entry named by the pathname
pointed to by the argument path and decrements the link count of the file referenced
by the directory entry. When all links to a file have been removed and no process
has an outstanding reference to the file, the space occupied by the file is freed and
the file ceases to exist. If one or more processes have outstanding references to the
file when the last link is removed, space occupied by the file is not released until all
references to the file have been removed. If path is a symbolic link, the symbolic
link is removed. The path argument should not name a directory unless the process
has appropriate privileges and the implementation supports unl i nk() on direc-
tories. Applications should use r ndi r () to remove directories.

Upon successful completion the function unlink() marks for update the
st _ctinme and st _nt i ne fields of the parent directory. Also, if the file’s link count
is not zero, the st _ct i ne field of the file is marked for update.

RETURN VALUE
Upon successful completion, the function unlink() returns O0; otherwise, it
returns —1, the named file is not changed and er r no is set to indicate an error.

ERRORS
Under the following conditions, the function unl i nk() fails and sets er r no to:

ENOTDI R if a component of the path prefix is not a directory.

ENCENT if the named file does not exist, or path points to an empty string.

EACCES if a component of the path prefix denies search permission.

EACCES if the directory containing the link to be removed denies write
permission.

EPERM if the named file is a directory and the process does not have
appropriate privileges.

EBUSY if the entry to be unlinked is the mount point for a mounted file
system.

ERCFS if the directory entry to be unlinked is part of a read-only file sys-
tem.

ENAMETOOLONG if the length of a pathname exceeds { PATH_MAX}, or pathname
component is longer than { NAME_MAX} while
{_POCSI X_NO_TRUNC} is in effect.

ELOOP if too many symbolic links are encountered in translating the
path.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/unlink
svid

Page: 293

unlink (BA_OS)

SEE ALSO
close(BA_0OS), open(BA_OS), remove(BA_OS), rmdir(BA_OS) unlink(BA_OS).

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: ba_os/unlink
svid

Page: 294

unlink (BA_OS)

utime (BA_OS) utime (BA_OS)

NAME
utime - set file access and modification times

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <utinme. h>

int utinme(const char *path, const struct utinbuf *times);

DESCRIPTION
The function ut i me() sets the access and modification times of the named file.

The argument path points to a pathname naming a file.

If the argument times is null, the access and modification times of the file are set to
the current time. A process must be the owner of the file or have appropriate
privileges to use the function ut i me() in this manner.

If the argument times is not null, times is interpreted as a pointer to a structure
ut i mbuf (see below), and the access and modification times are set to the values
contained in the designated structure. Only the owner of the file or a process with
appropriate privileges may use the function uti me() this way.

The times in the structure uti nbuf are measured in seconds since 00:00:00 UTC
Jan. 1, 1970.

The structure ut i mbuf contains the following members:

tine_t actine; /* access tinme */

time_t nodtine; /* nodification time */
The function utine() also causes the time of the last file status change
(st _cti ne) to be updated [see stat(BA_OS)].

RETURN VALUE
Upon successful completion, the function ut i me() returns a value of 0; otherwise,
it returns a value of —1, the file times are not affected and er r no is set to indicate

an error.
ERRORS

Under the following conditions, the function ut i ne() fails and sets er r no to:

ENCENT if the named file does not exist, or path points to an empty string.

ENOTDI R if a component of the path prefix is not a directory.

EACCES if a component of the path prefix denies search permission.

EPERM if the effective user ID does not match the owner of the file or does
not have the appropriate privileges and the argument times is not
null.

EACCES if the effective user ID does not match the owner of the file, or does
not have the appropriate privileges and the argument times is null
and write access is denied.

ERCFS if the file system containing the file is mounted read-only.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/utime
svid

Page: 295

utime (BA_OS) utime (BA_OS)

ENAVETOOLONG
if the length of a pathname exceeds { PATH_MAX}, or pathname
component is longer than { NAVE_VAX} while
{_POSI X_NO _TRUNC} is in effect.

ELOOP if too many symbolic links are encountered in translating the path.
SEE ALSO
stat(BA_OS), utime(BA_ENV).
LEVEL
Level 1.
Page 2
FINAL COPY

June 15, 1995
File: ba_os/utime
svid

Page: 296

wait (BA_OS) wait (BA_OS)

NAME

wai t — wait for child process to stop or terminate

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>

pid_t wait(int *stat_loc);

DESCRIPTION

wai t suspends the calling process until one of its immediate children terminates or
until a child that is being traced stops because it has received a signal. The wai t
system call will return prematurely if a signal is received. If all child processes
stopped or terminated prior to the call onwai t, return is immediate.

If wai t returns because the status of a child process is available, it returns the pro-
cess ID of the child process. If the calling process had specified a non-zero value for
stat_loc, the status of the child process will be stored in the location pointed to by
stat_loc. It may be evaluated with the macros described on wst at . In the following,
status is the object pointed to by stat_loc:

If the child process stopped, the high order 8 bits of status will contain the
number of the signal that caused the process to stop and the low order 8 bits
will be set equal to WSTCPFLG

If the child process terminated due to an exi t call, the low order 8 bits of
status will be 0 and the high order 8 bits will contain the low order 8 bits of
the argument that the child process passed to exi t. [see exi t (BA_OS)].

If the child process terminated due to a signal, the high order 8 bits of status
will be 0 and the low order 8 bits will contain the number of the signal that
caused the termination. In addition, if WOOREFLG is set, a “‘core image’ will
have been produced. [see si gnal (BA_OS)].

If wai t returns because the status of a child process is available, then that status
may be evaluated with the macros defined by wst at .

If a parent process terminates without waiting for its child processes to terminate,
the parent process | D of each child process is set to 1. This means the initialization
process inherits the child processes.

Return Values

If wai t returns due to a stopped or terminated child process, the process | D of the
child is returned to the calling process. Otherwise, wai t returns —1 and sets err no
to identify the error.

Errors
In the following conditions, wai t fails and sets er r no to:
ECH LD The calling process has no existing unwaited-for child processes.
El NTR The function was interrupted by a signal.
SEE ALSO

exec(BA_OS), f or k(BA_OS), pause(BA_OS), pt r ace(KE_OS), si gnal (BA_OS),

Page 1

FINAL COPY
June 15, 1995
File: ba_os/wait
svid

Page: 297

wait (BA_OS)

LEVEL
Level 1.

NOTICES
See NOTICES in si gnal (BA_OS).

If S| CLDis held, then wai t does not recognize death of children.

Considerations for Threads Programming

While one thread is blocked, siblings might still be executing.

Page 2

FINAL COPY

June 15, 1995

File: ba_os/wait
svid

Page: 298

wait (BA_OS)

waitid (BA_OS) waitid (BA_OS)

NAME
wai ti d —wait for child process to change state

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <wait. h>
int waitid(idtype_ t idtype, id_t id, siginfo_t *infop,
i nt options);
DESCRIPTION
wai tid suspends the calling process until one of its children changes state. It
records the current state of a child in the structure pointed to by infop. If a child
process changed state prior to the call towai ti d, wai ti d returns immediately.

The idtype and id arguments specify which children wai t i d is to wait for.

If idtype is P_PI D, wai ti d waits for the child with a process ID equal to
(pid_t) id.

If idtype is P_PA D, wai t i d waits for any child with a process group ID equal
to(pid_t) id.

If idtype is P_ALL, wai t i d waits for any children and id is ignored.

The options argument is used to specify which state changes waitid is to wait for. It
is formed by an OR of any of the following flags:

VEEXI TED Wait for process(es) to exit.

\WRAPPED Wait for traced process(es) to become trapped or reach a break-
point [see pt r ace(KE_OS)].

WSTCPPED Wait for and return the process status of any child that has

stopped upon receipt of a signal.
WCCNTI NUED Return the status for any child that was stopped and has been con-

tinued.
VWNCHANG Return immediately.
VNOM T Keep the process in a waitable state. This will not affect the state

of the process on subsequent waits.

infop must point to a si gi nfo_t structure, as defined in si gi nfo. siginfo_t is
filled in by the system with the status of the process being waited for.

Return Values
If wai ti d returns due to a change of state of one of its children, it returns 0. Other-
wise, wai ti d returns -1 and sets er r no to identify the error.

Errors
In the following conditions, wai t i d fails and sets er r no to:
EFAULT infop points to an invalid address.
El NTR wai ti d was interrupted due to the receipt of a signal by the calling
process.
Page 1
FINAL COPY

June 15, 1995
File: ba_os/waitid
svid

Page: 299

waitid (BA_OS) waitid (BA_OS)

El NVAL 0 or another invalid value was specified for options.
El NVAL idtype and id specify an invalid set of processes.
ECH LD The set of processes specified by idtype and id does not contain any
unwaited-for processes.
SEE ALSO
exec(2), exi t (2), f ork(2),
LEVEL
Level 1.
NOTICES

Considerations for Threads Programming
While one thread is blocked, siblings might still be executing.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/waitid
svid

Page: 300

waitpid (BA_OS) waitpid (BA_OS)

NAME

wai t pi d — wait for child process to change state

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>

pidt waitpid (pid_t pid, int Oktat loc, int options);

DESCRIPTION

wai t pi d suspends the calling process until one of its children changes state; if a
child process changed state prior to the call to wai t pi d, return is immediate. pid
specifies a set of child processes for which status is requested.

If pid is equal to (pi d_t) —1, status is requested for any child process.

If pid is greater than (pi d_t) O, it specifies the process ID of the child process
for which status is requested.

If pid is equal to (pi d_t) O status is requested for any child process whose
process group ID is equal to that of the calling process.

If pid is less than (pi d_t) —1, status is requested for any child process whose
process group 1D is equal to the absolute value of pid .

If wai t pi d returns because the status of a child process is available, then that status
may be evaluated with the macros defined by If the calling process had specified a
non-zero value of stat_loc, the status of the child process will be stored in the loca-
tion pointed to by stat_loc.

The options argument is constructed from the bitwise inclusive OR of zero or more of
the following flags, defined in the header file sys/wai t . h:

WOONTI NUED the status of any continued child process specified by pid, whose
status has not been reported since it continued (from a job control
stop), shall also be reported to the calling process.

WNCHANG wai t pi d will not suspend execution of the calling process if status
is not immediately available for one of the child processes
specified by pid .

WOMI T keep the process whose status is returned in stat_loc in a waitable
state. The process may be waited for again with identical results.

WINTRACED the status of any child processes specified by pid” that are stopped,
and whose status has not yet been reported since they stopped,
shall also be reported to the calling process.

wai t pi d with options equal to WINTRACED and pid~ equal to (pi d_t)-1 is identical to
acall towai t (BA_OS).

Return Values

If wai t pi d returns because the status of a child process is available, it returns the
process ID of the child process for which status is reported. If waitpid was
invoked with WNCHANG set in options, it has at least one child process specified by pid
for which status is not available, and status is not available for any process specified
by pid, wai t pi d returns 0. Otherwise, wai t pi d returns —1 and sets err no to iden-
tify the error.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/waitpid
svid

Page: 301

waitpid (BA_OS) waitpid (BA_OS)

Errors
In the following conditions, wai t pi d fails and sets er r no to:
El NTR wai t pi d was interrupted due to the receipt of a signal sent by the
calling process.
El NVAL An invalid value was specified for options.
ECH LD The process or process group specified by pid does not exist or is

not a child of the calling process or can never be in the states
specified by options.
SEE ALSO
exec(BA_0S), exit(BA_0S), fork(BA_OS), pause(BA_OS), ptrace(KE_OS),
si gacti on(BA_OS)
LEVEL
Level 1.

NOTICES
Considerations for Threads Programming
While one thread is blocked, siblings might still be executing.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/waitpid
svid

Page: 302

write (BA_OS) write (BA_OS)

Page 2

If O NOCNBLOCK is set, wi t e returns - 1 and sets er r no to EAGAI N.

If O_ NONBLOXK is clear, wri t e sleeps until all blocking locks are removed or
the wri t e is terminated by a signal.

If awrite requests that more bytes be written than there is room for—for example,
if the write would exceed the process file size limit [see getrlimt (BA_OS) and
ul i mt (BA_OS)], the system file size limit, or the free space on the device—only as
many bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A wite of 512-bytes
returns 20. The next wite of a non-zero number of bytes gives a failure return
(except as noted for pipes and FIFO below).

Write requests to a pipe or FIFO are handled the same as a regular file with the fol-
lowing exceptions:

There is no file offset associated with a pipe, hence each write request
appends to the end of the pipe.

Write requests of { Pl PE_BUF} bytes or less are guaranteed not to be inter-
leaved with data from other processes doing writes on the same pipe.
Writes of greater than { Pl PE_BUF} bytes may have data interleaved, on
arbitrary boundaries, with writes by other processes, whether the
O_NONBLOCK flag is are set.

If O NONBLOCK and O_NDELAY are clear, a write request may cause the pro-
cess to block, but on normal completion it returns nbyte.

If O NONBLOCK is set, wri t e requests are handled in the following way: the
write does not block the process; write requests for { Pl PE_BUF} or fewer
bytes either succeed completely and return nbyte, or return - 1 and set err no
to EAGAIN. A wite request for greater than { Pl PE BUF} bytes either
transfers what it can and returns the number of bytes written, or transfers
no data and returns -1 with errno set to EAGAI N. Also, if a request is
greater than { Pl PE_BUF} bytes and all data previously written to the pipe
has been read, wri t e transfers at least { Pl PE_BUF} bytes.

When attempting to write to a file descriptor (other than a pipe or FIFO) that sup-
ports nonblocking writes and cannot accept the data immediately:

If O NONBLOCK is clear, wr i t e blocks until the data can be accepted.

If O NONBLOCK is set, wri t e does not block the process. If some data can be
written without blocking the process, wri t e writes what it can and returns
the number of bytes written. Otherwise, if O NONBLOCK is set, it returns —1
and sets er r no to EAGAI N.

For STREAMS files the operation of wite is determined by the values of the
minimum and maximum nbyte range (*‘packet size”) accepted by the stream. These
values are contained in the topmost stream module. Unless the user pushes the
topmost module [see | _PUSH in st r eans(BA_DEV)], these values can not be set or
tested from user level. If nbyte falls within the packet size range, nbyte bytes are
written. If nbyte does not fall within the range and the minimum packet size value
is 0, wi t e breaks the buffer into maximum packet size segments prior to sending
the data downstream (the last segment may be smaller than the maximum packet
size). If nbyte does not fall within the range and the minimum value is non-zero,

FINAL COPY
June 15, 1995
File: ba_os/write
svid

Page: 304

write (BA_OS)

write (BA_OS)

write fails and sets errno to ERANGE. Writing a zero-length buffer (nbyte is 0) to a
STREAMS device sends a zero-length message with 0 returned. However, writing a
zero-length buffer to a pipe or FIFO sends no message and 0 is returned. The user
program may issue the | _SWRCPT i oct | (BA_OS) to enable zero-length messages to
be sent across the pipe or FIFO [see st r eans(BA_DEV)].

When writing to a stream, data messages are created with a priority band of 0.
When writing to a stream that is not a pipe or FIFO:

If O NONBLOXK is not set, and the stream cannot accept data (the stream
write queue is full because of internal flow control conditions), wri t e blocks
until data can be accepted.

If O_ NONBLOXK is not set, and the and the stream cannot accept data, wite
returns - 1 and sets er r no to EAGAI N

If O NONBLOXK is not set, and the part of the buffer has already been written
when a condition occurs in which the stream cannot accept additional data,
wr i t e terminates and returns the number of bytes written.

Return Values

On success, wite and witev return the number of bytes actually written and
mark for update the st _cti nme and st _nti ne fields of the file. On failure, wite
and wri t ev return -1 and set er r no to identify the error.

Errors

In the following conditions, w i t e and wri t ev fail and set er r no to:

EAGAI N

EAGAI N

EAGAI N

EBADF
EDEADLK
EFAULT
EFBI G

El NTR
El NVAL

El O

Mandatory file/record locking is set, O NONBLOK is set, and there
is a blocking record lock.

Total amount of system memory available when reading via raw
170 is temporarily insufficient.

An attempt is made to write to a stream that can not accept data
with the or O_ NONBLOCK flag set.

fildes is not a valid file descriptor open for writing.
Thewr it e was going to go to sleep and cause a deadlock to occur.
buf points outside the process’s allocated address space.

An attempt is made to write a file that exceeds the process’s file
size limit or the maximum file size [see ul i m t (BA_OS)].

A signal was caught during the wri t e system call.

An attempt is made to write to a stream linked below a multi-
plexor.

The process is in the background and is attempting to write to its
controlling terminal whose TCSTCP flag is set; the process is neither
ignoring nor blocking SI GTTQU signals, and the process group of
the process is orphaned.

Page 3

FINAL COPY
June 15, 1995
File: ba_os/write
svid

Page: 305

write (BA_OS) write (BA_OS)

El O fildes points to a device special file that is in the closing state.

ENCLI NK fildes is on a remote machine and the link to that machine is no
longer active.

ENCER An attempt is made to write to a stream with insufficient STREAMS
memory resources available in the system.

ENCSPC Duringaw it e to an ordinary file, there is no free space left on the
device.

ENXI O The device associated with the file descriptor is a block-special or

character-special file and the file-pointer value is out of range.

EPI PE and Sl GPI PE signal
An attempt is made to write to a pipe that is not open for reading
by any process.

EPI PE An attempt is made to write to a FIFO that is not open for reading
by any process.

ERANGE An attempt is made to write to a stream with nbyte outside
specified minimum and maximum write range, and the minimum
value is non-zero.

ENCLCK Enforced record locking was enabled and { LOOK_MAX} regions are
already locked in the system.

In addition, in the following conditions wr i t ev fails and sets er r no to:

El NVAL iovent was less than or equal to 0, or greater than 16.

El NVAL Aniov_| en value in the iov array was negative.

El NVAL The sum of the i ov_| en values in the iov array overflowed a 32-bit
integer.

A wite to a STREAMS file can fail if an error message has been received at the
stream head. In this case, err no is set to the value included in the error message.

After carrier loss, M HANGUP is set, and a subsequent write will return -1 with errno
set to El O To write after disconnecting and reconnecting the line, set the CLOCAL
flag to tell the driver to ignore the state of the line and the driver will not send
M HANGUP to the stream head. If CLOCAL is not set, and hangup occurs, the applica-
tion is responsible for re-establishing the connection.

SEE ALSO

LEVEL

Page 4

creat (BA_OS), fcntl (BA_OS), |seek(BA_OS), open(BA_OS), pipe(BA_OS),
pwite(BA_OS), read(BA_OS), ul i nit (BA_OS)

Level 1.

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

FINAL COPY
June 15, 1995
File: ba_os/write
svid

Page: 306

write (BA_OS) write (BA_OS)

NOTICES
Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Page 5

FINAL COPY
June 15, 1995
File: ba_os/write
svid

Page: 307

FINAL COPY
June 15, 1995
File:

Page: 308

Base OS Library Routines

The following section contains the manual pages for the BA_LIB library routines.

Base OS Library Routines

FINAL COPY

June 15, 1995

File: ba_lib.cov
svid

Page: 309

FINAL COPY
June 15, 1995
File:

Page: 310

abs (BA_LIB) abs (BA_LIB)

NAME
abs, labs — return integer absolute value

SYNOPSIS
#i ncl ude <stdlib. h>

int abs(int i);
long labs(long I);
DESCRIPTION

The function abs() returns the absolute value of its integer operand. The function
| abs() returns the absolute value of its long operand.

USAGE
In two’s complement representation, the absolute value of the negative integer with
largest magnitude {I NT_M N} or { LONG_M N} is undefined. Some implementa-
tions may catch this as an error, but others may ignore it.

SEE ALSO
floor(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY

June 15, 1995

File: ba_lib/abs
svid

Page: 311

addsev (BA_LIB) addsev (BA_LIB)

NAME

addsev — define additional severities
SYNOPSIS

i nt addsev(int int.wval, const char *string);
DESCRIPTION

The function addsev() defines additional severities for use in subsequent calls to
pfrmt () orIfm (). addsev() associates an integer value int_val in the range
[5-255] with a character string. It overwrites any previous string association
between int_val and string.

If int_val is ORed with the flags passed to subsequent calls pfmt () or | fnt(),
string will be used as severity.

Passing a NULL string removes the severity.
Add-on severities are only effective within the applications defining them.
RETURN VALUE
addsev() returns 0 in case of success, -1 otherwise.
USAGE
Only the standard severities are automatically displayed per the locale in effect at

runtime. An application must provide the means for displaying locale-specific ver-
sions of add-on severities.

EXAMPLE
#define PANC 5
set | abel (" APPL");

setcat ("ny_appl ");

addsev(PANIC, gettxt(":26", "Panic"));

[* .0 0%

I fnt(stderr, MM SCFT| M APPL| PANLC, ":12: Cannot | ocate database\n");

will display the message to stderr and forward to the logging service:
APPL: Panic: Cannot |ocate database
SEE ALSO
gettxt(BA_LIB), Ifmt(BA_LIB), pfmt(BA_LIB).
FUTURE DIRECTIONS
This interface is to be removed when the three-year waiting period has expired.

LEVEL
Level 2, April 1991.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/addsev
svid

Page: 312

assert(BA_LIB) assert (BA_LIB)

NAME
assert — verify program assertion

SYNOPSIS
#i ncl ude <assert. h>

voi d assert (int expression);

DESCRIPTION
The assert () macro is useful for putting diagnostics into programs. When it is
executed, if expression is false (zero), assert () prints:

assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of

the source file and nnn the source line number of the assert () statement, the

latter are respectively the values of the preprocessor macros __FILE _ and
LI NE

USAGE
Compiling with the preprocessor option —DNDEBUG or with the preprocessor con-
trol statement #defi ne NDEBUG ahead of the #i nclude <assert.h> state-
ment will stop assertions from being compiled into the program.

SEE ALSO
abort(BA_OS), assert(BA_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/assert
svid

Page: 313

Bessel (BA_LIB) Bessel (BA_LIB)

NAME

Bessel: j0, j1, jn, y0, y1, yn — Bessel functions

SYNOPSIS

#i ncl ude <math. h>

doubl e j O(doubl e x);

doubl e j 1(doubl e x);

doubl e jn(int n, double x);
doubl e yO(doubl e x);

doubl e y1(double x);

doubl e yn(int n, double x);

DESCRIPTION

The functions j 0() andj 1() return Bessel functions of x of the first kind of orders
0 and 1, respectively. The function j n() returns the Bessel function of x of the first
kind of order n.

The functions y0() and y1() return Bessel functions of x of the second kind of
orders 0 and 1, respectively. The function yn() returns the Bessel function of x of
the second kind of order n.

For the functions y0(),y1(),and yn(), the argument x must be positive.

RETURN VALUE

LEVEL

A macro HUGE_VAL will be defined by the <mat h. h> header file. This macro
expands to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evalutates to
+00,

If an input parameter is NaN, then the function will return NaN and set errno to

The functions yO(), y1(), and yn() will return -HUGE_VAL when x is zero, and
set errno to EDOM

The functions y0(),y1(),and yn(), when x is negative, will return IEEE NaN (Not
a Number) if available, or —-HUGE_VAL otherwise. Errno will be set to EDOM

Values of x too large in magnitude cause the functions j 0(),j 1(),jn(), yo(),
y1(),andyn() to return zero and to set er r no to ERANGE.

Level 1

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/bessel
svid

Page: 314

bsearch (BA_LIB) bsearch (BA_LIB)

NAME

bsearch — binary search on a sorted table

SYNOPSIS

#i ncl ude <stdlib. h>

voi d *bsearch(const void *key, const void *base,
size_t nel, size_t width,
int (*compar)(const void *, const void *));

DESCRIPTION

The function bsear ch() is a binary search routine. It returns a pointer into a table
indicating where a datum may be found. The table must be previously sorted in
increasing order according to a user-provided comparison function, compar() [see
gsort(BA_LIB)].

The argument key points to an object to be sought in the table.
The argument base points to the element at the base of the table.
The argument nel is the number of elements in the table.

The argument width is the size of an element in bytes.

The argument compar is the name of the comparison function, which is called with
two arguments of type const voi d * that point to the elements being compared.
The compar() function must return an integer less than, equal to or greater than zero,
as the first argument is to be considered less than, equal to or greater than the
second.

RETURN VALUE

USAGE

Upon succesful completion, the function bsear ch() returns a pointer to a match-
ing member of the table. A null pointer is returned if the key cannot be found in the
table. If two members compare as equal, the member that is matched is
unspecified.

The pointers to the key and the element at the base of the table, key and base, respec-
tively, should be of type pointer-to-element and cast to type (const void *),
respectively.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

Although declared as type voi d *, the value returned should be cast into type
pointer-to-element.

EXAMPLE

The following example searches a table containing pointers to nhodes consisting of a
string and its length. The table is ordered alphabetically on the string in the node
pointed to by each entry. This code fragment reads in strings; it either finds the
corresponding node and prints out the string and its length or it prints an error
message.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

#defi ne TABSI ZE 1000

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/bsearch
svid

Page: 315

bsearch (BA_LIB) bsearch (BA_LIB)

struct node { /* these are in the table */
char *string;
int |ength;
b
struct node tabl e[TABSI ZE]; /* table to be searched */
{

struct node *node_ptr, node;
int node_conpare(); /* routine to conpare 2 nodes */
char str_space[20]; /* space to read string into */

node. string = str_space;
while (scanf("%", node.string) != ECF)
node_ptr = (struct node *)bsearch((const void *)(&node),
(const void *)table, TABSIZE,
si zeof (struct node), node_compare);
if (node_ptr !'= (char*)NULL)
(void)printf("string = %20s, length = %l\n",
node_ptr—>string, node_ptr—>length);
el se
(void) printf("not found: %\n", node.string);
¥ while */
}
/*
This routine conpares two nodes based on an
al phabetical ordering of the string field.
*/
i nt node_conpare(struct node *nodel, struct node *node2);
{

return strcnp(nodel->string, node2->string);

}
o1

SEE ALSO
hsearch(BA_LIB), Isearch(BA_LIB), gsort(BA_LIB), tsearch(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/bsearch
svid

Page: 316

catgets (BA_LIB) catgets (BA_LIB)

NAME
catgets — read a program message

SYNOPSIS
#i ncl ude <nl _types. h>

char *catgets(nl_catd catd, int set_ hum, int msg_num, const char
*S) ’

DESCRIPTION
The catgets function attempts to read message msg_num, in set set_num, from the
message catalogue identified by catd. catd is a catalogue descriptor returned from an
earlier call to cat open() [see catopen(BA_LIB)]. s points to a default message
string which will be returned by cat get s() if the identified message catalogue is
not currently available.

RETURN VALUE
If the identified message is retrieved successfully, cat get s() returns a pointer to
an internal buffer area containing the null terminated message string. If the call is
unsuccessful because the message catalogue identified by catd is not currently avail-
able, a pointer to s is returned.

SEE ALSO
catopen(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/catgets
svid

Page: 317

catopen (BA_LIB) catopen (BA_LIB)

NAME

cat open, cat cl ose — open/close a message catalog

SYNOPSIS

#i ncl ude <nl _types. h>
nl _catd catopen(const char [hame, int oflag);
int catclose(nl_catd catd);

DESCRIPTION

cat open opens a message catalog and returns a catalog descriptor. name specifies
the name of the message catalog to be opened. If name contains a */’’ then name
specifies a pathname for the message catalog. Otherwise, the environment variable
NLSPATH is used. If NLSPATH does not exist in the environment, or if a message
catalog cannot be opened in any of the paths specified by NLSPATH, then the default
path is used [see nl_types(BA_ENV)].

The names of message catalogs, and their location in the filestore, can vary from one
system to another. Individual applications can choose to name or locate message
catalogs according to their own special needs. A mechanism is therefore required
to specify where the catalog resides.

The NLSPATH variable provides both the location of message catalogs, in the form of
a search path, and the naming conventions associated with message catalog files.
For example:

NLSPATH=/ nl sl i b/ %./ %\ cat:/nl sl i b/ %N %

The metacharacter % introduces a substitution field, where % substitutes the
current setting of the locale (see below) and %\ substitutes the value of the name
parameter passed to cat open. Thus, in the above example, cat open will search in
/ nl sl'i b/ locale/name. cat, then in / nl sl i b/ name/ locale, for the required message
catalog.

The evaluation of locale as referenced by the substitution field % depends on the
argument oflag. When oflag is NL_CAT_LOCALE, the LC MESSAGES category as
returned by set | ocal e(BA_OS) is used to locate the message catalog. When oflag
is zero, the environment variable LANG locates the catalog without regard to the
LC MESSAGES category. If either of these methods fails, then the default language
as defined innl _t ypes. h is used.

For a complete description of the metacharacters available for NLSPATH, see
envvar (BA_ENV).

NLSPATH will normally be set up on a system wide basis (for example, in
/etc/profile) and thus makes the location and naming conventions associated
with message catalogs transparent to both programs and users.

cat cl ose closes the message catalog identified by catd.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/catopen
svid

Page: 318

catopen (BA_LIB) catopen (BA_LIB)

Return Values
If successful, cat open returns a message catalog descriptor for use in subsequent
calls to cat get s and cat cl ose. Otherwise cat open returns (nl _cat d) - 1.

cat cl ose returns zero if successful, otherwise -1.

SEE ALSO
cat get s(BA_LIB), envvar (BA_ENV), nl _types(BA_ENV), set| ocal e(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/catopen
svid

Page: 319

clock (BA_LIB) clock (BA_LIB)

NAME
clock — report CPU time used

SYNOPSIS
#i ncl ude <tine.h>

clock_t cl ock(void);

DESCRIPTION
The function cl ock() returns the amount of CPU time used since the first call to
the function cl ock(). The time reported is the sum of the user and system times
of the calling process and its terminated child processes for which it has executed
thewai t (), pcl ose(), orsyst em() routines.

To determine the time in seconds, the value returned by the cl ock() function
should be divided by the value of the macro CLOCKS PER_SEC (the number per
second of the value returned by the cl ock() function).

RETURN VALUE
If the processor time used is not available or its value cannot be represented, the
function returns the value (cl ock_t) - 1.

USAGE
The value returned by cl ock() is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution.

SEE ALSO
times(BA_OS), wait(BA_OS), popen(BA_OS), system(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/clock
svid

Page: 320

conv (BA_LIB) conv (BA_LIB)

NAME
conv: toupper, tolower, _toupper, _tolower, toascii — translate characters

SYNOPSIS
#i ncl ude <l ocal e. h>
#i ncl ude <ctype. h>

int toupper(int c);
int tolower(int c);
int _toupper(int c);
int _tolower(int c);
int toascii(int c);

DESCRIPTION

The functions t oupper () and tol ower () have as domain the range of the
get c() routine: an integer, the value of which is representable as an unsi gned
char, or EOF, which is defined by the <st di 0. h> header file and represents end-
of-file. If the argument of t oupper () represents a lower-case letter, the result is
the corresponding upper-case letter. If the argument of t ol ower () represents an
upper-case letter, the result is the corresponding lower-case letter. All other argu-
ments in the domain are returned unchanged.

The macros _toupper(), _tolower(), and toascii() are defined by the
<ctype. h> header file. The macros _t oupper () and _t ol ower () accomplish
the same thing as t oupper () and t ol ower (), but have restricted domains and
are faster. The macro _t oupper () requires an lower-case letter as its argument; its
result is the corresponding upper-case letter. The macro _t ol ower () requires an
upper-case letter as its argument; its result is the corresponding lower-case letter.
Arguments outside the domain cause undefined results.

The macro t oasci i () yields its argument with all bits turned off that are not part
of a standard ASCII character; it is intended for compatibility with other systems.

The functions t oupper () and tol ower() and the macros _t oupper() and
_tol ower () are affected by LC_CTYPE. In the " C" locale, or in a locale where shift
information is not defined, these functions determine the case of characters accord-
ing to the rules of the ASCIlI-coded character set. Characters outside the ASCII
range of characters are returned unchanged.

SEE ALSO
ctype(BA_LIB), getc(BA_LIB), setlocale(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/conv
svid

Page: 321

crypt (BA_LIB) crypt (BA_LIB)

NAME

crypt, setkey, encrypt — generate string encoding

SYNOPSIS

char *crypt(const char *key, const char *salt);
voi d setkey(const char *key);
voi d encrypt (char *block, int edflag);

DESCRIPTION

The function cr ypt () is a string-encoding function.

The argument key is a string to be encoded. The argument salt is a two-character
string chosen from the set [a—zA-Z0-9./]; this string is used to perturb the
encoding algorithm, after which the string that key points to is used as the key to
repeatedly encode a constant string. The returned value points to the encoded
string. The first two characters are the salt itself.

The functions set key() and encrypt () provide (rather primitive) access to the
encoding algorithm. The argument to set key() is a 64-bit string represented by a
character array of length 64 containing only the characters with numerical value 0
and 1. The string is divided into groups of 8 and the low-order bit in each group is
ignored; this gives a 56-bit key. This is the key that will be used with the above
mentioned algorithm to encode the string block with the function encrypt ().

The argument to encrypt () is a character array of length 64 containing only the
characters with numerical value 0 and 1. The argument array is modified in place
to a similar array representing the bits of the argument after having been subjected
to the encoding algorithm using the key set by set key() .

If the argument edflag is zero, the argument is encoded, otherwise it is decoded.

ERRORS

USAGE

LEVEL

Under the following conditions, these functions fail, and set err no to:
ENOSYS The functionality is not supported on this implementation.

The return value of the function crypt () points to static data that are overwritten
by each call.

Level 1.

Optional: the functionality of crypt (), setkey() and encrypt () may not be
present in all implementations of the Base System. On implementations which do
not support this functionality, calls to these functions will return with err no set to
ENOSYS.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/crypt
svid

Page: 322

ctermid (BA_LIB) ctermid (BA_LIB)

NAME
ctermid — generate filename for terminal

SYNOPSIS
#i ncl ude <unistd. h>
#i ncl ude <stdio. h>

char *ctermd(char *s);

DESCRIPTION
The function ct er m d() generates the pathname of the controlling terminal for the
current process and stores it in a string. Access to the file is not guarranteed.

If the argument s is a nul | pointer, the string is stored in an internal static area
which will be overwritten at the next call to ct ermi d(). The address of the static
area is returned. Otherwise, s is assumed to point to a character array of at least
L_cterm d elements; the pathname is placed in this array and the value of s is
returned.

RETURN VALUE
The function ct er m d() returns an empty string if the pathname that would refer
to the controlling terminal cannot be determined.

USAGE
The difference between the ttynanme() routine and the function ct erm d() is
that the ttynane() routine must be passed a file descriptor and returns the name
of the terminal associated with that file descriptor, whereas the function ct er -
nm d() returns the name of the controlling terminal for the current process.

SEE ALSO
ttyname(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/ctermid
svid

Page: 323

ctime (BA_LIB) ctime (BA_LIB)

NAME
ctine,localtinme,gntine,asctine,tzset —convert date and time to string

SYNOPSIS
#i ncl ude <tinme. h>

char *ctine(const tine_t *clock);

struct tm*local time(const time_t *clock);
struct tm*gnmine(const tine_t *clock);
char *asctime(const struct tm*tm);
extern int daylight;

extern char *tznane[2];

voi d tzset(void);

DESCRIPTION
ctine, local time, and gnti ne accept arguments of type ti me_t, pointed to by
clock, representing the time in seconds since 00:00:00 UTC, January 1, 1970. cti ne
returns a pointer to a 26-character string as shown below. Time zone and daylight
savings corrections are made before the string is generated. The fields are constant
in width:

Fri Aug 13 00:00: 00 1993\ n\0

|l ocal ti ne and gnti me return pointers to t mstructures, described below. | ocal -
time corrects for the main time zone and possible alternate (‘‘daylight savings’’)
time zone; gnt i ne converts directly to Coordinated Universal Time (UTC), which is
the time the UNIX system uses internally.

ascti me converts a t mstructure to a 26-character string, as shown in the above
example, and returns a pointer to the string.

Declarations of all the functions and externals, and the t m structure, are in the
ti me. h header file.

The value of t m.i sdst is positive if daylight savings time is in effect, zero if day-
light savings time is not in effect, and negative if the information is not available.
(Previously, the value of t m i sdst was defined as non-zero if daylight savings time
was in effect.)

The external variable ti nezone contains the difference, in seconds, between UTC
and local standard time. The external variable dayl i ght indicates whether time
should reflect daylight savings time. ti nezone defaults to 0 (UTC). The external
variable dayl i ght is non-zero if an alternate time zone exists. The time zone names
are contained in the external variable t znane, which by default is set to:

char *tzname[2] = { "aQvI, " "},
These functions know about the peculiarities of this conversion for various time

periods for the U.S.A. (specifically, the years 1974, 1975, and 1987). They will handle
the new daylight savings time starting with the first Sunday in April, 1987.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/ctime
svid

Page: 324

ctime (BA_LIB) ctime (BA_LIB)

t zset uses the contents of the environment variable TZ to override the value of the
different external variables. It also sets the external variable dayl i ght to zero if
Daylight Savings Time conversions should never be applied for the time zone in
use; otherwise, non-zero. t zset is called by asct i me and may also be called by the
user. See envi ron() for a description of the TZ environment variable.

SEE ALSO

LEVEL

get env(BA_LIB), nkti me(BA_LIB), printf(BA_LIB), put env(BA_LIB),
setl ocal e(BA_OS), strftine(BA_LIB),ti me(BA_OS),

Level 1.

NOTICES

Page 2

The functions ctine, | ocal time, fgntime, tzset and ascti me are BA_LIB func-
tions, and identical to the ctinme BA_LIB page. ctime_r, localtime_r and
gnti me_r are MT_LIB functions.

The return values for ctine, | ocal ti me, and gnti me point to static data whose
content is overwritten by each call.

Setting the time during the interval of change from ti mezone to al t zone or vice
versa can produce unpredictable results. The system administrator must change
the Julian start and end days annually.

Use the reentrant functions for multithreaded applications.

FINAL COPY
June 15, 1995
File: ba_lib/ctime
svid

Page: 325

ctype (BA_LIB) ctype (BA_LIB)

NAME

ctype: isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint,
isgraph, iscntrl, isascii — classify characters

SYNOPSIS

#i ncl ude <ctype. h>

int isalpha(int c);
int isupper(int c);
int islower(int c);
int isdigit(int c);
int isxdigit(int c);
int isalnun(int c);
int isspace(int c);
int ispunct(int c);
int isprint(int c);
int isgraph(int c);
int iscntrl(int c);
int isascii(int c);
DESCRIPTION

These macros classify character-coded integer values. Each is a predicate returning
non-zero for true, zero for false. The behavior of these macros, excepti sascii (),
isdigit(), and isxdigit() s affected by the current locale [see
setlocale(BA_OS)]. In the " C" locale, or in a locale where character type information
is not defined, characters are classified according to the rules of the US-ASCII 7-bit
coded character set.

The macro i sascii () is defined on all integer values; the rest are defined only
where the argument is an i nt, the value of which is representable as an unsi gned
char, or EOF, which is defined by the <st di 0. h> header file and represents end-
of-file.

i sal pha() tests for any character for which i supper () or i slower() is
true, or any character that is one of an implementation-defined set
of characters for which none of iscntrl (), isdigit(),
i spunct (), orisspace() istrue. Inthe"C" locale, i sal pha()
returns true only for the characters for which i supper () or
i sl ower () is true.

i supper () tests for any character that is an upper-case letter or is one of an
implementation-defined set of characters for which none of
iscntrl(), isdigit(), ispunct(), isspace(), or

i sl ower () is true. In the "C" locale, i supper () returns true
only for the characters defined as upper-case ASCII characters.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/ctype
svid

Page: 326

ctype (BA_LIB)

LEVEL

Page 2

i sl ower ()

sdigit()
sxdigit()

sal nun()

sspace()

spunct ()

sprint()
sgraph()
scntrl ()
sascii ()

ctype (BA_LIB)

tests for any character that is a lower-case letter or is one of an
implementation-defined set of characters for which none of
iscntrl (), isdigit(), ispunct(), isspace(), or
i supper () is true. In the "C' locale, i sl ower () returns true
only for the characters defined as lower-case ASCII characters.

tests for any decimal-digit character.

tests for any hexadecimal-digit character ([0-9], [A-F] or
[a—f]).

tests for any character for which i sal pha() or isdigit() is
true (letter or digit).

tests for any space, tab, carriage-return, newline, vertical-tab or
form-feed (standard white-space characters) or for one of an
implementation-defined set of characters for which i sal nun() is
false. Inthe " C" locale, i sspace() returns true only for the stan-
dard white-space characters.

tests for any printing character which is neither a space nor a char-
acter for which i sal nun() is true.

tests for any printing character, including space (" ").

tests for any printing character, except space.

tests for any "control character” as defined by the character set.
tests for any ASCII character, code between 0 and 0177 inclusive.

Functions must exist for all the above defined macros. To get the function form, the
macro name must be undefined (e.g. #undef i sdigit).

RETURN VALUE
If the argument to any of these macros is not in the domain of the function, the
result is undefined.

SEE ALSO
setlocale(BA_OS).

Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/ctype
svid

Page: 327

difftime (BA_LIB) difftime (BA_LIB)

NAME
difftime — computes the difference between two calendar times

SYNOPSIS
#i ncl ude <tine.h>

double difftine(time_t timel, tinme_t time0);

DESCRIPTION
The function di ffti me() computes the difference between two calendar times.
di fftinme() returns the difference (timel minus time0) expressed in seconds as a
doubl e.

USAGE
This function is provided because there are no general arithmetic properties defined
for typetime_t.

SEE ALSO
ctime(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/difftime
svid

Page: 328

div (BA_LIB) div (BA_LIB)

NAME
div, Idiv — compute the quotient and remainder

SYNOPSIS
#i ncl ude <stdlib. h>

div_t div(int numer, int denom);
Idiv_t Idiv(long int numer, |ong int denom);

DESCRIPTION
The function di v() computes the quotient and remainder of the division of the
numerator numer by the denominator denom. This function provides well-defined
semantics for the signed integral division and remainder operations.

di v() returns a structure of type di v_t which includes the following members:
int quot; /* quotient */
int rem /* remainder */

I di v() is similar to di v(), except that the arguments and the members of the
returned structure (which has type | di v_t) all have type | ong int.

RETURN VALUE
If the result cannot be represented, the behavior is undefined; otherwise, quotient O
denom + remainder will equal numer. If the division is inexact, the resulting quotient
is the integer of lesser magnitude that is the nearest to the algebraic quotient.

LEVEL
Level 1.

Page 1

FINAL COPY

June 15, 1995

File: ba_lib/div
svid

Page: 329

drand48 (BA_LIB) drand48 (BA_LIB)

USAGE

and transformed into the returned value.

The functions dr and48(), | rand48() and nrand48() store the last 48-bit X;
generated in an internal buffer; that is why they must be initialized prior to being
invoked. The functions er and48(), nrand48() and j rand48() require the cal-
ling program to provide storage for the successive X; values in the array specified
as an argument when the functions are invoked. That is why these routines do not
have to be initialized; the calling program merely has to place the desired initial
value of X; into the array and pass it as an argument. By using different arguments,
functions er and48(), nrand48() and j rand48() allow separate modules of a
large program to generate several independent streams of pseudo-random
numbers. In other words, the sequence of humbers in each stream will not depend
upon how many times the routines have been called to generate numbers for the
other streams.

The initializer function sr and48() sets the high-order 32-bits of X; to the bits con-
tained in its argument seedval. The low-order 16-bits of X; are set to the arbitrary
value 330E 4.

The initializer function seed48() sets the value of X; to the 48-bit value specified
in the argument array. In addition, the previous value of X; is copied into a 48-bit
internal buffer, used only by seed48(), and a pointer to this buffer is the value
returned by seed48() .

The initialization function | cong48() allows the user to specify the initial X;, the
multiplier value a and the addend value ¢. Argument array elements param[0- 2]
specify X;, param[3- 5] specify the multiplier a, and param[6] specifies the 16-bit
addend c. After | cong48() has been called, a subsequent call to either
srand48() or seed48() will restore the standard multiplier and addend values, a
and c, specified above.

The pointer returned by seed48(), which can just be ignored if not needed, is use-
ful if a program is to be restarted from a given point at some future time. Use the
pointer to get at and store the last X; value and then use this value to reinitialize via
seed48() when the program is restarted.

SEE ALSO

LEVEL

Page 2

rand(BA_LIB).

Level 1

FINAL COPY
June 15, 1995
File: ba_lib/drand48
svid

Page: 331

erf (BA_LIB) erf (BA_LIB)

NAME
erf, erfc — error function and complementary error function

SYNOPSIS
#i ncl ude <math. h>
doubl e erf (double x);

doubl e erfc(double Xx);

DESCRIPTION
The function er f () returns the error function of x, defined as follows:

X
LJ' e~ dt
VT o

The function er f c() returns 1. O—erf (x).
RETURN VALUE

For both erf () and erfc(), if an input parameter is NaN, then the function will
return NaN and set errno to EDOM

USAGE
The function er f c() is provided because of the extreme loss of relative accuracy if
er f (x) is called for large x and the result subtracted from 1. 0.

SEE ALSO
exp(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY

June 15, 1995

File: ba_lib/erf
svid

Page: 332

exp (BA_LIB) exp (BA_LIB)

NAME

exp, log, log10, pow, sqrt, cbrt — exponential, logarithm, power, root functions

SYNOPSIS

#i ncl ude <math. h>

doubl e exp(double x);

doubl e | og(double x);

doubl e 1 0g10(doubl e Xx);

doubl e pow(doubl e x, doubley);
doubl e sqrt(double x);

doubl e cbrt(double x);

DESCRIPTION

The function exp() returns e*.

The function | og() returns the natural logarithm of x. The value of x must be posi-
tive.

The function | 0g10() returns the base ten logarithm of x. The value of x must be
positive.

The function pow() returns x”. If x is zero, y must be non-negative. If x is negative,
y must be an integer.

The function sqrt () returns the non-negative square root of x. The value of x may
not be negative.

The function cbrt () returns the cube root of x.

RETURN VALUE

A macro HUGE_VAL will be defined by the <mat h. h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evaluates to
+00,

If an input parameter is NaN, then all functions will return NaN and set errno to
EDOM The only exception is for pow(), which always returns 1 when its second
argument is 0, regardless of the value of its first argument.

The function exp() returns HUGE_VAL when the correct value would overflow and
sets errno to ERANGE. The function exp() returns O when the correct value
would underflow and sets er r no to ERANGE.

The functions | og() and | 0g10() will return an implementation-defined value
(IEEE NaN or equivalent if available) and will set er r no to EDOMwhen X is negative,
and will return —HUGE VAL and set er r no to ERANGE when x is zero.

The function pow() will return an implementation-defined value (IEEE NaN or
equivalent if available) and set er r no to EDOMwhen the first argument is negative
and the second is non-integral. When the first argument is 0 and the second argu-
ment is negative, finite, and an odd integer, pow() returns +HUGE_VAL, according
to the sign of the first argument and sets er r no to EDOM When the first argument
is 0 and the second argument is negative, finite, and not an odd integer, pow

Page 1

FINAL COPY

June 15, 1995

File: ba_lib/exp
svid

Page: 333

exp (BA_LIB) exp (BA_LIB)

returns HUGE VAL and sets errno to EDOM The return value will be 1 with no
error when both arguments are zero. The return value will be tHUGE VAL and
errno will be set to ERANGE when the correct value would overflow. The return
value will be 0 and errno will be set to ERANGE when the correct value would
underflow.

On a system that supports the IEEE 754 standard, pow returns NAN and sets errno to
EDOMwhen x is 1 and y is *oo,

The function sqrt () will return an implementation-defined value (IEEE NaN or
equivalent if available) and set er r no to EDOMwhen X is negative.
SEE ALSO
hypot(BA_LIB), hyperbolic(BA_LIB).
LEVEL
Level 1.

Page 2

FINAL COPY

June 15, 1995

File: ba_lib/exp
svid

Page: 334

fattach (BA_LIB) fattach (BA_LIB)

NAME
fattach — attach a STREAMS-based file descriptor to an object in the file system
name space

SYNOPSIS
int fattach(int fildes, const char *path);

DESCRIPTION

The fattach() routine attaches a STREAMS-based file descriptor to an object in
the file system name space, effectively associating a name with fildes. fildes must be
a valid open file descriptor representing a STREAMS file. path is a pathname of an
existing object and the process must have appropriate privileges or be the owner of
the file and have write permissions. When the Enhanced Security Extension is
implemented, fildes and path must have the same MAC level. All subsequent opera-
tions on path will operate on the STREAMS file until such time that the STREAMS
file is detached from the node. A fildes can be attached to more than one path, that
is, a stream can have several names associated with it.

The attributes of the named stream [see st at (BA_QOS)] are initialized as follows:
the permissions, user ID, group ID, and times are set to those of path, the number of
links is set to 1, and the size and dev’ set to those of the streams device associated
with fildes. If any attributes of the named stream are subsequently changed (for
example, chmod), the attributes of the underlying object are not affected.

RETURN VALUE
Upon successful completion, the f attach() routine returns a value of 0; other-
wise, a value of —1 is returned and er r no is set to indicate an error.

ERRORS

Under the following conditions, f attach() fails and sets er r no to:

EACCES if the user is the owner of path but does not have write permis-
sions on path or if fildes is locked.

EACCES if fildes and path do not have the same MAC level.

EBADF if fildes is not a valid open file descriptor.

ENCENT if path does not exist.

ENOTDI R if a component of a path prefix is not a directory.

El NVAL if fildes is not a STREAMS file.

EPERM if the effective user ID is not the owner of path or a user with the
appropriate privileges.

EBUSY if path is currently a mount point or has a STREAMS file descrip-

tor attached it.

ENAMETOOLONG if the size of path exceeds { PATH_MAX}, or the component of a
pathname is longer than { NAME_MAX} while
{_PGCsI X_NO TRUNC} is in effect.

ELOOP if too many symbolic links were encountered in translating path.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/fattach
svid

Page: 335

fattach (BA_LIB) fattach (BA_LIB)

SEE ALSO
fdetach(BA_LIB), isastream(BA_LIB), streams (BA_DEV).

FUTURE DIRECTIONS
The fattach() routine may be enhanced in the future to enable a file descriptor
that is not associated with a STREAMS-based file to be attached to an object in the
file system name space.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/fattach
svid

Page: 336

fdetach (BA_LIB) fdetach (BA_LIB)

NAME
fdetach — detach a name from a STREAMS-based file descriptor

SYNOPSIS
int fdetach(const char *path);

DESCRIPTION

The f det ach() routine detaches a STREAMS-based file descriptor from a name in
the file system. path is the pathname of the object in the file system name space,
which was previously attached [see fattach(BA_LIB)]. The user must be the owner
of the file or be a user with the appropriate privileges. All subsequent operations
on path will operate on the file system node and not on the STREAMS file. The per-
missions and status of the node are restored to the state the node was in before the
STREAMS file was attached to it.

RETURN VALUE
Upon successful completion, the function f det ach() returns a value of O; other-
wise, it returns a value of - 1 and sets er r no to indicate an error.

ERRORS
Under the following conditions, the function f det ach() fails and sets er r no to:
EPERM if the effective user ID is not the owner of path or is not a user
with appropriate permissions.
ENOTDI R if a component of the path prefix is not a directory.
ENCENT if path does not exist.
El NVAL if path is not attached to a STREAMS file.

ENAMVETOOLONG if the size of a pathname exceeds { PATH MAX}, or pathname
component is longer than { NAVE_MAX} while
{_PCSI X_NO_TRUNC} is in effect.

ELOCP if too many symbolic links were encountered in translating path.

SEE ALSO
fattach(BA_LIB), streams(BA_DEV).

FUTURE DIRECTIONS
fdetach() may be enhanced in the future to enable a file descriptor that is not
associated with a STREAMS-based file to be detached from a node.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/fdetach
svid

Page: 337

floor (BA_LIB) floor (BA_LIB)

NAME

floor, ceil, fmod, remainder, fabs — floor, ceiling, remainder, absolute value func-
tions

SYNOPSIS

#i ncl ude <mat h. h>

doubl e fl oor(double x);

doubl e ceil (doubl e x);

T doubl e fnod(doubl e x, double y);
doubl e remai nder (doubl e x, double y);
doubl e fabs(double x);

DESCRIPTION

The function f | oor () returns the largest integral value not greater than x.
The function cei | () returns the smallest integral value not less than x.

The function f nod() returns the floating point remainder f = x — my when y is non-
zero, where m is the integral value chosen so that f has the same sign as x and 0Of O<
Oy O

The function r emai nder () returns the floating point remainder r = x — ny when y
is non-zero. The value n is the integral value nearest the exact value x/y; when [On
- x/y O=7, the value n is chosen to be even.

The function f abs() returns Ox [the absolute value of x.

RETURN VALUE

If an input parameter is NaN, then the function will return NaN and set errno to
EDOM

When y is zero the functions fnod() and remai nder() will return an
implementation-defined value (IEEE NaN or equivalent if available) and set err no
to EDOM

On a system that supports the IEEE 754 standard, if the value of x for f mod() or
remai nder () is +-o, these functions will return IEEE NaN and set errno to EDOM

SEE ALSO

LEVEL

abs(BA_LIB).

Level 1. fmod() function Level 2, effective 9/30/89.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/floor

svid

Page: 338

fmtmsg (BA_LIB) fmtmsg (BA_LIB)

NAME
fmtmsg - display a message in the standard format on standard error and the sys-
tem console

SYNOPSIS

#i ncl ude <fntmsg. h>

int frmtnsg(long classification, const char *label, int severity,
const char *text, const char *action, const char *tag);

DESCRIPTION
The function f mt nsg() can be used to display messages in standard format instead
of the traditional printf() interface. fntnsg() in conjunction with get -
text () provides a simple interface for producing language-independent applica-
tions.

Based on a message’s classification component, the function fnt nsg() either
writes a formatted message to standard error, the console, or to both.

A formatted message consists of up to five standard components as defined below.
The component, classification, is not part of the standard message displayed to the
user, but defines the source of the message and directs the display of the formatted
message.

classification

Contains identifiers from the following groups of major classifications and
subclassifications. Any one identifier from a subclass may be used in combi-
nation with a single identifier from a different subclass. Two or more
identifiers from the same subclass should not be used together, with the
exception of identifiers from the display subclass. (Both display subclass
identifiers may be used so that messages can be displayed to both standard
error and the system console).

major classifications
Identifies the source of the condition. Identifiers are: MV HARD
(hardware), MM_SCOFT (software), and MM_FI RM(firmware).

message source subclassifications
Identifies the type of software in which the problem is detected.
Identifiers are: MM _APPL (application), MM UTIL (utility), and
MM_OPSYS (operating system).

display subclassifications
Indicates where the message is to be displayed. Identifiers are:
MM PRI NT to display the message on the standard error stream,
MM_CONSOLE to display the message on the system console. One or
both identifiers may be used.

status subclassifications
Indicates whether the application will recover from the condition.
Identifiers are: MM _RECOVER (recoverable) and MV NRECOV (non-
recoverable).

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/fmtmsg
svid

Page: 339

fmtmsg (BA_LIB) fmtmsg (BA_LIB)

label

An additional identifier, MM NULLMC, indicates that no classification com-
ponent is supplied for the message.

Identifies the source of the message. The format is two fields separated by a
colon. The first field is up to 10 characters, the second is up to 14 characters.
Suggested usage is that label identifies the package in which the application
resides as well as the program or application name. For example, the label
UX: cat indicates the operating system package and the cat application.

severity

text

action

tag

Indicates the seriousness of the condition. lIdentifiers for the standard levels
of severity are:

MM _HALT
indicates that the application has encountered a severe fault and is halt-
ing. Produces the print string HALT.

MM_ERROR
indicates that the application has detected a fault. Produces the print
string ERROR

MM _WARNI NG
indicates a condition that is out of the ordinary, that might be a prob-
lem, and should be watched. Produces the print string WARNI NG

MM_| NFO
provides information about a condition that is not in error. Produces
the print string | NFO.

MM_NOSEV
indicates that no severity level is supplied for the message. Describes
the error condition that produced the message. The text string is not
limited to a specific size.

Describes the error condition that produced the message. If the text string is
null then a message will be issued stating that no text has been provided.

Describes the first step to be taken in the error-recovery process.
fnt msg() precedes the action string with the prefix: TO FI X: . The action
string is not limited to a specific size.

An identifier which references on-line documentation for the message. Sug-
gested usage is that tag includes the label and a unique identifying number.
A sample tag is UX: cat : 146.

Environment Variables

There are two environment variables that control the behavior of fmtnsg():
MSGVERB (message verbosity) and SEV_LEVEL (severity level). SEV_LEVEL can
be used in shell scripts or set in the user’s shell. MSGVERB can be set by the
administrator in the /etc/profile for the system. Users can override the
system-set MSGVERB by resetting MSGVERB in their own . profil e files or by
changing the value in their current shell session.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/fmtmsg
svid

Page: 340

fmtmsg (BA_LIB) fmtmsg (BA_LIB)

MSGVERB tells f nt nsg() which message components it is to select when writing
messages to standard error. The value of MSGVERB is a colon-list of optional key-
words. MSGVERB can be set as follows:

MSGVERB=[keyword[:keyword[:...]]]
export NMSGVERB

Valid keywords are: | abel , severity,text,action,andtag. If MSGVERB con-
tains a keyword for a component and the component’s value is not the component’s
null value, fntneg() includes that component in the message when writing the
message to standard error. If MSGVERB does not include a keyword for a message
component, that component is not included in the display of the message. The key-
words may appear in any order. If MSGVERB is not defined, if its value is the null-
string, if its value is not of the correct format, or if it contains keywords other than
the valid ones listed above, f nt nsg() selects all components.

MSGVERB affects only which components are selected for display to standard error.
All message components are included in console messages.

SEV_LEVEL defines severity levels and associates print strings with them for use by
fntmsg(). The standard severity levels shown below cannot be modified. Addi-
tional severity levels can be defined, redefined, and removed.

0 (no severity is used)

1 HALT

2 ERROR

3 WARNI NG
4 I NFO

SEV_LEVEL can be set as follows:

SEV_LEVEL=[description[:description[:...]]]
export SEV_LEVEL

The format of description is a three-field comma list as follows:

description=severity_keyword,level,printstring
where

severity_keyword
is not used by the f nt nsg() function; it is used by the f nt nsg com-
mand [see fmtmsg(BU_CMD)].

level
is a character string that evaluates to a positive integer (other than 0, 1,
2, 3, or 4, which are reserved for the standard severity levels). The
command fntnmsg uses severity-keyword and passes level onto
fmnsg().

printstring
is the character string used by f nt nsg() in the standard message for-
mat whenever the severity value level is used.

If SEV_LEVEL is not defined, or if its value is null, no severity levels other than the
defaults are available. If a description in the colon list is not a three-field comma list,
or, if the second field of a comma list does not evaluate to a positive integer, that
description in the colon list is ignored.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/fmtmsg
svid

Page: 341

fmtmsg (BA_LIB) fmtmsg (BA_LIB)

Use in Applications
One or more message components may be systematically omitted from messages
generated by an application by using the null value of the argument for that com-
ponent. The table below indicates the null values and identifiers for fnmt nsg()

arguments.

DArgument Type Null-Value Identifier O
abel char* (char *)NULL MM_NULLLBL 0
everity i nt o MM_NULL SEV B

rflass | ong o MVL_NULLMC

rfext char* (char*)NULL MM_NULLTXT

Caction char* (char*)NULL MM _NULLACT [

[tag char* (char*)NULL MM NULLTAG [

Another means of systematically omitting a component is by omitting the com-
ponent keyword(s) when defining the MSGVERB environment variable (see Environ-
ment Variables).

ERRORS
The exit codes for f nt msg() are the following:

MM_OK = the function succeeded
MM_NOTCK = the function failed completely
MM _NOVBG = the function was unable to generate a message on standard error,
but otherwise succeeded.
MM_NOCON = the function was unable to generate a console message,
but otherwise succeeded.
EXAMPLE
Example 1:
The following example of f mt msg() :
fmnmsg(MM PRI NT, "UX cat", MM ERROR, "illegal option",
"refer to cat in user’s reference nmanual”, "UX cat:001")

produces a complete message in the standard message format:

UX:cat: ERROR illegal option
TO FIX: refer to cat in user’s reference nmanual UX: cat:001

Example 2:

When the environment variable MSGVERB is set as follows:
MSGVERB=severity:text:action

and the Example 1 is used, f nt msg() produces:

ERROR illegal option
TO FIX: refer to cat in user’s reference nanual

Page 4

FINAL COPY
June 15, 1995
File: ba_lib/fmtmsg
svid

Page: 342

fmtmsg (BA_LIB) fmtmsg (BA_LIB)

Example 3:

When the environment variable SEV_LEVEL is set as follows:
SEV_LEVEL=not e, 5, NOTE

the following call to f nt nsg() :

fmnmsg(MM PRINT | M UTIL, "UX: cat", 5, "cannot open file",
"specify correct file nane", "UX cat:002")

produces:

UX: cat: NOTE: cannot open file
TO FI X: specify correct file nanme UX cat(1):002

SEE ALSO
fmtmsg(BU_CMD), gettxt(BA_LIB), printf(BA_LIB).

FUTURE DIRECTIONS
This interface is to be removed when the three-year waiting period has expired. It
is replaced by pf nt .

LEVEL
Level 2: April 1991.

Page 5

FINAL COPY
June 15, 1995
File: ba_lib/fmtmsg
svid

Page: 343

fnmatch (BA_LIB) fnmatch (BA_LIB)

NAME
f nmat ch — match filename or pattern

SYNOPSIS
#i ncl ude <fnmat ch. h>

int fnmatch(const char [pattern, const char Cbtring, int flags);

DESCRIPTION
fnmat ch is part of the X/Open Portability Guide Issue 4 optional POSIX2 C-
Language Binding feature group.

Return Values
f nmat ch returns FNM _NCSYS and sets er r no to ENCBYS.
USAGE
Administrator.
SEE ALSO
gl ob(BA_LIB), wor dexp(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/fnmatch
svid

Page: 344

frexp (BA_LIB) frexp (BA_LIB)

NAME
frexp, Idexp, modf — manipulate parts of floating-point numbers

SYNOPSIS
#i ncl ude <mat h. h>
doubl e frexp(doubl e value, int *eptr);

T doubl e | dexp(doubl e value, int exp);
doubl e nodf (doubl e value, doubl e *iptr);

DESCRIPTION
Every non-zero number can be written uniquely as x 02", where the significand x is
in the range 0.5 < Ox O< 1.0 and the exponent n is an integer. The function
frexp() returns the significand of value and stores the exponent indirectly in the
location pointed to by eptr. If value is zero, both results returned by frexp() are
zero.

The function | dexp() returns the quantity value 02,

The function nodf () returns the fractional part of value and stores the integral part
indirectly in the location pointed to by iptr. Both the fractional and integral parts
have the same sign as value.

RETURN VALUE
A macro HUGE_VAL will be defined by the <mat h. h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evalutates to
+00,

If the correct value would overflow, | dexp() will return +HUGE_VAL (according to
the sign of value) and set er r no to ERANGE.

If the correct value would underflow, the function | dexp() returns 0 and sets
errno to ERANGE.

If an input parameter is NaN, then the function will return NaN and set errno to

SEE ALSO
exp(BA_LIB), scalb(BA_LIB).

LEVEL
Level 1. Idexp() is Level 2, effective 9/30/89.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/frexp
svid

Page: 345

ftw (BA_LIB) ftw (BA_LIB)

NAME
ftw, nftw — walk a file tree

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <ftw. h>

int ftw(const char *path,
int (*fn) (const char *, const struct stat *, int), int depth);

int nftw(const char *path,
int (*fn)(const char *, const struct stat *, int, struct FTW),
i nt depth, int flags);

DESCRIPTION

The function f t w() descends the directory hierarchy rooted in path. For each node
in the hierarchy, the function ftw() calls a user-defined function fn() passing it
three arguments. The first argument passed is a character pointer to a null-
terminated string containing the name of the node. The second argument passed to
fn() is a pointer to a st at structure [see stat(BA_OS)] containing information about
the node, and the third argument passed is an integer. Possible values of the
parameter, defined by the <f t w. h> header file, are FTW F for a file, FTW D for a
directory, FTW DNR for a directory that cannot be read and FTW_NS for an object
for which st at () could not successfully be executed. If the integer is FTW DNR,
descendants of that directory will not be processed. If the integer is FTW NS, the
contents of the st at structure are undefined.

The function nf t w() works similarly as ft W() except that it takes on an additional
argument flags. The flags field is used to specify:

FTW PHYS Physical walk, does not follow symbolic links. Otherwise, nftw()
will follow links but will not walk down any path that crosses itself.

FTW MOUNT The walk will not cross a mount point.
FTW DEPTH All subdirectories will be visited before the directory itself.
FTW CHDI R The walk will change to each directory before reading it.

The function nft w() calls fn() with four arguments at each file and directory. The
first argument is the pathname of the object, the second is a pointer to the st at
buffer, and the third is an integer giving additional information as follows:

FTW F The object is a file.
FTW D The object is a directory.
FTW DP The object is a directory and subdirectories have been visited.

FTW SL The object is a symbolic link.

FTW DNR The object is a directory that cannot be read. fn() will not be called for
any of its descendants.

FTW NS st at () failed on the object because of lack of appropriate permission.
The st at buffer passed to fn() is undefined. st at () failure for any
reason is considered an error and nf t wW() will return - 1.

Page 1

FINAL COPY

June 15, 1995

File: ba_lib/ftw
svid

Page: 347

ftw (BA_LIB) ftw (BA_LIB)

The fourth argumentisa st ruct FTWwhich contains the following members:

i nt base;

int |evel;
The value of base is the offset into the pathname of the object; this pathname is
passed as the first argument to fn(). The value of | evel indicates depth relative to
the root of of the walk, where the root level has a value of zero.

The function f t w() visits a directory before visiting any of its descendants.

Both functions use one file descriptor for each level in the tree. The argument depth
limits the number of file descriptors so used. The argument depth should be in the
range of 1 to { OPEN_MAX} . The function f t W() will run more quickly if depth is at
least as large as the number of levels in the tree. When the function ft wW() returns
it closes any file descriptors it has opened but not those opened by the user sup-
plied function fn().

RETURN VALUE
The tree traversal continues until the tree is exhausted, an invocation of fn() returns
a non-zero value or some error is detected within ft W() (such as an 1/0 error). If
the tree is exhausted, the function ftw() returns 0. If the function fn() returns a
non-zero value, the function ft w() stops its tree traversal and returns whatever
value was returned by the function fn().

If the function ft w() encounters an error other than EACCES (see FTW DNR and
FTW NS above), it returns —1 and err no is set to the type of error. The external
variable er r no may contain the error values that are possible when a directory is
opened [see open(BA_OS)] or when the st at () routine is executed on a directory
or file.

ERRORS

Under the following conditions, the function f t w() fails and sets er r no to:

EACCES if a component of the path prefix denies search permission or read per-
mission is denied for path, and fu() returns -1 and does not reset
errno.

ENAMETOCOLONG
if the length of the path string exceeds { PATH_MAX}, or a pathname
component is longer than { NAVE_MAX} while {_PGOSI X_NO_TRUNC} is
in effect.

ENCENT if the path argument points to the name of a file which does not exist or
points to an empty string.

ENOTDI R if a component of path is not a directory.

SEE ALSO
stat(BA_OS), malloc(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY

June 15, 1995

File: ba_lib/ftw
svid

Page: 348

fwprintf (BA_LIB) fwprintf (BA_LIB)

NAME

fwprintf,worintf,swprintf —print formatted wide/multibyte character output
SYNOPSIS

#i ncl ude <wchar. h>

int fwprintf(FILE *strm, const wchar_t *format, .../* args */);

int swprintf(wchar_t *s, size_t maxsize, const wchar_t *format,

..o *oargs *);
int wprintf(const wchar _t *format, .../* args */);

DESCRIPTION
Each of these functions converts, formats, and outputs its args under control of the
wide character string format. Each function returns the number of wide/multibyte
characters transmitted (not including the terminating null wide character in the case
of swpri nt f) or a negative value if an output error was encountered.

fwprintf places multibyte output on strm.
wpri ntf places multibyte output on the standard output stream st dout .

swprintf places wide character output, followed by a null wide character (\ 0), in
consecutive wide characters starting at s, limited to no more than maxsize wide char-
acters. If more than maxsize wide characters were requested, the output array will
contain exactly maxsize wide characters, with a null wide character being the last
(when maxsize is honzero); a negative value is returned.

The format consists of zero or more ordinary wide characters (not % which are
directly copied to the output, and zero or more conversion specifications, each of
which is introduced by the a %and results in the fetching of zero or more associated
args.

Each conversion specification takes the following general form and sequence:
% pos$] [flags] [width] [. prec] [size] fmt

pos$ An optional entry, consisting of one or more decimal digits followed by a $
character, that specifies the number of the next arg to access. The first arg
(just after format) is numbered 1. If this entry is not present, the arg following
the most recently used arg will be accessed.

flags Zero or more wide characters that change the meaning of the conversion
specification. The flag characters and their meanings are:

- The result of the conversion will be left-justified within the field. (It
will be right-justified if this flag is not specified.)

+ The result of a signed conversion will always begin with a sign (+ or
-). (It will begin with a sign only when a negative value is converted
if this flag is not specified.)

space If the first wide character of a signed conversion is not a sign, or if a
signed conversion results in no wide characters, a space will be
prefixed to the result. If the space and + flags both appear, the space
flag will be ignored.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/fwprintf
svid

Page: 349

fwprintf (BA_LIB) fwprintf (BA_LIB)

Page 2

The value is to be converted to an alternate form, depending on the
fmt wide character:

a,AeEf FgG
The result will contain a decimal point wide character, even if
no digits follow. (Normally, the decimal point wide character
is only present when fractional digits are produced.)

b,B A nonzero result will have Ob or OB prefixed to it.

g,G Trailing zero digits will not be removed from the result, as
they normally are.

o] The precision is increased (only when necessary) to force a
zero as the first digit.

X, X A nonzero result will have 0x or 0X prefixed to it.
For other conversions, the behavior is undefined.

0 For all numeric conversions (a, A e, E f,F 9,Gb,B,d,i,o0,u,xand
X), leading zeros (following any indication of sign or base) are used to
pad to the field width; no space padding is performed. If the 0 and —
flags both appear, the 0 flag will be ignored. For the integer numeric
conversions (b, B, d, i , 0, u, x and X), if a precision is specified, the 0
flag will be ignored. For other conversions, the behavior is
undefined.

(an apostrophe) The nonfractional portion of the result of a decimal
numeric conversion (d, i, u, f, F, g and G will be grouped by the
current locale’s thousands’ separator wide character.

width An optional entry that consists of either one or more decimal digits, or an

. prec

asterisk (*), or an asterisk followed by one or more decimal digits and a $. It
specifies the minimum field width: If the converted value has fewer
wide/multibyte characters than the field width, it will be padded (with space
by default) on the left or right (see the above flags description) to the field
width.

An optional entry that consists of a period (.) that precedes either zero or
more decimal digits, or an asterisk (*), or an asterisk followed by one or
more decimal digits and a $. It specifies a value that depends on the fmt
wide character:

a,AeEf,F
It specifies the number of fractional digits (those after the decimal
point wide character). For the hexadecimal floating conversions (a
and A), the number of fractional digits is just sufficient to produce an
exact representation of the value (trailing zero digits are removed);
for the other conversions, the default number of fractional digits is 6.

b,B,d,i,o,u,Xx, X
It specifies the minimum number of digits to appear. The default
minimum number of digits is 1.

FINAL COPY
June 15, 1995
File: ba_lib/fwprintf
svid

Page: 350

fwprintf (BA_LIB) fwprintf (BA_LIB)

g,G It specifies the maximum number of significant digits. The default
number of significant digits is 6.

s,S It specifies the maximum number of wide/multibyte characters to
output. The default is to take all elements up to the null terminator
(the entire string).

If only a period is specified, the precision is taken to be zero. For other
conversions, the behavior is undefined.

size An optional h, | (ell), or L that specifies other than the default argument
type, depending on the fmt character:

a,AeEf FgG
The default argument type is doubl e; an | is ignored for compatibil-
ity with the scanf functions (afl oat arg will have been promoted to
doubl e); an L causes a |l ong doubl e arg to be converted.

b, B, o, u, X, X
The default argument type is unsigned int; an h causes the
unsi gned i nt arg to be narrowed to unsi gned short before conver-
sion; an | causes an unsi gned | ong arg to be converted.

c The default argument type is i nt which is converted to a wide char-
acter as if by calling bt owc before output; an | causes awchar _t arg
to be output. | ¢ is a synonym for C.

d,i The default argument type is i nt; an h causes the i nt arg to be nar-
rowed to short before conversion; an | causes a | ong arg to be con-
verted.

n The default argument type is pointer to i nt; an h changes it to be a
pointer to short, and | to pointer to | ong.

s The default argument type is pointer the first element of a character

array; an | changes it to be a pointer to the first element of a wchar _t
array. | s isasynonym for S.

If a size appears other than in these combinations, the behavior is undefined.

fmt A conversion wide character (described below) that shows the type of
conversion to be applied.

When a field width or precision includes an asterisk (*), an i nt arg supplies the
width or precision value, and is said to be “indirect”. A negative indirect field
width value is taken as a — flag followed by a positive field width. A negative
indirect precision value will be taken as zero. When an indirect field width or preci-
sion includes a $, the decimal digits similarly specify the number of the arg that sup-
plies the field width or precision. Otherwise, ani nt arg following the most recently
used arg will be accessed for the indirect field width, or precision, or both, in that
order; the arg to be converted immediately follows these. Thus, if a conversion
specification includes pos$ as well as a $-less indirect field width, or precision, or
both, pos is taken to be the number of the i nt arg used for the first $-less indirec-
tion, not the arg to be converted.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/fwprintf
svid

Page: 351

fwprintf (BA_LIB) fwprintf (BA_LIB)

Page 4

When numbered argument specifications are used, specifying the Nth argument
requires that all the preceding arguments, from the first to the (N-1)th, be specified
at least once, in a consistent way, in the format string.

The conversion wide characters and their meanings are:

a, A

The floating arg is converted to hexadecimal floating notation in the style
[=] Oxh. hhhptd. The binary exponent of the converted value (d) is one or
more decimal digits. The number of fractional hexadecimal digits h is equal
to the precision. If the precision is missing, the result will have just enough
digits to represent the value exactly. The value is rounded when fewer frac-
tional digits is specified. If the precision is zero and the # flag is not
specified, no decimal point wide character appears. The single digit to the
left of the decimal point character is nonzero for normal values. The A
conversion specifier produces a value with 0X and P instead of Ox and p.

b,B, 0, u,x, X

Clc
d,i

e E

f.F

The unsigned integer arg is converted to unsigned binary (b and B),
unsigned octal (0), unsigned decimal (u), or unsigned hexadecimal notation
(x and X). The x conversion uses the letters abcdef and the X conversion
uses the letters ABCDEF. The precision specifies the minimum number of
digits to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeros. The default precision is 1.
The result of converting a zero value with a precision of zero is no wide
characters.

The integer arg is converted to a wide character as if by calling bt owc, and
the resulting wide character is output.

The wide character wchar _t arg is output.

The integer arg is converted to signed decimal. The precision specifies the
minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros. The
default precision is 1. The result of converting a zero value with a precision
of zero is no characters.

The floating arg is converted to the style [-] d. ddde+dd, where there is one
digit before the decimal point character (which is nonzero if the argument is
nonzero) and the number of digits after it is equal to the precision. If the
precision is missing, it is taken as 6; if the precision is zero and the # flag is
not specified, no decimal point wide character appears. The value is
rounded to the appropriate number of digits. The E conversion wide char-
acter will produce a number with E instead of e introducing the exponent.
The exponent always contains at least two digits. If the value is zero, the
exponent is zero.

The floating arg is converted to decimal notation in the style [—] ddd. ddd,
where the number of fractional digits is equal to the precision specification.
If the precision is missing, it is taken as 6; if the precision is zero and the #
flag is not specified, no decimal point wide character appears. If a decimal
point wide character appears, at least one digit appears before it. The value
is rounded to the appropriate number of digits.

FINAL COPY
June 15, 1995
File: ba_lib/fwprintf
svid

Page: 352

fwprintf (BA_LIB) fwprintf (BA_LIB)

g,G The floating arg is converted in style e or f (or in style E or F in the case of a
G conversion wide character), with the precision specifying the number of
significant digits. If the precision is zero, it is taken as one. The style used
depends on the value converted; style e (or E) will be used only if the
exponent resulting from the conversion is less than -4 or greater than or
equal to the precision. Trailing zeros are removed from the fractional part
of the result; a decimal point wide character appears only if it is followed by
a digit.

n The arg is taken to be a pointer to an integer into which is written the
number of wide/multibyte characters output so far by this call. No argu-
ment is converted.

p The arg is taken to be a pointer to voi d. The value of the pointer is con-
verted to an sequence of printable wide characters, which matches those
read by the % conversion of the f wscanf (BA_LIB) functions.

s The arg is taken to be a pointer to the first element of an array of characters.
Multibyte characters from the array are output up to (but not including) a
terminating null character; if a precision is specified, no more than that
many wide/multibyte characters are output. If a precision is not specified
or is greater than the size of the array, the array must contain a terminating
null character. (A null pointer for arg will yield undefined results.)

S,1's The arg is taken to be a pointer to the first element of an array of wchar _t .
Wide characters from the string are output until a null wide character is
encountered or the number of wide/multibyte characters given by the preci-
sion wide would be surpassed. If the precision specification is missing, it is
taken to be infinite. In no case will a partial wide/multibyte character be
output.

% Output a % no argument is converted.

If the form of the conversion specification does not match any of the above, the
results of the conversion are undefined. Similarly, the results are undefined if there
are insufficient args for the format. If the format is exhausted while args remain, the
excess args are ignored.

If a floating-point value represents an infinity, the output is [t]inf, where inf is
infinity or | NFI N TY when the field width or precision is at least 8 and i nf or
I NF otherwise, the uppercase versions used only for a capitol conversion wide char-
acter. Output of the sign follows the rules described above.

If a floating-point value has the internal representation for a NaN (not-a-number),
the output is [x]nan[(m)]. Depending on the conversion character, nan is similarly
either nan or NAN If the represented NaN matches the architecture’s default, no
(m) will be output. Otherwise m represents the bits from the significand in hexade-
cimal with abcdef or ABCDEF used, depending on the case of the conversion wide
character. Output of the sign follows the rules described above.

Otherwise, the locale’s decimal point wide character will be used to introduce the
fractional digits of a floating-point value.

Page 5

FINAL COPY
June 15, 1995
File: ba_lib/fwprintf
svid

Page: 353

fwprintf (BA_LIB) fwprintf (BA_LIB)

A nonexistent or small field width does not cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result. Multibyte characters generated on streams (st dout or strm) are
printed as if the put ¢ function had been called repeatedly.

Errors
These functions return the number of wide/multibyte characters transmitted (not
counting the terminating null wide character for swprintf and vswprintf), or
return a negative value if an error was encountered.
USAGE
To print a date and time in the form ‘‘Sunday, July 3, 10:02,”” where weekday and
nmont h are pointers to null-terminated strings:
worintf(L"%, % %, %l % 2d",
weekday, nonth, day, hour, nin);

To print tto 5 decimal places:
worintf(L"pi = %5f", 4 * atan(1.0));

The following two calls to wprintf both produce the same result of
10 10 00300 10:

worintf(L"%l %4$d %*d 94$d", 10, 5, 300);
worintf(L"%l %4$d 98%. *2$d %4$d", 10, 5, 300);
SEE ALSO
printf(BA_LIB), putc(BA_LIB), scanf(BA_LIB) setlocale(BA_LIB), stdio(BA_LIB),
write(BA_OS)

LEVEL
Level 1.

Page 6

FINAL COPY
June 15, 1995
File: ba_lib/fwprintf
svid

Page: 354

fwscanf (BA_LIB) fwscanf (BA_LIB)

MAME fwscanf , wscanf , swscanf - convert formatted wide/multibyte character input
SYNOPSIS

#i ncl ude <wchar. h>

i nt fwscanf (FILE *stream, const wchar _t [format, ...);

i nt wscanf(const wchar _t Cormat, ...);

i nt swscanf(const wchar_t *s, const wchar_t *format, ...);
DESCRIPTION

fwscanf reads input from the stream pointed to by st ream under control of the
wide string pointed to by format that specifies admissible input sequences and
how they are converted for input. If there are insufficient arguments for the format,
the behavior is undefined. If the format is exhausted while the arguments remain,
the excess arguments are evaluated but are otherwise ignored.

wscanf reads input to the stream in the same manner as f wscanf, with the argu-
ment st di n interposed before the arguments to wscanf .

swscanf reads input to the stream in the same manner as f wscanf , except that the
argument s specifies a wide string from which the generated input is read, rather
than converting multibyte characters from a stream. Also, the detection of wide or
multibyte encoding errors may differ. If the end of the wide string is reached, it
behaves the same as when an end-of-file is encountered for fwscanf. If copying
takes place between objects that overlap, the behavior is undefined.

The format is composed of zero or more directives which include:
One or more white space wide characters
Ordinary wide characters (not % or white space)

Conversion specifications (all wide characters which are members of the
basic character set).

Each conversion specification is introduced by the wide character %and followed
by:
An optional assignment-suppressing wide character *.

An optional nonzero decimal integer that specifies the maximum field
width.

An optional h, | or L indicating the size of the receiving object. The conver-
sion specifiers d, i , and n are preceded by h if the corresponding argument
is a pointer to short i nt instead of a pointer toi nt, or by | if itis a pointer
tol ong int. The conversion specifiers b, 0, u and x are preceded by h if the
corresponding argument is a pointer to unsi gned short int instead of a
pointer to unsi gned int, or by | if it is a pointer to an unsi gned | ong
int. The conversion specifiers a, e, f and g are preceded by | if the
corresponding argument is a pointer to doubl e rather than a pointer to
float or by L ifitisa pointer tol ong doubl e. The conversion specifiers c,
sand[...] are preceded by | if the corresponding argument is a pointer to
wchar _t instead of a pointer to character.|c and | s are synonyms for C
and S respectively. If an h, | or L appears with any other conversion

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/fwscanf
svid

Page: 355

fwscanf (BA_LIB) fwscanf (BA_LIB)

Page 2

specifier, the behavior is undefined.
A wide character that specifies the type of conversion to be applied.

fwscanf executes each directive of the format in turn. If a directive fails, the func-
tion returns. Failures can be input failures if an encoding error occurs or if input
characters are unavailable. Failures can also be matching failures if there is inap-
propriate input.

A directive comprised of white space wide characters is executed by reading input
up to the first non white-space character which remains unread, or until no more
wide characters can be read.

A directive that is an ordinary wide character is executed by reading the next wide
character of the stream. If the wide character differs from the directive, the direc-
tive fails, and the differing and next wide characters remain unread.

A directive that is a conversion specification defines a set of matching input
sequences, as described below for each specifier. A conversion specification is exe-
cuted as follows:

1 Input white-space wide characters, as specified by the i swspace function,
are skipped unless the specification includes a ¢ or n specifier.
2 An input item is read from the stream unless the specification includes an n

specifier. An input item is defined as the longest matching sequence of
input wide characters unless that exceeds a specified field width. The first
wide character, if any, after the input item remains unread. If the length of
the input item is zero, the execution of the directive fails. This condition is a
matching failure, unless an error prevented input from the stream, which
causes an input failure.

3 Except for a %specifier, the input item is converted to a type appropriate to
the conversion specifier. This also applies to an n directive for the count of
wide characters. If the input item is not a matching sequence, the execution
of the directive fails. This constitutes a matching failure. Unless assignment
suppression is indicated by a *, the result of the conversion is placed in the
object pointed to by the first argument following the f or mat argument that
has not already received a conversion result. If this object does not have an
appropriate type, or if the result of the conversion cannot be represented in
the space provided, the behavior is undefined.

The following section lists the valid conversion specifiers and their meanings:

d Matches an optionally signed decimal integer whose format is the same as
expected for the subject sequence of the west ol function with the value 10
for the base argument. The corresponding argument is a pointer to an
integer.

i Matches an optionally signed integer whose format is the same as expected
for the subject sequence of the wcst ol function with the value O for the
base argument. The corresponding argument is a pointer to an integer.

FINAL COPY
June 15, 1995
File: ba_lib/fwscanf
svid

Page: 356

fwscanf (BA_LIB) fwscanf (BA_LIB)

Clc

S |s

Matches an optionally signed binary integer whose format is the same as
expected for the subject sequence of the west oul function with the value 2
for the base argument. The corresponding argument is a pointer to an
integer.

Matches an optionally signed octal integer whose format is the same as
expected for the subject sequence of the west oul function with the value 8
for the base argument. The corresponding argument is a pointer to an
integer.

Matches an optionally signed decimal integer whose format is the same as
expected for the subject sequence of the west oul function with the value 10
for the base argument. The corresponding argument is a pointer to an
unsigned integer.

Matches an optionally signed hexadecimal integer whose format is the same
as expected for the subject sequence of the west oul function with the value
16 for the base argument. The corresponding argument is a pointer to an
unsigned integer.

g
Matches an optionally floating point number whose format is the same as

expected for the subject sequence of the west od function. The correspond-
ing argument is a pointer to a floating point number.

Matches a sequence of non-white-space wide/multibyte characters. The
corresponding argument is a pointer to the initial element of an array of
wchar _t type large enough to accept the sequence and a terminating null
wide character that is added automatically.

Matches a sequence of wide/multibyte characters of the number specified
by the field width, or 1 if no field width is present in the directive. The
corresponding argument is a pointer to the initial element of an array of
wchar _t type large enough to accept the sequence. No null wide character
is added.

Matches a sequence of wide/multibyte characters of the number specified
by the field width (1 if no width is present in the directive). The correspond-
ing argument should be a pointer to the initial element of a wchar _t array
large enough to accept the sequence of wide characters. No null wide char-
acter is added. The normal skip over white space is suppressed.

Matches a sequence of wide/multibyte characters, optionally delimited by
white-space wide/multibyte characters. The corresponding argument
should be a pointer to the initial element of awchar _t array large enough to
accept the sequence of wide characters and a terminating null wide charac-
ter, which will be added automatically.

Matches an implementation-defined set of sequences that are the same as
the set of sequences that are produced by the % conversion of fwprintf.
The corresponding argument is a pointer to voi d. The interpretation of the
input is implementation defined. If the input item is a value converted ear-
lier during the same program execution, the pointer that results compares
equally to that value. Otherwise the behavior of % is undefined.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/fwscanf
svid

Page: 357

fwscanf (BA_LIB) fwscanf (BA_LIB)

n No input is consumed. The corresponding argument is a pointer to an
integer into which is written the number of wide/multibyte characters read
so far from the input stream written into it. Execution of a % directive does
not increment the assignment count returned at the completion of execution
of this function.

[...] Matches a nonempty sequence of wide/multibyte characters from a set of
expected wide characters (the scanset) as designated by the wide characters
between the brackets (the scanlist), see below. The corresponding argument
should be a pointer to the initial element of a character array large enough
to accept the generated multibyte sequence and a terminating null character,
which will be added automatically.

Matches a nonempty sequence of wide/multibyte characters from a set of
expected wide characters (the scanset) as designated by the wide characters
between the brackets (the scanlist), see below. The corresponding argument
should be a pointer to the initial element of awchar _t array large enough to
accept the sequence of wide characters and a terminating null wide charac-
ter, which will be added automatically.

% Matches a single % No conversion or assignment occurs. The complete
conversion specification is 986

For[...] andI[...], the conversion specifier includes all subsequent characters
in the the format string, up to and including the matching right bracket (]). The
characters between the brackets (the scanlist) comprise the scanlist, unless the char-
acter after the left braket is a circumflex ("), in which case the scanlist contains all
characters that do not appear in the scanlist and the right bracket. If the conversion
specifier begins with [] or ["], the right bracket character is in the scanlist and the
next character is the matching right bracket that ends the specification; otherwise
the first right bracket character is the one that ends the specification.

If a conversion specification is invalid, the behavior is undefined. The conversion
specifiers A, E, Gand X are also valid and behave the same as a, e, g and x
respectively.

Errors

SEE AL

LEVEL

Page 4

fwscanf ,wscanf and swscanf return the number of wide characters transmitted or
return a negative value if an error was encountered.

SO
printf(BA_LIB), putc(BA_LIB), scanf(BA_LIB), setlocale(BA_LIB), stdio(BA_LIB),
write(BA_OS)

Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/fwscanf
svid

Page: 358

get_t_errno (BA_LIB) get_t_errno (BA_LIB)

NAME
get _t_errno, set_t_errno-get/sett errno value

SYNOPSIS
#i nclude <xti.h>

int get_t_errno(void)
int set_t_errno(int)
DESCRIPTION

The get _t _errno and set _t _errno functions are used in TLI/XTI multi-threaded
applications to set and return the value int _errno.

These functions are required by applications compiled with the _ REENTRANT flag if
the user needs to set the thread-specific version of t _err no.

USAGE
While get _t_errno and set_t_errno are designed for use in multi-threaded
applications, they are available for used in non-reentrant code and may be incor-
porated if a need is anticipated to convert to reentrant code later on.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/get_t_errno
svid

Page: 359

getc (BA_LIB) getc (BA_LIB)

NAME
get c, get char, f get ¢, get w— get character or word from a stream

SYNOPSIS
#i ncl ude <stdi o. h>

int getc(FlLE *stream);
int getchar(void);

int fgetc(FlLE *stream);
int getwFlLE *stream);

DESCRIPTION
get ¢ returns the next character (that is, byte) from the named input stream as an
unsi gned char converted to an i nt. It also moves the file pointer, if defined,
ahead one character in stream. getchar is defined as getc(stdin). getc and
get char are macros.

f get ¢ behaves like get c, but is a function rather than a macro. f getc runs more
slowly than get c, but it takes less space per invocation and its name can be passed
as an argument to a function.

get w returns the next word (that is, integer) from the named input stream. getw
increments the associated file pointer, if defined, to point to the next word. The size
of a word is the size of an integer and varies from machine to machine. getw
assumes no special alignment in the file.

Errors
If the stream is at ECF, the ECF indicator for the stream is set and get ¢ returns ECF. If
a read error occurs, the error indicator for the stream is set, get ¢ returns ECF and
sets er r no to identify the error.

Under the following conditions, the functions get c, get char, f get ¢ and get w fail
and set err no to:

EAGAIN if the O NONBLOXK flag is set for the underlying file descriptor and the
process would have blocked in the read operation.

EBADF if the underlying file descriptor is not a valid file descriptor open for

reading.

El NTR if a signal was caught during the getc, getchar, fgetc or getw call,
and no data was transferred.

El O if a physical 170 error has occurred, or the process is in a background

process group and is attempting to read from its controlling terminal,
and either the process is ignoring or blocking the S| GT'TI N signal or the
process group of the process is orphaned.

NOTICES
If the integer value returned by get c, get char, or f get c is stored into a character
variable and then compared against the integer constant ECF, the comparison may
never succeed, because sign-extension of a character on widening to integer is
implementation dependent.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/getc
svid

Page: 360

getc (BA_LIB) getc (BA_LIB)

The macro version of get c evaluates a stream argument more than once and may
treat side effects incorrectly. In particular, get c(*f++) does not work sensibly.
Use f get ¢ instead.

Because of possible differences in word length and byte ordering, files written using

put ware implementation dependent, and may not be read using get won a different
processor.

Functions exist for all the above-defined macros. To get the function form, the
macro name must be undefined (for example, #undef get c).

SEE ALSO
fcl ose(BA_OS), ferror (BA_OS), fopen(BA_OS), fread(BA_OS), get s(BA_LIB),
put c(BA_LIB), scanf (BA_LIB), stdi o(BA_LIB), unget c(BA_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/getc

svid

Page: 361

getdate (BA_LIB) getdate (BA_LIB)

NAME
getdate — convert user format date and time

SYNOPSIS
#i ncl ude <tine.h>

struct tm *get date(char *string);

extern int getdate_err;

DESCRIPTION
The routine get dat e() converts user definable date and/or time specifications
pointed to by string, into a struct tm The structure declaration is in the
<t i me. h> header file [see ctime(BA_LIB)].

User supplied templates are used to parse and interpret the input string. The tem-
plates are text files created by the user DATEMSK. The DATEMSK variable should be
set to indicate the full pathname of the template file. The first line in the template
that matches the input specification is used for interpretation and conversion into
the internal time format. Upon successful completion, the function get dat e()
returns a pointer to a st ruct t m otherwise, it returns NULL and the external vari-
able get dat e_err is set to indicate the error.

The following field descriptors are supported:
%% same as %
% abbreviated weekday name
%A full weekday name
% abbreviated month name
%8 full month name
% locale’s appropriate date and time representation
% day of month (01 - 31; the leading 0 is optional)
% same as %d
% date as % %d/ %y
% abbreviated month name
%1 hour (00-23)
% hour(01-12)
%n month number (01 -12)
% minute (00 -59)
% same as \n
% locale’s equivalent of either AM or PM
% timeas%:9YM Y6 %
%R time as % %M
% seconds (00-59)
% same as tab
o time as % YoM %S
%v weekday number (Sunday =0 - 6)
% locale’s appropriate date representation
%X locale’s appropriate time representation
% year within century (00-99)
%Y year as ccyy (e.g. 1986)

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/getdate
svid

Page: 362

getdate (BA_LIB) getdate (BA_LIB)

Page 2

% time zone name or no characters if no time zone exists If the time zone
supplied by %Z is not the same as the time zone getdate expects an
invalid input specification error will result. Getdate calculates an
expected time zone based on information supplied to the interface
(such as the hour, day, and month).

The match between the template and input specification performed by getdate() is
case insensitive.

The month and weekday names can consist of any combination of upper and lower
case letters. The user can request that the input date or time specification be in a
specific language by setting the LC_TI ME category [see setlocale(BA_OS)].

Leading 0’s are not necessary for the descriptors that allow leading 0’s. However,
at most two digits are allowed for those descriptors, including leading 0’s. Extra
whitespace in either the template file or in string is ignored.

The field descriptors %, %, and %X will not be supported if they include unsup-
ported field descriptors.

The following example shows the possible contents of a template:
%m
YA YB Yd, W, %t M U
YA
9B
% %/ %y B Y
%l, %m % %H. oM
at %A the %lst of 9B in %W
run job at % %, ¥B %nd
%A den %d. 9B % %H. 9YM Unr
The following are examples of valid input specifications for the above template:
getdate("10/1/87 4 PM);
getdat e("Friday");
getdate("Friday Septenmber 18, 1987, 10:30:30");
getdate("24,9,1986 10:30");
getdate("at nonday the 1st of decenber in 1986");
getdate("run job at 3 PM decenber 2nd");

If the LC_TI ME category is set to a German locale that includes freitag as a
weekday name and okt ober as a month name, the following would be valid:
getdate("freitag den 10. oktober 1986 10.30 Uhr");

The following examples shows how local date and time specification can be defined
in the template.

d INVOCATION U LINE IN TEMPLATE [
etdate("11/27/86") Sogm oml/ vy S
etdate("27.11.86") Q. %m % 0

[petdate("86-11-27") O% - %n % O

[petdate("Friday 12:00:00") O%A %1 9%t %5 0

FINAL COPY

June 15, 1995
File: ba_lib/getdate
svid

Page: 363

getdate (BA_LIB) getdate (BA_LIB)

The following rules apply for converting the input specification into the internal

format:

1 If only the weekday is given, today is assumed if the given day is equal to the
current day and next week if it is less,

2 If only the month is given, the current month is assumed if the given month is

equal to the current month and next year if it is less and no year is given (the
first day of month is assumed if no day is given),

3 If no hour, minute and second are given the current hour, minute and second
are assumed,

4 If no date is given, today is assumed if the given hour is greater than the
current hour and tomorrow is assumed if it is less.

The following examples help to illustrate the above rules assuming that the current
date is Mon Sep 22 12:19:47 EDT 1986 and the LC_TI ME category is set to
the default " C' locale.

u O LINEIN O 0

U INPUT U TEMPLATE O DATE 0

n E%a HMon Sep 22 12:19:47 EDT 1986 S

un G gSun Sep 28 12:19:47 EDT 1986

ri n%a OFri Sep 26 12:19:47 EDT 1986 [

Sept ember 0Ys OMon Sep 112:19:47 EDT 1986 [

Panuary 098 OThulJan 112:19:47 EST 1987 [

[Decenber 98 OMon Dec 112:19:47 EST 1986 [J

(Bep Mon Ovb % OMon Sep 112:19:47 EDT 1986 O

Lan Fri Uop va UFriJan 212:19:47 EST 1987 U

¢ Mon Uop va UMon Dec 112:19:47 EST 1986 U

an Ved 1989 o % % [Wed Jan 412:19:47 EST 1989 [

ri 9 0% % [Fri Sep 26 09:00:00 EDT 1986

eb 10: 30 O% %1 %6 [SunFeb 110:00:30 EST 1987 [

0: 30 0% %\ OTue Sep 23 10:30:00 EDT 1986]

M3: 30 0% %V [JMon Sep 22 13:30:00 EDT 1986 [J

ERRORS
Upon failure, NULL is returned and the variable get dat e_er r is set to indicate the
error.

The following is a complete list of the get dat e_er r settings and their correspond-
ing descriptions.

the DATEMSK environment variable is null or undefined,

the template file cannot be opened for reading,

failed to get file status information,

the template file is not a regular file,

an error is encountered while reading the template file,

memory allocation failed (not enough memory available),

there is no line in the template that matches the input,

=

~NOoO O WN

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/getdate
svid

Page: 364

getdate (BA_LIB) getdate (BA_LIB)

8 invalid input specification Example: February 31 or a time is specified
that can not be represented in a time_t (representing the time in
seconds since 00:00:00 UTC, January 1, 1970)

SEE ALSO
ctime(BA_LIB), ctype(BA_LIB), setlocale(BA_OS), strftime(BA_LIB), time(BA_OS).

LEVEL
Level 2, September 30, 1993. Replaced by st rpti ne(BA_LI B).

Page 4

FINAL COPY
June 15, 1995
File: ba_lib/getdate
svid

Page: 365

getenv (BA_LIB) getenv (BA_LIB)

NAME
getenv — return value for environment name

SYNOPSIS
#i ncl ude <unistd. h>
#i ncl ude <stdlib. h>

char *getenv(const char *name);

DESCRIPTION
The function getenv() searches the environment for a string of the form
name=value and returns a pointer to the value in the current environment if such a
string is present. Otherwise, NULL is returned.

SEE ALSO
envvar(BA_ENV), exec(BA_OS), putenv(BA_LIB), system(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/getenv
svid

Page: 366

getgrent (BA_LIB) getgrent (BA_LIB)

NAME
getgrent, getgrgi d, get gr nam set grent, endgrent, f get grent — get group file
entry

SYNOPSIS
#i ncl ude <grp. h>

struct group [hetgrent (void);

struct group [hetgrgid (gid_t gid);

struct group [getgrnam (const char [hame);
void setgrent (void);

voi d endgrent (void);

struct group dgetgrent (FILE ¥);

DESCRIPTION
get grent, get grgi d, and get gr nameach returns a pointer to a structure contain-
ing the broken-out fields of a line in the /et c/ group file. Each line contains a
‘‘group’ structure, defined in the gr p. h header file with the following members:

char Cor _nane; /O the nane of the group O
gid_t gr_gid; /Othe nunerical group ID O
char Ogr _mem / Ovector of pointers to menber nanes 0O

When first called, get gr ent returns a pointer to the first group structure in the file;
thereafter, it returns a pointer to the next group structure in the file; so, successive
calls may be used to search the entire file. get gr gi d searches from the beginning of
the file until a numerical group id matching gid is found and returns a pointer to
the particular structure in which it was found.

get gr namsearches from the beginning of the file until a group name matching name
is found and returns a pointer to the particular structure in which it was found. If
an end-of-file or an error is encountered on reading, these functions return a null
pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. endgrent may be called to close the group file when processing is com-
plete.

fgetgrent returns a pointer to the next group structure in the stream f, which
matches the format of / et ¢/ gr oup.

Errors
getgrent, getgrgi d, get grnam and f get grent return a null pointer on ECF or
error. If a bad entry is encountered, errno is set to El NVAL. If the functions are
unable to allocate sufficient space for the entry, err no is set to ENOVEM
SEE ALSO
get | ogi n (BA_LIB), get pwent (BA_LIB),
NOTICES
All information is contained in a static area, so it must be copied if it is to be saved.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/getgrent
svid

Page: 367

getgrent (BA_LIB)

LEVEL

Page 2

Level 2.

FINAL COPY
June 15, 1995
File: ba_lib/getgrent
svid

Page: 368

getgrent (BA_LIB)

getlogin (BA_LIB) getlogin (BA_LIB)

NAME

get | ogi n — get login name
SYNOPSIS

#i ncl ude <stdlib. h>

char [het! ogi n(void);
DESCRIPTION
get | ogi n returns a pointer to the login name It may be used in conjunction with

get pwnamto locate the correct password file entry when the same user id is shared
by several login names.

If get | ogi n is called within a process that is not attached to a terminal, it returns a
null pointer. The correct procedure for determining the login name is to call
cuseri d, or to call get | ogi n and if it fails to call get pwui d.

SEE ALSO
cuseri d(BA_LIB), get grent (BA_LIB), get pwent (BA_LIB)

LEVEL
Level 1.

NOTICES
The return values point to static data whose content is overwritten by each call.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/getlogin
svid

Page: 369

getpass (SD_LIB) getpass (SD_LIB)

NAME
get pass - read a password

SYNOPSIS
#i ncl ude <uni std. h>

char [het pass(const char [Cprompt);

DESCRIPTION
get pass reads up to a newline or ECF from the file / dev/ t ty, after prompting on
the standard error output with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated string of at most 8 characters. If
/ dev/ tty cannot be opened, a null pointer is returned. An interrupt will terminate
input and send an interrupt signal to the calling program before returning.
Files
/dev/tty

NOTICES

The return value of get pass points to static data whose content is overwritten by
each call.

Use the reentrant function get pass_r for multi-threaded applications.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/getpass
svid

Page: 370

getopt (BA_LIB) getopt (BA_LIB)

NAME
getopt — get option letter from argument vector
SYNOPSIS
#i ncl ude <stdio. h>
int getopt(int argc, char *const *argv, const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;
DESCRIPTION

The function get opt () is a command-line parser. It returns the next option letter
in argv that matches a letter in optstring.

The function get opt () places in opti nd the argv index of the next argument to
be processed. The external variable opt i nd is initialized to 1 before the first call to
the function get opt () .

The argument optstring is a string of recognized option letters; if a letter is followed
by a colon, the option is expected to have an argument that may be separated from
it by white space.

The variable opt ar g is set to point to the start of the option argument on return
from get opt () .

When all options have been processed (i.e., up to the first non-option argument),
the function get opt () returns EOF. The special option — may be used to delimit
the end of the options; ECF will be returned and — will be skipped.

The following rules comprise the System V standard for command-line syntax:
RULE 1: Command names must be between two and nine characters.
RULE 2: Command names must include lower-case letters and digits only.
RULE 3: Option names must be a single character in length.
RULE 4: All options must be delimited by the — character.
RULE 5:

6

RULE

Options with no arguments may be grouped behind one delimiter.

The first option-argument following an option may be preceded by
white space.

RULE 7: Option arguments cannot be optional.

RULE 8: Groups of option arguments following an option must be separated by
commas or separated by white space and quoted.

RULE 9: All options must precede operands on the command line.
RULE 10: The characters — may be used to delimit the end of the options.
RULE 11: The order of options relative to one another should not matter.

RULE 12: The order of operands may matter and position-related interpretations
should be determined on a command-specific basis.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/getopt
svid

Page: 371

getopt (BA_LIB) getopt (BA_LIB)

RULE 13: The — character preceded and followed by white space should be used
only to mean standard input.

RETURN VALUE

The function get opt () returns a question mark (?) when it encounters an option
letter not included in optstring; it also prints an error message on st derr if opterr
is set to non-0 (opt err is initialized to 1). The value of the character that caused
the error is in optopt. The message is printed in the standard error format.
get opt () supports localized output messages. If the appropriate translated sys-
tem messages are installed on the system, they are selected by the latest call to set -
| ocal e() (usingthe LC_ALL or LC_MESSAGES categories).

The label defined by a call to set | abel () will be used if available; otherwise, the
name of the utility (ar gv[0]) will be used.

EXAMPLE

Page 2

The following code fragment shows how one might process the options and argu-
ments for a command that takes: mutually exclusive options a and b, exactly one of
which is required; an optional option i which takes an option-argument; and at
least two arguments.

mai n(int argc, char *argv[]

{
int opt, aflg=0, bflg=0, iflg=0, errflg=0, retval
char *cmdnane, *ifile, *ofile ;
FI LE *infile, *outfile ;
extern int optind, opterr, errno ;
extern char *optarg ;
set | abel (" UX: exanpl e");
cmdname = argv[0]
opterr =0 ; /* inhibit getopt err nsg */
while ((opt=getopt(argc,argv,"abi:")) !'= EOF) {
switch (opt) {
case 'a’
aflg += 1 ; break ;
case 'b’
bflg += 1 ; break ;
case i’
iflg+=1; ifile = optarg ; break ;
default : /* includes '?' case */
errflg += 1 ; break ;
}
}
if (errflg>0 || aflg+bflg!=1 || iflg>1 || argc-optind<2) {
usage_err_exit(cnmdnane) ;
}
if (iflg=0) {
infile = stdin ;
} elseif ((infile=fopen(ifile,"r")) == NULL) {
open_err_exit(cndnane,ifile,errno) ;
}

FINAL COPY
June 15, 1995
File: ba_lib/getopt
svid

Page: 372

getopt (BA_LIB) getopt (BA_LIB)

(continues)
for (; optind<argc ; optind+=1) {
if ((outfile=fopen(ofile=argv[optind],"r+")) == NULL) {
open_err_exit(cnmdnane, ofil e, errno) ;
}
if ((retval =do_work(aflg,bflg,infile,outfile)) '=0) {
work_err_exit(cndnane, ofile,retval) ;
}
if (fclose(outfile) !=0) {
cl ose_err_exit(cmdnane, ofil e, errno) ;
}
}
exit(0) ;
}

SEE ALSO
pfmt(BA_LIB) setlabel(BA_LIB)

LEVEL
Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/getopt
svid

Page: 373

Page 3

getpwent (BA_LIB) getpwent (BA_LIB)

NAME
get pwent , get pwui d, get pwnam set pwent, endpwent, f get pnent — manipulate
password file entry

SYNOPSIS
#i ncl ude <pwd. h>

#i ncl ude <stdi o. h>

struct passwd [get pwent (void);

struct passwd [getpwiid (uid_t uid);

struct passwd [et pwnam (const char [hame);
voi d setpwent (void);

voi d endpwent (void);

struct passwd [f getpwent (FILE [¥);

DESCRIPTION
get pwent , get pwui d, and get pwnameach returns a pointer to an object with the fol-
lowing structure containing the broken-out fields of a line in the / et ¢/ passwd file.
Each line in the file contains a passwd structure, declared in the pwd. h header file:

struct passwd {
char [pw_nane;
char [pw _passwd;
ui d_t pw_uid;
gid_t pw gid;
char [Cpwdir;
char [pw shel | ;
b
When first called, get pwent returns a pointer to the first passwd structure in the
file; thereafter, it returns a pointer to the next passwd structure in the file. Thus suc-
cessive calls can be used to search the entire file. get pwui d searches from the
beginning of the file until a numerical user ID matching uid is found and returns a
pointer to the particular structure in which it was found. get pwnamsearches from
the beginning of the file until a login name matching name is found, and returns a
pointer to the particular structure in which it was found. If an end-of-file or an
error is encountered on reading, these functions return a null pointer.

A call to set pwent has the effect of rewinding the password file to allow repeated
searches. endpwent may be called to close the password file when processing is
complete.

f get pwent returns a pointer to the next passwd structure in the stream f, which
matches the format of / et ¢/ passwd.

Files
/ et ¢/ passwd

Return Values

get pwent , get pwui d, get pwnam and f get pwent return a null pointer on ECF or
error.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/getpwent
svid

Page: 374

gets (BA_LIB)

SEE ALSO
ferror(BA_OS), fopen(BA_0OS), fread(BA_OS), getc(BA_LIB), puts(BA_LIB),

LEVEL

Page 2

scanf(BA_LIB).

Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/gets

svid

Page: 377

gets (BA_LIB)

getsubopt (BA_LIB) getsubopt (BA_LIB)

NAME

getsubopt — parse sub options from a string.
SYNOPSIS

i nt get subopt (char **optionp, char *tokens[], char **valuep);
DESCRIPTION

The function get subopt () parses suboptions in a flag argument that were initially
parsed by getopt () [see getopt(BA_LIB)]. These suboptions are separated by
commas and may consist of either a single token, or a token-value pair separated by
an equal sign. Because commas delimit suboptions in the option string, they are not
allowed to be part of the suboption or the value of a suboption. Similarly, because
the equal sign separates a token from its value, a token must not contain an equal
sign. An example command that uses this syntax is nmount. nount allows
parameters to be specified with the - o switch as follows :

nmount —o rw, hard, bg, wsi ze=1024 speed:/usr [usr

In this example there are four suboptions: rw, hard, bg, and wsi ze, the last of
which has an associated value of 1024.

get subopt () takes the address of a pointer to the option string, a vector of possi-
ble tokens, and the address of a value string pointer. It returns the index of the
token that matched the suboption in the input string or -1 if there was no match. If
the option string at *optionp contains only one suboption, get subopt () updates
*optionp to point to the null at the end of the string, otherwise it isolates the subop-
tion by replacing the comma separator with a null, and updates *optionp to point to
the start of the next suboption. If the suboption has an associated value,
get subopt () updates *valuep to point to the value’s first character. Otherwise it
sets *valuep to NULL.

The token vector is organized as a series of pointers to NULL-terminated strings.
The end of the token vector is identified by NULL.

When get subopt () returns, if *valuep is not NULL then the suboption processed
included a value. The calling program may use this information to determine if the
presence or lack of a value for this subobtion is an error.

Additionally, when get subopt () fails to match the suboption with the tokens in
the tokens array, the calling program should decide if this is an error, or if the
unrecognized option should be passed on to another program.

EXAMPLE
The following code fragment shows how options may be processed to the mount
command using get subopt ().

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/getsubopt
svid

Page: 378

getsub

Page 2

opt(BA_LIB)

char *nmyopts[] = {

#def i ne READONLY 0
"ro",
#define READWRITE 1
"rw',
#define WRITESI ZE 2
"wsi ze",
#def i ne READSI ZE 3
"rsize",
NULL} ;
mai n(argc, argv)
int argc;
char **argv;
{
int sc, c, errflag;
char *options, *val ue;
extern char *optarg;
extern int optind;
while((c = getopt(argc, argv, "abf:o:")) !=-1) {
switch (c) {
case 'a’: /* process a option */
break;
case 'b’: /* process b option */
br eak;
case 'f’:
ofile = optarg;
br eak;
case '?':
errflag++;
br eak;
(continues)

FINAL COPY
June 15, 1995
File: ba_lib/getsubopt
svid

Page: 379

getsubopt (BA_LIB)

getsubopt (BA_LIB) getsubopt (BA_LIB)

case 'o’
options = optarg
while (*options !'="\0") {
swi t ch(get subopt (&opti ons, nyopt s, &al ue) {
case READONLY : /* process ro option */
br eak;
case READWRITE : /* process rw option */
br eak;
case WRITESI ZE : /* process wsize option */
if (value == NULL) {
error_no_arg();
errfl ag++;
} else
wite_size = atoi(val ue)
br eak;
case READSIZE : /* process rsize option */
if (value == NULL) {
error_no_arg();
errflag++
} else
read_si ze = atoi(val ue)
break;
def aul t
/* process unknown token */
error_bad_t oken(val ue)
errflag++
br eak;
}
}
br eak;
}

}
if (errflag) {
/* print Usage instructions etc. */
}
for (; optind<argc; optind++) {
/* process renmining argunents */

}

}
SEE ALSO
getopt(BA_LIB).

LEVEL
Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/getsubopt
svid

Page: 380

Page 3

gettxt (BA_LIB) gettxt (BA_LIB)

NAME

gettxt — retrieve a text string
SYNOPSIS

char *gettxt(char *msgid, char *dflt_str);
DESCRIPTION

The routine get t xt () retrieves a text string from a message file. The arguments to
the function are a mess’ msgid and a default string dflt_str to be used if the retrieval

fails.
The text strings are in files created by nknmsgs [see mkmsgs(AS_CMD)] and
installed in
lusr/1ib/local el locale/ LC_MESSAGES
directories.

The directory locale can be viewed as the language in which the text strings are writ-
ten. The user can request that messages be displayed in a specific language by set-
ting the environment variable LC MESSAGES. If LC_MESSAGES is not set the
environment variable LANGwill be used.

If LANGis not set, the locale in which the strings will be retrieved is the C locale and
the files containing the strings are in
/usr/lib/local e/ ¢ LC_MESSAGES/ *.

The user can also change the language in which the messages are displayed by
invoking the set| ocal e() [see setlocale(BA_OS)] function with the appropriate
arguments. If the locale is explicitly changed (via setl ocal e()), the pointers
returned by get t xt () may no longer be valid.

The following depicts the acceptable syntax of msgid for a call to get t xt () :
msgfilename: msgnumber

The argument msgid consists of two fields separated by a colon. The first field is
used to indicate the file that contains the text strings and is limited to 14 characters.
These characters must be selected from a set of all character values excluding \ 0
(null) and the ASCII code for / (slash) and : (colon). The names of message files
must be the same as the names of files created by nknsgs() and installed in
/usr/lib/local ellocale/ LC_MESSAGES/ 0 If no file name is specified,
gettxt () will use the name specified with set cat (). [see setcat(BA_LIB)] The
numeric field indicates the sequence number of the string in the file. The strings are
numbered from 1.

If msgfilename does not exist in the locale (specified by the last call to setl ocal e
using the LC_ALL or LC_MESSACES categories), or if the message number is out of
bounds, gett xt attempts to retrieve the message from the C locale. If this second
retrieval fails, get t xt uses dflt_str.

If msgfilename is omitted, get t xt attempts to retrieve the string from the default
catalog specified by the last call to set cat .

get t xt outputs Message not found!!\n if:

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/gettxt
svid

Page: 381

gettxt (BA_LIB) gettxt (BA_LIB)

— msgfilename is not a valid catalog name as defined above
— no catalog is specified (either explicitly or via set cat)
— msgnumber is not a positive number

— no message could be retrieved and dflt_str was omitted

FILES
[usr/libl/local e/ C LC_MESSAGES/ * Default message files created by
nknmsgs()
lusr/1ibl/local e/ locale/ LC_MESSAGES/ * message files for different
languages created by nknsgs()
EXAMPLE

In the following code fragment:
gettxt("test: 10", "hello world\n")
gettxt("test: 10", "")
setcat("test");
gettxt(":10", "hello world\n")
t est is the name of the file that contains the messages; 10 is the message number.

SEE ALSO
envvar(BA_ENV), gettxt(BU_CMD), mkmsgs(AS_CMD), setcat(BA_LIB),
setlocale(BA_OS), srchtxt(AS_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/gettxt
svid

Page: 382

getwc (BA_LIB) getwc (BA_LIB)

NAME
get we, get wchar, f get we — get next wide character from a stream

SYNOPSIS
#i ncl ude <stdi o. h>
#i ncl ude <wchar. h>

wint_t getwc(Fl LE Cktream);
wint_t getwchar(void);
wint_t fgetwc(FlLE Cktream);

DESCRIPTION
f get we transforms the next multibyte character from the named input stream into a
wide character, and returns it. It also increments the file pointer, if defined, by one
multibyte character. get wchar is defined as get wc(stdin).

get wc behaves like f get we, except that get wc may be implemented as a macro
which evaluates stream more than once.

Errors
These functions return the constant WECF and sets the stream’s end-of-file indicator
at the end-of-file. They return WECF if an error is found. If the error is an 1/0 error,
the error indicator is set. If it is due to an invalid or incomplete multibyte character,
errno is set to El LSEQ

NOTICES
If the value returned by get wec, get wchar, or f get we is compared with the integer
constant WECF after being stored in a wchar _t object, the comparison may not
succeed.

SEE ALSO
f cl ose(BA_OS), ferror (BA_OS), f open(BA_OS), put wec(BA_LIB), scanf (BA_LIB),
st di o(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/getwc
svid

Page: 383

fgetws (BA_LIB) fgetws (BA_LIB)

NAME
f get ws — get awchar _t string from a stream

SYNOPSIS
#i ncl ude <stdi o. h>
#i ncl ude <wi dec. h>

wchar _t Ogetws(wchar _t 05, int n, FILE Cstream);

DESCRIPTION
f get ws reads wide characters from the stream, converts them to wchar _t charac-
ters, and places them in the wchar _t array pointed to by s. f get ws reads until n-1
wchar _t characters are transferred to s, or a newline character or an end-of-file con-
dition is encountered. The wchar _t string is then terminated with a wchar _t null
character.

Errors
If end-of-file or a read error is encountered and no characters have been
transformed, no wchar _t characters are transferred to s and a null pointer is
returned and the error indicator for the stream is set. If the read error is an illegal
byte sequence, err no is set to El LSEQ If end-of-file is encountered, the ECF indica-
tor for the stream is set. Otherwise, s is returned.

SEE ALSO
fread(BA_OS), get wc(BA_LIB), scanf (BA_LIB), st di o(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/getws
svid

Page: 384

glob (BA_LIB) glob (BA_LIB)

NAME
gl ob, gl obf r ee — generate pathnames matching a pattern

SYNOPSIS
#i ncl ude <gl ob. h>

int glob(const char *pattern, int flags,
i nt (*errfunc) (const char *epath, int eerrno), glob_t *pglob);

voi d gl obfree(glob_t *pglob);

DESCRIPTION
These functions are part of the X/Open Portability Guide Issue 4 optional POSIX2
C-Language Binding feature group.

Return Values
gl ob returns Q.CB_NCSYS and sets er r no to ENCBYS.

gl obf r ee returns and sets er r no to ENCSYS.

USAGE
Administrator.

SEE ALSO
f nmat ch(BA_LIB), wor dexp(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/glob

svid

Page: 385

grantpt (BA_LIB) grantpt (BA_LIB)

NAME

grantpt — grant access to the slave pseudo-terminal device
SYNOPSIS

int grantpt(int fildes);
DESCRIPTION

The function gr ant pt () changes the mode and ownership of the slave pseudo-
terminal device associated with its master pseudo-terminal counter part. fildes is
the file descriptor returned from a successful open of the master pseudo-terminal
device. A setui d() root program [see setuid(BA_OS)] is invoked to change the
permissions. The user ID of the slave is set to the real UID of the calling process
and the group ID is set to a reserved group. The permission mode of the slave
pseudo-terminal is set to readable, writeable, by the owner and writeable by the
group.
RETURN VALUE

Upon successful completion, the function gr ant pt () returns a value of O; other-
wise, it returns a value of - 1. Failure could occur if fildes is not an open file descrip-
tor, is not associated with a master pseudo-terminal device, or if the corresponding
slave device could not be accessed.

SEE ALSO

open(BA_OS), ptsname(BA_LIB), setuid(BA_OS), unlockpt(BA_LIB).
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/grantpt
svid

Page: 386

hsearch (BA_LIB) hsearch (BA_LIB)

NAME
hsearch, hcreate, hdestroy — manage hash search tables

SYNOPSIS
#i ncl ude <search. h>

ENTRY *hsear ch(ENTRY item, ACTI ON action) ;
i nt hcreate(unsi gned nel);
voi d hdestroy(void);

DESCRIPTION
The function hsear ch() is a hash-table search routine. It returns a pointer into a
hash table indicating the location at which an entry can be found. The comparison
function used by hsear ch() is the function strcnp() [see string(BA_LIB)].

The argument item is a structure of type ENTRY (defined in search.h header[see
search(BA_ENV)]) containing two pointers: item.key pointing to the comparison key
and item.data pointing to any other data to be associated with that key. (Pointers to
types other than voi d should be cast to pointer-to-void.)

The argument action is a member of an enumeration type ACTI O\, indicating the
disposition of the entry if it cannot be found in the table.

ENTER indicates that the item should be inserted in the table at an appropriate point.
Given a duplicate of an existing item, the new item is not entered, and hsear ch()
returns a pointer to the existing item.

FI ND indicates that no entry should be made. Unsuccessful resolution is indicated
by the return of NULL.

The function hcr eat e() allocates sufficient space for the table and must be called
before hsear ch() is used. The value of nel is an estimate of the maximum number
of entries that the table will contain. This number may be adjusted upward by the
algorithm in order to obtain certain mathematically favorable circumstances.

The function hdestroy() destroys the search table and may be followed by
another call to hcreat e() .

RETURN VALUE
The function hsear ch() returns NULL if either the action is FI ND and the item
could not be found or the action is ENTER and the table is full.

The function hcr eat e() returns 0 if it cannot allocate sufficient space for the table.

EXAMPLE
The example reads in strings followed by two numbers and stores them in a hash
table. It then reads in strings and finds the entry in the table and prints it.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/hsearch
svid

Page: 387

hsearch (BA_LIB) hsearch (BA_LIB)

#i ncl ude <stdio. h>
#i ncl ude <search. h>
#i ncl ude <string. h>

struct info { /* these are in the table */
int age, room /* apart fromthe key. */
b
#define NUM EMPL 5000 /* # of elements in the table */
main ()
{
char string_space[NUM EMPL*20] ; /* space for strings */
struct info info_space[NUM EMPL]; /* space for enployee info */
char *str_ptr = string_space; /* next avail space for strings */
struct info *info_ptr = info_space; /* next avail space for info */
ENTRY item *found_item
char nanme_to_find[30]; /* nanme to look for in table */
int i =0

/* create table */
(voi d) hcreate(NUM EMPL);
while (scanf("%%%l", str_ptr, & nfo_ptr—>age,
& nfo_ptr—>room != ECF && i++ < NUM EMPL) {
/* put info in structure, and structure in item?*/
itemkey = str_ptr;
itemdata = (void *)info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;
(voi d) hsearch(item ENTER); /* put iteminto table */
}
/* access table */
itemkey = nanme_to_find;
while (scanf("%", itemkey) != EOF) {
if ((found_item = hsearch(item FIND)) != NULL) {
/* if itemis in the table */
(void) printf("found %, age = %, room= %\ n",
found_i t em->key,
((struct info *)found_item->data)—>age,
((struct info *)found_item->data)—->roon;
} else {
(void) printf("no such enpl oyee ¥%\n",
nanme_to_find);

}

SEE ALSO
bsearch(BA_LIB), Isearch(BA_LIB), malloc(BA_OS), string(BA_LIB),
tsearch(BA_LIB).

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/hsearch
svid

Page: 388

hsearch (BA_LIB)

FUTURE DIRECTIONS

LEVEL

hsearch (BA_LIB)

The restriction of having only one hash search table active at any given time will be

removed.

Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/hsearch
svid

Page: 389

Page 3

hyperbolic (BA_LIB) hyperbolic (BA_LIB)

MAME hyperbolic: sinh, cosh, tanh, asinh, acosh, atanh — hyperbolic functions
SYNOPSIS

#i ncl ude <math. h>

doubl e si nh(double x);

doubl e cosh(doubl e x);

doubl e tanh(doubl e x);

doubl e asi nh(doubl e x);

doubl e acosh(doubl e Xx);

doubl e at anh(doubl e x);
DESCRIPTION

The functions si nh(), cosh(), and tanh() return, respectively, the hyperbolic
sine, cosine, and tangent of their argument.

The functions asi nh(), acosh(), and at anh() return, respectively, the inverse
hyperbolic sine, cosine, and tangent of their argument.

RETURN VALUE

LEVEL

A macro HUGE_VAL will be defined by the <mat h. h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evalutates to
+00,

The functions si nh() and cosh() will return HUGE_VAL (si nh() will return
-HUGE_VAL for negative x) and set errno to ERANGE when the correct value
overflows.

The function acosh() returns an implementation-defined value (IEEE NaN or
equivalent if available) and sets er r no to EDOMwhen its argument is less than 1.0.

The function at anh() returns an implementation-defined value (IEEE NaN or
equivalent if available) and sets err no to EDOM when its argument has absolute
value greater than 1.0.

On implementations which support IEEE NaN, if an input parameter is NaN, then
the function will return NaN and set errno to EDOM

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/hyperbolic
svid

Page: 390

hypot (BA_LIB) hypot (BA_LIB)

NAME
hypot — Euclidean distance function

SYNOPSIS
#i ncl ude <math. h>

hypot (doubl e x, double vy);

DESCRIPTION

The function hypot () returns VxZ+y? taking precautions against unwarranted
overflows.

RETURN VALUE
A macro HUGE_VAL will be defined by the <mat h. h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_ VAL evalutates to

+o00,

On implementations which support IEEE NaN, if an input parameter is NaN, then
the function will return NaN and set errno to EDOM

The only exception is that if one of the arguments is NaN and the other argument is
+oo, HUGE_VAL is returned with no error indication.

The function hypot () will return HUGE_VAL and set er r no to ERANGE when the
correct value overflows.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/hypot
svid

Page: 391

iconv_close (BA_LIB) iconv_close (BA_LIB)

NAME
i conv_cl ose - code conversion deallocation function

SYNOPSIS
#i ncl ude <i conv. h>
int iconv_close(iconv_t cd);
DESCRIPTION
i conv_cl ose deallocates the conversion descriptor cd, and all data contained
within it. If a file descriptor or similar facility is used within the descriptor, it is
closed and deallocated.
Return Values
If iconv_close encounters no errors, it returns zero. Otherwise -1 is returned, and
errno is set.
Errors
EBADF cd may be an invalid conversion descriptor.

USAGE
Administrator.

SEE ALSO
i conv(AU_CMD), i conv_open(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/iconv_close
svid

Page: 392

iconv_open (BA_LIB) iconv_open (BA_LIB)

NAME
i conv_open — code conversion allocation function.

SYNOPSIS
#i ncl ude <i conv. h>

i conv_t iconv_open(const char [tocode, const char [fromcode);

DESCRIPTION
i conv_open returns a conversion descriptor for the codeset conversion from
codeset fromcode to codeset tocode. This descriptor is used on subsequent calls to
iconv.
The allowable values for fromcode and tocode are dependent on the implementation.
This is also true for the different combinations allowed.

A conversion descriptor is valid until the creating process terminates, or until it is
passed toi conv_cl ose.
Return Values

If i conv_open completes successfully, a conversion descriptor is returned. Should
the function fail,i conv_open returns (i conv_t)-1 and errno is set to indicate an

error.
Errors

EMFI LE There may be no more file descriptors free for the process.

ENFI LE There may be too many open files on the system.

ENOVEM Not enough memory.

El NVAL The implementation does not support the specified conversion.
USAGE

Administrator.
SEE ALSO

i conv(BU_CMD), i conv(BA_LIB),i conv_cl ose(BA_LIB), i convh(BA_LIB)
LEVEL

Level 1.
NOTICES

In some implementations, this function uses dynamic memory allocation (rmal | oc)
to provide space for internal buffer areas. If there is not enough space to cater for
these buffers, it is likely that the i conv_open function will fail.

Applications that are portable must assume that conversion descriptors are invali-
dated after one of the exec functions is called.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/iconv_open
svid

Page: 393

initgroups (BA_LIB) initgroups (BA_LIB)

NAME
initgroups - initialize the supplementary group access list

SYNOPSIS
#i ncl ude <sys/types. h>

int initgroups(const char *name, gid_t basegid);

DESCRIPTION
The function i ni t gr oups() gets the supplementary group membership for the
user specified by name and then initializes the supplementary group access list of
the calling process using set groups() [see set groups() in getgroups(BA_OS)].
The basegid group ID is also included in the supplementary group access list. This is
typically the real group ID from the password file.

If the number of groups, including the basegid entry, exceeds { NGROUPS_MAX} , then
subsequent group entries are ignored.

RETURN VALUE
Upon successful completion, the function i ni t gr oups() returns a value of 0; oth-
erwise, it returns a value of - 1 and sets er r no to indicate an error.

ERRORS
Under the following condition, the function i ni t gr oups() fails and sets err no
to:

EPERM if the calling process does not have appropriate privileges.

SEE ALSO
getgroups(BA_OS), group(BA_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/initgroups
svid

Page: 394

isastream (BA_LIB) isastream (BA_LIB)

NAME

isastream - test a file descriptor
SYNOPSIS

int isastrean(int fildes);
DESCRIPTION

The function i sastrean() determines if a file descriptor represents a STREAMS
file. fildes refers to an open file.

RETURN VALUE
Upon successful completion, the function i sastrean() returns a value of 1 if
fildes represents a STREAMS file and 0 if not. Otherwise, the function
i sastrean() returns a value of -1 and sets er r no to indicate an error.

ERRORS
Under the following conditions, the function i sast r ean{() fails and sets er r no to:

EBADF if fildes is not a valid open file.

SEE ALSO
streams(BA_DEV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/isastream
svid

Page: 395

isnan (BA_LIB) isnan (BA_LIB)

NAME
isnan, isnand - test for NaN

SYNOPSIS
#i ncl ude <math. h>

i nt isnan(double x);
int isnand (double Xx);

DESCRIPTION
The function i snan() tests whether x is IEEE NaN. The functionality of i snand()
is identical to that of i snan() .

RETURN VALUE
The functions i snan() and i snand() return non-zero if x is IEEE NaN; otherwise
it returns 0.

The function i snan() always returns 0 on implementations that do not support
IEEE NaN.

SEE ALSO
math(BA_ENV).

LEVEL
Level 1.

The following interface definition has been moved to Level 2 effective April 1991.
int isnand (double x);

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/isnan
svid

Page: 396

Ifmt (BA_LIB) Ifmt (BA_LIB)

NAME

Ifmt -1 fnt, vl fnt; display error message in standard format and pass to logging
and monitoring services

SYNOPSIS

#i ncl ude <pfnt.h>
int | fnm (FILE *stream, |ong flags, char *format, ... /* arg */);

#i ncl ude <stdarg. h>
#i ncl ude <pfnt. h>

int vlfn (FILE Cktream, |ong flags, char [Hormat, va_list ap);

DESCRIPTION

| fnt retrieves a format string from a locale-specific message database (unless
MV NOGET is specified) and uses it for pri nt f style formatting of args. The output is
displayed on stream. If stream is NULL, no output is displayed. | f nt encapsulates
the output in the standard error message format (unless MM NOSTD is specified, in
which case the output is simply pri nt f -like).

| fmt forwards its output to the logging and monitoring facility, even if stream is
null. Optionally, | f mt will display the output on the console, with a date and time
stamp.

If the printf format string is to be retrieved from a message database, the format
argument must have the following structure:

catalog: msgnum: defmsg.
If MM_NOGET is specified, only the defmsg part must be specified.

catalog indicates the message database that contains the localized version of the for-
mat string. catalog is limited to 14 characters. These characters must be selected
from a set of all character values, excluding \ 0 (null) and the ASCII codes for /
(slash) and : (colon).

msgnum must be a positive number that indicates the index of the string into the
message database.

If catalog does not exist in the locale (specified by the last call to set | ocal e using
the LC_ALL or LC_MESSAGES categories), or if the message number is out of bounds,
| fmt attempts to retrieve the message from the C locale. If this second retrieval
fails, | f nt uses the defmsg part of the format argument.

If catalog is omitted, | f nt attempts to retrieve the string from the default catalog
specified by the last call to set cat . In this case, the format argument has the follow-
ing structure:

: msgnum: defmsg.
| f Mt outputs Message not found! !\ n as the format string if:
— catalog is not a valid catalog name as defined above

Page 1

FINAL COPY

June 15, 1995

File: ba_lib/lfmt
svid

Page: 397

Ifmt (BA_LIB) Ifmt (BA_LIB)

— no catalog is specified (either explicitly or via set cat)

— msgnum is not a positive number, or if no message could be retrieved
from the message databases and defmsg was omitted.

The flags determine the type of output (i.e., whether the format should be inter-
preted as is or encapsulated in the standard message format), and the access to mes-
sage catalogs to retrieve a localized version of format. The flags are composed of
several groups, and can take the following values (one from each group):

Output format control

MV NOSTD do not use the standard message format, interpret format as
a printf format. Only catalog access control flags, console
display control, and logging information should be specified if
MV NCSTD is used; all other flags will be ignored.

MV STD output using the standard message format (default, value 0).
Catalog access control
MV NOGET do not retrieve a localized version of format. In this case,
only the defmsg part of the format is specified.
M GET retrieve a localized version of format, from the catalog, using

msgnum as the index and defmsg as the default message
(default, value 0).

Severity (standard message format only)
MV HALT generates a localized version of HALT.
MV ERRCR generates a localized version of ERROR (default, value 0).
MM WARNI NG generates a localized version of WARNI NG
MVLI NFO generates a localized version of | NFQ

Additional severities can be defined. Add-on severities can be defined with
number-string pairs with numeric values from the range [5,255], using
addsev(). The numeric value ORed with other flags will generate the
specified severity.

If the severity is not defined, | fnt uses the string SEV=N where N is
replaced by the integer severity value passed in flags.

Multiple severities passed in flags will not be detected as an error. Any com-
bination of severities will be summed and the numeric value will cause the
display of either a severity string (if defined) or the string SEV=N (if
undefined).

Action

MV ACTI ON specifies an action message. Any severity value is super-
seded and replaced by a localized version of TO FI X.

Page 2

FINAL COPY

June 15, 1995

File: ba_lib/lfmt
svid

Page: 398

Ifmt (BA_LIB) Ifmt (BA_LIB)

Console display control

MV CONSCLE display the message to the console in addition to the
specified stream.

MVI.NOOONSCOLE do not display the message to the console in addition to
the specified stream (default, value 0).

Logging information

Major classification
identifies the source of the condition. Identifiers are: MM HARD
(hardware), MM_SCFT (software), and MM _FI RM(firmware).

Message source subclassification
identifies the type of software in which the problem is spotted.
Identifiers are: MM APPL (application), MM UTIL (utility), and
MVI_CPSYS (operating system).

Standard Error Message Format
| f mt displays error messages in the following format:

label: severity: text
If no label was defined by a call to set | abel , the message is displayed in the format:
severity: text

If | f m is called twice to display an error message and a helpful action or recovery
message, the output can look like:

label: severity: text
label: TO FI X text

vl fm is the same as | fnt except that instead of being called with a variable
number of arguments, it is called with an argument list as defined by the st dar g. h
header file.

The st dar g. h header file defines the type va_l i st and a set of macros for advanc-
ing through a list of arguments whose number and types may vary. The argument
ap to vl fnt is of type va_l i st. This argument is used with the st dar g. h header
file macros va_start, va_arg and va_end [see va_start, va_arg, and va_end in
st dar g(5)]. The EXAMPLE sections below show their use.

The macro va_al i st is used as the parameter list in a function definition as in the
function called err or in the example below. The macrova_start (ap,), where ap
is of type va_list, must be called before any attempt to traverse and access
unnamed arguments. Calls to va_arg(ap, atype) traverse the argument list. Each
execution of va_ar g expands to an expression with the value and type of the next
argument in the list ap, which is the same object initialized by va_st art. The argu-
ment atype is the type that the returned argument is expected to be. The
va_end(ap) macro must be invoked when all desired arguments have been
accessed. [The argument list in ap can be traversed again if va_start is called
again after va_end.] In the example below, va_ar g is executed first to retrieve the
format string passed to error. The remaining error arguments, argl, arg?, ..., are
given to vl f nt in the argument ap.

Page 3

FINAL COPY

June 15, 1995

File: ba_lib/lfmt
svid

Page: 399

Ifmt (BA_LIB) Ifmt (BA_LIB)

RETURN VALUE

On success, | fnt and vl f nt return the number of bytes transmitted. On failure,
they return a negative value:

-1 write error to stream
-2 cannot log and/or display at console.
EXAMPLE

Ifmt example 1
setlabel ("UX test");
| fm(stderr, MV ERRCR MV OCNSCLE| MM SCFT| MM UTI L,

"test:2:Cannot open file: 9%\n", strerror(errno));

displays the message to stderr and to the console and makes it available for logging:
UX test: ERROR Cannot open file: No such file or directory

Ifmt example 2
setlabel ("UX test");
[fnt(stderr, MVINFQ MV SCFT| MM UTI L,

"test:23:test facility is enabled\n");

displays the message to stderr and makes it available for logging:
UX test: INFO test facility enabl ed

vlifmt example
The following demonstrates how vl f nt could be used to write an err | og routine:

#i ncl ude <pfnt. h>
#i ncl ude <stdarg. h>

/

0
O errlog should be called Iike
O errlog(log_info, format, argl, ...);
a
void errlog(long | og_info, const char *format, ...)
{
va_list ap;
va_start(ap,fornat);
(void) vlfm(stderr, log_infol MM ERRCR, format, ap);
va_end(ap);
(void) abort();
}

SEE ALSO
addsev(BA_LIB), envvar(BA_ENV), gettxt(BA_LIB), pfmt(BA_LIB), Ifmt(BU_CMD),
pfmt(BU_CMD), printf(BA_LIB), setcat(BA_LIB), setlabel(BA_LIB),
setlocale(BA_LIB).

LEVEL
Level 2, April 1991.

Page 4

FINAL COPY

June 15, 1995

File: ba_lib/lfmt
svid

Page: 400

Igamma (BA_LIB) Ilgamma(BA_LIB)

NAME
lgamma, gamma - log gamma functions

SYNOPSIS
#i ncl ude <math. h>
doubl e | ganma(doubl e x);
tdoubl e gamma(doubl e Xx);
extern int signgam
DESCRIPTION

The functions | ganma() and gama() return In((X)), where ' (x) is defined
as:

[ettt

0
The sign of I (x) is returned in the external integer si gngam If x is negative then it
must not have an integral value. x may not be zero.

The following code fragment might be used to calculate I':

if ((y = lgamm(x)) > LN_MAXDOUBLE)

error();
y = signgam* exp(y);
RETURN VALUE

On implementations that support IEEE NaN, if an input parameter is NaN, then the
function will return NaN and set errno to EDOM
A macro HUGE_VAL will be defined by the <mat h. h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evaluates to

+o00,

For non-positive integer arguments, gamma() and | gamma() return HUGE VAL
and set er r no to EDOM

If the correct value would overflow, gamma() andl gamra() return HUGE_ VAL and
set er r no to ERANGE.

SEE ALSO
exp(BA_LIB)

FUTURE DIRECTIONS
On a system that supports the IEEE 754 standard, if the value of x for | gamma() is
-infinity, I gamma will return IEEE NaN and set errno to EDOM

The function gamma() will be removed from a future issue of the SVID.

LEVEL
Level 2.

ganma is Level 2, effective September 30, 1993.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/lgamma
svid

Page: 401

localeconv (BA_LIB) localeconv (BA_LIB)

NAME
localeconv - set the components of a locale

SYNOPSIS
#i ncl ude <l ocal e. h>

struct |conv *| ocal econv(void);

DESCRIPTION
The function | ocal econv() sets the components of an object with type st ruct
| conv with the values appropriate for the formatting of numeric quantities (mone-
tary and otherwise) according to the rules of the current locale [see
setlocale(BA_OS)]. struct | conv includes the following members:

char *deci mal _point;
char *thousands_sep;
char *grouping;

char *int_curr_synbol;
char *currency_synbol ;
char *non_deci mal _poi nt;
char *non_t housands_sep;
char *non_groupi ng;

char *positive_sign;
char *negative_sign;
char int_frac_digits;
char frac_digits;

char p_cs_precedes;

char p_sep_by_space;
char n_cs_precedes;

char n_sep_by_space;
char p_sign_posn;

char n_sign_posn;

The members of the structure with type char * are strings, any of which (except
deci mal _poi nt) can point to " ", to indicate that the value is not available in the
current locale or is of zero length. The members with type char are nonnegative
numbers, any of which can be CHAR_MAX (defined in <l i m t s. h>) to indicate that
the value is not available in the current locale. The members are the following:

char *deci mal _poi nt
The decimal-point character used to format non-monetary quantities.

char *t housands_sep
The character used to separate groups of digits to the left of the decimal-
point character in formatted non-monetary quantities.

char *groupi ng
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current group in a formatted non-
monetary quantity. The elements of gr oupi ng are interpreted according to
the following:

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/localeconv
svid

Page: 402

localeconv (BA_LIB) localeconv (BA_LIB)

char

char

char

char

char

char

char

char

char

char

char

char

Page 2

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the
remainder of the digits.

other The value is the number of digits that comprise the current
group. The next element is examined to determine the size of
the next group of digits to the left of the current group.

*int_curr_synbol
The international currency symbol applicable to the current locale, left-
justified within a four-character space-padded field. The character
sequences should match with those specified in: 1SO 4217 Codes for the
Representation of Currency and Funds.

*currency_synbol
The local currency symbol applicable to the current locale.

*non_deci mal _poi nt
The decimal-point used to format monetary quantities.

*non_t housands_sep
The separator for groups of digits to the left of the decimal-point in format-
ted monetary quantities.

*non_gr oupi ng
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current group in a formatted monetary
quantity. The elements of non_gr oupi ng are interpreted according to the
rules described under gr oupi ng.

*positive_sign
The string used to indicate a nonnegative-valued formatted monetary quan-
tity.

*negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

int_frac_digits
The number of fractional digits (those to the right of the decimal point) to
be displayed in an internationally formatted monetary quantity.

frac_digits
The number of fractional digits (those to the right of the decimal-point) to
be displayed in a formatted monetary quantity.

p_cs_precedes
Set to 1 or 0 if the currency_synbol respectively precedes or succeeds
the value for a nonnegative formatted monetary quantity.

p_sep_by_space
Setto 1 or 0 if the currency_synbol respectively is or is not separated by
a space from the value for a nonnegative formatted monetary quantity.

n_cs_precedes
Set to 1 or 0 if the currency_synbol respectively precedes or succeeds
the value for a negative formatted monetary quantity.

FINAL COPY
June 15, 1995
File: ba_lib/localeconv
svid

Page: 403

localeconv (BA_LIB) localeconv (BA_LIB)

char n_sep_by_space
Setto 1 or 0 if the currency_synbol respectively is or is not separated by
a space from the value for a negative formatted monetary quantity.

char p_si gn_posn
Set to a value indicating the positioning of the posi ti ve_si gn for a non-
negative formatted monetary quantity. The value of p_si gn_posn is
interpreted according to the following:

0 Parentheses surround the quantity and cur r ency_synbol .

1 The sign string precedes the quantity and cur r ency_synbol .
2 The sign string succeeds the quantity and curr ency_synbol .
3 The sign string immediately precedes the cur r ency_synbol .
4 The sign string immediately succeeds the currency_synbol .

char n_si gn_posn
Set to a value indicating the positioning of the negat i ve_si gn for a nega-
tive formatted monetary quantity. The value of n_si gn_posn is inter-
preted according to the rules described under p_si gn_posn.

RETURN VALUE
The function | ocal econv() returns a pointer to the filled-in object. The structure
pointed to by the return value may be overwritten by a subsequent call to
| ocal econv().

EXAMPLE

The following table illustrates the rules used by four countries to format monetary

guantities.
Country Positive format Negative format International format
Italy L.1.234 -L.1.234 ITL.1.234
Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56
Norway krl1.234,56 krl.234,56- NOK 1.234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the
structure returned by | ocal econv() are as follows:

Italy Netherlands Norway Switzerland
int_curr_synbol "I TL. " "NLG " "NOK " "CHF "
currency_synbol "L "E "kr" "SFrs. "
non_deci mal _poi nt e " " "o
non_t housands_sep o "o "o .
non_gr oupi ng "\ 3" "\ 3" "\ 3" "\ 3"
positive_sign " " " "
negative_sign e e e "c
int_frac_digits 0 2 2 2
frac_digits 0 2 2 2
p_cs_precedes 1 1 1 1
p_sep_by_space 0 1 0 0
n_cs_precedes 1 1 1 1
n_sep_by_space 0 1 0 0

Page 3
FINAL COPY

June 15, 1995
File: ba_lib/localeconv
svid

Page: 404

localeconv (BA_LIB) localeconv (BA_LIB)

p_si gn_posn 1 1 1 1

n_si gn_posn 1 4 2 2
Note that the non_gr oupi ng value ("\ 3" for all the above countries) is the ANSI
C encoding for a string literal whose value is octal 3 (null-terminated). Hence,
grouping is by threes (repeating) because the string is interpreted as an integer
value of 3 followed by zero.

SEE ALSO
setlocale(BA_OS).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995
File: ba_lib/localeconv
svid

Page: 405

Isearch (BA_LIB) Isearch (BA_LIB)

NAME
Isearch, Ifind — linear search and update

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <search. h>

voi d *| search(const void *key, void *base,
size_t *nelp, size_t width,
int (*compar)(const void *, const void *));

void *Ifind(const void *key, const void *hase,
size_t *nelp, size_t width,
int (*compar) (const void *, const void *));

DESCRIPTION

The function | sear ch() is a linear search routine. It returns a pointer into a table
indicating where a datum may be found. If the datum does not occur, it is added at
the end of the table. The value of key points to the datum to be sought in the table.
The value of base points to the first element in the table. The value of nelp points to
an integer containing the current number of elements in the table. The value of
width is the size of an element in bytes. The variable pointed to by nelp is incre-
mented if the datum is added to the table. The value of compar is the name of the
comparison function which the user must supply (strcnp(), for example). It is
called with two arguments that point to the elements being compared. The function
must return zero if the elements are equal and non-zero otherwise.

The function | fi nd() is the same as | search() except that if the datum is not
found, it is not added to the table. Instead, a nul | pointer is returned.

RETURN VALUE
If the datum is found, both the functions | search() and | find() return a
pointer to it. Otherwise, the function | fi nd() returns NULL and the function
| sear ch() returns a pointer to the newly added element.

USAGE
The pointers to the key and the element at the base of the table may be pointers to
any type.
The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The value required should be cast into type pointer-to-element.

Space for the table must be managed by the application-program. Undefined
results can occur if there is not enough room in the table to add a new item.

EXAMPLE
The following code fragment will read in < TABSI ZE strings of length < ELSI ZE
and store them in a table, eliminating duplicates.

#i ncl ude <stdio. h>
#i ncl ude <search. h>
#i ncl ude <string. h>

#define TABSI ZE 50
#defi ne ELSI ZE 120

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/lsearch
svid

Page: 406

Isearch (BA_LIB) Isearch (BA_LIB)

char |ine[ELSI ZE], tab[TABSI ZE] [ELSI ZE];
size_t nel = 0;

while (fgets(line, ELSIZE, stdin) != NULL &%
nel < TABSI ZE)
(void) Isearch((void *) line, (void *) tab,
&nel , ELSIZE, strcnp);

SEE ALSO
bsearch(BA_LIB), hsearch(BA_LIB), tsearch(BA_LIB).

FUTURE DIRECTIONS

NULL will be returned by the function | sear ch(), with er r no set appropriately, if

there is not enough room in the table to add a new item.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/lsearch
svid

Page: 407

makecontext (BA_LIB) makecontext (BA_LIB)

NAME
nakecont ext , swapcont ext — manipulate user contexts

SYNOPSIS
#i ncl ude <ucont ext. h>

voi d nakecontext (ucontext_t [Cucp, (void func) (), int arge,...);
i nt swapcontext (ucontext_t [bucp, ucontext t [Clcp);

DESCRIPTION
These functions are useful for implementing user-level context switching between
multiple threads of control within a process.

nmakecont ext modifies the context specified by ucp, which has been initialized
using get cont ext ; when this context is resumed using swapcont ext or set con-
t ext [see get cont ext (BA_OS)], program execution continues by calling the func-
tion func, passing it the arguments that follow argc in the makecont ext call. Before
a call is made to nmakecont ext , the context being modified should have a stack allo-
cated for it. The value of argc must match the number of integers passed to func,
otherwise the behavior is undefined.

The uc_l i nk field is used to determine the context that will be resumed when the
context being modified by nakecont ext returns. The uc_I i nk field should be ini-
tialized prior to the call to makecont ext .

swapcont ext saves the current context in the context structure pointed to by oucp
and sets the context to the context structure pointed to by ucp.

These functions will fail if the following is true:
ENQVEM ucp does not have enough stack left to complete the operation.

SEE ALSO
exi t (BA_OS), getcont ext (BA_OS), sigacti on(BA_OS), si gprocrmask(BA_OS),
ucont ext (BA_ENV)

RETURN VALUE
On successful completion, swapcont ext return a value of zero. Otherwise, a value
of -1 is returned and er r no is set to indicate the error.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/makecontext
svid

Page: 408

mbchar (BA_LIB) mbchar (BA_LIB)

-2 if the next n bytes form an incomplete (but potentially valid) multi-
byte character, and all n bytes have been processed; this situation does
not apply since the multibyte encoding is stateless.

-1 if an encoding error occurs (when the next n or fewer bytes do not
form a complete and valid multibyte character); the value of the
macro El LSEQ is stored in errno, but the conversion state is

unchanged.
SEE ALSO
stdli b(BA_ENV), nbst ri ng(BA_LIB), setl ocal e(BA_OS),
LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/mbchar
svid

Page: 411

mbsinit (BA_LIB)

NAME

nbsi ni t — test for initial multibyte conversion state

SYNOPSIS

#i ncl ude <wchar. h>

int nbsinit(const nbstate_t [ps);

DESCRIPTION
If ps is not a null pointer, nbsi ni t determines whether the pointed-to nbst at e_t
object describes an initial conversion state.

Return Values

LEVEL

nbsi ni t returns nonzero.

Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/mbsinit
svid

Page: 412

mbsinit (BA_LIB)

Page 1

mbstring (BA_LIB) mbstring (BA_LIB)

when the next multibyte character does exceed the limit of n total bytes to be stored
into the array pointed to by s. Each conversion takes place as if by a call to the
wer t onb.

If s is not a null pointer, the pointer object pointed to by pwcs is assigned either a
null pointer (if conversion stopped due to reaching a terminating null wide charac-
ter) or the address just past the last wide character converted. If conversion
stopped due to reaching a terminating null wide character and if s is not a null
pointer, the resulting state described is the initial conversion state.

Return Values

If an invalid multibyte character is encountered, nbst owcs returns (si ze_t)- 1.
Otherwise, nbst owcs returns the number of array elements modified, not including
the terminating zero code, if any. If pwcs is a null pointer, mbst owcs returns the
number of elements required for the wide character code array.

If a wide character code is encountered that does not correspond to a valid multi-
byte character, wecst onbs returns (si ze_t)-1. Otherwise, wcst onbs returns the
number of bytes modified, not including a terminating null character, if any. If s is
a null pointer, wcst onbs returns the number of bytes required for the character
array.

If the input string does not begin with a valid multibyte character, an encoding
error occurs for nbsrt owcs. In this case, it stores the value of the macro El LSEQin
errno and returns (si ze_t) -1, but the conversion state is unchanged. Otherwise,
it returns the number of multibyte characters successfully converted, which is the
same as the number of array elements modified when s is not a null pointer.

If the first code is not a valid wide character, an encoding error occurs for
wesrtonbs. In this case, it stores the value of the macro El LSEQ in errno and
returns (si ze_t)-1, but the conversion state is unchanged. Otherwise, it returns
the number of bytes in the resulting multibyte characters sequence, which is the
same as the number of array elements modified when s is not a null pointer.

SEE ALSO

LEVEL

Page 2

nbchar (BA_LIB), set | ocal e(BA_OS),

Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/mbstring
svid

Page: 414

memory (BA_LIB) memory (BA_LIB)

NAME
menor y: mentcpy, menchr, mentnp, nentpy, nenmove, menset — memory operations
SYNOPSIS
#i ncl ude <string. h>
void [Chenccpy (void [B1, const void [¥2, int ¢, size t n);
voi d [henchr (const void (5, int ¢, sizet n);
int mentnp (const void [k1, const void [k2, size_t n);
voi d [hencpy (void 51, const void [52, size t n);
voi d [hemmove (void (51, const void [¥2, size_t n);
void [henset (void [, int ¢, sizet n);
DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of bytes
bounded by a count, not terminated by a null character). They do not check for the
overflow of any receiving memory area.
nmentcpy copies bytes from memory area s2 into sl, stopping after the first
occurrence of ¢ (converted to an unsi gned char) has been copied, or after n bytes
have been copied, whichever comes first. It returns a pointer to the byte after the
copy of ¢ in s1, or a null pointer if ¢ was not found in the first n bytes of s2.
nencthr returns a pointer to the first occurrence of ¢ (converted to an unsi gned
char) in the first n bytes (each interpreted as an unsi gned char) of memory area s,
or a null pointer if c does not occur.
nencnp compares its arguments, looking at the first n bytes (each interpreted as an
unsi gned char), and returns an integer less than, equal to, or greater than O,
according as sl is lexicographically less than, equal to, or greater than s2 when
taken to be unsigned characters.
nentpy copies n bytes from memory area s2 to s1. It returnssl.
nmenmove copies n bytes from memory areas s2 to s1. Copying between objects that
overlap will take place correctly. It returns sl.
menset sets the first n bytes in memory area s to the value of ¢ (converted to an
unsi gned char). Itreturnss.
SEE ALSO
string (BA_LIB)
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/memory
svid

Page: 415

mktemp (BA_LIB) mktemp (BA_LIB)

NAME

mktemp — make a unique filename
SYNOPSIS

char *nktenp(char *template);
DESCRIPTION

The function nkt ermrp() replaces the contents of the string pointed to by template by
a unique filename and returns template. The string in template should look like a
filename with six trailing Xs; nkt enp() will replace the Xs with a character string
that can be used to create a unique filename.

RETURN VALUE
The function nkt enp() returns the pointer template. If a unique name cannot be
created, template will point to a null string.
SEE ALSO
tmpfile(BA_LIB), tmpnam(BA_LIB).
FUTURE DIRECTIONS
NULL will be returned if a unique name cannot be created.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/mktemp
svid

Page: 416

mktime (BA_LIB) mktime (BA_LIB)

NAME
mktime — converts a tm structure to a calendar time

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <tine. h>

tinme_t nktinme(struct tm *timeptr);

DESCRIPTION
The nkti me() function converts the time represented by the st ruct t mpointed
to by timeptr into a calendar time (the number of seconds since 00:00:00 UTC, Janu-
ary 1, 1970)[see time(BA_ENV)].

In addition to computing the calendar time, nkt i me() normalizes the supplied t m
structure. The original values of the t m wday and t m yday components of the
structure are ignored, and the original values of the other components are not res-
tricted to the ranges indicated in the definition of the structure. On successful com-
pletion, the values of the t m wday and t m yday components are set appropriately,
and the other components are set to represent the specified calendar time, but with
their values forced to be within the appropriate ranges. The final value of t m_nday
is not set until t m non and t m year are determined.

The original values of the components may be either greater than or less than the
specified range. For example, a t m_hour of -1 means 1 hour before midnight,
t m nday of 0 means the day preceding the current month, and t m non of -2
means 2 months before January of t m year .

If tm.isdst is positive, the original values are assumed to be in the alternate
timezone. If it turns out that the alternate timezone is not valid for the computed
calendar time, then the components are adjusted to the main timezone. Likewise, if
t m_i sdst is zero, the original values are assumed to be in the main timezone and
are converted to the alternate timezone if the main timezone is not valid. If
t m i sdst is negative, the correct timezone is determined and the components are
not adjusted.

Local timezone information is used as if nkt i me() had called t zset ().

RETURN VALUE
The function kt i me() returns the specified calendar time. If the calendar time
cannot be represented, the function returns the value (tine_t)-1.

SEE ALSO
ctime(BA_LIB), getenv(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/mktime
svid

Page: 417

nl_langinfo (BA_LIB) nl_langinfo (BA_LIB)

NAME

nl_langinfo — language information

SYNOPSIS

#i ncl ude <nl _types. h>
#i ncl ude <l| angi nfo. h>

char *nl _l angi nfo(nl _item item);

DESCRIPTION

The nl _I angi nfo() function returns a pointer to a null-terminated string con-
taining information relevant to a particular language or cultural area defined in the
programs locale. The manifest constant names and values of item are defined in
<l angi nf 0. h> [see langinfo(BA_ENV)].

For example:
nl _l angi nfo (ABDAY_1);

would return a pointer to the string " Di nmi' if the identified language was French
and a French locale was correctly installed; or " Sun" if the identified language was
English.

RETURN VALUE

USAGE

If setlocal e() [see setlocale(BA_OS)] has not been called successfully, or if
| angi nf o data for a supported language is either not available or item is not
defined therein, then nl _| angi nf o returns a pointer to the corresponding string
in the C locale. In all locales, nl _| angi nfo() returns a pointer to an empty
string if item contains an invalid setting.

The array pointed to by the return value should not be modified by the program.
Subsequent calls to nl _| angi nf o() may overwrite the array.

SEE ALSO

LEVEL

setlocale(BA_OS), langinfo(BA_ENV), nl_types(BA_ENV).

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/nl_langinfo
svid

Page: 418

perror (BA_LIB) perror (BA_LIB)

NAME

perror — system error messages

SYNOPSIS

#i ncl ude <stdio. h>
void perror (const char [3);

DESCRIPTION

USAGE

The function perror () produces a message on the standard error output describ-
ing the last error encountered during a call to a function.

The string pointed to by the argument s is printed first, then a colon and a blank,
then the message and a new-line. To be of most use, the argument string should
include the name of the program that incurred the error.

The error number is taken from the external variable err no, which is set when
errors occur but not cleared when successful calls are made.

If given a null-string, the function perror () prints only the message and a new-
line.

To simplify variant formatting of messages, the function strerror() [see
strerror(BA_LI B)] can be used to return a pointer to the error message string
associated with er r no.

perror () marks for update the st _cti ne and st _nt i e fields of the underlying
file associated with the standard error stream at some time between its successful
completion and the completion of fflush(), fclose(), on stderror() or
exit() or abort().

perror() uses the UNIX System V Message Handling Facility.The message is
retrieved from the locale-specific version of the system catalog uxsyserr. [See
set | ocal e(BA_OS)].

The perror () function is provided for ANSI compatibility.

SEE ALSO

LEVEL

abort(BA_OS), exit(BA_OS), fclose(BA_OS), gettxt(BA_LIB), setlocale(BA_OS),
strerror(BA_LIB).

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/perror
svid

Page: 419

pfmt (BA_LIB) pfmt (BA_LIB)

NAME

pf nt, vpf m — display error message in standard format
SYNOPSIS

#i ncl ude <pfnt. h>

int pfm (FlLE *stream, |ong flags, char *format, . . . /* args */);
#i ncl ude <stdarg. h>
#incl ude <pfnt. h>

int vpfnt(FILE *stream, |ong flags, char *format, va_list ap);

DESCRIPTION
pfmt
pfnt uses a format string for printf style formatting of args. The output is
displayed on stream. pfnt encapsulates the output in the standard error message
format.

If the printf format string is to be retrieved from a message database, the format
argument must have the following structure:

[[catalog] : [msgnum] :] defmsg.
defmsg can only appear alone if flags include MV NOGET.

catalog indicates the message database that contains the localized version of the for-
mat string. catalog must be limited to 14 characters. These characters must be
selected from a set of all characters values, excluding \ O (null) and the ASCII codes
for/ (slash) and: (colon).

msgnum must be a positive humber that indicates the index of the string into the
message database.

If catalog does not exist in the locale (specified by the last call to set| ocal e using
the LC_ALL or LC_MESSAGES categories), or if the message number is out of bounds,
pf nt attempts to retrieve the message from the C locale. If this second retrieval
fails, pf mt uses the defmsg part of the format argument.

If catalog is omitted, pf nt attempts to retrieve the string from the default catalog
specified by the last call to set cat . In this case, the format argument has the follow-
ing structure:

msgnum: defmsg.
pf nt outputs
Message not found!!
as the format string if:
catalog is not a valid catalog name as defined above
no catalog is specified (either explicitly or via set cat)
msgnum is not a positive number,
no message could be retrieved and defmsg was omitted

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/pfmt
svid

Page: 420

pfmt (BA_LIB)

pfmt (BA_LIB)

The flags determine the type of output (that is, whether the format should be inter-
preted as is or encapsulated in the standard message format), and the access to mes-
sage catalogs to retrieve a localized version of format.

The flags are composed of several groups, and can take the following values (one

from each group):
Output format control
MV NOSTD

MM STD
Catalog access control
MVINCOGET

M GET

do not use the standard message format, interpret format as a
printf format. Only catalog access control flags should be
specified if MM_NCSTD is used; all other flags will be ignored.

output using the standard message format (default, value 0).

do not retrieve a localized version of format. In this case, only
the defmsg part of the format is specified.

retrieve a localized version of format, from the catalog, using
msgnum as the index and defmsg as the default message
(default, value 0).

Severity (standard message format only)

MM HALT
MV ERRCR
MM VARN NG
MM | NFO

Action
MV ACTI ON

generates a localized version of HALT.

generates a localized version of ERRCR (default, value 0).
generates a localized version of WARN NG

generates a localized version of | NFQ

Additional severities can be defined. Add-on severities can
be defined with number-string pairs with numeric values
from the range [5-255], using addsev(BA_LIB). The numeric
value ORed with other flags will generate the specified sever-
ity.

If the severity is not defined, pfm uses the string SEV=N
where N is replaced by the integer severity value passed in
flags.

Multiple severities passed in flags will not be detected as an
error. Any combination of severities will be summed and the
numeric value will cause the display of either a severity
string (if defined) or the string SEV=N (if undefined).

specifies an action message. Any severity value is superseded
and replaced by a localized version of TO FI X.

Standard Error Message Format
pf nt displays error messages in the following format:

Page 2

label: severity: text

FINAL COPY
June 15, 1995
File: ba_lib/pfmt

svid

Page: 421

pfmt (BA_LIB) pfmt (BA_LIB)

If no label was defined by a call to set | abel , the message is displayed in the format:
severity: text

If pf nt is called twice to display an error message and a helpful action or recovery
message, the output can look like:

label: severity: text
label: TO FIX: text

vpfmt

vpfm is the same as pfnt except that instead of being called with a variable
number of arguments, it is called with an argument list as defined by the st darg. h
header file.

The st dar g. h header file defines the type va_l i st and a set of macros for advanc-
ing through a list of arguments whose number and types may vary. The argument
ap to vpf nt is of type va_l i st. This argument is used with the st dar g. h header
file macros va_start, va_arg and va_end [see va_start, va_arg, and va_end in
st dar g(BA_ENV)]. The USAGE sections below show their use.

The macro va_al i st is used as the parameter list in a function definition as in the
function called err or in the example below. The macro

va_start(ap,)

where ap is of type va_l i st, must be called before any attempt to traverse and
access unnamed arguments. Calls to

va_arg(ap, atype)

traverse the argument list. Each execution of va_ar g expands to an expression with
the value and type of the next argument in the list ap, which is the same object ini-
tialized by va_st art. The argument atype is the type that the returned argument is
expected to be.

The
va_end(ap)

macro must be invoked when all desired arguments have been accessed. [The argu-
ment list in ap can be traversed again if va_start is called again after va_end.] In
the example below, va_ar g is executed first to retrieve the format string passed to
error. The remaining error arguments, argl, arg2, ..., are given to vpf nt in the
argument ap.

Return Values

On success, pf mt and vpf nt return the number of bytes transmitted. On failure,
they return a negative value:

Errors

USAGE

-1 write error to stream

pfmt Example 1

setlabel ("UX test");
pfm (stderr, MM ERROR "test:2:Cannot open file: %\n",
strerror(errno));

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/pfmt

svid

Page: 422

printf (BA_LIB) printf (BA_LIB)

NAME
fprintf,printf,snprintf,sprintf - print formatted output
SYNOPSIS
#i ncl ude <stdio. h>
int fprintf(FlLE *strm, const char *format, .../* args */);
int printf(const char *format, .../* args */);
int snprintf(char *s, size_t maxsize, const char *format, .../* args */);
int sprintf(char *s, const char *format, .../* args */);
DESCRIPTION

Each of these functions converts, formats, and outputs its args under control of the
character string format. Each function returns the number of characters transmitted
(not including the terminating null character in the case of snprintf, and sprintf)
or a negative value if an output error was encountered.

fprintf places output on strm.
printf places output on the standard output stream st dout .

sprintf places output, followed by a null character (\ 0), in consecutive bytes start-
ing at s. It is the caller’s responsibility to ensure that enough storage is available.

snprintf behaves like sprint f, except that no more than maxsi ze characters are
placed into the array, including the terminating null character. If more than maxsize
characters were requested, the output array will contain exactly maxsize characters,
with a null character being the last (when maxsize is nonzero); a negative value is
returned.

The format consists of zero or more ordinary characters (not % which are directly
copied to the output, and zero or more conversion specifications, each of which is
introduced by the a %and results in the fetching of zero or more associated args.

Each conversion specification takes the following general form and sequence:
% pos$] [flags] [width] [. prec][size] fmt

pos$ An optional entry, consisting of one or more decimal digits followed by a $
character, that specifies the number of the next arg to access. The first arg
(just after format) is numbered 1. If this entry is not present, the arg following
the most recently used arg will be accessed.

flags Zero or more characters that change the meaning of the conversion
specification. The flag characters and their meanings are:

- The result of the conversion will be left-justified within the field. (It
will be right-justified if this flag is not specified.)

+ The result of a signed conversion will always begin with a sign (+ or
-). (It will begin with a sign only when a negative value is converted
if this flag is not specified.)

space If the first character of a signed conversion is not a sign, or if a signed
conversion results in no characters, a space will be prefixed to the
result. If the space and + flags both appear, the space flag will be
ignored.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/printf
svid

Page: 424

printf (BA_LIB) printf (BA_LIB)

Page 2

The value is to be converted to an alternate form, depending on the
fmt character:

a,AeEf FgG
The result will contain a decimal point character, even if no
digits follow. (Normally, the decimal point character is only
present when fractional digits are produced.)

b,B A nonzero result will have Ob or OB prefixed to it.

g,G Trailing zero digits will not be removed from the result, as
they normally are.

o] The precision is increased (only when necessary) to force a
zero as the first digit.

X, X A nonzero result will have 0x or 0X prefixed to it.
For other conversions, the behavior is undefined.

0 For all numeric conversions (a, A e, E f,F 9,Gb,B,d,i,o0,u,xand
X), leading zeros (following any indication of sign or base) are used to
pad to the field width; no space padding is performed. If the 0 and —
flags both appear, the 0 flag will be ignored. For the integer numeric
conversions (b, B, d, i , 0, u, x and X), if a precision is specified, the 0
flag will be ignored. For other conversions, the behavior is
undefined.

(an apostrophe) The nonfractional portion of the result of a decimal
numeric conversion (d, i, u, f, F, g and G will be grouped by the
current locale’s thousands’ separator character.

width An optional entry that consists of either one or more decimal digits, or an

. prec

asterisk (*), or an asterisk followed by one or more decimal digits and a $. It
specifies the minimum field width: If the converted value has fewer charac-
ters than the field width, it will be padded (with space by default) on the left
or right (see the above flags description) to the field width.

An optional entry that consists of a period (.) that precedes either zero or
more decimal digits, or an asterisk (*), or an asterisk followed by one or
more decimal digits and a $. It specifies a value that depends on the fmt
character:

a,AeEf, F
It specifies the number of fractional digits (those after the decimal
point character). For the hexadecimal floating conversions (a and A),
the number of fractional digits is just sufficient to produce an exact
representation of the value (trailing zero digits are removed); for the
other conversions, the default number of fractional digits is 6.

b,B,d,i,o,u,x,X
It specifies the minimum number of digits to appear. The default
minimum number of digits is 1.

FINAL COPY
June 15, 1995
File: ba_lib/printf
svid

Page: 425

printf (BA_LIB)

size

fmt

9.6

s, S

printf (BA_LIB)

It specifies the maximum number of significant digits. The default
number of significant digits is 6.

It specifies the maximum number of bytes to output. The default is
to take all elements up to the null terminator (the entire string).

If only a period is specified, the precision is taken to be zero. For other
conversions, the behavior is undefined.

An optional h, | (ell), or L that specifies other than the default argument
type, depending on the fmt character:

a,AeEf,FgG

The default argument type is doubl e; an | is ignored for compatibil-
ity with the scanf functions (a fl oat arg will have been promoted to
doubl e); an L causes a |l ong doubl e arg to be converted.

b, B, o, u, x, X

The default argument type is unsigned int; an h causes the
unsi gned i nt arg to be narrowed to unsi gned short before conver-
sion; an | causes an unsi gned | ong arg to be converted.

The default argument type is i nt which is narrowed to unsi gned
char before output; an | causes a wchar _t arg to be converted (to a
multibyte character). | c is a synonym for C.

The default argument type is i nt; an h causes the i nt arg to be nar-
rowed to short before conversion; an | causes a |l ong arg to be con-
verted.

The default argument type is pointer to i nt ; an h changes it to be a
pointer to short, and| to pointer to| ong.

The default argument type is pointer the first element of a character
array; an | changes it to be a pointer to the first element of awchar _t
array. | s is a synonym for S.

If a size appears other than in these combinations, the behavior is undefined.

A conversion character (described below) that shows the type of conversion
to be applied.

When a field width or precision includes an asterisk (*), an i nt arg supplies the
width or precision value, and is said to be “indirect”. A negative indirect field
width value is taken as a — flag followed by a positive field width. A negative
indirect precision value will be taken as zero. When an indirect field width or preci-
sion includes a $, the decimal digits similarly specify the number of the arg that sup-
plies the field width or precision. Otherwise, ani nt arg following the most recently
used arg will be accessed for the indirect field width, or precision, or both, in that
order; the arg to be converted immediately follows these. Thus, if a conversion
specification includes pos$ as well as a $-less indirect field width, or precision, or
both, pos is taken to be the number of the i nt arg used for the first $-less indirec-
tion, not the arg to be converted.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/printf
svid

Page: 426

printf (BA_LIB) printf (BA_LIB)

g,G The floating arg is converted in style e or f (or in style E or F in the case of a
G conversion character), with the precision specifying the number of
significant digits. If the precision is zero, it is taken as one. The style used
depends on the value converted; style e (or E) will be used only if the
exponent resulting from the conversion is less than -4 or greater than or
equal to the precision. Trailing zeros are removed from the fractional part
of the result; a decimal point character appears only if it is followed by a

digit.

n The arg is taken to be a pointer to an integer into which is written the
number of characters output so far by this call. No argument is converted.

p The arg is taken to be a pointer to voi d. The value of the pointer is con-

verted to an sequence of printable characters, which matches those read by
the % conversion of the scanf (BA_LIB) functions.

s The arg is taken to be a pointer to the first element of an array of characters.
Characters from the array are written up to (but not including) a terminat-
ing null character; if a precision is specified, no more than that many charac-
ters are written. If a precision is not specified or is greater than the size of
the array, the array must contain a terminating null character. (A null
pointer for arg will yield undefined results.)

S,I's The arg is taken to be a pointer to the first element of an array of wchar _t .
Wide characters from the string are converted into multibyte characters, and
output until a null wide character is encountered or the number of bytes
given by the precision wide would be surpassed. If the precision
specification is missing, it is taken to be infinite. In no case will a partial
multibyte character be output.

% Output a % no argument is converted.

If the form of the conversion specification does not match any of the above, the
results of the conversion are undefined. Similarly, the results are undefined if there
are insufficient args for the format. If the format is exhausted while args remain, the
excess args are ignored.

If a floating-point value represents an infinity, the output is [£]inf, where inf is
infinity or I NFI N TY when the field width or precision is at least 8 and i nf or
I NF otherwise, the uppercase versions used only for a capitol conversion character.
Output of the sign follows the rules described above.

If a floating-point value has the internal representation for a NaN (not-a-number),
the output is [£]nan[(m)]. Depending on the conversion character, nan is similarly
either nan or NAN If the represented NaN matches the architecture’s default, no
(m) will be output. Otherwise m represents the bits from the significand in hexade-
cimal with abcdef or ABCDEF used, depending on the case of the conversion charac-
ter. Output of the sign follows the rules described above.

Otherwise, the locale’s decimal point character will be used to introduce the frac-
tional digits of a floating-point value.

Page 5

FINAL COPY
June 15, 1995
File: ba_lib/printf
svid

Page: 428

printf (BA_LIB) printf (BA_LIB)

A nonexistent or small field width does not cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result. Characters generated on streams (st dout or strm) are printed as
if the put ¢ function had been called repeatedly.

Errors
These functions return the number of characters transmitted (not counting the ter-
minating null character for sprintf, vsprintf, snprintf and vsnprintf), or
return a negative value if an error was encountered.

USAGE
To print a date and time in the form ‘‘Sunday, July 3, 10:02,”” where weekday and
nmont h are pointers to null-terminated strings:
printf("%, % %, %: %2d",
weekday, nonth, day, hour, nin);

To print tto 5 decimal places:
printf("pi = %5f", 4 * atan(1.0));

The following two calls to printf both produce the same result of
10 10 00300 10:

printf("o%l %a$d %*d %4$d", 10, 5, 300):
printf("od %4sd 98%. *2%d %4$d", 10, 5, 300);

The following shows a simple use of vfprintf, a function that writes formatted
output to st derr by default.

#i ncl ude <stdarg. h>

#i ncl ude <stdio. h>

void errprintf(FILE *fp, const char *fnt, ...)
{

va_list ap;

va_start(ap, fm);
if (fp ==0)
fp = stderr;
(void)vfprintf(fp, fnt, ap);
va_end(ap);
}
SEE ALSO
abor t (BA_OS), exi t (BA_OS), scanf (BA_LIB), fwpri nt f (BA_LIB),
fwscanf (BA_LIB), | seek(BA_OS), put c(BA_LIB), set| ocal e(BA_OS),
stdi o(BA_LIB), wite(BA_OS)
LEVEL
Level 1.

Page 6

FINAL COPY
June 15, 1995
File: ba_lib/printf
svid

Page: 429

ptsname (BA_LIB) ptsname (BA_LIB)

NAME
ptsname — get name of the slave pseudo-terminal device

SYNOPSIS
#i ncl ude <stdio. h>

char *ptsnanme(int fildes);

DESCRIPTION
The function pt sname() returns the name of the slave pseudo-terminal device
associated with a master pseudo-terminal device. fildes is a file descriptor returned
from a successful open of the master device. ptsnane() returns a pointer to a
string containing the null-terminated pathname of the slave device of the form
/ dev/ pts/ N.

RETURN VALUE
Upon successful completion, the function pt snane() returns a pointer to a string
which is the name of the pseudo-terminal slave device. This value points to a static
data area that is overwritten by each call to pt snane() . Upon failure, pt sname()
returns NULL. This could occur if fildes is an invalid file descriptor or if the slave
device name does not exist in the file system.

SEE ALSO
grantpt(BA_LIB), open(BA_OS), ttyname(BA_LIB), unlockpt(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/ptsname
svid

Page: 430

putc (BA_LIB) putc (BA_LIB)

NAME
put ¢, put char, f put c, put w— put character or word on a stream

SYNOPSIS
#i ncl ude <stdi o. h>

int putc(int ¢, FILE [ktream);
int putchar(int c);

int fputc(int ¢, FILE [ktream);
int putw(int w, FILE [ktream);

DESCRIPTION
put ¢ writes ¢ (converted to an unsi gned char) onto the output stream at the posi-
tion where the file pointer (if defined) is pointing, and advances the file pointer
appropriately. If the file cannot support positioning requests, or stream was opened
with append mode, the character is appended to the output stream. put char (c) is
defined as putc(c, stdout). putc and put char are macros.

f put ¢ behaves like put c, but is a function rather than a macro. f put ¢ runs more
slowly than put c, but it takes less space per invocation and its name can be passed
as an argument to a function.

put wwrites the word (that is, integer) w to the output stream (where the file pointer,
if defined, is pointing). The size of a word is the size of an integer and varies from
machine to machine. put wneither assumes nor causes special alignment in the file.

Return Values
Upon successful completion, the functions put c, f put ¢, and put char return the
value they have written. Otherwise, these functions return the constant EOF and
set errno to indicate the error. The function put w returns non-zero and sets the
error indicator for the stdio-stream when an error has occurred. Otherwise, the
function returns 0.

Errors

On success, these functions (with the exception of put w) each return the value they
have written. put wreturns ferror (stream). Otherwise, these functions return the
constant ECF and set err no to indicate the error. If a write error occurs, the error
indicator for the stream is also set. This result will occur, for example, if the file
stream is not open for writing or if the output file cannot grow. Under the following
conditions, the functions putc(), putchar(), fputc() and putw() fail and set
errno to:

EAGAIN if the O NONBLOXK flag is set for the underlying file descriptor and the
process would have blocked in the write operation.

EBADF if the underlying file descriptor is not a valid file descriptor open for
writing.

EFBI G if an attempt was made to write a file that exceeds the process’s file size
limit [see ulimit(BA_OS) and getrlimit(BA_OS)].

El NTR if a signal was caught during the putc(), putchar(), fputc() or
put w() call and no data was transferred.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/putc

svid

Page: 431

putc (BA_LIB) putc (BA_LIB)

El O if a physical 170 error has occurred or the process is a member of a
background process group attempting to write to its controlling termi-
nal, TOSTCR is set, the process is neither ignoring nor blocking Sl GTTQU
and the process group of the process is orphaned.

ENCSPC if there is no free space remaining on the device containing the file.

ENXI O if the device associated with the underlying file descriptor is a block-
special or character-special file and the file-pointer value is out of range.

EPI PE if an attempt is made to write to a FIFO that is not open for reading by
any process. A Sl GPI PE signal is also sent to the process.

SEE ALSO
abort (BA_OS), fcl ose(BA_OS), ferror (BA_OS), fopen(BA_OS), fread(BA_OS),
ftryl ockfil e(MT_LIB), flockfile(MT_LIB), printf(BA_LIB), puts(BA_LIB),
set buf (BA_LIB), st di o(BA_LIB),

LEVEL
Level 1.

NOTICES
Because it is implemented as a macro, put ¢ evaluates a stream argument more than
once. In particular, putc(c, O ++); doesn’t work sensibly. f put ¢ should be used
instead.

Because of possible differences in word length and byte ordering, files written using
put w are machine-dependent, and may not be read using get won a different pro-
Cessor.

Functions exist for all the above defined macros. To get the function form, the
macro name must be undefined (for example, #undef put c).

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/putc

svid

Page: 432

putenv (BA_LIB) putenv (BA_LIB)

NAME
putenv — change or add value to environment

SYNOPSIS
#i ncl ude <stdlib. h>

i nt putenv(char *string);

DESCRIPTION
The argument string points to a string of the the following form:

name=value

The function put env() makes the val ue of the environment variable name equal
to value by altering an existing variable or creating a new one. In either case, the
string pointed to by string becomes part of the environment, so altering the string
will change the environment. The space used by string is no longer used once a new
string-defining name is passed to the function put env() .

RETURN VALUE
The function put env() returns non-zero if it was unable to obtain enough space
for an expanded environment, otherwise zero.

USAGE
The function put env() manipulates the environment pointed to by envi r on, and
can be used in conjunction with get env() . However, envp, the third argument to
mai n(), is not changed [see exec(BA_OS)].

A potential error is to call the function put env() with a pointer to an automatic
variable as the argument and to then exit the calling function while string is still
part of the environment.

SEE ALSO
exec(BA_OS), malloc(BA_OS), getenv(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/putenv
svid

Page: 433

puts (BA_LIB) puts (BA_LIB)

NAME
puts, fputs — put a string on a stdio-stream

SYNOPSIS
#i ncl ude <stdio. h>

int puts(const char *s);
int fputs(const char *s, FILE *strm);

DESCRIPTION
The function put s() writes the null-terminated string pointed to by s, followed by
a newline character, to the standard output stream st dout .

The function f put s() writes the null-terminated string pointed to by s to strm.
Neither function writes the terminating null character.

The st _cti me and st _nt i ne fields of the file will be marked for update between
the successful execution of put s() or fputs() and the next successful comple-
tionofacall tofflush() orfcl ose() on the same stream or a call to exi t () or
abort ().

RETURN VALUE
Upon successful completion, the functions puts() and fputs() return the
number of characters written; otherwise these functions return EOF and set err no
to indicate an error.

ERRORS
Under the following conditions, the functions put s(), and f put s() fail and set
errno to:

EAGAI N if the O_NONBLOCK flag is set for the underlying file descriptor and the
process would have blocked in the write operation.

EBADF if the underlying file descriptor is not a valid file descriptor open for
writing.

EFBI G if an attempt was made to write a file that exceeds the process’s file size
limit [see ulimit(BA_OS) and getrlimit(BA_OS)].

El NTR if a signal was caught during the put s(), or f put s() call and no data
was transferred.

El O if a physical 1/0 error has occurred or the process is a member of a
background process group attempting to write to its controlling termi-
nal, TOSTOR is set, the process is neither ignoring nor blocking SI GTTOU
and the process group of the process is orphaned.

ENOSPC if there is no free space remaining on the device containing the file.

ENXI O if the device associated with the underlying file descriptor is a block-
special or character-special file and the file-pointer value is out of range.

EPI PE if an attempt is made to write to a FIFO that is not open for reading by
any process. A Sl GPI PE signal is also sent to the process.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/puts
svid

Page: 434

puts (BA_LIB)

USAGE

LEVEL

Page 2

puts (BA_LIB)

The function put s() appends a newline character while f puts() does not.

SEE ALSO
ferror(BA_OS), fopen(BA_OS), fread(BA_0OS), gets(BA_LIB), printf(BA_LIB),

putc(BA_LIB).

Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/puts

svid

Page: 435

putwc (BA_LIB) putwc (BA_LIB)

NAME
put we, put wchar , f put we — put wide character on a stream

SYNOPSIS
#i ncl ude <stdi o. h>
#i ncl ude <wi dec. h>

wint_t putwec(wint_t c, FILE [btream);
wint_t putwchar(wint_t c);
wint_t fputwe(wint_t c, FlILE [btream);
DESCRIPTION
put we transforms the wide character ¢ into a multibyte character, and writes it to

the output stream (at the position where the file pointer, if defined, is pointing).
put wchar (¢) is equivalent to put we(c, stdout).

put we behaves like f put we, expect that put we may be implemented as a macro that
evaluates stream more than once.

Errors
On success, these functions return the value they have written. On failure, they
return the constant WECF. If an 1/0 error occurs, the error indicator is set for the
stream. If ¢ does not correspond to a valid multibyte character, er r no will be set to

El LSEQ
SEE ALSO
f cl ose(BA_OS), ferror (BA_OS), f open(BA_OS), printf(BA_LIB),
set buf (BA_LIB), st di o(BA_LIB)
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/putwc
svid

Page: 436

fputws (BA_LIB) fputws (BA_LIB)

NAME
fputws —putawchar_t string on a stream

SYNOPSIS
#i ncl ude <stdi o. h>
#i ncl ude <wi dec. h>

int fputws(const wchar_t [k, FILE [btream);

DESCRIPTION
f put ws transforms the wchar _t null-terminated wchar _t string pointed to by s into
a multibyte character string, and writes the string to the named output stream. This
function does not write the terminating wchar _t null character.

Errors
On success, this function returns the number of wchar _t characters transformed
and written. Otherwise it returns ECF.

SEE ALSO

fread(BA_OS), pri nt f (BA_LIB), put wc(BA_LIB), st di o(BA_LIB)
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/putws
svid

Page: 437

gsort (BA_LIB) gsort (BA_LIB)

NAME
gsort — quicker sort

SYNOPSIS
#i ncl ude <stdlib. h>

voi d gsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *));
DESCRIPTION
The function gsort () is a general sorting algorithm. It sorts a table of data in
place. The contents of the table are sorted in ascending order according to the user
supplied comparison function.

The argument base points to the element at the base of the table.
The argument nel is the number of elements in the table.
The argument width is the size of an element in bytes.

The argument compar is the name of the user supplied comparison function, which
is called with two arguments that point to the elements being compared. The com-
parison function must return an integer less than, equal to or greater than zero to
indicate if the first argument is to be considered less than, equal to or greater than
the second argument.

USAGE
The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The relative order in the output of two items which compare as equal is unpredict-
able.

SEE ALSO
bsearch(BA_LIB), Isearch(BA_LIB), string(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/gsort
svid

Page: 438

rand (BA_LIB) rand (BA_LIB)

NAME
r and, sr and — simple random-number generator

SYNOPSIS
#i nclude <stdlib. h>

int rand(void);
voi d srand(unsi gned int seed);

DESCRIPTION
rand uses a multiplicative congruent random-number generator with period
that returns successive pseudo-random numbers in the range from 0 to RAND MAX
(defined instdl i b. h).

The function sr and uses the argument seed as a seed for a new sequence of pseudo-
random numbers to be returned by subsequent calls to the function rand. If the
function srand is then called with the same seed value, the sequence of pseudo-
random numbers will be repeated. If the function rand is called before any calls to
srand have been made, the same sequence will be generated as when srand is first
called with a seed value of 1.

SEE ALSO
drand48(BA_LIB)

LEVEL
Level 2: September 30, 1989.
*Level 2: June 1993.

NOTICES
The spectral properties of rand are limited. drand48(BA_LIB) provides a much
better, though more elaborate, random-number generator.

Each thread that accesses one of the functions drand48, |rand48, nrand48,
srand48, seed48, or| cong48 should be coded as per the following example:

mut ex_| ock(| _am usi ng_dr and48) ;

val ue = FUNCTI Q\() ;

nmut ex_unl ock(| _am usi ng_drand48);
where FUNCTI ON is one of those listed. The same mutex must be used for all six
functions.

232

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/rand

svid

Page: 439

regcomp (BA_LIB) regcomp (BA_LIB)

NAME
regconp, r egexec, regerror, regf r ee — regular expression matching

SYNOPSIS
#i ncl ude <regex. h>

int regconp(regex_t [preg, const char [pattern, int flags);

i nt regexec(const regex_t [preg, const char [ktring, size_t n,
regmat ch_t [pmatch, int flags);

size_t regerror(int ecode, const regex_t [preg, char [huf, size_t n);
voi d regfree(regex_t [bhreg);

DESCRIPTION
These functions are part of the X/Open Portability Guide Issue 4 optional POSIX2

C-Language Binding feature group.

Return Values
r egconp returns REG_NOSYS and sets er r no to ENCSYS.

regerror returns O and sets er r no to ENOSYS.
r egexec returns REG_NOBYS and sets er r no to ENCSYS.
r egf r ee returns and sets er r no to ENCSYS.

USAGE
Administrator.

SEE ALSO
regexp(BA_ENV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/regcomp
svid

Page: 440

regexp (BA_LIB) regexp (BA_LIB)

NAME

regexp: compile, step, advance - regular expression compile and match routines

SYNOPSIS

#define | NI T declarations

#defi ne GETC(voi d) getccode
#defi ne PEEKC(voi d) peekc code
#defi ne UNGETC(voi d) ungetc code
#def i ne RETURN(ptr) return code
#def i ne ERROR(val) error code

#i ncl ude <regexp. h>

char *conpil e(char *instring, char *expbuf, char *endbuf,
i nt eof);

int step(char *string, char *expbuf);
i nt advance(char *string, char *expbuf);
extern char *locl, *loc2, *locs;

DESCRIPTION

These functions are general purpose regular expression matching routines to be
used in programs that perform regular expression matching. These functions are
defined by the <r egexp. h> header file.

The functions step() and advance() do pattern matching given a character
string and a compiled regular expression as input.

The function conpi | e() takes as input a regular expression as defined below and
produces a compiled expression that can be used with st ep() or advance().

A regular expression specifies a set of character strings. A member of this set of
strings is said to be matched by the regular expression. Some characters have spe-
cial meaning when used in a regular expression; other characters stand for them-
selves.

The regular expressions available for use with the regexp functions are constructed
as follows:

Expression Meaning

c the character ¢ where ¢ is not a special character.

\c the character ¢ where ¢ is any character, except a digit in the range
1-9.

- the beginning of the line being compared.

$ the end of the line being compared.
any character in the input.

[s] any character in the set s, where s is a sequence of characters and/or a

range of characters, e.g., [c—c] .

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/regexp
svid

Page: 441

regexp (BA_LIB) regexp (BA_LIB)

Page 2

["9] any character not in the set s, where s is defined as above.

r* zero or more successive occurrences of the regular expression r. The
longest leftmost match is chosen.

rx the occurrence of regular expression r followed by the occurrence of
regular expression x. (Concatenation)

n{m,n\} any number of m through n successive occurrences of the regular
expression r. The regular expression r\ {m\} matches exactly m
occurrences; r\ { m, \ } matches at least m occurrences.

\(r\) the regular expression r. When \ n (where n is a number greater than
zero) appears in a constructed regular expression, it stands for the reg-
ular expression x where x is the n' regular expression enclosed in \ (
and \) that appeared earlier in the constructed regular expression.
For example, \(r\)x\(y\)z\2 is the concatenation of regular
expressions rxyzy.

Characters that have special meaning except when they appear within square brack-
ets ([]) or are preceded by \ are: ., *,[,\. Other special characters, such as $
have special meaning in more restricted contexts.

The character ~ at the beginning of an expression permits a successful match only
immediately after a newline, and the character $ at the end of an expression
requires a trailing newline.

Two characters have special meaning only when used within square brackets. The
character — denotes a range, [¢c—c], unless it is just after the open bracket or before
the closing bracket, [—c] or [¢—] in which case it has no special meaning. When
used within brackets, the character © has the meaning complement of if it immedi-
ately follows the open bracket (example: [~ c]); elsewhere between brackets (exam-
ple: [¢"]) it stands for the ordinary character " .

The special meaning of the \ operator can be escaped only by preceding it with
another\,e.g.\\.

Programs must have the following five macros declared before the #i ncl ude
<r egexp. h> statement. These macros are used by the conpi | e() routine. The
macros GETC() , PEEKC(), and UNGETC() operate on the regular expression given
as inputto conpi l e() .

CGETC() This macro returns the value of the next character (byte) in the reg-
ular expression pattern. Successive calls to GETC() should return
successive characters of the regular expression.

PEEKC() This macro returns the next character (byte) in the regular expres-
sion. Immediately successive calls to PEEKC() should return the
same character, which should also be the next character returned
by GETC() .

UNGETC() This macro causes the argument c to be returned by the next call to
GETC() and PEEKC() . No more than one character of pushback is
ever needed and this character is guaranteed to be the last charac-
ter read by GETC() . The return value of the macro UNGETC(c) is
always ignored.

FINAL COPY
June 15, 1995
File: ba_lib/regexp
svid

Page: 442

regexp (BA_LIB) regexp (BA_LIB)

RETURN(ptr) ~ This macro is used on normal exit of the conpi | e() routine. The
value of the argument ptr is a pointer to the character after the last
character of the compiled regular expression. This is useful to pro-
grams which have memory allocation to manage.

ERROR(val) This macro is the abnormal return from the conpi | e() routine.
The argument val is an error number [see ERRORS below for
meanings]. This call should never return.

The syntax of the conpi | e() routine is as follows:
conpi | e(instring, expbuf, endbuf, eof)

The first parameter, instring, is never used explicitly by the conpi | e() routine but
is useful for programs that pass down different pointers to input characters. It is
sometimes used in the | NI T declaration (see below). Programs which call functions
to input characters or have characters in an external array can pass down a value of
(char *) 0 for this parameter.

The next parameter, expbuf, is a character pointer. It points to the place where the
compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled reg-
ular expression may be placed. If the compiled expression cannot fit in
(endbuf —expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression.
This character is usually a/ .

Each program that includes the <r egexp. h> header file must have a #defi ne
statement for | NI T. It is used for dependent declarations and initializations. Most
often it is used to set a register variable to point to the beginning of the regular
expression so that this register variable can be used in the declarations for GETC() ,
PEEKC(), and UNGETC() . Otherwise it can be used to declare external variables
that might be used by GETC() , PEEKC() and UNGETC() . [See EXAMPLE below.]

The first parameter to the step() and advance() functions is a pointer to a
string of characters to be checked for a match. This string should be null ter-
minated.

The second parameter, expbuf, is the compiled regular expression which was
obtained by a call to the function conpi | e() .

The function st ep() returns non-zero if some substring of string matches the regu-
lar expression in expbuf and zero if there is no match. If there is a match, two exter-
nal character pointers are set as a side effect to the call to st ep(). The variable
| ocl points to the first character that matched the regular expression; the variable
| oc2 points to the character after the last character that matches the regular expres-
sion. Thus if the regular expression matches the entire input string, | ocl will
point to the first character of string and | oc2 will point to the null at the end of
string.

The function advance() returns non-zero if the initial substring of string matches
the regular expression in expbuf. If there is a match, an external character pointer,
| oc2, is set as a side effect. The variable | oc2 points to the next character in string
after the last character that matched.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/regexp
svid

Page: 443

regexp (BA_LIB) regexp (BA_LIB)

When advance() encounters a* or \{ \} sequence in the regular expression, it
will advance its pointer to the string to be matched as far as possible and will recur-
sively call itself trying to match the rest of the string to the rest of the regular
expression. As long as there is no match, advance() will back up along the string
until it finds a match or reaches the point in the string that initially matched the *
or\{ \}. Itis sometimes desirable to stop this backing up before the initial point
in the string is reached. If the external character pointer | ocs is equal to the point
in the string at sometime during the backing up process, advance() will break
out of the loop that backs up and will return zero.

The external variables ci r cf, sed, and nbr a are reserved.

RETURN VALUE
The function conpi | e() uses the macro RETURN on success and the macro ERROR
on failure (see above). The functions st ep() and advance() return non-zero on a
successful match and zero if there is no match.

ERRORS
11 range endpoint too large.

16 bad number.

25 \ digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 \'(\) imbalance.

43 too many \ (.

44 more than 2 numbers givenin\{ \}.
45 } expected after \ .

46 first number exceeds second in\ { \}.
49 [] imbalance.

50 regular expression overflow.

EXAMPLE
The following is an example of how the regular expression macros and calls might
be defined by an application program:

#define INIT regi ster char *sp = instring;
#define GETC() (*sp++)

#def i ne PEEKC() (*sp)

#defi ne UNGETC(c) (——sp)

#defi ne RETURN(*c) return;

#defi ne ERROR(c) regerr()

#i ncl ude <regexp. h>

. (void) conpile(*argv, expbuf, &expbuf[ESIZE],'\0");

if (step(linebuf, expbuf))
succeed();

Page 4

FINAL COPY
June 15, 1995
File: ba_lib/regexp
svid

Page: 444

regexp (BA_LIB)

FUTURE DIRECTIONS
The functionality of the regexp functions will eventually be replaced by a more

LEVEL

complete interface and the regexp functions will be discontinued.

Level 2: September 30, 1989.

FINAL COPY
June 15, 1995
File: ba_lib/regexp
svid

Page: 445

regexp (BA_LIB)

Page 5

scalb (BA_LIB) scalb (BA_LIB)

NAME

scalb, logb, nextafter — radix-independent functions

SYNOPSIS

#i ncl ude <math. h>

fdoubl e scal b(doubl e x, double n);
tdoubl e | ogb(doubl e x);

doubl e nextafter(doubl e x, double vy);

DESCRIPTION

The functions scal b(), | ogb(), and nextafter() supply radix-independent
facilities for manipulating floating point numbers.

The function scal b() returns x Or" where r is the radix of the machine’s floating
point arithmetic. When r is 2, scal b() returns the same value as | dexp [see
| dexp() in frexp(BA_LIB)].

The function | ogb() returns the exponent of x. Formally, the return value is the
integral part of Iogr Ox Oas a signed floating point value, for non-zero x.

The function nextafter () returns the next representable double-precision
floating-point value following x in the direction of y. Thus, if y is less than x, nex-
t af t er returns the largest representable floating-point number less than x.

RETURN VALUE

A macro HUGE_VAL is defined in the <mat h. h> header file. This macro calls a
function that either returns +c on a system supporting the IEEE 754 standard or
+{ MAXDOUBLE} on a system that does not support the IEEE 754 standard.

If the correct value would overflow, the function scal b() returns +HUGE VAL
(according to the sign of x) and sets er r no to ERANGE.

If the correct value would underflow, the function scal b() returns zero and sets
err no to ERANGE.

The function | ogb() returns —-HUGE_VAL when X is zero and sets er r no to EDOM

On implementations which support IEEE NaN, if an input parameter is NaN, then
the function will return NaN.

SEE ALSO

frexp(BA_LIB).

FUTURE DIRECTIONS

LEVEL

In a future edition of the SVID, logb will be updated according to NCEG recom-
mendations to be conformant to the IEEE Standard 854 rather than 754.

Level 1.
| ogb() is designated Level 2, June 1993.

scal b() is designated Level 2, September 30, 1993.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/scalb
svid

Page: 446

scanf(BA_LIB) scanf(BA_LIB)

Page 2

b, 0, u, x
The default argument type is pointer to unsi gned i nt ; an h changes
it to be a pointer to unsigned short int, and | to pointer to
unsi gnedlongint.

-]
The default argument type is pointer to character; an| changes it to a
pointer towchar _t. | ¢ (I s) is a synonym for C(S).

d,i,n The default argument type is pointer to i nt; an h changes it to be a
pointer to short i nt,and| to pointertolongint.

If a size appears other than in these combinations, the behavior is undefined.

fmt A conversion character or sequence (described below) that shows the type of
conversion to be applied.

A conversion specification directs the matching and conversion of the next input
item; the result is placed in the object pointed to by the corresponding arg unless
assignment suppression was indicated by the Oflag. The suppression of assignment
provides a way of describing an input item that is to be skipped. For all conversion
specifiers except ¢, C, nand [...], leading single-byte white-space characters are
skipped. An input item is usually defined as a sequence of non-white-space single-
byte characters that extends to the next inappropriate single-byte character or until
the maximum field width (if one is specified) is exhausted. For C, SandI[...], the
field width instead specifies the number of multibyte characters.

The conversion specifiers and their meanings are:

c,s,[.

a,ef,g
Matches an optionally signed floating number, whose format is the same as
expected for the subject string of the st rt od function see strt ol (BA_LIB).

b, 0, u, x
Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of the strt oul function (see strtol (BA_LIB)) with
the respective values of 2, 8, 10 or 16 for the base argument.

c Matches a sequence of single-byte characters of the number specified by the
field width (1 if no field width is present in the directive). The correspond-
ing argument should be a pointer to the initial element of a character array
large enough to accept the sequence. No null character is added. The nor-
mal skip over white space is suppressed.

C lc Matches a sequence of multibyte characters of the number specified by the
field width (1 if no field width is present in the directive). The correspond-
ing argument should be a pointer to the initial element of a wchar _t array
large enough to accept the sequence of generated wide characters. No null
wide character is added. The normal skip over white space is suppressed.

d,i Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of the st rt ol (BA_LIB) function with the respective
values of 10 or 0 for the base argument.

FINAL COPY
June 15, 1995
File: ba_lib/scanf
svid

Page: 448

scanf(BA_LIB) scanf(BA_LIB)

n No input is consumed. The number of characters so far read by this call is
written into the integer pointed to by the corresponding argument. Execu-
tion of a % directive does not increment the assignment count returned at
the completion of this call.

p Matches a sequence of printable characters as is produced by the
printf(BA_LIB) functions’ % conversion. The corresponding argument
should be a pointer to a pointer to voi d. If the input matched is a value
converted earlier (during the same program execution), the pointer that
results will compare equal to that value; otherwise, the behavior is
undefined.

S Matches a sequence of single-byte characters, optionally delimited by
single-byte white-space characters. The corresponding argument should be
a pointer to the initial element of a character array large enough to accept
the sequence and a terminating null character, which will be added
automatically.

S,I's Matches a sequence of multibyte characters, optionally delimited by single-
byte white-space characters. The corresponding argument should be a
pointer to the initial element of a wchar _t array large enough to accept the
sequence of generated wide characters and a terminating null wide charac-
ter, which will be added automatically.

[...] Matches a nonempty sequence of single-byte characters from a set of
expected characters (the scanset) as designated by the characters between the
brackets (the scanlist), see below. The corresponding argument should be a
pointer to the initial element of a character array large enough to accept the
sequence and a terminating null character, which will be added automati-
cally.

Matches a nonempty sequence of multibyte characters from a set of
expected multibyte characters (the scanset) as designated by the multibyte
characters between the brackets (the scanlist), see below. The corresponding
argument should be a pointer to the initial element of awchar _t array large
enough to accept the sequence of generated wide characters and a terminat-
ing null wide character, which will be added automatically.

% Matches a single % no assignment is done.

For[...] andI[...], the scanlist consists of all characters up to, but not includ-
ing, the matching right bracket (). The first right bracket matches unless the
specifier begins with [] or ["], in which case the scanlist includes a] and the
matching one is the second right bracket. The scanset is those characters described
by the scanlist unless it begins with a circumflex ("), in which case the scanset is
those characters not described by the scanlist that follows the circumflex. The scan-
list can describe an inclusive range of characters by low—high where low is not lexi-
cally greater than high (and where these endpoints are in the same codeset for
I[...] inlocales whose multibyte characters have such); otherwise, a dash () will
stand for itself, as it will when it occurs last in the scanlist, or the first, or the second
when a circumflex is first.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/scanf
svid

Page: 449

scanf(BA_LIB) scanf(BA_LIB)

If the form of the conversion specification does not match any of the above, the
results of the conversion are undefined. Similarly, the results are undefined if there
are insufficient pointer args for the format. If the format is exhausted while args
remain, the excess args are ignored.

When matching floating numbers, the locale’s decimal point character is taken to
introduce a fractional portion, the sequences i nf and i nfinity (case ignored) are
taken to represent infinities, and the sequence nan[(m)] (case ignored), where the
optional parenthesized m consists of zero or more alphanumeric or underscore ()
characters, are taken to represent NaNs (not-a-numbers). Note, however, that the
locale’s thousands’ separator character will not be recognized as such.

If conversion terminates on a conflicting input character, the offending input char-
acter is left unread in the input stream. Trailing white space (including newline
characters) is left unread unless matched by a directive.

If end-of-file is encountered during input, conversion is terminated. If end-of-file
occurs before any characters matching the current directive have been read (other
than leading white space where permitted), execution of the current directive ter-
minates with an input failure; otherwise, unless execution of the current directive is
terminated with a matching failure, execution of the following directive (other than
%, if any) is terminated with an input failure.

If a truncated sequence (due to reaching end-of-file or a conflicting input character,
or because a field width is exhausted) does not form a valid match for the current
directive, the directive is terminated with a matching failure.

The success of literal matches and suppressed assignments is not directly determin-
able other than via the % directive.

Characters from streams (st di n or strm) are read as if the get ¢ function had been
called repeatedly.

Errors

USAGE

Page 4

These routines return the number of successfully matched and assigned input
items; this number can be zero in the event of an early matching failure. If the input
ends before the first matching failure or conversion, ECF is returned.

The call to the function scanf :

int i, n; float x; char name[50];
n = scanf ("%% %", & , &, name);

with the input line:
25 54. 32E-1 t honpson

will assign to n the value 3, to i the value 25, to x the value 5. 432, and nane will
contain t horrpson\ 0.

The call to the function scanf :

int i; float x; char nane[50];
(void) scanf("%2d% %d %0-9]", &, &, namne);

FINAL COPY
June 15, 1995
File: ba_lib/scanf
svid

Page: 450

scanf(BA_LIB) scanf(BA_LIB)

with the input line:
56789 0123 56a72

will assign 56 to i, 789. 0 to x, skip 0123, and place the characters 56\ 0 in nane.
The next character read from st di n will be a.

The following shows a simple use of vf scanf , a function that reads formatted input
from its own connection to/ dev/tty.

#i ncl ude <stdarg. h>

#i ncl ude <stdio. h>

static FILE *instream

int scan(const char *fm, ...)

{
va_list ap;
int ret;

va_start(ap, fm);
if (instream== 0) {
if ((instream= fopen("/dev/tty", "r")) == 0)
return ECF;

ret = vfscanf(instream fnt, ap);
va_end(ap);
return ret;
}
SEE ALSO
printf (BA_LIB), fwprintf(BA_LIB), fwscanf (BA_LIB), get c(BA_LIB),
stdi o(BA_LIB), strtol (BA_LIB)
LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995
File: ba_lib/scanf
svid

Page: 451

setbuf (BA_LIB) setbuf (BA_LIB)

NAME

setbuf, setvbuf — assign buffering to a stdio-stream

SYNOPSIS

#i ncl ude <stdio. h>
voi d set buf (FI LE *strm, char *buf);
i nt setvbuf (FILE *strm, char *buf, int type, size_t size);

DESCRIPTION

The function set buf () may be used after a stdio-stream has been opened, but
before it is read or written. It causes the array pointed to by buf to be used instead
of an automatically allocated buffer. If buf is NULL, input/output will be com-
pletely unbuffered.

A constant BUFSI Z, defined by the <st di 0. h> header file, tells how big an array is
needed:

char buf[BUFSI Z] ;

The function set vbuf () may be used after strm has been opened, but before it is
read or written. The value of type determines how strm will be buffered. Legal
values for type, defined by the <st di 0. h> header file, are:

_I OFBF causes input/output to be fully buffered.

_I OLBF causes output to be line buffered; the buffer will be flushed when a new-
line is written, the buffer is full, or input is requested.

_I ONBF causes input/output to be completely unbuffered.

If buf is not NULL, the array it points to will be used for buffering instead of an
automatically allocated buffer. The value of size specifies the size of the buffer to be
used. The constant BUFSI Z, in the <st di 0. h> header file, is suggested as a good
buffer size. If input/output is unbuffered, buf and size are ignored.

When strm is unbuffered, characters are intended to appear from the source or at
the destination as soon as possible. Otherwise, characters may be accumulated and
transmitted to and from the host environment as a block. When strm is fully buf-
fered, characters are intended to be transmitted to or from the host environment as
a block when the buffer is filled. When strm is line buffered, characters are intended
to be transmitted to or from the host environment as a block when a newline char-
acter is encountered. Furthermore, characters are intended to be transmitted as a
block to the host environment when a buffer is filled, when input is requested on a
line-buffered strm that requires the transmission of characters from the host
environment.

By default, output to a terminal is line buffered and all other input/output is fully
buffered, except the standard error stream st der r , which is normally not buffered.

RETURN VALUE

If an illegal value for type or size is provided, the function set vbuf () returns a
non-zero value; otherwise, the value returned will be zero.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/setbuf
svid

Page: 452

setbuf (BA_LIB) setbuf (BA_LIB)

USAGE
A common source of error is allocating buffer space as an automatic variable in a
code block, and then failing to close the stdio-stream in the same block.
SEE ALSO
fopen(BA_OS), malloc(BA_OS), getc(BA_LIB), putc(BA_LIB).
LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/setbuf
svid

Page: 453

setcat (BA_LIB) setcat (BA_LIB)

NAME

setcat — define default catalog

SYNOPSIS

#i ncl ude <pfnt.h>

char *setcat(const char *catalog);

DESCRIPTION

The routine set cat () defines the default message catalog to be used by subse-
quent calls to pfrt (), vpfnt (), Ifm(),vifnt (), or gettxt() that do not
explicitly specify a message catalog.

catalog must be limited to 14 characters. These characters must be selected from a
set of all characters values, excluding \ 0 (null) and the ASCII codes for / (slash)
and : (colon).

set cat () assumes that the catalog exists. No checking is done on the argument.

A NULL pointer passed as an argument will result in the return of a pointer to the
current default message catalog name. A pointer to an empty string passed as an
argument will cancel the default catalog.

If no default catalog is specified, or if catalog is an invalid catalog name, subsequent
callstogettxt(),pfnt (), vpfm (), I fm(),orvlfm () that do not explicitly
specify a catalog name will use Message not found!!\ n as the default string.

RETURN VALUE

Upon success, set cat () returns a pointer to the catalog name. Upon failure,
set cat () returns a NULL pointer.

EXAMPLE

setcat("test");
gettxt(":10", "hello world\n");

SEE ALSO

LEVEL

envvar(BA_ENV), gettxt(BA_LIB), Ifmt(BA_LIB), pfmt(BA_LIB), setlocale(BA_LIB).

Level 2: April 1991.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/setcat
svid

Page: 454

setjmp (BA_LIB) setjmp (BA_LIB)

NAME

setjmp, longjmp - non-local goto

SYNOPSIS

#i ncl ude <setjnp. h>
int setjnp(jnp_buf env);
voi d | ongj np(j mp_buf env, int val);

DESCRIPTION

These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

The function setj np() saves its stack environment in env (whose type, j np_buf,
is defined by the <setjnp.h> header file) for later use by the function
| ongj nmp() . The function set j np() returns the value 0.

The function | ongj nmp() restores the environment saved by the last call to the
function set j np() with the corresponding argument env.

After the function | ongj np() is completed, program execution continues as if the
corresponding call to the function setj nmp() (the caller of which must not itself
have returned in the interim) had just returned the value val. All accessible vari-
ables of storage class static or external have values as of the time the function
| ongj nmp() was called. The values of variables of storage class automatic or regis-
ter are indeterminate.

RETURN VALUE

USAGE

When the function set j np() has been called by the calling process, it returns 0.

The function | ongj np() does not return from where it was called, but rather, pro-
gram execution continues as if the previous call to the function set j np() returned
with a return value of val. That is, when the function set j np() returns as a result
of the function | ongj np() being called, the function set j np() returns val. How-
ever, the function | ongj np() cannot cause the function setj np() to return the
value 0. If the function | ongj np() is invoked with a val of O, the function
setj np() will return 1.

If the function | ongj np() is called even though the argument env was never
primed by a call to the function set j np(), or when the last such call was in a func-
tion which has since returned, the behavior is undefined.

SEE ALSO

LEVEL

signal(BA_OS), sigsetimp(BA_OS).

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/setjmp
svid

Page: 455

setlabel (BA_LIB) setlabel (BA_LIB)

NAME
setlabel — define the label for pfnt () and 1 fnt ().

SYNOPSIS
#i ncl ude <pfnt.h>

i nt setlabel (const char *label);

DESCRIPTION
The routine set | abel () defines the label for messages produced in standard for-
mat by subsequent calls to pf mt () ,vpfnt (), fnt(),andvlfnt().

label is a character string no more than 25 characters in length.

No label is defined before set | abel () is called. A NULL pointer or an empty
string passed as argument will reset the definition of the label to no label.

RETURN VALUE
set | abel () returns 0 in case of success, non-zero otherwise.

USAGE
The label should be set once at the beginning of a utility and remain constant.

If set| abel () is called before get opt (), get opt () will use that label. Other-
wise, get opt () will use the name of the utility.

EXAMPLE
The following code (without previous call to set | abel ()):
pfnt (stderr, MM ERROR, "test:2:Cannot open file\n");
setl abel ("UX: test");
pfnt (stderr, MM ERROR, "test:2:Cannot open file\n");

will produce the following output:
ERROR Cannot open file
UX:test: ERROR: Cannot open file

SEE ALSO
getopt(BA_LIB), Ifmt(BA_LIB), pfmt(BA_LIB).

LEVEL
Level 2: April 1991.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/setlabel
svid

Page: 456

sigsetjmp (BA_LIB) sigsetjmp (BA_LIB)

NAME

sigsetjmp, siglongjmp — a non-local goto with signal state

SYNOPSIS

#i ncl ude <setjnp. h>
int sigsetjnp(sigjnp_buf env, int savemask) ;
voi d si gl ongj mp(si gj np_buf env, int val);

DESCRIPTION

These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

The function si gset j np() saves the calling process’s registers, stack environment
[see sigaltstack(BA_OS)] and, if savemask is non-zero, signal mask [see
sigprocmask(BA_OS)] in env (whose type, sigjnp_buf, is defined in the
<set j np. h> header file) for later use by si gl ongj np() .

The function si gl ongj np() restores the environment saved by the last call of
si gsetjnmp() with the corresponding env argument. After si gl ongj mp() is
completed, program execution continues as if the corresponding call of sig-
setj np() (which must not itself have returned in the interim) had just returned
the value val. si gl ongj np() cannot cause si gsetj np() to return the value 0.
If siglongjnp() is invoked with a second argument of 0, sigsetjnp() will
return 1. At the time of the second return from si gsetj np(), all external and
static variables have values as of the time si gl ongj np() was called. The values
of register and automatic variables are undefined.

If a signal-catching function interrupts sl eep() and calls si gl ongj np() to
restore an environment saved prior to the sl eep() call, the action associated with
SI GALRM and time it is scheduled to be generated are unspecified. It is also
unspecified whether the SI GALRM signal is blocked, unless the process’s signal
mask is restored as part of the environment.

The function si gl ongj np() restores the saved signal mask if and only if the env
argument was initialized by a call to the si gsetj np() function with a non-zero
savemask argument.

RETURN VALUE

The function si gset j mp() returns the value O when env is originally established,
and val when env is restored by a subsequent call to si gl ongj nmp() .

The function si gl ongj np() does not return.

SEE ALSO

LEVEL

sigaction(BA_OS), sigaltstack(BA_OS), sigprocmask(BA_OS), setimp(BA_LIB).
sleep(BA_OS).

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/sigsetjmp
svid

Page: 457

stdio (BA_LIB) stdio (BA_LIB)

NAME
stdio — standard buffered input/output package

SYNOPSIS
#i ncl ude <stdio. h>

FI LE [ktdin, [Cstdout, [stderr;

DESCRIPTION

The functions described as Standard 1/0 routines (st di 0) constitute an efficient,
user-level 1/0 buffering scheme. The functions get ¢() and put ¢() handle char-
acters quickly. The functions get char () and put char (), and the higher-level
routines fgetc(), fgets(), fprintf(), fputc(), fputs(), fread(),
fscanf(), fwite(), gets(), getw(), printf(), puts(), putw), and
scanf () all use or act as if they use getc() and putc(); they can be freely
intermixed.

A file with associated buffering is called a stdio-stream and is declared to be a
pointer to a defined type FILE. fopen() creates certain descriptive data for a
stdio-stream and returns a pointer to designate the stdio-stream in all further tran-
sactions. Normally, there are three open stdio-streams with constant pointers
declared in the <st di 0. h> header file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

When opened, the standard error stdio-stream is not fully buffered [see
setbuf(BA_LIB)]; the standard input and standard output stdio-streams are fully
buffered if and only if the stdio-stream can be determined not to refer to an interac-
tive device.

The following symbolic values in <uni st d. h> define the file descriptors that will
be associated with the C-language st di n, st dout and st derr when the applica-
tion is started:

STDI N_FI LENO Standard input value, st di n. It has a value of 0.
STDOUT_FI LENO Standard output value, st dout . It has a value of 1.
STDERR_FI LENO Standard error value, st derr. It has a value of 2.

A constant NULL designates a nonexistent pointer.

An integer constant EOF is returned upon end-of-file or error by most integer func-
tions that deal with streams (see the individual descriptions for details).

An integer constant BUFSI Z specifies the size of the buffers used by the particular
implementation.

Any program that uses this package must include the header file of pertinent macro
definitions, as follows:

#i ncl ude <stdi o. h>

The Standard 1/0 related functions and constants are declared in that header file
and need no further declaration. The constants and the following “‘functions” may
be implemented as macros, hence, redeclaration of these names is

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/stdio
svid

Page: 458

stdio (BA_LIB) stdio (BA_LIB)

perilous: getc(), getchar(), putc(), putchar(), ferror(),
feof (), clearerr(), and fileno().
RETURN VALUE

Invalid stdio-stream pointers will usually cause grave disorder, possibly including
program termination. Individual function descriptions describe the possible error
conditions.

SEE ALSO
fclose(BA_OS), ferror(BA_OS), fopen(BA_OS), fread(BA_OS), fseek(BA_OS),
getc(BA_LIB), gets(BA_LIB), popen(BA_LIB), printf(BA_LIB), putc(BA_LIB),
puts(BA_LIB), scanf(BA_LIB), setbuf(BA_LIB), tmpfile(BA_LIB), ungetc(BA_LIB),
unistd.h(BA_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/stdio
svid

Page: 459

strcoll (BA_LIB) strcoll (BA_LIB)

NAME
strcoll — string collation

SYNOPSIS
#i ncl ude <string. h>

int strcoll (const char *sl, const char *s2);

DESCRIPTION
The function st r col | () returns an integer greater than, equal to, or less than zero
in direct correlation to whether string sl is greater than, equal to, or less than the
string s2. The comparison is based on strings interpreted as appropriate to the
program’s locale for category LC_COLLATE [see setlocale(BA_OS)].

Both strcoll () and strxfrm() provide for locale-specific string sorting.
strcol I () is intended for applications in which the number of comparisons per
string is small. When strings are to be compared a number of times, st rxfrn() is
a more appropriate utility because the transformation process occurs only once.

RETURN VALUE
Upon successful completion, the strcol | () function returns an integer greater
than, equal to or less than zero to indicate whether the string pointed to by sl is
greater than, equal to or less than the string pointed to by s2, when both are inter-
preted as appropriate for the current locale.

SEE ALSO
setlocale(BA_OS), string(BA_LIB), strxfrm(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/strcoll
svid

Page: 460

strerror (BA_LIB) strerror (BA_LIB)

NAME
strerror — get error message string

SYNOPSIS
#i ncl ude <string. h>

char [8trerror (int errnum);

DESCRIPTION
The function st rerror () maps the error number in errnum to an error message
string, and returns a pointer to that string. strerror() uses the same set of
error messages as per r or () . The returned string should not be overwritten.

The message database uxsyserr is provided to make messages consistent. The
messages for strerror () are obtained from this file via the System V messaging
mechanism. Translated messages may be obtained by selecting the appropriate
locale variables. [See set | ocal e(BA_0OS)].

FILES

Message catalog: uxsyserr
SEE ALSO

perror(BA_LIB), setlocale(BA_OS).
LEVEL

Level 1.

Page 1
FINAL COPY

June 15, 1995
File: ba_lib/strerror
svid

Page: 461

strfmon (BA_LIB) strfmon (BA_LIB)

NAME

st r f mon — convert monetary value to string
SYNOPSIS

#i ncl ude <nonetary. h>

ssize t [Btrfnon(char [, size t max, const char ormat, . . .);
DESCRIPTION

strfron is part of the X/Open Portability Guide Issue 4 optional Enhanced Inter-
nationalization feature group.

st r f mon places characters into the array pointed to by s as controlled by the string
pointed to by f or mat . No more than nax bytes are placed into the array.

f or mat contains plain characters that are copied to the output stream, and conver-
sion specifications, that result in the fetching of zero or more arguments which are
converted and formatted. The results are undefined if there are insufficient argu-
ments for the format. If the format is exhausted while arguments remain, the excess
arguments are ignored.

A conversion specification consists of the following:
Y%character
optional flags
optional field width
optional precision
optional left precision
a conversion character that determines the conversion to be performed.

Options
The following flags can be specified to control the conversion:

=f An = followed by a single byte character f which is used as the numeric fill
character. The default numeric fill character is the space character. This flag
does not affect field width filling which always uses the space character.
This flag is ignored unless a left precision is specified.

Do not format the currency amount with grouping characters. The default is
to insert the grouping characters if defined for the current locale.

+ Specify the style of representing positive and negative amounts. You can
only specify one of these. If + is specified, the locale’s equivalent of + and -
are used. If (is specified, negative amounts are enclosed within
parentheses. + is the default.

! Suppress the currency symbol from the output conversion.

- Specify the alignment. If this flag is present all fields are left-justified rather
than right-justified.

w A decimal digit string w specifying a minimum field width in bytes in which
the result of the conversion is right-justified, or left-justified if the - flag is
specified. The default is zero.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/strfmon
svid

Page: 462

strfmon (BA_LIB) strfmon (BA_LIB)

USAGE

Errors

Page 2

#n

a # followed by a decimal digit string n specifying the maximum number of
digits expect to be formatted to the left of the radix character. Use this
option to keep the formatted output from multiple calls to the strfnon
aligned in the same column. You can also use it to fill unused positions with
a special character as in $***123. 45. This option causes an amount to be
formatted as if it has the number of digits specified by n. If more than n
digit positions are required, this conversion specification is ignored. Digit
positions in excess of those actually required are filled with the numeric fill
character.

If grouping has not been suppressed with the ~ flag, and it is defined for the
current locale, grouping separators are inserted before the fill characters (if
any) are added. Grouping separators are not applied to fill characters even
if the fill character is a digit.

To ensure alignment, any characters appearing before or after the number in
the formatted output such as currency or sign symbols are padded as neces-
sary with space characters to make their positive and negative formats an
equal length.

A period followed by a decimal digit string p specifying the number of
digits after the radix character. If the value of the right precision p is zero, no
radix character appears. If the right precision is not included, a default
specified by the current locale is used. The amount being formatted is
rounded to the specified number of digits before formatting.

The conversion characters and their meanings are:

%

The double argument is formatted according to the locale’s international
currency format, for example, USD 1, 234. 56 for the USA.

The double argument is formatted according to the locale’s national currency
format, for example, USD $1, 234. 56 for the USA.

Convert to a % No argument is converted. The entire conversion
specification must be %846

The LC_MONETARY category of the program’s locale affects the behavior of this func-
tion including the monetary radix character which may be different from the
numeric radix character affected by this category. It also affects the grouping
separator, the currency symbols, and formats. The international currency symbols
used conform to | SO 4217: 1987 standard.

Return Values

If the total number of resulting bytes including the terminating null byte is not
more than naxsi ze, strfnon returns the number of bytes placed into the array
pointed to by s, not including the terminating null byte. Otherwise, - 1 is returned,
the contents of the array is indeterminate, and er r no is set to show the error.

In the following conditions, st r f non fails and sets er r no to:

FINAL COPY
June 15, 1995
File: ba_lib/strfmon
svid

Page: 463

strfmon (BA_LIB) strfmon (BA_LIB)

ENCSYS The function is not supported
E2BI G Conversion stopped because of lack of space in the buffer.

FUTURE DIRECTIONS
This interface will be mandatory in the future. Lowercase conversion characters are
reserved for future use and uppercase for implementation- dependent use.

SEE ALSO
nonet ar y(BA_OS)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/strfmon
svid

Page: 464

strftime (BA_LIB) strftime (BA_LIB)

NAME

strfti me - convert date and time to string

SYNOPSIS

#i ncl ude <tinme. h>

size_t strftime(char [k, size_ t maxsize, const char [format,
const struct tm Ximeptr);

DESCRIPTION

strftime, places characters into the array pointed to by s as controlled by the
string pointed to by format. The format string consists of zero or more directives and
ordinary characters. All ordinary characters (including the terminating null charac-
ter) are copied unchanged into the array. For strfti ne, no more than maxsize char-
acters are placed into the array. For strftine the default format is the same as
"og", for cftine and ascfti ne the default format is the same as "%'. cftine
and ascf ti me first try to use the value of the environment variable CFTI ME, and if
that is undefined or empty, the default format is used.

Each directive is replaced by appropriate characters as described by the following
list. The appropriate characters are determined by the LC Tl ME category of the
program’s locale and by the values contained in the structure pointed to by timeptr
forstrftime

%6 sameas %

% abbreviated weekday name

9%\ full weekday name

% abbreviated month name

o8B full month name

% basic date and time representation

% number of the century (00 - 99)

% day of month (01 - 31)

% date as % %/ %y

% day of month (1-31; single digits are preceded by a blank)
% abbreviated month name.

%1 hour (00 - 23)

% hour (01-12)

% day number of year (001 - 366)

%n month number (01 - 12)

9 minute (00 - 59)

% same as new-line

9N date and time representation as used by dat e.
% equivalent of either AM or PM

% timein the am. and p.m. in the Clocale it is equivalent to, % : %M 1P)
%R same as %t %M

98 seconds (00 - 61), allows for leap seconds

% same as atab

o%d same as %t YM %6

% weekday number (1 - 7), Monday =1

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/strftime
svid

Page: 465

strftime (BA_LIB) strftime (BA_LIB)

%J week number of year (00 - 53), Sunday is the first day of week 1
%/ week number of the year

%v weekday number (0 - 6), Sunday =0

9%V week number of year (00 - 53), Monday is the first day of week 1
9% locale’s appropriate date representation

% locale’s appropriate time representation

% year within century (00 - 99)

%Y year as ccyy (for example, 1986)

% time zone name or no characters if no time zone exists

The difference between %J and %Wlies in which day is counted as the first of the
week. Week number 01 is the first week in January starting with a Sunday for %J or
a Monday for %W Week number 00 contains those days before the first Sunday or
Monday in January for %J and %\ respectively.

For %, if the week containing January 1st has four or more days in the new year, it
is week 1; otherwise, it is week 53 of the preceding year.

Modified Conversion Specifiers

Omodifies the behavior of the following conversion specifiers. The decimal value is

generated using the locale’s alternate digit symbols.

% the day of the month, using alternative digit symbols filled as needed with
leading zeros if available; otherwise, filled with spaces.

%% the day of the month, using alternative digit symbols filled with leading
spaces as needed.

%H the hour (24 hour clock), using alternative digit symbols.

%3 the hour (12 hour clock), using alternative digit symbols.

%M the month using alternative digit symbols.

%M the minutes using alternative digit symbols.

%5 the seconds using alternative digit symbols.

% the weekday as a number using alternative digit symbols (Monday = 1).

% the week number using alternative digit symbols (see rules for %J).

%V the week number using alternative digit symbols (see rules for %/).

% the weekday as a number using alternative digit symbols (Sunday = 0).

%W the week number using alternative digit symbols (see rules for 9.

%y the year (offset from %) using alternative digit symbols.

E also modifies the behavior of the following conversion specifiers. An Era-specific
value is generated instead of the normal value.ile.

%&c Era-specific representation for date and time, as in dat e(1).

%C Era-specific representation for the name of the base year (period).

%X Era-specific representation for the date.

%X Era-specific representation for the time.

%y the offset from %& in the locale’s alternative representation (year only).

%Y the full alternative year representation.

If the alternative format or specification for the above specifiers does not exist for
the current locale, the behavior will be as if the unmodified specifier was used.

Selecting the Output’s Language
By default, the output of st rfti ne, appears as in the Clocale. The user can request
that the output of strftime, cftime, or ascfti me be in a specific language by set-
ting the locale for category LC _TI MEin set | ocal e.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/strftime
svid

Page: 466

strftime (BA_LIB) strftime (BA_LIB)

Timezone
The timezone is taken from the environment variable TZ [see cti ne(BA_LIB) for a
description of TZ].

Return Values
strftime returns the number of characters placed into the array pointed to by s not
including the terminating null character. Otherwise, zero is returned and the con-
tents of the array are indeterminate. If more than maxsize characters would have
been placed into the array, strfti ne returns zero and the array content is indeter-
minate.

Files
LC TI ME file containing locale-specific date and time information

USAGE
The example illustrates the use of strfti me. It shows what the string in str would
look like if the structure pointed to by tmptr contains the values corresponding to
Thursday, August 28, 1986 at 12:44:36 in New Jersey.
strftime(str, strsize, "YA % % %", tnptr)

This results in st r containing Thur sday Aug 28 240, in the Clocale.
For the following Era related definitions for LC_TI ME:

era_d fm "%EY%mgat su%ni chi (%)"

era_d fm "The alternative time format is % (%) in %C'
era_d_t_fm "% Y%matsu%lni chi (%) %@

era "+:2:1990/ 01/ 01: +*: Hei sei : Y%&EC¥%&Eynen" ;

1: 1989/ 01/ 08: 1989/ 12/ 31: Hei sei : %Cgannen”;
11927/ 01/ 01: 1989/ 01/ 07: Shouwa: ¥ECY&Eynen” ;
1926/ 12/ 25: 1926/ 12/ 31: Shouwa: #ECgannen” ;
11913/ 01/ 01: 1926/ 12/ 24: Tai shou: %&EC¥&ynen” ;
11912/ 07/ 30: 1912/ 12/ 31: Tai shou: ¥%&ECgannen”;
11869/ 01/ 01: 1912/ 07/ 29: Mei j i : YECYEYnen”;

: 1868/ 09/ 08: 1868/ 12/ 31: Mei j i : ¥&Cgannen”;

: 1868: 1868/ 09/ 07: -*: : %&y"

For August 1st 1912, with the LC_TI ME locale category set as above:
strftime(str, strsize, "%y", tnptr);

would result in st r containing " 01" .
strftime(str, strsize, "%y %C %&X", tnptr);

would result in str containing " Tai shougannen Tai shou
Tai shougannen08gat suO1ni chi (Sun)".

strftime(str, strsize, "%X', tnptr);

would result in str containing "The alternative time format is Aug (01)
in Tai shou".

SEE ALSO
ctine(BA_LIB), get env(BA_LIB)

A
EPNRNEN

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/strftime
svid

Page: 467

strftime (BA_LIB)

LEVEL

Page 4

Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/strftime
svid

Page: 468

strftime (BA_LIB)

string (BA_LIB) string (BA_LIB)

NAME

string: strcat, strncat, strcnp, strncnp, strcpy, strncpy, strdup, strlen,
strchr,strrchr,strpbrk, strspn,strcspn,strtok,strstr —string operations

SYNOPSIS
#i ncl ude <string. h>

char [ktrcat(char [51, const char [$2);

char [strncat(char [¥1, const char [52, size_t n);
int strcnp(const char [¥1, const char [¥2);

int strncnp(const char [§1, const char [¥2, size_t n);
char [Btrcpy(char [51, const char [¥2);

char [Btrncpy(char [¥1, const char [¥2, size_t n);
char [ktrdup(const char [¥1);

size_t strlen(const char [¥);

char [ktrchr(const char [&, int c);

char [ktrrchr(const char 5 int c);

char [Btrpbrk(const char [¥1, const char [¥2);
size_t strspn(const char [1, const char [¥2);
size_t strcspn(const char [k1, const char [52);
char [strtok(char [51, const char [§2);

char [btrstr(const char [k1, const char [k2);

DESCRIPTION
The arguments s, s1, and s2 point to strings (arrays of characters terminated by a
null character). The functions strcat, strncat, strcpy, strncpy, and strtok
alter s1. These functions do not check for overflow of the array pointed to by s1.

strcat appends a copy of string s2, including the terminating null character, to the
end of string s1. strncat appends at most n characters. Each returns a pointer to
the null-terminated result. The initial character of s2 overrides the null character at
the end of s1.

strcnp compares its arguments and returns an integer less than, equal to, or
greater than 0, based upon whether sl is lexicographically less than, equal to, or
greater than s2. strncnp makes the same comparison but looks at most n charac-
ters. Characters following a null character are not compared.

strcpy copies string s2 to sl including the terminating null character, stopping
after the null character has been copied. strncpy copies exactly n characters, trun-
cating s2 or adding null characters to sl if necessary. The result will not be null-
terminated if the length of s2 is n or more. Each function returns s1.

st rdup returns a pointer to a new string which is a duplicate of the string pointed
to by s1. The space for the new string is obtained using mal | oc(BA_OS). If the new
string can not be created, a NULL pointer is returned.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/string
svid

Page: 469

string (BA_LIB) string (BA_LIB)

strl en returns the number of characters in s, not including the terminating null
character.

strchr (or strrchr) returns a pointer to the first (last) occurrence of ¢ (converted
to a char) in string s, or a NULL pointer if ¢ does not occur in the string. The null
character terminating a string is considered to be part of the string.

st rpbr k returns a pointer to the first occurrence in string s1 of any character from
string s2, or a NULL pointer if no character from s2 exists in s1.

strspn (or strcspn) returns the length of the initial segment of string s1 which
consists entirely of characters from (not from) string s2.

st rt ok considers the string sl to consist of a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string s2. The first
call (with pointer sl specified) returns a pointer to the first character of the first
token, and will have written a null character into s1 immediately following the
returned token. The function keeps track of its position in the string between
separate calls, so that subsequent calls (which must be made with the first argument
a NULL pointer) will work through the string s1 immediately following that token.
In this way subsequent calls will work through the string s1 until no tokens remain.
The separator string s2 may be different from call to call. When no token remains
in s1, a NULL pointer is returned.

strstr locates the first occurrence in string s1 of the sequence of characters (exclud-
ing the terminating null character) in string s2. strstr returns a pointer to the
located string, or a null pointer if the string is not found. If s2 points to a string
with zero length (that is, the string " "), the function returns s1.

SEE ALSO

mal | oc(BA_OS), set | ocal e(BA_OS), strxfrmBA_LIB),
LEVEL

Level 1.
NOTICES

All of these functions assume the default locale “C.”” For some locales, strxfrm
should be applied to the strings before they are passed to the functions.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/string
svid

Page: 470

strptime (BA_LIB) strptime (BA_LIB)

NAME
strpti me — date and time conversion

SYNOPSIS
#i ncl ude <tinme. h>

char [Btrptime(const char [buf, const char [format, struct tm Om);

DESCRIPTION
strptime converts the character string pointed to by buf to values stored in the
structure pointed to by tm, using the format specified by format.

format is composed of zero or more directives where each directive is composed of
one of the following:

one or more white-space characters as specified by the i sspace function,
an ordinary character (neither %or non white-space character), or
a conversion specification.

Conversion Specifications
Each conversion specification is composed of a %character followed by an optional
modifier and then by a conversion character which specifies the replacement
required. Usually, there should be white-space or other non-alphanumeric charac-
ters between any two conversion specifications. The following conversion
specifications are supported:

% locale’s full or abbreviated weekday name

9A same as %a

% locale’s full or abbreviated month name

"B same as %

% locale’s appropriate date and time representation (for example, % %X)

% number of the century (00 - 99), leading zeros are optional

%l day of month (01 - 31), leading zeros are optional

%W date as % %d/ %y

% same as %

% same as %

9 hour (00 - 23), leading zeros are optional

% hour (01 - 12), leading zeros are optional

% day number of year (001 - 366), leading zeros are optional

% month number (01 - 12), leading zeros are optional

9 minute (00 - 59), leading zeros are optional

9N date and time

% any white space

% locale’s equivalent of either AM or PM

% locale’s time with 12-hour clock

IR time as %t 9M

%95 seconds (00 - 61), allows for leap seconds, leading zeros are optional

% any white space

T time as %t 9M 95

%nJ week number of year (00 - 53), Sunday is the first day of week 1, leading
zeros are optional

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/strptime
svid

Page: 471

strptime (BA_LIB) strptime (BA_LIB)

% weekday number (0 - 6), Sunday = 0, leading zeros are optional

oW week number of year (00 - 53), Monday is the first day of week 1, leading
zeros are optional

U locale’s appropriate date representation

"X locale’s appropriate time representation

Ky year within century (00 - 99), leading zeros are optional

wY year as ccyy (for example, 1986)

%% same as %

Modified Conversion Specifiers

Page 2

Some directives can be modified by the Oand E modifier characters to indicate that
an alternative format or specification should be used instead of the normal direc-
tives. %0is the modifier used in association with the following conversion specifiers
to specify that the locale’s alternative digits be matched. The second letter has a
similar effect as the letter excluding the Omodifier.

% the day of the month, using the locale’s alternative digit symbols filled as
needed with leading zeros if available, otherwise, filled with spaces.

%>k same as %

%H the hour (24 hour clock), using the locale’s alternative digit symbols.

% the hour (12 hour clock), using the locale’s alternative digit symbols.

% m the month using the locale’s alternative digit symbols.

%M the minutes using the locale’s alternative digit symbols.

%5 the seconds using the locale’s alternative digit symbols.

% the week number using the locale’s alternative digit symbols (see rules for %J).

%W the weekday as a number using the locale’s alternative digit symbols (Sunday
=0).

%N the week number using the locale’s alternative digit symbols (see rules for %Y.

%y the year (offset from %) using the locale’s alternative digit symbols.

% is a modifier used to match the date using different era information as specified
in the LC_TI ME locale data file.

%&c the locale’s alternative representation for date and time.

%EC the locale’s alternative representation for the name of the base year (period).
%X the locale’s alternative representation for the date.

%X the locale’s alternative representation for the time.

%&y the offset from %&Cin the locale’s alternative representation (year only).
%&Y the full alternative year representation.

A directive comprised of white-space characters is executed by scanning input up to
the first character that is not white space which remains unscanned, or until no
more characters can be scanned.

A directive that is an ordinary character is executed by scanning the next character
from the buffer. If the character scanned from the buffer differs from the one
comprising the directive, the directive fails, and the differing and subsequent char-
acters remain unscanned.

A series of directives composed of %, % , white-space characters or any combina-
tion is executed by scanning up to the first character that is not white space which
remains unscanned, or until no more characters can be scanned.

FINAL COPY
June 15, 1995
File: ba_lib/strptime
svid

Page: 472

strptime (BA_LIB) strptime (BA_LIB)

Any other conversion specification is executed by scanning characters until a char-
acter matching the next directive is scanned, or until no more characters can be
scanned. These characters, except the one matching the next directive, are then
compared to the locale values associated with the conversion specifier. If a match is
found, values for the appropriate tm structure members are set to values
corresponding to the locale information. Case is ignored when matching items are
month or weekday names. If no match is found, strpti me fails and no more char-
acters are scanned.

Return Values
Upon successful completion, st rpti ne returns a pointer to the character following
the last character parsed. Otherwise, it returns a null pointer. If not implemented,
strpti me returns a null pointer and and sets er r no to ENCSYS.

USAGE
Several “‘same as’ format and the special processing of white-space characters are
provided in order to ease the use of identical format strings for strftine and
strptime.

SEE ALSO
strfti me(BA_LIB),ti mre(BA_ENV)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/strptime
svid

Page: 473

strtod (BA_LIB) strtod (BA_LIB)

NAME

strtod, strtold, atof — convert string to double-precision number

SYNOPSIS

#i ncl ude <stdlib. h>

doubl e strtod(const char *str, char **ptr);

| ong doubl e strtold(const char *str, char **ptr);
doubl e at of (const char *str);

DESCRIPTION

The function strtod() returns as a double-precision floating-point number the
value represented by the character string pointed to by str. The string is scanned up
to the first unrecognized character.

The function st rt od() recognizes an optional string of white-space characters [as
defined by i sspace() in ctype(BA_LIB)], then an optional sign, then a string of
digits optionally containing a decimal point character, then an optional exponent
part consisting of an e or E followed by an optional sign, followed by one or more
decimal digits.

If the value of ptr is not (char **)O0, a pointer to the character terminating the
scan is returned in the location pointed to by ptr. If no number can be formed, * ptr
is set to str, and O is returned.

On the processors that support strt ol d, this function is equivalent to strt od,
except that it returns a long double-precision floating-point number.

The function call at of (str) is equivalent to:
strtod(str, (char **)0)

RETURN VALUE

A macro HUGE_VAL will be defined by the <mat h. h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evalutates to

+00,

If the correct value would cause overflow, tHUGE VAL is returned (according to the
sign of the value) and er r no is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to
ERANGE.

SEE ALSO

LEVEL

ctype(BA_LIB), scanf(BA_LIB), strtol(BA_LIB).

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/strtod
svid

Page: 474

strtol (BA_LIB) strtol (BA_LIB)

NAME
strtol, strtoul, atol, atoi — convert string to integer

SYNOPSIS
#i ncl ude <stdlib. h>

long strtol (const char *str, char **ptr, int base);

unsi gned long strtoul (const char *str, char **ptr,
i nt base) ;

| ong atol (const char *str);
int atoi (const char *str);

DESCRIPTION
The function st rt ol () returns as a long integer the value represented by the char-
acter string pointed to by str. The string is scanned up to the first character incon-
sistent with the base. Leading white-space characters [as defined by i sspace() in
ctype(BA_LIB)] are ignored.

If the value of ptr is not (char **)0, a pointer to the character terminating the
scan is returned in the location pointed to by ptr. If no integer can be formed, that
location is set to str and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conversion.
After an optional leading sign, leading zeros are ignored and Ox or 0X is ignored if
base is 16.

If base is zero, the string itself determines the base in the following way: After an
optional leading sign, a leading zero indicates octal conversion and a leading Ox or
0X hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from | ong to i nt can, of course, take place upon assignment or by an
explicit cast.

strtoul () issimilartostrtol () exceptthat strtoul () returns as an unsigned
long integer the value represented by str, and there can be no leading sign in str.

Except for the behavior on errors, the function call at ol (str) is equivalent to:
strtol (str, (char **)0, 10)
Except for the behavior on errors, the function call at oi (str) is equivalent to:
(int)strtol (str, (char **)0, 10)
RETURN VALUE

If the argument ptr is a null pointer, the function strt ol () will return the value of
the string str as a long integer.

If the argument ptr is not NULL, the function st rt ol () will return the value of the
string str as a long integer, and a pointer to the character terminating the scan will
be returned in the location pointed to by ptr. If no integer can be formed, that loca-
tion is set to the argument str and the function st rt ol () returns 0.

For strtol (), if the value represented by str would cause overflow, LONG_MAX or
LONG_M Niis returned (according to the sign of the value), and err no is set to the
value ERANCE.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/strtol
svid

Page: 475

strtol (BA_LIB) strtol (BA_LIB)

For strtoul (), if the value represented by str would cause overflow, ULONG_MAX
is returned, and er r no is set to the value ERANGE.

SEE ALSO
ctype(BA_LIB), scanf(BA_LIB), strtod(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/strtol
svid

Page: 476

strxfrm (BA_LIB) strxfrm (BA_LIB)

NAME
strxfrm — string transformation

SYNOPSIS
#i ncl ude <string. h>

size_t strxfrm(char *sl, const char *s2, size_t n);

DESCRIPTION

The function strxfrn() transforms the string s2 and places the resulting string
into the array s1. The transformation is such that if the strcnp() function [see
string(BA_LIB)] is applied to the two transformed strings, it returns a value greater
than, equal to, or less than zero, corresponding to the result of the strcoll ()
function [see strcoll(BA_LIB)] applied to the same two original strings. The
transformation is based on the program’s locale for category LC_COLLATE [see
setlocale(BA_OS)].

No more than n characters will be placed into the resulting array pointed to by s1,
including the terminating null character. If n is zero, sl is permitted to be a null
pointer. If copying takes place between objects that overlap, the behavior is
undefined.

RETURN VALUE
The function st rxfrn() returns the length of the transformed string (not includ-
ing the terminating null character). If the value returned is n or more, the contents
of the array sl are indeterminate.

USAGE
The transformation is such that two strings transformed by st rxfrn{) can be
ordered by mentnp() or strcnp() and the results will be appropriate in terms of
the collating sequence information in the program’s locale.

EXAMPLE

The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to by s.

1 + strxfrn((char *)NULL, s, 0);

SEE ALSO
memory(BA_LIB), setlocale(BA_OS), strcoll(BA_LIB), string(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/strxfrm
svid

Page: 477

swab (BA_LIB) swab (BA_LIB)

NAME
swab - swap bytes
SYNOPSIS
voi d swab (const char *from, char *to; int nbytes);

DESCRIPTION
The function swab() copies nbytes bytes pointed to by from to the array pointed to
by to, exchanging adjacent even and odd bytes. This routine is useful for carrying
binary data between machines with different low-order/high-order byte arrange-
ments.

The argument nbytes should be even and non-negative. If the argument nbytes is
odd and positive, the function swab() uses nbytes—1 instead. If the argument nbytes
is negative, the function swab() does nothing.

USAGE
Character movement is performed differently on different implementations; over-
lapping moves may yield unexpected results.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/swab
svid

Page: 478

t_accept (BA_LIB) t_accept (BA_LIB)

NAME

t _accept —accept a connect request

SYNOPSIS

#i ncl ude <xti.h>

int t_accept(int fd, int resfd, struct t_call [tall)
#incl ude <tiuser.h>

int t_accept(int fd, int resfd, struct t_call [Zall)

Parameters

fd the file descriptor for the local transport endpoint where the connect request
arrived.

resfd file descriptor for the local transport endpoint on which the connection is to
be established.

call pointstothet cal |l structure used to complete the connection.

DESCRIPTION

This function is one of the TLI/XTI routines used to establish a transport connec-
tion. It is invoked by an active transport user, following a call to t_listen, to
accept a connection request from the transport interface and provide the informa-
tion needed to complete a virtual connection.

It may also be used to pass a connection to another endpoint.

This function is a service of connection-mode transport providers and is supported
only if the provider returned service type T_COTS or T_COTS_CRD on t _open or
t_getinfo.

A transport user may accept a connection on either the same or local transport end-
point or on an endpoint different than the one on which the connect indication
arrived. Before the connection can be accepted on the same endpoint (resfd==fd),
the user must have responded to any previous connect indications received on that
endpoint (via t _accept or t_snddi s). Otherwise, t _accept will fail and set
t_errnoto T_| NDQUT.

If a different transport endpoint is specified (fs!=resfd), then the user may or may
not choose to bind the endpoint before t _accept is issued. If the endpoint is not
bound, then the transport provider will automatically bind it to the same protocol
address that f d is bound to. If the user chooses to bind to a local address, then glen
must be zero for that protocol address, and the state of the endpoint must be
T_I DLE. t _accept will change the address of resfd to be the same as that of fd. For
portability, the first alternative is recommended.

Structure Definitions

Thet _cal | structure contains the following members:

struct netbuf addr; /* address */
struct netbuf opt; /* options */
struct netbuf udat a; /* user data */
i nt sequence; /* sequence nunber */
Page 1
FINAL COPY

June 15, 1995
File: ba_lib/t_accept
svid

Page: 479

t_accept (BA_LIB)

t_accept (BA_LIB)

The net buf structure contains the following members:

unsi gned i nt nmax| en;
unsi gned i nt | en;
char *buf ;

In t_call, addr is the address of the caller, opt indicates any protocol-specific
options associated with the connection, udata points to any user data to be
returned to the caller, and sequence is the value returned by t_|isten that
uniquely associates the response with a previously received connect indication.

The values of parameters specified by opt and the syntax of those values are proto-
col specific. The udata argument enables the called transport user to send user
data to the caller and the amount of user data must not exceed the limits supported
by the transport provider as returned in the connect field of the i nf o argument of
t_open or t_getinfo. If the | en field of udat a is 0, no data will be sent to the

caller.
Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and t _err no is set to indicate the error.

Errors

On failure, t _err no may be set to one of the following:

TBADF

TOQUTSTATE

TACCES
TBADCPT

TBADDATA

TBADSEQ
TBADADDR

TLAXK

TNOTSUPPCRT

Page 2

The specified file descriptor does not refer to a transport end-
point, or the user is invalidly accepting a connection on the same
transport endpoint on which the connect indication arrived.

The function was issued in the wrong sequence on the transport
endpoint referenced by fd, or the transport endpoint referred to
by resfd is not in the T_I DLE state.

The user does not have permission to accept a connection on the
responding transport endpoint or use the specified options.

The specified options were in an incorrect format or contained
invalid information.

The amount of user data specified was not within the bounds
supported by the transport provider as returned in the connect
field of the i nf 0o argument of t _open ort _geti nf o.

An invalid sequence number was specified.

The specified protocol address was in an incorrect format or con-
tained illegal information.

An asynchronous event has occurred on the transport endpoint
referenced by fd and requires immediate attention. t _accept will
fail and sett _errno to TLOOK when fd is not the same as resfd and
there are indications (for example, a connect or disconnect) wait-
ing to be received on that endpoint.

This function is not supported by the underlying transport pro-
vider.

FINAL COPY
June 15, 1995
File: ba_lib/t_accept
svid

Page: 480

t_accept (BA_LIB) t_accept (BA_LIB)

TSYSERR A system error has occurred during execution of this function.

TI NDQUT The function was called with fd equal to resfd but there are out-
standing connection indications on the endpoint. The other con-
nection indications must be handled either by rejecting them via
t _snddi s or accepting them viat _accept .

TPROVM SMATCH The file descriptors fd and resfd do not refer to the same transport

provider.

TRESQLEN The endpoint referenced by resfd where resfd!=fd was bound to a
protocol address with a gl en greater than 0.

TRESADDR This transport provider requires that both fd and resfd be bound
to the same address.

TPROTO A communication problem has been detected with the transport

provider and there is no other value of t _errno to describe the
error condition.

State Transitions
fd T_I NOONon entry. T_I NCON, T_I| DLE or T_DATAXFER on exit.
resfd T_I DLE, T_UNBI NDon entry.

USAGE
Whent _accept fails with a client timeout, this may be an indication that the client
connection needs to be extended or that the server delay (betweent _|i sten and
t _accept) should be reduced.

A server application may retry t _accept unless a TOUTSTATE or TSYSERR error is
received.

If the user does not specify protocol-specific options (the | en field of opt is 0), it is
assumed that the connection should accepted unconditionally. Options other than
the defaults may be selected by the transport provider to ensure that the connection
is accepted successfully.

SEE ALSO
t_connect (BA_LIB), t_getinfo(BA_LIB) t_|isten(BA_LIB), t_open(BA_LIB),
t_rcvconnect (BA_LIB),t _snddi s(BA_LIB)

FUTURE DIRECTIONS

The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/t_accept
svid

Page: 481

t_alloc (BA_LIB) t_alloc (BA_LIB)

NAME
t _al | oc — allocate a data structure

SYNOPSIS
#i nclude <xti.h>

char *t_alloc(int fd, int struct_type, int fields);
#incl ude <tiuser.h>
char *t_alloc(int fd, int struct type, int fields);

Parameters
fd the file descriptor for the transport endpoint.
struct_type identifies the type of structure for which memory should be allocated.
fields indicates fields for which buffers should be allocated.
DESCRIPTION

The t _al | oc function is an TLIZXTI local management routine used to allocate
data structures associated with the endpoint specified by fd. For struct_type T_I NFQ,
fd is ignored, so that T_I NFOstructures may be allocated for use in calls tot _open.

t_all oc dynamically allocates memory for the various transport function argu-
ment structures as specified below. This function will allocate memory for the
specified structure, and will also allocate memory for buffers referenced by the

structure.
The structure to allocate is specified by st ruct _t ype, and can be one of the follow-
ing:
T_BIND /* struct t_bind */
T_CPTMAMVI [* struct t_optngmt */
T CALL /* struct t_call */
TDS /* struct t_discon */
T_UN TDATA /* struct t_unitdata */
T_UDERRCR /* struct t_uderr */
T_I NFO /* struct t_info */

where each of these structures may subsequently be used as an argument to one or
more transport functions.

Structure Definitions
Each of the above structures, except T_| NFO, contains at least one field of type
struct netbuf. The net buf structure contains the following members:

unsi gned int nmaxl| en;
unsi gned i nt | en;
char *puf ;

For each field of this type, the user may specify that the buffer for that field should
be allocated as well. The fi el ds argument specifies this option, where the argu-
ment is the bitwise-OR of any of the following:

T_ADDR The addr field of the t_bind, t _call, t_unitdata, or t_uderr
structures.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_alloc
svid

Page: 482

t_alloc (BA_LIB) t_alloc (BA_LIB)

T CPT The opt field of the t _optngnt, t_call,t_unitdata, ort_uderr
structures.

T_UDATA The udat a field of thet _cal | ,t_di scon, ort _uni t dat a structures.

T ALL All relevant fields of the given structure.

For each field specified in fields, t _al | oc will allocate memory for the buffer associ-
ated with the field, initialize the | en field to 0 and initialize the buf pointer and
max| en field accordingly. The length of the buffer allocated will be based on the
same size information that is returned to the user ont _open andt _geti nfo. Thus,
fd must refer to the transport endpoint through which the newly allocated structure
will be passed, so that the appropriate size information can be accessed.

If the size value associated with any specified field is -1, or -2, t _al | oc will be
unable to determine the size of the buffer to allocate and will fail witht _errno set
to TSYSERR, unless when T_ALL is specified, in which case unsupported fields are
ignored silently.

For any field not specified in fields, buf will be set to NULL and nax| en will be set to
0. If the fields argument is set to T_ALL, fields that are not supported by the tran-
sport provider specified by fd are not allocated.

Return Values

On successful completion, t _al | oc returns a pointer to the newly allocated struc-
ture. On failure, NULL is returned, and t _err no is set to indicate the error.

Errors

On failure, t _errno may be set to one of the following:
TBADF The specified file descriptor does not refer to a transport endpoint.
TSYSERR A system error has occurred during execution of this function.

TNCSTRUCTYPE The argument that specifies struct_type is invalid, for example,
because the type of structure requested is inconsistent with the
transport provider (connection mode or connectionless) indicated
by fd.

TPROTO A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

State Transitions

USAGE

Page 2

t_all oc has no effect on state. Valid states are T_UNBND, T_|DLE, T_QUTQQN,
T_INCON, T DATAXFER T_QUTREL and T_I NREL on entry. On exit, they are
unchanged.

Use of t _al | oc to allocate structures will help ensure the compatibility of user pro-
grams with future releases of the transport interface.

Buffers and memory that have been allocated with t _al | oc may be freed with
t_free.

FINAL COPY
June 15, 1995
File: ba_lib/t_alloc
svid

Page: 483

t_alloc (BA_LIB) t_alloc (BA_LIB)

SEE ALSO
t_free(BA_LIB),t_getinfo(BA_LIB),t_open(BA_LIB)
FUTURE DIRECTIONS

The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace ti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/t_alloc
svid

Page: 484

t_bind (BA_LIB) t_bind (BA_LIB)

t _bi nd - bind an address to a transport endpoint

SYNOPSIS

#i ncl ude <xti.h>

int t_bind(int fd, struct t_bind *req, struct t_bind *ret)
#incl ude <tiuser.h>

int t_bind(int fd, struct t_bind *reg, struct t_bind *ret)

Parameters

fd the file descriptor for the transport endpoint
req points to the t _bi nd structure used to identify the request.
ret points to the t _bi nd structure used to identify the return.

DESCRIPTION

This function is an TLI/XTI local management routine that associates a protocol
address with the transport endpoint specified by fd and activates the endpoint.

If fd refers to a connection-mode service, the transport provider may then begin
listening for connect indications on that endpoint (t _| i st en), or the provider may
begin sending connection requests from that transport endpoint (t _connect).

If fd refers to a connectionless service, the transport user may then proceed with
sending or receiving data units through the transport endpoint (t _snd, t_rcv).

Structure Definitions

The req and ret arguments point to a t _bi nd structure containing the following
members:

struct netbuf addr; /* address */

unsi gned gl en; /* connect indications */
The net buf structure contains the following members:

unsi gned i nt max| en;

unsi gned i nt | en;

char *buf ;

| en specifies the number of bytes in the address, buf points to the address buffer,
and max! en is the maximum size of the address buffer. The gl en field, in connec-
tion mode only, is used to indicate the maximum number of outstanding connect
indications.

In req, | en and buf are used to specify the protocol address to be bound to the tran-
sport endpoint. nmaxl en has no meaning for the req argument.

In ret, the user specifies maxl en (which is the maximum size of the address buffer)
and buf (which points to the buffer where the address is to be placed).

On return, ret contains the bound address. This is the same as the address specified
by the user in req. | en specifies the number of bytes in the bound address and buf
points to the bound address. If naxl en is not large enough to hold the returned
address, an error will result. If the requested address is not available, t _bi nd fails
with an error and t _err no is set to TADDRBUSY.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_bind
svid

Page: 485

t_bind (BA_LIB) t_bind (BA_LIB)

If no address is specified in req (the | en field in addr is 0 or req is NULL), the tran-
sport provider will assign an appropriate address to be bound, and will return that
address in ret.

req may be NULL if the user does not want to specify the protocol address to be
bound. Here, the value of gl en is assumed to be zero, and the transport provider
must assign an address to the transport endpoint. Similarly, ret may be NULL if the
user does not care what address was bound by the provider and is not interested in
the negotiated value of gl en.

It is also valid to set req and ret to NULL for the same call, in which case the provider
chooses the address to bind to the transport endpoint and does not return that
information to the user.

The gl en field has meaning only when initializing a connection-mode service. It
specifies the number of outstanding connect indications the transport provider
should support for the given transport endpoint. An outstanding connect indica-
tion is one that has been passed to the transport user by the transport provider. A
value of gl en greater than 0 is only meaningful when issued by a passive transport
user that expects other users to call it. The value of gl en will be negotiated by the
transport provider and may be changed if the transport provider cannot support
the specified number of outstanding connect indications. On return, the gl en field
in ret will contain the negotiated value.

Return Values
t _bi nd returns 0 on success and —1 on failure and t _errno is set to indicate the

error.
Errors
On failure, t _err no may be set to one of the following:
TBADF The specified file descriptor does not refer to a transport endpoint.
TQUTSTATE The function was issued in the wrong sequence.
TBADADDR The specified protocol address was in an incorrect format or con-
tained illegal information.
TNQADDR The transport provider could not allocate an address.
TACCES The user does not have permission to use the specified address.

TBUFOVFLW The number of bytes (max| en) allocated for an incoming argument
is greater than zero but not sufficient to store the value of that argu-
ment. The provider’s state will change to T_| DLE and the informa-
tion to be returned in ret will be discarded.

TSYSERR A system error has occurred during execution of this function.

TADDRBUSY In connection mode, the requested address has already been bound
to another transport endpoint.

TPROTO A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_bind
svid

Page: 486

t_bind (BA_LIB) t_bind (BA_LIB)

State Transitions
On entry, T_UNBND; T_I DLE on exit.

USAGE
The following notes are for connection-mode service.

This function allows more than one transport endpoint to be bound to the same
protocol address (however, the transport provider must support this capability
also), but it is not allowable to bind more than one protocol address to the same
transport endpoint.

If a user binds more than one transport endpoint to the same protocol address, only
one endpoint can be used to listen for connect indications associated with that pro-
tocol address., In other words, only one t _bi nd for a given protocol address may
specify a value of gen greater than 0. In this way, the transport provider can iden-
tify which transport endpoint should be notified of an incoming connect indication.

If a user attempts to bind a protocol address to a second transport endpoint with a
value of gl en greater than 0, t _bi nd will fail with TADDRBUSY.

A transport provider may not allow an explicit binding of more than one endpoint
to the same protocol address, although it allows more than one connection to be
recommended not to bind transport endpoints that are used as responding end-
points (resfd) in a call tot _accept, if the responding address is to be the same as
the called address.

If a user accepts a connection on the transport endpoint that is being used as the
listening endpoint, the bound protocol address will be found to be busy for the
duration of that connection. No other transport endpoints may be bound for listen-
ing while that initial listening endpoint is in the data transfer phase. This will
prevent more than one transport endpoint bound to the same protocol address
from accepting connection indications.

Warnings
Note that the behavior of t _bi nd has changed in order to conform to X/OPEN'’s
TLI/ZXTI specifications. Previously, if req was specified t _bi nd returned an alter-
nate address if the one requested was busy. Now, t _bi nd will fail and t _error
will be set to TADDRBUSY. Thus now, in case of failure, applications need to check
the value of e_errno and repeat the call with a different address if the one
requested is busy (or not requested a specific address). Also, applications need not
verify the address they were bound to if they requested an address and t _bi nd suc-
ceeded.

SEE ALSO
t_all oc(BA_LIB), t_connect (BA_LIB), t_listen(BA_LIB), t_open(BA_LIB),
t _unbi nd(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/t_bind
svid

Page: 487

t_close(BA_LIB) t_close(BA_LIB)

NAME
t _cl ose — close a transport endpoint

SYNOPSIS
#i nclude <xti.h>

int t_close(int fd);
#i ncl ude <tiuser.h>
int t_close(int fd);
Parameters
fd the file descriptor for the transport endpoint specified by fd.

DESCRIPTION
This function is an TLI/XTI local management routine used to close a transport
endpoint. The t _cl ose function indicates to the transport provider that the user is
finished with the transport endpoint specified by fd. In addition, t _cl ose closes
the file associated with the transport endpoint and frees any local library resources
associated with the endpoint.

Return Values
t _cl ose returns 0 on success and -1 on failure and t _errno is set to indicate the

error.
Errors
On failure, t _errno may be set to the following:
TBADF The specified file descriptor does not refer to a transport endpoint.
TPROTO A communication problem has been detected with the transport pro-
vider and there is no other value of t _errno to describe the error
condition.

State Transitions
Onentry, any except T_UNFN T; T_UN NI T on exit.

USAGE
t _cl ose should be called from the T_UNBND state. However, this function does not
check state information, so it may be called from any valid state to close a transport
endpoint. If this occurs, the local library resources associated with the endpoint
will be freed automatically.

Warnings
Ift _cl ose is issued while a transport address is bound to an endpoint, the address
will be unbound.

Ift _cl ose is called when the transport connection is still active, the connection will
be aborted, the file descriptor will be closed, and the transport connection associ-
ated with that endpoint will be broken for any process that references that end-
point.

t _cl ose should not be issued on a connection endpoint before data has been suc-
cessfully transmitted and received or data may be lost.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_close
svid

Page: 488

t_close(BA_LIB) t_close(BA_LIB)

SEE ALSO
t_getstate(BA_LIB)t_ open(BA_LIB),t _unbi nd(BA_LIB)
FUTURE DIRECTIONS

The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_close
svid

Page: 489

t_connect (BA_LIB) t_connect (BA_LIB)

NAME

t _connect - establish a connection with another transport user

SYNOPSIS

#i ncl ude <xti.h>

int t_connect(int fd, struct t_call Obndcall struct t_call [Crcvcall)
#incl ude <tiuser.h>

int t_connect(int fd, struct t_call O[bndcall struct t_call Crcvcall)

Parameters

fd the file descriptor for the transport endpoint where the connection will be
established.

sndcall points to the t _cal | structure used to identify the transport user sending
the connection indication.

rcvcall points to thet _cal | structure used to identify the transport user that will
receive the connection indication.

DESCRIPTION

This TLI/ZXTI routine enables a transport user to request a connection to the
specified destination transport user.

This function is a service of connection-mode transport providers and is supported
only if the provider returned service type T_COTS or T_COTS_CRD on t _open or
t_getinfo.

sndcall specifies information needed by the transport provider to establish a connec-
tion and rcvcall specifies information that is associated with the newly established
connection.

Structure Definitions

The pointers sndcall and rcvcall refer to at _cal | structure that contains the follow-
ing members:

struct netbuf addr; /* address */
struct netbuf opt; /* options */
struct netbuf udata; /* user data */
i nt sequence; /* sequence nunber */
The net buf structure contains the following members:

unsi gned i nt max| en;

unsi gned int | en;

char *buf ;

In sndcall, addr specifies the protocol address of the destination transport user, opt
presents any protocol-specific information that might be needed by the transport
provider, udat a points to optional user data that may be passed to the destination
transport user during connection establishment, and sequence has no meaning for
this function.

On return in revcall, addr returns the protocol address associated with the respond-
ing transport endpoint, opt presents any protocol-specific information associated
with the connection, udat a points to optional user data that may be returned by the
destination transport user during connection establishment, and sequence has no

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_connect
svid

Page: 490

t_connect (BA_LIB) t_connect (BA_LIB)

TLOXK An asynchronous event has occurred on the transport endpoint
specified by fd and requires immediate attention.

TNOTSUPPCRT This function is not supported by the underlying transport pro-
vider.

TSYSERR A system error has occurred during execution of this function.

TADDRBUSY The specified connection already exists, and this transport user
does not support multiple connections with the same pair of local
and remote addresses.

TPROTO A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

State Transitions
On entry, T_| DLE; T_QUTCCON or TDATAXFER (successful) or T_I DLE (failed) on exit.
Ift _connect fails with a TLOCK or TNCDATA error, a change of state may occur.

USAGE

By default, t _connect executes in synchronous mode, and will wait for the destina-
tion user’s response before returning control to the local user. A successful return
(that is, return value of 0) indicates that the requested connection has been esta-
blished. However, if O NONBLOCK is set (viat _open or fcntl), t _connect executes
in asynchronous mode. In this way, the function simply initiates the connection
establishment procedure by sending a connect request to the destination transport
user, and may fail witht _error set to TNCDATA.

Also, in the case of the TCP protocol, the peer TCP, and not the peer transport user,
confirms the connection. One consequence of this fact is that the t _connect can
return success, even though the remote server process may (later) call t _snddi s,
rather thant _accept, thus aborting the connection.

SEE ALSO
t_accept (BA_LIB), t_getinfo(BA_LIB) t_listen(BA_LIB), t_open(BA_LIB),
t _opt ngnt (BA_LIB),t _rcvconnect (BA_LIB)

FUTURE DIRECTIONS

The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/t_connect
svid

Page: 492

t_error (BA_LIB) t_error (BA_LIB)

NAME
t _error —write an error message

SYNOPSIS
#i nclude <xti.h>

int t_error(char *errmsg);

extern int t_errno;
extern char *t_errlist[];
externint t_nerr;

#i ncl ude <tiuser. h>
int t_error(char *errmsg);

Parameters
errmsg a user-supplied error message that gives context to the error.

t errno index to a user-specified message array.
t_errlist points to the array of user-supplied message strings.
t_nerr maximum number of messages in the user-specified message array.

DESCRIPTION
This function is an TLI/XTI local management routine used to generate a message
under error conditions. t_error writes a message on the standard error output
describing the last error encountered during a call to a transport function.

The argument string errmsg is user supplied and may be set to give context to the
error. The message returned by t _error prints in the following format: the user-
supplied error message followed by a colon and the standard transport function
error message for the current value contained int _err no.

t_errlist andt_nerr are maintained for compatibility and should not be used.
In their place uset _strerror (BA_LIB).

Return Values
Upon completion, a value of 0 is returned. No errors are defined.

State Transitions
t _error may be issued from any valid state except T_UNI NI T and has no effect on
the entry state at exit.

USAGE
On return, t _errno is set when an error occurs and is not cleared on subsequent
successful calls.

If the returned value of t _errno has been set to TSYSERR t _error will also print
the standard error message for the current value contained in er r no

Examples
Following at _connect function call, which might fail on a transport endpoint fd2
because a bad address was detected, a call tot _error might be issued to check for
a possible failure:

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_error
svid

Page: 493

t_error (BA_LIB) t_error (BA_LIB)

t_error("t_connect failed on fd2");

If the t _connect fails, t _errno is set to the appropriate value, and the diagnostic
message would print as:

t_connect failed on fd2: |Incorrect transport address format

where "t _connect failed on fd2" tells the user which function failed on which
transport endpoint, and "I ncorrect transport address fornat" identifies the
specific error that occurred.

SEE ALSO
pf nt (BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header ti user . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.
t_errlist andt_nerr are Level 2, effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_error
svid

Page: 494

t_free(BA_LIB) t_free (BA_LIB)

NAME
t _free - free a data structure

SYNOPSIS
#i nclude <xti.h>

int t_free(char *ptr, int struct_type);
#i ncl ude <tiuser.h>
int t_free(char *ptr, int struct_type);

Parameters
ptr points to the structure referenced byt _al | oc.
struct_type identifies the type of structure.
DESCRIPTION

The t _free function frees memory previously allocated by t _al | oc. This function
will free memory for the specified structure, and will also free memory for buffers
referenced by the structure.

ptr points to the structure, previously referenced by t _al | oc, which may be one of
six types described by struct_type. One of the following types of structures may be

specified:
T_BIND /* struct t_bind */
T_CPTMEMT /* struct t_optngnt */
T CALL /* struct t_call */
T DS [* struct t_discon */
T_UN TDATA /* struct t _unitdata */
T_UDERRCR /* struct t_uderr */
T_INFO [* struct t_info */
where each of these structures is used as an argument to one or more transport
functions.

t_free will check the addr, opt, and udata fields of the given structure (as
appropriate), and free the buffers pointed to by the buf field of the net buf struc-
ture. If buf is NULL, t _free will not attempt to free memory. After all buffers are
freed, t _f r ee will free the memory associated with the structure pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a block of
memory that was not previously allocated by t _al | oc.

Return Values
t_free returns 0 on success and -1 on failure and t _errno is set to indicate the

error.
Errors
On failure, t _errno may be set to the following:
TSYSERR A system error has occurred during execution of this function.

TNCSTRUCTYPE The argument that specifies struct_type is invalid, for example,
because the type of structure requested in inconsistent with the
transport provider (connection mode or connectionless).

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_free
svid

Page: 495

t_free(BA_LIB) t_free (BA_LIB)

TPROTO A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

State Transitions
t_free may be issued from any valid state except T_UNIN T and has no effect on
the entry state at exit.

USAGE
After all buffers are freed, t _f r ee will free the memory associated with the struc-
ture pointed to by ptr.

If buf is NULL, t _f r ee will not attempt to free memory.

Warnings
Undefined results will occur if ptr or any of the buf pointers points to a block of
memory that was not previously allocated byt _al | oc.

SEE ALSO
t_all oc(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_free
svid

Page: 496

t_getinfo (BA_LIB)

NAME

t_getinfo (BA_LIB)

t _geti nf o — get protocol-specific service information

SYNOPSIS

#i ncl ude <xti.h>
int t_getinfo(int fd, struct t_info *info);

#i ncl ude <tiuser. h>
int t_getinfo(int fd, struct t_info *info);

Parameters

fd the file descriptor for the transport endpoint
info points to thet _i nf o structure used to identify a transport provider.

DESCRIPTION

This function is an TLI/XTI local management routine used to return the current
characteristics of the underlying transport protocol associated with file descriptor
fd. The t_i nfo structure is used to return the same information returned by
t_open. This function enables a transport user to access this information during
any phase of communication.

Structure Definitions
This argument points to astruct t_i nf o which contains the following members:

| ong addr;

| ong opti ons;
| ong tsdu;

I ong et sdu;

| ong connect;
| ong di scon;

l ong servtype;
I ong fl ags;

/* max size of the transport protocol address */
/* max numof bytes of protocol -specific options */
/* max size of a transport service data unit (TSDUY */
/* max size of an expedited TSDU (ETSDU) */
/* max amt of data allowed on connect establishnent */
/* max ant of data allowed on t_snddis, t_rcvdis */
/* service type supported by transport provider */
/* provides nore info about transport provider */

The values of the fields have the following meanings:

addr

options

t sdu

A value greater than or equal to 0 indicates the maximum size of a
transport protocol address, and a value of -2 specifies that the tran-
sport provider does not provide user access to transport protocol
addresses.

A value greater than or equal to 0 indicates the maximum number
of bytes of protocol-specific options supported by the provider, and
a value of -2 specifies that the transport provider does not support
user-settable options.

A value greater than 0 specifies the maximum size of a transport
service data unit (TSDU); a value of 0 specifies that the transport pro-
vider does not support the concept of TSDU, although it does sup-
port the sending of a data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that there is no
limit on the size of a TSDU, and a value of -2 specifies that the
transfer of normal data is not supported by the transport provider.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_getinfo
svid

Page: 497

t_getinfo (BA_LIB)

et sdu

connect

di scon

ser vt ype

flags

Return Values

t_getinfo (BA_LIB)

A value greater than 0 specifies the maximum size of an expedited
transport service data unit (ETSDU); a value of 0 specifies that the
transport provider does not support the concept of ETSDU, although
it does support the sending of an expedited data stream with no
logical boundaries preserved across a connection; a value of -1
specifies that there is no limit on the size of an ETSDU, and a value of
-2 specifies that the transfer of expedited data is not supported by
the transport provider.

A value greater than 0 specifies the maximum amount of data that
may be associated with connection establishment functions; and a
value of -2 specifies that the transport provider does not allow data
to be sent with connection establishment functions.

A value greater than 0 specifies the maximum amount of data that
may be associated with the t _snddi s and t _r cvdi s functions, and
a value of -2 specifies that the transport provider does not allow
data to be sent with the abortive release functions.

This field specifies the service type supported by the transport pro-
vider. A single transport endpoint may support only one of the fol-
lowing services at one time.

T_COTS The transport provider supports a connection-mode
service but does not support the optional orderly
release facility.

T _OOTS CRD The transport provider supports a connection-mode
service with the optional orderly release facility.

T CLTS The transport provider supports a connectionless
service. For this service type, t _open will return -2
for et sdu, connect , and di scon.

This field specifies other information in the form of bit indicators as
follows: If T_SENDZEROis on, this indicates that the underlying tran-
sport provider supports the sending of 0-length TSDUSs.

t _geti nf o returns 0 on success and -1 on failure and t _err no is set to indicate the

error.
Errors

On failure, t _errno may be set to the following:

TSYSERR
TBADF
TPROTO

State Transitions

A system error has occurred during execution of this function.
The specified file descriptor does not refer to a transport endpoint.

A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

t _geti nfo may be issued from any valid state except T_UNI N T and has no effect
on the entry state at exit.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_getinfo
svid

Page: 498

t_getinfo (BA_LIB) t_getinfo (BA_LIB)

USAGE
If a transport user is concerned with protocol independence, the sizes specified in
t _i nf o may be accessed to determine how large the buffers must be to hold each
piece of information. Alternatively, the t _al | oc function may be used to allocate
these buffers.

The value of each field may change as a result of protocol option negotiation during
connection establishment. These values will only change from the values presented
to t _open after the endpoint enters the T_DATAFER state.

Warnings
An error will result if the data size allowed is exceeded by the transport user on any
function.

SEE ALSO
t_all oc(BA_LIB),t_cl ose(BA_LIB)t_open(BA_LIB),

FUTURE DIRECTIONS
The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/t_getinfo
svid

Page: 499

t_getprotaddr (BA_LIB) t_getprotaddr (BA_LIB)

NAME

t _get prot addr — get protocol addresses

SYNOPSIS

#i nclude <xti.h>

int t_getprotaddr(int fd, struct t_bind *boundaddr,
struct t_bind *peeraddr);

Parameters

fd the file descriptor for the transport endpoint associated with the proto-
col address.

boundaddr points to the bound address of the local transport endpoint.
peeraddr points to the peer address.

DESCRIPTION

This function is an TLI/XTI local management function used to get protocol
addresses for both the local and remote endpoints. t _get pr ot addr returns, for the
transport endpoint specified by fd, the local address of the transport endpoint
(pointed to by boundaddr) and the remote address of the peer (pointed to by
peeraddr).

The local address is available if the endpoint is bound (not in the T_UNBND state)
and the peer address is available if the endpoint is in the T_DATAXFER state.

Structure Definitions

boundaddr and peeraddr point to a t_bi nd structure containing the following
members:

struct netbuf addr; /* address */

unsi gned gl en; /* connect indications */
The net buf structure contains the following members:

unsi gned i nt max| en;

unsi gned i nt | en;

char *puf ;

| en specifies the number of bytes in the address, buf points to the address buffer,
and max! en is the maximum size of the address buffer. The gl en field, in connec-
tion mode only, is used to indicate the maximum number of outstanding connect
indications.

In boundaddr and peeraddr, the maxl en field is the maximum size of the address
buffer, specified by the user, and buf points to the buffer where the address will be
placed.

On return, if the endpoint specified by fd is currently bound, the buf field of boun-
daddr points to the address of the transport endpoint and the | en field indicates the
length of the address. If the endpoint is not bound, the | en field of boundaddr
returns a value of 0.

If the transport user is in the T_DATAXFER state, the buf field of peeraddr points to
the address of the peer (currently connected to fd and the | en field indicates the
length of that address. If the endpoint is not connected, the | en field of peeraddr
returns a value of 0.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_getprotadd
svid

Page: 500

t_getprotaddr (BA_LIB) t_getprotaddr (BA_LIB)

Return Values
t _get prot addr returns a value of 0 on successful completion and -1 on failure and
t _errno is set to indicate the error.

Errors
On failure, t _err no may be set to one of the following:
TBADF The specified file descriptor does not refer to a transport end-
point.

TBUFOVFLW The number of bytes (nmaxl en) allocated for an incoming argu-
ment is greater than zero but not sufficient to store the value of
that argument.

TSYSERR A system error has occurred during execution of this function.

TPROTO A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

State Transitions
t_get protaddr may be issued from any valid state except T_UNIN T and has no
effect on the entry state at exit.

USAGE
This function is applicable for both connection-mode and connectionless transport
services. However, since the remote endpoint is never in the TDATAXFER state if the
service is connectionless, only the address of the bound endpoint will be returned.

SEE ALSO
t_accept (BA_LIB),t_bi nd(BA_LIB),t _connect (BA_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_getprotadd
svid

Page: 501

t_getstate (BA_LIB)

NAME

t_getstate (BA_LIB)

t _get st at e — get the current state

SYNOPSIS

#i ncl ude <xti.h>
int t_getstate(int fd);

#i ncl ude <tiuser. h>
int t_getstate(int fd);

Parameters

fd the file descriptor for the transport endpoint associated with the current

state.
DESCRIPTION

This function is an TLI/XTI local management routine used to return the current
state of the provider associated with the transport endpoint specified by fd.

TLI/ZXTI states are changed by user events that reflect the success or failure of calls
to the various TLI/ZXTI functions. Because fewer TLI/ZXTI user events occur over
connectionless services, there are fewer TLI/XTI states than for connection-mode

services.

The current state may be one of the following:

T_UNBND
T IDLE
T_CQUTOON
T_I NOON
T_DATAXFER
T_QUTREL

T I NREL

Return Values

unbound

idle

outgoing connection pending (connection mode only)
incoming connection pending (connection mode only)
data transfer (connection mode only)

outgoing orderly release (waiting for an orderly release indication)
(connection mode only)

incoming orderly release (waiting for an orderly release request)
(connection mode only)

t _getstate returns the current state on successful completion and -1 on failure
andt _errno is set to indicate the error.

Errors

On failure, t _err no may be set to one of the following:

TBADF
TSTATECHNG
TSYSERR
TPROTO

The specified file descriptor does not refer to a transport endpoint.
The transport provider is undergoing a state change.
A system error has occurred during execution of this function.

A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_getstate
svid

Page: 502

t_getstate (BA_LIB) t_getstate (BA_LIB)

State Transitions
t _get state may be issued from any valid state except T_UN Nl T and has no effect
on the entry state.

USAGE
Thet _get st at e function is applicable to both connection-mode and connectionless
transport services.

Warnings
If the provider is undergoing a state transition when t _get st at e is called, the
function will fail.
SEE ALSO
t_getinfo(BA_LIB),t_open(BA_LIB),

FUTURE DIRECTIONS
The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_getstate
svid

Page: 503

t_listen (BA_LIB) t_listen (BA_LIB)

NAME
t _Ii sten - listen for a connect request

SYNOPSIS
#i nclude <xti.h>

int t_listen(int fd, struct t_call Ctall);
#i ncl ude <tiuser. h>
int t listen(int fd, struct t_call Cxall);

Parameters
fd the file descriptor for the transport endpoint where connect indications
arrive.

call pointstothet call structure used to describe the connect indications.

DESCRIPTION
This function is an TLIZXTI routine for use in establishing a transport connection.
t _li sten listens for a connect request from a calling transport user and is designed
for use by server applications using connection-mode transport services.

fd identifies the local transport endpoint where connect indications arrive, and on
return, call contains information describing the connect indication.

Structure Definitions
call pointstoat _cal | structure, which contains the following members:

struct netbuf addr; /* address */
struct netbuf opt; /* options */
struct netbuf udat a; /* user data */
i nt sequence; /* sequence nunber */
The net buf structure contains the following members:

unsi gned i nt max| en;

unsi gned i nt | en;

char *puf ;

In call, addr returns the protocol address of the calling transport user, opt returns
protocol-specific parameters associated with the connect request, udat a returns any
user data sent by the caller on the connect request, and sequence is a number that
uniquely identifies the returned connect indication. The value of sequence enables
the user to listen for multiple connect indications before responding to any of them.

Since this function returns values for the addr, opt, and udat a fields of call, the
max| en field of each must be set before issuing t _| i st en to indicate the maximum
size of the buffer for each.

Return Values
t _listen returns 0 on success and -1 on failure and t _errno is set to indicate the
error.

Errors
On failure, t _errno may be set to one of the following:

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_listen
svid

Page: 504

t_listen (BA_LIB)

TBADF

TBADQLEN
TBUFOVFLW

TNCDATA
TLOXK
TNOTSUPPCRT

TSYSERR
TQFULL

TQUTSTATE

TPROTO

State Transitions

t_listen (BA_LIB)

The specified file descriptor does not refer to a transport end-
point.

The argument gl en of the endpoint specified by fd is 0.

The number of bytes (naxl en) allocated for an incoming argu-
ment is greater than zero but not sufficient to store the value of
that argument. The provider’s state, as seen by the user, changes
to T_INOGON, and the connect indication information to be
returned in cal | is discarded.

O NONBLOCK was set, but no connect indications had been
queued.

An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

This function is not supported by the underlying transport pro-
vider.

A system error has occurred during execution of this function.

The maximum number of connect indications has been reached
for the endpoint specified by fd.

The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

T_I DLEon entry. T_I NCON (successful) or T_I DLE (no requests) on exit.

SEE ALSO

t_accept (BA_LIB), t_bind(BA_LIB), t_connect (BA_LIB), t_open(BA_LIB),
t _rcvconnect (BA_LIB)

FUTURE DIRECTIONS

The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_listen
svid

Page: 505

t_look (BA_LIB)

NAME

t_look (BA_LIB)

t _| ook — check for asynchronous event

SYNOPSIS

#i ncl ude <xti.h>
int t_look(int fd);
#i ncl ude <tiuser.h>
int t_look(int fd);

Parameters

fd the file descriptor for the local transport endpoint associated with the current

event.
DESCRIPTION

This function is an TLI/XTI local management routine used to return the current
asynchronous event on the transport endpoint specified by fd. The event indicated
reflects the service type of the transport provider. t _| ook enables a transport pro-
vider to notify a transport user, when the user is issuing functions in synchronous
mode, if an asynchronous event has occurred on the specified endpoint.

Certain events require immediate notification of the user and are indicated by a
specific error, TLOCK, on the current or next function to be executed.

This function also enables a transport user to poll a transport endpoint periodically
for asynchronous events.

Values returned by t _| ook include the following:

T_LI STEN
T_CONNECT
T_DATA
T_EXDATA
T_Di SCONNECT
T_UDERR
T_ORDREL
T_GODATA

T_GOEXDATA

A request for a connection (connect indication) has arrived at the
transport endpoint.

A connect confirmation (confirmation of connect indication) has
arrived at the transport endpoint. (When the server accepts a
connect request, the confirmation is generated.)

User data has arrived at the transport endpoint.
Expedited user data has arrived at the transport endpoint.

A notification that the connection was aborted or that the server
did not accept a connect request (disconnect indication) has
arrived at the transport endpoint.

Notification that a datagram error occurred (unitdata error indi-
cation) has arrived at the transport endpoint.

A request for the orderly release of a connection (orderly release
indication) has arrived at the transport endpoint.

Notification that it is again possible to send user data has arrived
at the transport endpoint.

Notification that it is again possible to send expedited user data
has arrived at the transport endpoint.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_look
svid

Page: 506

t_look (BA_LIB) t_look (BA_LIB)

Return Values
On success, t _| ook returns 0 if no event exists or the value that indicates which
event exists. On failure, -1 is returned and t _err no is set to indicate the error.

Errors
On failure, t _err no may be set to one of the following:
TBADF The specified file descriptor does not refer to a transport end-
point.
TSYSERR A system error has occurred during execution of this function.
TPROTO A communication problem has been detected with the transport

provider and there is no other value of t _errno to describe the
error condition.
State Transitions
t _| ook may be issued from any valid state except T_UN N T and has no effect on
the state.
SEE ALSO
t_open(BA_LIB),t _snd(BA_LIB)t_sndudat a(BA_LIB)
FUTURE DIRECTIONS
The inclusion of the header ti user . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.
LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_look
svid

Page: 507

t_open (BA_LIB) t_open (BA_LIB)

NAME
t _open - establish a transport endpoint

SYNOPSIS
#i nclude <xti.h>

#i ncl ude <fcntl . h>

int t_open(const char *path, int oflag, struct t_info [info)
#i ncl ude <tiuser.h>

#i nclude <fcntl . h>

int t_open(const char *path, int oflag, struct t_info [info)

Parameters
path points to the path name of the file to open.

oflag identifies any open flags. oflag may be constructed from O NONBLOCK CR-ed
with O RDWR These flags are defined in the header file <f cnt | . h>.

info points to the t _i nf o structure used to identify a transport provider.

DESCRIPTION

The t _open function is an TLI/XTI local management routine that must be called as
the first step in the initialization of a transport endpoint. This function opens a
UNIX file that identifies a transport endpoint connected to a chosen transport pro-
vider (that is, transport protocol). The file descriptor (fd) for the opened file
identifies the provider and establishes the endpoint. For example, a call tot _open
may be used to open the file/ dev/i so_cot s to specify an OSI connection-oriented
transport layer protocol as the transport provider.

The file descriptor returned by t _open is be used by all subsequent functions to
identify the particular local transport endpoint.

t _open also returns various default characteristics of the underlying transport pro-
tocol by setting fields in the t _i nf o structure.

Structure Definitions
This argument points to astruct t_i nf o which contains the following members:

| ong addr; /* max size of the transport protocol address */
| ong opti ons; /* max num of bytes of protocol -specific options */
| ong tsdu; /* max size of a transport service data unit (TSDUY */
I ong et sdu; /* max size of an expedited TSDU (ETSDU) */
| ong connect; /* max ant of data allowed on connect establishnent */
| ong di scon; /* max ant of data allowed on t_snddis, t_rcvdis */
long servtype; /* service type supported by transport provider */
I ong fl ags; /* provides nore info about transport provider */

The values of the fields have the following meanings:

addr A value greater than or equal to 0 indicates the maximum size of a
transport protocol address, and a value of -2 specifies that the tran-
sport provider does not provide user access to transport protocol
addresses.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_open
svid

Page: 508

t_open (BA_LIB)

options

tsdu

et sdu

connect

di scon

ser vt ype

flags

Page 2

t_open (BA_LIB)

A value greater than or equal to 0 indicates the maximum number
of bytes of protocol-specific options supported by the provider, and
a value of -2 specifies that the transport provider does not support
user-settable options.

A value greater than 0 specifies the maximum size of a transport
service data unit (TSDU); a value of 0 specifies that the transport pro-
vider does not support the concept of TSDU, although it does sup-
port the sending of a data stream with no logical boundaries
preserved across a connection; a value of —1 specifies that there is no
limit on the size of a TSDU, and a value of -2 specifies that the
transfer of normal data is not supported by the transport provider.

A value greater than 0 specifies the maximum size of an expedited
transport service data unit (ETSDU); a value of 0 specifies that the
transport provider does not support the concept of ETSDU, although
it does support the sending of an expedited data stream with no
logical boundaries preserved across a connection; a value of -1
specifies that there is no limit on the size of an ETSDU, and a value of
-2 specifies that the transfer of expedited data is not supported by
the transport provider.

A value greater than or equal to 0 specifies the maximum amount of
data that may be associated with connection establishment func-
tions, and a value of -2 specifies that the transport provider does
not allow data to be sent with connection establishment functions.

A value greater than or equal to 0 specifies the maximum amount of
data that may be associated with thet _snddi s andt _rcvdi s func-
tions, and a value of -2 specifies that the transport provider does
not allow data to be sent with the abortive release functions.

This field specifies the service type supported by the transport pro-
vider. A single transport endpoint may support only one of the fol-
lowing services at one time.

T_COTS The transport provider supports a connection-mode
service but does not support the optional orderly
release facility.

T _QOOTS CRD The transport provider supports a connection-mode
service with the optional orderly release facility.

T CTS The transport provider supports a connectionless
service. For this service type, t _open will return -2
for et sdu, connect , and di scon.

This bit field is used to specify other information about the tran-
sport provider. If the T_SENDZERODbit is set in f | ags, this indicates
the underlying transport provider supports the sending of zero-
length TSDUs.

FINAL COPY
June 15, 1995
File: ba_lib/t_open
svid

Page: 509

t_open (BA_LIB) t_open (BA_LIB)

A single transport endpoint may support only one of the above services at one time.
If info is set to NULL by the transport user, no protocol information is returned by
t _open.

Return Values
t _open returns a valid file descriptor on success and -1 on failure and t _errno is
set to indicate the error.

Errors
On failure, t _errno may be set to the following:
TSYSERR A system error has occurred during execution of this function.

TBADFLAG An invalid flag is specified.
TBADNAVE An invalid path is specified for the transport provider name.

TPROTO A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

State Transitions
Onentry, T_UN N T; T_UNBND (successful) or T_UNl NI T (failed) on exit.

USAGE
If a transport user is concerned with protocol independence, the sizes specified in
t_i nf o may be accessed to determine how large the buffers must be to hold each
piece of information. Alternatively, the t _al | oc function may be used to allocate
these buffers. An error will result if a transport user exceeds the allowed data size
on any function.

If i nf 0 is set to NULL by the transport user, no protocol information is returned by
t _open.

Warnings
If t _open is used on a non-XTI-conforming STREAMS device, unpredictable events
may occur.

The cl ose() system call should not be used directly on the file descriptor returned
by t _open(BA_LIB). The t _close(BA_LIB) routine should be used to close a file
descriptor opened by t _open(BA_LIB).

SEE ALSO
t_all oc(BA_LIB),t_cl ose(BA_LIB),t _getinf o(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/t_open
svid

Page: 510

t_optmgmt (BA_LIB) t_optmgmt (BA_LIB)

NAME

t _opt ngnt — manage options for a transport endpoint

SYNOPSIS

#i ncl ude <tiuser.h>
int t_optmgm (int fd, struct t_optmgnt [req, struct t_optrmgm [ret);

Parameters

fd the file descriptor for the transport endpoint
req pointstothet _opt ngnt structure used to identify the request.
info points to thet _opt ngnt structure used to identify the return.

DESCRIPTION

The t _opt ngnt function enables a transport user to retrieve, verify, or negotiate
protocol options with the transport provider associated with the bound transport
endpoint specified by fd. t _opt mgnt is a TLI local management routine that may be
used with both connection-mode and connectionless protocol services.

Structure Definitions

The req and ret arguments point to at _opt ngnt structure containing the following
members:

struct netbuf opt; /* protocol options */

long flags; /* actions */
The opt field identifies protocol options and the f | ags field is used to specify the
action to take with those options.

The options are represented by a net buf structure in a manner similar to the
address used int _bi nd. The net buf structure contains the following members:

unsi gned i nt naxl| en;
unsi gned i nt | en;
char *buf ;

req is used to request a specific action of the provider and to send options to the
provider. | en specifies the number of bytes in the options, buf points to the
options buffer, and max| en has no meaning for the req argument.

The transport provider may return options and flag values to the user through ret.
For ret, max| en specifies the maximum size of the options buffer and buf points to
the buffer where the options are to be placed. On return, | en specifies the number
of bytes of options returned. naxl en has no meaning for the req argument, but
must be set in the ret argument to specify the maximum number of bytes the
options buffer can hold.

The actual structure and content of the options is imposed by the transport pro-
vider.

The f | ags field of req can specify one of the following actions:

T_NEQOTI ATE This action enables the user to negotiate the values of the options
specified in req with the transport provider. The provider will
evaluate the requested options and negotiate the values, returning
the negotiated values through ret.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_optmgmt
svid

Page: 511

t_optmgmt (BA_LIB) t_optmgmt (BA_LIB)

T _CHEXK This action enables the user to verify whether the options specified
in req are supported by the transport provider. On return, the
f1 ags field of ret will have either T_SUGCESS or T_FAI LURE set to
indicate to the user whether the options are supported. These flags
are only meaningful for the T_CHECK request.

T_DEFAULT This action enables a user to retrieve the default options supported
by the transport provider into the opt field of ret. In req, the | en
field of opt must be zero and the buf field may be NULL.

Return Values
t _opt ngnt returns 0 on success and -1 on failure and t _errno is set to indicate the

error.
Errors
On failure, t _err no may be set to one of the following:
TBADF The specified file descriptor does not refer to a transport endpoint.
TQUTSTATE The function was issued in the wrong sequence.
TACCES The user does not have permission to negotiate the specified
options.
TBADCPT The specified protocol options were in an incorrect format or con-
tained illegal information.
TBADFLAG An invalid flag was specified.

TBUFOVFLW The number of bytes (max! en) allocated for an incoming argument
is greater than zero but not sufficient to store the value of that
argument. The information to be returned in ret will be dis-

carded.
TSYSERR A system error has occurred during execution of this function.
TPROTO A communication problem has been detected with the transport

provider and there is no other value of t _errno to describe the
error condition.

TNOTSUPPORT The action is not supported by the transport provider.

State Transitions
t _opt ngm may be issued from any valid state except T_UNI NI T and has no effect
on the state.

USAGE
If issued as part of a connectionless service, t _opt ngnt may block due to flow con-
trol constraints. The function will not complete until the transport provider has
processed all previously sent data units.

Warnings
The transport provider interface may not support the functionality for
T_NEQOTI ATE and/or T_CHECK, causing t_opt mgm to fail with a TNOTSUPPCRT
error.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_optmgmt
svid

Page: 512

t_optmgmt (BA_LIB) t_optmgmt (BA_LIB)

SEE ALSO
t _accept (BA_LIB), t_alloc(BA_LIB), t_bind(BA LIB), t_connect (BA_LIB),
t_geti nf o(BA_LIB), t_listen(BA_LIB), t _open(BA_LIB),

t _rcvconnect (BA_LIB)

FUTURE DIRECTIONS
To allow conformance to X/Open Transport Interface (XTI), t_opt ngnt will be
modified to support XPG4 options management. Application writers and protocol
providers must be aware of this migration due to the incompatibilities it will pro-
duce. In addition, the inclusion of the header ti user. h has been moved to Level 2
to accommodate this migration from TLI routines to XTI routines.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/t_optmgmt
svid

Page: 513

t_rcv(BA_LIB) t_rcv(BA_LIB)

NAME
t _rcv —receive normal or expedited data sent over a connection

SYNOPSIS
#i nclude <xti.h>

int t_rcv(int fd, char [Cbuf, unsigned int nbytes, int [flags);
#incl ude <tiuser.h>
int t_rcv(int fd, char [Chuf, unsigned int nbytes, int [flags);

Parameters
fd the file descriptor for the transport endpoint through which data will
arrive.
buf points to the receive buffer where user data will be placed.

nbytes specifies the size of the receive buffer.
flags specifies optional flags on return.

DESCRIPTION
This function is an TLI/XTI connection-mode data transfer routine which is issued
to notify a transport user that there is normal or expedited data to be received over
a connection. The messages sent to the transport user may be 0-length.

By default, t _r cv operates in synchronous mode and will wait for data to arrive if
none is currently available. However, if O NONBLOCK is set (viat _open or fcntl),
t _rcv will execute in asynchronous mode and will fail if no data is available. (See
TNCDATA below.)

On return from the call, if T_MORE is set in f | ags, this indicates that there is more
data and the current transport service data unit (TSDU) or expedited transport ser-
vice data unit (ETSDU) must be received in multiplet _rcv calls.

Each t _rcv with the T_MORE flag set indicates that another t _r cv must follow to
get more data for the current TSDU. The end of the TSDU is identified by the return
of at _rcv call with the T_MORE flag not set.

If the transport provider does not support the concept of a TSDU as indicated in the
info argument on return from t _open or t _geti nf o, the T_MORE flag is not mean-
ingful and will be ignored.

On return from the call, if T_EXPED TED is set in fl ags the data returned is
expedited data. If the number of bytes of expedited data exceeds nbytes, t _rcv will
set T_EXPED TED and T_MORE on return from the initial call. Subsequent calls to
retrieve the remaining ETSDU will have T_EXPEDI TED set on return. The end of the
ETSDU is identified by the return of at _r cv call with the T_MCRE flag not set.

If expedited data arrives after part of a TSDU has been retrieved, receipt of the
remainder of the TSDU will be suspended until the ETSDU has been processed. Only
after the full ETSDU has been retrieved (T_MORE not set) will the remainder of the
TSDU be available to the user.

Return Values
On successful completion, t _r cv returns the number of bytes received. On failure,
itreturns-1andt _errno is set to indicate the error.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_rcv
svid

Page: 514

t_rcv(BA_LIB)

Errors

t_rcv(BA_LIB)

On failure, t _err no may be set to one of the following:

TBADF
TNCDATA

TLOK

TNOTSUPPCRT

TSYSERR
TQUTSTATE

TPROTO

State Transitions

The specified file descriptor does not refer to a transport endpoint.

O _NONBLOCK was set, but no data is currently available from the
transport provider.

An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

This function is not supported by the underlying transport pro-
vider.

A system error has occurred during execution of this function.

The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

On entry, T_DATAXFER or T_QUTREL; unchanged (successful) on exit.

USAGE

t_rcv is applicable only for connection-mode transport services.

In synchronous mode, t _| ook may alternatively be used to notify the transport
user that normal or expedited data has been received or that flow control restric-
tions have been lifted. Additional functionality is provided by the Event Manage-

ment Interface.

SEE ALSO

t_getinfo(BA_LIB),t_| ook(BA_LIB),t_open(BA_LIB),t _snd(BA_LIB)

FUTURE DIRECTIONS

The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_rcv
svid

Page: 515

t_rcvconnect (BA_LIB) t_rcvconnect (BA_LIB)

NAME
t _rcvconnect - receive the confirmation from a connect request

SYNOPSIS
#i nclude <xti.h>

int t_rcvconnect(int fd, struct t_call [Tall)
#incl ude <tiuser.h>
int t_rcvconnect(int fd, struct t_call Ckall)

Parameters
fd the file descriptor for the transport endpoint where communication will be
established.

call points to the t _cal | structure used to identify the transport user that will
receive the connection indication.

DESCRIPTION
t _rcvconnect enables a calling transport user to determine the status of a connect
request that it issued to a responding transport endpoint. On successful completion
of t _rcvconnect, the connection is established.

By default, t _r cvconnect executes in synchronous mode and waits for the connec-
tion to be established before returning. In asynchronous mode, this function is used
in conjunction with t _connect to establish a connection.

f d identifies the responding transport endpoint, and call contains information asso-
ciated with the newly established connection.

Structure Definitions
The call argument points to a t_cal |l structure which contains the following

members:
struct netbuf addr; /* address */
struct netbuf opt; /* options */
struct netbuf udat a; /* user data */
i nt sequence; /* sequence nunber */
The net buf structure contains the following members:
unsi gned i nt max| en;
unsi gned i nt | en;
char *buf ;

In call, addr returns the protocol address associated with the responding transport
endpoint, opt presents any protocol-specific information associated with the con-
nection, udat a points to optional user data that may be returned by the destination
transport user during connection establishment, and sequence has no meaning for
this function.

The naxl en field of each argument must be set before issuing this function to indi-
cate the maximum size of the buffer for each. However, call may be NULL, in which
case no information is given to the user on return fromt _r cvconnect .

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_rcvconnect
svid

Page: 516

t_rcvconnect (BA_LIB)

t_rcvconnect (BA_LIB)

On return, the addr, opt, and udat a fields reflect values associated with the con-

nection.

If O NONBLOCK is set (viat_open or fcntl), t _rcvconnect executes in asynchro-
nous mode, and reduces to a poll for existing connect confirmations. If none are
available, t _r cvconnect fails on a TNCDATA error and returns immediately without
waiting for the connection to be established.

Return Values

t _rcvconnect returns 0 on success and -1 on failure and t _errno is set to indicate

the error.
Errors

On failure, t _errno may be set to one of the following:

TBADF

TBUFOVFLW

TNCDATA

TLOXK

TNOTSUPPCRT

TSYSERR
TOUTSTATE

TPROTO

State Transitions

The specified file descriptor does not refer to a transport end-
point.

The number of bytes (maxl en) allocated for an incoming argu-
ment is greater than zero but not sufficient to store the value of
that argument. The connect information to be returned in cal |
will be discarded. The provider’s state, as seen by the user, will
be changed to DATAXFER

O NONBLOCK was set, but a connect confirmation has not yet
arrived.

An asynchronous event has occurred on the transport connection
specified by fd and requires immediate attention.

This function is not supported by the underlying transport pro-
vider.

A system error has occurred during execution of this function.

The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

On entry, T_CQUTCON, T_DATAXFER (successful) or T_CQUTQON (failed) on exit.

USAGE

A subsequent call to t _rcvconnect is required to complete the connection estab-
lishment phase and retrieve the information returned in call.

SEE ALSO

t_accept (BA_LIB), t_bi nd(BA_LIB), t_connect (BA_LIB), t_listen(BA_LIB),
t _open(BA_LIB),t _opt ngnt (BA_LIB)

FUTURE DIRECTIONS

The inclusion of the header ti user . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_rcvconnect
svid

Page: 517

t_rcvconnect (BA_LIB) t_rcvconnect (BA_LIB)

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/t_rcvconnect
svid

Page: 518

t_rcvdis (BA_LIB) t_rcvdis (BA_LIB)

NAME
t _rcvdi s - retrieve information from disconnect

SYNOPSIS
#i nclude <xti.h>

int t_rcvdis(int fd, struct t_discon [iscon);
#i ncl ude <tiuser. h>
int t_rcvdis(int fd, struct t_discon [iscon);

Parameters
fd the file descriptor for the transport endpoint where the connection had
been established.

discon points to the t _di scon structure associated with the disconnect informa-
tion.

DESCRIPTION
This function is an TLI/ZXTI connection release routine used to identify the cause of
a disconnect and to retrieve any user data sent with the disconnect.

fd is used by the calling transport user to identify the local transport endpoint
where the connection existed, and discon points to at _di scon structure associated
with the disconnection.

Structure Definitions
The discon argument points to a t_di scon structure containing the following

members:
struct netbuf udata; /* user data */
int reason; /* reason code */
i nt sequence; /* connect ind. */
The net buf structure contains the following members:
unsi gned i nt nmax| en;
unsi gned i nt | en;
char *buf ;

r eason specifies the reason for the disconnect through a protocol-dependent reason
code, udat a identifies any user data that was sent with the disconnect, and
sequence may identify an outstanding connect indication with which the discon-
nect is associated. sequence is only meaningful whent _rcvdi s is issued by a pas-
sive transport user who has executed one or more t _| i st en functions and is pro-
cessing the resulting connect indications.

If a disconnect indication occurs, sequence can be used to identify which of the
outstanding connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the
value of reason or sequence, di scon may be NULL, and any user data associated
with the disconnect will be discarded. However, if a user has retrieved more than
one outstanding connect indication (via t _l i sten) and di scon is NULL, the user
will be unable to identify which connect indication the disconnect is associated
with.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_rcvdis
svid

Page: 519

t_rcvdis (BA_LIB) t_rcvdis (BA_LIB)

Return Values
t_rcvdi s returns 0 on success and —1 on failure and t _errno is set to indicate the

error.
Errors
On failure, t _err no may be set to one of the following:
TBADF The specified file descriptor does not refer to a transport end-
point.
TNCDI S No disconnect indication currently exists on the specified tran-

sport endpoint.

TBUFOVFLW The number of bytes (nmaxl en) allocated for an incoming argu-
ment is greater than zero but not sufficient to store the value of
that argument. The provider’s state, as seen by the user, will
change to T_I DLE, and the disconnect indication information to
be returned in di scon will be discarded.

TNOTSUPPCRT This function is not supported by the underlying transport pro-

vider.
TSYSERR A system error has occurred during execution of this function.
TQUTSTATE The function was issued in the wrong sequence on the transport

endpoint referenced by fd, or the transport endpoint referred to
by resfd is not in the T_I DLE state.

TPROTO A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

State Transitions
t_rcvdis may be issued from any valid state except T UN N T, T_UNBND, or
T_I DLE. Valid states on exit are T_I DLE (successful) and T_I NOON (successful but
there are connect indications outstanding).

SEE ALSO
t_connect (BA_LIB),t _| i sten(BA_LIB),t_open(BA_LIB), t _snddi s(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace ti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_rcvdis
svid

Page: 520

t_rcvrel (BA_LIB) t_rcvrel (BA_LIB)

NAME
t _rcvrel —acknowledge receipt of an orderly release indication

SYNOPSIS
#i nclude <xti.h>

int t_rcvrel (int fd);
#i ncl ude <tiuser.h>
int t_rcvrel(int fd);

Parameters
fd the file descriptor for the transport endpoint where the connect indication is
received.

DESCRIPTION
This function is an TLI/XTI connection release routine used to acknowledge receipt
of an orderly release indication. Int_rcvrel, fd identifies the local transport end-
point where the connection exists. After receipt of this indication, the user should
not attempt to receive more data because such an attempt will block forever. How-
ever, the user may continue to send data over the connection if t _sndrel has not
been issued by the user.

This function is an optional service of the transport provider, and is only supported
if the transport provider returned service type T_QOOTS CRD on t_open or
t_getinfo.

Return Values
t_rcvrel returns 0 on success and -1 on failure t _errno is set to indicate the error.

Errors
On failure, t _errno may be set to one of the following:
TBADF The specified file descriptor does not refer to a transport end-
point.
TNCREL No orderly release indication currently exists on the specified
transport endpoint.
TLOK An asynchronous event has occurred on the transport endpoint

specified by fd and requires immediate attention.
TNOTSUPPCRT This function is not supported by the underlying transport pro-

vider.
TSYSERR A system error has occurred during execution of this function.
TQUTSTATE The function was issued in the wrong sequence on the transport
endpoint referenced by fd.
TPROTO A communication problem has been detected with the transport

provider and there is no other value of t _errno to describe the
error condition.

State Transitions
T_DATAXFER on entry and T_| NREL on exit; or T_CUTREL on entry and T_| DLE on
exit.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_rcvrel
svid

Page: 521

t_rcvrel (BA_LIB) t_rcvrel (BA_LIB)

SEE ALSO
t_open(BA_LIB),t _sndrel (BA_LIB)
FUTURE DIRECTIONS

The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_rcvrel
svid

Page: 522

t_rcvudata(BA_LIB) t_rcvudata(BA_LIB)

NAME
t _rcvudat a - receive a data unit

SYNOPSIS
#i nclude <xti.h>

int t_rcvudata(int fd, struct t_unitdata [Cunitdata, int [flags);
#i ncl ude <tiuser. h>
int t_rcvudata(int fd, struct t_unitdata [Cunitdata, int [Tflags);

Parameters
fd the file descriptor for the transport endpoint through which the data will
be received.
unitdata points to the t _uni t dat a structure associated with the received data
unit.
flags points to a value set on return if the complete data unit was not
received.

DESCRIPTION
This function is an TLI/XTI connection release routine used in connectionless mode
to receive a data unit from another transport user. Data is received through the
transport endpoint specified by fd and unitdata points to information associated
with the data unit.

On return, flags points to a value that indicates whether the complete data unit was
received.

This function is a service of connectionless transport providers and is supported
only if the provider returned service type T_CLTSont_open ort_geti nfo.

Structure Definitions
The unitdata argument points to a t _uni t dat a structure containing the following

members:
struct netbuf addr; /* address */
struct netbuf opt; /* options */
struct netbuf udata; /* user data */

The net buf structure contains the following members:

unsi gned i nt max| en;
unsi gned i nt | en;
char *puf ;

The max! en field of addr , opt , and udat a must be set before issuing this function to
indicate the maximum size of the buffer for each.

On return from this call, addr specifies the protocol address of the sending user,
opt identifies protocol-specific options that were associated with this data unit, and
udat a specifies the user data that was received.

If the buffer defined in the udat a field of uni t dat a is not large enough to hold the
current data unit, the buffer will be filled and T_MCRE will be set in f | ags on return
to indicate that another t _r cvudat a should be issued to retrieve the rest of the data
unit. Subsequent t _r cvudat a call(s) will return 0 for the length of the address and
options until the full data unit has been received.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_rcvudata
svid

Page: 523

t_rcvudata(BA_LIB) t_rcvudata(BA_LIB)

Return Values
t_rcvudat a returns 0 on successful completion and -1 on failure and t _errno is
set to indicate the error.

Errors

On failure, t _err no may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end-
point.

TNCDATA O NONBLOXK was set, but no data units are currently available
from the transport provider.

TBUFOVFLW The number of bytes (maxl en) allocated for an incoming argu-
ment is greater than zero but not sufficient to store the value of
that argument. The unit data information to be returned in uni t -
dat a will be discarded.

TLOXK An asynchronous event has occurred on the transport endpoint

specified by fd and requires immediate attention.
TNOTSUPPCRT This function is not supported by the underlying transport pro-

vider.
TQUTSTATE The function was issued in the wrong sequence on the transport
endpoint referenced by fd.
TSYSERR A system error has occurred during execution of this function.
TPROTO A communication problem has been detected with the transport

provider and there is no other value of t _errno to describe the
error condition.

State Transitions
On entry, T_I DLE; unchanged on exit.

USAGE
By default, t _r cvudat a operates in synchronous mode and will wait for a data unit
to arrive if none is currently available. However, if O NONBLOXK is set (via t _open
orfcntl), t_rcvudat a will execute in asynchronous mode and will fail if no data
units are available.

SEE ALSO
t_getinfo(BA_LIB), t _open(BA_LIB), t _rcvuderr (BA_LIB),
t _sndudat a(BA_LIB)

FUTURE DIRECTIONS

The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace ti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_rcvudata
svid

Page: 524

t_rcvuderr (BA_LIB) t_rcvuderr (BA_LIB)

t_rcvuderr - receive a unit data error indication

SYNOPSIS

#i ncl ude <xti.h>
int t_rcvuderr(int fd, struct t_uderr *uderr);
#i ncl ude <tiuser.h>

int t_rcvuderr(int fd, struct t_uderr *uderr);

DESCRIPTION

The function t _r cvuderr () is used in connectionless mode to receive information
concerning an error on a previously sent data unit, and should only be issued fol-
lowing a unit data error indication. It informs the transport user that a data unit
with a specific destination address and protocol options produced an error. fd
identifies the local transport endpoint through which the error report will be
received, and uderr points to a t_uderr structure containing the following
members:

struct netbuf addr;
struct netbuf opt;
long error;

The maxl en field of addr and opt must be set before issuing this function to
indicate the maximum size of the buffer for each.

On return from this call, the addr structure specifies the destination protocol
address of the erroneous data unit, the opt structure identifies protocol-specific
options that were associated with the data unit, and error specifies a protocol-
dependent error code.

If the user does not care to identify the data unit that produced an error, uderr may
be set to NULL, and t _rcvuderr () will simply clear the error indication without
reporting any information to the user.

RETURN VALUE

Upon successful completion, the functiont _r cvuderr () returns a value of 0; oth-
erwise, it returns a value of —1 and setst _err no to indicate an error.

ERRORS

Under the following conditions, the function t_rcvuderr () fails and sets
t_errno to:

TBADF if the specified file descriptor does not refer to a transport end-
point.
TNOUDERR if no unit data error indication currently exists on the specified

transport endpoint.

TBUFOVFLW if the number of bytes allocated for the incoming protocol
address or options is not sufficient to store the information. The
unit data error information to be returned in uderr will be dis-
carded.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_rcvuderr
svid

Page: 525

t_rcvuderr (BA_LIB) t_rcvuderr (BA_LIB)

TNOTSUPPORT if this function is not supported by the underlying transport pro-
vider.

TSYSERR if a system error has occurred during execution of this function.

SEE ALSO
t_look(BA_LIB), t_rcvudata(BA_LIB), t_sndudata(BA_LIB).

FUTURE DIRECTIONS
The inclusion of the header t i user . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace ti user. h with xti . h.
LEVEL
Level 1. The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_rcvuderr
svid

Page: 526

t_snd (BA_LIB) t_snd (BA_LIB)

NAME

t _snd - send normal or expedited data over a connection

SYNOPSIS

#i ncl ude <xti.h>

int t_snd(int fd, void [buf, unsigned int nbytes, int flags);
#incl ude <tiuser.h>

int t_snd(int fd, void Chuf, unsigned int nbytes, int flags);

Parameters
fd the file descriptor for the transport endpoint over which data will be sent.
buf points to the user data.

nbytes specifies the number of bytes of user data to be sent.
flags specifies optional flags on return.

DESCRIPTION

This function is an TLI/XTI data transfer routine used to send either normal or
expedited data over a connection.

By default, t _snd operates in synchronous mode and may wait if flow control res-
trictions prevent the data from being accepted by the local transport provider at the
time the call is made. However, if O NONBLOCK is set (viat _open or fcntl), t _snd
will execute in asynchronous mode, and will fail immediately if there are flow con-
trol restrictions.

Even when there are no flow control restrictions, t _snd will wait if STREAVS inter-
nal resources are not available, regardless of the state of O NONBLOCK.

On successful completion, t _snd returns the number of bytes accepted by the tran-
sport provider. Normally this will equal the number of bytes specified in nbytes.
However, if O NONBLOCK is set, it is possible that only part of the data will be
accepted by the transport provider. In this case, t _snd will set T_MCRE for the data
that was sent (see below) and will return a value less than nbytes. If nbytes is 0 and
the sending of 0 bytes is not supported by the underlying transport provider, t _snd
will return =1 with t _err no set to TBADDATA. A return value of 0 indicates that the
request to send a 0-length data message was sent to the provider.

If T_EXPED TED is set in flags, the data will be sent as expedited data, and will be
subject to the interpretations of the transport provider.

If T_MORE is set in flags, or is set as described above, an indication is sent to the tran-
sport provider that the transport service data unit (TSDU) or expedited transport
service data unit (ETSDU) is being sent through multiple t _snd calls. Each t_snd
with the T_MCRE flag set indicates that another t _snd will follow with more data for
the current TSDU. The end of the TSDU (or ETSDU) is identified by at _snd call with
the T_MORE flag not set. Use of T_MORE enables a user to break up large logical data
units without losing the boundaries of those units at the other end of the connec-
tion. The flag implies nothing about how the data is packaged for transfer below
the transport interface. If the transport provider does not support the concept of a
TSDU as indicated in the info argument on return from t _open or t _geti nf o, the
T_MORE flag is not meaningful and should be ignored.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_snd
svid

Page: 527

t_snd(

BA_LIB) t_snd (BA_LIB)

The size of each TSDU or ETSDU must not exceed the limits of the transport provider
as returned by t _open or t _geti nfo. If the size is exceeded, a TSYSERR with sys-
tem error EPROTO will occur. However, the t _snd may not fail because EPROTO
errors may not be reported immediately. In this case, a subsequent call that
accesses the transport endpoint will fail with the associated TSYSERR

Return Values

On successful completion, t _snd returns the number of bytes accepted by the tran-
sport provider. On failure, it returns —1 and t _err no is set to indicate the error.

Errors

On failure, t _err no may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end-
point.

TFLOV O _NONBLOCK was set, but the flow control mechanism prevented

the transport provider from accepting data at this time.
TNOTSUPPCRT This function is not supported by the underlying transport pro-

vider.

TSYSERR A system error has been detected during execution of this func-
tion.

TBADDATA nbytes is 0 and sending 0 bytes is not supported by the transport

provider; or, the number of bytes on a single send was greater
than the number specified for nbytes by the info argument on the
t_open or fcntl; or, the maximum size was exceeded during
multiple sends.

TLOXK An asynchronous event has occurred on the transport endpoint
specified by fd and requires immediate attention.

TBADFLAG An invalid flag was specified.

TQUTSTATE The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

TPROTO A communication problem has been detected with the transport

provider and there is no other value of t _errno to describe the
error condition.

State Transitions

USAGE

On entry, T_DATAXFER or T_| NREL; unchanged on exit.

t_snd is applicable only for connection-mode transport services that return a ser-
vice type of T_COTS or T_COT'S_CRDin response tot _open ort _get i nf o.

Warnings

Page 2

The t _snd routine does not look for a disconnect indication (showing that the con-
nection was broken) before passing data to the provider.

In asynchronous mode, if the number of bytes accepted exceeds the number
requested by the transport provider, the provider may be blocked because of flow
control.

FINAL COPY
June 15, 1995
File: ba_lib/t_snd
svid

Page: 528

t_snd (BA_LIB) t_snd (BA_LIB)

If several processes issue concurrent calls to t _snd (multiple sends), the data from
those processes may be intermixed (since several users of the same endpoint are
treated as a single user by the transport provider).

If the maximum size of a TSDU or ETSDU is exceeded as a result of multiple sends,
XTI may not detect the error. If the error is detected, t _snd fails with TBADDATA. If
the error is not detected, t _snd or a subsequent call fails on an error indicating that
the connection has been aborted.

SEE ALSO
fentl (BA_OS), pol | (BA_OS), t _getinfo(BA_LIB), t _| ook(BA_LIB),
t_open(BA_LIB),t _rcv(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/t_snd
svid

Page: 529

t_snddis (BA_LIB) t_snddis (BA_LIB)

NAME
t _snddi s — send user-initiated disconnect request

SYNOPSIS
#i nclude <xti.h>

int t_snddis(int fd, struct t_call Ctall);
#i ncl ude <tiuser. h>
int t_snddis(int fd, struct t_call Ctall);

Parameters
fd the file descriptor for the transport endpoint where the connection exits.

call pointstothet_cal | structure associated with information about the connec-
tion.

DESCRIPTION
This function is issued by a transport user to initiate a release on an already esta-
blished connection with a responding transport endpoint, specified by fd. It may
also be issued to to reject a connect request.

The values pointed to by call have different semantics that vary with the context of
the call.

This function is a service of connection-mode transport providers and is supported
only if the provider returned service type T_COTS or T_COTS_CRD on t _open or
t_getinfo.

Structure Definitions
The call argument points to a t_cal |l structure that contains the following

members:
struct netbuf addr; /* address */
struct netbuf opt; /* options */
struct netbuf udata; /* user data */
i nt sequence; /* sequence nunber */
The net buf structure contains the following members:
unsi gned i nt nmaxl| en;
unsi gned i nt | en;
char *buf ;

When rejecting a connect request, cal | must be non-NULL and contain a valid value
of sequence to identify uniquely the rejected connect indication to the transport
provider. The addr and opt fields of cal | are ignored.

In all other cases, cal | need only be used when data is being sent with the discon-
nect request. The addr, opt, and sequence fields of the t_cal | structure are
ignored. If the user does not want to send data to the remote user, the value of
cal | may be NULL.

udat a specifies the user data to be sent to the remote user. The amount of user data
must not exceed the limits supported by the transport provider as returned in the
di scon field of the info argument of t _open or t _getinfo. If the | en field of
udat a is zero, no data will be sent to the remote user.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_snddis
svid

Page: 530

t_snddis (BA_LIB) t_snddis (BA_LIB)

Return Values
t _snddi s returns 0 on success and -1 on failure and t _errno is set to indicate the

error.
Errors
On failure, t _err no may be set to one of the following:
TBADF The specified file descriptor does not refer to a transport end-
point.
TQUTSTATE The function was issued in the wrong sequence. The transport
provider’s outgoing queue may be flushed, so data may be lost.
TBADDATA The amount of user data specified was not within the bounds

supported by the transport provider as returned in the di scon
field of the i nfo argument of t _open or t _geti nfo. The tran-
sport provider’s outgoing queue will be flushed, so data may be
lost.

TBADSEQ An invalid sequence number was specified, or a NULL call struc-
ture was specified when rejecting a connect request. The tran-
sport provider’s outgoing queue will be flushed, so data may be
lost.

TLOXK An asynchronous event has occurred on the transport endpoint
specified by fd and requires immediate attention.

TNOTSUPPCRT This function is not supported by the underlying transport pro-

vider.
TSYSERR A system error has occurred during execution of this function.
TPROTO A communication problem has been detected with the transport

provider and there is no other value of t _errno to describe the
error condition.

State Transitions
t_snddis may be issued from any valid state except T UNN T, T_UNBND, or
T_I DLE. Valid states on exit are T_|I DLE (successful) and T_I NOON (successful but
there are connect indications outstanding).

USAGE
After issuing t_snddis, the user may not send any more data over the connection.
However, a user may continue to receive data if a disconnect request has not been
received (seet _rcvdi s).

Warnings
When executed, t _snddi s causes an abortive disconnect, which may result in a loss
of data sent by t _snd but not yet received. The return of an error does not preclude
loss of data.

SEE ALSO

t_connect (BA_LIB), t_getinfo(BA_LIB), t_|listen(BA_LIB), t_open(BA_LIB),
t_rcvdi s(BA_LIB),t _rcvrel (BA_LIB),t_snd(BA_LIB),t_sndrel (BA_LIB)

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_snddis
svid

Page: 531

t_snddis (BA_LIB) t_snddis (BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace ti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/t_snddis
svid

Page: 532

t_sndrel (BA_LIB)

NAME

t_sndrel (BA_LIB)

t _sndrel - initiate an orderly release

SYNOPSIS

#i ncl ude <xti.h>

int t_sndrel (int fd);
#i ncl ude <tiuser.h>
int t_sndrel (int fd);

Parameters

fd the file descriptor for the transport endpoint where the connection exists.

DESCRIPTION

This function is an TLI/XTI connection release routine used to initiate an orderly
release of a transport connection associated with the transport endpoint specified
by fd. t _sndrel indicates to the transport provider that the transport user has no
more data to send.

This function is an optional service of the transport provider and is only supported
if the transport provider returned service type T_COTSor T_COI'S_CORDont _open or

t_getinfo.
Return Values

t_sndrel returns 0 on success and —1 on failure and t _errno is set to indicate the

error.
Errors

On failure, t _errno may be set to one of the following:

TBADF

TFLONV

TNOTSUPPCRT

TSYSERR
TLOXK

TQUTSTATE

TPROTO

State Transitions

The specified file descriptor does not refer to a transport end-
point.

O _NONBLOCK was set, but the flow control mechanism prevented
the transport provider from accepting the function at this time.

This function is not supported by the underlying transport pro-
vider.

A system error has occurred during execution of this function.

An asynchronous even has occurred on the transport endpoint
referenced by fd and requires immediate attention.

The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

T_DATAXFER on entry and T_QUTREL on exit; or T_| NREL on entry and T_| DLE on

exit.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_sndrel
svid

Page: 533

t_sndrel (BA_LIB) t_sndrel (BA_LIB)

USAGE
After issuing t _sndrel , the user may not send any more data over the connection.
However, a user may continue to receive data if an orderly release indication has
not been received.

If t_sndrel is issued from an invalid state, the provider will generate an EPROTO
protocol error; however, this error may not occur until a subsequent reference to
the transport endpoint.

SEE ALSO
t_open(BA_LIB),t _rcvrel (BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_sndre
svid

Page: 534

t_sndudata(BA_LIB) t_sndudata(BA_LIB)

NAME
t _sndudat a — send a data unit

SYNOPSIS
#i nclude <xti.h>

int t_sndudata(int fd, struct t_unitdata [Cunitdata);
#i ncl ude <tiuser. h>
int t_sndudata(int fd, struct t_unitdata [Cunitdata);

Parameters
fd the file descriptor for the transport endpoint through which data will be
sent.
unitdata points to the t _uni t dat a structure associated with the transmitted data
unit.
DESCRIPTION

This function is used in connectionless mode to send a data unit to another tran-
sport user. Data is sent through the transport endpoint specified by fd, which must
be bound, and unitdata points to information associated with the data unit.

This function is a service of connectionless mode transport providers and is sup-
ported only if the provider returned service type T_CLTSont_openort_geti nfo.

Structure Definitions
The unitdata argument points to a t _uni t dat a structure containing the following

members:
struct netbuf addr; /* address */
struct netbuf opt; /* options */
struct netbuf udata; /* user data */

The net buf structure contains the following members:

unsi gned i nt naxl| en;
unsi gned i nt | en;
char *buf ;

In unitdata, addr specifies the protocol address of the destination user, opt
identifies protocol-specific options that the user wants associated with this request,
and udat a specifies the user data to be sent. The user may choose not to specify
what protocol options are associated with the transfer by setting the | en field of
opt to 0. In this case, the provider may use default options.

If the | en field of udat a is 0, and the sending of 0 bytes is not supported by the
underlying transport provider, t _sndudat a will return -1 with t _errno set to
TBADDATA.

Return Values
t _sndudat a returns 0 on successful completion and -1 on failure t _errno is set to
indicate the error.

Errors
On failure, t _errno may be set to one of the following:

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_sndudata
svid

Page: 535

t_sndudata(BA_LIB) t_sndudata(BA_LIB)

TBADF The specified file descriptor does not refer to a transport end-
point.
TFLOW O NONBLOCK was set, but the flow control mechanism prevented

the transport provider from accepting data at this time.

TNOTSUPPCRT This function is not supported by the underlying transport pro-
vider.

TSYSERR A system error has occurred during execution of this function.
(An EPROTO error may not cause t _sndudat a to fail until subse-
quent access of the transport endpoint.)

TBADDATA nbyt es is 0 and sending 0 bytes is not supported by the transport
provider.
TLOXK An asynchronous event has occurred on the transport endpoint

specified by fd and requires immediate attention.

TBADADDR The specified protocol address was in an incorrect format or con-
tained invalid information. (This error may alternatively be
returned by t _rcvuderr.)

TBADCPT The specified protocol options were in an incorrect format or con-
tained invalid information. (This error may alternatively be
returned by t _rcvuderr.)

TQUTSTATE The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

TPROTO A communication problem has been detected with the transport
provider and there is no other value of t _errno to describe the
error condition.

State Transitions

USAGE

On entry, T_I DLE; unchanged on exit.

By default, t _sndudat a operates in synchronous mode and may wait if flow con-
trol restrictions prevent the data from being accepted by the local transport pro-
vider at the time the call is made. However, if O NONBLOCK is set (via t _open or
fcntl), t_sndudat a will execute in asynchronous mode and will fail under such
conditions.

The calling process can use t _| ook or the Event Management Interface to deter-
mine when flow control restrictions, if any, have been cleared.

Warnings

Page 2

If t _sndudat a is issued before the destination user has activated its transport end-
point (see t _bi nd), the data unit may be discarded.

If t _sndudat a is issued from an invalid state, or if the amount of data specified in
udat a exceeds the TSDU size as returned in the t sdu field of the info argument of
t_open or t _geti nf o, the provider will generate an EPROTO protocol error. If the
state is invalid, this error may not occur until a subsequent reference is made to the
transport endpoint.

FINAL COPY
June 15, 1995
File: ba_lib/t_sndudata
svid

Page: 536

t_sndudata(BA_LIB) t_sndudata(BA_LIB)

If a unit data error is received, a subsequent call should be made tot _rcvuderr to
check for conditions indicated by TBADADDR and TBADCPT, which are not always
returned by t _sndudat a.

SEE ALSO
t_bi nd(BA_LIB), t_getinfo(BA_LIB), t_open(BA_LIB), t_rcvudata(BA_LIB),
t_rcvuderr (BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995
File: ba_lib/t_sndudata
svid

Page: 537

t_strerror (BA_LIB) t_strerror (BA_LIB)

NAME
t_strerror —get error message string

SYNOPSIS
#i nclude <xti.h>

char 0@ _strerror(int errnum);

Parameters
errnum the TLIZXTI number for the language-dependent error message string.

DESCRIPTION
Thet_strerror function is an TLI/XTI local management routine that returns, for
the error number specified by errnum, the pointer to a language dependent error
message string.

Whent _strerror isissued, the contents of the string pointed to on return are not
modified, but may be modified by a subsequent calltot _strerror.

The comments used in the header file xti . h to describe the values int_errno are
identical to the error message string pointed to by t _strerror on return. If the
language is not English, the text provided is equivalent.

The error message string itself is not ended by a newline character.

If the value supplied in errnum is not recognized, the response fromt_strerror is
a pointer to the following string:

<errnump: error unknown
where <er r nun® is the value supplied on the call.

Return Values
t_strerror returns a string pointer to the requested error. No errors are defined.
State Transitions
t_strerror may be issued from any valid state except T_UNI NI T and has no effect
on the entry state at exit.
SEE ALSO
t_error (BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/t_strerror
svid

Page: 538

t_sync (BA_LIB) t_sync (BA_LIB)

T_I NREL incoming orderly release (waiting for an orderly release request)

(connection mode only)
Errors

On failure, t _err no may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end-
point.

TSTATECHNG The transport provider is undergoing a state change.

TSYSERR A system error has occurred during execution of this function.

TPROTO A communication problem has been detected with the transport

provider and there is no other value of t _errno to describe the
error condition.

State Transitions
t_sync may be issued from any valid state except T_UN Nl T and has no effect on
the entry state at exit.

USAGE
It is important to remember that the transport provider treats all users of a tran-
sport endpoint as a single user. If multiple processes are using the same endpoint,
those activities should be coordinated so as not to violate the state of the provider.

Warnings
If the transport endpoint specified by fd is undergoing a state transition when
t_sync is called, the function will fail.

SEE ALSO
t_getstate(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header ti user. h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replaceti user. h with xti . h.

LEVEL
Level 1.

The inclusion of the header ti user. h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/t_sync
svid

Page: 540

t_unbind (BA_LIB) t_unbind (BA_LIB)

NAME
t_unbind - disable a transport endpoint

SYNOPSIS
#i ncl ude <xti.h>

int t_unbind(int fd);

DESCRIPTION
The function t _unbi nd() disables the transport endpoint specified by fd which
was previously bound by t _bi nd() [see t_bind(BA_LIB)]. On completion of this

call, no further data or events destined for this transport endpoint will be accepted
by the transport provider.

RETURN VALUE
Upon successful completion, the function t _unbi nd() returns a value of O; other-
wise, it returns a value of —1 and setst _err no to indicate an error.

ERRORS
Under the following conditions, the function t _unbi nd() fails and sets t _errno
to:
TBADF if the specified file descriptor does not refer to a transport end-
point.
TOUTSTATE if the function was issued in the wrong sequence.
TLOXK if an asynchronous event has occurred on this transport endpoint.
TSYSERR if a system error has occurred during execution of this function.
SEE ALSO
t_bind(BA_LIB).
LEVEL
Level 1.
Page 1
FINAL COPY

June 15, 1995
File: ba_lib/t_unbind
svid

Page: 541

tmpfile (BA_LIB) tmpfile (BA_LIB)

NAME
tmpfile — create a temporary file

SYNOPSIS
#i ncl ude <stdio. h>

FILE *tnpfil e(void);

DESCRIPTION
The function t npfi |l e() creates a temporary file using a name generated by the
t mpnan() routine [see tmpnam(BA_LIB)], and returns a corresponding pointer to
the FI LE structure associated with the stream. The temporary file will automati-
cally be deleted when the process that opened it terminates or the temporary file is
closed. The temporary file is opened for update (w+) [see fopen(BA_OS)].

RETURN VALUE
If the temporary file cannot be opened, a NULL pointer is returned.

ERRORS
Under the following conditions, the function t mpfi | e() fails and sets er r no to:

EMFI LE if { OPEN_MAX} file descriptors are currently open in the calling pro-

cess.

ENFI LE if the system file table is full.

ENGSPC if the directory or file system that would contain the new file cannot

be expanded.

SEE ALSO

creat(BA_OS), fopen(BA_OS), mktemp(BA_LIB), tmpnam(BA_LIB), unlink(BA_OS).
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/tmpfile
svid

Page: 542

tmpnam (BA_LIB) tmpnam (BA_LIB)

NAME

tmpnam, tempnam — create a name for a temporary file

SYNOPSIS

#i ncl ude <stdio. h>
char *tnmpnam(char *s);
char *tenmpnan{const char *dir, const char *pfx);

DESCRIPTION

These functions generate filenames that can safely be used for a temporary file.

The function t npnam() always generates a filename using the path-prefix defined
by the <st di 0. h> header file as P_t npdi r. If the argument s is NULL, the func-
tion t npnan() leaves its result in an internal static area and returns a pointer to
that area. The next call to the function t npnam() will destroy the contents of the
area. If the argument s is not NULL, it is assumed to be the address of an array of at
least L_t npnambytes, where L_t npnamis a constant defined by the <st di 0. h>
header file; the function t mpnan() places its result in that array and returns s.

The function t enpnant() allows the user to control the choice of a directory. If
defined in the user’s environment, the value of the environmental variable TMPDI R
is used as the name of the desired temporary file directory. The argument dir points
to the name of the directory in which the file is to be created. If the argument dir is
NULL or points to a string that is not a name for an appropriate directory, the path-
prefix defined by the <st di 0. h> header file as P_t npdi r is used. If that directory
is not accessible, the directory / t np will be used.

The function t enpnan() uses the mal | oc() routine [see malloc(BA_OS)] to get
space for the constructed filename, and returns a pointer to this area. Thus, any
pointer value returned from the function t enpnan() may serve as an argument to
the function free() [see free() in malloc(BA_OS)]. If the function t enpnan)
cannot return the expected result for any reason, for example, the mal | oc() rou-
tine failed or none of the above-mentioned attempts to find an appropriate direc-
tory were successful, NULL will be returned.

ERRORS

USAGE

Under the following conditions, the function t enpnany() fails, and sets er r no to:
ENOVEM if there is not enough space.

Many applications prefer their temporary-files to have certain favorite initial letter
sequences in their names. The pfx argument is used for this. This argument may be
NULL or point to a string of up to five characters to be used as the first few charac-
ters of the temporary-filename.

The functions t npnan() and t enpnam() generate a different filename each time
they are called.

Files created using these functions and either the fopen() routine [see
fopen(BA_OS)] or the creat () routine [see creat(BA_OS)] are temporary only in
the sense that they reside in a directory intended for temporary use, and their
names are unique. It is the user’s responsibility to remove the file when its use is
ended.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/tmpnam
svid

Page: 543

tmpnam (BA_LIB) tmpnam (BA_LIB)

If called more than { TMP_MAX} times in a single process, these functions will start
recycling previously used names.

Between the time a filename is created and the file is opened, it is possible for some
other process to create a file with the same name. This can never happen if that
other process is using these functions or mkt enp() [see mktemp(BA_LIB)], and the
filenames are chosen so as to render duplication by other means unlikely. The func-
tion tnpnan() uses access() [see access(BA_OS)] to determine whether the
user is permitted to create a file in the named directory. This means that a
setuid/setgid program trying to create a temporary file under a protected directory
(one that the real UID/GID has no access to) will fail.

SEE ALSO
access(BA_0S), creat(BA_OS), fopen(BA_0S), malloc(BA_0OS), mktemp(BA_LIB),
tmpfile(BA_LIB), unlink(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/tmpnam
svid

Page: 544

trig (BA_LIB) trig (BA_LIB)

MAME trig: sin, cos, tan, asin, acos, atan, atan2 — trigonometric functions
SYNOPSIS

#i ncl ude <math. h>

doubl e sin(double x);

doubl e cos(double x);

doubl e tan(double x);

doubl e asin(double x);

doubl e acos(double x);

doubl e atan(double Xx);

doubl e atan2(double y, double x);
DESCRIPTION

The functions si n(), cos(), and t an() return respectively the sine, cosine, and
tangent of their argument, x, measured in radians.

The function asi n() returns the arcsine in the range —1/2 to /2 radians, of the
argument Xx.

The function acos() returns the arccosine in the range 0 to 1 radians, of the argu-
ment X.

The function at an() returns the arctangent in the range -1/2 to /2 radians, of the
argument Xx.

The function at an2() returns the arctangent of y/x in the range -1 to 1 radians,
using the signs of both arguments to determine the quadrant of the return value.

RETURN VALUE

LEVEL

If an input parameter is NaN, then the function will return NaN and set errno to
EDOM

When the absolute value of the argument to the functions asi n() and acos() is
greater than one and the value of the argument is not +-c or NaN, the return value
will be an implementation-defined value (IEEE NaN or equivalent if available) and
errno is set to EDOM

When both arguments to the at an2() function are zero, the return value is
implementation-defined and errno may be set to EDOM

On a system that supports the IEEE 754 standard, if the value of x for cos(), sin(),
tan(), asin(), or acos() is +-, these functions will return IEEE NaN and set errno to
EDOM

Level 1.

Page 1

FINAL COPY

June 15, 1995

File: ba_lib/trig
svid

Page: 545

tsearch (BA_LIB) tsearch (BA_LIB)

NAME
tsearch, tfind, tdelete, twalk — manage binary search trees

SYNOPSIS
#i ncl ude <search. h>

voi d *tsearch(const void *key, void **rootp,
i nt (*compar) (const void *, const void *));

void *tfind(const void *key, void *const *rootp,
i nt (*compar) (const void *, const void *));

void *tdel ete(const void *key, void **rootp,
i nt (*compar) (const void *, const void *));

voi d twal k(voi d *root, voi d(*action) (void **, VISIT, int));

DESCRIPTION

The functions tsearch(), tfind(), tdelete(), and twal k() manipulate
binary search trees. All comparisons are done with a user-supplied function, com-
par. The comparison function is called with two arguments, the pointers to the ele-
ments being compared. It returns an integer less than, equal to or greater than 0,
according to whether the first argument is to be considered less than, equal to or
greater than the second argument, respectively. The comparison function need not
compare every byte, so arbitrary data may be contained in the elements in addition
to the values being compared.

The function t sear ch() is used to build and access the tree. The value of key is a
pointer to a datum to be accessed or stored. If there is a datum in the tree equal to
* key (the value pointed to by key), a pointer to this found datum is returned. Other-
wise, * key is inserted, and a pointer to it returned. Only pointers are copied, so the
calling routine must store the data. The value of rootp points to a variable that
points to the root of the tree. A NULL value for the variable pointed to by rootp
denotes an empty tree; in this case, the variable will be set to point to the datum
which will be at the root of the new tree.

Like t search(),tfind() will search for a datum in the tree, returning a pointer
to it if found. However, if it is not found, t fi nd() will return NULL. The argu-
ments fort fi nd() are the same as fort sear ch().

The function t del et e() deletes a node from a binary search tree. The arguments
are the same as for t sear ch() . The variable pointed to by rootp will be changed if
the deleted node was the root of the tree.

The function t wal k() traverses a binary search tree. The value of root is the root of
the tree to be traversed. (Any node in a tree may be used as the root for a walk
below that node.) The value of action is the name of a user-defined routine to be
invoked at each node. This routine is, in turn, called with three arguments.

The first argument is the address of the node being visited.

The second argument is a value from an enumeration data type, VI SI T defined by
the <sear ch. h> header file. The values pr eor der, post or der, and endor der,
indicate whether this is the first, second or third time that the node has been visited
(during a depth-first, left-to-right traversal of the tree), or the value | eaf indicates
that the node is a leaf.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/tsearch
svid

Page: 546

tsearch (BA_LIB)

if (order == preorder || order == leaf) {

printf("length=%l, string=%20s\n",
(*(struct node **)node)->l ength,
(*(struct node **)node)->string);

}
}
mai n() {
char *strptr = string_space;
struct node *nodeptr = nodes;
int i =0;
while (gets(strptr) !'= NULL && i++ < 500) {
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
(void) tsearch((void *)nodeptr,
& oot, node_conpare);
strptr += nodeptr->length + 1;
nodept r ++;
twal k(root, print_node);
}
SEE ALSO
bsearch(BA_LIB), hsearch(BA_LIB), Isearch(BA_LIB).
LEVEL
Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/tsearch
svid

Page: 548

tsearch (BA_LIB)

Page 3

ttyname (BA_LIB) ttyname (BA_LIB)

NAME
ttynane,i satty - find name of a terminal

SYNOPSIS
#incl ude <stdlib. h>
char [tyname(int fildes);
int isatty(int fildes);

DESCRIPTION
tt ynane returns a pointer to a string containing the null-terminated path name of
the terminal device associated with file descriptor fildes.

i satty returns 1 if fildes is associated with a terminal device, 0 otherwise.

Return Values
t t ynane returns a NULL pointer if fildes does not describe a terminal device in direc-
tory / dev or one of its subdirectories.

NOTICES
The value returned by tt yname points to static data whose content is overwritten
by each call.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/ttyname
svid

Page: 549

ungetc (BA_LIB) ungetc (BA_LIB)

NAME
ungetc — push character back into input stdio-stream

SYNOPSIS
#i ncl ude <stdio. h>

int ungetc(int ¢, FILE *strm);

DESCRIPTION
The function unget c() inserts the character specified by c (converted to an
unsi gned char) into the buffer associated with an input stdio-stream. That char-
acter, ¢, will be returned by the next call to the get c() routine on that strm. The
function unget c() returns c, and leaves the file corresponding to strm unchanged.
A successful call to unget c() clears the end-of-file indicator for strm.

One character of pushback is guaranteed.

The value of the file position indicator for the stdio-stream after reading or discard-
ing all pushed-back characters will be the same as it was before the characters were
pushed back.

If the argument ¢ equals EOF, the function unget c() does nothing to the buffer
and returns ECF.

The fseek(), fsetpos(), and rew nd() routines [see fseek(BA_OS),
fsetpos(BA_OS), and r ewi nd() in fseek(BA_OS), respectively] erase all memory of
inserted characters for the stdio-stream.

RETURN VALUE
Upon successful completion, the function unget ¢() returns c; otherwise, it returns
EOF if the character cannot be inserted.
SEE ALSO
fseek(BA_OS), fsetpos(BA_OS), getc(BA_LIB), setbuf(BA_LIB).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/ungetc
svid

Page: 550

ungetwc (BA_LIB) ungetwc (BA_LIB)

NAME
unget wc — push wchar _t character back into input stream

SYNOPSIS
#i ncl ude <stdio. h>
#i ncl ude <wi dec. h>
wint_t ungetwc(wint_t ¢, FILE [ktream);

DESCRIPTION
unget wc inserts the wide (Wwchar _t) character ¢ into the buffer associated with the
input stream. That wide character, c, will be returned by the next get wc call on that
stream. unget wc returns c.

One wide character of pushback is guaranteed, provided something has already
been read from the stream and the stream is actually buffered.

If c equals (wchar _t) WECF, unget we does nothing to the buffer and returns WECF.
f seek erases all memory of inserted characters.

Errors
unget we returns WECF if it cannot insert the wide (wchar _t) character.

USAGE
Administrator.

SEE ALSO
f seek(BA_OS), set buf (BA_LIB), st di o(BA_LIB), get wc(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/ungetwc
svid

Page: 551

unlockpt (BA_LIB) unlockpt (BA_LIB)

NAME

unlockpt — unlock a pseudo-terminal master/slave pair
SYNOPSIS

i nt unl ockpt (i nt fildes);
DESCRIPTION

The function unl ockpt () clears a lock flag associated with the slave pseudo-
terminal device associated with its master pseudo-terminal counterpart so that the
slave pseudo-terminal device can be opened. fildes is a file descriptor returned from
a successful open of a master pseudo-terminal device.

RETURN VALUE
Upon successful completion, the function unl ockpt () returns a value of 0; other-
wise, it returns a value of - 1. A failure may occur if fildes is not an open file descrip-
tor or is not associated with a master pseudo-terminal device.

SEE ALSO
grantpt(BA_LIB), open(BA_OS), ptsname(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/unlockpt
svid

Page: 552

viwprintf (BA_LIB) viwprintf (BA_LIB)

NAME
viwprintf, vwprintf, vswprintf — print formatted wide character output of a
variable argument list
SYNOPSIS
#i ncl ude <stdarg. h>
#i ncl ude <wchar. h>

int viwprintf(FILE *stream, const wchar _t [format, va_list arg);
int vwprintf(const wchar_t [Jormat, va_list arg);

int vswprintf(wchar_t *s, size_t n, const wchar_t *format, va_li st
DESCRIPTION

viwprintf is equivalent to fwpri nt f, with the variable argument list replaced by
an ar g that has been initialized by the va_st art macro.

vwprintf is equivalent to wpri nt f, with the variable argument list replaced by an
ar g that has been initialized by the va_st art macro.

vswpri ntf is equivalent to swpri nt f, with the variable argument list replaced by
an arg that has been initialized by the va_start macro. If copying takes place
between objects that overlap, the behavior is undefined.

None of these functions invoke va_end or the passed ar g.

Errors
viwprintf and vwprintf return the number of wide characters transmitted or
return a negative value if an error was encountered. vswprintf returns the
number of wide characters written in the array, not counting the terminating null
wide character, or returns a negative value if n or more wide character are
requested to be generated.

USAGE

The following example shows the use of the vfwpri ntf function in a general error
reporting routine:

#i ncl ude <stdarg. h>
#i ncl ude <wchar. h>

void error(wchar_t *function_nane, whar_t *format,...)
{
va_list args;
va_start(args, format);
fworintf(stderr, L"ERROR in %: ", function_nane);
viwprintf(stderr, format, args);
va_end(args);

SEE ALSO

printf(BA_LIB), fwprintf(BA_LIB), putc(BA_LIB), scanf(BA_LIB), setlocale(BA_LIB),
stdio(BA_LIB), write(BA_OS)

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/vfwprintf
svid

Page: 553

viwprintf (BA_LIB)

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: ba_lib/vfwprintf
svid

Page: 554

viwprintf (BA_LIB)

viwscanf (BA_LIB) vfwscanf (BA_LIB)

NAME

vfwscanf, vwscanf, vswscanf — convert formatted wide character input of a vari-
able argument list

SYNOPSIS
#i ncl ude <stdarg. h>
#i ncl ude <wchar. h>

i nt vfwscanf (FI LE *stream, const wchar_t [format, va_list arg);
i nt vwscanf(const wchar_t [format, va_list arg);

int vswscanf(wchar _t *s, const wchar _t *format, va_list arg);
DESCRIPTION

vfwscanf is equivalent to f wscanf , with the variable argument list replaced by an

ar g that has been initialized by the va_st art macro.

vwscanf is equivalent to wscanf, with the variable argument list replaced by an
ar g that has been initialized by the va_st art macro.

vswscanf is equivalent to swscanf , with the variable argument list replaced by an
ar g that has been initialized by the va_st art macro.

None of these functions invoke va_end on the passed arg. If copying takes place
between objects that overlap, the behavior is undefined.
Errors

vfwscanf, vwscanf and vswscanf 1 return the number of wide characters transmit-
ted or return a negative value if an error was encountered.

SEE ALSO
fwscanf(BA_LIB), putc(BA_LIB), scanf(BA_LIB), setlocale(BA_LIB), stdio(BA_LIB),
write(BA_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/vfwscanf
svid

Page: 555

vprintf (BA_LIB) vprintf (BA_LIB)

NAME
vprintf, vfprintf, vsprintf, vsnprintf — print formatted output of a variable argument
list
SYNOPSIS
#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

int vprintf(const char *format, va_list ap);
int vfprintf(FILE *stream, const char *format, va_list ap);
int vsprintf(char *s, const char *format, va_list ap);

int vsnprintf(char *s, size_t maxsize, const char *format, va_list ap);

DESCRIPTION
The functions vprintf (), vfprintf(), vsprintf(), and vsnprintf() are
the same as printf(), fprintf(), sprintf(),and snprintf() respectively,
except that instead of being called with a variable number of arguments, they are
called with an argument list as defined by the <st dar g. h> header file.

The <st dar g. h> header file defines the type va_Il i st and a set of macros for
advancing through a list of arguments whose number and types may vary. The
argument ap to the vprint family of routines is of type va_l i st. This argument is
used with the <stdarg. h> header file macros va_start(), va_arg() and
va_end() [seeva_start(),va_arg(),andva_end() instdarg(BA_ENV)]. The
EXAMPLE section below shows their use with vprintf ().

The macro va_al i st is used as the parameter list in a function definition as in the
function called error() in the example below. The macro va_start (ap,
parmN) , where ap is of type va_l i st, and parmN is the rightmost parameter (just
before . . .), must be called before any attempt to traverse and access unnamed
arguments. Callstova_arg(ap, atype) traverse the argument list. Each execution
of va_ar g() expands to an expression with the value and type of the next argu-
ment in the list ap, which is the same object initialized by va_st art. The argument
atype is the type that the returned argument is expected to be. The va_end(ap)
macro must be invoked when all desired arguments have been accessed. (The argu-
ment list in ap can be traversed again if va_start() is called again after
va_end().) In the example below, va_arg() is executed first to return the
function_name passed to error () and it is called again to retrieve the format
passed to error (). The remaining error () arguments, argl, arg?, ..., are given to
vfprintf() intheargumentap.

RETURN VALUE
The functions vprintf(), and vfprintf() return the number of characters
transmitted, or return -1 if an error was encountered.

EXAMPLE
The following demonstrates how vf pri ntf () could be used to write an err or ()
routine:

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/vprintf
svid

Page: 556

vprintf (BA_LIB) vprintf (BA_LIB)

#i ncl ude <stdi o. h>
#i ncl ude <stdarg. h>

/*

* error should be called |ike

* error(function_nane, format, argl, ...);
*/

void error(char *function_name, char *format, ...)
{

va_list ap;

va_start(ap, format);
/* print out name of function causing error */
(void) fprintf(stderr, "ERR in %: ", function_nane);
va_arg(ap, char*);
[* print out renainder of nessage */
(void) vfprintf(stderr, format, ap);
va_end(ap);
(void) abort();
}

SEE ALSO
printf(BA_LIB), stdarg(BA_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/vprintf
svid

Page: 557

vscanf(BA_LIB) vscanf(BA_LIB)

NAME
vscanf , vf scanf , vsscanf - convert formatted input of a variable argument list
SYNOPSIS

#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

int vscanf(const char ormat, va list ap);
i nt vfscanf(FlILE [ktream, const char [format, va_list ap);

i nt vsscanf(const char [k, const char [format, va_list ap);
DESCRIPTION

vscanf , vf scanf and vsscanf are the same as scanf, f scanf, and sscanf respec-
tively, except that instead of being called with a variable number of arguments, they
are called with an argument list as defined by the st dar g. h header file.

The st dar g. h header file defines the type va_l i st and a set of macros for advanc-
ing through a list of arguments whose number and types may vary. [See
st dar g(BA_ENV)].
Errors
These functions return the number of matched patterns, or return ECF if an error
was encountered.
SEE ALSO
scanf (BA_LIB), st dar g(BA_ENV),
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/vscanf
svid

Page: 558

wconv (BA_LIB) wconv (BA_LIB)

NAME
wconv: t owupper,tow ower - translate characters

SYNOPSIS
#i ncl ude <wchar. h>
wint_t towupper(wint_t c);
wint_t tow ower(wint_t c);
DESCRIPTION
If the argument to t owupper is a wide character that is also a lowercase letter, the
result is the corresponding uppercase letter. If the argument to t owl ower is a wide

character that is also an uppercase letter, the result is the corresponding lowercase
letter.

In the case of all other arguments, the return value is unchanged.

SEE ALSO
conv(BA_LIB), wct ype(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wconv
svid

Page: 559

wcscat (BA_LIB) wcscat (BA_LIB)

NAME
wcscat — concatenate two wide character strings

SYNOPSIS
#i ncl ude <wchar. h>

wchar _t [Oacscat (wchar _t Owsl, const wchar _t [Ows2);

DESCRIPTION
wcscat appends a copy of the wide character string ws2, including the NULL wide
character, to the end of the wide character string wsl. The terminating null wide
character at the end of wsl is overwritten by the initial wide character of ws2. The
behavior is undefined if copying takes place between overlapping objects.

These functions do not check for an overflow condition of the array pointed to by
wsl.

Return Value
wcscat returns wsl.

SEE ALSO
wcsncat (BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcscat
svid

Page: 560

wceschr (BA_LIB) wceschr (BA_LIB)

NAME
weschr - scan a wide character string

SYNOPSIS
#i ncl ude <wchar. h>

wchar _t *wcschr(const wchar _t *ws, wnt_t wc);

DESCRIPTION
weschr scans the wide character string pointed to by ws for the wide character
specified by we. The null wide character terminating a string is considered to be
part of the string.

Return Values

wcschr returns a pointer to the first occurrence of wide character we in wide char-
acter string ws, or a null pointer if wc does not occur in the string.

SEE ALSO
wesr chr (BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcschr
svid

Page: 561

wcecscemp (BA_LIB) wcscemp (BA_LIB)

NAME
wcscnp — compare two wide character strings

SYNOPSIS
#i ncl ude <wchar. h>

int wescnp(const wchar _t *wsl, const wchar_t *ws2);

DESCRIPTION
wecsenp makes a comparison between the wide character string pointed to by wsl
and the wide character string pointed to by ws2.

Return Values

wescnp compares its arguments and returns an integer less than, equal to, or
greater than zero, depending on whether wide character string wsl is less than,
equal to, or greater than wide character string ws2. The null wide character com-
pares less than any other wide character.

SEE ALSO
wesnenp(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcscmp
svid

Page: 562

wcscoll (BA_LIB) wcscoll (BA_LIB)

NAME
wcscol | —wide character string comparison using collating information

SYNOPSIS
#i ncl ude <wchar. h>

int wescol | (const wchar _t [Owsl, const wchar_t [Ows2);

DESCRIPTION

wescol | is part of the X/Open Portability Guide Issue 4 optional Enhanced Inter-
nationalization feature group. It compares the wide character string pointed to by
ws1 to the wide character string pointed to by ws2, which are both interpreted as
appropriate to the LC_CCOLLATE category of the current locale.

Return Values
wescol | returns 0 and sets er r no to ENCSYS.

Errors
In the following conditions, wcscol | fails and sets er r no to:

El NVAL The ws1 or ws2 arguments contain wide character codes outside the
domain of the collating sequence.

ENCSYS The function is not supported

USAGE
Since no return value is reserved to show an error, if you want to check for errors,
you should set errno to 0, call wescol |, and then check errno. If it is non-zero,
you can assume that an error has occurred.
Use wesxf r mand wescnp for sorting large lists of wide character strings.

SEE ALSO
strcol | (BA_LIB), wesxfr mBA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcscoll
svid

Page: 563

wcescpy (BA_LIB) wcscpy (BA_LIB)

NAME
wcscpy — copy a wide character string

SYNOPSIS
#i ncl ude <wchar. h>

wchar _t *wcscpy(wchar _t *wsl, const wchar _t *ws2);

DESCRIPTION
wcscpy copies the wide string ws2 to the array wsl, stopping after the null wide
character has been copied. The behavior is undefined if copying occurs between
overlapping objects.
Return Value
wcscpy returns wsl.

USAGE

Overlapping moves may cause unexpected results because the movement of wide
character codes is implementation-dependent.

SEE ALSO
wchar (BA_ENV) wesncpy (BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcscpy
svid

Page: 564

wcscspn (BA_LIB) wcscspn (BA_LIB)

NAME
wcscspn — get length of complementary wide substring

SYNOPSIS
#i ncl ude <wchar. h>

size_t wescspn(const wchar _t *wsl, const wchar_t *ws2);

DESCRIPTION
wecscspn determines the length of the maximum initial segment of the wide string
pointed to by wsl. This string consists entirely of wide characters not included in
the string pointed to by ws2.
Return Values
wcscspn returns the length of the segment.

SEE ALSO
wcsspn(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcscspn
svid

Page: 565

wcsftime (BA_LIB) wcsftime (BA_LIB)

NAME
wesf ti ne — convert date and time to wide character string

SYNOPSIS
#i ncl ude <wchar. h>

int wesftime(wchar_t [Owcs, size_ t size, const wchar_t [format, const
struct tm Cximeptr);

DESCRIPTION
wesfti me puts wide character codes into the array pointed to by wcs as controlled
by the string pointed to by format. It behavior is similar to strfti me, except that
the format and the result are wide character strings. Not more than si ze wide
characters are placed into the array pointed to by wcs.

The behavior is undefined if copying takes place between objects that overlap.

Return Values
If the size of the resultant wide character codes inclusive of the terminating null
wide character code is within the size limit, wesfti ne returns the number of wide
character codes in the array pointed to by wcs, exclusive of the terminating null
wide character code. Otherwise, it returns zero and the contents of the array are
indeterminate.

NOTICES
If the feature test macro _XOPEN SOURCE is defined, then the following synopsis
may be defined:

int wesftine(whar_t 0Owcs, size t size, const char [format, const
struct tm CXimeptr);

For conformance to XPG4’s wcsf t m ne, an alternate interface is defined which we
expect will be updated to match the above version in XPG’s next release.

This version of wesfti ne is allowed to set \rrno to ENCSBYS to show that the
function is not inplenented.

SEE ALSO
strfti me(BA_LIB), wchar (BA_ENV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcsftime
svid

Page: 566

wcslen (BA_LIB) wcslen (BA_LIB)

NAME
wcsl en — obtain wide character string length

SYNOPSIS
#i ncl ude <wchar. h>
size_t wcsl en(const wchar _t *ws);

DESCRIPTION
wesl en returns the number of wide characters in wide character string ws, not
including the terminating null wide character.
Return Values
wesl en returns the length of the string.

SEE ALSO
wchar (BA_ENV),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcslen
svid

Page: 567

wcsncat (BA_LIB) wcsncat (BA_LIB)

NAME
wcsncat — concatenate two wide character strings with bound

SYNOPSIS
#i ncl ude <wchar. h>

wchar _t *wcsncat (wchar _t *wsl, const wchar_t *ws2, size_t n);

DESCRIPTION

wecsncat appends at most n wide characters from the wide string ws2 to the end of
the wide string wsl. Wide characters that follow a null wide character are not
copied. The null wide character at the end of wsl is overwritten by the initial wide
character of ws2. A terminating null wide character is always appended to the
result. The behavior is undefined if copying occurs between overlapping objects.
This function does not check for an overflow condition of the array pointed to by
wsl.

Return Values
wesncat returns wsl.

SEE ALSO
wcscat (BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcsncat
svid

Page: 568

wcsnemp (BA_LIB) wecsnemp (BA_LIB)

NAME
wcsnenp — compare two wide character strings with bound

SYNOPSIS
#i ncl ude <wchar. h>

int wesncnp(const wchar _t *wsl, const wchar_t *ws2, size_t n);
DESCRIPTION

wecsnenp compares not more than n wide characters from the array pointed to by
wsl to the array pointed to by ws2. The function does not compare wide characters
that follow a null wide character.

Return Values
wecsncnp compares its arguments and returns an integer less than, equal to, or
greater than zero, depending on whether the wide string wsl is less than, equal to,
or greater than the wide string ws2. The null wide character compares less than any
other wide character.
SEE ALSO
wecscnp(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcsncmp
svid

Page: 569

wcesncpy (BA_LIB) wcesncpy (BA_LIB)

NAME
wcsnecpy — copy a wide character string with bound

SYNOPSIS
#i ncl ude <wchar. h>

wchar _t *wcsncpy(wchar _t *wsl, const wchar _t *ws2, size_t n);

DESCRIPTION

wesnepy copies exactly n wide characters, truncating the wide string ws2 or adding
null wide characters to wsl, if necessary. Wide characters that follow a null wide
character are not copied. The result will not be null-terminated if the length of ws2
is n or more. If the array ws2 points to is a wide character string that is shorter than
n wide characters, the copy in the array pointed to by wsl is padded with null wide
characters until a total of n wide characters is written. This function does not check
for an overflow condition of the array pointed to by ws1.

Return Values
wesncpy returns wsl.

USAGE
Overlapping moves may cause unexpected results because the movement of wide
characters is implementation-dependent. If there is no null wide character in the
first n wide characters of the array pointed to by ws2, the result will not be null-
terminated.

SEE ALSO
wescpy(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcsncpy
svid

Page: 570

wcespbrk (BA_LIB) wcespbrk (BA_LIB)

NAME
wcspbr k — scan a wide character string for wide characters

SYNOPSIS
#i ncl ude <wchar. h>

wchar _t *wcspbrk(const wchar _t *wsl, const wchar_t *ws2);
DESCRIPTION
wespbr k returns a pointer to the first occurrence in the wide string wsl of any wide
character from the wide string ws2, or a null pointer if there is no wide character
from ws2 in wsl.
Return Values
On completion, wcspbrk returns a pointer to the first wide character, or a null
pointer if no wide character from ws2 is found in ws1.
SEE ALSO
weschr (BA_LIB), wesr chr (BA_LIB),
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcspbrk
svid

Page: 571

wcsrchr (BA_LIB) wcsrchr (BA_LIB)

NAME
wcsr chr —reverse wide character string scan

SYNOPSIS
#i ncl ude <wchar. h>

wchar _t *wcsrchr(const wchar_t *ws, wint_t wc);

DESCRIPTION
wesrchr scans the wide string ws for the last occurrence of the wide character wc.
The null wide character terminating ws is considered to be part of the string.
Return Values
wesrchr returns a pointer to the last occurrence of the wide character wc in the wide
string ws, or a null pointer if wc does not occur in the string.
SEE ALSO
wcschr (BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcsrchr
svid

Page: 572

wcesspn (BA_LIB) wcsspn (BA_LIB)

NAME
wcsspn — obtain the length of a wide substring
SYNOPSIS
#i ncl ude <wchar. h>
size_t wesspn(const wchar _t *wsl, const wchar_t *ws2);
DESCRIPTION
wesspn returns the length of the initial segment of the wide string wsl, which con-
sists entirely of the wide characters from the wide string ws2.
Return Values
wcsspn returns the length of the segment.
SEE ALSO
wcscspn(BA_LIB)
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcsspn
svid

Page: 573

wcsstr (BA_LIB) wcsstr (BA_LIB)

NAME
wesstr, Fweswes - find wide substring

SYNOPSIS
#i ncl ude <wchar. h>

wchar _t *wcsstr(const wchar _t *wsl, const wchar_t *ws2);
wchar _t *weswes(const wchar _t *wsl, const wchar _t *ws2);

DESCRIPTION
wesst r locates the first occurrence in the wide character string pointed to by wsl of
the sequence of wide characters (excluding the terminating null wide character)
pointed to by ws2.
Return Values
Upon successful completion, wesst r returns a pointer to the located wide character
string, or a null pointer if the wide character string is not found.

wesst r returns wsl if ws2 points to a zero-length wide character string.

SEE ALSO
wcschr (BA_LIB),

LEVEL
Level 1.

weswes is designated Level 2 September 30, 1993.

weswes is only provided for XPG4 compatibility. It is anticipated that it will be
removed in a future issue of XPG and of the SVID.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcsstr
svid

Page: 574

wcstod (BA_LIB) wcstod (BA_LIB)

NAME
west od, west of , west ol d — convert wide string to floating point value

SYNOPSIS
#i ncl ude <wchar. h>

doubl e west od(const wchar _t *nptr, wchar_t **endptr) ;
float westof (const wchar _t *nptr, wchar _t **endptr);
| ong doubl e westol d(const wchar _t *nptr, wchar _t **endptr) ;

DESCRIPTION

wcst od returns, as a double-precision floating-point number, the wide character
string pointed to by nptr. wcstof returns, as a single-precision floating-point
number, the wide character string pointed to by nptr. wcst ol d returns, as a long
double-precision floating-point number, the wide character string pointed to by
nptr. Scanning occurs up to the first wide character that is unrecognized. The func-
tion recognizes an optional string that is composed of "white space” wide characters
as defined by the i swspace function. The string is then followed by an optional
sign then a sequence of digits optionally containing a decimal point character, fol-
lowed by an exponential part (e or E) then another optional sign with an integer fol-
lowing it.

Also, instead of the regular decimal digit sequence, the string can be a hexade-
ci mal floating value, ani nfinity, oraNaN. A hexadecimal floating value consists
of Ox or OX followed by a sequence of hexadecimal digits optionally containing a
decimal point character, followed by a binary exponent part p or P then an optional
sign with an integer following it. The exponent part must be present if no decimal
point character is present. An infinity is specified by the string i nf orinfinity
case insensitive. A NaN is specified by nan case insensitive, followed by an optional
sequence of zero or more alphanumeric or underscore _ characters between a pair
of parenthesis. If the value of endptr is not null, a pointer to the wide character ter-
minating the scan is returned in the location pointed to by endptr.

Return Values
The function returns the value produced after the conversion process. If the func-
tion has not been performed then zero is returned and er r no may be set to El NVAL.

If a correct value causes overflow, +HUGE VAL is returned, depending on the sign of
the value, and err no is set to ERANGE.

If the value produced is correct but causes underflow, then zero will be returned
with er r no being set to ERANGE.

Errors
In the following conditions, these functions may fail and set er r no to:

ERANGE The value produced after the conversion process would cause either
an overflow or underflow.
El NVAL No conversion process could be carried out.
USAGE

Zero and +HUGE_VAL can be returned as a correct value after the conversion pro-
cess. However, they can also be returned on error. To check for an error condition,
zero should be assigned to er r no followed by a call to one of these functions

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcstod
svid

Page: 575

wcstod (BA_LIB) wcstod (BA_LIB)

and then a check on errno. If the value of errno is non-zero it can be assumed
that an error has occurred.

SEE ALSO
| ocal econv(BA_LIB), scanf (BA_LIB), set | ocal e(BA_OS), west ol (BA_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/wcstod
svid

Page: 576

wcstok (BA_LIB) wcstok (BA_LIB)

NAME
wcst ok — split a wide character string into tokens

SYNOPSIS
#i ncl ude <wchar. h>

wchar _t *wcst ok(wchar _t *wsl, const wchar _t *ws2, wchar _t **savept) ;

DESCRIPTION
west ok splits the wide string pointed to by wsl into tokens delimited by a wide
character found in the wide string pointed to by ws2. savept points to a wchar _t
pointer provided by the caller, in which wcst ok stores information it needs to con-
tinue processing a particular wide string.

ws1 points to a wide string on the first call to west ok, and is a null pointer on subse-
quent calls for the same wide string. When wsl is a null pointer, the value pointed
to by savept is that set by the previous call to west ok for the same wide string. Oth-
erwise, the incoming value of the object pointed to by savept is ignored.

On the first call, west ok searches for the first wide character which does not occur
in the wide string pointed to by ws2. This wide character, if found, is the beginning
of the first token. If no appropriate wide character is found, wcst ok returns a null
pointer, and there are no tokens in the wide string.

Starting at the first wide character of the token, wcst ok searches for a wide charac-
ter which does occur in the wide string pointed to by ws2. If an appropriate wide
character is found, it becomes the end of the token, and is overwritten by a null
wide character. The current token extends to the end of the wide string pointed to
by wsl if no appropriate wide character is found. A null pointer is returned by any
subsequent searches of the same wide string.

wcst ok uses the pointer pointed to by savept to store enough information for subse-
quent calls to start searching just past the end of the token (if any) previously
returned.

ws2 can point to a different wide character separator string for each call.

Return Values
On success, west ok returns a pointer to the first wide character of a token. On
failure, when no token is found, the function will return a null pointer.

NOTICES
The functionality of this interface is the same as that described previously, except an
internal address is pointed to by savept, therefore no third argument is necessary.

SEE ALSO
wchar (BA_ENV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcstok
svid

Page: 577

wcstol (BA_LIB) wcstol (BA_LIB)

NAME

wcst ol - convert a wide character string to a long integer

SYNOPSIS

#i ncl ude <wchar. h>
| ong westol (const wchar _t *nptr, wchar_t **endptr, int base);
| ong westoul (const wchar _t *nptr, wchar _t **endptr, int base);

DESCRIPTION

wcst ol returns, as a long integer, the value represented by the character string
pointed to by nptr. wcstoul returns, as an unsigned long integer, the value
represented by the character string pointed to by nptr. The string is scanned up to
the first character inconsistent with the base. Leading ‘““white-space’ characters [as
defined by i swspace] are ignored.

If the value of endptr is not a null pointer, a pointer to the wide character terminat-
ing the scan is returned in the location pointed to by endptr. If no integer can be
formed, that location is set to nptr, and zero is returned.

If base is between 2 and 36, inclusive, it is used as the base for conversion. After an
optional leading sign, leading zeros are ignored, and a leading “Ox” or “OX is
ignored if base is 16 and a leading) b or OB is ignored if base is 2.

If base is zero, the string itself determines the base as follows: After an optional
leading sign a leading zero indicates octal conversion, and a leading “0x”" or “‘0X”
hexadecimal conversion. Otherwise, decimal conversion is used.

Return Values

For west ol , if the value represented by nptr would cause overflow, LONG MAX or
LONG M Nis returned (according to the sign of the value), and errno is set to the
value ERANGE.

For west oul , if the value represented by nptr would cause overflow, ULONG MAX is
returned, and er r no is set to the value ERANGE.

If west ol orwcst oul is given a base other than zero or 2 through 36, it returns zero
and sets errno to El NVAL. Otherwise, west ol and west oul return the represented
value.

Errors

In the following conditions, wcst ol fails and sets er r no to:
El NVAL The value of base is not supported.

El NVAL No conversion could be performed.

ERANGE The value to be returned is not representable.
SEE ALSO

scanf (BA_LIB), wcst od(BA_LIB)
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcstol
svid

Page: 578

wceswidth (BA_LIB) wcswidth (BA_LIB)

NAME
wcswi dt h — determine the number of column positions for a wide character string

SYNOPSIS
#i ncl ude <wchar. h>
int wcsw dt h(const wchar _t *pwcs, size_t n);

DESCRIPTION
weswi dt h determines the number of column printing positions needed for up to n
wide characters in the wide string pwcs. Fewer than n wide characters will be pro-
cessed only if a null wide character is encountered before n wide characters in pwcs.

Return Values

weswi dt h returns either zero if pwecs is pointing to a null wide character code, or the
number of column positions occupied by the wide character string pointed to by
pwcs. weswi dt h returns -1 if any wide character code in the wide character string
pointed to by pwcs is not a printable wide character.

EXAMPLES
This example function, when passed a wide character string, calculates the number
of column positions required and prints a diagnostic message.

#i ncl ude <wchar. h>
#i ncl ude <stdi o. h>

int
print_wi dth(const wchar_t *pwcs)
{
int wdth;
size_t len;
I en = wesl en(pwes) ;
if (len >0 {
width = weswidth (pwes, len);
if (width == -1)
(void) printf("non printable character\n");
el se
(void) printf("Wde string width=%l\n",w dth);
return (1);
}
(void) printf("zero length w de character string\n");
return (0);
}
SEE ALSO
wchar (BA_DEV), wew dt h(BA_LIB)
LEVEL
Level 1.
Page 1
FINAL COPY

June 15, 1995
File: ba_lib/wcswidth
svid

Page: 579

wesxfrm (BA_LIB) wesxfrm (BA_LIB)

NAME
wesxf r m—wide character string transformation

SYNOPSIS
#i ncl ude <wchar. h. h>

size_t wesxfrm{wchar _t [Owsl, const wchar_t [Ows2, size_t n);

DESCRIPTION
wesxf rmis part of the X/Open Portability Guide Issue 4 optional Enhanced Inter-
nationalization feature group.

wesxf r m transforms the wide character string pointed to by ws2 and places the
resulting wide character string into the array pointed to by ws1. The transformation
does the following:

If wesenp is applied to two transformed wide strings, it returns a value greater
than, or equal to, zero, corresponding to the result of wescol | applied to the same
two original wide character strings.

No more than n wide-character codes are placed into the resulting array pointed to
by wes1, including the terminating null wide-character code. If n is zero, wcs1 can
be a null pointer. If copying takes place between objects that overlap, the behavior
is undefined.

Return Values
wesxf rmreturns the length necessary to hold the entire transformed wide character
string, not including the terminating null wide-character code. If the value returned
is n or more, the contents of the array pointed to by wsl are indeterminate.
wesxf rmreturns - 1 and sets er r no to ENOBYS.

Errors
wesxf r mmay fail if
El NVAL The ws1 or ws2 arguments contain wide character codes outside the

domain of the collating sequence.
ENCSYS The function is not supported

USAGE
Since no return value is reserved to show an error, if you want to check for errors,
you should set errno to O, call wescol |, and then check errno. If it is non-zero,
you can assume that an error has occurred.

SEE ALSO
st rxf r mBA_LIB), wchar (BA_DEV), wcscol | (BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcsxfrm
svid

Page: 580

wctob (BA_LIB) wctob (BA_LIB)

NAME
wct ob — wide character to byte conversion

SYNOPSIS
#i ncl ude <stdio. h>
#i ncl ude <wchar. h>
int wetob(w nt_t c);
DESCRIPTION
wct ob determines whether ¢ corresponds to a member of the extended character set

whose multibyte character representation is as a single byte when in the initial shift
state.

Return Values
wct ob returns ECF if ¢ does not correspond to a multibyte character with length
one; otherwise, it returns the single byte representation.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wctob
svid

Page: 581

wctype (BA_LIB)

NAME

wctype (BA_LIB)

wctype: i swal pha, iswupper, iswower, iswdigit, iswdigit, iswal num

i swspace, i swpunct, i swprint, i swgraph, i swentrl — test wide characters for a

specified class
SYNOPSIS

#i ncl ude <wchar. h>

int iswal pha(w nt_t wc);
int iswpper(wnt_t wc);
int iswower(wnt_t wc);
int iswdigit(wnt_t wc);
int iswdigit(wnt_t wc);
int iswal num{(wint_t wc);
int iswspace(w nt_t wc);
int iswpunct(w nt_t wc);
int iswprint(wnt_t wc);
int iswgraph(wnt_t wc);
int iswentrl(wnt_t wc);
DESCRIPTION

swal pha(wc)
swupper (\wc)
sw ower (\wc)
swdi gi t (wc)
swxdi gi t (wc)
swal nurr(wc)
swspace(wc)
swpunct (' wc)
swpr i nt (wc)

swgr aph(wc)

swentrl we

Return Values
If wec matches the classification of the called function, nonzero is returned. Other-
wise, zero is returned. locale (category LC_CTYPE).

LEVEL

Level 1.

wc is an alphabetic wide character.

wc is an uppercase wide character.

wec is a lowercase wide character.

wc is a wide character representing a digit.

wc is a wide character representing a hexadecimal digit.

wc is an alphanumeric wide character.

wc is a wide character representing a white space character.

wc is a wide character representing a punctuation character.

wc is a wide character representing a printing character includ-
ing space.

wc is a wide character like above but does not include white
space.

wc is a control characters (not printable)

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wctype
svid

Page: 582

wcwidth (BA_LIB) wcwidth (BA_LIB)

NAME
wewi dt h — determine the number of column positions for a wide character
SYNOPSIS
#i ncl ude <wchar. h>
int wewi dth(w nt_t wc);
DESCRIPTION
wewi dt h determines the number of column printing positions that are needed by
the wide character wc.
Return Values
wewi dt h returns zero if we is a null wide character, or the number of column print-
ing positions the wide character wc occupies. wewi dt h returns -1 if wc does not
correspond to a valid, printable wide character.
EXAMPLE
Here is a program that reads a wide character from standard input and prints the
width of the character.

#i ncl ude <wchar. h>
#i ncl ude <stdio. h>

mai n()

int x;
wint_t wec;

if ((we=fgetwc(stdin)) != WECF) {
x=wcwi dt h(wc) ;

if (x==-1)
(void) printf("Character not printable\n");
el se
(void) printf("Character w dt h=%\n", x);
exit(0);
(void) printf("Error encountered readi ng character\n");
exit(2);
}
SEE ALSO
wchar (BA_DEV), weswi dt h(BA_LIB)
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wcwidth
svid

Page: 583

wordexp (BA_LIB) wordexp (BA_LIB)

NAME

wor dexp, wor df r ee — perform word expansions

SYNOPSIS

#i ncl ude <wor dexp. h>
i nt wordexp(const char [&tring, wordexp_t [Cpword,int flags);
voi d wor df ree(wor dexp_t Chword) ;

DESCRIPTION

These functions are part of the X/Open Portability Guide Issue 4 optional POSIX2
C-Language Binding feature group.

wor dexp performs word expansions and places the list of expanded words into the
structure pointed to by pwor d.

Return Values

wor dexp returns WRDE_NCBYS and sets er r no to ENCSYS.
wor df r ee returns and sets er r no to ENCSYS.

Errors

USAGE

In the following conditions, wor dexp returns and sets er r no to:

WRDE_BADCHAR One of the unquoted characters appears in words in an inap-
propriate context.

WRDE_BADVAL Reference to an undefined shell variable when WRDE_UNDEF is set
in flags.

WRDE_QOVDSUB Command substitution requested when WRDE_NOCOMD was set in
flags.

WRDE_NCSPACE Attempt to allocate memory failed.
WRDE_SYNTAX Shell syntax error.

wor dexp should be used by an application that wants to do all the shell’s expan-
sions on a word or words obtained from a user. If the application prompts for a file
name and then uses wor dexp to process the input, you could respond with any-
thing that would be valid input to the shell.

The WRDE_NOOMD flag prevents you from executing shell commands. Not allowing
unquoted shell special characters also prevents unwanted side effects such as exe-
cuting a command or writing a file.

SEE ALSO

LEVEL

f nmat ch(BA_LIB), gl ob(BA_LIB),

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/wordexp
svid

Page: 584

Base System Devices Introduction

This section contains an overview of the STREAMS 1/0 Interfaces, followed by
the BA_DEV manual pages.

STREAMS I/O Interfaces Overview

STREAMS is a general, flexible facility for development of communication ser-
vices. It supports development ranging from complete networking protocol suites
to individual device drivers by defining standard interfaces for character
input/output within the kernel. The standard interfaces and associated tools
enable modular, portable development and easy integration of high performance
network services and their components. STREAMS provides a broad framework
that does not impose any specific network architecture. It implements a user
interface consistent and compatible with the character /0 mechanism.

The power of STREAMS resides in its modularity. The design reflects the layering
characteristics of contemporary networking architectures such as Open Systems
Interconnection (OSI), Systems Network Architecture (SNA), Transmission Con-
trol Protocol/Internet Protocol (TCP/IP), and XEROX Network Systems (XNS)
(XEROX is a registered trademark of Xerox Corporation). For these protocol
suites, developers have traditionally faced problems arising from lack of relevant
standard interfaces. STREAMS defines standard mechanisms for implementing
protocols in "modules”. Each module represents a set of processing functions and
communicates with other modules via a standard interface. From user-level,
kernel-resident modules can be dynamically selected and interconnected to imple-
ment any rational processing sequence. Modularity allows these advantages:

m User-level programs can be independent of underlying protocols and physi-
cal communication media.

m Network architectures and higher-level protocols can be independent of
underlying protocols, drivers, and physical communication media. This
enables customers to retain their investment in application software as they
migrate to different networking environments.

m Higher level services can be created by selecting and connecting lower level
services and protocols.

m Protocol module portability is enhanced by well defined structure and inter-
face standards.

Base System Devices Introduction 7-1

FINAL COPY

June 15, 1995

File: ba_dev.txt
svid

Page: 585

m Terminal subsystems can have customized line discipline modules.

Implementing networking facilities and communication components under
STREAMS allows efficient, open-ended products.

STREAMs Fundamentals

"STREAMS" refers to the mechanism consisting of operating system service rou-
tines, kernel resources, and kernel utility routines. A stream, as illustrated in
figure 1, is a full duplex processing and data transfer path in the kernel that is
created through an application of the STREAMS mechanism.

Figure 7-1: Basic Stream

System calls User Space

Stream mechanism Kernel Space

Driver

A stream implements a connection between a driver in kernel space and a process
in user space. It provides a general character input/output (I1/0) interface for
user processes. STREAMS 1/0 is based on messages. Messages flow in both
directions in a stream. Each module represents processing functions to be per-
formed on the contents of messages flowing into the module on the stream. Each
modaule is self-contained and functionally isolated from any other component in
the stream except its two neighboring components. A module communicates with

7-2 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995
File: ba_dev.txt
svid

Page: 586

its neighbors by passing messages. The module receives the message, inspects the
type, and processes it or just passes it on. A module can function, for example as,
a communication protocol, line discipline, or data filter.

There are many message types used by STREAMS modules. They can be
classified according to queueing priority. Every message has a priority band asso-
ciated with it. Messages may be normal, priority, or high-priority. Normal mes-
sages have a priority band of zero and are always placed at the end of the queue
following all other messages in the queue. High-priority messages are always
placed at the head of a queue but after any other high-priority messages already in
the queue. By convention they are not affected by flow control and their priority
band is ignored. They are high-priority by virtue of the message type. Priority
messages are always placed on the queue as indicated by their priority band.
They are placed after any messages in the same priority band already on the
queue. High-priority and priority messages are used to send control and data
information outside the normal flow control constraints. Priority messages enable
support of "expedited"” or "urgent" data which are needed for various networking
protocols. Each priority band is subject to separate flow control from other prior-
ity bands. To prevent congestion and resource waste due to lack of flow control
with high-priority messages, only one high-priority message may be placed in the
stream head read queue at a time.

A user may access STREAMS messages that contain a data portion, control por-
tion, or both. The data portion is that information which is sent out over the net-
work and the control information is used by the local STREAMS modules. The
other types of messages are used between modules and not accessible to users.
Messages containing only a data portion are accessible via put msg(),

put pmsg(), getnsg(),getpmsg(), read(),and wite() routines. Mes-
sages containing a control portion with or without a data portion are accessible via
callsto putmsg(), put pnmsg(),getnsg(),andget pnsg() .

The interface between a user process and STREAMS is compatible with the pre-
STREAMS character 1/0 facilities.

Accessing Streams

User access to STREAMS is provided through a set of operating system service
routines. These include the traditional open(),cl ose(), read(),wite(),
andi oct| () operating system service routines as well as the put nsg(),

put prsg(), get nsg(), get pnsg(), and pol | () routines.

Base System Devices Introduction 7-3

FINAL COPY

June 15, 1995

File: ba_dev.txt
svid

Page: 587

Setting Up a Stream

Like conventional drivers, the STREAMS-based driver occupies a node in the file
system and may be "opened" and "closed". When a STREAMS-based device is
opened, a stream is automatically set up. As shown in Figure 2, this open sets up
a stream with an internal module called the "stream head" closest to the user and
the device driver downstream from the stream head.

Figure 7-2: Setting Up a Stream

user
pprocess

User

stream head
Kernel

driver

The stream then consists of the stream head and a driver. To add other modules
to the stream, the user calls the i oct | () operating system service routine to
"PUSH" a module.

The syntax for thisi oct | () command is

ioctl(fd, I _PUSH, "name")

where fd is the file descriptor of the open stream, | _PUSH is the command, and
"name" is the name of the module to be pushed. The number of modules that may
be pushed onto a stream is a configurable quantity. A new module is always
pushed just below the stream head so the order of "pushes” is important. After the
module is pushed, the stream looks as shown in the figure below:

7-4 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995
File: ba_dev.txt

svid

Page: 588

Figure 7-3: Before and After a Module is Pushed

Before PUSH
user
process

‘ stream head ‘

After PUSH
user
process

stream head

User User

‘ Kernel

driver

‘ module

driver

I
I
I
I
I
I
I
I
I
I
I
I
I

Kernel |
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The user may "POP" modules off a stream using the i oct | () command
ioctl (fd, 1_POP, 0)

This routine removes the module most recently added to the stream designated by
the file descriptor fd; this is always the intermediate module closest to the stream
head. At the user-level, drivers are operationally distinct from other modules;
drivers are explicitly opened by device pathname, while modules are "pushed”
onto the stream by module name. Device pathnames are ordinary system
filenames, but pushable modules’ names are internal to the system and are not
visible in the file system.

Sending and Receiving STREAMS Messages

In order to send and receive STREAMS messages that contain control information,
the routines get nsg(), get psg(), put nsg(), and put pnsg() must be used.
These differ fromread() andw it e() in that the traditional routines can access
STREAMS messages containing only data, while get nsg(), get pnsg(),

put nsg(),and put pnsg() can access messages containing a control portion,
data portion, or both. The control portion is used to carry interface information
between modules and drivers.

Base System Devices Introduction 7-5

FINAL COPY

June 15, 1995

File: ba_dev.txt
svid

Page: 589

As an example, the transport functions of the OPEN SYSTEMS NETWORKING
INTERFACES use put msg() to send service requests (e.g., to establish a connec-
tion), with or without data, to the underlying STREAMS-based transport protocol.
get msg() is used by the transport functions to receive information back.

Polling STREAMS

The pol I () routine provides users with a mechanism for multiplexing
input/output over a set of file descriptors that reference open files; this section
will describe how pol | () can be used in conjunction with files that are streams.
pol | () identifies those streams on which a user can send or receive messages or
on which certain events have occurred. The syntax for pol | () is as follows:

int poll (pollfds, nfds, timeout)

where nfds specifies the number of file descriptors to be examined, timeout
specifies the number of msec that pol | () should wait for an event to occur, and
pollfds is an array of pol | f d structures where each structure contains the follow-
ing members:

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

These structures specify the file descriptors to be examined and the events of
interest for each file descriptor. f d specifies an open file descriptor and event s
and r event s are bitmasks constructed by OR-ing any combination of the events
specific to the pol | () operating system service routine.

For each element of the array pointed to by pollfds, pol | () examines the given
file descriptor for the event(s) specified in event s.

The results of the pol | () query are stored in the revent s field in the pol | fd
structure. Bits are set in the r event s bitmask to indicate which of the requested
events are true. If none are true, none of the specified bits is set in r event s when
the pol I () call returns.

If none of the defined events have occurred on any selected file descriptor,

pol | () wvaits at least timeout msec for an event to occur on any of the selected file
descriptors. If the value of timeout is O, pol | () returns immediately, effectively
polling the file descriptors. If the value of timeout is - 1, pol | () blocks until a
requested event occurs or until the call is interrupted.

7-6 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995
File: ba_dev.txt

svid

Page: 590

Multiplexing in STREAMS

Until now, STREAMS has been described as linear connections of modules, where
each invocation of a module is connected to at most a single upstream module and
a single downstream module. While this configuration is suitable for many appli-
cations, others require the ability to multiplex STREAMS in a variety of
configurations. Typical examples are internetworking protocols, which might
route data over several subnetworks, or terminal window facilities.

STREAMS provides the capability to dynamically build, maintain, and dismantle
multiplexing configurations. Two types of multiplexing are supported by
STREAMS. The first type allows user processes to connect multiple streams to a
single driver from above. This configuration can be established by opening multi-
ple minor devices of the same driver, and does not require any special STREAMS
facilities. The second multiplexing type allows user processes to connect multiple
streams below a pseudo-driver. This configuration must contain a multiplexing
pseudo-driver recognized by STREAMS as having special characteristics. A spe-
cial setof i octl () commands is used to establish this multiplexing
configuration. STREAMS allows a user to build complex, multi-level
configurations by cascading multiplexing streams below one another.

Setting Up a Multiplexer

A multiplexing driver is a pseudo-device, and is treated like any other software
driver. It has a node in the file system, and is opened just like any other
STREAMS device driver. The open() call establishes a single stream "above" the
multiplexer, and the process that opened the multiplexer is

Base System Devices Introduction 7-7

FINAL COPY

June 15, 1995

File: ba_dev.txt
svid

Page: 591

returned a file descriptor that can be used to access the stream that was opened.
The file descriptor f dO in Figure 4 is an example of this.

Next, one of the drivers that is to exist "below" the multiplexer is opened. Once
again, this is a driver, and is opened like any other system device. The open()
operating system service routine is used to open the driver, a stream is established
between the driver and a stream head, and the process that issued the open() call
is returned a file descriptor that can be used to access the stream connected to the
driver (e.g., f d1 in Figure 4).

If the eventual multiplexing configuration is to have intermediate protocol or
line-discipline modules in the stream between the driver just opened and the mul-
tiplexer (e.g., between the MUX driver and Driverl in the "After" section of Figure
4), these modules should be added at this time to the stream just opened, using the
| _PUSHi oct | () command. The "push" operation must be done before the
driver is attached below the multiplexer because, once connected, i oct | () com-
mands cannot be issued to the bottom driver in the normal way.

The driver that was just opened is then connected below the multiplexing driver
that was opened first. This is done using the | _LI NK command of thei oct | ()
operating system service routine; the complete sequence is given here:

fdo = open("/dev/MIXdriver", oflag);
fdl = open("/dev/Driverl", oflag);
mux_id = ioctl(fdO, |_LINK, fd1);

Here, the variable f dO is the file descriptor for the stream connected to the multi-
plexing driver, and f d1 is the file descriptor for the stream connected to another
driver. It should be noted that in thei oct | () call the placement of the first argu-
ment (f dO) and the third argument (f d1) is important; the first argument must be
the file descriptor of the stream connected to the multiplexing driver. (See Figure
4.) The value mux_i d is returned by the operating system service routine; it is
used by the multiplexing module to identify the stream just connected.

Figure 4 shows two drivers and a multiplexing driver before and after the two
drivers have been linked below the multiplexer.

7-8 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995
File: ba_dev.txt

svid

Page: 592

Figure 7-4: A Multiplexing Configuration Before and After 21 _LI NKi oct | () Calls

BEFORE:
user
| fd1 | | fdo | | fd2 | kernel
MUX
Driver
Driverl Driver2
AFTER
user
fdl fdo fd2 kernel
MUX
Driver
|
Driverl Driver2

Other device drivers are opened and linked below the multiplexing driver in the
same way, as in the example shown in Figure 4:

Base System Devices Introduction 7-9

FINAL COPY

June 15, 1995

File: ba_dev.txt
svid

Page: 593

/* open anot her driver */

fd2 = open("/dev/driver2", oflag);
/* link it below the MJX */
mux_id2 = ioctl (fd0, I|_LINK fd2);

The number of streams that can be "linked" to a multiplexer depends on the partic-
ular multiplexer, and it is the responsibility of the multiplexer to keep track of the
streams linked to it. However, only one | _LI NK operation is allowed for each
"lower" stream; a single stream cannot be linked below two multiplexers simul-
taneously.

The order in which the streams in the multiplexing configuration are opened is
unimportant. It is only necessary that the two streams referenced as arguments to
the | _LI NKi oct| () are both open when the | _LI NKioctl () command is
issued. Once the configuration is established, the file descriptors that point to the
"bottom" device drivers (e.g., f d1 and f d2 in Figure 4) can be closed without
affecting the way the multiplexer works; these closes will not cause the drivers to
be unlinked from the multiplexer. If these file descriptors (f d1 and f d2 in Figure
4) are not closed, the multiplexer will work as expected, but all subsequent
read(), wite(),ioctl (), poll(),putnsg(), putpnsg(),getnsg(),and
get pnsg() OS service routine calls issued to f d1 and f d2 will fail.

Figure 7-5: Three STREAMS Converging on One Device Driver

fdo fdl fd2 fd3 user

‘ ‘ ‘ ‘ kernel
Multiplexer
Driver
A

L

Driver
0
7-10 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY

June 15, 1995

File: ba_dev.txt
svid

Page: 594

Building a multiplexer that connects several streams to a single driver, as in Figure
5, is similar, except that only one driver is linked below the multiplexer. Addi-
tional streams above the multiplexer would be established by issuing repeated
open() calls to the multiplexer on "related" minor devices. Again, the way the
multiplexer handles these repeated calls to open() is multiplexer-dependent, as is
the number of streams that a particular multiplexer will successfully handle.

More complex multiplexing configurations can also be created. It is possible to
combine the examples of Figures 4 and 5 to create a configuration with many
streams above and many drivers linked below the multiplexer. STREAMS
imposes no restrictions on the number of multiplexing drivers that may be
included in a multiplexing configuration or on the number of multiplexers that
data can pass through when moving from one end of the multiplexing
configuration to the other.

Another type of link, called a "persistent link", can also be created in a multiplex-
ing configuration. Two new i octl () commands, | _PLI NKand | _PUNLI NK,
are used to create and remove such "persistent” links. The syntax for these com-
mands is the same as for | _LI NKand | _UNLI NK. However, these persistent
links are not associated with the stream above the multiplexer. Acl ose() or

| _UNLI NKwould not disconnect the persistent links. In Figure 4, if the link to
Driverl is a persistent link, the file descriptor, f dO, associated with the stream
above the MUX Driver, can be closed without dismantling the persistent link
below. Other users can come in and open MUXdriver and send data to Driverl
since the persistent link to Driverl remains intact.

In a multi-level multiplexing configuration where persistent links exist below a
multiplexer whose stream is connected to the above multiplexer by regular links,
closing the file descriptor associated with the controlling stream will remove the
regular link but not the persistent links below it. Regular links are also allowed to
exist below a multiplexer whose upper stream is connected via a persistent link.
In this case, the regular links would be removed if the persistent link above them
is removed, and if there were no open references to the lower streams.

Dismantling a Multiplexer

Multiplexing configurations are taken apart using thei oct| () | _UNLI NKor
I _PUNLI NK command. Each of the bottom drivers linked below the multiplexing
driver (e.g., Driverl and Driver2 in Figure 4) can be individually disconnected:

ioct!(fd0, | _UNLINK, rux_id);

Here, f dO is the file descriptor pointing to a stream connected to the multiplexing
driver, and mux_i d is the identifier that was returned by thei oct| () | _LI NK
command when one of the bottom drivers was linked to the multiplexing driver.
Each bottom driver can be disconnected individually in this way, or a special

Base System Devices Introduction 7-11

FINAL COPY

June 15, 1995

File: ba_dev.txt
svid

Page: 595

mux_i d value of MUXI D_ALL will disconnect all bottom modules from the multi-
plexer simultaneously. This unlinking occurs automatically on the last close of the
top stream through which the lower streams were linked under the multiplexer;
all these bottom streams are then unlinked.

To disconnect a persistent link, one would have to first open the driver to obtain a
file descriptor f dO, if it had been closed, and then call i oct| () with

I _PUNLI NK as the command using the mux_i d that had been returned on the
previous | _PLI NKcommand. This call removes the persistent link in between
the multiplexer referenced by f dO and the stream to the driver designated by
nmux_i d. Acall witha nux_i d value of MJUXI D_ALL will unlink all persistent
links below the multiplexing driver referenced by f dO.

The use of | _PLI NKand | _PUNLI NK should not be intermixed with that of
| _LI NKand | _UNLI NK. Any attempt to unlink a regular link via | _PUNLI NK or
to unlink a persistent link via | _UNLI NK will fail.

Multiplexed Data Routing

Processes use the normal read(), wite(),getnsg(),getpnmsg(),

put msg(), and put pnsg() operating system service routines to read data from
and write data to an upper stream connected to the multiplexer. When these data
are routed through a multiplexer, the multiplexer must use its own criteria to
route the data moving in both directions. For example, a protocol multiplexer
might use protocol address information found in a protocol header to determine
over which subnetwork a given packet should be routed. It is the multiplexing
driver’s responsibility to define its routing criteria.

One option available to the multiplexer is to use the "mux id" value to determine
which stream to route data to. The multiplexer has access to this value, and the
I _LINKioctl () command returns this value to the user. The multiplexer can
therefore specify that the "mux id" value accompany the data routed through it.

Pipe Fundamentals

A pipe is a mechanism that provides a communication path between multiple
processes. It implements a user interface consistent and compatible with the char-
acter 1/0 mechanism.

A STREAMS-based pipe, as shown in Figure 6, is a full duplex processing and
data transfer path in the kernel that is created by a user process invoking the

pi pe() routine. A pipe implements a connection between the kernel and one or
more user processes. A STREAMS-based pipe supports capabilities beyond those
of the traditional pipe but has maintained the semantics of the traditional pipe.
Because of the STREAMS framework, a user can push processing modules,

pol I (), and pass file descriptors across these pipe connections.

7-12 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995
File: ba_dev.txt

svid

Page: 596

The remainder of this section will use the term pipe to refer to a STREAMS-based
pipe.

Creating and Accessing Pipes

A user process creates a pipe via the pi pe() operating system service routine
which returns two file descriptors, fd[0] and f d[1] , that are opened for both
reading and writing. Data written to f d[0] can be read from f d[1] and data
written to f d[1] can be read from f d[0] . Unlike STREAMS-based drivers or
pseudo drivers, a pipe is not an object in the file system name space. A user pro-
cess accesses the pipe through one of these two file descriptors that represent each
end of the pipe.

When a pipe is created via the pi pe() routine, two streams are automatically set
up, each only consisting of an internal stream head module. As shown in Figure 6,
a pipe represents two separate streams, with both streams attached in such a way
that messages flow in either direction, from one stream head to the other.

Figure 7-6: Basic STREAMS-based Pipe

USEr process

stream head] | stream head Kernel

User

Other modules can be added to the pipe if the user invokes i oct | () to "PUSH"
the modules, as shown in Figure 7.

Base System Devices Introduction 7-13

FINAL COPY
June 15, 1995
File: ba_dev.txt

svid

Page: 597

Named Streams

Some applications may find it helpful to be able to dynamically associate a stream
or STREAMS-based pipe with an existing object in the file system name space. For
example, a server process may create a pipe, name one end of the pipe, and permit
unrelated processes to communicate with it over the named pipe.

A STREAMS file descriptor can be named by attaching that file descriptor to an
object in the file system name space. The routine used to name a STREAMS file
descriptor is fattach() which has the following interface:

fattach (int fildes, char *path)

fildes must be an open file descriptor that refers to either a STREAMS-based pipe
or a STREAMS device driver (or pseudo device driver). This discussion describes
the scenario where fildes represents a STREAMS-based pipe. path is an existing
object in the file system name space (e.g. regular file, directory, character special
file, etc.) and cannot already have a STREAMS file attached to it. In addition, path
must not be the mount point for a file system nor the root of a file system. To
attach the file descriptor, the user must be the owner of path with write permission
or must be a process with the appropriate privileges.

If path is currently in use at the time f at t ach() is executed, those user processes
accessing path will not be interrupted and any data that was associated with path
before the call to f attach() will continue to be accessible by those processes.

After a file descriptor is named, all subsequent operations (e.g. open()) on path
will operate on the named stream. Thus, it is possible that a user process can have
one file descriptor pointing to the data associated with path and another file
descriptor pointing to the named STREAMS-pipe.

Once the stream is named, st at () on path will project the information for the
STREAMS-file. That is, if the named stream is a pipe, the st at () information
will show that path is a pipe. If the STREAMS file is a device driver (or pseudo
device driver) path will show the information for the devices. The attributes of the
named stream|[see stat(BA_OS)] are initialized as follows: the permissions, user ID,
group ID, and times are set to those of path, the number of links is set to 1, and the
size and device indentifier are set to those of the streams device associated with
fildes. Once the stream is named, the user can issue chnod(), chown() to alter
the attributes of the named stream and not

Base System Devices Introduction 7-15

FINAL COPY

June 15, 1995

File: ba_dev.txt
svid

Page: 599

affect the original attributes of path nor the original attributes of the STREAMS-
file.

The size represented in the st at () information will reflect the number of unread
bytes of data currently at the stream head. This size is not necessarily the number
of bytes written to the STREAM.

A STREAMS-based file descriptor can be attached to many different paths at the
same time, i.e. a stream can have several names attached to it. The modes, owner-
ship and permissions of these paths may vary. However, operations on any of
these paths will access the same stream.

Since hamed streams are STREAMS devices, processes can push modules,
pol I (), pass file descriptors, or do any other STREAMS operations on them.

To disassociate a filename from a named stream, the f det ach() routine is
invoked with the following interface:

fdetach (char *path)

where path is the name of the previously attached object. The user must be the
owner of path or a user with the appropriate privileges. If processes have the
named stream open at the time of the call to f det ach(), these processes are not
affected and continue to access the named stream.

The original permission, mode and ownership are restored to the state prior to
naming. In addition, the type and the size of the object reflect the object itself, as it
appears in the file system. Subsequent operations on path will access the file sys-
tem object and no longer access the named stream. If only one end of the pipe is
attached, the last close of the other end (for example the process closes down) will
cause the attached end to be automatically detached. If, however, the named
stream is a device and not a pipe, the last close of the file will not cause the stream
to be detached. A process has to invoke f det ach() to detach the stream.

Passing File Descriptors

Named stream pipes are especially useful for passing file descriptors between
unrelated processes. A user process can send a file descriptor to another process
by invoking i oct | () on one end of a named stream pipe with the | _SENDFD
command. This sends a message containing a file pointer to the stream head at the
other end of the pipe. Another process can retrieve that message containing the
file pointer by invoking i oct | () on the other end of the pipe with the

| _RECVFDcommand.

7-16 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995
File: ba_dev.txt

svid

Page: 600

Base System Devices

This following section contains the manual pages for the BA_DEV routines.

Base System Devices

FINAL COPY
June 15, 1995
File: ba_dev.cov
svid

Page: 601

8-1

FINAL COPY
June 15, 1995
File

Page: 602

devcon (BA_DEV) devcon (BA_DEV)

NAME
devcon: console — system console interface

SYNOPSIS
/ dev/ consol e

DESCRIPTION
/ dev/ consol e is a generic name given to the system console. It is usually linked
to a particular machine-dependent special file, and provides a basic 1/0 interface to
the system console through the t er mi o interface [see termio(BA_DEV)].

SEE ALSO
termio(BA_DEV), termios(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_dev/devcon
svid

Page: 604

devnul (BA_DEV) devnul (BA_DEV)

NAME

devnul: null —the null file
SYNOPSIS

/ dev/ nul |
DESCRIPTION

Data written on a null special file are discarded.
Read operations from a null special file always return 0 bytes.

Output of a command is written to the special file / dev/ nul | when the command
is executed for its side effects and not for its output.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_dev/devnul
svid

Page: 605

devtty (BA_DEV) devtty (BA_DEV)

NAME
devtty: tty — controlling terminal interface

SYNOPSIS
/dev/tty

DESCRIPTION
The file / dev/ tty is, in each process, a synonym for the control terminal associ-
ated with the session of that process, if any. It is useful for programs that wish to
be sure of writing messages on the terminal no matter how output has been
redirected [see system(BA_OS)]. It can also be used for programs that demand the
name of a file for output when typed output is desired and as an alternative to iden-
tifying what terminal is currently in use.

USAGE
Normally, application programs should not need to use this file interface. The stan-
dard input, standard output and standard error files should be used instead. These
file are accessed through the stdin, stdout and stderr stdio interfaces,
respectively.

SEE ALSO
system(BA_OS), termio(BA_DEV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_dev/devtty
svid

Page: 606

Idterm (BA_DEV) Idterm (BA_DEV)

NAME

| dt er m- standard STREAMS terminal line discipline module

DESCRIPTION

| dt er mis a STREAMS module that provides most of the t er mi o(BA_DEV) terminal
interface. This module does not perform the low-level device control functions
specified by flags in the c_cf| ag word of the t erm o/ t er ni os structure or by the
IG\BRK, |IG\WPAR PARMRK, or INPCK flags in the c_iflag word of the
term o/ term os structure; those functions must be performed by the driver or by
modules pushed below the | dt er mmodule. All other t erm o/ t erm os functions
are performed by | dt er m some of them, however, require the cooperation of the
driver or modules pushed below | dt er mand may not be performed in some cases.
These include the | XCFF flag in the c_i f| ag word and the delays specified in the
c_of | ag word.

| dt er malso handles EUC and multi-byte characters.

SEE ALSO

LEVEL

term o(BA_DEV), t er m os(BA_OS)

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_dev/ldterm
svid

Page: 607

pckt (BA_DEV) pckt (BA_DEV)

NAME
pckt — STREAMS Packet Mode module

DESCRIPTION
pckt is a STREAMS module that may be used with a pseudo terminal to packetize
certain messages. The pckt module should be pushed [see | _PUSH, st ream o(7)]
onto the master side of a pseudo terminal.

SEE ALSO
get nsg(BA_OS), i octl (BA_OS), | dt er M{BA_DEV), pt em(BA_DEV),
streans(BA_DEV), term o(BA_DEV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_dev/pckt
svid

Page: 608

streams (BA_DEV) streams (BA_DEV)

NAME

st ream o - STREAMS i oct | commands

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <stropts. h>

int ioctl (int fildes, int command, ... /* arg */);

DESCRIPTION

STREAMS i oct| commands are a subset of the i oct | () system calls which perform
a variety of control functions on streams.

fildes is an open file descriptor that refers to a stream. command determines the con-
trol function to be performed as described below. arg represents additional infor-
mation that is needed by this command. The type of arg depends upon the com-
mand, but it is generally an integer or a pointer to a command-specific data struc-
ture. The command and arg are interpreted by the stream head. Certain combina-
tions of these arguments may be passed to a module or driver in the stream.

Since these STREAMS commands are a subset of i oct | , they are subject to the errors
described there. In addition to those errors, the call will fail with err no set to El N-
VAL, without processing a control function, if the stream referenced by fildes is
linked below a multiplexor, or if command is not a valid value for a stream.

Also, as described in i octl, STREAMS modules and drivers can detect errors. In
this case, the module or driver sends an error message to the stream head contain-
ing an error value.

Dynamically Loadable Modules

STREAMS modules and drivers may be dynamically loadable. If a dynamically
loadable module or driver is accessed via an open() or an | _PUSH (streamio) and it
is not currently present in memory, then it is automatically loaded as a side effect of
the access. The loading process will bring the driver or module into memory and
call its load() routine to initialize it. See modload(KE_QOS), modadmin(AS_CMD).

Accessing STREAMS

A user process accesses STREAMS using the standard routines open() [see
open(BA_OS)], cl ose() [see close(BA_OS)], read(), wite(), ioctl(), pipe()
[see pipe(BA_OS)], putmsg(), put pnsg(), getnsg(), getpnsg(), and poll ().
Refer to the detailed component definitions for these functions for general proper-
ties and errors.

ioctl () calls are used to perform control functions with the device associated with
the file descriptor fd. The arguments command and arg are passed to the STREAMS
file designated by fd and are interpreted by the stream head. Certain combinations
of these arguments may be passed to a module or driver in the stream.

fd is an open file descriptor that refers to a stream. command determines the control
function to be performed as described below. arg represents additional information
that is needed by this command. The type of arg depends on the command, but it is
generally an integer or a pointer to a command-specific data structure.

Page 1

FINAL COPY
June 15, 1995
File: ba_dev/streams
svid

Page: 610

stream

s (BA_DEV) streams (BA_DEV)

Since these STREAMS commands are a subset of i oct| (), they are subject to the
errors described there. In addition to those errors, the call will fail with errno set
to El NVAL, without processing a control function, if the stream referenced by fd is
linked below a multiplexer, or if command is not a valid value for a stream.

STREAMS modules and drivers can detect errors, sending an error message to the
stream head, thus causing subsequent system calls to fail and set er r no to the value
specified in the message. In addition, STREAMS modules and drivers can elect to
fail a particular i octl () request alone by sending a negative acknowledgement
message to the stream head. This causes just the pending i oct!| () request to fail
and set er r no to the value specified in the message.

i octl () calls have the format:
int ioctl(int fd, int command, int arg);

Thei oct| () commands applicable to STREAMS and their arguments are described
below. Unless specified, the return value fromi octl () is 0 on success and —1 on
failure with errno set as indicated. errno will be set to El NVAL for any of the fol-
lowingi oct | () calls if the stream is linked below a multiplexer.

Touseioctl (), the lines
#i ncl ude <sys/types. h>
#incl ude <stropts. h>

must be included in the user program.

Command Functions

Page 2

The following i oct| commands, with error values indicated, are applicable to all
STREAMS files:

| _PUSH Pushes the module whose name is pointed to by arg onto the top of
the current stream, just below the stream head. If the stream is a
pipe, the module will be inserted between the stream heads of both
ends of the pipe. It then calls the open routine of the newly-pushed
module. On failure, err no is set to one of the following values:

El NVAL Invalid module name.
ENXI O Open routine of new module failed.
ENXI O Hangup received on fildes.
ENCLQAD failure in loading a loadable exec module
| _PCP Removes the module just below the stream head of the stream

pointed to by fildes. To remove a module from a pipe requires that
the module was pushed on the side it is being removed from. arg
should be 0 in an | _PCP request. On failure, errno is set to one of
the following values:

El NVAL No module present in the stream.
ENXI O Hangup received on fildes.
| _LOXK Retrieves the name of the module just below the stream head of the

stream pointed to by fildes, and places it in a null terminated charac-
ter string pointed at by arg. The buffer pointed to by arg should be
at least FMNAMESZ+1 bytes long. A #include <sys/conf.h>

FINAL COPY
June 15, 1995
File: ba_dev/streams
svid

Page: 611

streams (BA_DEV)

| _FLUSH

| _FLUSHBAND

| _SETSI G

streams (BA_DEV)

declaration is required. On failure, err no is set to one of the follow-
ing values:

El NVAL
No module present in stream.

This request flushes all input and/or output queues, depending on
the value of arg. Valid arg values are:

FLUSHR Flush read queues.
FLUSHW Flush write queues.
FLUSHRW Flush read and write queues.

If a pipe or FIFO does not have any modules pushed, the read queue
of the stream head on either end is flushed depending on the value
of arg.

If FLUSHR is set and fildes is a pipe, the read queue for that end of
the pipe is flushed and the write queue for the other end is flushed.
If fildes is a FIFO, both queues are flushed.

If FLUSHWIs set and fildes is a pipe and the other end of the pipe
exists, the read queue for the other end of the pipe is flushed and
the write queue for this end is flushed. If fildes is a FIFO, both
queues of the FIFO are flushed.

If FLUSHRWIs set, all read queues are flushed, that is, the read queue
for the FIFO and the read queue on both ends of the pipe are
flushed.

Correct flush handling of a pipe or FIFO with modules pushed is
achieved via the pi penod module. This module should be the first
module pushed onto a pipe so that it is at the midpoint of the pipe
itself.

On failure, er r no is set to one of the following values:

EAGAI N Unable to allocate buffers for flush message due to
insufficient STREAMS memory resources.

El NVAL Invalid arg value.

ENXI O Hangup received on fildes.

Flushes a particular band of messages. arg points to a bandi nfo
structure that has the following members:

unsi gned char bi _pri;
i nt bi _fl ag;

The bi _fl ag field may be one of FLUSHR, FLUSHW or FLUSHRWas
described earlier.

Informs the stream head that the user wants the kernel to issue the
SI GPCLL signal [see si gnal (BA_OS)] when a particular event has
occurred on the stream associated with fildes. | _SETSI G supports
an asynchronous processing capability in STREAMS. The value of
arg is a bitmask that specifies the events for which the user should

Page 3

FINAL COPY
June 15, 1995
File: ba_dev/streams
svid

Page: 612

streams (BA_DEV)

Page 4

streams (BA_DEV)

be signaled. It is the bitwise-OR of any combination, except where
noted, of the following constants:

S I NPUT

S_RDNCRM

S_RDBAND

S HPR

S _QUTPUT

S WRNCRM
S WRBAND

S MSG

S_ERROR
S _HANGLP
S _BANDURG

Any message other than an M PCPROTO has arrived
on a stream head read queue. This event is main-
tained for compatibility with prior releases. This is
set even if the message is of zero length.

An ordinary (non-priority) message has arrived on a
stream head read queue. This is set even if the mes-
sage is of zero length.

A priority band message (band > 0) has arrived on a
stream head read queue. This is set even if the mes-
sage is of zero length.

A high priority message is present on the stream
head read queue. This is set even if the message is
of zero length.

The write queue just below the stream head is no
longer full. This notifies the user that there is room
on the queue for sending (or writing) data down-
stream.

This event is the same as S_CUTPUT.

A priority band greater than 0 of a queue down-
stream exists and is writable. This notifies the user
that there is room on the queue for sending (or writ-
ing) priority data downstream.

A STREAMS signal message that contains the SI G
PCLL signal has reached the front of the stream head
read queue.

An M ERRCR message has reached the stream head.
An M _HANGUP message has reached the stream head.

When used in conjunction with S_RDBAND, S| QURG
is generated instead of SI GPOLL when a priority
message reaches the front of the stream head read
queue.

A user process may choose to be signaled only of high priority mes-
sages by setting the arg bitmask to the value S H PRI .

Processes that want to receive SI GPCLL signals must explicitly regis-
ter to receive them using | _SETSI G If several processes register to
receive this signal for the same event on the same stream, each
process will be signaled when the event occurs.

If the value of arg is zero, the calling process will be unregistered
and will not receive further SI GPCLL signals. On failure, errno is
set to one of the following values:

FINAL COPY
June 15, 1995
File: ba_dev/streams
svid

Page: 613

streams (BA_DEV)

| _GETSIG

| _FIND

| _PEEK

streams (BA_DEV)

El NVAL arg value is invalid or arg is zero and process is not
registered to receive the S| GPCLL signal.
EAGAI N Allocation of a data structure to store the signal

request failed.

Returns the events for which the calling process is currently
registered to be sent a SI GPCLL signal. The events are returned as a
bitmask pointed to by arg, where the events are those specified in
the description of | _SETSI Gabove. On failure, errno is set to one
of the following values:

El NVAL Process not registered to receive the SI GPCLL signal.

Compares the names of all modules currently present in the stream
to the name pointed to by arg, and returns 1 if the named module is
present in the stream. It returns 0 if the named module is not
present. On failure, errno is set to one of the following values:

El NVAL
arg does not contain a valid module name.

Allows a user to retrieve the information in the first message on the
stream head read queue without taking the message off the queue.
| _PEEK is analogous to get nsg() except that it does not remove the
message from the queue. arg points to a strpeek structure which
contains the following members:

struct strbuf ctl buf;
struct strbuf dat abuf;
| ong fl ags;

The naxl en field in the ctl buf and dat abuf strbuf structures
[see get msg(BA_OS)] must be set to the number of bytes of control
information and/or data information, respectively, to retrieve.
flags may be setto RS H PRl or 0. IfRS_H PR is set, | _PEEK will
look for a high priority message on the stream head read queue.
Otherwise, | _PEEK will look for the first message on the stream
head read queue.

| _PEEK returns 1 if a message was retrieved, and returns 0 if no
message was found on the stream head read queue. It does not
wait for a message to arrive. On return, ct | buf specifies informa-
tion in the control buffer, dat abuf specifies information in the data
buffer, and fl ags contains the value RS H PR or 0. On failure,
errno is set to the following value:

Sets the read mode [see r ead(BA_OS)] using the value of the argu-
ment arg. Valid arg values are:

RNCRM Byte-stream mode, the default.
RVBGD Message-discard mode.
Page 5
FINAL COPY

June 15, 1995
File: ba_dev/streams
svid

Page: 614

streams (BA_DEV)

Page 6

streams (BA_DEV)

RVBGN Message-nondiscard mode.

Setting both RVBG and RVBGNis an error.

RVB@D and RVBGN override RNCRM

The bitwise inclusive CR of RVBGD and RVBGN will return EI NVAL. The bitwise
inclusive CR of RVBRMand either RVBED or RVBGN will result in the other flag over-
ridding RNSRMwhich is the default.

In addition, treatment of control messages by the stream head may be
changed by setting the following flags in arg:

RPROTNCRM Fail r ead with EBADVBGIf a control message is at the
front of the stream head read queue. This is the
default behavior.

RPROTDAT Deliver the control portion of a message as data
when a user issues r ead.

RPROTDI S Discard the control portion of a message, delivering
any data portion, when a user issues ar ead.

On failure, er r no is set to the following value:

| _FDI NSERT

El NVAL arg is not one of the above valid values.
El NVAL Both RVBGD and RVBCN are set.

Returns the current read mode setting in an i nt pointed to by the
argument arg. Read modes are described in r ead(2).

Counts the number of data bytes in data blocks in the first message
on the stream head read queue, and places this value in the location
pointed to by arg. The return value for the command is the number
of messages on the stream head read queue. For example, if zero is
returned in arg, but the i oct| return value is greater than zero, this
indicates that a zero-length message is next on the queue.

Creates a message from user specified buffer(s), adds information
about another stream and sends the message downstream. The
message contains a control part and an optional data part. The data
and control parts to be sent are distinguished by placement in
separate buffers, as described below.

arg points to a st rfdi nsert structure which contains the following
members:

struct strbuf ctl buf;
struct strbuf dat abuf ;
| ong flags;

i nt fil des;
i nt of fset;

Thel en field in the ct | buf strbuf structure [see put nsg(BA_OS)]
must be set to the size of a pointer plus the number of bytes of con-
trol information to be sent with the message. fildes in the strfdi n-
sert structure specifies the file descriptor of the other stream.
of f set, which must be word-aligned, specifies the number of bytes

FINAL COPY
June 15, 1995
File: ba_dev/streams
svid

Page: 615

streams (BA_DEV)

streams (BA_DEV)

beyond the beginning of the control buffer where | _FD NSERT will
store a pointer. This pointer will be the address of the read queue
structure of the driver for the stream corresponding to fil des in
the strfdinsert structure. The | en field in the dat abuf st r buf
structure must be set to the number of bytes of data information to
be sent with the message or zero if no data part is to be sent.

fl ags specifies the type of message to be created. An ordinary
(non-priority) message is created if f | ags is set to 0, a high priority
message is created if fl ags is set to RS H PR . For normal mes-
sages, | _FDI NSERT will block if the stream write queue is full due to
internal flow control conditions. For high priority messages,
| _FDI NSERT does not block on this condition. For normal mes-
sages, | _FDI NSERT does not block when the write queue is full and
O _NONBLOCK is set. Instead, it fails and sets er r no to EAGAI N.

| _FDI NSERT also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks, regardless
of priority or whether O NONBLOCK has been specified. No partial
message is sent. On failure, errno is set to one of the following
values:

EAGAI N A non-priority message was specified, the O NONBLOCK
flag is set, and the stream write queue is full due to inter-
nal flow control conditions.

EAGAI N Buffers could not be allocated for the message that was to
be created due to insufficient STREAMS memory resources.

El N\VAL One of the following: fil des in the strfdinsert struc-
ture is not a valid, open stream file descriptor; the size of a
pointer plus of fset is greater than the | en field for the
buffer specified through ctl ptr; of f set does not specify
a properly-aligned location in the data buffer; an
undefined value is stored in f | ags.

ENXI O Hangup received onfil des of theioct! call orfil des in
the strfdinsert structure.

ERANGE The | en field for the buffer specified through dat abuf
does not fall within the range specified by the maximum
and minimum packet sizes of the topmost stream module,
or the | en field for the buffer specified through dat abuf is
larger than the maximum configured size of the data part
of a message, or the | en field for the buffer specified
through ct | buf is larger than the maximum configured
size of the control part of a message.

| _FDI NSERT can also fail if an error message was received by the
stream head of the stream corresponding to fi | des in the strfd-
i nsert structure. In this case, errno will be set to the value in the
message.

Page 7

FINAL COPY
June 15, 1995
File: ba_dev/streams
svid

Page: 616

streams (BA_DEV)

streams (BA_DEV)

An | _STR can also fail while waiting for an acknowledgement if a
message indicating an error or a hangup is received at the stream
head. In addition, an error code can be returned in the positive or
negative acknowledgement message, in the event the ioctl com-
mand sent downstream fails. For these cases, | _STR will fail with
er r no set to the value in the message.

Sets the write mode using the value of the argument arg. Legal bit
settings for arg are:

SNDZERO Send a zero-length message downstream when a
write of 0 bytes occurs on pipes and FIFOs.

To not send a zero-length message when a write of 0 bytes occurs,
this bit must not be set in arg.

On failure, er r no may be set to the following value:

El NVAL
| _GNRCPT

| _SENDFD

| _RECVFD

arg is not the above valid value.

Returns the current write mode setting, as described above, in the
i nt that is pointed to by the argument arg.

Requests the stream associated with fildes to send a message, con-
taining a file pointer, to the stream head at the other end of a stream
pipe. The file pointer corresponds to arg, which must be an open
file descriptor.

| _SENDFD converts arg into the corresponding system file pointer.
It allocates a message block and inserts the file pointer in the block.
The user ID and group ID associated with the sending process are
also inserted. This message is placed directly on the read queue of
the stream head at the other end of the stream pipe to which it is
connected. On failure, err no is set to one of the following values:

EAGAI N The sending stream is unable to allocate a message
block to contain the file pointer.

EAGAI N The read queue of the receiving stream head is full
and cannot accept the message sent by | _ SENDFD.

EBADF arg is not a valid, open file descriptor.

El NVAL fildes is not connected to a stream pipe.

ENXI O Hangup received on fildes.

Retrieves the file descriptor associated with the message sent by an
| _SENDFD i oct| over a stream pipe. arg is a pointer to a data
buffer large enough to hold an st r r ecvf d data structure containing
the following members:

int fd;

uid_t uid;
gid_t gid;
char fill[8];

Page 9

FINAL COPY
June 15, 1995
File: ba_dev/streams
svid

Page: 618

streams (BA_DEV)

| _LIST

Page 10

streams (BA_DEV)

fd is an integer file descriptor. uid and gi d are the user ID and
group ID, respectively, of the sending stream.

If O NONBLOCK are clear [see open(BA_OS)] | _RECVFD will block
until a message is present at the stream head. If O NONBLOXK is set,
| _RECVFD will fail with errno set to EAGAI N if no message is
present at the stream head.

If the message at the stream head is a message sent by an | _SENDFD,
a new user file descriptor is allocated for the file pointer contained
in the message. The new file descriptor is placed in the f d field of
the strrecvfd structure. The structure is copied into the user data
buffer pointed to by arg.

On failure, er r no is set to one of the following values:

EAGAI N A message is not present at the stream head read
queue, and the O_NONBLOK flag is set.

EBADVEG The message at the stream head read queue is not a
message containing a passed file descriptor.

EFAULT arg points outside the allocated address space.

EMFI LE NCFI LES file descriptors are currently open.

ENXI O Hangup received on fildes.

EOVERFLON ui d or gi d is too large to be stored in the structure
pointed to by arg.

Allows the user to list all the module names on the stream, up to
and including the topmost driver name. If arg is NULL, the return
value is the number of modules, including the driver, that are on
the stream pointed to by fildes. This allows the user to allocate
enough space for the module names. If arg is non-NULL, it should
pointto anstr_li st structure that has the following members:

i nt sl _nnods;
struct str_mi st *s| _nodlist;

The str_nii st structure has the following member:
char | _name[FMNAMESZ+1] ;

sl _nnods indicates the number of entries the user has allocated in
the array. On success, the return value is 0, sl _nmodl i st contains
the list of module names, and the number of entries that have been
filled into the sl _nodl i st array is found in the s| _nmods member.
The number includes the number of modules, including the driver.
On failure, er r no may be set to one of the following values:

El NVAL The sl _nnods member is less than 1.
EAGAI N Unable to allocate buffers
FINAL COPY

June 15, 1995
File: ba_dev/streams
svid

Page: 619

streams (BA_DEV)

| _ATMARK

| _SETCLTI ME

| _GETCLTI ME

streams (BA_DEV)

Allows the user to see if the current message on the stream head
read queue is “marked” by some module downstream. arg deter-
mines how the checking is done when there may be multiple
marked messages on the stream head read queue. The bitwise-OR
of these flags is allowed. It may take the following values:

ANYMARK Check if the message is marked.
LASTMARK Check if the message is the last one marked on the
queue.

If both ANYMARK and LASTMVARK are set, ANYMARK supersedes LAST-
MARK.

The return value is 1 if the mark condition is satisfied and 0 other-
wise. On failure, err no may be set to the following value:

El NVAL A value other than (ANYMARK| LASTMVARK) is set in
arg.

Check if the message of a given priority band exists on the stream
head read queue. This returns 1 if a message of a given priority
exists, or -1 on error. arg should be an integer containing the value
of the priority band in question. On failure, er r no may be set to the
following value:

El NVAL Invalid arg value.

Returns the priority band of the first message on the stream head
read queue in the integer referenced by arg. On failure, errno may
be set to the following value:

ENCDATA No message on the stream head read queue.

Check if a certain band is writable. arg is set to the priority band in
question. The return value is 0 if the priority band arg is flow con-
trolled, 1 if the band is writable, or -1 on error. On failure, err no
may be set to the following value:

El NVAL Invalid arg value.

Allows the user to set the time the stream head will delay when a
stream is closing and there is data on the write queues. Before clos-
ing each module and driver, the stream head will delay for the
specified amount of time to allow the data to drain. If, after the
delay, data is still present, data will be flushed. arg is a pointer to
the number of milliseconds to delay, rounded up to the nearest
valid value on the system. The default is fifteen seconds. On
failure, er r no may be set to the following value:

El NVAL Invalid arg value.
Returns the close time delay in the long pointed by arg.

The following four commands are used for connecting and disconnecting multi-
plexed STREAMS configurations.

Page 11

FINAL COPY
June 15, 1995
File: ba_dev/streams
svid

Page: 620

streams (BA_DEV)

| _PLINK

| _PUNLI NK

streams (BA_DEV)

El NVAL arg is an invalid multiplexor ID number or fildes is
not the stream on which the | _LI NK that returned
arg was performed.

An | _UNLI NK can also fail while waiting for the multiplexing driver
to acknowledge the link request, if a message indicating an error or
a hangup is received at the stream head of fildes. In addition, an
error code can be returned in the positive or negative acknowledge-
ment message. For these cases, | _UNLI NK will fail with er r no set to
the value in the message.

Connects two streams, where fildes is the file descriptor of the
stream connected to the multiplexing driver, and arg is the file
descriptor of the stream connected to another driver. The stream
designated by arg gets connected via a persistent link below the
multiplexing driver. |_PLI NK requires the multiplexing driver to
send an acknowledgement message to the stream head regarding
the linking operation. This call creates a persistent link which can
exist even if the file descriptor fildes associated with the upper
stream to the multiplexing driver is closed. This call returns a mul-
tiplexor ID number (an identifier that may be used to disconnect the
multiplexor, see | _PUNLI NK) on success, and a -1 on failure. On
failure, er r no may be set to one of the following values:

ENXI O Hangup received on fildes.

ETI ME Time out before acknowledgement message was
received at the stream head.

EAGAI N Unable to allocate STREAMS storage to perform the
| _PLINK

EBADF arg is not a valid, open file descriptor.

El NVAL fildes does not support multiplexing.

El NVAL arg is not a stream or is already linked under a mul-
tiplexor.

El NVAL The specified link operation would cause a ‘“cycle”

in the resulting configuration; that is, if a given
stream head is linked into a multiplexing
configuration in more than one place.

An | _PLI NK can also fail while waiting for the multiplexing driver
to acknowledge the link request, if a message indicating an error on
a hangup is received at the stream head of fildes. In addition, an
error code can be returned in the positive or negative acknowledge-
ment message. For these cases, | _PLI NK will fail with errno set to
the value in the message.

Disconnects the two streams specified by fildes and arg that are con-
nected with a persistent link. fildes is the file descriptor of the
stream connected to the multiplexing driver. arg is the multiplexor
ID number that was returned by | _PLI NK when a stream was linked
below the multiplexing driver. If arg is MUXI D_ALL then all streams

Page 13

FINAL COPY
June 15, 1995
File: ba_dev/streams
svid

Page: 622

streams (BA_DEV) streams (BA_DEV)

which are persistent links to fildes are disconnected. Asin | _PLI NK
this command requires the multiplexing driver to acknowledge the
unlink. On failure, er r no may be set to one of the following values:

ENXI O Hangup received on fildes.

ETI ME Time out before acknowledgement message was
received at the stream head.

EAGAI N Unable to allocate buffers for the acknowledgement
message.

El NVAL Invalid multiplexor ID number.

El NVAL fildes is the file descriptor of a pipe or FIFO.

An | _PUNLI NK can also fail while waiting for the multiplexing
driver to acknowledge the link request if a message indicating an
error or a hangup is received at the stream head of fildes. In addi-
tion, an error code can be returned in the positive or negative ack-
nowledgement message. For these cases, | _PUNLI NK will fail with
err no set to the value.

Return Values

Unless specified otherwise above, i oct| returns 0 on success and -1 on failure and
sets er r no as indicated in the message.

SEE ALSO
cl ose(BA_0OS), fcntl (BA_OS), get nsg(BA_0S), nodadm n(AS_CMD),
nodl oad(KE_OS), open(BA_OS), pol | (BA_OS), put nsg(BA_OS), read(BA_OS),
si gnal (BA_OS),

LEVEL
Level 1.

Page 14

FINAL COPY
June 15, 1995
File: ba_dev/streams
svid

Page: 623

termio (BA_DEV) termio (BA_DEV)

NAME
termio: ioctl — general terminal interface

SYNOPSIS
#i ncl ude <termo. h>

ioctl (int fildes, int request, struct term o *arg);
ioctl (int fildes, i nt request, int arg);
#i ncl ude <term os. h>

ioctl (int fildes, i nt request, struct term os *arg);

DESCRIPTION
System V supports a general interface for asynchronous communications ports that
is hardware-independent. The user interface to this functionality is via function
calls (the preferred interface) described in termios(BA_OS) or i oct | () commands
described in this section. This section also discusses the common features of the ter-
minal subsystem which are relevant with both user interfaces.

When a terminal file is opened, it normally causes the process to wait until a con-
nection is established. In practice, users’ programs seldom open terminal files; they
are opened by the system and become a user’s standard input, output, and error
files. The very first terminal file opened by the session leader, which is not already
associated with a session, becomes the control-terminal for that session. The control
terminal plays a special role in handling quit and interrupt signals, as discussed
below. The control terminal is inherited by a child process during a fork() [see
fork(BA_OS)]. A process can break this association by changing its session using
set si d() [see setsid(BA_OS)].

A terminal associated with one of these files ordinarily operates in full-duplex
mode. Characters may be typed at any time, even while output is occurring, and
are only lost when the character input buffers of the system become completely full,
which is rare (e.g., if the number of characters in the line discipline buffer exceeds
{ MAX_CANON} and | MAXBEL [see below] is not set), or when data on the driver’s
input queue exceeds { MAX_| NPUT} input characters that have not yet been read
by some program. When the input limit is reached, all the characters saved in the
buffer up to that point are thrown away without notice.

Session Management (Job Control)
A control terminal will distinguish one of the process groups in the session associ-
ated with it to be the foreground process group. All other process groups in the
session are designated as background process groups. This foreground process
group plays a special role in handling signal-generating input characters, as dis-
cussed below. By default, when a controlling terminal is allocated, the controlling
process’ process group is assigned as foreground process group.

Background process groups in the controlling process’ session are subject to a job
control line discipline when they attempt to access their controlling terminal. Typi-
cally, they will be sent a signal that will cause them to stop, unless they have made
other arrangements. An exception is made for members of orphaned process
group, process groups which do not have a member with a parent in another pro-
cess group that is in the same session and therefore shares the same controlling ter-
minal. When these processes attempt to access their controlling terminal, they will

Page 1

FINAL COPY
June 15, 1995
File: ba_dev/termio
svid

Page: 624

termio (BA_DEV) termio (BA_DEV)

return errors, since there is no process to continue them if they should stop.

If a member of a background process group attempts to read its controlling termi-
nal, its process group will be sent a SI GTTI N signal, which will normally cause the
members of that process group to stop. If, however, the process is ignoring or hold-
ing SI GTTI N, or is a member of an orphaned process group, the read will fail with
errno set to El O, and no signal will be sent.

If a member of a background process group attempts to write its controlling termi-
nal and the TOSTOP bitis setinthe c_| f | ag field, its process group will be sent a
SI GTTQU signal, which will normally cause the members of that process group to
stop. If, however, the process is ignoring or holding Sl GTTQU, the write will
succeed. If the process is not ignoring or holding SI GTTOU and is a member of an
orphaned process group, the write will fail with errno set to ElI O, and no signal will
be sent.

If TOSTOP is set and a member of a background process group attempts to
i octl () its controlling terminal, and that i oct| () will modify terminal parame-
ters (e.g., TCSETA, TCSETAW TCSETAF or Tl OCSPGRP) , its process group will be
sent a SI GTTQU signal, which will normally cause the members of that process
group to stop. If, however, the process is ignoring or holding SI GTTQU, the
i octl () will succeed. If the process is not ignoring or holding SI GTTOU and is a
member of an orphaned process group, the write will fail with errno set to El O, and
no signal will be sent.

Canonical mode input processing

Page 2

Normally, terminal input is processed in units of lines. A line is delimited by a
newline (ASCIl LF) character, an end-of-file (ASCIlI EOT) character, or an end-of-
line character. This means that a program attempting to read will be suspended
until an entire line has been typed. Also, no matter how many characters are
requested in the read call, at most one line will be returned. It is not necessary,
however, to read a whole line at once; any number of characters may be requested
in a read, even one, without losing information.

During input, erase and kill processing is normally done. The ERASE character (by
default, the # character) erases the last character typed. The WERASE character
(CRTL- W erases the last “‘word” typed in the current input line (but not any
preceding spaces or tabs). A ‘““word” is defined as a sequence of non-blank charac-
ters, with tabs counted as blanks. Neither ERASE nor WERASE will erase beyond
the beginning of the line. The KILL character (by default, the @ character) Kills
(deletes) the entire input line, and optionally outputs a newline character. All these
characters operate on a key stroke basis, independent of any backspacing or tabbing
that may have been done. The REPRI NT character (CTRL- R) prints a newline fol-
lowed by all characters that have not been read. Reprinting also occurs automati-
cally if characters that would normally be erased from the screen are fouled by pro-
gram output. The characters are reprinted as if they were being echoed; conse-
quencely, if ECHOis not set, they are not printed.

The ERASE and Kl LL characters may be entered literally by preceding them with
the escape character (\). In this case, the escape character is not read. The erase
and kill characters may be changed.

FINAL COPY
June 15, 1995
File: ba_dev/termio
svid

Page: 625

termio (BA_DEV) termio (BA_DEV)

Non-canonical mode input processing
In non-canonical mode input processing, input characters are not assembled into
lines, and erase and kill processing does not occur. The M Nand TI ME values are
used to determine how to process the characters received.

M N represents the minimum number of characters that should be received when
the read is satisfied (i.e., when the characters are returned to the user). TIME s a
timer of 0.10-second granularity that is used to timeout bursty and short-term data
transmissions. The four possible values for M Nand TI ME and their interactions
are described below.

Case A: MIN>0, TIME >0

In this case, Tl ME serves as an intercharacter timer and is activated after the
first character is received. Since it is an intercharacter timer, it is reset after a
character is received. The interaction between M Nand TI ME is as follows:
as soon as one character is received, the intercharacter timer is started. If
M N characters are received before the intercharacter timer expires (note that
the timer is reset upon receipt of each character), the read is satisfied. If the
timer expires before M N characters are received, the characters received to
that point are returned to the user. Note that if TI ME expires, at least one
character will be returned because the timer would not have been enabled
unless a character was received. In this case (M N> 0, TI ME > 0), the read
sleeps until the M Nand TI ME mechanisms are activated by the receipt of
the first character. If the number of characters read is less than the number
of characters available, the timer is not reactivated and the subsequent read
is satisfied immediately.

Case B: MIN >0, TIME=0
In this case, since the value of Tl ME is zero, the timer plays no role and only
M N is significant. A pending read is not satisfied until M N characters are
received (the pending read sleeps until M N characters are received). A
program that uses this case to read record based terminal 1/0 may block
indefinitely in the read operation.

Case C: MIN =0, TIME >0

In this case, since M N = 0, Tl ME no longer represents an intercharacter
timer: it now serves as a read timer that is activated as soon as a read is
done. A read is satisfied as soon as a single character is received or the read
timer expires. Note that, in this case, if the timer expires, no character is
returned. If the timer does not expire, the only way the read can be satisfied
is if a character is received. In this case, the read will not block indefinitely
waiting for a character; if no character is received within TI ME*.10 seconds
after the read is initiated, the read returns with zero characters.

Case D: MIN =0, TIME =0
In this case, return is immediate. The minimum of either the number of
characters requested or the number of characters currently available is
returned without waiting for more characters to be input.

Comparison of the different cases of MIN, TIME interaction
Some points to note about M Nand TI ME:

Page 3

FINAL COPY
June 15, 1995
File: ba_dev/termio
svid

Page: 626

termio (BA_DEV) termio (BA_DEV)

1 In the following explanations, note that the interactions of M Nand TI ME
are not symmetric. For example, when M N> 0 and TI ME= 0, TI ME has no
effect. However, in the opposite case, where M N=0 and TI ME > 0, both
M Nand TI ME play arole in that M Nis satisfied with the receipt of a single

character.

2. Also note that in case A (M N> 0, TI ME > 0), Tl ME represents an interchar-
acter timer, whereas in case C (TI ME=0, Tl ME>0), Tl ME represents a read
timer.

These two points highlight the dual purpose of the M N/TI ME feature. Cases A and
B, where M N > 0, exist to handle burst mode activity (e.g., file transfer programs),
where a program would like to process at least M Ncharacters at a time. In case A,
the intercharacter timer is activated by a user as a safety measure; in case B, the
timer is turned off.

Cases C and D exist to handle single character, timed transfers. These cases are
readily adaptable to screen-based applications that need to know if a character is
present in the input queue before refreshing the screen. In case C, the read is timed,
whereas in case D, it is not.

Another important note is that M Nis always just a minimum. It does not denote a
record length. For example, if a program does a read of 20 bytes, M Nis 10, and 25
characters are present, then 20 characters will be returned to the user.

Writing characters

When one or more characters are written, they are transmitted to the terminal as
soon as previously written characters have finished typing. Input characters are
echoed as they are typed if echoing has been enabled. If a process produces charac-
ters more rapidly than they can be typed, it will be suspended when its output
queue exceeds some limit. When the queue is drained down to some threshold, the
program is resumed.

Special characters

Page 4

Certain characters have special functions on input. These functions and their
default character values are summarized as follows:

I NTR (Rubout or ASCII DEL) generates a Sl G NT signal, which is sent to all
processes with the associated control terminal. Normally, each such
process is forced to terminate, but arrangements may be made either to
ignore the signal or to receive a trap to an agreed upon location. [See
signal(BA_OS).]

QUT (CTRL- Oor ASCII FS) generates a Sl GQUI T signal. Its treatment is
identical to the interrupt signal except that, unless a receiving process
has made other arrangements, it will not only be terminated but a core
image file (called core) will be created in the current working direc-
tory.

ERASE (#) erases the preceding character. It does not erase beyond the start of
aline, as delimited by a NL, EOF, EOL, or EQL2 character.

FINAL COPY
June 15, 1995
File: ba_dev/termio
svid

Page: 627

termio (BA_DEV) termio (BA_DEV)

Input modes
The c_i fl ag field describes the basic terminal input control:

| GNBRK Ignore break condition.
If | G\BRK is set, a break condition (a character framing error with data
all zeros) detected on input is ignored, that is, not put on the input
gueue and therefore not read by any process.

BRKI NT Signal interrupt on break.
If | G\BRK is not set and BRKI NT is set, the break condition shall flush
the input and output queues and if the terminal is the controlling ter-
minal of a foreground process group, the break condition generates a
single SI G NT signal to that foreground process group. If neither
I GNBRK nor BRKI NT is set, a break condition is read as a single ASCII
NULL character ("\ 0"), or if PARMRK is set,as "\ 377" ,"\0","\0".

| GNPAR Ignore characters with parity errors.
If | GNPAR is set, a byte with framing or parity errors (other than break)
is ignored.

PARVRK Mark parity errors.

If PARMRK is set, and | GNPAR is not set, a byte with a framing or parity
error (other than break) is given to the application as the three-
character sequence: "\ 377", "\ 0", X, where X is the data of the byte
received in error. To avoid ambiguity in this case, if | STRI P is not
set, a valid character of "\ 377" is given to the applicationas "\ 377",
"\ 377 . If neither | GNPAR nor PARMRK is set, a framing or parity
error (other than break) is given to the application as a single ASCII
NULL character "\ 0").

I NPCK Enable input parity check.

If | NPCK is set, input parity checking is enabled. If | NPCK is not set,
input parity checking is disabled. This allows output parity generation
without input parity errors. Note that whether input parity checking is
enabled or disabled is independent of whether parity detection is
enabled or disabled. If parity detection is enabled but input parity
checking is disabled, the hardware to which the terminal is connected
will recognize the parity bit, but the terminal special file will not check
whether this is set correctly or not.

| STRI P Strip character.
If | STRI P is set, valid input characters are first stripped to seven bits,
otherwise all eight bits are processed.

I NLCR Map NL to CR on input.
If I NLCR s set, a received NL character is translated into a CR character.

I GNCR Ignore CR.
If | GNCRis set, a received CR character is ignored (not read).

| CRNL Map CR to NL on input.
If | CRNL is set, a received CR character is translated into a NL character.

Page 7

FINAL COPY
June 15, 1995
File: ba_dev/termio
svid

Page: 630

termio (BA_DEV) termio (BA_DEV)

| UCLC Map upper-case to lower-case on input.
If | UCLCis set, a received upper case, alphabetic character is translated
into the corresponding lower case character.

| XON Enable start/stop output control.
If | XON is set, start/stop output control is enabled. A received STOP
character suspends output and a received START character restarts
output. The STOP and START characters will not be read, but will
merely perform flow control functions.

I XANY Enable any character to restart output.
If | XANY is set, any input character restarts output that has been
suspended.

| XOFF Enable start/stop input control.
If | XOFF is set, the system transmits a STOP character when the input
queue is nearly full, and a START character when enough input has
been read so that the input queue is nearly empty again.

| MAXBEL Echo BEL on input line too long.
If | MAXBEL is set, the ASCII BEL character is echoed if the input stream
overflows. Further input is not stored, but any input already present
in the input stream is not disturbed. If | MAXBEL is not set, no BEL
character is echoed, and all input present in the input queue is dis-
carded if the input stream overflows.

The initial input control value is BRKI NT, | CRNL, | XON, | STRI P.

Output modes
The c_of | ag field specifies the system treatment of output:

OoPCST Post-process output.
If OPCST is set, output characters are post-processed as indicated by
the remaining flags; otherwise, characters are transmitted without
change.

aLcuc Map lower case to upper on output.
If OLCUC is set, a lower case alphabetic character is transmitted as the
corresponding upper case character. This function is often used in con-
junction with | UCLC.

ONLCR Map NL to CR- NL on output.
If ONLCR is set, the NL character is transmitted as the CR- NL character
pair.

OCRNL Map CRto NL on output.
If OCRNL is set, the CR character is transmitted as the NL character.

ONCCR No CRoutput at column 0.
If ONCCR is set, no CR character is transmitted when at column 0 (first
position).

ONLRET NL performs CR function.
If ONLRET is set, the NL character is assumed to do the carriage-return
function; the column pointer is set to 0 and the delays specified for CR
are used. Otherwise, the NL character is assumed to do just the

Page 8

FINAL COPY
June 15, 1995
File: ba_dev/termio
svid

Page: 631

termio (BA_DEV)

OFl LL

OFDEL

termio (BA_DEV)

linefeed function; the column pointer remains unchanged. The column
pointer is also set to 0 if the CRcharacter is actually transmitted.

Use fill characters for delay.

If OFI LL is set, fill characters are transmitted for delay instead of a
timed delay. This is useful for high baud rate terminals that need only
a minimal delay.

Fill is DEL, else NULL.
If OFDEL is set, the fill character is DEL; otherwise itis NULL.

The delay bits specify how long transmission stops to allow for mechanical or other
movement when certain characters are sent to the terminal. In all cases, a value of 0
indicates no delay.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

The actual delays depend on line speed and system load.

NLDLY

CRDLY

TABDLY

BSDLY

Newline delay lasts about 0.10 seconds.
If ONLRET is set, the carriage-return delays are used instead of the new-
line delays.

If OFI LL is set, two fill characters are transmitted.

Select new-line delays.
NLO New-Line character type 0
NL1 New-Line character type 1

Carriage-return delay type 1 is dependent on the current column posi-
tion, type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds.

If OFI LL is set, delay type 1 transmits two fill characters, and type 2
transmits four fill characters.

Select carriage-return delays:

CRO Carriage-return delay type 0
CR1 Carriage-return delay type 1
CR2 Carriage-return delay type 2
CR3 Carriage-return delay type 3

Horizontal-tab delay type 1 is dependent on the current column posi-
tion. Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to be
expanded into spaces.

If OFI LL is set, two fill characters are transmitted for any delay.

Select horizontal tab delays or tab expansion:
TABO Horizontal-tab delay type 0

TABL Horizontal-tab delay type 1

TAB2 Horizontal-tab delay type 2

TAB3 Expand tabs to spaces.

XTABS Expand tabs to spaces.

Backspace delay lasts about 0.05 seconds.

Page 9

FINAL COPY
June 15, 1995
File: ba_dev/termio
svid

Page: 632

termio (BA_DEV)

VTDLY

FFDLY

If OFI LL is set, one fill character is transmitted.

Select backspace delays:
BSO Backspace delay type 0
BS1 Backspace delay type 1

Vertical-tab delay lasts about 2.0 seconds.

Select vertical tab delays:
VTO Vertical-tab delay type 0
VT1l Vertical-tab delay type 1

Form-feed delay lasts about 2.0 seconds.

Select form feed delays:
FFO Form-feed delay type 0
FF1 Form-feed delay type 1

The initial output control value is OPOST, ONLCR, TAB3.

Control modes

termio (BA_DEV)

The c_cf | ag field describes the hardware control of the terminal:

CBAUD

Page 10

The CBAUD bits specify the baud rate. The zero bau

d rate, BO, is used

to hang up the connection. If BO is specified, the data-terminal-ready

signal is not asserted. Normally, this disconnects the line.

If the

Cl BAUD bits are not zero, they specify the input baud rate, with the
CBAUD bits specifying the output baud rate; otherwise, the output and
input baud rates are both specified by the CBAUD bits. The values for
the Cl BAUD bits are the same as the values for the CBAUD bits, shifted

left | BSHI FT bits. For any particular hardware,
changes are ignored.

Baud rate:

BO Hang up
B50 50 baud
B75 75 baud
B110 110 baud
B134 134 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud

B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud

EXTA External A
EXTB External B
FINAL COPY

June 15, 1995
File: ba_dev/termio
svid

Page: 633

impossible speed

termio (BA_DEV)

CSI ZE

CSTOPB

CREAD

PARENB

PARODD

HUPCL

CLOCAL

Cl BAUD
PAREXT

termio (BA_DEV)

The CSI ZE bits specify the character size in bits for both transmission
and reception. This size does not include the parity bit, if any.

Character size:

CS5 5 bits
Cs6 6 bits
Cs7 7 bits
CSs8 8 bits

Send two stop bits, else one
If CSTOPB is set, two stop bits are used; otherwise, one stop bit is used.
For example, at 110 baud, two stops bits are required.

Enable receiver
If CREAD is set, the receiver is enabled. Otherwise, no characters are
received.

Parity enable
If PARENB is set, parity generation and detection is enabled, and a par-
ity bit is added to each character.

Odd parity, else even
If parity is enabled, the PARCDD flag specifies odd parity if set; other-
wise, even parity is used.

Hang up on last close

If HUPCL is set, the line is disconnected when the last process with the
line open closes it or terminates. That is, the data-terminal-ready signal
is not asserted.

Local line, else dial-up

If CLOCAL is set, then the effect of setting the baud rate to 0 is driver-
dependent. If CLOCAL is set, the line is assumed to be a local, direct
connection with no modem control; otherwise, modem control is
assumed.

Input baud rate, if different from output rate.
Extended parity for mark and space parity.

The initial hardware control value after open is CS8, CREAD, HUPCL.

Local modes and line discipline
The c_| f1 ag field of the argument structure is used by the line discipline to con-
trol terminal functions. The basic line discipline (0) provides the following:

ISIG

Enable signals.

If | SI Gis set, each input character is checked against the special con-
trol characters | NTR, QUI T, and SUSP, STATUS, and DSUSP. If an
input character matches one of these control characters, the function
associated with that character is performed. If | SI G is not set, no
checking is done. Thus, these special input functions are possible only
if 1 Sl Gis set.

Page 11

FINAL COPY
June 15, 1995
File: ba_dev/termio
svid

Page: 634

termio (BA_DEV)

| CANON

XCASE

ECHO

termio (BA_DEV)

Canonical input (erase and kill processing).

If 1 CANON is set, canonical processing is enabled. This enables the
erase and Kill edit functions, and the assembly of input characters into
lines delimited by NL, ECF, EQL, and ECL2. If | CANON is not set, read
requests are satisfied directly from the input queue. A read is not
satisfied until at least M N characters have been received or the timeout
value TI ME has expired between characters. This allows fast bursts of
input to be read efficiently while still allowing single character input.
The time value represents tenths of seconds.

Canonical upper/lower presentation.

If XCASE is set, and if | CANON is set, an upper case letter is accepted on
input by preceding it with a \ character, and is output preceded by a
\ character. In this mode, the following escape sequences are gen-
erated on output and accepted on input:

for: use:

N \

d \!

- \ -

{ \ (

} \)

\ \\
For example, Aisinputas\a,\nas\\n,and\ Nas\\\n.
Enable echo.

If ECHOis set, characters are echoed as received.

When | CANON is set, the following echo functions are possible:

ECHOE

ECHOK

ECHONL

NOFLSH

TOSTOP

Page 12

Echo erase character as BS- SP- BS.

If ECHO and ECHCE are set, and ECHOPRT is not set, the ERASE and
WERASE characters are echoed as one or more ASCI|I BS SP BS,
which clears the last character(s) from a CRT screen.

Echo NL after kill character.

If ECHOK is set, and ECHOKE is not set, the NL character is echoed after
the Kill character to emphasize that the line is deleted. Note that an
escape character (\) or an LNEXT character preceding the erase or kill
character removes any special function.

Echo NL.
If ECHONL is set, the NL character is echoed even if ECHO is not set.
This is useful for terminals set to local echo (so called half-duplex).

Disable flush after interrupt or quit.
If NOFLSH is set, the normal flush of the input and output queues asso-
ciated with the I NTR, QUI T, and SUSP characters is not done.

Send S| GTTQU for background output.

If TOSTOR is set, the signal SI GTTQU is sent to a process that tries to
write to its controlling terminal if it is not in the foreground process
group for that terminal. This signal normally stops the process.

FINAL COPY
June 15, 1995
File: ba_dev/termio
svid

Page: 635

termio (BA_DEV) termio (BA_DEV)

ioctls
The ioctl()s supported by devices and STREAMS modules providing the
t er m os interface are listed below. Some calls may not be supported by all devices
or modules. The functionality provided by these calls is also available through the
preferred function call interface specified on termios(BA_OS).

TCGETS The argument is a pointer to a t erm os structure. The current
terminal parameters are fetched and stored into that structure.
TCSETS The argument is a pointer to a t erm os structure. The current

terminal parameters are set from the values stored in that struc-
ture. The change is immediate.

TCSETSW The argument is a pointer to a t erm os structure. The current
terminal parameters are set from the values stored in that struc-
ture. The change occurs after all characters queued for output
have been transmitted. This form should be used when changing
parameters that affect output.

TCSETSF The argument is a pointer to a t erm os structure. The current
terminal parameters are set from the values stored in that struc-
ture. The change occurs after all characters queued for output
have been transmitted; all characters queued for input are dis-
carded and then the change occurs.

TCGETA The argument is a pointer to a t er m o structure. The current ter-
minal parameters are fetched, and those parameters that can be
stored ina t er m o structure are stored into that structure.

TCSETA The argument is a pointer to a t er m o structure. Those terminal
parameters that can be stored in a t er m o structure are set from
the values stored in that structure. The change is immediate.

TCSETAW The argument is a pointer to a t er m o structure. Those terminal
parameters that can be stored in a t er m o structure are set from
the values stored in that structure. The change occurs after all
characters queued for output have been transmitted. This form
should be used when changing parameters that affect output.

TCSETAF The argument is a pointer to a t er m o structure. Those terminal
parameters that can be stored in a t er m o structure are set from
the values stored in that structure. The change occurs after all
characters queued for output have been transmitted; all characters
gueued for input are discarded and then the change occurs.

TCSBRK The argument is an i nt value. Wait for the output to drain. If
the argument is 0, then send a break (zero valued bits for 0.25
seconds).

TCXONC Start/stop control. The argument is an i nt value. If the argu-

ment is 0, suspend output; if 1, restart suspended output; if 2,
suspend input; if 3, restart suspended input.

Page 15

FINAL COPY
June 15, 1995
File: ba_dev/termio
svid

Page: 638

termio (BA_DEV)

TCFLSH

TI OCGPGRP

TI OCSPGRP

TI OCGSI D

TI OCGW NSz

TI OCSW NSz

TI OCMVBI S

TI CCMVBI C

TI OCMGET

TI OCMSET

FILES

termio (BA_DEV)

The argument is an int value. If the argument is 0, flush the
input queue; if 1, flush the output queue; if 2, flush both the input
and output queues.

The argument is a pointer to a pid_t. Set the value of that
pi d_t to the process group | D of the foreground process group
associated with the terminal. [See termios(BA_OS) for a descrip-
tion of tcget pgrp.]

The argument is a pointer to a pid_t. Associate the process
group whose process group ID is specified by the value of that
pi d_t with the terminal. The new process group value must be in
the range of valid process group ID values. Otherwise, the error
EPERM is returned. [See termios(BA_OS) for a description of
tcset pgrp.]

The argument is a pointer to an pi d_t. The session ID of the ter-
minal is fetched and stored in the pi d_t .

The argument is a pointer to a W nsi ze structure. The terminal
driver’s notion of the terminal size is stored into that structure.

The argument is a pointer to a W nsi ze structure. The terminal
driver’s notion of the terminal size is set from the values specified
in that structure. If the new sizes are different from the old sizes, a
SI GW NCH signal is set to the process group of the terminal.

The argument is a pointer to an i nt whose value is a mask con-
taining modem control lines to be turned on. The control lines
whose bits are set in the argument are turned on; no other control
lines are affected.

The argument is a pointer to an i nt whose value is a mask con-
taining modem control lines to be turned off. The control lines
whose bits are set in the argument are turned off; no other control
lines are affected.

The argument is a pointer to an i nt. The current state of the
modem status lines is fetched and stored in the i nt pointed to by
arg.

The argument is a pointer to an i nt containing a new set of
modem control lines. The modem control lines are turned on or
off, depending on whether the bit for that mode is set or clear.

files in or under / dev

SEE ALSO

fork(BA_OS), ioctl(BA_OS), setsid(BA_OS), signal(BA_OS), streams(BA_DEV),

termios(BA_OS).

LEVEL
Level 1.

Page 16

FINAL COPY
June 15, 1995
File: ba_dev/termio
svid

Page: 639

termiox (BA_DEV) termiox (BA_DEV)

NAME
termiox — extended general terminal interface

SYNOPSIS
#i ncl ude <term ox. h>

ioctl (int fildes, int request, struct term ox *arg);

DESCRIPTION

The extended general terminal interface supplements the termio(BA_DEV) general
terminal interface by adding support for asynchronous hardware flow control, iso-
chronous flow control and clock modes, and local implementations of additional
asynchronous features. Some systems may not support all of these capabilities
because of either hardware or software limitations. Other systems may not permit
certain functions to be disabled. In these cases, the appropriate bits will be ignored.
If the capabilities can be supported, the interface described here must be used.

Hardware Flow Control Modes

Hardware flow control supplements the termi o | XON, | XOFF and | XANY [see
termio(BA_DEV)] character flow control. Character flow control occurs when one
device controls the data transfer of another device by the insertion of control char-
acters in the data stream between devices. Hardware flow control occurs when one
device controls the data transfer of another device using electrical control signals on
wires (circuits) of the asynchronous interface. Isochronous hardware flow control
occurs when one device controls the data transfer of another device by asserting or
removing the transmit clock signals of that device. Character flow control and
hardware flow control may be simultaneously set.

In asynchronous, full duplex applications, the use of the Electronics Industries
Association’s EIA-232-D Request To Send (RTS) and Clear to Send (CTS) circuits is
the preferred method of hardware flow control. An interface to other hardware
flow control methods is included to provide a standard interface to these existing
methods.

The EIA-232-D standard specified only unidirectional hardware flow control - the
Data Circuit-terminating Equipment or Data Communications Equipment (DCE)
indicates to the Data Terminal Equipment (DTE) to stop transmitting data. The
t er m ox interface allows both unidirectional and bidirectional hardware flow con-
trol; when bidirectional flow control is enabled, either the DCE or DTE can indicate
to each other to stop transmitting data across the interface. Note: It is assumed that
the asynchronous port is configured as a DTE. If the connected device is also a DTE
and not a DCE, then DTE to DTE (e.g., terminal or printer connected to computer)
hardware flow control is possible by using a null modem to interconnect the
appropriate data and control circuits.

Clock Modes
Isochronous communication is a variation of asynchronous communication
whereby two communicating devices may provide transmit and/or receive clock to
each other. Incoming clock signals can be taken from the baud rate generator on
the local isochronous port controller, from CCITT V.24 circuit 114, Transmitter Sig-
nal Element Timing - DCE source (EIA-232-D pin 15), or from CCITT V.24 circuit
115, Receiver Signal Element Timing - DCE source (EIA-232-D pin 17). Outgoing
clock signals can be sent on CCITT V.24 circuit 113, Transmitter Signal Element

Page 1

FINAL COPY
June 15, 1995
File: ba_dev/termiox
svid

Page: 640

termiox (BA_DEV) termiox (BA_DEV)

Timing - DTE source (EIA-232-D pin 24), sent on CCITT V.24 circuit 128, Receiver
Signal Element Timing - DTE source (no EIA-232-D pin), or not sent at all.

In terms of clock modes, traditional asynchronous communication is implemented
simply by using the local baud rate generator as the incoming transmit and receive
clock source and not outputting any clock signals.

Terminal Parameters

Page 2

The parameters that control the behavior of devices providing the t er m ox inter-
face are specified by the t erm ox structure, defined in the <sys/tern ox. h>
header file. Several ioctl () system calls [see ioctl(BA_OS)] that fetch or change
these parameters use the term ox structure, which contains the following
members:

unsi gned short x_hfl ag; /0 hardware flow control nodes O
unsi gned short x_cflag; /0O clock nodes O

unsigned short x_rflag[NFF]; Oreserved nodes O

unsi gned short x_sfl ag; /O spare | ocal nodes O

The x_hfl ag field describes hardware flow control modes:
RTSXOFF 0000001 Enable RTS hardware flow control on input.

CTSXON 0000002 Enable CTS hardware flow control on output.

DTRXOFF 0000004 Enable DTR hardware flow control on input.

CDXON 0000010 Enable CD hardware flow control on output.

| SXOFF 0000020 Enable isochronous hardware flow control on
input.

The EIA-232-D DTR and CD circuits are used to establish a connection between two
systems. The RTS circuit is also used to establish a connection with a modem.
Thus, both DTR and RTS are activated when an asynchronous port is opened. If
DTR is used for hardware flow control, then RTS must be used for connectivity. If
CD is used for hardware flow control, then CTS must be used for connectivity.
Thus, RTS and DTR (or CTS and CD) cannot both be used for hardware flow con-
trol at the same time. Other mutual exclusions may exist, such as the simultaneous
setting of the t er m 0 HUPCL and the t er mi ox DTRXOFF bits, which use the DTE
Ready line for different functions.

Variations of different hardware flow control methods may be selected by setting
the the appropriate bits. For example, bidirectional RTS/CTS flow control is
selected by setting both the RTSXOFF and CTSXON bits and bidirectional DTR/CTS
flow control is selected by setting both the DTRXOFF and CTSXON. Modem control
or unidirectional CTS hardware flow control is selected by setting only the CTSXON
bit.

As previously mentioned, it is assumed that the local asynchronous port
(e.g.,computer) is configured as a DTE. If the connected device (e.g., printer) is also
a DTE, it is assumed that the device is connected to the computer’s asynchronous
port via a null modem that swaps control circuits (typically RTS and CTS). The
connected DTE drives RTS and the null modem swaps RTS and CTS so that the
remote RTS is received as CTS by the local DTE. In the case that CTSXON is set for
hardware flow control, a printer’s lowering of its RTS would cause CTS seen by the
computer to be lowered. Output to the printer is suspended until the the printer’s

FINAL COPY
June 15, 1995
File: ba_dev/termiox
svid

Page: 641

termiox (BA_DEV) termiox (BA_DEV)

raising of its RTS, which would cause CTS seen by the computer to be raised.

If RTSXOFF is set, the Request to Send (RTS) circuit (line) will be raised, and if the
asynchronous port needs to have its input stopped, it will lower the Request to
Send (RTS) line. If the RTS line is lowered, it is assumed that the connected device
will stop its output until RTS is raised.

If CTSXON is set, output will occur only if the Clear To Send (CTS) circuit (line) is
raised by the connected device. If the CTS line is lowered by the connected device,
output is suspended until CTS is raised.

If DTRXOFF is set, the DTE Ready (DTR) circuit (line) will be raised, and if the asyn-
chronous port needs to have its input stopped, it will lower the DTE Ready (DTR)
line. If the DTR line is lowered, it is assumed that the connected device will stop its
output until DTR is raised.

If CDXON is set, output will occur only if the Received Line Signal Detector (CD)
circuit (line) is raised by the connected device. If the CD line is lowered by the con-
nected device, output is suspended until CD is raised.

If | SXOFF is set, and if the isochronous port needs to have its input stopped, it will
stop the outgoing clock signal. It is assumed that the connected device is using this
clock signal to create its output. Transit and receive clock sources are programmed
using the x_cf | ag fields. If the port is not programmed for external clock genera-
tion, | SXOFF is ignored. Output isochronous flow control is supported by
appropriate clock source programming using the x_cf | ag field and enabled at the
remote connected device.

The x_cfl ag field specifies the system treatment of clock modes.

XMTCLK 0000007 Transmt clock source:

XCl BRG 0000000 Get transmt clock fromlInternal
Baud Rate Generator.

XCTSET 0000001 Get transmt clock from Transmtter
Signal Elenent Timng (DCE source)
lead, CCITT V.24 circuit 114,
El A-232-D pin 15.

XCRSET 0000002 Get transmt clock from Receiver
Signal El enent Tinmng (DCE source)
lead, CCITT V.24 circuit 115,
El A-232-D pin 17.

RCVCLK 0000070 Receive clock source:

RCl BRG 0000000 Get receive clock from I nternal
Baud Rate Generator.

RCTSET 0000010 Get receive clock from Transmtter
Signal Elenent Tinmng (DCE source)
lead, CCITT V.24 circuit 114,
El A-232-D pin 15.

RCRSET 0000020 Get receive clock from Recei ver
Signal El enent Tinmng (DCE source)
lead, CCITT V.24 circuit 115,
El A-232-D pin 17.

TSETCLK 0000700 Transmitter Signal Element Timng

Page 3

FINAL COPY
June 15, 1995
File: ba_dev/termiox
svid

Page: 642

termiox (BA_DEV) termiox (BA_DEV)

Page 4

(DTE source) lead, CCTT V.24
circuit 113, ElA-232-D pin 24,
cl ock source:

TSETCOFF 0000000 TSET clock not provided.

TSETCRBRG 0000100 OQutput receive baud rate generator
on circuit 113.

TSETCTBRG 0000200 OQutput transmit baud rate generator
on circuit 113.

TSETCTSET 0000300 OQutput transmitter signal elenent
timng (DCE source) on circuit 113.

TSETCRSET 0000400 CQutput receiver signal elenent
timng (DCE source) on circuit 113.

RSETCLK 0007000 Receiver Signal Element Timng (DTE
source) lead, CCTT V.24 circuit 128,
no El A-232-D pin, clock source:

RSETCOFF 0000000 RSET cl ock not provided.

RSETCRBRG 0001000 CQutput receive baud rate generator
on circuit 128.

RSETCTBRG 0002000 Cutput transmt baud rate generator
on circuit 128.

RSETCTSET 0003000 CQutput transmitter signal elenment
timng (DCE source) on circuit 128.

RSETCRSET 0004000 CQutput receiver signal el enent
timng (DCE source) on circuit 128.

If the XMTICLK field has a value of XCl BRG the transmit clock is taken from the
hardware internal baud rate generator, as in normal asynchronous transmission. If
XMICLK = XCTSET, the transmit clock is taken from the Transmitter Signal Element
Timing (DCE source) circuit. If XMICLK = XCRSET, the transmit clock is taken
from the Receiver Signal Element Timing (DCE source) circuit.

If the RCVCLK field has a value of RCl BRG, the receive clock is taken from the
hardware Internal Baud Rate Generator, as in normal asynchronous transmission.
If RCVCLK = RCTSET, the receive clock is taken from the Transmitter Signal Ele-
ment Timing (DCE source) circuit. If RCVCLK = RCRSET, the receive clock is taken
from the Receiver Signal Element Timing (DCE source) circuit.

If the TSETCLK field has a value of TSETCOFF, the Transmitter Signal Element
Timing (DTE source) circuit is not driven. If TSETCLK = TSETCRBRG the
Transmitter Signal Element Timing (DTE source) circuit is driven by the Receive
Baud Rate Generator. If TSETCLK = TSETCTBRG the Transmitter Signal Element
Timing (DTE source) circuit is driven by the Transmit Baud Rate Generator. If
TSETCLK = TSETCTSET, the Transmitter Signal Element Timing (DTE source) cir-
cuit is driven by the Transmitter Signal Element Timing (DCE source). If TSETCLK
= TSETCRBRG the Transmitter Signal Element Timing (DTE source) circuit is
driven by the Receiver Signal Element Timing (DCE source).

If the RSETCLK field has a value of RSETCOFF, the Receiver Signal Element Tim-
ing (DTE source) circuit is not driven. If RSETCLK = RSETCRBRG the Receiver
Signal Element Timing (DTE source) circuit is driven by the Receive Baud Rate Gen-
erator. If RSETCLK = RSETCTBRG the Receiver Signal Element Timing (DTE
source) circuit is driven by the Transmit Baud Rate Generator. If RSETCLK =

FINAL COPY
June 15, 1995
File: ba_dev/termiox
svid

Page: 643

termiox (BA_DEV)

termiox (BA_DEV)

RSETCTSET, the Receiver Signal Element Timing (DTE source) circuit is driven by
the Transmitter Signal Element Timing (DCE source). If RSETCLK = RSETCRBRG,
the Receiver Signal Element Timing (DTE source) circuit is driven by the Receiver
Signal Element Timing (DCE source).

The x_rfl ag field is reserved for future interface definitions and should not be
used by any implementations. The x_sf| ag field may be used by local implemen-
tations wishing to customize their terminal interface using the t erm ox i octl ()

system calls.
IOCTLS

The ioctl () system calls have the form:

i oct! (fildes, command, arg)
struct term ox *arg;

The commands using this form are:

TCGETX

TCSETX

TCSETXW

TCSETXF

FILES

The argument is a pointer to a t er m ox structure. The current
terminal parameters are fetched and stored into that structure.

The argument is a pointer to a t er m ox structure. The current
terminal parameters are set from the values stored in that struc-
ture. The change is immediate.

The argument is a pointer to a t er m ox structure. The current
terminal parameters are set from the values stored in that struc-
ture. The change occurs after all characters queued for output
have been transmitted. This form should be used when chang-
ing parameters that will affect output.

The argument is a pointer to a t er m ox structure. The current
terminal parameters are set from the values stored in that struc-
ture. The change occurs after all characters queued for output
have been transmitted; all characters queued for input are dis-
carded and then the change occurs.

Files in or under / dev/ *.

SEE ALSO

ioctl(BA_QOS), stty(AU_CMD), termio(BA_DEV).

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995
File: ba_dev/termiox
svid

Page: 644

ticlts (BA_DEV) ticlts (BA_DEV)

ticlts, ticots, ticotsord - loopback transport providers

SYNOPSIS

#include <ticlts. h>
#i ncl ude <ticots. h>
#i ncl ude <ti cotsord. h>

DESCRIPTION

The devices known as ticlts, ticots, and ticotsord are ““loopback transport
providers,” that is, stand-alone networks at the transport level. Loopback transport
providers are transport providers in every sense except one: only one host (the local
machine) is ““‘connected to”’ a loopback network. Loopback transports present a TPI
(STREAMB-level) interface to application processes and are intended to be accessed
via the TLI (application-level) interface. They are implemented as clone devices and
support address spaces consisting of “‘flex-addresses,” that is, arbitrary sequences
of octets, of length > 0, represented by a net buf structure.

ticlts is a datagram-mode transport provider. It offers (connectionless) service of
type T_CQLTS. Its default address size is TOL_DEFAULTADDRSZ. ticlts prints the
following error messages [see t _r cvuderr (BA_LIB)]:

TCOL_BADADDR bad address specification
TCL_BADCPT bad option specification
TCL_NCPEER bound
TCOL_PEERBADSTATE peer in wrong state

ticots is a virtual circuit-mode transport provider. It offers (connection-oriented)
service of type T_QOTS. Its default address size is TOO DEFAULTADDRSZ. ticots
prints the following disconnect messages [seet _rcvdi s(BA_LIB)]:

TGO _NCPEER no listener on destination address
TGO _PEERNCROOMONQ peer has no room on connect queue
TCO _PEERBADSTATE peer in wrong state

TCO PEER N Tl ATED peer-initiated disconnect

TCO _PROVI DERI NI Tl ATED provider-initiated disconnect

ticotsord is a virtual circuit-mode transport provider, offering service of type
T_QOOTS_CORD (connection-oriented service with orderly release). Its default address
size is TOOO DEFAULTADDRSZ. ti cot sor d prints the following disconnect messages
[seet _rcvdi s(BA_LIB)]:

TOOO NCPEER no listener on destination address
TCOO_PEERNCROOMONQ peer has no room on connect queue
TCOO_PEERBADSTATE peer in wrong state

TCOO PEER N TI ATED peer-initiated disconnect

TOOO _PROVI DER N Tl ATED provider-initiated disconnect

Loopback transports support a local IPC mechanism through the TLI interface.
Applications implemented in a transport provider-independent manner on a
client-server model using this IPC are transparently transportable to networked
environments.

Page 1

FINAL COPY
June 15, 1995
File: ba_devtticlts
svid

Page: 645

ticlts (BA_DEV) ticlts (BA_DEV)

FILES

LEVEL

Page 2

Transport provider-independent applications must not include the header files
listed in the synopsis section above. In particular, the options are (like all transport
provider options) provider dependent.

ticlts and ticots support the same service types (T_CLTS and T_QOTS) sup-
ported by the OSI transport-level model. The use of ticlts and ticots is
encour aged.

ti cot sord supports the same service type (T_COTS_CRD) supported by the TCP/IP
model. The use of ti cot sord is discouraged except for reasons of compatibility.

/dev/ticlts
/dev/ticots
/dev/ticotsord

Level 1.

FINAL COPY
June 15, 1995
File: ba_devtticlts
svid

Page: 646

timod (BA_DEV) timod (BA_DEV)

NAME
ti mod - Transport Interface cooperating STREAMS module

DESCRIPTION
tinod is a STREAMS module for use with the Transport Interface (TI) functions of
the Network Services library. The ti nod module converts a set of i oct| (BA_OS)
calls into STREAMS messages that may be consumed by a transport protocol pro-
vider which supports the Transport Interface. This allows a user to initiate certain
TI functions as atomic operations.

The ti nod module must be pushed onto only a stream terminated by a transport
protocol provider which supports the TI.

All STREAMS messages, with the exception of the message types generated from the
i octl commands described below, will be transparently passed to the neighboring
STREAMS module or driver. The messages generated from the following i oct |
commands are recognized and processed by the ti nod module. The format of the
i octl callis:

#i ncl ude <sys/stropts. h>

struct strioctl strioctl;

strioctl.ic_cnd = cmd;
strioctl.ic_timeout = INFTIM
strioctl.ic_len = size
strioctl.ic_dp = (char *)buf
ioctl (fildes, | _STR &strioctl);

Where, on issuance, size is the size of the appropriate TI message to be sent to the
transport provider and on return size is the size of the appropriate TI message from
the transport provider in response to the issued TI message. buf is a pointer to a
buffer large enough to hold the contents of the appropriate TI messages. The TI
message types are defined in sys/ti hdr. h. The possible values for the cmd field
are:

Tl _BI ND Bind an address to the underlying transport protocol provider.
The message issued to the TI _BI NDi oct | is equivalent to the TI
message type T_BlI ND_REQ and the message returned by the suc-
cessful completion of the i octl is equivalent to the TI message
type T_BI ND_ACK.

TI _UNBI ND Unbind an address from the underlying transport protocol pro-
vider. The message issued to the TI _UNBI NDi oct | is equivalent
to the TI message type T_UNBI ND_REQ and the message returned
by the successful completion of the i oct| is equivalent to the TI
message type T_CK_ACK.

TI _CGETINFO Get the TI protocol specific information from the transport proto-
col provider. The message issued to the TI _GETINFO i oct!l is
equivalent to the TI message type T_| NFO REQ and the message

Page 1

FINAL COPY
June 15, 1995
File: ba_dev/timod
svid

Page: 647

timod (BA_DEV)

FILES

Tl _CPTMAMT

sys/tinod. h
sys/tiuser.h
sys/tihdr.h
sys/errno. h

SEE ALSO
ti rdw (BA_DEV)

RETURN VALUE
If the i oct| system call returns with a value greater than 0, the lower 8 bits of the
return value will be one of the TI error codes as defined in sys/ ti user. h. If the T
error is of type TSYSERR, then the next 8 bits of the return value will contain an
error as defined in sys/ errno. h [see err no(BA_ENV)].

LEVEL

Page 2

Level 1.

timod (BA_DEV)

returned by the successful completion of the i oct| is equivalent to
the TI message type T_I NFO ACK

Get, set or negotiate protocol specific options with the transport
protocol provider. The message issued to the TI _CPTMAMIT i oct |
is equivalent to the TI message type T_CPTMaMI_REQ and the mes-
sage returned by the successful completion of the ioctl is
equivalent to the TI message type T_CPTMaVII_ACK.

FINAL COPY
June 15, 1995
File: ba_dev/timod
svid

Page: 648

tirdwr (BA_DEV) tirdwr (BA_DEV)

Messages that represent expedited data will generate an error.
All further system calls associated with the stream will fail with
errno set to EPROTO

Any data messages with control portions will have the control
portions removed from the message prior to passing the
message on to the upstream neighbor.

Messages that represent an orderly release indication from the
transport provider will generate a zero length data message,
indicating the end of file, which will be sent to the reader of the
stream. The orderly release message itself will be freed by the
module.

Messages that represent an abortive disconnect indication from
the transport provider will cause all further wit e and put nsg
system calls to fail with errno set to ENXI O All further read
and get nsg system calls will return zero length data (indicating
end of file) once all previous data has been read.

With the exception of the above rules, all other messages with
control portions will generate an error and all further system
calls associated with the stream will fail with errno set to
EPROTQO

Any zero length data messages will be freed by the module and they
will not be passed onto the module’s upstream neighbor.

pop When the module is popped off the stream or the stream is closed, the
module will take the following action:

If an orderly release indication has been previously received, then an
orderly release request will be sent to the remote side of the tran-
sport connection.

SEE ALSO

streans(BA_DEV), ti nod(BA_DEV)

get nsg(BA_OS), put nsg(BA_OS), read(BA_OS), wi t e(BA_OS)
LEVEL

Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_dev/tirdwr
svid

Page: 650

Kernel Extension Introduction

While the Base System is intended to support a run-time environment for execut-
able applications, the Kernel Extension provides additional operating system ser-
vices that will not be required by many application-programs but which are
needed for some environments.

The Kernel Extension provides operating system services to support memory
management facilities, process accounting tools, software development tools, and
applications or tools that require more sophisticated inter-process communication
than is provided by the Base System.

The Base System is prerequisite for support of the Kernel Extension.

SUMMARY OF OS SERVICE ROUTINES

The following OS service routines are supported by the Kernel Extension (excep-
tion: items marked with a sharp (#) are optional, hardware-dependent routines
and will only appear on machines with the requisite hardware.) Items marked
with a (1) are new to this extension. Items marked with a star (*) are Level 2, as
defined in the General Introduction to this volume.

acct nodl oadt nsgget pl ock * senop
chr oot nodpat ht nsgrcv priocntl t shmat #
get ksymf nodst at T nmsgsnd profil shntt | #
nmap nodul oadt nsync ptrace shndt #
nodadmt npr ot ect munmap sentt | shnpet #
nodadni nt nsgct | nice senget

priocntl has been added to this extension as the preferred
interface for scheduling. |t has been renoved fromthe
RT_OS ext ensi on.

The follow ng routines have been added to this extension in
support of Dynam cally Loadabl e Kernel Modul es: getkeysym
nodpat h, nmobdadm nodstat, nodadnin, nodul oad, nodl oad.
Dynamic installation of filesystemtypes, exec() nodul es,
drivers, Streans nodules and multiplexors will be supported.
This feature provides the ability to add software to a run-
ning systemin nulti-user node, w thout halting or or
rebooting the system [See Al so nodadni n(AS_CM)]

Kernel Extension Introduction 9-1

FINAL COPY

June 15, 1995

File: ke_int.txt
svid

Page: 651

Organization of Technical Information

The Kernel Extensions Definitions chapter defines terms used in manual page
descriptions in later chapters.

The Kernel Extension Environment chapter describes elements of the assumed
operating environment for this extension, including additional behavior of Base
System components when the Kernel Extension is present on the system.

The Kernel Extension OS Service Routines chapter provides manual page descrip-
tions of library routines supported by this extension.

9-2 KERNEL EXTENSION INTRODUCTION

FINAL COPY

June 15, 1995

File: ke_int.txt
svid

Page: 652

Kernel Extension Environment Routines

The following section contains the manual pages for the KE_ENV routines.

Kernel Extension Environment Routines 10-1

FINAL COPY
June 15, 1995
File: ke_env.cov
svid

Page: 653

FINAL COPY
June 15, 1995
File:

Page: 654

effects (KE_ENV) effects (KE_ENV)

NAME
effects — effects of the Kernel Extension on the Base System

DESCRIPTION
Some of the Base System V operating system services are affected by the additional
services in this extension. The effects are listed below for each routine:

exec(BA_OS)
The AFORK flag in the ac_f | ag field of the accounting record is turned off, and the
ac_conmmfield is reset by executing an exec routine [see acct(KE_OS)].

Any process, data, or text-locks are removed and not inherited by the new process
[see plock(KE_OS)].

Profiling is disabled for the new process [see profil(KE_OS)].

The shared-memory-segments attached to the calling process will not be attached to
the new process [see shmop(KE_OS)].

The new process also inherits the following additional attributes from the calling
process:

ni ce value [see nice(KE_OS)];
semadj values [see semop(KE_OS)];

exit(BA_OS)
An accounting record is written on the accounting file if the system’s accounting
routine is enabled [see acct(KE_OS)].

If the process has a process-lock, text-lock, or data-lock, the lock is removed [see
plock(KE_OS)].

Each attached shared-memory-segment is detached and the value of shm nattch
in the data structure associated with its shared-memory-identifier is decremented
by 1.

For each semaphore for which the calling process has set a senadj value [see
semop(KE_OS)], that senmad] value is added to the semval of the specified sema-
phore.

fork(BA_OS)
The AFORK flag is turned on when the function f or k() is executed.

The child process inherits the following additional attributes from the parent pro-
Cess:

The ac_commcontents of the accounting record [see acct(KE_OS)];
ni ce value [see nice(KE_OS)], scheduling priority and time quantum;
profiling on/off status [see profil(KE_OS)];
all attached shared-memory-segments [see shmop(KE_OS)].

The child process differs from the parent process in the following additional ways:
All semadj values are cleared [see semop(KE_OS)].

Page 1

FINAL COPY
June 15, 1995
File: ke_env/effects
svid

Page: 655

effects (KE_ENV) effects (KE_ENV)

Process-locks, text-locks, and data-locks are not inherited by the child pro-
cess [see plock(KE_OS), mctl(KE_OS), memctl(KE_OS), mlock(KE_OS), and
mlockall(KE_OS)].

SEE ALSO
acct(KE_OS), chroot(BA_OS) mctl(KE_OS), memctl(KE_OS), mlock(KE_OS),
mlockall(KE_OS), nice(KE_OS), plock(KE_OS), profil(KE_OS), semop(KE_OS),
shmop(KE_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ke_env/effects
svid

Page: 656

errno (KE_ENV) errno (KE_ENV)

NAME

error — error codes and condition definitions

SYNOPSIS

#i ncl ude <errno. h>

I extern int errno;
errno

DESCRIPTION

The numerical value represented by the symbolic name of an error condition is
assigned to err no for errors that occur when executing a system service routine or
general library routine.

To be consistent with the C Standard, the interface definition of errno has been
change in the SIVD, Fourth Edition. Programs should obtain the value of er r no by
including <er r no. h>.

The macro err no expands to a modifiable Ivalue that has type i nt, the value of
which is set to a positive error number by several library functions. errno need
not be the identifier of an object, e.g., it might expand to a modifiable Ivalue result-
ing from a function call. It is unspecified whether er r no is a macro or an identifier
declared with external linkage. If an errno macro definition is suppressed to
access an actual object, or if a program defines an identifier with the name err no,
the behavior is undefined.

In addition to the values defined in the Base System for the external variable er r no
[see errno(BA_ENV)], two additional error conditions are defined in the Kernel
Extension:

ENOVSG No message of desired type.

An attempt was made to receive a message of a type that does not exist
on the specified message queue [see msgop(KE_OS)].

El DRM Identifier removed.

This error is returned to processes that resume execution because of the
removal of an identifier [see msgctl(KE_OS), semctl(KE_OS), and
shmctl(KE_OS)].

SEE ALSO

LEVEL

errno(BA_ENV), msgctl(KE_OS), msgop(KE_OS), semctl(KE_OS), shmctl(KE_OS).

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ke_env/errno
svid

Page: 657

ipc (KE_ENV)

NAME

sys/ipc.h — inter-process communication access structure

SYNOPSIS

#i ncl ude <sys/ipc. h>

DESCRIPTION
The <sys/ i pc. h> header uses three mechanisms for inter-process communication
(IPC): messages, semaphores and shared memory. All use a common structure
type, i pc_per mto pass information used in determining permission to perform an

LEVEL

IPC operation.
The structure i pc_per mcontains the following members:

ipc (KE_ENV)

uid_t ui d; /* owner’s user

gid_t gi d; /* owner’s group ID */

uid_t cui d; /* creator’s user

gid_t cgi d; /* creator’s group ID */
node_t node; /* read/wite permssion */

Definitions are given for the following constants:

Mode bits:
C_CREAT create entry if key doesn’t exist

| PC_
| PC_EXCL fail if key exists
I PC_NOWAI T error if request must wait
Keys:

| PC_PRI VATE private key

Control Commands:

IPC_ RM D remove identifier
| PC_SET set options
| PC_STAT get options

Level 1.

FINAL COPY

June 15, 1995

File: ke_env/ipc
svid

Page: 658

Page 1

msg (KE_ENV)

msg (KE_ENV)

currently on queue */

/* pid of last nsgsnd() */
/* pid of last negrcv() */
/* time of last msgsnd() */
/* time of last nmegrcv() */
/* time of |ast change */

NAME
sys/msg.h — message queue structures
SYNOPSIS
#i ncl ude <sys/nsg. h>
DESCRIPTION
The <sys/ nsg. h> header defines the following constant and members of the struc-
ture nsqi d_ds
Message operation flag:
M5G_NOERROR no error if big message
The structure nsqi d_ds contains the following members:
struct ipc_perm nsg_perm /* operation perm ssion
structure */
unsi gned | ong nsg_qgnum /* nunber of messages
unsi gned | ong nmsg_gbytes; /* max nunber of bytes
al owed on queue */
pid_t nsg_| spi d;
pid_t nsg_| rpid;
time_t nmsg_sti me;
time_t nsg_rtimne;
time_t nsg_cti nme;
nsg_perm isan i pc_per mstructure [see ipc(KE_ENV)] that specifies the mes-
sage operation permission.
nsg_gnum is the number of messages currently on the queue.
nsg_gbyt es is the maximum number of bytes allowed on the queue.
nsg_| spid isthe process ID of the last process that performed a nsgsnd opera-
tion.
nsg_| rpid isthe process ID of the last process that performed a nsgr cv opera-
tion.
nsg_stine isthe time of the last nsgsnd operation.
nsg_rtinme isthe time of the last nsgr cv operation.
nsg_ctine s the time of the last nsgct | operation that changed a member of
the above structure.
The following are declared as either functions or macros:
nsgct | () nmsgrcv()
nsgget () msgsnd()
SEE ALSO
ipc(KE_ENV), msgctl(KE_OS), msgget(KE_OS), msgop(KE_OS).
LEVEL

Level 1.

FINAL COPY
June 15, 1995
File: ke_env/msg
svid

Page: 659

Page 1

sem (KE_ENV)

NAME

sem (KE_ENV)

sys/sem.h — semaphore facility

SYNOPSIS

#i ncl ude <sys/sem h>

DESCRIPTION

The <sys/ sem h> header defines the following constants and structures.

Semaphore operation flags:
SEM UNDO set up adjust on exit entry

Command definitions for the function senttl () [see semctl(KE_OS)]:

GETNCNT get semncnt
GETPI D get sempid
GETVAL get semval
GETALL get all semvals
GETZCNT get semzent
SETVAL set semval
SETALL set all semvals

The structure semni d_ds contains the following members:
struct ipc_perm sem perm /* operation pernssion

structure */

ushort sem nsens; [/* nunber of semaphores

in set */

time_t semotinme; [/* last sermop() tine */
time_t semctime; /* last tinme changed by

sem perm

sem . nsens

semval
senpi d

semmcnt

senezcnt

senct!l () */

is an i pc_per mstructure that specifies the semaphore operation per-
mission [see ipc(KE_ENV)].

is a value that is equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a non-negative integer referred
to as a sem_num The value of sem _numruns sequentially from O to
the value of sem nsens—1. semotinme is the time of the last
senpp operation, and sem cti ne is the time of the last senct|

operation that changed a member of the above structure.

is a non-negative integer.

is equal to the process ID of the last process that performed a sema-
phore operation on this semaphore.

is a count of the number of processes that are currently suspended
awaiting this semaphore’s senmval to become greater than its current
value.

is a count of the number of processes that are currently suspended
awaiting this semaphore’s senval to become zero.

Page 1

FINAL COPY
June 15, 1995
File: ke_env/isem
svid

Page: 660

sem (KE_ENV) sem (KE_ENV)

The number of semaphores in a set is sem nsens within the set semaphores

number from 0 to sem nsens-1. The number of a semaphore is known as a
sem num

A semaphore is represented by an anonymous structure containing the following
members:

ushort senval ; /* semaphore val ue */
pid_t senpi d; /* pid of |ast operation */
ushort semmcnt; /* nunmber of processes waiting

for semval to becone greater

than current val ue */
ushort senecnt; /* nunmber of processes waiting
for senmval to become zero */

The structure senbuf contains the following members:

ushort sem_num /* semaphore nunber */
short sem op; /* semaphore operation */
short sem flg; /* operation flags */

The following are declared as either functions or macros:
senctl () senget() senop()

SEE ALSO

LEVEL

Page 2

ipc(KE_OS), semctl(KE_OS), semget(KE_OS), semop(KE_OS).

Level 1.

FINAL COPY
June 15, 1995
File: ke_env/isem
svid

Page: 661

shm (KE_ENV)

NAME

sys/shm.h — shared memory facility

SYNOPSIS
#i ncl ude <sys/shm h>

DESCRIPTION

shm (KE_ENV)

The <sys/ shm h> header defines the following constants and the structure.

Message operation flags:

SHM RDONLY attach read-only (else read-write)
SHMLBA segment low boundary address multiple
SHM _RND round attach address to SHMLBA

The structure shmi d_ds contains the following members:
struct ipc_perm shm perm

i nt

pid_t

pid_t

unsi gned | ong
time_t

time_t

time_t

/*

shm segsz; /*
shm | pi d; [*
shm cpi d; /*
shmnnattch; /*

shmatinme; /*
shmdtine; /*
shmctinme; /*

operation perm ssion
structure */

segnent size in bytes */
pid of last shnop */
pid of creator */
nunber of current
attaches */

time of last shmat() */
time of last shndt() */
time of |ast change by
shnet !l () */

shm perm is an i pc_per mstructure that specifies the shared memory opera-

tion permission [see ipc(KE_ENV)].

shm segsz specifies the size of the shared memory segment.
shm cpid is the process ID of the process that created the shared memory

identifier.

shm | pi d is the process ID of the last process that performed a shnop() rou-
tine [see shmop(KE_OS)].

shm nattch

is the number of processes that currently have this segment attached.
shm at i e is the time of the last shmat operation.

shm dt i me is the time of the last shndt operation. is the time of the last shntt |
operation that changed one of the members of the above structure.

The following are declared as either functions or macros:

shmat () shnet ! ()

SEE ALSO

shndt ()

shnyget ()

ipc(KE_ENV), shmctl(KE_OS), shmget(KE_OS), shmop(KE_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ke_env/shm
svid

Page: 662

Kernel Extension OS Service Routines

The following section contains the manual pages for the KE_OS routines.

Kernel Extension OS Service Routines 11-1

FINAL COPY

June 15, 1995

File: ke_os.cov
svid

Page: 663

FINAL COPY
June 15, 1995
File:

Page: 664

acct (KE_OS) acct (KE_OS)

NAME
acct —enable or disable process accounting

SYNOPSIS
#i ncl ude <uni std. h>
int acct(const char [path);

DESCRIPTION
acct enables or disables the system process accounting routine. If the routine is
enabled, an accounting record will be written in an accounting file for each process
that terminates. The termination of a process can be caused by one of two things:
an exit call or a signal The calling process must have the appropriate privilege
(P_SYSCPS) to enable or disable accounting.
path points to a pathname naming the accounting file. An accounting file produced

as a result of calling the acct function has records in the format defined by the
structure acct in <sys/ acct . h>, which defines the following data type:

conp_t /* floating point - 13-bit fraction, */

/* 3-bit exponent */
The structure acct includes the following members:
char ac_f 1 ag; /* Accounting flag */
char ac_stat; /* Exit status */
uid_t ac_uid; /* Accounting user |ID*/
gidt ac_gid, /* Accounting group ID */
dev_t ac_tty; /* controlling tty */
tinme_t ac_btime; /* Beginning time */
conp_t ac_utine; /* accounting user tine in clock ticks */
conp_t ac_stineg; /* accounting systemtime in clock ticks */
conp_t ac_etine; /* accounting elapsed time in clock ticks */
conp_t ac_nem /* menory usage in clicks */
conp_t ac_io; /* chars transferred by read/wite */
conp_t ac_rw, /* nunber of block reads/wites */

char ac_comj 8]; /* command nare */

and defines the following symbolic names:

AFCRK /* has executed fork, but no exec */
ASU /* used appropriate privileges */
ACCTF /* record type: 00 = acct */

The ac_stat value is the status returned in the argument to wait [see
wait (BA_OS)] castto achar.

The AFCRK flag is set in ac_f | ag when the f or k routine is executed and reset when
an exec routine is executed [see exec(BA_OS)]. The ac_comm field is inherited
from the parent process when a child process is created with the f or k routine and
is reset when an exec routine is executed. The variable ac_nemis a cumulative

record of memory usage and is incremented each time the system charges the pro-
cess with a clock tick.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/acct

svid

Page: 665

acct (KE_OS) acct (KE_OS)

The accounting routine is enabled if path is non-zero and no errors occur during the
system call. It is disabled if path is (char *)NULL and no errors occur during the
system call.

Return Values
On success, acct returns 0. On failure, acct returns -1 and sets er r no to identify

the error.
Errors

In the following conditions, acct fails and sets er r no to:

EACCES The file named by path is not an ordinary file.

EACCES Search permission is denied on a component of the path
prefix.

EACCES Write permission on the name file is denied.

EFAULT path points to an illegal address.

ELOCP Too many symbolic links were encountered in translating
path.

ENAMETOCOLONG The length of the path argument exceeds {PATH_MAX}, or the

length of a path component exceeds {NAMVE NMAX} while
_PC8I X_NO TRUNC is in effect.

ENOTD R A component of the path prefix is not a directory.
ENCENT One or more components of the accounting file pathname do
not exist.
EPERM The calling process does not have the appropriate privilege
to enable or disable accounting.
ERCFS The named file resides on a read-only file system.
SEE ALSO
exi t (BA_OS)
LEVEL
Level 1.
Page 2
FINAL COPY

June 15, 1995
File: ke_os/acct
svid

Page: 666

chroot (KE_OS) chroot (KE_OS)

NAME

chroot — change root directory
SYNOPSIS

i nt chroot(const char *path);
DESCRIPTION

The function chr oot () causes the named directory to become the root directory,
the starting point for path searches for absolute pathnames. The function
chr oot () does not affect the user’s working directory.

The argument path points to a pathname naming a directory.
The process must have appropriate privileges to change the root directory.

The . . entry in the root directory is interpreted to mean the root directory itself.
Thus, . . cannot be used to access files outside the sub-tree rooted in the root direc-
tory.

RETURN VALUE

Upon successful completion, the function chr oot () returns a value of 0; other-
wise, it returns a value of —1 and sets er r no to indicate an error. On failure the root
directory remains unchanged.

ERRORS

Under the following conditions, the function chr oot () fails, and sets er r no to:
EACCES if search permission is denied for a component of path.

ENOTDI R if any component of the pathname is not a directory.

ENCENT if the named directory does not exist or path points to an empty string.
EPERM if the process does not have appropriate privileges.

ENAMVETOOLONG

if the size of a pathname exceeds { PATH_MAX}, or a pathname com-
ponent is longer than { NAVE_MAX} while { _POSI X_NO TRUNC} is

in effect.
ELOOP if too many symbolic links are encountered in translating the path.
SEE ALSO
chdir(BA_OS).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/chroot
svid

Page: 667

exit (KE_OS)

NAME

exit,

SYNOPSIS

exit (KE_OS)

exi t —terminate process

#incl ude <stdlib. h>
void exit(int status);

#i ncl ude <uni std. h>
void _exit(int status);

DESCRIPTION

_exi t terminates the calling process with the following consequences:

All of the file descriptors, directory streams and message catalogue descrip-
tors open in the calling process are closed.

A Sl GCHLDsignal is sent to the calling process’s parent process.

If the parent process of the calling process has not specified the
SA NOCLDWAI T flag [see sigaction(BA_OS)], the calling process is
transformed into a “zombie process.” A zombie process is a process that
only occupies an entry in the process list. It has no other space allocated
either in user or kernel space. The process table slot that it occupies is par-
tially overlaid with time accounting information [see <sys/ pr oc. h>] to be
used by the t i mes system call.

The parent process ID of all of the calling process’s existing child processes
and zombie processes is set to 1. This means the initialization process inher-
its each of these processes.

Each attached shared memory segment is detached and the value of
shm nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a sermadj value
[see senop(KE_OS)], that semadj value is added to the senval of the
specified semaphore.

If the process has a process, text, or data lock, an unl ock is performed [see
pl ock(KE_OS)].

An accounting record is written on the accounting file if the system’s
accounting routine is enabled [see acct (AS_CMD)].

If the process is a controlling process, SI GHUP is sent to the foreground pro-
cess group of its controlling terminal and its controlling terminal is deallo-
cated.

If the calling process has any stopped children whose process group will be
orphaned when the calling process exits, or if the calling process is a
member of a process group that will be orphaned when the calling process
exits, that process group will be sent SI GHUP and SI GOONT signals.

The C function exi t calls any functions registered through the at exi t function in
the reverse order of their registration. The function _exit circumvents all such
functions and cleanup.

Page 1

FINAL COPY

June 15, 1995

File: ke_os/exit
svid

Page: 668

exit (KE_OS) exit (KE_OS)

The symbols EXI T_SUCCESS and EXI T_FAI LURE are defined in stdl i b. h and may
be used as the value of status to indicate successful or unsuccessful termination,
respectively.

SEE ALSO
acct (AS_CMD), pl ock(KE_QOS), senmop(KE_OS), si gacti on(BA_OS),
ti mes(BA_OS), wai t (BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY

June 15, 1995

File: ke_os/exit
svid

Page: 669

getksym (KE_OS) getksym (KE_OS)

NAME

get ksym- get information for a global kernel symbol

SYNOPSIS

#i ncl ude <sys/ksym h>
int getksym(char *symname, unsigned | ong *value, unsigned |ong *info);

DESCRIPTION

get ksym given a symname, looks for a global symbol of that name in the symbol
table of the running kernel (including all currently loaded kernel modules). If it
finds a match, get ksymreturns the value associated with that symbol (typically its
address) in the space pointed to by value, and the type of that symbol in the space
pointed to by info. If more than one symbol of the given name exists in the search
space, the one (if any) in the statically bound kernel or, if not there, the first one
found among the loaded modules will be returned.

If get ksymis given a valid address in the running kernel in the space pointed to by
value, it will return, in the space pointed to by symname, the name of the symbol
whose value is the closest one less than or equal to the given value and, in space
pointed to by info, the difference between the address given and the value of the
symbol found.

Return Values

On failure, get ksymreturns -1 and sets er r no to identify the error.

Errors

In the following conditions, get ksymfails and sets er r no to:
EFAULT Invalid pointer for symname, value, or info

ENAMETOOLONG The length of the symbol name exceeds the maximum length of the
characters.

ENQVATCH symname is not found in the running kernel (including loaded
modules) or value is outside the range of the static kernel and any
loaded modules.

SEE ALSO

LEVEL

nli st (SD_LIB),

Level 1.

NOTICES

As a consequence of the dynamically loadable kernel modules feature, a dynamic
symbol table is now kept in the kernel address space representing all defined global
symbols in the static kernel and all currently loaded modules. When a module is
loaded, its symbol information is added to this table; when a module is unloaded,
its symbol information is deleted.

Finding out the address of a particular kernel variable was commonly done by
using nl i st (SD_LIB) on /stand/ uni x. This is no longer an accurate way to get
that information, since / st and/ uni x only contains the symbol table for the static
kernel. The symbol tables for the loadable modules are elsewhere on the system,
but which modules are loaded and from where changes over time. So, as part of
this feature, two new ways of getting at information associated with kernel symbols

Page 1

FINAL COPY
June 15, 1995
File: ke_os/getksym
svid

Page: 670

getksym (KE_OS) getksym (KE_OS)

have been provided.

The get ksymKE_OS) system call provides the kind of information on a given ker-
nel symbol or address that nlist(SD_LIB) provided. However, the symbol
name/address association may not be valid by the time it is returned to the user
(for example, if the symbol is defined in a loadable module and that module is
unloaded), unless the user takes special steps like keeping the module loaded by
making sure there is an outstanding open, nount , . . .

Because of this later complication and because most interest in kernel addresses is
related to reading or writing from / dev/ knmem an alternate atomic method of read-
ing and writing in the kernel address space based on a symbol name is provided.
Three new ioctl commands now exist in the nmmemory driver for the / dev/ kmem
minor device In this way, a user gets the desired 10 operation accomplished
without fear that a module may be unloaded in the middle. Of course, this user
must still open / dev/ kmemfor the correct type of 10 and so the appropriate protec-
tions against unauthorized access still exist.

Page 2

FINAL COPY
June 15, 1995
File: ke_os/getksym
svid

Page: 671

mmap (KE_OS) mmap (KE_OS)

NAME

mmap — map pages of memory

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/man. h>

caddr _t mmap(caddr_t addr, size_t len, int prot,
int flags, int fd, off_t off);

DESCRIPTION

The function nmap() establishes a mapping between a process’s address space and
a virtual memory object. The format of the call is as follows:

pa=map(addr, len, prot, flags, fd, off);

nmap() establishes a mapping between the process’s address space at an address pa
for len bytes to the memory object represented by the file descriptor fd at offset off
for len bytes. The value of pa is an implementation-dependent function of the
parameter addr and values of flags, further described below. A successful mrap()
call returns pa as its result. The address ranges covered by [pa, pa + len) and [off, off
+ len) must be legitimate for the possible (not necessarily current) address space of a
process and the object in question, respectively.

The mapping established by mmap() replaces any previous mappings for the
process’s pages in the range [pa, pa + len).

The parameter prot determines whether read, write, execute, or some combination
of accesses are permitted to the pages being mapped. The protection options are
defined in <sys/ nman. h> as:

PROT_READ /* page can be read */
PROT_WRI TE /* page can be witten */
PROT_EXEC /* page can be executed */
PROT_NONE /* page can not be accessed */

Not all implementations literally provide all possible combinations. PROT_WRI TE
is often implemented as PROT_READ| PROT_WRI TE and PROT_EXEC as
PROT_READ| PROT_EXEC. However, no implementation will permit a write to
succeed where PROT_WRI TE has not been set. The behavior of PROT_WRI TE can
be influenced by setting MAP_PRI VATE in the flags parameter, described below.

The parameter flags provides other information about the handling of the mapped
pages. The options are defined in <sys/ nman. h> as:

MAP_SHARED /* Share changes */
MAP_PRI VATE /* Changes are private */
MAP_FI XED /* Interpret addr exactly */

MAP_SHARED and MAP_PRI VATE describe the disposition of write references to the
memory object. If MAP_SHARED is specified, write references will change the
memory object. If MAP_PRI VATE is specified, the initial write reference will create
a private copy of the memory object page and redirect the mapping to the copy.
Either MAP_SHARED or MAP_PRI VATE must be specified, but not both. The map-
ping type is retained across a fork().

Page 1

FINAL COPY
June 15, 1995
File: ke_os/mmap
svid

Page: 672

mmap (KE_OS) mmap (KE_OS)

Note that the private copy is not created until the first write; until then, other users
who have the object mapped MAP_SHARED can change the object.

MAP_FI XED informs the system that the value of pa must be addr, exactly. The use
of MAP_FI XED is discouraged, as it may prevent an implementation from making
the most effective use of system resources.

When MAP_FI XED is not set, the system uses addr in an implementation-defined
manner to arrive at pa. The pa so chosen will be an area of the address space which
the system deems suitable for a mapping of len bytes to the specified object. All
implementations interpret an addr value of zero as granting the system complete
freedom in selecting pa, subject to constraints described below. A non-zero value of
addr is taken to be a suggestion of a process address near which the mapping
should be placed. When the system selects a value for pa, it will never place a map-
ping at address 0, nor will it replace any extant mapping, nor map into areas con-
sidered part of the potential data or stack segments .

The parameter off is constrained to be aligned and sized according to the value
returned by sysconf(). When MAP_FI XED is specified, the parameter addr
must also meet these constraints. The system performs mapping operations over
whole pages. Thus, while the parameter len need not meet a size or alignment con-
straint, the system will include, in any mapping operation, any partial page
specified by the range [pa, pa + len).

The system will always zero-fill any partial page at the end of an object. Further,
the system will never write out any modified portions of the last page of an object
which are beyond its end. References to whole pages following the end of an object
will result in the delivery of a SI GBUS signal. Sl GBUS signals may also be
delivered on various file system conditions, including quota exceeded errors.

mmap() adds an extra reference to the object associated with the file descriptor fd
which is not removed by a subsequent cl ose() on that file descriptor. This refer-
ence is removed when the entire range is unmapped (explicitly or implicitly).

RETURN VALUE

Upon successful completion, the function nmap() returns the address at which the
mapping was placed (pa); otherwise, it returns a value of —1 and sets er r no to indi-
cate an error.

ERRORS

Page 2

Under the following conditions, the function mmap() fails and sets er r no to:
EAGAI N if the mapping could not be locked in memory.
EBADF if fd is not open.

EACCES if fd is not open for read, regardless of the protection specified, or fd is
not open for write and PROT_WRI TE was specified for a MAP_SHARED
type mapping.

ENXI O if addresses in the range [off, off + len) are invalid for fd.

El NVAL if the arguments addr (if MAP_FI XED was specified) or off are not mul-
tiples of the page size as returned by sysconf ().

FINAL COPY
June 15, 1995
File: ke_os/mmap
svid

Page: 673

mmap (KE_OS) mmap (KE_OS)

El NVAL if the field in flags is invalid (neither MAP_PRI VATE or MAP_SHARED).
ENCDEV if fd refers to an object for which nmap() is meaningless, such as a
terminal.

ENOVEM if MAP_FI XED was specified, and the range [addr, addr + len) exceeds
that allowed for the address space of a process; or if MAP_FI XED was
not specified and there is insufficient room in the address space to
effect the mapping.

USAGE

The function mmap() allows access to resources via address space manipulations,
instead of the read() /7wri t e() interface. Once a file is mapped, all a process has
to do to access it is use the data at the address to which the object was mapped. So,
using pseudo-code to illustrate the way in which an existing program might be
changed to use mmap() ,

fd = open(...)

| seek(fd, some_offset)

read(fd, buf, len)

/* use data in buf */
becomes

fd = open(...)

address = mmap(0, |en, PROT_READ, MAP_PRI VATE, fd, sone_offset)

/* use data at address */

SEE ALSO
fentl(BA_OS), fork(BA_OS), lockf(BA_OS), mlockall(RT_OS), munmap(KE_OS),
mprotect(KE_OS), plock(KE_OS), sysconf(BA_OS).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: ke_os/mmap
svid

Page: 674

modload (KE_

NAME
nodl oal

SYNOPSIS
#inclu

int no

DESCRIPTION
nod| oal

0S) modload (KE_OS)

d — load a loadable kernel module on demand

de <sys/ nod. h>
dl oad(const char *pathname);

d allows processes with the appropriate privilege to demand-load a loadable

module into a running system.

pathname gives the pathname of the module to be loaded, specified either as a
module name or as an absolute pathname. If pathname specifies a module name,

nodl oa
nmodpat
specifie
file.

d searches for the module’s object file on disk in the list of directories set by
h(KE_OS) (including the default directory / et ¢/ conf/ nod. d). If pathname
s an absolute pathname, only pathname is used to locate the module’s object

Tasks performed during the load operation include:

open the module’s object file on disk
allocate kernel memory to hold the module
read the module’s object file into memory

load any modules upon which the module depends that are not already
loaded

relocate the module’s symbols

resolve any external references to kernel symbols made by the module
execute the module’s wrapper routine to perform any setup the module
requires to initialize itself

logically link the module to the running kernel by creating the module’s
switch table entries

set a flag that prevents the module from being unloaded by the kernel auto-
unload mechanism

Return Values
On success, nodl oad returns the integer module id of the loaded module. On
failure, modl oad returns —1 and sets er r no to identify the error.

Errors

In the following conditions, modl oad fails and sets er r no to:

EACCES Search permission was denied by a pathname component.

ENCENT The file pathname does not exist.

El NVAL The file pathname is not preconfigured for dynamic loading or has
invalid dependencies on other modules (such as a circular depen-
dency).

ERELCC Error occurred processing the module’s object file, or the module

references symbols not defined in the running kernel, or the
module references symbols in another loadable module, but it did
not define its dependence on this module in its Mast er file.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/modload
svid

Page: 675

modload (KE_OS) modload (KE_OS)

ENAMETOOLONG pathname is more than MAXPATHLEN characters long.

ENCBYS Unable to perform the requested operation because the loadable
modules functions are not configured into the system.

SEE ALSO
nmodadm n(AS_CMD), nodpat h(KE_OS), modst at (KE_OS), nodul oad(KE_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ke_os/modload
svid

Page: 676

modpath (KE_OS) modpath (KE_OS)

NAME
nodpat h — change loadable kernel modules search path

SYNOPSIS
#i ncl ude <sys/ nod. h>

i nt rodpat h(const char *pathname) ;

DESCRIPTION
nodpat h allows processes with the appropriate privilege to modify the global
search path used to locate object files for loadable kernel modules on disk. The
search path modifications take effect immediately and affect all subsequent loads
and all users on the system. Affected loads include all auto-loads performed by the
kernel auto-load mechanism and all demand-loads performed by nodl oad(KE_OS)
using a module name.

pathname can specify a colon-separated list of absolute pathnames, or an absolute
pathname, or NULL.

If pathname specifies a pathname, the named directories:

will be searched prior to searching any directories specified by previous
calls to nodpat h

will be searched prior to searching the default loadable modules search
path, which is always searched and always searched last

do not have to exist on the system at the time modpat h is called
do not have to exist on the system at the time the load takes place

If pathname is equal to NULL, the loadable modules search path is reset to its default
value

Return Values
On success, nodpat h returns 0. On failure, modpat h returns -1 and sets errno to
identify the error.

Errors
In the following conditions, modpat h fails and sets er r no to:
El NVAL List of directories specified by pathname is malformed.
ENAMETOOLONG pathname is more than MAXPATHLEN characters long.
ENCSYS Unable to perform the requested operation because the loadable
modules functions are not configured into the system.
SEE ALSO
nodadm n(AS_CMD), nodl oad(KE_OS)
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/modpath
svid

Page: 677

modstat (KE_OS) modstat (KE_OS)

NAME
nodst at — get information for loadable kernel modules

SYNOPSIS
#i ncl ude <sys/ nod. h>

int nmodstat (int modid, struct nodstatus *stbuf, bool ean_t next_modid);

DESCRIPTION
nodst at allows processes with the appropriate privilege to obtain information
about the currently loaded loadable kernel modules. Any module that has been
loaded by the kernel auto-load mechanism or demand-loaded by nodl oad(KE_OS)
may be queried by nodst at .

When passed the module identifier modid, nmodst at fills up the members of the
nmodst at us structure pointed to by strbuf with information about that module.

If the value of next_modid is B_TRUE, nodst at fills up a nodst at us structure with
information about the module whose module identifier is greater than or equal to
modid.

Return Values
On success, nodstat returns one or more nodst at us structures. On failure,
nodst at returns —1 and sets er r no to identify the error.

Errors

In the following conditions, modst at fails and sets er r no to:

El NVAL modid does not match the identifier for any currently loaded
module when next_modid is B_FALSE or modid is greater than the
identifier for any currently loaded module when next_modid is
B TRUE

ENCSYS Unable to perform the requested operation because the loadable
modules functions are not configured into the system.

SEE ALSO

nodadm n(AS_CMD), nodl oad(KE_OS), modul oad(KE_OS)
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/modstat
svid

Page: 678

moduload (KE_OS) moduload (KE_OS)

NAME
nodul oad - unload a loadable kernel module on demand

SYNOPSIS
#i ncl ude <sys/ nod. h>

i nt rmodul oad(i nt modid);

DESCRIPTION
nodul oad allows processes with the appropriate privilege to demand-unload a
loadable module—or all loadable modules—from a running system.

If modid specifies a module identifier, modul oad attempts to unload that module. If
modid specifies O (zero), modul oad attempts to unload all loadable modules.

Loadable modules are considered unloadable if all of the following conditions are
true:

the module is not currently being used

the module is not currently being loaded or unloaded

no module that depends on the module is currently loaded
profiling is disabled

When nmodul oad finds that it cannot demand-unload a module for one of the rea-
sons cited above, it flags the module as a candidate for subsequent unloading by the
kernel’s auto-unload mechanism.

Tasks performed during the unload operation include:

logically disconnect the module from the running system by removing the
module’s switch table entry

execute the module’s wrapper routine to perform any cleanup the module
requires to remove itself from the system

free kernel memory allocated for the module

Return Values
On success, nodul oad returns 0. On failure, nodul oad returns —1 and sets err no to
identify the error.

Errors
In the following conditions, modul oad fails and sets er r no to:

EBUSY Outstanding references to this module exist, or modules that
depend on this module are currently loaded, or profiling is not
enabled, or this module is in the process of being loaded or
unloaded.

El NVAL modid does not specify a valid loadable module identifier, or
modid is not currently loaded.

ENCSYS Unable to perform the requested operation because the loadable
modules functions are not configured into the system.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/moduload
svid

Page: 679

moduload (KE_OS)

SEE ALSO
nodadm n(AS_CMD), nodl oad(KE_OS), modpat h(KE_OS), nodst at (KE_OS)

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: ke_os/moduload
svid

Page: 680

moduload (KE_OS)

mprotect (KE_OS) mprotect (KE_OS)

NAME
mprotect — set protection of memory mapping

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/man. h>

nprot ect (caddr _t addr, size_t len, int prot);

DESCRIPTION
The function nprotect() changes the access protections on the mappings
specified by the range [addr, addr + len) to be that specified by prot. Legitimate
values for prot are the same as those permitted for mrap() and are defined in
<sys/ nman. h> as:

PROT_READ /* page can be read */
PROT_WRI TE /* page can be witten */
PROT_EXEC /* page can be executed */
PROT_NONE /* page can not be accessed */

RETURN VALUE
Upon successful completion, the function npr ot ect () returns a value of 0; other-
wise, it returns a value of —1 and sets er r no to indicate an error.

ERRORS
Under the following conditions, the function npr ot ect () fails and sets er r no to:
EACCES if prot specifies a protection that violates the access permission the

process has to the underlying memory object.

EAGAI N if prot specifies PROT_WRI TE over a MAP_PRI VATE mapping and
there are insufficient memory resources to reserve for locking the
private page.

El NVAL if addr is not a multiple of the page size as returned by sysconf ().

ENOVEM if addresses in the range [addr, addr + len) are invalid for the address
space of a process, or specify one or more pages which are not
mapped.

When npr ot ect () fails for reasons other than El NVAL, the protections on some
of the pages in the range [addr, addr + len) will have been changed. If the error
occurs on some page at addr2, then the protections of all whole pages in the range
[addr, addr2] will have been modified.

SEE ALSO
mmap(KE_OS), memcntl(RT_OS), mlock(RT_OS), mlockall(RT_OS), plock(KE_OS),
sysconf(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/mprotect
svid

Page: 681

msgctl

(KE_OS)

SEE ALSO

LEVEL

Page 2

nsgop(KE_OS)

Level 1.

FINAL COPY
June 15, 1995
File: ke_os/msgctl
svid

Page: 683

msgctl (KE_OS)

msgget (KE_OS) msgget (KE_OS)

NAME

msgget — get message queue

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/ nmsg. h>

int megget (key_t key, int msgflg);

DESCRIPTION

nsgget returns the message queue identifier associated with key. This identifier is
accessible by any process in the system, subject to normal access restrictions and the
permissions set with msgflg.

A successful call to nsgget does not imply access to the queue in question, only a
successful name mapping from key to ID.

A message queue identifier and associated message queue and data structure are
created for key if one of the following are true:

key is | PC_PR VATE.

key does not already have a message queue identifier associated with it, and
(msgflg& PC_CREAT) is true.

On creation, the data structure associated with the new message queue identifier is
initialized as follows:

nsg_perm cui d, nsg_perm ui d, nsg_perm cgi d, and nsg_permgi d are
set to the effective user | Dand effective group | D, respectively, of the calling
process.

The low-order 9 bits of nsg_per m nmode are set to the low-order 9 bits of
msgflg.

msg_gnum nsg_| spi d, nsg_| rpi d, meg_sti me, and nsg_rti me are set to 0.
nsg_cti ne is set to the current time.
nsg_qgbyt es is set to the system limit.

Return Values

On success, nsgget returns a non-negative integer, namely a message queue
identifier. On failure, nsgget returns -1 and sets er r no to identify the error.

Errors

In the following conditions, msgget fails and sets er r no to:

EACCES A message queue identifier exists for key, but the queue was not
created supporting the specified operation permissions.

ENCENT A message queue identifier does not exist for key and
(msgflg& PC_CREAT) is false.

ENCSPC A message queue identifier is to be created but the system-

imposed limit on the maximum number of allowed message queue
identifiers system wide would be exceeded.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/msgget
svid

Page: 684

msgget (KE_OS) msgget (KE_OS)

EEX ST A message queue identifier exists for key but (msgflg& PC_CREAT)
and (msgflg& PC_EXCL) are both true.
SEE ALSO
nsgct | (KE_OS), msgop(KE_OS)
LEVEL
Level 1.
Page 2

FINAL COPY
June 15, 1995
File: ke_os/msgget
svid

Page: 685

msgop (KE_OS) msgop (KE_OS)

nsg_gnumis incremented by 1.
nsg_| spi d | Dof the caller.
nsg_sti ne is set to the current time.

nsgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the user defined structure pointed to by
msgp. The structure must contain a message type field followed by the area for the
message text (see the structure nynsg above). ntype is the received message’s type
as specified by the sending process. ntext is the text of the message. msgsz
specifies the size in bytes of ntext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgflg&VBG_NCERRCR) is true. The truncated part
of the message is lost and no indication of the truncation is given to the calling
process.

msgtyp specifies the type of message requested as follows:
If msgtyp is 0, the first message on the queue is received.
If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than
or equal to the absolute value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows:

If (msgflg& PC_NOMI T) is true, the caller returns immediately with a return
value of -1 and sets er r no to ENOVBG

If (msgflg& PC_NOMI T) is false, the caller suspends execution until one of
the following occurs:

A message of the desired type is placed on the queue.

msgid is removed from the system. When this occurs, errno is set to
El DRV and a value of -1 is returned.

The caller receives a signal that is to be caught. In this case a mes-
sage is not received and the caller resumes execution in the manner
prescribed in si gnal (BA_OS).

On success, the following actions are taken with respect to the data structure associ-
ated with msqid

nsg_qgnumis decremented by 1.
nsg_| rpi d is set to the process | D of the caller.
nsg_rtine is set to the current time.

Return Values

Page 2

On success:
nmsgsnd returns 0.
nsgr cv returns the number of bytes actually placed into mtext.

FINAL COPY
June 15, 1995
File: ke_os/msgop
svid

Page: 687

msgop (KE_OS)

msgop (KE_OS)

On failure, msgsnd and nsgr cv return -1 and set er r no to identify the error.

Errors

In the following conditions, msgsnd and nsgr cv fail and set er r no to:

El NTR nsgsnd or nsgr cv returned due to the receipt of a signal.
El DRM nsgsnd or nsgr cv returned due to removal of msqid from the system.
In the following conditions, msgsnd fails and sets er r no to:

El NVAL
EACCES
El NVAL
EAGAI N

El NVAL

msqid is not a valid message queue identifier.
Operation permission is denied to the caller.
mtype is less than 1.

The message cannot be sent for one of the reasons cited above and
(msgflg& PC_NOM T) is true.

msgsz is less than zero or greater than the system-imposed limit.

In the following conditions, nsgr cv fails and sets er r no to:

El NVAL
EACCES
El NVAL
E2BI G

ENOVBG

SEE ALSO

msgid is not a valid message queue identifier.
Operation permission is denied to the caller.
msgsz is less than 0.

The length of mtext is greater than msgsz and
(msgflg&VBG_NCERRCR) is false.

The queue does not contain a message of the desired type and
(msgtyp& PC_NOM T) is true.

nsgct | (KE_OS) nsgget (KE_OS) si gnal (BA_OS)

LEVEL
Level 1.

NOTICES

Considerations for Threads Programming
While one thread is blocked, siblings might still be executing.

Page 3

FINAL COPY
June 15, 1995
File: ke_os/msgop
svid

Page: 688

msync (KE_OS) msync (KE_OS)

NAME
msync — synchronize memory with physical storage

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/man. h>

int msync(caddr_t addr; size_t len; int flags);

DESCRIPTION
The function nsync() writes all modified copies of pages over the range [addr, addr
+ len) to their permanent storage locations. nsync() optionally invalidates any
copies so that further references to the pages will be obtained by the system from
their permanent storage locations.

flags is a bit pattern built from the following flags used to control the behavior of the
operation:

M5_ASYNC perform asynchronous writes
M5_SYNC perform synchronous writes
MS_I NVALI DATE invalidate mappings

M5_ASYNC returns immediately once all write operations are scheduled; with
M5_SYNC the system call will not return until all write operations are completed.

M5_| NVALI DATE invalidates all cached copies of data in memory, so that further
references to the pages will be obtained by the system from their permanent storage
locations. This operation should be used by applications that require a memory
object to be in a known state.

RETURN VALUE
Upon successful completion, the function msync() returns a value of 0; otherwise,
it returns a value of —1 and sets er r no to indicate an error.

ERRORS
Under the following conditions, the function nsync() fails and sets er r no to:
EBUSY if some or all the addresses in the range [addr, addr + len) are locked.
El NVAL if addr is not a multiple of the page size as returned by sysconf ().
ENOVEM if some or all the addresses in the range [addr, addr + len) are invalid
for the address space of the process or pages not mapped are
specified.
USAGE

nsync() should be used by programs that require a memory object to be in a
known state, for example in building transaction facilities.

SEE ALSO
mmap(KE_OS), sysconf(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/msync
svid

Page: 689

munmap (KE_OS) munmap (KE_OS)

NAME
munmap — unmap pages of memory.
SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/man. h>

munmap(caddr _t addr, size_t len);

DESCRIPTION
The function nunmap() removes the mappings for pages in the range [addr, addr +
len). Further references to these pages will result in the delivery of a Sl GSEGV sig-
nal to the process.

The function mmap() often performs an implicit nunmap() .

RETURN VALUE
Upon successful completion, the function munmap() returns a value of 0; other-
wise, it returns a value of —1 and sets er r no to indicate an error.

ERRORS
Under the following conditions, the function nunmap() fails and sets er r no to:

El NVAL if addr is not a multiple of the page size as returned by sysconf ().
El NVAL if addresses in the range [addr, addr + len) are outside the valid range
for the address space of a process.
SEE ALSO
mmap(KE_OS), sysconf(BA_OS).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/munmap
svid

Page: 690

nice (KE_OS) nice (KE_OS)

NAME
ni ce — change priority of a time-sharing process

SYNOPSIS
#i ncl ude <uni std. h>

int nice(int incr);

DESCRIPTION
ni ce allows a member of the time-sharing scheduling class to change its priority.

ni ce adds the value of incr to the nice value of the calling process. The nice value is
a non-negative number for which a more positive value results in lower CPU prior-
ity.
A maximum nice value of NZERO are imposed by the system. Requests for values
above or below these limits result in the nice value being set to the corresponding
limit.

Return Values
On success, ni ce returns the new nice value minus NZERQ On failure, ni ce returns
-1 and sets er r no to identify the error.

Errors
In the following conditions, ni ce fails and sets er r no to:
EPERM i ncr is negative or greater than NZERO and the effective user ID of
the calling process does not have the appropriate privilege.
El NVAL The process was in a scheduling class other than time-sharing.
USAGE

priocnt| (RT_CMD) is a more general interface to scheduler functions.

SEE ALSO
exec(BA_OS), ni ce(AS_CMD), pri ocnt | (RT_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/nice
svid

Page: 691

plock (KE_OS)

NAME

plock (KE_OS)

pl ock — lock into memory or unlock process, text, or data

SYNOPSIS

#i ncl ude <sys/| ock. h>
int plock(int op);

DESCRIPTION

pl ock allows the calling process to lock into memory or unlock its text segment
(text lock), its data segment (data lock), or both its text and data segments (process
lock). Locked segments are immune to all routine swapping. pl ock also allows
these segments to be unlocked. The effective user id of the calling process must
have the appropriate privilege to use this call.

pl ock performs the function specified by op:

PROCLOCK
TXTLOK
DATLOCK
UNLOCK
Return Values

Lock text and data segments into memory (process lock).
Lock text segment into memory (text lock).

Lock data segment into memory (data lock).

Remove locks.

On success, pl ock returns 0. On failure, pl ock returns —1 and sets err no to iden-

tify the error.

Errors

In the following conditions, pl ock fails and sets er r no to:

EPERM

El NVAL

El NVAL

El NVAL

El NVAL
EAGAI N
SEE ALSO

The effective user id of the calling process does not have the
appropriate privilege.

op is equal to PROCLOCK and a process lock, a text lock, or a data
lock already exists on the calling process.

op is equal to TXTLOK and a text lock, or a process lock already
exists on the calling process.

op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process.

op is equal to UNLOCK and no lock exists on the calling process.
Not enough memory, or there is insufficient resources.

exec(BA_OS), mentnt | (RT_OS)

FUTURE DIRECTIONS

pl ock is described in terms of text and data segments but a process address space is
usually described as a collected of nmaped objects.

LEVEL
Level 2.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/plock
svid

Page: 692

plock (KE_OS) plock (KE_OS)

NOTICES
nenctnt | is the preferred interface to memory locking.

Considerations for Threads Programming
Sibling threads share (by definition) the same address space; modifications to the
address space by one can be perceived by the others.

Page 2

FINAL COPY
June 15, 1995
File: ke_os/plock
svid

Page: 693

priocntl (KE_OS) priocntl (KE_OS)

NAME
priocnt!| — process scheduler control

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/ procset. h>
#i ncl ude <sys/priocntl.h>
#i ncl ude <sys/fppriocntl.h>
#i ncl ude <sys/tspriocntl.h>

long priocntl (idtype_ t idtype, id_t id, int cmd, void *arg);

DESCRIPTION
priocnt!| provides for control over the scheduling of active processes.

Processes fall into distinct classes with a separate scheduling policy applied to each
class. The two classes currently supported are the fixed priority class and the time-
sharing class. The characteristics of these classes are described under the
corresponding headings below. The class attribute of a process is inherited across
the f or k(BA_OS) and exec(BA_OS) system calls. pri ocntl can be used to dynam-
ically change the class and other scheduling parameters associated with a running
process or set of processes given the appropriate permissions as explained below.

In the default configuration, the highest fixed priority process runs before any other
process. Therefore, inappropriate use of fixed priority processes can have a
dramatic negative impact on system performance.

For priocntl, the idtype and id arguments are used together to specify the set of
processes. The interpretation of id depends on the value of idtype. The possible
values for idtype and corresponding interpretations of id are as follows:

P PID id is a process ID specifying a single process to which the pri ocnt |
system call is to apply.

P_PPI D id is a parent process ID. The priocntl system call applies to all
processes with the specified parent process ID.

P PAD id is a process group ID. The priocntl system call applies to all
processes in the specified process group.

P SID id is a session ID. The pri ocnt| system call applies to all processes in
the specified session.

PAD id isaclass ID (returned by pri ocnt| PC_CGETA Das explained below).
The priocntl system call applies to all processes in the specified
class.

P UD id isa user ID. The pri ocnt| system call applies to all processes with
this effective user ID.

P AD id is a group ID. The priocnt| system call applies to all processes
with this effective group ID.

P AL The pri ocnt| system call applies to all existing processes. The value
of id is ignored. The permission restrictions described below still
apply.

Page 1
FINAL COPY

June 15, 1995
File: ke_os/priocntl
svid

Page: 694

priocntl (KE_OS) priocntl (KE_OS)

The pc_cl par ns buffer holds class-specific scheduling parameters. The format of
this parameter data for a particular class is described under the appropriate head-
ing below. PC_CLPARMBZ is the length of the pc_cl par ns buffer and is defined in
sys/priocntl. h.

Commands
Available pri ocnt| commands are:

PC GETA D
Get class ID and class attributes for a specific class given class name. The idtype
and id arguments are ignored. If arg is non-null, it points to a structure of type
pci nfo_t. The pc_cl nane buffer contains the name of the class whose attri-
butes you are getting.

On success, the class ID is returned in pc_ci d, the class attributes are returned in
the pc_cl i nf o buffer, and the pri ocnt | call returns the total number of classes
configured in the system (including the sys class). If the class specified by
pc_cl nane is invalid or is not currently configured the pri ocnt| call returns -1
with errno set to El N\VAL. The format of the attribute data returned for a given
class is defined in the sys/fppriocntl.h or sys/tspriocntl.h header file
and described under the appropriate heading below.

If arg is a NULL pointer, no attribute data is returned but the pri ocnt| call still
returns the number of configured classes.

PC _GETCLI NFO
Get class name and class attributes for a specific class given class ID. The idtype
and id arguments are ignored. If arg is non-null, it points to a structure of type
pci nfo_t. pc_ci dis the class ID of the class whose attributes you are getting.

On success, the class name is returned in the pc_cl name buffer, the class attri-
butes are returned in the pc_cl i nf o buffer, and the pri ocnt| call returns the
total number of classes configured in the system (including the sys class). The
format of the attribute data returned for a given class is defined in the
sys/fppriocntl.horsys/tspriocntl.h header file and described under the
appropriate heading below.

If arg is a NULL pointer, no attribute data is returned but the pri ocnt| call still
returns the number of configured classes.

PC_SETPARNVB
Set the class and class-specific scheduling parameters of the specified
process(es). arg points to a structure of type pcparns_t. pc_ci d specifies the
class you are setting and the pc_cl parns buffer contains the class-specific
parameters you are setting. The format of the class-specific parameter data is
defined in the sys/fppriocntl.h or sys/tspriocntl.h header file and
described under the appropriate class heading below.

When setting parameters for a set of processes, pri ocnt| acts on the processes
in the set in an implementation-specific order. If pri ocntl encounters an error
for one or more of the target processes, it may or may not continue through the
set of processes, depending on the error. If the error is related to permissions
(EPERM), pri ocnt| continues through the process set, resetting the parameters
for all target processes for which the calling process has appropriate permis-
sions. priocntl then returns -1 with errno set to EPERMto indicate that the

Page 3

FINAL COPY
June 15, 1995
File: ke_os/priocntl
svid

Page: 696

priocntl (KE_OS) priocntl (KE_OS)

operation failed for one or more of the target processes. If pri ocnt|l encounters
an error other than permissions, it does not continue through the set of target
processes but returns the error immediately.

PC_CGETPARMB
Get the class and/or class-specific scheduling parameters of a process. arg
points the a structure of type pcpar ns_t .

If pc_ci d specifies a configured class and a single process belonging to that class
is specified by the idtype and id values or the procset structure, then the
scheduling parameters of that process are returned in the pc_cl par ns buffer. If
the process specified does not exist or does not belong to the specified class, the
priocntl call returns -1 with err no set to ESRCH

If pc_ci d specifies a configured class and a set of processes is specified, the
scheduling parameters of one of the specified processes belonging to the
specified class are returned in the pc_cl par ns buffer and the priocntl call
returns the process ID of the selected process. The criteria for selecting a process
to return in this case is class dependent. If none of the specified processes exist
or none of them belong to the specified class the pri ocnt| call returns -1 with
errno set to ESRCH.

If pc_ci dis PC_CLNULL and a single process is specified the class of the specified
process us returned in pc_ci d and its scheduling parameters are returned in the
pc_cl par ns buffer.

Fixed Priority Class

Page 4

The fixed priority class provides a fixed priority preemptive scheduling policy for
those processes requiring fast and deterministic response and absolute
user/application control of scheduling priorities. If the fixed priority class is
configured in the system it should have exclusive control of the highest range of
scheduling priorities on the system. This ensures that a runnable fixed priority pro-
cess is given CPU service before any process belonging to any other class.

The fixed priority class has a range of fixed priority (f p_pri) values that may be
assigned to processes within the class. Fixed priorities range from 0 to x, where the
value of x is configurable and can be determined for a specific installation by using
the pri ocnt| PC_GETA Dor PC_GETCLI NFOcommand.

The fixed priority scheduling policy is a fixed priority policy. The scheduling prior-
ity of a fixed priority process is never changed except as the result of an explicit
request by the user/application to change the f p_pri value of the process.

For processes in the fixed priority class, the fp_pri value is, for all practical pur-
poses, equivalent to the scheduling priority of the process. The f p_pri value com-
pletely determines the scheduling priority of a fixed priority process relative to
other processes within its class. Numerically higher fp_pri values represent
higher priorities. Since the fixed priority class controls the highest range of schedul-
ing priorities in the system it is guaranteed that the runnable fixed priority process
with the highest f p_pri value is always selected to run before any other process in
the system.

FINAL COPY
June 15, 1995
File: ke_os/priocntl
svid

Page: 697

priocntl (KE_OS) priocntl (KE_OS)

In addition to providing control over priority, pri ocnt | provides for control over
the length of the time quantum allotted to processes in the fixed priority class. The
time quantum value specifies the maximum amount of time a process may run
assuming that it does not complete or enter a resource or event wait state (sl eep).
Note that if another process becomes runnable at a higher priority the currently
running process may be preempted before receiving its full time quantum.

The system’s process scheduler keeps the runnable fixed priority processes on a set
of scheduling queues. There is a separate queue for each configured fixed priority
and all fixed priority processes with a given f p_pri value are kept together on the
appropriate queue. The processes on a given queue are ordered in FIFO order (that
is, the process at the front of the queue has been waiting longest for service and
receives the CPU first). Fixed priority processes that wake up after sleeping,
processes that change to the fixed priority class from some other class, processes
that have used their full time quantum, and runnable processes whose priority is
reset by priocntl| are all placed at the back of the appropriate queue for their
priority. A process that is preempted by a higher priority process remains at the
front of the queue (with whatever time is remaining in its time quantum) and runs
before any other process at this priority. Following a f or k(BA_OS) system call by a
fixed priority process, the parent process continues to run while the child process
(which inherits its parent’s f p_pri value) is placed at the back of the queue.

Use the structure of f pi nfo_t, defined in sys/fppriocntl.h which defines the
format used for the attribute data for the fixed priority class.

short fp_maxpri; [* Maxi mumfixed priority */
The priocnt| PC_GETA Dand PC_GETCLI NFOcommands return fixed priority class
attributes in the pc_cl i nf o buffer in this format.
f p_maxpri specifies the configured maximum fp_pri value for the fixed priority
class (if f p_maxpri is x, the valid fixed priority priorities range from 0 to x).

The structure f ppar ns_t defined in sys/ f ppri ocnt| . h defines the format used to
specify the fixed priority class-specific scheduling parameters of a process.

short fp_pri; /* Fixed priority */
ul ong f p_tgsecs; /* Seconds in tine quantum */
| ong f p_tgnsecs; /* Addi tional nanoseconds in quantum */

When using the priocntl PC SETPARMS or PC_GETPARVE commands, if pc_cid
specifies the fixed priority class, the data in the pc_cl par ns buffer is in this format.

The above commands can be used to set the fixed priority to the specified value or
get the current fp_pri value. Setting the fp_pri value of a process that is
currently running or runnable (not sleeping) causes the process to be placed at the
back of the scheduling queue for the specified priority. The process is placed at the
back of the appropriate queue regardless of whether the priority being set is dif-
ferent from the previous f p_pri value of the process. Note that a running process
can voluntarily release the CPU and go to the back of the scheduling queue at the
same priority by resetting its f p_pri value to its current fixed priority value. To
change the time quantum of a process without setting the priority or affecting the
process’s position on the queue, the fp_pri field should be set to the special value
FP_NOCHANCGE (defined in sys/fppriocntl.h). Specifying FP_NOCHANGE when
changing the class of a process to fixed priority from some other class results in the

Page 5

FINAL COPY
June 15, 1995
File: ke_os/priocntl
svid

Page: 698

priocntl (KE_OS) priocntl (KE_OS)

Page 6

fixed priority being set to zero.

For the priocntl PC GETPARME command, if pc_ci d specifies the fixed priority
class and more than one fixed priority process is specified, the scheduling parame-
ters of the fixed priority process with the highest f p_pri value among the specified
processes are returned and the process ID of this process is returned by the
priocntl call. If there is more than one process sharing the highest priority, the
one returned is implementation-dependent.

The fp_tgsecs and fp_tgnsecs fields are used for getting or setting the time
guantum associated with a process or group of processes. fp_tgsecs is the
number of seconds in the time quantum and f p_t gnsecs is the number of addi-
tional nanoseconds in the quantum. For example setting fp_tqgsecs to 2 and
f p_t gnsecs to 500,000,000 (decimal) would result in a time quantum of two and
one-half seconds. Specifying a value of 1,000,000,000 or greater in the f p_t gnsecs
field results in an error return with er r no set to El NVAL. Although the resolution of
the t g_nsecs field is very fine, the specified time quantum length is rounded up by
the system to the next integral multiple of the system clock’s resolution. For exam-
ple, the finest resolution currently available on a system is 10 milliseconds (1
“tick™). Setting f p_t gsecs to 0 and f p_t gnsecs to 34,000,000 would specify a time
quantum of 34 milliseconds, which would be rounded up to 4 ticks (40 mil-
liseconds) on a machine with 10-millisecond resolution. The maximum time quan-
tum that can be specified is implementation-specific and equal to LONG _NMAX ticks
(defined inl i m ts. h). Requesting a quantum greater than this maximum results in
an error return with errno set to ERANGE (although infinite quantums may be
requested using a special value as explained below). Requesting a time quantum of
zero (setting both f p_t gsecs and f p_t gnsecs to 0) results in an error return with
er rno set to El NVAL.

The f p_t gnsecs field can also be set to one of the following special values (defined
insys/ f ppriocntl . h), in which case the value of f p_t qsecs is ignored.

FP_TQ NF Set an infinite time quantum.
FP_TQDEF Set the time quantum to the default for this priority
FP_NCCHANGE Don’t set the time quantum. This value is useful when

you wish to change the fixed priority of a process without
affecting the time quantum. Specifying this value when
changing the class of a process to fixed priority from
some other class is equivalent to specifying FP_TCQDEF.

To change the class of a process to fixed priority (from any other class), or to change
the priority or time quantum setting of a fixed priority process, the following condi-
tions must be true:

The calling process must have the appropriate privilege.

The effective user ID of the calling process must match the effective user ID
of the target process (or the calling process have the appropriate privilege).

The fixed priority and time quantum are inherited across the f or k(BA_OS) and
exec(BA_OS) system calls.

FINAL COPY
June 15, 1995
File: ke_os/priocntl
svid

Page: 699

priocntl (KE_OS) priocntl (KE_OS)

Time-Sharing Class
The time-sharing scheduling policy provides for a fair and effective allocation of the
CPU resource among processes with varying CPU consumption characteristics. The
objectives of the time-sharing policy are to provide good response time
to interactive processes and good throughput to CPU-bound jobs while providing a
degree of user/application control over scheduling.

The time-sharing class has a range of time-sharing user priority (see ts_upri)
values that may be assigned to processes within the class. Ats_upri value of zero
is defined as the default base priority for the time-sharing class. User priorities
range from —x to +x where the value of x is configurable and can be determined for
a specific installation by using the priocntl PC GETA D or PC_GETCLI NFO com-
mand.

The purpose of the user priority is to provide some degree of user/application con-
trol over the scheduling of processes in the time-sharing class. Raising or lowering
the ts_upri value of a process in the time-sharing class raises or lowers the
scheduling priority of the process. It is not guaranteed, however, that a process
with a higher ts_upri value will run before one with a lower ts_upri value. This
is because the ts_upri value is just one factor used to determine the scheduling
priority of a time-sharing process. The system may dynamically adjust the internal
scheduling priority of a time-sharing process based on other factors such as recent
CPU usage.

In addition to the system-wide limits on user priority (returned by the PC_ GETC D
and PC GETCLI NFO commands) there is a per process user priority limit (see
ts_uprili mbelow), which specifies the maximum ts_upri value that may be set
for a given process; by default, t s_upri | i mis zero.

The structure tsi nfo_t (defined in sys/tspriocntl.h) defines the format used
for the attribute data for the time-sharing class.

short ts_maxupri ; /* Linmts of user priority range */

The pri ocntl PC_GETA Dand PC_GETCLI NFOcommands return time-sharing class
attributes in the pc_cl i nf o buffer in this format.

ts_maxupri specifies the configured maximum user priority value for the time-
sharing class. If ts_maxupri is x, the valid range for both user priorities and user
priority limits is from —x to +x.

The structure t spar ns_t defined in sys/tspri ocnt | . h, defines the format used to
specify the time-sharing class-specific scheduling parameters of a process.
short ts_uprilim /* Time-Sharing user priority limt */
short ts_upri; /* Time-Sharing user priority */
When using the priocntl PC SETPARMS or PC_GETPARVS commands, if pc_cid
specifies the time-sharing class, the data in the pc_cl par ns buffer is in this format.

For the priocntl PC GETPARMBE command, if pc_ci d specifies the time-sharing
class and more than one time-sharing process is specified, the scheduling parame-
ters of the time-sharing process with the highestt s_upri value among the specified
processes is returned and the processID of this process is returned by the pri ocnt |
call. If there is more than one process sharing the highest user priority, the one
returned is implementation-dependent.

Page 7

FINAL COPY
June 15, 1995
File: ke_os/priocntl
svid

Page: 700

priocntl (KE_OS) priocntl (KE_OS)

Any time-sharing process may lower its own ts_uprilim (or that of another
process with the same user ID).

If the priority of the target process is to be raised above its current value, or if the
target process’s ts_uprilimis to be raised above a value of 0, the following
conditions must be true:

The calling process must have the appropriate privilege.

The effective user ID of the calling process must match the effective user ID
of the target process (or the calling process have the appropriate privilege).

Attempts by an unprivileged user process to raise ats_uprilimor set an initial
ts_upril i mgreater than zero fail with a return value of -1 and er r no set to EPERM

Any time-sharing process may set itsownts_upri (or that of another process with
the same user ID) to any value less than or equal to the process’s ts_uprilim
Attempts to set the ts_upri above the ts_uprilim(and/or set the ts_uprilim
below thets_upri) resultinthets_upri beingsetequal tothets_uprilim

Either of the ts_uprilimor ts_upri fields may be set to the special value
TS _NOCHANGE (defined in sys/tspriocntl. h) to set one value without affecting
the other. Specifying TS_NOCHANGE for thets_upri when thets_upri |l i mis being
set to a value below the currentts_upri causes thets_upri to be set equal to the
ts_uprilimbeing set. Specifying TS NOCHANGE for a parameter when changing
the class of a process to time-sharing (from some other class) causes the parameter
to be set to a default value. The default value for the ts_uprilimis O and the
default for thet s_upri isto setitequal to thets_upril i mwhich is being set.

The time-sharing user priority and user priority limit are inherited across the f or k
and exec system calls.

Return Values

Unless otherwise noted above, priocntl returns a value of 0 on success. On
failure, pri ocnt | returns -1 and sets er r no to identify the error.

Errors

Page 8

In the following conditions, pri ocnt | fails and sets er r no to:

EPERM An attempt was made to change the system time-sharing or fixed
priority defaults, and the calling process does not have appropri-
ate privileges (respectively, for the two classes).

EPERM The effective user ID of the calling process does not match the
effective user ID of the target process, and the calling process
does not have the appropriate privilege.

EPERM An attempt was made to change the class of the target process to
fixed priority (from any class) and the calling process does not
have the appropriate privileges.

EPERM An attempt was made to change the priority of a fixed priority
process and the calling process does not have the privileges.
EPERM An attempt was made to raise the priority of a time-sharing pro-

cess, or raise the ts_pri | i mof the process above 0, and the cal-
ling process does not have the appropriate privilege.

FINAL COPY
June 15, 1995
File: ke_os/priocntl
svid

Page: 701

priocntl (KE_OS)

El NVAL

ERANGE
ESRCH
EFAULT

ENOMVEM

EAGAI N

FUTURE DIRECTIONS

priocntl (KE_OS)

The argument cmd was invalid, an invalid or unconfigured class
was specified, or one of the parameters specified was invalid.

The requested time quantum is out of range.
None of the specified processes exist.

All or part of the area pointed to by one of the data pointers is
outside the process’s address space.

An attempt to change the class of a process failed because of
insufficient memory.

An attempt to change the class of a process failed because of
insufficient resources other than memory (for example, class-
specific kernel data structures).

Real Time Class is now uniformly called Fixed Priority Scheduling Class to better
describe its characteristics.

SEE ALSO

exec(BA_0S), for k(BA_OS), ni ce(AS_CMD), pri ocnt| (AU_CMD)

LEVEL
Level 1.

Page 9

FINAL COPY
June 15, 1995
File: ke_os/priocntl
svid

Page: 702

profil (KE_OS) profil (KE_OS)

NAME
profil —execution time profile

SYNOPSIS
#i ncl ude <uni std. h>

voi d profil (unsigned short [buff, unsigned int bufsiz,
unsi gned int offset, unsigned int scale);

DESCRIPTION

profil provides CPU-use statistics by profiling the amount of CPU time expended
by a program. profil generates the statistics by creating an execution histogram
for a current process. The histogram is defined for a specific region of program
code to be profiled, and the identified region is logically broken up into a set of
equal size subdivisions, each of which corresponds to a count in the histogram.
With each clock tick, the current subdivision is identified and its corresponding his-
togram count is incremented. These counts establish a relative measure of how
much time is being spent in each code subdivision. The resulting histogram counts
for a profiled region can be used to identify those functions that consume a dispro-
portionately high percentage of CPU time.

buff is a buffer of bufsiz bytes in which the histogram counts are stored in an array of
unsi gned short int.

offset, scale, and bufsiz specify the region to be profiled.
offset is effectively the start address of the region to be profiled.

scale, broadly speaking, is a contraction factor that indicates how much smaller the
histogram buffer is than the region to be profiled. More precisely, scale is inter-
preted as an unsigned fixed-point fraction with the binary point implied on the left.
Its value is the reciprocal of the number of bytes in a subdivision, per byte of histo-
gram buffer. Since there are two bytes per histogram counter, the effective ratio of
subdivision bytes per counter is one half the scale.

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving
a bufsiz of 0. Profiling is turned off when an exec routine is executed, but remains
on in both child and parent after a call to the f or k routine. Profiling will be turned
off if an update in buff would cause a memory fault.

scale can be computed as (RATIO O 0200000L), where RATIO is the desired ratio of
bufsiz to profiled region size, and has a value between 0 and 1. Qualitatively speak-
ing, the closer RATIO is to 1, the higher the resolution of the profile information.

bufsiz can be computed as (size_of_region_to_be_profiled ORATIO).

SEE ALSO

noni t or (SD_LIB), pr of (SD_CMD)
LEVEL

Level 2: September 30, 1989
NOTICES

Profiling is turned off by giving a scale of 0 or 1, and is rendered ineffective by giv-
ing a bufsiz of 0. Profiling is turned off when an exec(BA_OS) is executed, but
remains on in both child and parent processes after a f or k(BA_OS). Profiling is
turned off if a buff update would cause a memory fault.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/profil
svid

Page: 703

profil (KE_OS) profil (KE_OS)

Considerations for Threads Programming
Statistics are gathered at the process level and represent the combined usage of all
contained threads.

Page 2

FINAL COPY
June 15, 1995
File: ke_os/profil
svid

Page: 704

ptrace (KE_OS) ptrace (KE_OS)

the parent. On failure a value of -1 is returned to the parent process and the
parent’serrno issetto El O

6 With this request, a few entries in the child’s user area can be written. data
gives the value that is to be written and addr is the location of the entry. The
few entries that can be written are implementation specific but might
include the general registers and the condition codes of the Processor Status
Word.

7 This request causes the child to resume execution. If the data argument is 0,
the signal that caused the child to stop is canceled before it resumes execu-
tion. If the data argument is a valid signal number, the child resumes execu-
tion as if it had incurred that signal, and any other pending signals are can-
celed. The addr argument must be equal to 1 for this request. On success,
the value of data is returned to the parent. This request fails if data is not 0
or a valid signal number, in which case a value of -1 is returned to the
parent process and the parent’s errno is set to El O

8 This request causes the child to terminate with the same consequences as
exi t (BA_OS).
9 This request is implementation dependent but if operative, it is used to

request single stepping through the instructions of the child.

To forestall possible fraud, ptrace inhibits the set-user-ID facility on subsequent
exec(BA_OS) calls. If a traced process calls exec(BA_OS), it stops before executing
the first instruction of the new image showing signal S| GTRAP.

Return Values
Upon successful completion, return values are specific to the request type. Upon
failure, the pt r ace returns a value of - 1 and sets er r no to indicate an error.

Errors
In the following conditions, pt r ace fails and sets er r no to:

El O request is an illegal number.

ESRCH pid identifies a child that does not exist or has not executed a ptrace
with request 0.

SEE ALSO
si gnal (BA_OS), wai t (BA_OS)
FUTURE DIRECTIONS
Replaced by mmap(). This will be removed in a future issue of the SVID.

LEVEL
Level 2, July 1992.

Page 2

FINAL COPY
June 15, 1995
File: ke_os/ptrace
svid

Page: 706

semctl (KE_OS) semctl (KE_OS)

NAME
sentt| —semaphore control operations
SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>
uni on semun {
int val;
struct semd_ds [huf;
ushort [array;
b
int senctl (int semid, int semnum, int cmd, . . . /Ounion senun arg O0);
DESCRIPTION
sentt| provides a variety of semaphore control operations as specified by cmd.
The following cmds are executed with respect to the semaphore specified by semid
and semnum: The level of permission required for each operation is shown with
each command. The symbolic names for the values of cmd are defined by the
<sys/ sem h> header file.

CGETVAL Return the value of senval Requires read permission.

SETVAL Set the value of senval to arg. val . When this command is success-
fully executed, the sermadj value corresponding to the specified sema-
phore in all processes is cleared.

GETPI D Return the value of (i nt) senpi d. Requires read permission.
GETNONT Return the value of senmcnt . Requires read permission.

CETZONT Return the value of senzcnt . Requires read permission.

The following cmds return and set, respectively, every senval in the set of sema-

phores.

GETALL Place senval s into array pointed to by arg. array. Requires read per-
mission.

SETALL Set senval s according to the array pointed to by arg. array. Requires

alter permission. When this cmd is successfully executed, the senadj
values corresponding to each specified semaphore in all processes are
cleared.

The following cmds are also available:

| PC_STAT Place the current value of each member of the data structure associ-
ated with semid into the structure pointed to by arg. buf. Requires
read permission.

| PC_SET Set the value of the following members of the data structure associ-
ated with semid to the corresponding value found in the structure
pointed to by arg. buf :

sem perm ui d
sempermgid

Page 1

FINAL COPY
June 15, 1995
File: ke_os/semctl
svid

Page: 707

semctl (KE_OS)

Return Values

| PC_RM D

semctl (KE_OS)

sempermnode /O only access permssion bits O

This command can be executed only by a process that has an effective
user | Dequal to the value of sem per m cui d or sem per m ui d in the
data structure associated with semid or to a process that has the
appropriate privilege.

Remove the semaphore identifier specified by semid from the system
and destroy the set of semaphores and data structure associated with
it. This command can be executed only by a process that has an effec-
tive user | Dequal to the value of sem per m cui d or sem perm ui d in
the data structure associated with semid or to a process that has the
appropriate privilege.

On success, sentt | returns a value that depends on cmd:

CETVAL
GETPI D
GETNCNT
CGETZONT
all others

the value of senval

the value of (int) senpid
the value of sermcnt

the value of senzcnt

a value of 0

On failure, sentt | returns -1 and sets er r no to identify the error.

Errors
In the following conditions, senctt | fails and sets er r no to:

EACCES
El NVAL
El NVAL
El NVAL
ENCSYS
ERANGE

EPERM

EFAULT

SEE ALSO
senget (KE_OS), senop(KE_OS)

FUTURE DIRECTIONS

This interface is designated Level 2 to encourage the use of the new functionality
introduced in the SVID Fourth Edition. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is required by XPG4.

Page 2

Operation permission is denied to the calling process

semid is not a valid semaphore identifier.

semnum is less than 0 or greater than sem nsens.

cmd is not a valid command.

if the functionality is not supported by the implementation.

cmd is SETVAL or SETALL and the value to which senval is to be
set is greater than the system imposed maximum.

cmd is equal to | PC_RM D or | PC_SET and the effective user | D of
the calling process is not equal to the value of sem perm cui d or
sem per m ui d in the data structure associated with semid and the
calling process does not have appropriate privilege.

arg. buf points to an illegal address.

FINAL COPY
June 15, 1995
File: ke_os/semctl
svid

Page: 708

semctl (KE_OS)

LEVEL

Level 2, July 1993.

FINAL COPY
June 15, 1995
File: ke_os/semctl
svid

Page: 709

semctl (KE_OS)

Page 3

semget (KE_OS) semget (KE_OS)

NAME

senget — get set of semaphores

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>

int senget (key_t key, int nsems, int semflg);

DESCRIPTION

senget returns the semaphore identifier associated with key. This identifier is
accessible by any process in the system, subject to normal access restrictions and the
permissions set with semflg.

A semaphore identifier and associated data structure and set containing nsems
semaphores are created for key if one of the following is true:

key is equal to | PC_PRI VATE.

key does not already have a semaphore identifier associated with it, and
(semflg& PC_CREAT) is true.

On creation, the data structure associated with the new semaphore identifier is ini-
tialized as follows:

sem perm cui d, sem perm ui d, sem perm cgi d, and sempermgid are
set equal to the effective user | D and effective group I D, respectively, of the
calling process.

The access permission bits of sem per m nmode are set equal to the access per-
mission bits of semflg.

sem nsens is set equal to the value of nsems.
sem ot i nme is set equal to 0 and sem ct i ne is set equal to the current time.

Return Values

On success, senget returns a non-negative integer, namely a semaphore identifier.
On failure, senget returns -1 and sets er r no to identify the error.

Errors

In the following conditions, senget fails and sets er r no to:

El NVAL nsems is either less than or equal to zero or greater than the
system-imposed limit.

EACCES A semaphore identifier exists for key, but operation permission as
specified by the low-order 9 bits of semflg would not be granted.

El NVAL A semaphore identifier exists for key, but the number of sema-

phores in the set associated with it is less than nsems, and nsems is
not equal to zero.

ENCENT A semaphore identifier does not exist for key and
(semflg& PC_CREAT) is false.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/semget
svid

Page: 710

semget (KE_OS) semget (KE_OS)

ENCSPC A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphores or sema-
phore identifiers system wide would be exceeded.

EEXI ST A semaphore identifier exists for key but both (semflg& PC_CREAT)
and (semflg& PC_EXCL) are both true.

SEE ALSO
sentt | (KE_OS), sermop(KE_OS)

FUTURE DIRECTIONS
This interface is designated Level 2 to encourage the use of the new functionality
introduced in the SVID Fourth Edition. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is required by XPG4.

LEVEL
Level 2, July 1993.

Page 2

FINAL COPY
June 15, 1995
File: ke_os/semget
svid

Page: 711

semop (KE_OS) semop (KE_OS)

NAME

senop — semaphore operations

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>

int senop(int semid, struct senbuf [bops, size_t nsops);

DESCRIPTION

senop is used to perform atomically an array of semaphore operations on the set of
semaphores associated with the semaphore identifier specified by semid. sops is a
pointer to the array of semaphore-operation structures. nsops is the number of such
structures in the array. The contents of each structure includes the following
members:

short semnum /0O senaphore nunber O
short semop; / O senmaphor e operation [
short semflg; /O operation flags O

Each semaphore operation specified by sem_op is performed on the corresponding
semaphore specified by semid and sem_num.

sem_op specifies one of three semaphore operations as follows, depending on
whether its value is negative, positive, or zero:

If sem_op is a negative integer, one of the following occurs: Requires alter permis-
sion.

If senval is greater than or equal to the absolute value of sem_op, the abso-
lute value of sem_op is subtracted from senval . Also, if (sem_flg&SEM UNDO)
is true, the absolute value of sem_op is added to the calling process’s senad]
value [see exi t (BA_OS)] for the specified semaphore.

If senval is less than the absolute value of sem_op and
(sem_flg& PC_NOMAI T) is true, senop returns immediately.

If senval is less than the absolute value of sem_op and
(sem_flg& PC_NOMI T) is false, sermop increments the semrmcnt associated
with the specified semaphore and suspends execution of the calling process
until one of the following conditions occur.

senval becomes greater than or equal to the absolute value of
sem_op. When this occurs, the value of sermcnt associated with the
specified semaphore is decremented, the absolute value of sem_op is
subtracted from senval and, if (sem_flg&SEM UNDO) is true, the abso-
lute value of sem_op is added to the calling process’s senadj value
for the specified semaphore.

The semid for which the calling process is awaiting action is removed
from the system [see senctt| (KE_OS)]. When this occurs, errno is
set equal to El DRM and a value of -1 is returned.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/semop
svid

Page: 712

semop (KE_OS)

ENCSPC

El NVAL
El NVAL

ERANGE
ERANGE

EFALLT
SEE ALSO

semop (KE_OS)

The limit on the number of individual processes requesting an
SEM UNDOwould be exceeded.

semid is not a valid semaphore identifier.

The number of individual semaphores for which the calling pro-
cess requests a SEM_ UNDOwould exceed the limit.

An operation would cause a senval to overflow the system-
imposed limit.

An operation would cause a senadj value to overflow the
system-imposed limit.

sops points to an illegal address.

exec(BA_OS), exi t (BA_OS), f ork(BA_OS), sentt | (KE_OS), senget (KE_OS),

FUTURE DIRECTIONS

This interface is designated Level 2 to encourage the use of the new functionality
introduced in the SVID Fourth Edition. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is required by XPG4.

LEVEL

Level 2, July 1993.

NOTICES

Considerations for Threads Programming
While one thread is blocked, siblings might still be executing.

The Threads Library provides another semaphore facility for the synchronization of
multithreaded programs. See sermaphor e(3synch). That facility can also be used for
synchronization between processes. See discussion of the USYNC_PROCESS flag.

Page 3

FINAL COPY
June 15, 1995
File: ke_os/semop
svid

Page: 714

shmctl(KE_OS)

NAME

shmctl(KE_OS)

shmctl — shared memory control operations

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/shm h>

int shnttl (int shmid, int cmd, struct shm d_ds *buf);

DESCRIPTION

The function shntt | () provides a variety of shared memory control operations as
specified by cmd. The following values for cmd are available:

| PC_STAT

| PC_SET

| PC_RM D

RETURN VALUE

Place the current value of each member of the data structure associ-
ated with shmid into the structure pointed to by buf. The contents of
this structure are defined in the Kernel Extension Definitions chapter.

Set the value of the following members of the data structure associ-
ated with shmid to the corresponding value found in the structure
pointed to by buf:

shm perm ui d
shm permgi d
shm_per m node

This cmd can only be executed by a process that has an effective user
ID equal to either the value of shm perm cui d or shm permuid
(in the data structure associated with shmid) or by a process with
appropriate privileges.

Remove the shared memory identifier specified by shmid from the sys-
tem and destroy the shared memory segment and data structure asso-
ciated with it. This cmd can only be executed by a process that has an
effective user ID equal to either the value of shm perm cui d or
shm per m ui d (in the data structure associated with shmid) or by a
process with appropriate privileges.

Upon successful completion, the function shntt!l () returns a value of 0; other-
wise, it returns a value of —1 and sets er r no to indicate an error.

ERRORS

Under the following conditions, the function shntt | () fails and sets er r no to:

El NVAL

EACCES

EPERM

if the value of shmid is not a valid shared memory identifier; or the
value of cmd is not a valid command.

if the argument cmd is equal to | PC_STAT and the calling process
does not have read permission.

if the argument cmd is equal to | PC_RM D or | PC_SET and the pro-
cess does not have appropriate privileges and is not equal to the value
of shm perm cui d or shm perm ui d (in the data structure associ-
ated with shmid).

Page 1

FINAL COPY
June 15, 1995
File: ke_os/shmctl
svid

Page: 715

shmctl(KE_OS) shmctl(KE_OS)

ENCSYS if the functionality is not supported by the implementation.

SEE ALSO
shmget(KE_OS), shmop(KE_OS).

FUTURE DIRECTIONS
This interface is designated Level 2 to encourage the use of mmap which is the pre-
ferred interface for this functionality. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is required by XPG4.

LEVEL
Level 2, July 1992.

Optional: The function shntt | () may not be present in all implementations of the
Kernel Extension.

Page 2

FINAL COPY
June 15, 1995
File: ke_os/shmctl
svid

Page: 716

shmget(KE_OS) shmget(KE_OS)

NAME

shmget — get shared memory segment

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/shm h>

i nt shnget (key_t key, int size, int shmflg);

DESCRIPTION

The function shnget () returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory seg-
ment of at least size bytes are created for key if one of the following are true:

The argument key is equal to | PC_PRI VATE.

The argument key does not already have a shared memory identifier associ-
ated with itand (shmflg & | PC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory-
identifier is initialized as follows:

The value of shm perm cui d and shm perm ui d are set equal to the
effective user ID of the calling process.

The value of shm perm cgi d and shm perm gi d are set equal to the
effective group ID of the calling process.

The access permission bits of shm _per m node are set equal to the access
permission bits of shmflg.

The argument shm_segsz is set equal to the value of size.

The value of shm | pi d, shm nattch,shm ati nme,and shm dt i ne are set
equal to 0.

The value of shm ct i e is set equal to the current time.

RETURN VALUE
Upon successful completion, the function shnget () returns a non-negative
integer, namely a shared memory identifier; otherwise, it returns a value of —1 and
sets er r no to indicate an error.

ERRORS

Under the following conditions, the function shnget () fails and sets er r no to:

El NVAL if the value of size is less than the system imposed minimum or greater

than the system imposed maximum, or a shared memory identifier
exists for the argument key but the size of the segment associated with it
is less than size and size is not equal to 0.

EACCES if a shared memory identifier exists for key but operation permission as

specified by the access permission bits of shmflg would not be granted.

ENCENT if a shared memory identifier does not exist for the argument key and

(shmflg & | PC_CREAT) is false.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/shmget
svid

Page: 717

shmget(KE_OS) shmget(KE_OS)

ENCSPC if a shared memory identifier is to be created but the system imposed
limit on the maximum number of allowed shared memory identifiers
system wide would be exceeded.

ENCSYS if the functionality is not supported by the implementation.

ENOVEM if a shared memory identifier and associated shared memory segment
are to be created, but the amount of available physical memory is not
sufficient to fill the request.

EEXI ST if a shared memory identifier exists for the argument key but
((shmflg & | PC_CREAT) &&(shmflg & | PC_EXCL)) is true.

SEE ALSO
shmctl(KE_OS), shmop(KE_OS).

FUTURE DIRECTIONS
This interface is designated Level 2 to encourage the use of mmap which is the pre-
ferred interface for this functionality. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is required by XPG4.

LEVEL
Level 2, July 1992.

Optional: The function shnget () may not be present in all implementations of the
Kernel Extension.

Page 2

FINAL COPY
June 15, 1995
File: ke_os/shmget
svid

Page: 718

shmop(KE_OS) shmop(KE_OS)

NAME
shmop - shmat, shmdt — shared memory operations

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/shm h>
#i ncl ude <sys/sysnmacros. h>

voi d *shmat (i nt shmid, void *shmaddr, int shmflg);

int shndt(voi d *shmaddr) ;

DESCRIPTION
The function shmat () attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment of the calling pro-
cess. The segment is attached at the address specified by one of the following cri-
teria:

If shmaddr is equal to (voi d *) 0, the segment is attached at the first avail-
able address as selected by the system.

If shmaddr is not equal to (void *)0 and (shmfly & SHM RND) is true,
the segment is attached at the address given by (shmaddr — (shmaddr %
SHMLBA)).

If shmaddr is not equal to (void *)0 and (shmflg & SHM RND) is false,
the segment is attached at the address given by shmaddr.

The segment is attached for reading if (shmfly & SHM RDONLY) is true and the
calling process has read permission; otherwise, if it is not true and the calling pro-
cess has read and write permission, the segment is attached for reading and writing.

The function shndt () detaches from the calling process’s data segments the shared
memory segment located at the address specified by shmaddr.

The following symbolic names are defined by the <sys/ shm h> header file:

Name Description

SHMLBA segment low boundary address multiple
SHM_RDONLY attach read-only (else read/write)
SHM_RND round attach address to SHVLBA

RETURN VALUE
Upon successful completion, the function shnat () returns the data segment’s start
address of the attached shared memory segment. Upon successful completion, the
function shndt () returns a value of 0. Otherwise, the functions shmat () and
shndt () return a value of —1 and set er r no to indicate an error.

ERRORS
Under the following conditions, the function shrrat () fails and sets er r no to:
EACCES if operation permission is denied to the calling process [see the Kernel

Extension Definitions chapter].

Page 1

FINAL COPY
June 15, 1995
File: ke_os/shmop
svid

Page: 719

shmop

(KE_OS) shmop(KE_OS)

EMFI LE if the number of shared memory segments attached to the calling pro-
cess would exceed the system impose limit.

ENOVEM if the available data space is not large enough to accommodate the
shared memory segment.

ENCSYS if the functionality is not supported by the implementation.

El NVAL if the value of shmid is not a valid shared memory identifier; or the

value of shmaddr is not equal to O and the value of
(shmaddr — (shmaddr % SHMLBA)) is an illegal address; or the
value of shmaddr is not equal to 0, (shmflg & SHM RND) is false and
the value of shmaddr is an illegal address.

Under the following conditions, the function shndt () fails (and does not detach
the shared memory segment) and sets er r no to:

El NVAL if shmaddr is not the start address of a shared memory segment.

SEE ALSO

exec(BA_OS), exit(BA_OS), fork(BA_OS), shmctl(KE_OS), shmget(KE_OS).

FUTURE DIRECTIONS

LEVEL

Page 2

This interface is designated Level 2 to encourage the use of mmap which is the pre-
ferred interface for this functionality. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is present in by XPG4.

Level 2, July 1992.

Optional: the functions shrmat () and shndt () may not be present in all imple-
mentations of the Kernel Extension.

FINAL COPY
June 15, 1995
File: ke_os/shmop
svid

Page: 720

