Proposafor a DragandDrop subsystenfior
the Jaa Foundation Classes

(FINAL Draft: 0.96).

Laurence P. G. Cable.

THIS IS THE FINAL DRAFT OF THE APl FOR JDK 1.2

Send comments to java-beans@java.sun.com.
Note:

The API described herein is partially implemented in JDK1.2 Beta3
but will not be completely available until JDK1.2Beta4 or FCS.

1.0 Requirements

This proposal is based upon an (incomplete) earlier work undertaken in 1996 to specify a
Uniform Data Transfer Mechanism, Clipboard, and Drag and Drop facilities for AWT.

The AWT implementation in JDK1.1 introduced the Uniform Data Transfer Mechanism
and the Clipboard protocol. This draft proposal defines the API for the Drag and Drop
facilities for JDK1.2 based upon, but extending these 1.1 UDT API’s.

The primary requirements that this proposal addresses, are:

1. Provision of a platform independent Drag and Drop facility for Java GUI clients
implemented through AWT and JFC classes.

2. Integration with platform dependent Drag and Drop facilities, permitting Java
clients to be able to participate in DnD operation with native applications using:

* OLE (Win32) DnD
CDE/Motif dynamic protocol
* MacOS

* 0S/2

3. Support for 100% pure JavaOS/Java implementation.

4. Leverages the existingva.awt.datatransfer.package to enable the transfer of
data, described by an extensible data type system based on the MIME standard.

5. Does not preclude the use of “accessibility” features where available.
6. Extensible to support diverse input devices.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 1

The proposal derives from the previous work mentioned above, but incorporates signifi-
cant differences from that original work as a result of the advent of the JavaBeans event
model, Lightweight (JFC) Components, and an increasing understanding of the cross-plat-
form integration and interoperability issues.

2.0 API

2.1 Overview

Drag and Drop is a direct manipulation gesture found in many Graphical User Interface
systems that provides a mechanism to transfer information between two entities logically
associated with presentation elements in the GUI. Normally driven by a physical gesture
of a human user using an appropriate input device, Drag and Drop provides both a mecha-
nism to enable continuous feedback regarding the possible outcome of any subsequent
data transfer to the user during navigation over the presentation elements in the GUI, and
the facilities to provide for any subsequent data negotiation and transfer.

A typical Drag and Drop operation can be decomposed into the following states (not
entirely sequentially):

» A DragSourcecomes into existence, associated with some presentation el&oent (
ponen} in the GUI, to initiate a Drag and Drop of some potentidtgnsferabledata.

* 1 or moreDropTarge({s) come into/go out of existence, associated with presentation
elements in the GUIGomponenis potentially capable of consumifigansferabledata

types.

» A DragGestureRecognizés obtained from th®ragSourceand is associated with a
Componentn order to track and identify any Drag initiating gesture by the user over
the Component

* A Human user makes a Drag gesture ovebmponentwhich the registereDrag-
GestureRecognizeafetects, and notifies iBragGestureListeneof.

Note Although the body of this document consistently refers to the stimulus for a drag
and drop operation being a physical gesture by a human user this does not preclude a
programmatically driven DnD operation given the appropriate implementation of a
DragSource

» TheDragGestureListenectauses th®ragSourceo initiate the Drag and Drop opera-
tion on behalf of the user, perhaps animating the Glwsor and/or rendering an
Imageof the item(s) that are the subject of the operation.

» As the user gestures navigate o@emponent(sin the GUI with associateDropTar-
gefl(s), theDragSourceaeceives notifications in order to provide “Drag Over” feedback
effects, and th®ropTarge(s) receive notifications in order to provide “Drag Under”
feedback effects based upon the operation(s) supported and the data type(s) involved.

The gesture itself moves a logical cursor across the GUI hierarchy, intersecting the
geometry of GUIComponer(s), possibly resulting in the logical “Drag” cursor enter-
ing, crossing, and subsequently leav®@mponent(sand associatedropTargets).

TheDragSourcenbject manifests “Drag Over” feedback to the user, in the typical case
by animating the GUCursorassociated with the logical cursor.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 2

DropTargetobjects manifest “Drag Under” feedback to the user, in the typical case, by
rendering animations into their associated @dmponer(s) under the GUCursor.

* The determination of the feedback effects, and the ultimate success or failure of the
data transfer, should one occur, is parameterized as follows:

» By the transfer “operation” selected by the user, and supported by b&itatie
SourceandDropTarget Copy, Move or Referencglink).

» By the intersection of the set of data types provided byDtegSourceand the set of
data types comprehensible by hpTarget

* When the user terminates the drag operation, normally resulting in a successful Drop,
both theDragSourceandDropTargetreceive notifications that include, and result in
the type negotiation and transfer of, the information associated wibrég&ource
via aTransferableobject.

The remainder of this document details the proposed API changes to support this model.

2.2 Drag Gesture Recognition

The gesture(s) that can initiate a Drag and Drop operation vary, not only per platform, but
also perComponentand per device. Therefore a mechanism is required in order to encap-
sulate these dependencies, thus making the task of the authoowipmnenthat wishes

to initiate a Drag and Drop operation much simpler.

2.2.1 DragGestureRecognizer
TheDragGestureRecognizés an abstract base class for all device/platfGoniponent
specific Drag and Drop gesture recognizers, and is defined as:

public abstract DragGestureRecognizer {
protected DragGestureRecognizer(

DragSource ds,
Component c,
int srcActions,

DragGestureListener dgl

);

public Component getComponent();
public void setComponent(Component c);

public int getSourceActions();
public void setSourceActions(int actions);

public java.awt.InputEvent getTriggerEvent();

public void resetRecognizer();

| Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 3

public void addDragGestureListener(
DragGestureListener dgl
) throws TooManyListenerExceptions;

public void removeDragGestureListener(
DragGesturelListener dgl

);

protected abstract void registerListeners();
protected abstract void unregisterListeners();

protected void fireDragGestureRecognized(
int dragAction

);

protected void appendEvent(InputEvent awtie);

An appropriate concrete subclasse®rHgGestureRecognizéor a particular may be

obtained in a variety of ways; fromCaagSourcanstance, from th&oolkit, or by other

means. Concrete implementation subclasses are obtained through standard APIs’ by spec-
ifying a Classreference to an abstradtagGestureRecognizseuperclass, an instance of a
concrete subclass of this actual parameter is instantiated and returned to the requestor.

Once aDragGestureRecognizénstance is associated wittCamponentand aDrag-
Sourceit registers its own particular setB¥entListenes’ with the targeComponenin
order to monitor the appropriate events being delivered toGbatponento detect an ini-
tiating gesture. (UsingegisterListeners(@ndunregisterListeners@o add/remove these
monitoringEventListenes’).

Note that &DragGestureRecognizenay throw either afllegalStateExceptionr anllle-
galArgumentExceptioii either theComponenbr DragSourcespecified is either not in
the correct state for, or is not interoperable with, BragGestureRecognizer

When a concretBragGestureRecognizémstance detects a Drag initiating user gesture
on theComponentt is associated with, it will fire BragGestureEverib theDragGes-
tureListenerregistered on its unicast event sourcelfmgGesturelListeneevents. This
DragGestureListeneis responsible for causing the assocideaSourceto start the

Drag and Drop operation (if appropriate).

The implementation provides (at least) an abstract subclass for recognizing mouse device
gestureMouseDragGestureRecogniz@ther abstract subclasses may be provided by the
platform to support other input devices or particular Component class semantics. Concrete
superclasses of thiouseDragGestureRecogniziiat encapsulate platform dependent
mouse based gestures are available fronTolaékit object via itscreateDragGestureRec-
ognizer(Class adgrc, DragSource ds, Component c, int sa, DragGestureListener dgl)

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 4

method. ThisToolkit API provides platform dependent concrete implementations that
extend particular platform independent abstract definitions (classes).
TheMouseDragGestureRecognizanstract class is defined as:

public abstract MouseDragGestureRecognizer
extends DragGestureRecognizer
implements MouselListener, MouseMotionListener {

public MouseDragGestureRecognizer(

DragSource ds,
Component c,
int sa,
DragGestureListener dsl
);
...

}

TheDragGestureListeneis defined as:

public interface DragGestureListener extends EventListener {
void dragGestureRecognized(DragGestureEvent dge);

}

Usually thedragGestureRecognizedf)ethod will simply, via th®ragGestureEverg
convenience APs$tartDrag(), start a Drag and Drop operation on the associatag-
Source

Note that peComponen{class or instance) behavior that may effect the initiating gesture
would usually be implemented in thidyragGestureListenemethod, or in théragGestur-
eRecognizesubclass where appropriate or possible.

TheDragGestureEvens defined as:

publc class DragGestureEvent extends EventObject {
public DragGestureEvent(DragGestureRecognizer dgr,
int dragAction,
java.util.List events

);

public DragGestureRecognizer
getSourceAsDragGestureRecognizer();

public Component getComponent();
public DragSource getDragSource();

public java.util.lterator iterator();

| Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998

public Object[] toArray();
public Object[] toArray(Obiject[] array);

public int getDragAction();
public startDrag(Cursor dragCursor,

Transferable t,
DragSourceListener dsl

);

public startDrag(Cursor dragCursor,
Image draglmage,
Point imageOffset,
Transferable t,
DragSourceListener dsl

);

TheDragGestureEvergncapsulates all the information regarding the nature of the gesture
that has just been recognized, including:

The DragGestureRecognizéhnat recognized the gesture
The Componenthat the gesture occurred on

The DragSourcehat will process the operation

The List ofInputEventobjects that comprise the gesture.

The action ACTION_COPY, ACTION_MOVE or ACTION_LINK , selected by the
users gesture.

2.3 Drag Source

TheDragSourcds the entity responsible for the initiation of the Drag and Drop operation:

2.3.1 TheDragSourcedefinition

TheDragSourceand associated constant interfaces are defined as follows:

TheDnDConstantglass defines the operations that may be applied to the subject of the
transfer:

public final class java.awt.dnd.DnDConstants {

public static int ACTION_NONE= 0x0;
public static int ACTION_COPY= 0x1;
public static int ACTION_MOVE= 0x2;

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998

public static int ACTION_COPY_OR_MOVE=ACTION_COPY/|
ACTION_MOVE;

public static int ACTION_REFERENCE = 0x40000000;

public class java.awt.dnd.DragSource {

public static Cursor DefaultCopyDrop;

public static Cursor DefaultMoveDrop;

public static Cursor DefaultLinkDrop;

public static Cursor DefaultCopyNoDrop;

public static Cursor DefaultMoveNoDrop;

public static Cursor DefaultLinkNoDrop;

public static DragSource getDefaultDragSource();

public static boolean isDraglmageSupported();

public void

startDrag(DragGestureEvent trigger,
Cursor dragCursor,
Image dragimage,
Point dragimageOffset,
Transferable transferable,
DragSourceListener dsl,

FlavorMap fm)

throws InvalidDnDOperationException;

protected DragSourceContext
createDragSourceContext(
DragSourceContextPeer dscp,
DragGestureEvent trigger,

Cursor dragCursor,
Image draglmage,
Point draglmageOffset,
Transferable transferable,

DragSourceListener dsl

);
public FlavorMap getFlavorMap();

public DragGestureRecongizer

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998

createDragGestureRecognizer(

Class abstractRecognizerClass,
Component C,
int srcActions,

DragGestureListener dgl

);

public DragGestureRecongizer
createDefaultDragGestureRecognizer(
Component c,
int srcActions,
DragGestureListener dgl

TheDragSourcemay be used in a number of scenarios:
» 1 default instance per JVM for the lifetime of that JVM. (defined by this spec)

» 1 instance per class of potential Drag Initiator objectTexgField. [implementation
dependent]

» 1 perinstance of a particul@omponentor application specific object associated with
a Componentinstance in the GUI. [implementation dependent]

* some other arbitrary association. [implementation dependent]

A controlling object, shall obtain BragSourcanstance prior to a users gesture, effecting
an associate@omponentin order to process the operation. Once obtainechgGestur-
eRecognizeshould be obtained and used to associat®tagSourcewith aComponent

The initial interpretation of the users gesture, and the subsequent starting of the Drag oper-
ation are the responsibility of the implement@gmponentthis is usually implemented
by aDragGestureRecognizer

When a gesture occurs, tBeagSourcés startDrag() method shall be invoked in order to
cause processing of the users navigational gestures and delivery of Drag and Drop proto-
col notifications. A DragSource shall only permit a single Drag and Drop operation to be
current at any one time, and shall reject any fusteetDrag() requests by throwing an
lllegalDnDOperationExceptionntil such time as the extant operation is complete.

In order to start a drag operation the caller of stertDrag() method shall provide the fol-
lowing parameters:
» TheDragGestureEvenior the gesture.

» A Cursorrepresenting the initial “Drag Over” feedback for the operation(s) specified.
(This shall be &ursorthat provides “No Drop” visual feedback to the user).

» An (optional)lmageto visually represent the item, or item(s) that are the subject(s) of
the operation.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 8

On platforms that can support this feature, a “Drag” image may be associated with the
operation to enhance the fidelity of the “Drag Over” feedback. This image would typi-
cally be a small “iconic” representation of the object, or objects being dragged, and
would be rendered by the underlying system, tracking the movement of, and coincident
with, but typically in addition to th€ursoranimation.

Where this facility is not available, or where the image is not of a suitable type to be
rendered by the underlying system, this parameter is ignored an@unsiyr “Drag

Over” animation results, so applications should not depend upon this feature. The pres-
ence of the facility on a particular platform may be tested by invoking the static method
isDragimageSupported()

* Where arimageis provided; &oint (in the co-ordinate space of tB@mponentspec-
ifying the initial origin of thatimagerelative to the co-ordinates of the “hotspot” of the
drag “Cursor”, in the co-ordinate space of tiemponentat the time of the initial ges-
ture, for the purposes of initiating a correctly positioned “Drag Over” animation of that
Imagerelative to that “hotspot”.

» A Transferableghat describes the variolataFlavor(s) that represent the subject(s) of
any subsequent data transfer that may result from a successful Drop.

The Transferablenstance associated with tBragSourceat the start of the Drag oper-
ation, represents the object(s) or data that are the operand(s), or the subject(s), of the
Drag and Drop operation, that is the information that will subsequently be passed from
theDragSourceto theDropTargetas a result of a successful Drop on@wmponent
associated with th&@ropTarget

Note that multiple (collections) of either homogeneous, or heterogeneous, objects may
be subject of a Drag and Drop operation, by creating a container object, that is the sub-
ject of the transfer, and implemeniigeansferable However it should be noted that since

none of the targeted native platforms systems support a standard mechanism for
describing and thus transferring such collections it is not possible to implement such
transfers in a transparent, or platform portable fashion.

» A DragSourceListeneinstance, which will subsequently receive events notifying it of
changes in the state of the ongoing operation in order to provide the “Drag Over” feed-
back to the user.

As stated above, the primary role of thkartDrag() method is to initiate a Drag on behalf
of the user. In order to accomplish this, startDrag)) method must createl@ragSource-
Contextinstance to track the operation itself, and more importantly it must initiate the
operation itself in the underlying platform implementation. In order to accomplish this, the
DragSourcemust first obtain ®ragSourceContextPedrom the underlying system (usu-
ally via an invocation ojava.awt.Toolkit.createDragSourceContextPeen@thod) and
subsequently associate this newly creddeagSourceContextPeéwhich provides a plat-
form independent interface to the underlying systems capabilities) Withggsource-
ContexiThestartDrag() method invokes thereateDragSourceContéximethod to
instantiate an appropriaBragSourceContexdnd associate tHeragSourceContextPeer
with that.

If the Drag and Drop System is unable to initiate a Drag operation for some reason the
startDrag() method shall throw gva.awt.dnd.InvalidDnDOperationExceptitm signal

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 9

such a condition. Typically this exception is thrown when the underlying platform system
is either not in a state to initiate a Drag, or the parameters specified are invalid.

Note that during the Drag neither the set of operations the source exposed at the start of
the Drag operation may change for the duration of the operation, in other words the opera-
tion(s) and are constant for the duration of the operation with respectReoaip®ource

ThegetFlavorMay) method is used by the underlying system to obt&laeorMap
object in order to map thBataFlavorsexposed by th@ransferableo data type names of
the underlying DnD platform. [see later for details of FevorMap|

A “private” FlavorMapmay be provided to thstartDrag() method of theDragSourceor
null, in which case the “defaul®lavorMapfor thatDragSourceclass or instance is used.

2.3.2 TheDragSourceContexDefinition

As a result of @ragSourcés startDrag() method being successfully invoked an instance
of theDragSourceContextlass is created. This instance is responsible for tracking the
state of the operation on behalf of DgSourceand dispatching state changes to the
DragSourcelListener

TheDragSourceContextlass is defined as follows:

public class DragSourceContext implements DragSourceListener

{

protected DragSourceContext(
DragSourceContextPeerdscp,
DragGestureEvent trigger,

Cursor dragCursor,
Image dragimage,
Point dragOffset,
Transferable transferable,

DragSourceListener dsl

);

public DragSource getDragSource();
| public Component getComponent();
public DragGestureEventgetTrigger();

public Image getDragimage();
public Point getDraglmageOffset();

public void transferablesFlavorsChanged();

public int getSourceActions();

| Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 10

public Cursor getCursor();
pbulic void setCursor(Cursor Cursor)
throws InvalidDnDOperationException;

public void
addDragSourceListener(DragSourceListener dsl)
throws TooManyListenersException;

public void
removeDragSourceListener(DragSourceListener dsl);

protected updateCurrentCursor(int dropOperation,
int targetActions,
int status

);
I/ values for status parameter above.

protected static final int DEFAULT = 0;
protected static final int ENTER =1;
protected static final int OVER = 2;
protected static final int CHANGED = 3;

protected boolean cursorDirty;

Note that thédragSourceContextself implementragSourceListenethis is to allow
the platform peer, thBragSourceContextPeénstance, created by tiFagSourceto
notify the DragSourceContextf changes in state in the ongoing operation, and thus
allows theDragSourceContexb interpose itself between the platform andDinag-
SourceListeneprovided by the initiator of the operation.

The state machine the platform exposes, with respect to the source, or initiator of the Drag
and Drop operation is detailed below:

| Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 11

dsa.startDrag()*

s = DragSource

v p dsl.dragEnter()* —
A dsl = DragSourceListener
dsl.dragOver()* —
- dsl.dragExit()*
\ » dsl.dragDropEnd()
(*) ——— > dsl.dragGestureChanged() —»<next>

Notifications of changes in state with respect to the initiator during a Drag and Drop oper-
ation, as illustrated above, are delivered fromEwmagSourceContextPedq the appropri-
ateDragSourceContextvhich delegates notifications, via a unicast JavaBeans compliant
EventListenesubinterface, to an arbitrary object that implem@&rtggSourceListener
registered with th®ragSourcevia startDrag).

The primary responsibility of theragSourceListeneis to monitor the progress of the

users navigation during the Drag and Drop operation and provide the “Drag-Over” effects

feedback to the user. Typically this is accomplished via changes to the “Drag Cursor”.

Every Drag operation has 2 logical cursor states (Drag Cursors) associated with it:

» TheDrop Cursor, the cursor displayed when dragging over a iahapTarget

» TheNoDrop Cursor, the cursor displayed when dragging over everything else (the ini-
tial state of the cursor at the start of a Drag).

The state of th€ursormay be modified by calling theetCursof) method of thérag-
SourceContext

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 12

2.3.3 TheDragSourceListeneDefinition

TheDragSourceListeneinterface is defined as follows:

public interface java.awt.dnd.DragSourceListener
extends java.util.EventListener {

void dragEnter (DragSourceDragEvent dsde);
void dragOver (DragSourceDragEvent dsde);
void dropActionChanged (DragSourceDragEvent dsde);
void dragExit (DragSourceEvent dse);
void dragDropEnd (DragSourceDropEvent dsde);

As the drag operation progresses, BragSourceListenes'dragEnter() dragOver() and
dragExit() methods shall be invoked as a result of the users navigation of the logical
“Drag” cursor’s location intersecting the geometry of Gdmponent(syvith associated
DropTarget(s) [See below for details of tHeropTarget'sprotocol interactions].

TheDragSourceListenés dragEntef) method is invoked when the following conditions
are true:

» The logical cursor’s hotspot initially intersects a GLimponeri visible geometry.

* ThatComponenhas an activ®ropTargetassociated.

TheDropTargets registeredropTargetListener dragEntér method is invoked and
returns successfully.

The registere®ropTargetListenemvokes theDropTargetDragEverd acceptDrad)
method to accept the Drag based upon interrogation of the source’s potential Drop actions
and available data typeBdtaFlavory.

TheDragSourceListener’s dragOvenfethod is invoked when the following conditions
are true:

* The cursor’s logical hotspot has moved but still intersects the visible geometry of the
Componenassociated with the previodsagEntef) invocation.

» ThatComponenstill has aDropTargetassociated.
» ThatDropTargetis still active.

» TheDropTargets registeredropTargetListener dragOv€r method is invoked and
returns successfully.

» TheDropTargetdoes not reject the drag vigjectDrag).
TheDragSourceListenés dragExi{) method is invoked when one of the following condi-
tions is true:

» The cursor’s logical hotspot no longer intersects the visible geometry @dhgonent
associated with the previodsagEntef) invocation.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 13

Or:

« TheComponenthat the logical cursor’s hotspot intersected that resulted in the previous
dragEnte() invocation, no longer has an actdeopTarget(or DropTargetListener
associated.

Or:
* The currenDropTargets DropTargetListenehas invokedejectDrag) since the last
dragEnte() or dragOve() invocation.

TheDragSourceListener’s dropActionChangedigthod is invoked when the state of the
input device(s), typically the mouse buttons or keyboard modifiers, that the user is inter-
acting with in order to preform the Drag operation, changes.

ThedragDropEnd()method is invoked to signify that the operation is completed. Jdte
DropSuccess(nethod of thédragSourceDropEverntan be used to determine the termi-
nation state. ThgetDropActiorf) method returns the operation that BrepTarget
selected (via thBropTargetDropEvent acceptDr@pparameter) to apply to the Drop

operationt

Once this method is complete the currBnagSourceContexnd the associated resources
are invalid.

2.3.4 TheDragSourceEvenDefinition

TheDragSourceEventlass is the rodEventclass for all events pertaining to the Drag-
Source, and is defined as follows:

public class java.awt.dnd.DragSourceEvent
extends java.util.EventObject {
public DragSourceEvent(DragSourceContext dsc);

public DragSourceContext getDragSourceContext();

An instance of this event is passed to@magSourceListener dragExjtmethod.

2.3.5 TheDragSourceDragEvenDefinition

TheDragSourceDragEventlass is defined as follows:

1. It would be nice to design an API that would allowEragSourceto be notified of th®ropTargets
selected operation before the DropTarget invokes the s@tansferablés getTransferDat§ method,
sadly however, OLE’s bass-ackwards DnD protocol forces the above design on us where the operation is
reported after it has occurred, this makes life for the source implementor harder when supporting certain
“Link” semantics.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 14

public class java.awt.dnd.DragSourceDragEvent
extends DragSourceEvent {
public int getTargetActions();

public int getUserAction();
public int getGestureModifiers();
public boolean isDropTargetLocal();

public int getDropAction();

An instance of the above class is passeddomgSourcelistener’s dragEnter(),
dragOver(),anddragGestureChangedethods.

ThegetDragSourceContgyximethod returns thBragSourceContexdssociated with the
current Drag and Drop operation.

ThegetTargetActions(inethod returns the drop actions, supported by, and returned from
the currenDropTarget {f any in the case afropActionChanged())

ThegetDropAction()method returns the action that is currently selected by the users ges-
ture.

ThegetTargetActions(inethod returns the set of actions supported by the current
DropTarget

The logical OR of these two results defines the actual effect of a Drop.

ThegetGestureModifiersfeturns the current state of the input device modifiers, usually
the mouse buttons and keyboard modifiers, associated with the users gesture.

TheisDropTargetLocdl) method returngrue if the currenDropTargetis contained
within the same JVM as tH@ragSource andfalse otherwise. This information can be
useful to the implementor of tHeragSourcés Transferablan order to implement certain
local optimizations.

2.3.6 TheDragSourceDropEvenDefinition

TheDragSourceDropEventlass is defined as follows:

public public class java.awt.dnd.DragSourceDropEvent
extends java.util.EventObject {

public DragSourceDropEvent(DragSourceContext dsc);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 15

public DragSourceDropEvent(DragSourceContext dsc,
int action,
boolean success);

public boolean getDropSuccess();

public int getDropAction();
}

An instance of the above class is passeddmgSourceListener’s dragDropEnd()
method. This event encapsulates the termination state of the Drag and Drop operation for
the DragSource

If the Drop occurs, then the participatiDgop Targetwill signal the success or failure of
the data transfer via thgropTargetContext’'s dropCompletaf)ethod, this status is made
available to the initiator via thgetDropSuccess(ethod. The operation that the destina-
tion DropTargetselected to perform on the subject of the Drag (passed Dyrapdar-

gets acceptDrofy) method) is returned via tlgetDropActiornt) method.

If the Drag operation was aborted for any reason prior to a Drop occurring, for example if
the users ends the gesture outsi@@@pTarget or if the DropTargetinvokesrejectDrog),
theisGetDropSuccess(hethod will returrfalse , otherwiserue.

2.4 Drop Target

2.4.1 java.awt.Component additions for DropTarget (de)registration.

TheJava.awt.Componemtass has two additional methods added to allow the (dis)associ-
ation with aDropTarget.In particular:

public class java.awt.Component /* ... */{
...

public synchronized
void setDropTarget(DropTarget dt);

public synchronized
DropTarget getDropTarget(DropTarget df);

i
}

To associate BropTargetwith aComponenbne may invoke eitheDropTarget.setCom-
pononenf) or Component.setDropTardg¢methods. Thus conforming implementations of
both methods are required to guard against mutual recursive invocations.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 16

To disassociate BropTargetwith aComponenbne may invoke eitheBropTarget.set-
Compononerihull) or Component.setDropTardeull) methods.

Conformant implementations of both setter method3rap TargetandComponent
should be implemented in terms of each other to ensure proper maintenance of each
other’s state.

ThesetDropTargd)) method throwsllegalArgumentExceptioif the DropTargetactual
parameter is not suitable for use with this class/instan€ewiponentit may also throw
UnsupportedOperationExceptiak for instance, th€omponentoes not support exter-
nal setting of &dropTarget

2.4.2 TheDropTargetDefinition

A DropTargetencapsulates all of the platform-specific handling of the Drag and Drop pro-
tocol with respect to the role of the recipient or destination of the operation.

A singleDropTargetinstance may typically be associated with any arbitrary instance of
java.awt.ComponenEstablishing such a relationship exports the assocfatedponent’s
geometry to the client desktop as being receptive to Drag and Drop operations when the
coordinates of the logical cursor intersects that visible geometry.

TheDropTargetclass is defined as follows:

public class java.awt.dnd.DropTarget
implements DropTargetListener, Serializable {

public DropTarget(Component c,
int actions,
DropTargetListener dsl,
boolean isActive,
FlavorMap fm

);

public DropTarget();

public DropTarget(Component c);
public DropTarget(Component ¢, DropTargetListener dsl);

public Component getComponent();
public void setComponent(Component c);

public DropTargetContext getDropTargetContext();

public void
addDropTargetListener(DropTargetListener dte)

| Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 17

throws TooManyListenersException;

public void
removeDropTargetListener(DropTargetListener dte);

public void setActive(boolean active);
public boolean isActive();

public FlavorMap getFlavorMap();
public void setFlavorMap(FlavorMap fm);

public void setDefaultActions(int actions);
public int getDefaultActions();

protected DropTargetContext createDropTargetContext();

public void addNotify(ComponentPeer cp);
public void removeNotify(ComponentPeer cp);

}

ThesetComponefit method throwsllegalArgumentExceptioif the Componenactual
parameter is not appropriate for use with this class/instarigmpirarget and may also
throw UnsupportedOperationExceptigithe Component specified disallows the external
setting of eDropTarget

TheaddDropTargetListen€y andremoveDropTargetListen@rmethods allow the unicast
DropTargetListeneto be changed.

ThesetActivé) andisActive) methods allow th®ropTargetto be made active or other-
wise and for its current state to be determined.

ThegetFlavorMag) methods is used to obtain thlavorMap associated with this
DropTargetfor the purposes of mapping any platform dependent type names to/from their
corresponding platform independétaFlavors

ThesetFlavorMap()method allows a newlavorMapto be assigned to theropTarget a
parameter ohull causes a “defaultlavorMapto be installed for thBropTarget

ThecreateDropTargetConteQtmethod is only invoked to provide the underlying plat-
form dependent peer with an instantiation of a DeapTargetContexas a Drag opera-
tion initially encounters th€omponentssociated with thBropTarget If no
DropTargetContexis currently associated with@ropTarget a permitted side-effect of an
invocation ofgetDropTargetConteftis to instantiate a nel@ropTargetContext

TheaddNotify{) andremoveNotiff) methods are only called froBomponento notify
the DropTargetof theComponerns (dis)association with it€omponentPeer

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 18

Note that thédropTargetitself implementropTargetListenerthis is to allow the plat-
form peer, thdropTargetContextPeanstance, created by the platform, to notify the
DropTargetof changes in state in the ongoing operation, and thus alloizdb&arget
to interpose itself between the platform andDinepTargetListeneregistered with the

DropTarget

2.4.3 TheDropTargetContexiDefinition

As the logical cursor associated with an ongoing Drag and Drop operation first intersects
the visible geometry of @omponentvith an associateBropTarget theDropTargetCon-

| textassociated with thBropTargetis the interface, through which, access to, and control
over state of the recipient protocol is achieved fronDiogp TargetListener

A DropTargetContexis created by BropTarget via it's createDropTargetContext()
method, as a side effect of a call tD@pTargets getDropTargetContextfhethod, if no
DropTargetContexturrently exists for thadropTarget

TheDropTargetContexinterface is defined as follows:

public class DropTargetContext {
public DropTarget getDropTarget();

public Component getComponent();

public void dropComplete(boolean success)
throws InvalidDnDOperationException;

public void acceptDrag(int dropAction);
public void rejectDrag();

public void acceptDrop(int dropAction);
public void rejectDrop();

public void addNotify(DropTargetContextPeer dtcp);
public void removeNotify();

protected Transferable
createTransferableProxy(Transferable t,
boolean isLocal

);

protected void setTargetActions(int actions);
protected int getTargetActions();

protected DataFlavor[] getCurrentDataFlavors();
protected List getCurrentDataFlavorsAsList();

| Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 19

protected boolean isDataFlavorSupported(DataFlavor df);

protected Transferable getTransferable();

Most of the access and control methods are protected, since public access to their state is
usually achieved by calling through a particideopTargetEvensubclass that delegates
the request to thBropTargetContext

ThegetDropTarget(method return thBropTargetthat created thiBropTargetContext

The getComponent(inethod returns thEomponenassociated with thBropTargetthat
created thi®ropTargetContext

TheacceptDrag) method is delegated from the similar methodoop TargetDragEvent
and is invoked from one of theropTargetListenés methods; dagEnter() dragOver()or
dropActionChanged(fo signify that the recipient is prepared to accept a drop with the
operation specified, which is usually the user’s currently selected action.

TherejectDrag) method is delegated from the similar methodoopTargetDragEvent

and is invoked from one of theropTargetListenes methods; dagEnter() dragOver()or
dropActionChanged(p signify that the recipient is unable to accept a drop with the user’s
currently selected action.

TheacceptDrop) method is delegated from the similar methodoop TargetDropEvent
and is invoked from th®ropTargetListenés drop() method to signify that the recipient is
prepared to accept a drop with the operation specified, which is usually the user’s cur-
rently selected action.

TherejectDrop) method is delegated from the similar methodoopTargetDropEvent

and is invoked from th®ropTargetListenés drop() method to signify that the recipient is
unable to accept a drop with the user’s currently selected action. This terminates a Drag
and Drop operation without a data transfer.

ThedropComplete(Jnethod signals to the originatibyagSourcethat theDropTar-
getListeneihas completed the transfer(s) that comprise the subject of the Drag and Drop
operation and that the operation is complete. The success (or failure) of the transfer(s) and
the subsequent application of the operation specified is signaled by the value of the actual
parameter.

ThegetDataFlavor§) method returns an array of tbataFlavorsavailable from the
DragSource

ThegetTransferabl@ method returns @&ransferable(not necessarily the one tBeag-
Sourceregistered, it may be a proxy, and certainly shall be in the inter-JVM case) to
enable data transfers to occur viagésTransferDat§ method. Note that it is illegal to
invoke getTransferabl@ without first invoking aracceptDrop).

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 20

TheaddNotify) andremoveNotiff) methods are exclusively called by the underlying plat-
form’s DropTargetContextPeean order to notify théropTargetContexthat a Drag and
Drop operation is occurring/ceasing on DmpTargetContexand associateDropTarget

ThecreateTransferableProxymethod enables@ropTargetConteximplementation to
interpose dransferablebetween th®ropTargetListeneand theTransferableprovided
by the caller, which is typically the underlying platfoBropTargetContextPeer

2.4.4 TheDropTargetListenerDefinition

Providing the appropriate “Drag-under” feedback semantics, and processing of any subse-
guent Drop, is enabled through theopTargetListeneasssociated with RropTarget

TheDropTargetListenedetermines the appropriate “Drag-under” feedback and its
response to thBragSourceegarding drop eligibility by inspecting the sources suggested
actions and the data types available.

A particularDropTargetListeneinstance may be associated witbrapTargetvia add-
DropTargetListener(and removed vieemoveDropTargetListenerthethods.

public interface java.awt.dnd.DropTargetListener
extends java.util.EventListener {

void dragEnter (DropTargetDragEvent dtde);
void dragOver (DropTargetDragEvent dtde);
void dropActionChanged (DropTargetDragEvent dtde);
void dragExit (DropTargetDragEvent dtde);
void drop (DropTargetDropEvent dtde);

l dtl = DropTargetListener
dtl.dragEnter()* BE—

(+) dtl.dragkver()* - >

& J (+) dtl.dragExit()

\
dtl.drop()

(Y ——» dtl.dropActionChanged() — (4

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 21

ThedragEnter()method of theDropTargetListeners invoked when the hotspot of the log-
ical “Drag” Cursor intersects a visible portion of bepTarget'sassociate€Compo-
nent'sgeometry. Thé®ropTargetListenerupon receipt of this notification, shall
interrogate the operations or actions, and the types of theRtaHavorg as supplied
by theDragSourceto determine the appropriate actions and “Drag-under” feedback to
respond with invocation of eithacceptDrad) or rejectDrag).

ThedragOver()method of theDropTargetListeners invoked while the hotspot of the log-

ical “Drag” Cursor, in motion, continues to intersect a visible portion obtbeTarget's
associate@Component'gjeometry. Th&ropTargetListenerupon receipt of this notifica-

tion, shall interrogate the operation “actions” and the types of the data as supplied by the
DragSourceo determine the appropriate “actions” and “Drag-under” feedback to respond
with an invocation of eithescceptDrag) or rejectDrad).

The geLocation()method return the current co-ordinates, relative to the assoClated
ponent’sorigin, of the hotspot of the logical “Drag” cursor.

ThegetSourceActionsfnethod return the current “actions”, or operations
(ACTION_MOVE, ACTION_COPY or ACTION_LINK) theDragSourceassociates with
the current Drag and Drop gesture.

ThedragExit() method of thédropTargetListeners invoked when the hotspot of the logi-
cal “Drag” Cursor ceases to intersect a visible portion oDifop Target'sassociated
Component'gjeometry, or immediately prior todsop() notification. TheDropTargetLis-
tener,upon receipt of this notification, shall undo any “Drag-under” feedback effects it has
previously applied. Note that the DropTargetContext associated wibropdargetis
invalidated as a side-effect

Thedrop() method of theDropTargetListeners invoked as a result of the user terminating
their Drag gesture while intersecting. ThmpTargetListenenpon receipt of this notifi-
cation, shall perform the operation specified by the return value ajetf®ourceActions()
method on th®ropTargetDropEvenbbject, upon th&ransferableobject returned from
thegetTransferable(inethod, and subsequently invoke threpComplete(method of the
associatedropTargetContexto signal the success, or otherwise, of the operation.

2.4.5 TheDropTargetDragEventand DropTargetDropEvenDefinitions

TheDropTargetEvenandDropTargetDragEvenare defined as follows:
public abstract class java.awt.dnd.DropTargetEvent
extends java.util. EventObject 1y

public DropTargetContext getDropTargetContext();

}
A DropTargetEvents passed to theropTargetListenés dragExi{) method.

1. This could be a subclass of AWTEvent but there seems little motivation to make it so.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 22

public class java.awt.dnd.DropTargetDragEvent
extends java.awt.dnd.DropTargetEvent {
public DataFlavor[] getDataFlavors();

public Point getLocation();
public int getSourceActions();
public getDropAction();

public DataFlavor[] getCurrentDataFlavors();
public List getCurrentDataFlavorsAsList();

public boolean isDataFlavorSupported();

public void acceptDrag(int operation);
public void rejectDrag();

}

A DropTargetDragEvents passed to thBropTargetListener’s dragEnter,)dragOver()
anddropActionChangednethods.

The gekocation()method return the current co-ordinates, relative to the assoCiated
ponent’sorigin, of the hotspot of the logical “Drag” cursor.

ThegetSourceActionsfnethod return the current “actions”, or operations
(ACTION_MOVE, ACTION_COPY or ACTION_REFERENCE) theDragSourceasso-
ciates with the current Drag and Drop gesture.

ThegetCurrentDataFlavors()getCurrentDataFlavorsAsList(andisDataFlavorSup-

ported() methods are provided in order for the recipient to interrogate the list of types

available from the source.

The is defined as follows:

public class java.awt.dnd.DropTargetDropEvent
extends java.awt.dnd.DropTargetEvent {

public Point getLocation();
public int getSourceActions();

public int getDropAction();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998

23

public void acceptDrop(int dropAction);
public void rejectDrop();

public boolean isLocalTransfer();

public DataFlavor[] getCurrentDataFlavors();
public List getCurrentDataFlavorsAsList();

public boolean isDataFlavorSupported(DataFlavor df);
public Transferable getTransferable();

public void dropComplete(boolean success);

}

A DropTargetDropEvenis passed to thBropTargetListener’s drop(nethod, as the Drop
occurs. ThéropTargetDropEvenprovides théDropTargetListenewith access to the
Data associated with the operation, viaTrensferablereturned from thgetTransfer-
able() method.

The return value of thgetSourceActions(hethod is defined to be the action(s) defined by
the source at the time at which the Drop occurred.

The return value of thgetDropAction()method is defined to be the intersection of both
the Drop action selected by the users gesture, and the set of actions supported by the
source, at the time of the Drop. The resulting action is normally the intersection of this
value and the set of actions supported by the target at the time of the drop.

The return value of thgetLocation()method is defined to be the location at which the
Drop occurred.

ThegetCurrentDataFlavors()getCurrentDataFlavorsAsList(andisDataFlavorSup-
ported() methods are provided in order for the recipient to interrogate the list of types
available from the source for subsequent transfer vig#téransferData(Jnethod of the
Transferable

A typical implementation of thdrop() method will inspect the actions and thataFla-
vors’ available to determine if a successful exchange can occur or not.

When an exchange may occubDmpTargetListener.drof) implementation shall invoke
acceptDroff) with the selected operation as an actual parameter, prior to any invocation of
getTransferabl@. CallinggetTransferable(prior toacceptDrop()shall result in an
InvalidDnDOperationExceptian

TherejectDrop) shall be called to reject the Drop operation. Once called no further inter-
action can occur between the two participants, therefore it is typical to return from the
drop() method immediately after calling this.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 24

TheisLocalTransfer()method shall returtrue , iff the source of the Drag and Drop
operation resides within the same physical JVM as the recipient afrt) notification,
andfalse otherwise.

This distinction is significant to the recipient when it receives object references back from
invoking Transferable.getTransferDataif) the local case, since in this case the object ref-
erence it receives is the same object reference held by the source (i.e it is not a copy, proxy
or distinct object) thus the recipient must treat such a shared object reference differently in
the local case as follows:

» Ifthe action iISACTION_COPY then the recipient shall, depending upon the nature of
the object(s) and data transferred, either take a copy of; the object itself, the data encap-
sulated within, or both.

* If the action iIsACTION_MOVE , then the recipient shall not modify the state of the
object or the data encapsulated within until after it has signalled to the source, via an
invocation ofdropCompete(Jhat the transfer is effected. (Note that a source is also
prohibited from modifying the state of such an object after it has returned such an
object from it'sgetTransferData()nethod, until such time as it receivedragDro-
pEnd()notification.)

» Ifthe action iSACTION_LINK , neither the recipient nor the source shall alter the state
of either the object exchanged or any data contained therein until afteopi@och-
plete()anddragDropEnd()methods have been processed. Thereafter the sharing
semantics are implementation dependent upon the object(s) shared.

ThedropComplete(Jnethod signals the end of the associated Drag and Drop operation,
and indicates the success (or failure) of the transfers performed by the recipient. Invoking
this method results in theragSourceListenes dragDropEnd()method being called with

the appropriate state available from DsagSourceDropEventailure to invoke this

method will result in the Drag and Drop operation failing to terminate properly.

2.4.6 Autoscrolling support

Many GUIComponert present a scrollable “viewport” over a (potentially) large dataset.
During a Drag and Drop operation it is desirable to be able to “autoscroll” such “view-
ports” to allow a user to navigate over such a dataset, scrolling to locate a particular mem-
ber (initially not visible through the “viewport”) that they wish to drop the subject of the
operation upon.

Componentshat are scrollable provide Drag “autoscrolling” support to thempTarget
by implementing the following interface:

public interface Autoscroll {
Insets getAutoscrollinsets();

void autoScrollContent(Point cursorLocn);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 25

An implementingDropTargetshall periodically call thautoscrol() method of its associ-
atedComponentif present), passing the current logical cursor locatidddamponento-
ordinates, when the following conditions are met:

* If the logical cursor’s hotspot intersects with the associ@ethponens visible geom-
etry and the boundary region described byitisetsreturned by thgetAutoscrollin-
setg) method.

* If the logical cursor’s hotspot has not moved (subject to the next condition below) for
an implementation defined period (millisecs)

» If any cursor movement subsequent to the initial triggering occurrence does not exceed
a platform dependent hysteresis value (pixels).

Should any of the above conditions cease to be valid, autoscrolling shall terminate until
the next triggering condition occurs.

Both the initial delay prior to autoscrolling commencing, the interval between autoscroll-
ing notifications, and the pixel hysteresis value are externally configurable and can be que-
ried from theToolkit.getDesktopProperty(hethod.

2.5 Data Transfer Phase

In the case where a valid drop occurs, BrepTargetListener’s drop(nethod is responsi-
ble for undertaking the transfer of the data associated with the gestui@toffiarget-
DropEventprovides a means to obtaiMansferableobject that represent that data
object(s) to be transferred.

From thedrop() method, thédropTargetListeneshall initially eitherrejectDrog) (imme-
diately returning thereafter) acceptDroff) specifying the selected operation from those
returned bygetSourceActiors

Subsequent to aacceptDroff), but notbefore getTransferabl@ may be invoked, and any

data transfers performed via the returiieghsferablés getTransferDat§ method.

Finally, once the destination of the drop has completed the transfer(s) of the objects from
the source it shall signal the success, or immediate failure, of the transfer(s) via an invoca-
tion of DropTargetContext.ropCompld)e

Upon returning from th®ropTargetContext.dropCompl€jenethod thelransferableand
DragSourceContexhstances are no longer guaranteed to be valid and all references to
them shall be discarded by the recipient to allow them to be subsequently garbage col-
lected.

When using thdCTION_REFERENCE operation the source and destination should

take care to agree upon the object and the associated semantics of the transfer. Typically in
intra-JVM transfers a live object reference would be passed between source and destina-
tion, but in the case of inter-JVM transfers, or transfers between native and Java applica-

tions, live object references do not make sense, so some other ‘reference’ type should be
exchanged such as a URI for example. BothinagSourceandDropTargetcan detect if

the transfer is intra-JVM or not.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 26

2.5.1 FlavorMap and SystemFlavorMap

All the target DnD platforms represent their transfer data types using a similar mechanism,
however the representations do differ. The Java platform uses MIME types encapsulated
within a DataFlavorto represent its data types. Unfortunately in order to permit the trans-
fer of data between Java and platform native applications the existence of these platform
names need to be exposed, thus a mechanism is required in order to create an extensible
(platform independent) mapping between these platform dependent type names, their rep-
resentations, and the Java MIME baBedaFlavors

The implementation will provide a mechanism to externally specify a mapping between
platform native data types (strings) and MIME types (strings) used to cori3atadila-

vors This external mapping will be used by the underlying platform specific implementa-
tion code in order to expose the appropridé¢aFlavors(MIME types), exported by the
source, to the destination, via the underlying platform DnD mechanisms.

Both theDragSourceandDropTargetclasses provide access for the underlying system to
map platform dependent names to and ffaaFlavors

public interface java.awt.datatransfer.FlavorMap {
java.util. Map getNativesForFlavors(DataFlavor[] dfs);
java.util.Map getFlavorsForNatives(String[] natives);

ThegetNativesForFlavor§ method takes an array DataFlavors and returns Bap
object containing zero or more keys of typataFlavor, from the actual parametefs

with associated values of tyfring which correspond to the platform dependent type
name for that MIME type.

ThegetFlavorsForNativeg method takes an array 8tringtypes and returnsiap object
containing zero or more keys of tyB&ing from the actual parameter natives, with asso-
ciated values of typPataFlavor, which correspond to the platform independent type for
that platform dependent type name.

TheMap object returned by both methods may be mutable but is not required to be.

If NULLis passed to either of these methods they should return their current map of all
keys and values known to the implementation at the time of the call.

For example on Win32 the Clipboard Format Name for simple text is “CF_TEXT” (actu-
ally itis the integer 1) and on Motif it is the X11 Atom named “STRING”, the MIME type
one may use to represent this would be “text/plain charset=us-ascii”. Therefore a platform
portableFlavorMapwould map between these names; CF_TEXT on win32 and STRING
on Motif/X11.

Typically, as implemented in theystemFlavorMaghese mappings are held in an external
persistent configuration format (a properties file or URL) and are loaded from the platform
to configure thé-lavorMap appropriately for a given platform.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 27

The SystemFlavorMaglass is provided to implement a simple, platform configurable
mechanism for specifying a system-wide set of common mappings, and is defined as fol-
lows:
public class java.awt.datatransfer.SystemFlavorMap
implements FlavorMap {
public static FlavorMap getSystemFlavorMap();

public synchronized Map
getNativesForFlavors(DataFlavor[] dfs);

public synchronized Map
getFlavorsForNatives(String[] natives);

public static String
encodeJavaMIMEType(DataFlavor df);

public static String
encodeJavaMimeType(java.util.mime.MimeType mime);

public static boolean
isEncodedJavaMimeType(String mimesStr);

public static DataFlavor
createFlavorFromEncodedJavaMimeType(String ejmts);

public static java.util.mime.MimeType
createMimeTypeFromEncodedJavaMimeType(
String ejmts
);
}

TheSystemFlavorMaplass provides a simple implementation, using a properties file (see
java.awt.Propertiel of a persistent platforflavorMap. Using the value of the AWT
property ‘AWT.flavorMapFileURL " (seeToolkit.getPropertf)) or the default file
location ofSystem.getPropertyf@dva.home) + File.separator + “lib” + File.separa-

tor + “ flavormap.properties ", this class creates the appropristaps from the
properties found therein.

In addition the class provides several static convenience functions used to encode and
decode JavilimeTyps to and from a platform dependent namespace. The syntax of the
properties file is:

{ <platform_type_name> ‘=" <IETF_MIME_RFC_conformant_specification> <nl> } *

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 28

The default implementations &fragSourceandDropTargetreturn theSystemFlavorMap
from theirgetFlavorMag) method, unless they have been provided with an overriding
implementation.

2.5.2 Transferring Data across the JVM boundary

Since one of the primary goals of this APl is to allow Drag and Drop of data between Java
and native applications this has some significant consequences upon the method and
mechanism of the actual data encoding and exchange when data is passed across the
boundary of the Java Virtual Machine.

Since one of the participants in such an exchange may be a native application, and thus has
no knowledge of the Java type system, the Drag and Drop system cannot just exchange a
Java object reference since the other participant may have no knowledge of, or capability
to manipulate such a type.

When any exchange occurs, it can only do so, regardless of the implementation of the par-
ticipants, if and only if both participants are agreed upon a familiar data type and encod-
ing. Thus, sadly the burden of the exchange is born mostly by the participants themselves.

What this means in practical terms is that for “native” data formats, such as platform
dependent image, document, or other “Content-Types” the encoding and decoding of their
associated external data format is the responsibility of the source and destination of the
transfer.

The Drag and Drop system shall expose the external representation of such “native” data
types across the boundary of the Java Virtual Machine as encapsulated within a
java.io.InputStreanor a subclass thereof.

This means that arlyataFlavorwith a representation class that extejags.io.Input-
Streamcan be transferred, and will be exposed for transfer, across the Java Virtual
Machine boundary.

To implement the exchange of such a native data type, a developer would define a
DataFlavorwith a MIME “Content-Type” that describes the nature of the “native” data
type, with a representation class that extendsaio.InputStreantlass that encodes the
data encapsulated into a stream of bytes.

In particular suchnputStreansubclasses shall implement the following semantics:
» Provide a public constructor with a single argument of jgpa.io.InputStream.

Provision of this constructor by a subclasgaeh.io.InputStreamvill allow the Drag

and Drop system (associated with BrepTarge) to automatically re-construct an

instance of the representation class specified by the reqbegegelavor, and initial-

ize it with aninputStreanctontaining the encapsulated data formatted according to the
expectations of that subclass. Once initialized this instance is returned to the caller of
the Transferable.getTransferData() method, thus allowing the caller to subsequently re-
read and interpret the formatted content of the data stream transferred.

| Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 29

* Provide an implementation tfputStream.read(byte b[], int off, int len)

Provision of this method (or inheriting a superclasses implementation) enables the Drag
and Drop system (associated with DegSourcg to automatically extract an encoded
stream of the encapsulated data fromThensferablethus enabling the transfer of the

data across the JVM boundary as a simple byte stream to the requestor of the particular
DataFlavor.

2.5.3 Transferring lists of files across the JVM boundary.

A typical subject of a Drag and Drop transfer is a list of one or more platform dependent
filenames. In order to ease the programming task of developers either producing or con-
suming such lists the Drag and Drop system treats them as a special case.

If a DataFlavoris specified with a MIME “Content-Type” adpplication/x-java-
file-list;class=java.util.List the Drag and Drop system will expect the
list elements to be a homogeneous list of objects ofjayzeio.File Thus a source shall,
if supporting the transfer of a list of files, construct sudtist of File objects when such a
DataFlavoris requested, and a recipient shall expect sugbtaf File objects if it
requests such a validataFlavorfrom it's source. This special case provides a simple
mechanism for the transfer of lists of files between source and target.

2.5.4 Transferring java.rmi.Remote references across the JVM boundary.

It is possible to Drag and Drop object references between JVMs’ by using the facilities of
the RMI mechanism. The Drag and Drop system will automatically arrange for the trans-
fer of any object reference that adheres to these requirements:

* The representation class of interface associated with the reqDegéddavorimple-
ments bothava.rmi.Remotandjava.io.Serializable

(the MIME “Content-Type” can be any suitable, arbitrary typapplication/x-
java-remote-object)

(effectively the object implementation class transferred should be extended from
java.rmi.server.UnicastRemoteObjsatce the RMI system implements some required
initialization, without which the transfer will not complete properly).

e The drop action IACTION_LINK .

If these conditions are met, then if an appropriasgaFlavoris requested, then the object
returned to the requestor (if it is in a difference JVM from the source) will be an RMI ref-
erence to an instance of tRemoteobject subinterface specified as the representation
class of thédataFlavor.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 30

3.0 Issues

3.0.1 What are the implications of the various platform protocol engines?

Due to limitations of particular underlying platform Drag and Drop and Window System
implementations, the interaction of a Drag operation, and the event delivery semantics to
AWT Componentss platform dependent. Therefore during a drag operatidregSource

may process platform Window System Events pertaining to that drag to the exclusion of
normal event processing.

Due to interactions between the single-threaded design center of the platform native DnD
systems, and the native window system event dispatching implementations in AWT, “call-
backs” intoDropTargetListeneandDragSourceListenewill occur either on, or synchro-
nized with the AWT system event dispatch thread. This behavior is highly undesirable for
security reasons but is an implementation, not architectural feature, and is unavoidable.

3.0.2 Inter/Intra VM transfers?

To enable intra-JVM Drag and Drop Transfers the exidbataFlavorclass will be
extended to enable it to represent the type of a “live” object reference, as opposed to a
Serialized (persistent) representation of one. Such objects may be transferred between
source and destination within the same JVM @lassLoadercontext.

The MIME Content-Type shall bapplication/x-java-local-objectref.

3.0.3 Lifetime of the Transferable(s)?

Transferableobjects, their associat&htaFlavors’, and the objects that encapsulate the
underlying data specified as the operand(s) of a drag and drop operation shall remain valid
until, at least, th®ragSourceListenegssociated with thBragSourcecontrolling the
operation, receives@agDropEnd). The lifetime of the subject(s) of the operation, trans-
ferred between source and target is implementation defined beyond that point in time.

3.0.4 Implications of ACTION_MOVE semantics on source objects exposed via
Transferable?

The “source” of a successful Drag and Dré@TION_MOVE) operation is required to
delete/relinquish all references to the object(s) that are the subjecfloftiséerable
immediately after transfer has been successfully completed. That is before returning from
the DragSourceListener.dragDropEndgptification.

3.0.5 Semantics oACTION_REFERENCE operation.

As a result of significant input from developers to an earlier version of the specification an
additional operation/action ta§CTION_REFERENCEwas added to include existing
platform Drag and Drop”Link” semantics.

It is believed that Reference, or Link, semantics are already sufficiently poorly specified
for the platform native Drag and Drop to render it essentially useless even between native

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 31

applications, thus between native and platform independent Java applications it is not rec-
ommended.

For Java to Java usage the required semantic; within the sam€lagbl/oaderis

defined such that the destination shall obtain a Java object reference to the subject(s) of the
transfer. Between Java JVM'’s GtassLoades, the semantic is implementation defined,

but could be implemented through transferring either a URL from the source to the desti-
nation or an RMRemoteeference.

| Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 32

Appendix A :DropTargetReer definition

Although not a normative part of this specification this definition is included for clarity:
public interface DropTargetPeer {

void addDropTarget(DropTarget dt);

void removeDropTarget(DropTarget dt);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998

33

Appendix B :DragSourceContexter definition

Although not a normative part of this specification this definition is included for clarity:
public interface DragSourceContextPeer {

void startDrag(DragSourceContext dsc,

Cursor (of
Image di,
Point ioff

) throws InvalidDnDOperationException;
Cursor getCursor();

void setCursor(Cursor c)
throws InvalidDnDOperationException;

void transferablesFlavorsChanged();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998

34

Appendix C :DropTargetContextieer definition

Although not a normative part of this specification this definition is included for clarity:
public interface DropTargetContextPeer {

int getTargetActions();
void setTargetActions(int actions);

DropTarget getDropTarget();
DataFlavor[] getTransferDataFlavors();

Transferable getTransferable()
throws InvalidDnDOperationException;

boolean isTransferableJVMLocal();

void acceptDrag(int dragAction);
void rejectDrag();

void acceptDrop(int dropAction);
void rejectDrop();

void dropComplete(boolean success);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998

35

