Proposal for a Drag and Drop subsystem for
the J&a Foundation Classes

(Draft: 0.95).

Laurence P. G. Cable.
THIS IS A DRAFT SPECIFICATION, IT IS THEREFORE SUBJECT TO CHANGE,

AND FURTHERMORE IMPLIES NO INTENT ON BEHALF OF JavaSoft 1O
DELIVER SUCH BEHAVIOR

Send comments to java-beans@java.sun.com.
Note:

The API described herein is partially implemented in JDK1.2 Beta2
but will not be completely available until Beta3.

1.0 Requirements

This proposal is based upon an (incomplete) earlier work undertaken in 1996 to specify a
Uniform Data Transfer Mechanism, Clipboard, and Drag and Drop facilities for AWT.

The AWT implementation in JDK1.1 introduced the Uniform Data Transfer Mechanism
and the Clipboard protocol. This draft proposal defines the API for the Drag and Drop
facilities for JDK1.2 based upon, but extending these 1.1 UDT API’s.

The primary requirements that this proposal addresses, are:

1. Provision of a platform independent Drag and Drop facility for Java GUI clients
implemented through AWT and JFC classes.

2. Integration with platform dependent Drag and Drop facilities, permitting Java
clients to be able to participate in DnD operation with native applications using:

* OLE (Win32) DnD
* CDE/Motif dynamic protocol
* MacOS
3. Support for 100% pure JavaOS/Java implementation.

4. Leverages the existingva.awt.datatransfer.package to enable the transfer of
data, described by an extensible data type system based on the MIME standard.

5. Does not preclude the use of “accessibility” features where available.
6. Extensible to support diverse input devices.

The proposal derives from the previous work mentioned above, but incorporates signifi-
cant differences from that original work as a result of the advent of the JavaBeans event

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 1



model, Lightweight Components, and an increasing understanding of the cross-platform
integration and interoperability issues.

2.0 API

2.1 Overview

Drag and Drop is a direct manipulation gesture found in many Graphical User Interface
systems that provides a mechanism to transfer information between entities associated
with a presentation element in the GUI. Normally driven by the physical gesturing of a
human user, Drag and Drop provides both a mechanism to enable feedback regarding the
possible outcome of any subsequent data transfer to the user during navigation over the
presentation elements in the GUI, and the facilities to provide for any subsequent data
transfer.

A typical Drag and Drop operation can be decomposed into the following states (not
entirely sequentially):

A DragSourcecomes into existence, associated with some presentation el€namnt (
ponenj in the GUI, and some potentiallyansferabledata.

» 1 or moreDropTarge({s) come into/go out of existence, associated with presentation
elements in the GUIGomponenis potentially capable of consumifigansferable
data.

* A human user gestures to initiate a Drag and Drop operatiofComaonenassoci-
ated with aDragSource

Note Although the body of this document consistently refers to the stimulus for a drag
and drop operation being a physical gesture by a human user this does not preclude a
programmatically driven DnD operation given the appropriate implementation of a
DragSource

» TheDragSourcanitiates the Drag and Drop operation on behalf of the user, perhaps
animating the GUCursorand/or rendering amageof the item(s) that are the subject
of the operation.

» As the user gestures navigate o@emponents the GUI associated withropTar-
gef(s), theDragSourcereceives notifications in order to provide “Drag Over” feedback
effects, and th®ropTarge(s) receive notifications in order to provide “Drag Under”
feedback effects.

The gesture itself moves a logical cursor across the GUI hierarchy, intersecting the
geometry of GUIComponer(s), possibly resulting in the logical “Drag” cursor enter-
ing, crossing, and subsequently leav@@mponentassociatedropTargets).

TheDragSourceobject manifests “Drag Over” feedback to the user, in the typical case
by animating the GUCursorassociated with the logical cursor.

DropTargetobjects manifest “Drag Under” feedback to the user, in the typical case, by
rendering animations into their associated @dmponer(s) under the GUCursor.

* The determination of the feedback effects, and the ultimate success or failure of the
data transfer, should one occur, is parameterized as follows:

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 2



* By the transfer “operationCopy, Move or Referencélink).

» By the intersection of the set of data types provided bptagSourceand the set of
data types comprehensible by h®pTarget

* When the user terminates the drag operation, normally resulting in a successful Drop,
both theDragSourceandDropTargetreceive notifications that include, and result in
the transfer of, the information associated withinagSourcevia aTransferable
object.

The remainder of this document details the proposed API changes to support this model.

2.2 Drag Source

TheDragSourcds the entity responsible for the initiation of the Drag and Drop operation:

2.2.1 TheDragSourcedefinition
TheDragSourceand associated constant interfaces are defined as follows:

TheDnDConstantglass defines the operations that may be applied to the subject of the
transfer:

public class java.awt.dnd.DnDConstants {
public static int ACTION_NONE= 0x0;
public static int ACTION_COPY= 0x1;
public static int ACTION_MOVE= 0x2;
public static int ACTION_COPY_OR_MOVE= ACTION_COPY |
ACTION_MOVE;
public static int ACTION_REFERENCE = 0x40000000;

}

public class java.awt.dnd.DragSource {

public static Cursor  getDefaultCopyDropCursor();
public static Cursor  getDefaultMoveDropCursor();
public static Cursor  getDefaultLinkDropCursor();

public static Cursor  getDefaultCopyNoDropCursor();
public static Cursor  getDefaultMoveNoDropCursor();
public static Cursor  getDefaultLinkNoDropCursor();

public static DragSource getDefaultDragSource();
public void

startDrag(Component c,
AWTEvent trigger,

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 3



int actions,

Cursor dragCursor,
Image dragimage,
Point dragimageOffset,
Transferable transferable,

DragSourceListener dsl)
throws InvalidDnDOperationException;

protected DragSourceContext
createDragSourceContext(
DragSourceContextPeer dscp,

Component c,

int actions,

Cursor dragCursor,
Image draglmage,
Point draglmageOffset,
Transferable transferable,

DragSourceListener dsl

);

public FlavorMap getFlavorMap();

The DragSourcemay be used in a number of scenarios:
» 1 default instance per JVM for the lifetime of that JVM. (defined by this spec)

» 1 instance per class of potential Drag Initiator objectTexgField. [implementation
dependent]

» 1 per instance of a particul@mponentor application specific object associated with
aComponentinstance in the GUI. [Implementation dependent]

* some other arbitrary association. [implementation dependent]

A controlling object, the Drag Initiator, shall obtaibeagSourcenstance either prior to,
or at the time a users gesture, effecting an assocategbonentin order to process the
operation.

The initial interpretation of the users gesture, and the subsequent starting of the Drag oper-
ation are the responsibility of the implementfbgmponentor associated controlling
entity.

When a gesture occurs, tbeagSourcés startDrag() method shall be invoked in order to
cause processing of the users navigational gestures and delivery of Drag and Drop proto-
col notifications.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 4



In order to start a drag operation the caller ofstiagtDrag() method shall provide the fol-
lowing parameters:

» TheComponenthat received thAWTEventhat was interpreted as the starting gesture.

The AWTEventtself that was interpreted as the starting gesture.

The Drop actions that may be performed; the unioh@FION_COPY
ACTION_MOVE, andACTION_REFERENCE, as appropriate.

A Cursorrepresenting the initial “Drag Over” feedback for the operation(s) specified.
(This shall be £ursorthat provides “No Drop” visual feedback to the user).

An (optional)lmageto visually represent the item, or item(s) that are the subject(s) of
the operation.

On platforms that can support this feature, a “Drag” image may be associated with the
operation to enhance the fidelity of the “Drag Over” feedback. This image would typi-
cally be a small “iconic” representation of the object, or objects being dragged, and
would be rendered by the underlying system, tracking the movement of, and coincident
with, but typically in addition to th€ursoranimation.

Where this facility is not available, or where the image is not of a suitable type to be
rendered by the underlying system, this parameter is ignored an@unsiyr “Drag
Over” animation results, so applications should not depend upon this feature.

» Where arimageis provided; &oint (in the co-ordinate space of tB®mponentspec-
ifying the initial origin of thatmagein theComponentor the purposes of initiating
“Drag Over” animation of thadimage

» A Transferablehat describes the varioDataFlavor(s) that represent the subject(s) of
any subsequent data transfer that may result from a successful Drop.

TheTransferablanstance associated with tBeagSourceat the start of the Drag oper-
ation, represent the object(s) or data that are the operand(s), or the subject(s), of the
Drag and Drop operation, that is the information that will subsequently be passed from
the DragSourceto theDropTargetas a result of a successful Drop on@wnponent
associated with th&ropTarget

Note that multiple (collections) of either homogeneous, or heterogeneous, objects may
be subject of a Drag and Drop operation, by creating a container object, that is the sub-
ject of the transfer, and implemeftansferable However it should be noted that since
none of the targeted native platforms systems support a standard mechanism for
describing and thus transferring such collections it is not possible to implement such
transfers in a transparent, or platform portable fashion.

» A DragSourceListeneinstance, which will subsequently receive events notifying it of
changes in the state of the ongoing operation in order to provide the “Drag Over” feed-
back to the user.

As stated above, the primary role of gtartDrag() method is to initiate a Drag on behalf

of the user. In order to accomplish this, stertDrag() method must createragSource-
Contextinstance to track the operation itself, and more importantly it must initiate the
operation itself in the underlying platform implementation. In order to accomplish this, the
DragSourcemust first obtain ®ragSourceContextPedrom the underlying system (usu-
ally via an invocation ofava.awt.Toolkit.createDragSourceContextPeengthod) and
subsequently associate this newly cre@eySourceContextPegwhich provides a plat-

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 5



form independent interface to the underlying systems capabilities) Withgsource-
ContextThestartDrag() method invokes thereateDragSourceContéximethod to
instantiate an appropriaBragSourceContexdnd associate tHaragSourceContextPeer

If the Drag and Drop System is unable to initiate a Drag operation for some reason the
startDrag() method shall throw gva.awt.dnd.InvalidDnDOperationExceptitm signal

such a condition. Typically this exception is thrown when the underlying platform system
is either not in a state to initiate a Drag, or the parameters specified are invalid.

Note that during the Drag neither the set of operations the source, nor thBat&tra-
vorsexposed by th@ransferableat the start of the Drag operation may change for the
duration of the operation, in other words the operation(s) and data are constant for the
duration of the operation with respect to BragSource

For security reasons the caller of gtartDrag)) method is required to have the AWTPer-
mission ‘StartDrag  *“, invoking this method without such permission shall result in a
SecurityExceptiobeing thrown.

ThegetFlavorMay) method is used by the underlying system to obt&laeorMap
object in order to map tHeataFlavorsexposed by th&ransferableto data type names of
the underlying DnD platform. [see later for details of FevorMap|

2.2.2 TheDragSourceContexDefinition

As a result of &ragSourcés startDrag() method being successfully invoked an instance
of theDragSourceContextlass is created. This instance is responsible for tracking the
state of the operation on behalf of irgSourceand dispatching state changes to the
DragSourceListener

TheDragSourceContextlass is defined as follows:
public class DragSourceContext implements DragSourceListener

{
protected DragSourceContext(

DragSource ds,
DragSourceContextPeerdscp,
int actions,
Cursor dragCursor,
Image draglmage,
Point dragOffset,
Transferable transferable,

DragSourcelListener dsl

);
public DragSource getDragSource();

public Component getComponent();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997



public AWTEvent getTrigger();

public Image getDragimage();
public Point getDragimageOffset();
public int getSourceActions();

Cursor getCursor();
void setCursor(Cursor Cursor)
throws InvalidDnDOperationException;

void cancelDrag() throws InvalidDnDOperationException;

void addDragSourceListener(DragSourceListener dsl)
throws TooManyListenersException;

void removeDragSourceListener(DragSourceListener dsl);

Note that thddragSourceContextself implementragSourceListenethis is to allow
the platform peer, thBragSourceContextPeénstance, created by tibragSourceto
notify the DragSourceContextf changes in state in the ongoing operation, and thus
allows theDragSourceContexb interpose itself between the platform andDingg-
SourceListeneprovided by the initiator of the operation.

The state machine the platform exposes, with respect to the source, or initiator of the Drag
and Drop operation is detailed below:

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 7



dsa.startDrag()* (#) —» dc.cancelDrag()

s = DragSource dc = DragSourceContext
y p dsl.dragEnter()*# —
A dsl = DragSourceListener
dsl.dragOver()*# —_—
\J
- dsl.dragExit()*
| » dsl.dragDropEnd()
(*) ————— > dsl.dragGestureChanged()# —»<next>

Notifications of changes in state with respect to the initiator during a Drag and Drop oper-
ation, as illustrated above, are delivered fromDhegSourceContextPedq the appropri-
ateDragSourceContextvhich delegates notifications, via a unicast JavaBeans compliant
EventListenesubinterface, to an arbitrary object that implem@&rtggSourceListener
registered with th®ragSourcevia startDrag).

The primary responsibility of theragSourceListeneis to monitor the progress of the
users navigation during the Drag and Drop operation and provide the “Drag-Over” effects
feedback to the user. Typically this is accomplished via changes to the “Drag Cursor”.

EveryDragSourceobject has 2 logical cursor states associated with it:
» TheDrop Cursor, the cursor displayed when dragging over a viahopTarget
» TheNoDrop Cursor, the cursor displayed when dragging over everything else (the ini-

tial state of the cursor at the start of a Drag).

The state of th€ursormay be modified by calling theetCursof) method of thérag-
SourceContext

2.2.3 TheDragSourceListeneDefinition

TheDragSourceListeneinterface is defined as follows:

public interface java.awt.dnd.DragSourceListener
extends java.util.EventListener {
void dragEnter (DragSourceDragEvent dsde);
void dragOver (DragSourceDragEvent dsde);
void dragGestureChanged(DragSourceDragEvent dsde);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 8



void dragExit (DragSourceEvent dse);
void dragDropEnd (DragSourceDropEvent dsde);

}

As the drag operation progresses,BnagSourcelListenes'dragEnter() dragOver() and
dragExit() methods shall be invoked as a result of the users navigation of the logical
“Drag” cursor’s location intersecting the geometry of @dimponent(syvith associated
DropTarget(s) [See below for details of tHeropTarget'sprotocol interactions].

TheDragSourceListenés dragEntef) method is invoked when the following conditions
are true:

» The logical cursor’s hotspot initially intersects a GLéimponeri$ visible geometry.

* ThatComponenhas an activ®ropTargetassociated.

» TheDropTargets registeredropTargetListener dragEntér method is invoked and
returns successfully.

* The registere@®ropTargetListenemvokes theDropTargetDragEverd acceptDrad)
method to accept the Drag based upon interrogation of the source’s potential Drop
actions and available data typ&ataFlavors.

The DragSourcelListener’s dragOven@ethod is invoked when the following conditions
are true:

» The cursor’s logical hotspot has moved but still intersects the visible geometry of the
Componenassociated with the previodsagEntef) invocation.

» ThatComponenstill has aDropTargetassociated.
» ThatDropTargetis still active.

» TheDropTargets registeredropTargetListener dragOv€r method is invoked and
returns successfully.

» TheDropTargetdoes not reject the drag vigectDraq).

TheDragSourceListenés dragExi{) method is invoked when one of the following condi-

tions is true:

* The cursor’s logical hotspot no longer intersects the visible geometry©bthponent
associated with the previodsagEnte() invocation.

Or:

» TheComponenthat the logical cursor’s hotspot intersected that resulted in the previ-
ousdragEnte() invocation, no longer has an actbeopTarget(or DropTargetLis-
tenen associated.

Or:

» The currenDropTargets DropTargetListenehas invokedejectDrag) since the last
dragEnte() or dragOve() invocation.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997



TheDragSourcelListener’s dragGestureChangad@thod is invoked when the state of the
input device(s), typically the mouse buttons or keyboard modifiers, that the user is inter-
acting with in order to preform the Drag operation, changes.

ThedragDropEnd()method is invoked to signify that the operation is completed. The
isDropAborted(JandisDropSuccessful(nethods of th®ragSourceDropEventan be
used to determine the termination state. gé®ropActiort) method returns the operation
that theDropTargetselected (via thBropTargetDropEvent acceptDr@pparameter) to
apply to the Drop operatioh.

Once this method is complete theagSourceContexdnd the associated resources are
invalid.

2.2.4 TheDragSourceEvenDefinition

TheDragSourceEventlass is the rodEventclass for all events pertaining to the Drag-
Source, and is defined as follows:

public class java.awt.dnd.DragSourceEvent
extends java.util.EventObject {
public DragSourceEvent(DragSourceContext dsc);

public DragSourceContext getDragSourceContext();

An instance of this event is passed tolmagSourceListener dragEX)tmethod.

2.2.5 TheDragSourceDragEvenDefinition

TheDragSourceDragEventlass is defined as follows:

public class java.awt.dnd.DragSourceDragEvent
extends DragSourceEvent {
public int getTargetActions();
public int getGestureModifiers();

public boolean isDropTargetLocal();

1. It would be nice to design an API that would allowEragSourceto be notified of th®ropTargets
selected operation before the DropTarget invokes the s@tansferablés getTransferDat§ method,
sadly however, OLE’s bass-ackwards DnD protocol forces the above design on us where the operation is
reported after it has occurred, this makes life for the source implementor harder when supporting certain
“Link” semantics.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 10



An instance of the above class is passeddmgSourcelistener’s dragEnter(),
dragOver(),anddragGestureChangedethods.

ThegetDragSourceContgyximethod returns thBragSourceContexdssociated with the
current Drag and Drop operation.

ThegetTargetActions(inethod returns the drop actions, supported by, and returned from
the currenDropTarget {f any in the case alragGestureChanged())

ThegetGestureModifiersfeturns the current state of the input device modifiers, usually
the mouse buttons and keyboard modifiers, associated with the users gesture.

TheisDropTargetLocd)) method returngrue if the currenDropTargetis contained
within the same JVM as tHeragSource andfalse otherwise. This information can be
useful to the implementor of thigragSourcés Transferablein order to implement certain
local optimizations.

2.2.6 TheDragSourceDropEvenDefinition

TheDragSourceDropEventlass is defined as follows:

public public class java.awt.dnd.DragSourceDropEvent
extends java.util.EventObject {

public DragSourceDropEvent(DragSourceContext dsc);

public DragSourceDropEvent(DragSourceContext dsc,
int action,
boolean success);

public boolean isDropAborted();
public boolean isDropSuccessful();

public int getDropAction();
}

An instance of the above class is passeddmgSourceListener’s dragDropEnd()
method. This event encapsulates the termination state of the Drag and Drop operation for
the DragSource

If the Drop occurs, then the participatiDgop Targetwill signal the success or failure of
the data transfer via thgropTargetContext’'s dropCompletafjethod, this status is made
availlable to the initiator via theDropSuccessfulfnethod. The operation that the desti-
nation DropTarget selected to perform on the subject of the Drag (passedogfiar-
gets acceptDroff) method) is returned via tlgetDropActiorn) method.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 11



If the Drag operation was aborted for any reason prior to a Drop occurring, for example if
the users ends the gesture outwirapTarget or if theDropTargetinvokesrejectDrof()
, theisDropAborted()method will returrfalse , otherwisdrue.

2.3 Drop Target

2.3.1 java.awt.Component additions for DropTarget (de)registration.

TheJava.awt.Componermiass has two additional methods added to allow the (dis)associ-
ation with aDropTarget.In particular:

public class java.awt.Component /* ... */ {
...

public synchronized
void setDropTarget(DropTarget dt);

public synchronized
DropTarget getDropTarget(DropTarget df);

I
}

To associate BropTargetwith aComponenbne may invoke eitheDropTarget.setCom-
pononenf) or Component.setDropTargg¢methods. Thus conforming implementations of
both methods are required to guard against mutual recursive invocations.

To disassociate BropTargetwith aComponenbne may invoke eitheDropTarget.set-
Compononerihull)  or Component.setDropTardeull ) methods.

Conformant implementations of both setter method3rap TargetandComponent
should be implemented in terms of each other to ensure proper maintenance of each
other’s state.

ThesetDropTargdl) method throwsllegalArgumentExceptioif the DropTargetactual
parameter is not suitable for use with this class/instan€ewiponentit may also throw
UnsupportedOperationExceptiah for instance, th€ omponentoes not support exter-
nal setting of &ropTarget

A caller of thesetDropTargg) method requires th&WTPermission®setDropTar-
get ”, if the caller does not have this permission teetDropTargdd will throw a Securi-
tyException

2.3.2 TheDropTargetDefinition

A DropTargetencapsulates all of the platform-specific handling of the Drag and Drop pro-
tocol with respect to the role of the recipient or destination of the operation.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 12



A singleDropTargetinstance may typically be associated with any arbitrary instance of
java.awt.ComponenEstablishing such a relationship exports the assodzdetbonent’s
geometry to the client desktop as being receptive to Drag and Drop operations when the
coordinates of the logical cursor intersects that visible geometry.

TheDropTargetclass is defined as follows:

public class java.awt.dnd.DropTarget
implements DropTargetListener, Serializable {

public DropTarget();

public DropTarget(Component c);
public DropTarget(Component ¢, DropTargetListener dsl);

public Component getComponent();
public void  setComponent(Component c);

public DropTargetContext getDropTargetContext();

public void
addDropTargetListener(DropTargetListener dte)
throws TooManyListenersException;

public void
removeDropTargetListener(DropTargetListener dte);

public void setActive(boolean active);
public boolean isActive();

public FlavorMap getFlavorMap();
protected DropTargetContext createDropTargetContext();

public void addNotify(ComponentPeer cp);
public void removeNotify(ComponentPeer cp);

}

ThesetComponeft method throwsllegalArgumentExceptioif the Componenactual
parameter is not appropriate for use with this class/instarig@epfarget and may also
throw UnsupportedOperationExceptidginthe Component specified disallows the external
setting of eaDropTarget

For security reasons, callerssgtComponef) require theAWTPermissioriset-
DropTarget " otherwise aSecurityExceptioshall be thrown.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 13



TheaddDropTargetListen€y andremoveDropTargetListen@rmethods allow the unicast
DropTargetListeneto be changed.

ThesetActivg) andisActivd) methods allow th®ropTargetto be made active or other-
wise and for its current state to be determined.

ThegetFlavorMag) methods is used to obtain thiavorMap associated with this
DropTargetfor the purposes of mapping any platform dependent type names to/from their
corresponding platform independétaFlavors

ThecreateDropTargetConteQtmethod is typically only invoked to provide the underly-
ing platform dependent peer with an instantiation of a DespTargetContexas a Drag
operation initially encounters ti@omponenassociated with thBropTarget If no
DropTargetContexis currently associated withCaopTarget a permitted side-effect of an
invocation ofgetDropTargetContefis to instantiate a nefl@ropTargetContext

TheaddNotify() andremoveNotiff) methods are only called fro@omponento notify
the DropTargetof theComponernis (dis)association with it€omponentPeer

2.3.3 TheDropTargetContexiDefinition

As the logical cursor associated with an ongoing Drag and Drop operation first intersects
the visible geometry of @omponentvith an associateBropTarget theDropTargetCon-
textassociated with thBropTargetis the interface, through which, access to control over
state of the recipient protocol is achieved fromDin@pTargetListener

TheDropTargetContexinterface is defined as follows:

public class DropTargetContext {
public DropTarget getDropTarget();

public Component getComponent();
public DataFlavor[] getDataFlavors();

public void getTransferable()
throws InvalidDnDOperationException;

public void dropComplete(boolean success)
throws InvalidDnDOperationException;

protected void acceptDrop(int action);
protected void rejectDrop();

public void addNotify(DropTargetContextPeer dtcp);
public void removeNotify();

protected Transferable

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 14



createTransferableProxy(Transferable t,
boolean  isLocal
);
}

ThegetDataFlavor§) method returns an array of tbataFlavorsavailable from the
DragSource

ThegetTransferabl§ method returns @&ransferable(not necessarily the one tbeag-
Sourceregistered, it may be a proxy, and certainly shall be in the inter-JVM case) to
enable data transfers to occur viagésTransferDat§ method. Note that it is illegal to
invoke getTransferDat@ without first invoking aracceptDradg).

TheaddNotify) andremoveNotiff) methods are exclusively called by the underlying plat-
form’s DropTargetContextPean order to notify théropTargetContexthat a DnD oper-
ation is occurring/ceasing on tBeopTargetContexéind associatedropTarget

ThecreateTransferableProxymethod enables@ropTargetConteximplementation to
interpose &ransferablebetween th®ropTargetListeneand thelTransferableprovided
by the caller, which is typically the underlying platfoBropTargetContextPeer

2.3.4 TheDropTargetListenerDefinition

Providing the appropriate “Drag-under” feedback semantics, and processing of any subse-
guent Drop, is enabled through theopTargetListeneasssociated with RropTarget

TheDropTargetListenedetermines the appropriate “Drag-under” feedback and its
response to thBragSourceregarding drop eligibility by inspecting the sources suggested
actions and the data types available.

A particularDropTargetListeneinstance may be associated witbrapTargetvia add-
DropTargetListener(and removed vieemoveDropTargetListener(hethods.

public interface java.awt.dnd.DropTargetListener
extends java.util.EventListener {

void dragEnter (DropTargetDragEvent dtde);
void dragOver (DropTargetDragEvent dtde);
void dragExit (DropTargetDragEvent dtde);
void drop (DropTargetDropEvent dtde);

}

ThedragEnter()method of théropTargetListeners invoked when the hotspot of the log-
ical “Drag” Cursor intersects a visible portion of bepTarget'sassociate€Compo-
nent'sgeometry. Thé®ropTargetListenerupon receipt of this notification, shall
interrogate the operations or actions, and the types of theReHavorg as supplied

by theDragSourceto determine the appropriate actions and “Drag-under” feedback to
respond with invocation of eithacceptDradj) or rejectDrag).

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 15



ThedragOver()method of théropTargetListeners invoked while the hotspot of the log-

ical “Drag” Cursor, in motion, continues to intersect a visible portion oDt Target's
associate@Component'gjeometry. ThéropTargetListenerupon receipt of this notifica-

tion, shall interrogate the operation “actions” and the types of the data as supplied by the
DragSourceo determine the appropriate “actions” and “Drag-under” feedback to respond
with an invocation of eithescceptDrag) or rejectDrad).

The geCursorLocation()method return the current co-ordinates, relative to the associated
Component'rigin, of the hotspot of the logical “Drag” cursor.

ThegetSourceActionsfnethod return the current “actions”, or operations
(ACTION_MOVE, ACTION_COPY or ACTION_REFERENCE) theDragSourceasso-
ciates with the current Drag and Drop gesture.

ThedragExit() method of thédropTargetListeners invoked when the hotspot of the logi-
cal “Drag” Cursor ceases to intersect a visible portion oDifop Target'sassociated
Component'gjeometry. ThéropTargetListenempon receipt of this notification, shall
undo any “Drag-under” feedback effects it has previously applied.

Thedrop() method of thédropTargetListeners invoked as a result of tizragSource
invoking itscommitDrop()method. ThéropTargetListenempon receipt of this notifica-
tion, shall perform the operation specified by the return value gfetf8ourceActions()
method on th®ropTargetDropEvenbbject, upon thd@ransferableobject returned from
thegetTransferable(inethod, and subsequently invoke tliepCompleté(method of the
associatedropTargetContexto signal the success, or otherwise, of the operation.

2.3.5 TheDropTargetDragEventand DropTargetDropEvenDefinitions

TheDropTargetEvenandDropTargetDragEvenare defined as follows:

public abstract class java.awt.dnd.DropTargetEvent
extends java.util. EventObject 1y

public DropTargetContext getDropTargetContext();

}
A DropTargetEvents passed to theropTargetListenés dragExi{) method.

public class java.awt.dnd.DropTargetDragEvent
extends java.awt.dnd.DropTargetEvent {
public DataFlavor[] getDataFlavors();

Point getCursorLocation();

public int getSourceActions();

1. This could be a subclass of AWTEvent but there seems little motivation to make it so.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 16



public void acceptDrag(int operations);
public void rejectDrag();

public boolean isTransferableLocal();

}

A DropTargetDragEvenis passed to thBropTargetListener’s dragEntergnd
dragOver()methods.

The ge€CursorLocation()method return the current co-ordinates, relative to the associated
Component'origin, of the hotspot of the logical “Drag” cursor.

ThegetSourceActionsfnethod return the current “actions”, or operations
(ACTION_MOVE, ACTION_COPY or ACTION_REFERENCE) theDragSourceasso-
ciates with the current Drag and Drop gesture.

ThegetDataFlavors(Jmethod returns the available type(s), in descending order of prefer-
ence of the data that is the subject of the Drag and Drop operation.

TheDropTargetDropEvenis defined as follows:

public class java.awt.dnd.DropTargetDropEvent
extends java.awt.dnd.DropTargetEvent {

Point getCursorLocation();
public int getSourceActions();

public void acceptDrop(int dropAction);
public void rejectDrop();

public boolean isTransferableLocal();

public Transferable getTransferable();

}

A DropTargetDropEvenis passed to tHeropTargetListener’s drop(nethod, as the Drop
occurs (initiated by thBragSourcevia an invocation ofommitDrop(). TheDropTarget-
DropEventprovides thédropTargetListenewith access to the Data associated with the
operation, via th@ransferablereturned from thgetTransferabl@ method.

The return value of thgetSourceActions(hethod is defined to be the action(s) defined by
the source at the time at which the Drop occurred.

The return value of thgetCursorLocation(jnethod is defined to be the location at which
the Drop occurred.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 17



TheDropTargetListener.drof) method shall invokacceptDroif) with the selected opera-
tion as an actual parameter, prior to any invocatiogetfransferDat@ on the Transfer-
able associated with the Drop.

TherejectDrod) may be called to reject the Drop operation.

2.3.6 Autoscrolling support

Many GUIComponerd present a scrollable “viewport” over a (potentially) large dataset.
During a Drag and Drop operation it is desirable to be able to “autoscroll” such “view-
ports” to allow a user to navigate over such a dataset, scrolling to locate a particular mem-
ber (initially not visible through the “viewport”) that they wish to drop the subject of the
operation upon.

Componentshat are scrollable provide Drag “autoscrolling” support to thedpTarget
by implementing the following interface:
public interface DragAutoScrollingSupport {

Insets getAutoscrollinsets();

void autoScrollContent(Point cursorLocn);

}

An implementingDropTargetshall repeatedly call, at least ev@npolkit.getAutoscrollRe-
peatDelay) milliseconds, thautoScrollConterf) method of its associatétbmponentif
present), passing the current logical cursor locatid@omponento-ordinates, when the
following conditions are met:

« If the logical cursor’s hotspot intersects with the associ@tedponens visible geom-
etry and the boundary region described byitisetsreturned by thgetAutoscrollin-
setg) method.

* If the logical cursor’s hotspot has not moved (subject to the next condition below) for at
leastToolkit.getAutoscrollinitialDelay(nillseconds

 If any cursor movement subsequent to the initial triggering occurrence continues to
intersect théRectanglaeturned byToolkit.getAutoscrollCursorHystere§js

Should any of the above conditions cease to be valid, autoscrolling shall terminate until
the next triggering condition occurs.
In order to support Autoscrolling the Toolkit class has been augmented as follows:

public class Toolkit {
...

public int getAutoscrollinitialDelay(); // ms
public int getAutoscrollRepeatDelay(); // ms

public Rectangle
getAutoscrollCursorHysteresis(Point cc);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 18



...
}

ThegetAutoscrollCursorHysteres() method returns a hysteresis rectangle surrounding
the point specified (current cursor location) to be used for hit testing during hysteresis
detection while autoscrolling.

2.4 Data Transfer Phase

In the case where a valid drop occurs,EmepTargetListener’s drop(nethod is responsi-
ble for underatking the transfer of the data associated with the gestui@toffiarget-
DropEventprovides a means to obtaiMansferableobject that represent that data
object(s) to be transferred.

From thedrop() method, théropTargetListeneshall initially eithemejectDrof)) (imme-
diately returning thereafter) acceptDroff) specifying the selected operation from those
returned bygetSourceActiors

Subsequent to aacceptDroff), getTransferabl@ may be invoked, and any data transfers
performed via the returnéldansferablés getTransferDat§ method. Finally, prior to
returning thedrop() method shall signal the success of any transfers via an invocation of
dropComplet8.

Upon returning from thdrop() method thélransferableandDragSourceContext
instances are no longer guaranteed to be valid and all references to them shall be discarded
by the recipient to allow them to be subsequently garbage collected.

When using thdCTION _REFERENCE operation the source and destination should

take care to agree upon the object and the associated semantics of the transfer. Typically in
intra-JVM transfers a live object reference would be passed between source and destina-
tion, but in the case of inter-JVM transfers, or transfers between native and Java applica-
tions, live object references do not make sense, so some other ‘reference’ type should be
exchanged such as a URI for example. BotiDttagSourceandDropTargetcan detect if

the transfer is intra-JVM or not.

2.4.1 FlavorMap and SystemFlavorMap

All the target DnD platforms represent their transfer data types using a similar mechanism,
however the representations do differ. The Java platform uses MIME types encapsulated
within aDataFlavorto represent its data types. Unfortunately in order to permit the tran-
fer of data between Java and platform native applications the existence of these platform
names need to be exposed, thus a mechanism is required in order to create an extensible
(platform independent) mapping between these platform dependent type names, their rep-
resentations, and the Java MIME baBedaFlavors

The implementation will provide a mechanism to externally specify a mapping between
platform native data types (strings) and MIME types (strings) used to cori3atadila-
vors This external mapping will be used by the underlying platform specific implementa-

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 19



tion code in order to expose the appropriaégaFlavors(MIME types), exported by the
source, to the destination, via the underlying platform DnD mechanisms.

Both theDragSourceandDropTargetclasses provide access for the underlying system to
map platform dependent names to and fivataFlavors

public interface FlavorMap {
java.util. Map getNativesForFlavors(DataFlavor[] dfs);
java.util. Map getFlavorsForNatives(String[] natives);

ThegetNativesForFlavorg method takes an array DhtaFlavors and returns Bap
object containing zero or more keys of typataFlavor, from the actual parametdfs,

with associated values of tyfring which correspond to the platform dependent type
name for that MIME type.

ThegetFlavorsForNativeg method takes an array 8fringtypes and returnshgap object
containing zero or more keys of tyS&ing from the actual parameter natives, with asso-
ciated values of typBPataFlavor, which correspond to the platform independent type for
that platform dependent type name.

TheMap object returned by both methods may be mutable but is not required to be.

For example on Win32 the Clipboard Format Name for simple text is “CF_TEXT” (actu-
ally it is the integer 1) and on Maoitif it is the X11 Atom named “STRING”, the MIME type
one may use to represent this would be “text/plain charset=us-ascii”. Therefore a platform
portableFlavorMapwould map between these names; CF_TEXT on win32 and STRING
on Motif/X11.

Typically, as implemented in ti&ystemFlavorMaghese mappings are held in an external
persistent configuration format (a properties file or URL) and are loaded from the platform
to configure thélavorMap appropriately for a given platform.

The SystemFlavorMaglass is provided to implement a simple, platform configurable
mechanism for specifying a system-wide set of common mappings, and is defined as fol-
lows:

public class SystemFlavorMap implements FlavorMap {
public static FlavorMap getSystemFlavorMap();

public synchronized Map
getNativesForFlavors(DataFlavor[] dfs);

public synchronized Map
getFlavorsForNatives(String[] natives);

public static String

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 20



encodeJavaMIMEType(DataFlavor df);

public static String
encodeJavaMimeType(java.util. mime.MimeType mime);

public static boolean
isEncodedJavaMimeType(String mimeStr);

public static DataFlavor
createFlavorFromEncodedJavaMimeType(String ejmts);

public static java.util.mime.MimeType
createMimeTypeFromEncodedJavaMimeType(
String ejmts
);
}

TheSystemFlavorMaplass provides a simple implementation, using a properties file (see
java.awt.Properties of a persistent platforfalavorMap. Using the value of the AWT
property ‘AWT.flavorMapFileURL " (seeToolkit.getPropertf)) or the default file

location ofSystem.getPropertyjdva.home ) + File.separator + “lib” + File.separa-

tor + “ flavormap.properties ", this class creates the appropritaps from the
properties found therein.

In addition the class provides several static convenience functions used to encode and
decode JavhlimeTyps to and from a platform dependent namespace. The syntax of the
properties file is:

{ <platform_type _name> ‘=" <IETF_MIME_RFC_conformant_specification> <nl>} *

The default implementations BragSouceandDropTargetreturn theSystemFlavorMap
from theirgetFlavorMag) method.

3.0 Issues

3.0.1 What are the implications of the various platform protocol engines?

Due to limitations of particular underlying platform Drag and Drop and Window System
implementations, the interaction of a Drag operation, and the event delivery semantics to
AWT Componentss platform dependent. Therefore during a drag operaftmagSource

may process platform Window System Events pertaining to that drag to the exclusion of
normal event processing.

Due to interactions between the single-threaded design center of the platform native DnD
systems, and the native window system event dispatching implementations in AWT, “call-
backs” intoDropTargetListeneandDragSourceListenewill occur either on, or synchro-

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 21



nized with the AWT system event dispatch thread. This behavior is highly undesirable for
security reasons but is an implementation, not architectural, feature, and is unavoidable.

3.0.2 Inter/Intra VM transfers?

To enable intra-JVM Drag and Drop Transfers the exidbataFlavorclass will be
extended to enable it to represent the type of a “live” object reference, as opposed to a
Serialized (persistent) representation of one. Such objects may be transferred between
source and destination within the same JVM @lassLoadercontext.

3.0.3 Lifetime of the Transferable(s)?

Transferableobjects, their associat&htaFlavors, and the objects that encapsulate the
underlying data specified as the operand(s) of a drag and drop operation shall remain valid
until theDragSourceListenegssociated with thBragSourcecontrolling the operation,
receives aragDropEnd) event.

3.0.4 Implications of ACTION_MOVE semantics on source objects exposed via
Transferable?

The “source” of a successful Drag and Dra@TION_MOVE) operation is required to
delete/relinquish all references to the object(s) that are the subjecfloatiséerable
immediately after transfer has been successfully completed.

3.0.5 Semantics oACTION_REFERENCE operation.

As a result of significant input from developers to an earlier version of the specification an
additional operation/action ta§CTION_REFERENCEwas added to include existing
platform Drag and Drop”Link” semantics.

It is believed that Reference, or Link, semantics are already sufficiently poorly specified
for the platform native Drag and Drop to render it essentially useless even between native
applications, thus between native and platform independent Java applications it is not rec-
ommended.

For Java to Java usage the required semantic; within the sam€lagbl/oaderis

defined such that the destination shall obtain a Java object reference to the subject(s) of the
transfer. Between Java JVM's GtassLoades, the semantic is implementation defined,

but could be implemented through transferring a URL from the source to the destination.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 22



Appendix A :DropTargetReer definition

Although not a normative part of this specification this definition is included for clarity:
public interface DropTargetPeer {

void addDropTarget(DropTarget dt);

void removeDropTarget(DropTarget dt);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997

23



Appendix B :DragSourceContexter definition

Although not a normative part of this specification this definition is included for clarity:
public interface DragSourceContextPeer {

void startDrag(DragSourceContext ds,

AWTEvent trigger,
Cursor (o}
int actions

) throws InvalidDnDOperationException;

Component getComponent();

void cancelDrag() throws InvalidDnDOperationException;

Cursor getCursor();

void setCursor(Cursor c)
throws InvalidDnDOperationException;

AWTEvent getTrigger();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997

24



Appendix C :DropTargetContextieer definition

Although not a normative part of this specification this definition is included for clarity:
public interface DropTargetContextPeer {

DropTarget getDropTarget();
DataFlavor[] getTransferDataFlavors();

Transferable getTransferable()
throws InvalidDnDOperationException;

boolean isTransferableJVMLocal();
void acceptDrag(int dragAction);
void rejectDrag();

void acceptDrop(int dropAction);
void rejectDrop();

void dropComplete(boolean success);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997

25



