A Draft Proposal to define an Extensible
Runtime Containment and Servicestecol
for JavaBeans (&sion 097)

Laurence Cable and Graham Hamilton.

THIS IS A DRAFT SPECIFICATION, IT IS THEREFORE SUBJECT TO CHANGE,
AND FURTHERMORE IMPLIES NO INTENT ON BEHALF OF JavaSoft 1O
DELIVER SUCH BEHAVIOR

Send comments to java-beans@java.sun.com.

1.0 Introduction.

Currently the JavaBeans specification (Version 1.0) contains neither conventions describ-
ing a hierarchy or logical structure of JavaBeans, nor conventions for those JavaBeans to
rendezvous with, or obtain arbitrary services or facilities from, the execution environment
within which the JavaBean was instantiated.

It is desirable to both provide a logical, traversable, hierarchy of JavaBeans, and further to
provide a general mechanism whereby an object instantiating an arbitrary JavaBean can
offer that JavaBean a variety of services, or interpose itself between the underlying system
service and the JavaBean, in a conventional fashion.

In other component models there exists the concept of a relationship between a Compo-
nent and its environment, or Container, wherein a newly instantiated Component is pro-
vided with a reference to its Container or Embedding Context.

The Container, or Embedding Context not only establishes the hierarchy or logical struc-
ture, but its also acts as a service provider that Components may interrogate in order to
determine, and subsequently employ, the services provided by their Context.

This proposal defines such a protocol that supports extensible mechanisms that:

* Introduce an abstraction for the environment, or context, in which a JavaBean logically
functions during its lifecycle, that is a hierarchy or structure of JavaBeans.

» Enable the dynamic addition of arbitrary services to a JavaBean’s environment.

» Provide a single service discovery mechanism through which JavaBeans may interro-
gate their environment in order both to ascertain the availability of particular services
and to subsequently employ those services.

* Provide a simple mechanism to propagate an Environment to a JavaBean.
* Provide better support for JavaBeans that are also Applets.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 1

service

service

BeanContext

LN]
g
""'lllllllllllll“"l

2.0 API Proposal

2.1 interface java.beans.BeanContext

Since the primary roles of a JavaBean’s environmer@eanContext is to:

1. Provide a hierarchy, or logical structure for nested JavaBearBean@€ontext

2. Provide a mechanism for rendezvous between a JavaBean, and a variety of services and
information available from the rest of the execution environment.

ThisBeanConteximay be best modeled by an interface that defines the structure or hierar-
chy primitives, including an Aggregation interface, as proposed elsewhere, to provide for a
generic service discovery and provider facility, therefore:

public interfacejava.beans.BeanContext
extends java.beans.BeanContextChild,
java.util.Collection {

Object instantiateChild(String beanName)

1. Existing Component architectures use the term “Container” to refer to the entity that provides a “Compo-
nent” with services etc. from the execution environment, and “Containment” as the relationship between
the “Container” and “Component”. These terms are greatly overloaded in the industry, and in particular
are already used in the context of Java. Additionally the intended usage of this facility is far broader than
is implied by the general usage of the term “Container”, therefore this proposal uses a new term “Bean-
Context” to describe the “Container” entity.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 2

throws IOException, ClassNotFoundException;

Object getService(Class serviceClass,
BeanContextChild requestor
);
boolean hasService(Class serviceClass,
BeanContextChild requestor

);

public InputStream
getResourceAsStream(String name,
BeanContextChild requestor

);

public java.net.URL
getResource(String name,
BeanContextChild requestor

);

void addPropertyChangel.istener
(String name,PropertyChangeListener pcl);

void removePropertyChangeListener
(String name, PropertyChangeListener pcl);

void removeBeanContextListener
(BeanContextListener bcl);

void addBeanContextListener(BeanContextListener bcl);

2.1.1 java.beans.BeanContextlListener & BeanContextEvent

public interface BeanContextListener
extends java.util.EventListener {
void beanContextChanged(BeanContextEvent bce);

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997

public abstract class BeanContextEvent
extends java.util.EventObiject {
public BeanContext getBeanContext();

public synchronized void
setPropagatedFrom(BeanContext bc);

public synchronized BeanContext getPropagatedFrom();

public synchronized boolean isPropagated()

public abstract class BeanContextMembershipEvent
extends BeanContextEvent {
public boolean isDeltaMember(Object 0);

public Object[] getDeltas();
public boolean isChildrenAddedEvent();

public boolean isChildrenRemovedEvent()

public BeanContextAddedEvent
extends BeanContextMembershipEvent {
BeanContextAddedEvent(BeanContext bc, Object[] bccs);

}

public BeanContextRemovedEvent
extends BeanContextMembershipEvent {
BeanContextRemovedEvent(BeanContext bc, Object[] bccs);

}

Thejava.beans.BeanContextListeneterface is intended to provide a mechanism to
allow entities in the system to monitor changes in a particular context instance. As
detailed in the following section,lmeanContextChangédmethod notification is fired
whenever a state change occurs in a parti@danContexinstance that thBeanContext
implementation wishes to expose to its Listeners. The assoBietatContextEvent
instance describes the nature of the change.

Instances ojava.beans.BeanContextListerae registered and unregistered with a partic-
ular BeanContexinstance via itaddBeanContextListener@nhdremoveBeanContextLis-
tener()methods.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997

Note that thdBeanContextEvertrovides a mechanism whereby an entity receiving such
an event can determine if it has been propagated fiBeaaContexhested with the
BeanContext upon which the entity registered its assodéadContextListenenter-

face, via thasPropagatedFrorf) andgetPropagatedFroif) methods.

Note that &BeanContexis not required to propagaBezanContextListenerotifications it
receives to itBeanContextListenersince there are performance implications in doing so,
however the protocol is provided for those applications that require knowledge of mem-
bership changes throughout the hierarchy.

The BeanContextMembershipEvetdscribes changes that occur in the membership of a
particularBeanContexinstance. This event encapsulates the list of children either added
to, or removed from, the membership of a particBeanContexinstance, i.e the delta in
the membership set.

whenever a successfadld), remové), addAll), orclear() is invoked upon a particular
BeanContext instance BeanContextMembershipEvesfired describing the children
effected by the operation.

2.1.2 The BeanContext as a participant in nested structure

One of the roles of thBeanContexis to introduce the notion of a hierarchical nesting or
structure oBeanContexand JavaBean instances. In order to model this structure the
BeanContexmust expose API that define the relationships in the structure or hierarchy.

TheBeanContexéxposes its superstructure through implementation of the
java.beans.BeanContextChiliterface. This interface allows the discovery and manipula-
tion of aBeanContexs nestingBeanContextand thus introduces a facility to create a
hierarchy ofBeanContexts

The BeanContexéxposes its substructure through a number of interface methods mod-
elled by thgava.util.Collectioninterface:

Theadd() method may be invoked in order to nest a new JavaBeB@amContextvithin
the targeBeanContextA conformantdd()implementation is required to adhere to the
following semantics:

» Each child object shall appear only once in the set of children for aB@srContext
If the instance is already a member of BeanContexthen the method shall throw
lllegalArgumentExceptian

» Each valid child shall be added to the set of children of a given sBaereContext,
and thus shall appear in the set of children, obtained through eititeAtinay(), or
iterator() methods, until such time as that child is deleted from the né&tiagCon-
textvia an invocation ofemove()

» As the child is added to the set of nested children, and where that child implements the

java.beans.beancontext.BeanContextCimtdrface, thd8eanContexshall invoke the
setBeanConteftmethod upon that child, with a reference to itself. Upon invocation, a

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 5

child may, if it is for some reason unable or unprepared to function iBélaaiContext
throw aPropertyVetoExceptioto notify the nestin@@eanContextlf the child throws
such an exception tHgeanContexshall revoke the addition of the child to the set of
nested children and throw dfegalArgumentExceptian

* Once theargetChildhas been successfully processed BbanContexshall fire a
java.beans.beancontext.BeanContextAddedEgentaining a reference to the newly
addedargetChild to the Listeners currently registered to rec@eanContextListener
notifications.

» JavaBeans that implement laga.beans.Visibilitynterface shall be notified via the
appropriate method, eithdontUseGui(or okToUseGui()of their current ability to
render GUI as defined the policy of tBeanContext

* If the newly added child implemerBeanContextChilotheBeanContexshall register
itself with the child on both it¥etoableChangeListenandPropertyChangeListener
interfaces to monitor, at least, tiBganContextChild “beanContext” property.

By doing so tha8eanContextan monitor its child and can detect when such children
are removed from their Context by a 3rd party involsgatBeanConteft A BeanCon-
textmay veto such a change by a 3rd party if it determines that the child is not in a state
to depart membership of that Context at that time.

* If the JavaBean(s) added, implement Listener interfaces thBedr@Contexis a
source for, then thBeanContexinay register the newly added objects via the appropri-
ate Listener registration methods as a permissable side effect of nesting.

* The method shall retutnue when complete.

Theremove()method may be invoked in order to remove an existing child JavaBean or
BeanContextrom within the targeBeanContextA conformantemove(implementation
is required to adhere to the following semantics:

 If a particular child is not present in the set of children for the s&gaaContextthe
method shall throvllegalArgumentExceptian

* Remove the validargetChildfrom the set of children for the soufBeanContexialso
removing that child from any other Listener interfaces that it was implicitly registered
on, for thatBeanContext

Subsequently, if theargetChildimplements thgava.beans.beancontext.BeanContext-
Child interface, tha8eanContexshall invoke the setBeanContext() withuall 1
BeanContexvalue, in order to notify that child that it is no longer nested within the
BeanContext

1. Note, if theremové) was invoked as a result of tBeanContexteceiving an unexpectdttopertyChan-
geEventnotification as a result of a 3rd party invoksejBeanConteftthen the remove implementation
shall not invokesetBeanConteftull) on that child as part of themové) semantics, since to do so
would overwrite the value previously set by the 3rd party..

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 6

If a particulaBeanContextChilds in a state where it is not able to be unnested from its
nestingBeanContexit may throw aPropertyVetoExceptigrupon receipt of this the
BeanContexshall revoke the remove operation for this instance. To avoid infinite
recursion children are not permitted to veto subsequent remove notifications.

Once theargetChildhas been removed from the set of childrenBid@nContexshall
fire ajava.beans.BeanContextRemovedEwaifaining a reference to tkergetChild
just removed, to the Listeners currently registered to re@saaContextListener
notifications.

« If the targetChild implemenjava.beans.BeanContextChild then BeanContexshall
deregister itself from that childRropertyChangeListenemdVetoableChangeListener
sources.

» If the BeanContexhad previously registered the object(s) removed, as Listeners on
events sources implemented by BeanContextas a side effect of nesting those
objects, then thBeanContexshall de-register the newly removed object from the
applicable source(s) via the appropriate Listener de-registration method(s)

* Finally the method shall return the valnee .

Note that the lifetime of any child of a nestiBganContextis at least for the duration of
that child’s containment within a givdeanContextFor simple JavaBeans that are not
aware of their containment withinBeanContextthis usually implies that the JavaBean
shall exist for the lifetime of the nestiBganContext

ThetoArray(), method shall return a copy of the current set of JavaBelAaarContext
instances nested within the targ&anContextand thaterator() method shall supply a
java.util.lteratorobject over the same set of children.

Thecontains()method shall returtrue if the object specified is currently a child of the
BeanContext

Thesize()method returns the current number of children nested.
TheisEmpty) method returns true iff thBeanContexhas no children.

BeanContext are not required to implement eitladAll(Collection c)or clear() meth-

ods defined byava.util.Collection however if they do they must implement the seman-

tics defined, per object, for bo#ldld)) andremové€). In the failure cases these methods
should revoke any partially applied changes to returBdamContexto the state it was in

prior to the composite operation being invoked, no BeanContextEvents shall be fired in the
failure case..

Note thatall the Collectionmethods all require proper synchronization in order to func-
tion correctly in a multi-threaded environment.

TheinstantiateChild()method is a convenience method that may be invoked to instantiate
a new JavaBean instance as a child of the t&gabContextThe implementation of the

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 7

JavaBean is derived from the value of tleanNamectual parameter, and is defined by
thejava.beans.Beans.instantiatefethod.

Typically, this shall be implemented by calling the appropj&ata.beans.Beans.instanti-
ate()method, using th€lassLoadeof the targeBeanContext

2.1.3 Resources.

TheBeanContextlefines two methodgetResourceAsStreghandgetResourd@ which

are analogous to those methods founghwa.lang.ClassLoader. BeanContextChild
instances nested withinBeanContexshall invoke the methods on their nesting Context
in preference for those @lassLoaderto allow aBeanConteximplementation to aug-
ment the semantics by interposing behavior between the child and the undélagsg
Loadersemantics

2.1.4 The BeanContext as a Service Provider

Using thehasService(andgetService(Jnethods of th@eanContextJavaBeans can inter-
rogate for the existence of, and subsequently obtain references to, a variety of dynamic
services from its environment, See “Standard/Suggested Conventions for BeanContext
Delegates” on page 13.

In the case when a nestBdanContexis requested for a particular Delegate that it has no
implementation for, then tHéeanConteximay delegate the delegation requested to its

own nestingBeanContexin order to be satisfied. Thus Delegation requests can propagate
from the leaf JavaBeans to the r@@anContex(This is strongly recommended since it

has a significant impact upon interoperability.

Using this mechanism to dynamically discover and utilize services, decouples JavaBeans
andBeanContex, enabling both greater independence of JavaBeans from their environ-
ment and significant improvements in portability.

The set of Delegate types oBaanContexis variable over the lifetime of tig&eanCon-
text.

For any arbitrary Delegate, it is valid a valid reference at least until the last child referenc-
ing it maintains that reference.

WhenBeanContextChilihstances are removed from a particlaanContexinstance,

they shall discard all references to any Delegates they obtained froRet#raontext
FuthermoreBeanContextare not permitted to expose Delegates, obtained by defering the
request to their nestifgeanContextto their children where the nature of the Delegate
obtained is such that its function depends upon some aspect of the nesting relationship
between the initial referring BeanContext, and the nesting ancestor that satisfies that Dele-
gation.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 8

2.1.5 The role of a BeanContext in Persistence

Since one of the primary roles oBaanContexis to represent a logical nested structure

of JavaBean anBeanContexinstance hierarchies, it is natural to expect that in many sce-
narios that hierarchy should be persistent, i.e thaB#amContexshould participate in
persistence mechanisms, in particular, eiftrea.io.serializableor java.io.externalizable

In particularBeanContex shall persist and restore their current children that implement
the appropriate persistence interfaces when they themselves are made persistent or subse-
guently restored.

As a result of the above requirement, persidgaanContextChd implementations are
required tanot persist any references to either their nedBiegnContextor to any Dele-
gates obtained via its nestiBganContext

BeanContextshall, when restoring an instanceBaefanContextChildrom its persistence
state, be required to invoketBeanContext() on the newly instantiate®eanCon-
textChild,with the actual parametbeanContext to a reference to itself, the nesting
BeanContextin order to notify the newly restored instance of its ne®gnContext

thus allowing thaBeanContextChildo fully reestablish its dependencies on its environ-
ment.

Also note that sincBeanConteximplementgava.beans.BeanContextChiltdshall obey
the persistence requirements defined below for implementors of that interface.

2.2 interface java.beans.BeanContextChifd

Simple JavaBeans that do not require any support or knowledge of their environment shall
continue to function as they do today. However both JavaBeans that wish to utilize their
containingBeanContextandBeanContex that may be nested, require to implement a
mechanism that enables the propagation of the reference to the enBlesiri¢ontext

through to cognizant JavaBeans and neBeahContex, the interface proposed is:

public interface java.beans.BeanContextChild
extends BeanContexiListener {
void setBeanContext(BeanContext bc)
throws PropertyVetoException;

BeanContext getBeanContext();

void addPropertyChangelListener
(String name, PropertyChangeListener pcl);

1. 1 don't like this name much but | am struggling for a better alternative!

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 9

void removePropertyChangeListener
(String name, PropertyChangeListener pcl);

void addVetoableChangeListener
(String name, VetoableChangelListener pcl);

void removeVetoableChangeListener
(String name, VetoableChangelListener pcl);

When thechildStateChanged@vent is delivered to a JavaBearBaanContextthe Java-
Bean oBeanContextnay typically, as a side effect of this invocation, initialize, update, or
invalidate any attributes or dependencies that it may have on its nBeain@gontext’s
environment, or as accessed via Delegation througB#aiContext

A BeanContextChildbject may throw &hildVetoExceptionto notify the nestin@ean-
Contextthat it is unable to function/be nested within that partidd&anContextSuch a
veto shall be interpreted byBeanContexas an indication that tigeanContextChildhas
determined that it is unable to function in that particBleanContexand is final.

During the unnesting of BeanContextChildrom itsBeanContextit is possible for the
child to throw aPropertyVetoExceptioto notify the caller that it is not in a state to be
unnested. In order to bound this interactiddeanContextChilanay veto the initial
unnesting notification, but may not veto any subsequent notifications, and must, upon
receipt of such notifications, amend its state accordingly.

Note that classes that implement this interface, also act as an Event Source for (sub)inter-
face(s) oflava.beans.PropertyChangeListepand are required to update their state
accordingly and subsequently fire the appropjata.beans.PropertyChangeEvevith
propertyName= “beanContext’pldValue= the reference to the previous nestd@an-

Context andnewValue= the reference to the new nestBganContextio notify any Lis-
teners that its nestigeanContexhas changed value.

JavaBeans, or nestBganContex in the process of terminating themselves, shall invoke
theremoveChildren(Jnethod on their nestingeanContexin order to withdraw them-
selves from the hierarchy prior to termination.

2.2.1 Important Persistence considerations

Instances oBeanContextChilehested within aBeanContexiwill typically define fields
or instance variables that will contain references to their neBaagContexinstance,
and possibly Delegates obtained from tBaanContexinstance via itgletContextSer-
vices()interface.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 10

In order to ensure that the act of making such an instance persistent does not erroneously
persist objects from the instances nesting environment, such instances shall be required to
define such fields, or instance variablegassient

This requirement is crucial since operations such as cutting and pasting object instances
through a clipboard via object serialization will not function correctly if the act of serializ-
ing the target object also serializes the entire source environment it is nested within.

3.0 Overloading java.beans.instantiate() static method

Sincejava.beans.instantiate($ the current mechanism for (re)instantiating JavaBeans we
need to extend or overload the syntax and semantics of this method in order to accommo-
date the introduction of tH@eanContexabstraction. The extension proposed is:

public static Object instantiate(ClassLoader cl,
String beanName,
BeanContext beanContext);

This method behaves has it is currently defined in the JavaBeans specification except in
the case when the JavaBean instantiated implemernjes/thbeans.BeanContextChild
interface, in this case, the method invokesati@Child()method on thééeanContext

actual parameter with the value of taggetChildactual parameter = a reference to the
newly instantiated JavaBean.

4.0 Providing better support for Beans that are also Applets

The current implementation (#va.beans.instantiateontains minimal support for
instantiating JavaBeans that are also Applets. In particular, this method will currently con-
struct anAppletContexandAppletStuldfor the newly instantiated JavaBean, set the stub

on the newly instantiatefipplet,andinit() the Appletif it has not already been invoked.

Unfortunately this does not provide sufficient support in order to allow most Applets to be
fully functional, since théppletContexandAppletStulcreated byava.beans.instanti-

ate(), are noops. This is a direct consequence of the lack of sufficient specification of how
to construcAppletContexandAppletStubmplementations in the existirgppletAPI’s.
Furthermore, even if such specifications existed we would require an API that propagated
a number oppletattributes such as i€Godebase Parameter#ppletContextandDocu-
mentbaseinto java.beans.instantiate(i order for it to subsequently instantiate the
appropriately initialized objects.

1. Note: Since simple JavaBeans have no knowledge of a BeanContext, it is not advisable to introduce such
instances into the hierarchy since there is no mechanism for these simple JavaBeans to remove them-
selves from the hierarchy and thus subsequently be garbage collected.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 11

Since key to supporting fully functional Applets is to provide them with fully functional
AppletContexandAppletStubnstances, the design goal is to provide a mechanism to pro-
vide this state tinstantiate()so that it may carry out the appropriate initialization and
binding', therefore the proposed interface is:

public static Object

instantiate(ClassLoader cl,
String beanName,
BeanContext bCitxt,

Appletinitializer ai

public interface Appletinitializer {
void initialize(Applet newApplet, BeanContext bCtxt);
void activate(Applet newApplet);

}

If the newly instantiated JavaBean is an instangawvaf.applet.Applethen the new con-
structedApplet (Bean) will be passed to tgpletinitializervia a call tanitialize().

Compliant implementations @ppletinitializer.initialize()shall:
1. Associate the newly instantiatagpletwith the appropriat@ppletContext

2. Instantiate ar\ppletStul) and associate thappletStubwith theAppletvia
an invocation oetStul.

3. If BeanContexparameter isiull , then it shall associate tigpletwith its appropri-
ateContainerby adding thaAppletto itsContainervia an invocation oadd). If the
BeanContexparameter is nonull , then it is the responsibility of tHgeanContexto
associate th@ppletwith its Containerduring the subsequent invocation ofatidChil-
dren() method.

Compliant implementations @fppletinitializer.activate(shall mark thé\ppletas active,
and may optionally also invoke tigplets start() method.

Note that if the newly instantiated JavaBean is not an instarfggpddt then theApple-
tinitializer interface is ignored.

1. AppletContexbbjects expose a list éppletobjects they “contain”, unfortunately the currégipletor
AppletStubAPI’s as defined, provide no mechanism forAppletContexto discover it#ppletsfrom its
AppletStubsor for anAppletStulto inform itsAppletContexbf its Applet.Therefore we will have to
assume that this binding/discovery can occur in order for this mechanism to be worthwhile in
java.beans.instantiate()

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 12

5.0 Standard/Suggested Conventions for BeanContext
Delegates

5.0.1 BeanContexts that support InfoBus.

The InfoBus technology is a standard extension package that is intended to facilitate the
rendezvous and exchange of dynamic self describing data, based upon a publish and sub-
scribe abstraction, between JavaBean Components within a single Java Virtual Machine.

A BeanContexthat that exposes anfoBusto its neste@eanContextChilghall do so by
exposing a service via thasServic@ andgetServic® methods of typgvax.info-
bus.InfoBus.

ThusBeanContextChilimplementations may locate a commofoBusimplementation
for their currenBeanContexby using this mechanism to rendezvous with bhimBus
instance.

5.0.2 BeanContexts that support printing

A BeanContexthat wishes to expose printing facilities to its descendants may delegate a
reference of (sub)typava.awt.PrintJob

5.0.3 BeanContext Design/Runtime mode support.

JavaBeans support the concepts of “design”-mode, when JavaBeans are being manipu-
lated and composed by a developer in an Application Builder or IDE, and “Run”-mode,
when the resulting JavaBeans are instantiated at runtime as paAmblah Application

or some other executable abstraction.

In the first version of the specification, the “mode” or state, that is “design”-time or “run”-
time was a JVM global attribute. This is insufficient since, for example, in an Application
Builder environment, there may be JavaBeans that function, in “run”-mode, as part of the
Application Builder environment itself, as well as the JavaBeans that function, in
“design”-mode, under construction by the developer using the Application Builder to
compose an application.

Therefore we require the ability to scope this “mode” at a granularity below that of JVM
global.

TheBeanContexabstraction, as a “Container” or “Context” for one or more JavaBeans
provides appropriate mechanism to better scope this “mode”.

ThusBeanContexs that wish to expose and propagate this “mode” to its descendants may
delegate a reference of tyjpea.beans.BeanContextMaode

public interface java.beans.DesignMode {
void setDesignTime(boolean isDesignTime);

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 13

boolean isDesignTime();

}

Additionally, BeanContext delegating such a reference shall be required to fire the appro-
priatejava.beans.propertyChangeEvewith propertyName = “designTime”, with the
appropriate values faldValueandnewValuewhen the “mode” changes value.

Note that it is illegal for instances BeanContextChildo callsetDesignTime(@n
instances oBeanContexthat they are nested within.

5.0.4 BeanContext Visibility support.

JavaBeans with associated presentation, or GUI, may be instantiated in environments
where the ability to present that GUI is either not physically possible (when the hardware
IS not present), or is not appropriate under the current conditions (running in a server con-
text instead of a client).

The first version of the JavaBeans Specification introducgdvhéreans.Visibilitynter-
face in order to provide a mechanism for JavaBeans to have their “visible” state, or ability
to render a GUI, controlled from their environment.

BeanContext that wish to enforce a particular policy regarding the ability of their children
to present GUI, should use tjaa.beans.Visibilitynterface to control their children,
however this mechanism in of itself may be insufficient.

ThereforeBeanContextthat implement visibility policy shall delegate a reference of type
java.beans.visibilityState
public interface java.beans.VisibilityState {

boolean isOkToUseGui();

}

Additionally, BeanContextdelegating such a reference shall be required to fire the appro-
priatejava.beans.propertyChangeEvewith propertyName= “okToUseGui”, with the
appropriate values faldValueandnewValuge when the “state” changes value.

Children of aBeanContexinstance that does not delegate such an interface shall assume
that it is permitted to render their associated GUI, if any, at any time.

The mechanism for setting the value of the “state”, is implementation dependent, but
would typically be implemented or delegated througdva.beans.visibilitynterface.

5.0.5 Determining Locale from a BeanContext

BeanContext may have a locale associated with them, in order to associate and propagate
this important attribute across the JavaBeans nested therein.

1. Reusing java.beans.visibility here, instead of defining a new interface, would be nice but since it com-
bines setters and getters it seems unsuitable as a mechanism for propagating state down the hierarchy
since it would also (theoretically) allow it to propagate up also.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 14

Therefore BeanContex, shall be required to fire the appropriatea.beans.Property-
ChangeEventwith propertyName = “locale’yldValue= the reference to the previous
value of the_ocaledelegate, andewValue= the reference to the new value of thueale
delegate, in order to notify its Listeners of any chandeotale

Setting and getting the value of thecaleon theBeanContexis implementation depen-
dent.

5.0.6 BeanContexts or JavaBeans that have associated presentation.

JavaBeans arBleanContextthat are associated with the presentation of a GUI shall
either directly implement, or delegate a referenc@at@.awt.Componergnd/or
java.awt.Container

During the invocation oddd() the nestingdeanConteximplementation may determine
thejava.awt.Componer{if any) of the child it is adding and perform the necessary steps
to cause its owgontainerand the child'€Componento be associated as defined by the
Containeis add)) semantics.

Similarly, duringremove(}the nestindeanContexshall disassociate the child®mpo-
nent(if any) from its ownContainer

6.0 java.beans.beancontext.BeanContextSupport

In order to ease the implementation of this relatively complex protocol a “helper” class is
provided;java.beans.beancontext.BeanContextSuppdns class is designed to either be
subclassed, or delegated (either explicitly or implicitly) by another object, and provides a
fully compliant (extensible) implementation of the protocols embodied herein.

A Draft Proposal to define an Extensible Runtime Containment and Services Protocol for JavaBeans (Version 0.97)August 26, 1997 15

