
When Light Speed Isn’t Fast Enough
Advanced Optimization Techniques

Fabian ’ryg’ Giesen

farbrausch / .theprodukkt

Assembly ’05

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 1 / 33



What this seminar is about

You want to solve a certain problem efficiently.

You have already exhausted algorithmic optimizations.

But “light speed” isn’t fast enough!

There are techniques that can still help you:
I Architecture-specific optimizations.
I Changing the problem you’re trying to solve.
I Maybe you don’t need everything you think you do!

This is what this seminar is about.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 2 / 33



Prerequisites

This is an “advanced” seminar, so I assume. . .

You have already written programs yourself.

You have tried (successfully?) to optimize them.

You have certain basic knowledge:
I Elementary data structures (linked lists, trees)
I Fundamental algorithms

You can read C++-like pseudocode.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 3 / 33



Memory Optimizations

Memory is often a limiting factor to performance.

So you should try to use your memory efficiently.

The most important thing is using the Cache properly.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 4 / 33



Cache recap

Small amount of very fast “short-term” memory

Actually multiple cache levels, I’ll idealize that away :)

Organized in so-called Lines of typically 64 bytes.

On a memory access, the processor. . .
I Somehow calculates the cache address for that memory.
I Checks whether the correct line is in the cache.
I Loads it (and throws another one out) if it’s not.
I Performs the memory access inside the cache.

The CPU always loads/stores whole cache lines.

Cache misses (a cache line needs to be fetched) are slow.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 5 / 33



Cache design principles: General

So, if you want to keep the cache happy:

Keep your access patterns nice and predictable!
I Sequential memory accesses are best.
I Lots of pointer chasing is bad for the cache.

Think carefully on size/alignment of data structures.
I Multiples/Divisors of cache line size are best.

Try to concentrate writes on small regions of memory
I As said, CPU always writes whole cache lines!
I So don’t just change one byte here, two bytes there
I Don’t write at all if you don’t have to.

Don’t touch data you don’t really need.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 6 / 33



Cache design principles: Hot and cold data

For any given algorithm, there are two types of data:
I Hot data is data that is used frequently.
I Cold data is used seldomly or not at all.

Hot data is what actually benefits from caching.

So make sure your hot data is cached efficiently:
I Don’t mix hot and cold data in the same part of memory.
I Try to make sure hot data doesn’t leave the cache.
I Reorganize your data structures if necessary.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 7 / 33



Time for an example...

Okay, that’s enough theory for now, it’s time for a proper example...

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 8 / 33



Fast rot-zoomers

???

Back to the 90s?

Yeah, it’s “out of fashion” now, but. . .
I It’s easy to see what’s going on.
I It will show us some nice techniques.
I Generalizations of those techniques are very relevant today.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 9 / 33



The general algorithm

=⇒

You have your current u and v coordinate.

Go through pixels of the screen in turn:
I Get pixel at position (u, v) from source image.
I Store that pixel to the screen.
I Every x step, add dudx to u and dvdx to v .
I Every y step, add dudy to u and dvdy to v .

There’s no obvious way to make this any simpler.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 10 / 33



Cases that work well

No rotation, no zoom:

=⇒

I Just sequential reads, so no problems.

No rotation, zoom in (×2):

=⇒

I Even better, everything gets reused.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 11 / 33



Problem cases

No rotation, zoom out (×0.5):

=⇒

I Only half of the pixels read get used!

90◦ rotation, no zoom:

=⇒

I Every pixel fetched is from a different line in the image.
I ⇒ Cache miss almost every time

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 12 / 33



Fixing the problems: Zoom out

As we saw, when zooming out, cache usage suffers.

Well, just make sure you don’t zoom out then!

Use smaller textures when zooming out ⇒ Mipmaps

This is the actual reason we use mipmapping for realtime 3D.
I Improved image quality is a nice bonus though :)

Idea also applies to other problems:
I Instead of skipping through your data in big steps, use a coarser

representation.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 13 / 33



Fixing the problems: Rotation

Idea by Niklas Beisert (pascal/Cubic Team), 1995:

Don’t render the image line by line, but in 8× 8 pixel blocks!
I Main problem was that we went too far in just one direction.

3D cards reorder the texture instead (“Swizzling ”)
I Same idea, same effect (better cache usage).
I Somewhat harder to visualize/code though.

All that said, there’s not much difference on current CPUs.
I Caches have gotten a lot bigger since 1995.
I Cache logic is better, too.
I You need unrealistic texture sizes to see a difference.

But the techniques discussed are still relevant:
I Storing your data in multiple resolutions.
I Cache-friendly traversal matters.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 14 / 33



AGP Writes

Suppose you’re coding some morphing/pulsating object.

Whatever 3D API you prefer, you’ll use a dynamic Vertex Buffer
(Object) if you care for performance.

That vertex buffer will usually lie in AGP memory.

The object will change every frame.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 15 / 33



AGP Writes (2)

Code

for(int i=0;i<nVerts;i++) {

Vector3 pos,normal;

Vector2 uv;

// Calculate pos,normal,uv with magic jizzblob formula.

buffer[i].pos = pos;

buffer[i].normal = normal;

buffer[i].uv = uv;

}

Say you don’t change UV coords, and want to skip writing them.

Bad idea!

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 17 / 33



AGP Writes (3)

Remember what I said about cache lines?
I “They are loaded from memory on the first access.”
I Oops, I lied there :)

Different parts of memory get cached differently.

AGP Memory is usually tagged as Write Combined.
I Reads are not cached.
I But adjacent writes are combined so whole cache lines get written

when possible.

This only works if you don’t leave holes!

So don’t skip bytes when writing to AGP memory.

Combined writes are a lot faster than partial ones!

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 18 / 33



Simplified Memory Management

In, say, a 3D engine, you have a lot of dynamic data per frame:
I List of visible objects
I List of active lights
I Instanced animation data
I etc.

Most of this comes in relatively small structures.
I So you get thousands of small allocations/frame.

Standard allocators (new) ain’t very good at that.
I Relatively slow.
I Not memory efficient for small objects.
I Things get spread over a big region of memory.

Can’t we do better than that?

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 19 / 33



Simplified Memory Management (2)

Turns out we can.

Just allocate, say, 200k, then manage them yourself.

How to manage it efficiently?

As simple as possible!

Just use it as a stack.

Bare-bones version fits onto one slide:

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 20 / 33



Simplified Memory Management (3)

MemStack class

class MemStack {

char *Buf,*Current;

public:

MemStack(int size) { Buf = Current = new char[size]; }

~MemStack() { delete[] Buf; }

void Reset() { Current = Buf; }

void *Alloc(int amount) {

void *ptr = Current;

Current += amount;

return ptr;

}

};

In practice, you’ll add a typesafe Alloc() template.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 22 / 33



What’s good about this

Memory management doesn’t get any shorter than that.

It doesn’t get any faster or simpler, either.

No bookkeeping overhead worth mentioning.

You don’t have to delete - just Reset() every frame.

Things allocated after each other get memory next to each other.

⇒ Good cache behavior.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 23 / 33



Problems

Limited to objects that have a lifetime of one frame.
I Or however often you call Reset().

Don’t try this when you have constructors or destructors.

Static maximum amount of memory you can use.
I This can be fixed rather easily, though.

Only usable for small data structures.
I Unless you’re willing to make the buffer unreasonably large.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 24 / 33



Conclusion

Not a technique usable everywhere.

But so simple it’s always worth trying.

When it works, it shines.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 25 / 33



Sorting tricks

Don’t worry, I won’t start a boring lecture now.

This is about different forms of sorting than you usually learn about
in CS classes.

I Not comparision-based.
I Linear running time (not O(n log n)).
I Don’t always give a correct solution.

What the heck is “incorrect” sorting good for?
I You get correct sorting up to a certain tolerance.

F No huge differences, just “a little bit off”.

I Sometimes, there’s no easy way to determine a “correct” sorting
anyway (e.g. Z-Sorting triangles)

I Sometimes, it’s not critical things are perfectly sorted (e.g. sorting by
Material in a 3D Engine)

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 26 / 33



Ordering Tables

Name originates (to my knowledge) from the PS1.

A very interesting piece of hardware:
I Hardware rasterization (not perspective correct).
I Simple fixed-point vector unit (GTE).
I 33MHz MIPS R3000 CPU.
I No Z-Buffer!

You had to sort the triangles yourself.
I Facesorting on a 33MHz CPU?

Luckily, the PS1 engineers came up with a nice solution: Ordering
Tables.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 27 / 33



Ordering Tables (2)

The idea is very simple:
I Divide the Z Range into N equal-size parts.
I Create an array of N pointers to polygons.

Every frame, clear that array to zero.

For every triangle you want to draw:
I Calculate the corresponding Z-Index i .
I Insert it into Order [i ] like with a linked list.

Finally, go through the array in reverse (back to front), painting
triangles as you traverse.

I The PS1 could do this in hardware.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 28 / 33



Ordering Tables (3)

Example code

Triangle *Order[256];

void Clear() { memset(Order,0,sizeof(Order)); }

void Insert(Triangle *tri) {

int index = (tri->averageZ-zNear)*256/(zFar-zNear);

tri->next = Order[index];

Order[index] = tri;

}

void Paint() {

for(int i=255;i>=0;i--)

for(Triangle *tri=Order[i];tri;tri=tri->next)

DrawTriangle(tri);

}

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 30 / 33



Ordering Tables: Wrap-up

Again, very nice when you can get away with it.

Perfect for “approximate front-to-back sorting” of objects.
I Don’t use it to sort translucent polygons though.
I All types of face sorting are impractical on current GPUs.
I Use Render Passes instead (→ Chaos’ seminar)

Application of a general strategy called “Bucket Sort”.

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 31 / 33



Bucket Sort

Throw your data into “buckets” based on some ordering.

Sort elements of each bucket individually.
I Or just don’t.

Traverse all buckets in order to get sorted list.

Only works when you can calculate bucket index quickly.
I No problem for numeric data, strings.

Repeated application leads to a “proper” sorting algorithm.
I ⇒ Straight Radix Sort.
I Maybe in another seminar, enough algorithms for 45 minutes :)

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 32 / 33



That’s it!

Questions?

ryg (at) theprodukkt (dot) com
http://www.farbrausch.de/˜fg

Fabian ’ryg’ Giesen (farbrausch) When Light Speed Isn’t Fast Enough Assembly ’05 33 / 33

http://www.farbrausch.de/~fg

	Introduction
	What this seminar is about
	Prerequisites

	Memory Optimizations
	Cache recap
	Cache design principles
	An example
	AGP Writes
	Simplified Memory Management

	Sorting tricks
	Ordering Tables
	Bucket Sort


