
Portable Demo Coding

Markku 'Marq' Reunanen
marq@iki.fi

Assembly'05

Agenda

● Personal background
● Overview of demo porting
● Why? Why not?
● Strategies for porting
● Portable development tools
● Common pitfalls and code examples

Personal background

● Working as a coder in Fit and Lieves!Tuore
(MSX)

● Demo coding/porting on several platforms:
– MS-DOS (1991-)
– Amiga (1997-)
– MSX (1997-1999)
– Linux (1998-)
– Atari Falcon (1999-2000)
– Mac OS X (2002-)
– Plus some others: GP32, IRIX, Dreamcast ...

● Also did some real work on some of these ;v)

Short history of demo porting (1)

● In the 80's and early 90's games were largely
multiplatform (C64-Spectrum-Amstrad, Amiga-
Atari-PC)

● Demos traditionally less so
● In mid-90's things started to change. Three early

multiplatform demos:
– HElliZER by QMG (1996)
– Hard Rox by Skal (Wired 1996)
– Megademo IV 2 by Artwork (MS 1998)

Short history of demo porting (2)

● Nowadays not a freak thing any more
● Some well-known multiplaform prods:

– VIP2 invitation by Popsy Team (Win, Linux, OSX)
– Dose2 by mfx (Win, Linux, OSX, others)
– State of Mind by Bomb (DOS, Win, Linux, others)
– Obsoleet by Unreal voodoo (Win, Linux)
– Variform by Kewlers (Win, OSX)

● Some groups that have done multiplatform stuff:
– Ananasmurska, Astral, Bandwagon, Bomb, Excess, Fit,

Fresh!Mindworkz, Kewlers, mfx, MovSD,
nan5/Bypass, PHn, Pwp, RGBA, Unreal voodoo,
Woorlic

What's the difference? (1)

● In 80's and early 90's demos were tied to the
hardware: showing what it's capable of

● Less so in mid-90's
– Amiga: c2p, HAM8, module replayers such as

proreplay & The player
– PC: mode 13h and linear VESA2 modes, module

replayers such as Midas
● Was there any difference?

– Both played modules
– Both had some sort of chunky framebuffer access
– Effects not hardware based any more

What's the difference? (2)

● Nowadays...
– Frame buffer access / OpenGL
– Module/mp3/ogg replayers
– Timer
– Focus on design and algorithms instead of hardware

banging
– C and C++ instead of assembler

● Meaningful hardware differences:
– Processor speed
– Processor byteorder
– FPU or not (embedded systems)
– Amount of memory (embedded systems)

Why port?

● You might learn a lot
● Portable code tends to be cleaner
● Larger audience
● Nice alternative scenes
● See your stuff running on exotic devices
● Not a big deal once you know how

Why not port?

● Extra effort
● Hardware specific tricks not available

– More relevant on old and low-end devices
– Access to vertex/pixel shaders not yet fully

standardized
● OS specific libraries etc. not available

– Size optimization tricky
● The worst target platform dictates the overall

result
● All of these can be overcome to a degree, but not

completely :v(

Porting strategies

● Write your own wrapper libraries
– Small, optimized
– You learn a lot
– Error-prone

● Use common libraries
– Easy
– No need to deal with platform specific bugs
– Might be bloated

● Open source?
– Someone else might do the work for you
– Source code safe in many places, longer lifespan
– But my code is so messy!

Programming languages

● Java
– Portable by nature
– Bad implementations, possibly slow
– Not universally available

● C/C++
– Portable in theory
– C++: bad implementations, evolving standard, not

available for low-end devices
– C: great availability, but rather crude

● Others?
– Pascal isn't that bad ;v)
– Interpreted languages tend to be too slow

Multiplatform APIs

● 2D graphics
– SDL (provides timing as well)
– PTC

● 3D graphics
– OpenGL:

● The only portable choice
● Lags behind in features

– OpenGL frontends:
● SDL, GLUT, others

● Sound
– SDL, Portaudio
– fmod, mikmod, mpg123, Midas (outdated)

Programming tools

● GCC
– Free
– Optimizes quite well
– Available and supports cross-development
– Cygwin & MinGW for Windows

● Make
– Makefiles make life easier when porting

● Compiler-specific workspaces generally not portable
– Easy to switch compilers and compiler flags. Even

VC++ can be used.
– Takes some time to learn & maintain
– Numerous alternatives such as jam exist

(GNU) Make example

● CC = gcc
● CFLAGS = -O2 -ffast-math
● LDFLAGS = -lGL -lm
● OBJ = main.o player.o effect.o
●

● demo: $(OBJ)
● $(CC) -o $@ $(OBJ) $(LDFLAGS)

–

● %.o: %.c
● $(CC) $(CFLAGS) -c $<

–

● clean:
● rm *.o *.bak demo

Practical examples

● Finally, the good stuff
● Common pitfalls and practical code examples
● A more complete list available at:

– http://ftp.kameli.net/pub/fit/misc/portability.txt

Encapsulation

● System-specific details hidden in modules and
subroutines:
– No need to search and replace them anywhere
– Easier to rewrite just the specific routine

● Makes code better structured anyway
● This was probably a little trivial ;v)

A word on timing

● CPU-loops for timing are a thing of the past
– Will break in both slower and faster computers

● High-resolution alarm timers
– Different resolution in different systems
– May slow down with system load

● Reading a simple high-resolution timer counter
– Usually enough for timing
– POSIX: gettimeofday()
– SDL: SDL_GetTicks()
– Sample counters usable for music sync

Endian worries (1)

● Little endian
– x86, ARM (default), Alpha, SH-4, Z80, ...

● Big endian
– PPC, MIPS, SPARC, 68k, 6809, ...

● What does it mean?
– long a = 0x12345678;
– In memory:

● LE: 78 56 34 12
● BE: 12 34 56 78

● Affects 16-bit and larger types

Endian worries (2)

● Construct 16-bit and larger entities with shifts
● Bad practice:

– fread(&a,1,4,fp);
● Read one byte at a time and shift instead:

– for(n=a=0;n<4;n++)
● a=(a<<8)+fgetc(fp);

● Usually this goes for 32-bit framebuffers as well:
they are in native byte order

● Rare exceptions do exist. For example SDL has
SDL_MapRGB()

● For OpenGL RGBA is RGBA in memory as well

Data type tricks (1)

● 'char' can be signed or unsigned
– use the full type like 'signed char' for portability

● 'long' is 32-bit minimum, 'int' only 16-bit on some
compilers

● Pointers don't necessarily fit in 'long'
● Globally defining your data types might not be a

bad idea
● Struct members are automatically aligned in some

platforms
– access members only by their name and use sizeof() to

get the real size of the struct

Data type tricks (2)

● Alignment can cause other unwanted behavior too:
– Accessing unaligned 16-bit or 32-bit values may

produce wrong results or cause an exception
– Unaligned access is usually slow anyway

● Unix systems can traditionally handle large local
arrays on stack:

– void funkkari(void)
– {
– int biig[1000000];
– }
– Not all systems do. malloc() or 'static int' solves the

problem.

Misc. tips (1)

● Don't assume that uninitialized local variables are
zero

● In modern systems string constants are read-only:
– no-no:

● char *text = “Zapp”;
● text[1] = 'o';

– better:
● char text[] = “Zapp”;

● When using a function, #include it as well:
– Compiler errors and odd bugs likely if you don't
– For example math.h should be there if floats are used

Misc. tips (2)

● main() should exit with status EXIT_SUCCESS
– For example OSX displays a warning if it doesn't
– Ok, you're lazy. Return with zero is fine as well.

● For debug prints it's a good idea to flush the output
– Most systems flush when \n is encountered
– If you want to be sure, use fflush() or << flush;
– Without flushing the text might not get displayed

● Dealing with paths
– Most systems can handle slash '/' as a separator
– Better yet, prefix file paths with a constant:

● fp = fopen(DATAS “duck.3ds”,”rb”);

Source code formatting

● Tabulator width cannot be trusted
– Mostly it is eight characters wide, but not always
– Better save tabs as spaces to keep the source readable

● Case does matter
– In many systems 'foobar.h', 'foobar.H' and

'FOOBAR.H' refer to a different file
– Keep the case consistent

● Anything else than 7-bit ASCII is likely to break
in some environment/editor

● The same goes for linefeeds as well. In practice all
compilers eat at least the single character linefeed.

That's it!

Thank you for your attention
Any questions?

