
Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 1

Proposalfor aDragandDropsubsystemfor
the Java Foundation Classes

(FINAL Draft: 0.96).
Laurence P. G. Cable.

THIS I S THE FINAL DRAFT OF THE API FOR JDK 1.2

Send comments to java-beans@java.sun.com.

Note:

The API described herein is partially implemented in JDK1.2 Beta3
but will not be completely available until JDK1.2Beta4 or FCS.

1.0 Requirements

This proposal is based upon an (incomplete) earlier work undertaken in 1996 to specify a
Uniform Data Transfer Mechanism, Clipboard, and Drag and Drop facilities for AWT.

The AWT implementation in JDK1.1 introduced the Uniform Data Transfer Mechanism
and the Clipboard protocol. This draft proposal defines the API for the Drag and Drop
facilities for JDK1.2 based upon, but extending these 1.1 UDT API’s.

The primary requirements that this proposal addresses, are:

1. Provision of a platform independent Drag and Drop facility for Java GUI clients

 implemented through AWT and JFC classes.

2. Integration with platform dependent Drag and Drop facilities, permitting Java

 clients to be able to participate in DnD operation with native applications using:

• OLE (Win32) DnD

• CDE/Motif dynamic protocol

• MacOS

• OS/2

• ...

3. Support for 100% pure JavaOS/Java implementation.

4. Leverages the existingjava.awt.datatransfer.* package to enable the transfer of

 data, described by an extensible data type system based on the MIME standard.

5. Does not preclude the use of “accessibility” features where available.

6. Extensible to support diverse input devices.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 2

The proposal derives from the previous work mentioned above, but incorporates signifi-
cant differences from that original work as a result of the advent of the JavaBeans event
model, Lightweight (JFC) Components, and an increasing understanding of the cross-plat-
form integration and interoperability issues.

2.0 API

2.1 Overview

Drag and Drop is a direct manipulation gesture found in many Graphical User Interface
systems that provides a mechanism to transfer information between two entities logically
associated with presentation elements in the GUI. Normally driven by a physical gesture
of a human user using an appropriate input device, Drag and Drop provides both a mecha-
nism to enable continuous feedback regarding the possible outcome of any subsequent
data transfer to the user during navigation over the presentation elements in the GUI, and
the facilities to provide for any subsequent data negotiation and transfer.

A typical Drag and Drop operation can be decomposed into the following states (not
entirely sequentially):

• A DragSource comes into existence, associated with some presentation element (Com-
ponent) in the GUI, to initiate a Drag and Drop of some potentiallyTransferable data.

• 1 or moreDropTarget(s) come into/go out of existence, associated with presentation
elements in the GUI (Components), potentially capable of consumingTransferabledata
types.

• A DragGestureRecognizer is obtained from theDragSource and is associated with a
Component in order to track and identify any Drag initiating gesture by the user over
theComponent.

• A Human user makes a Drag gesture over theComponent, which the registeredDrag-
GestureRecognizer detects, and notifies itsDragGestureListener of.

Note: Although the body of this document consistently refers to the stimulus for a drag
and drop operation being a physical gesture by a human user this does not preclude a
programmatically driven DnD operation given the appropriate implementation of a
DragSource.

• TheDragGestureListenercauses theDragSource to initiate the Drag and Drop opera-
tion on behalf of the user, perhaps animating the GUICursor and/or rendering an
Image of the item(s) that are the subject of the operation.

• As the user gestures navigate overComponent(s) in the GUI with associatedDropTar-
get(s), theDragSourcereceives notifications in order to provide “Drag Over” feedback
effects, and theDropTarget(s) receive notifications in order to provide “Drag Under”
feedback effects based upon the operation(s) supported and the data type(s) involved.

The gesture itself moves a logical cursor across the GUI hierarchy, intersecting the
geometry of GUIComponent(s), possibly resulting in the logical “Drag” cursor enter-
ing, crossing, and subsequently leavingComponent(s) and associatedDropTarget(s).

TheDragSourceobject manifests “Drag Over” feedback to the user, in the typical case
by animating the GUICursor associated with the logical cursor.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 3

DropTargetobjects manifest “Drag Under” feedback to the user, in the typical case, by
rendering animations into their associated GUIComponent(s) under the GUICursor.

• The determination of the feedback effects, and the ultimate success or failure of the
data transfer, should one occur, is parameterized as follows:

• By the transfer “operation” selected by the user, and supported by both theDrag-
Source andDropTarget: Copy, Move or Reference(link).

• By the intersection of the set of data types provided by theDragSourceand the set of
data types comprehensible by theDropTarget.

• When the user terminates the drag operation, normally resulting in a successful Drop,
both theDragSource andDropTarget receive notifications that include, and result in
the type negotiation and transfer of, the information associated with theDragSource
via aTransferable object.

The remainder of this document details the proposed API changes to support this model.

2.2 Drag Gesture Recognition

The gesture(s) that can initiate a Drag and Drop operation vary, not only per platform, but
also perComponent,and per device. Therefore a mechanism is required in order to encap-
sulate these dependencies, thus making the task of the author of aComponent that wishes
to initiate a Drag and Drop operation much simpler.

2.2.1 DragGestureRecognizer

TheDragGestureRecognizer is an abstract base class for all device/platform/Component
specific Drag and Drop gesture recognizers, and is defined as:

public abstract DragGestureRecognizer {

 protected DragGestureRecognizer(

DragSource ds,

Component c,

int srcActions,

DragGestureListener dgl

);

 public Component getComponent();

 public void setComponent(Component c);

 public int getSourceActions();

 public void setSourceActions(int actions);

 public java.awt.InputEvent getTriggerEvent();

 public void resetRecognizer();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 4

 public void addDragGestureListener(

 DragGestureListener dgl

) throws TooManyListenerExceptions;

 public void removeDragGestureListener(

 DragGestureListener dgl

);

 protected abstract void registerListeners();

 protected abstract void unregisterListeners();

 protected void fireDragGestureRecognized(

 int dragAction

);

 protected void appendEvent(InputEvent awtie);

}

An appropriate concrete subclasses ofDragGestureRecognizer for a particular may be
obtained in a variety of ways; from aDragSourceinstance, from theToolkit, or by other
means. Concrete implementation subclasses are obtained through standard APIs’ by spec-
ifying a Classreference to an abstractDragGestureRecognizersuperclass, an instance of a
concrete subclass of this actual parameter is instantiated and returned to the requestor.

Once aDragGestureRecognizer instance is associated with aComponent and aDrag-
Source it registers its own particular set ofEventListeners’ with the targetComponent in
order to monitor the appropriate events being delivered to thatComponentto detect an ini-
tiating gesture. (UsingregisterListeners() andunregisterListeners() to add/remove these
monitoringEventListeners’).

Note that aDragGestureRecognizer may throw either anIllegalStateException or anIlle-
galArgumentException if either theComponent or DragSource specified is either not in
the correct state for, or is not interoperable with, thatDragGestureRecognizer.

When a concreteDragGestureRecognizer instance detects a Drag initiating user gesture
on theComponent it is associated with, it will fire aDragGestureEvent to theDragGes-
tureListener registered on its unicast event source forDragGestureListener events. This
DragGestureListener is responsible for causing the associatedDragSource to start the
Drag and Drop operation (if appropriate).

The implementation provides (at least) an abstract subclass for recognizing mouse device
gesturesMouseDragGestureRecognizer. Other abstract subclasses may be provided by the
platform to support other input devices or particular Component class semantics. Concrete
superclasses of thisMouseDragGestureRecognizer that encapsulate platform dependent
mouse based gestures are available from theToolkit object via itscreateDragGestureRec-
ognizer(Class adgrc, DragSource ds, Component c, int sa, DragGestureListener dgl)

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 5

method. ThisToolkit API provides platform dependent concrete implementations that
extend particular platform independent abstract definitions (classes).

TheMouseDragGestureRecognizer abstract class is defined as:

public abstract MouseDragGestureRecognizer

 extends DragGestureRecognizer

 implements MouseListener, MouseMotionListener {

 public MouseDragGestureRecognizer(

DragSource ds,

Component c,

int sa,

DragGestureListener dsl

);

 // ...

}

TheDragGestureListener is defined as:

public interface DragGestureListener extends EventListener {

 void dragGestureRecognized(DragGestureEvent dge);

}

Usually thedragGestureRecognized() method will simply, via theDragGestureEvent’s
convenience APIstartDrag(), start a Drag and Drop operation on the associatedDrag-
Source.

Note that perComponent(class or instance) behavior that may effect the initiating gesture
would usually be implemented in thisDragGestureListenermethod, or in theDragGestur-
eRecognizer subclass where appropriate or possible.

TheDragGestureEvent is defined as:

publc class DragGestureEvent extends EventObject {

public DragGestureEvent(DragGestureRecognizer dgr,

int dragAction,

 java.util.List events

);

 public DragGestureRecognizer

 getSourceAsDragGestureRecognizer();

 public Component getComponent();

 public DragSource getDragSource();

 public java.util.Iterator iterator();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 6

 public Object[] toArray();

 public Object[] toArray(Object[] array);

 public int getDragAction();

 public startDrag(Cursor dragCursor,

 Transferable t,

 DragSourceListener dsl

);

 public startDrag(Cursor dragCursor,

 Image dragImage,

 Point imageOffset,

 Transferable t,

 DragSourceListener dsl

);

}

TheDragGestureEventencapsulates all the information regarding the nature of the gesture
that has just been recognized, including:

• TheDragGestureRecognizerthat recognized the gesture

• TheComponent that the gesture occurred on

• TheDragSourcethat will process the operation

• The List ofInputEvent objects that comprise the gesture.

• The action (ACTION_COPY, ACTION_MOVE or ACTION_LINK , selected by the
users gesture.

2.3 Drag Source

TheDragSourceis the entity responsible for the initiation of the Drag and Drop operation:

2.3.1 TheDragSource definition

TheDragSource and associated constant interfaces are defined as follows:

TheDnDConstants class defines the operations that may be applied to the subject of the
transfer:

public final class java.awt.dnd.DnDConstants {

public static int ACTION_NONE= 0x0;

public static int ACTION_COPY= 0x1;

public static int ACTION_MOVE= 0x2;

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 7

public static int ACTION_COPY_OR_MOVE=ACTION_COPY|
ACTION_MOVE;

public static int ACTION_REFERENCE = 0x40000000;

}

public class java.awt.dnd.DragSource {

 public static Cursor DefaultCopyDrop;

 public static Cursor DefaultMoveDrop;

 public static Cursor DefaultLinkDrop;

 public static Cursor DefaultCopyNoDrop;

 public static Cursor DefaultMoveNoDrop;

 public static Cursor DefaultLinkNoDrop;

public static DragSource getDefaultDragSource();

public static boolean isDragImageSupported();

public void

 startDrag(DragGestureEvent trigger,

 Cursor dragCursor,

 Image dragImage,

 Point dragImageOffset,

 Transferable transferable,

 DragSourceListener dsl,

 FlavorMap fm)

 throws InvalidDnDOperationException;

protected DragSourceContext

createDragSourceContext(

DragSourceContextPeer dscp,

DragGestureEvent trigger,

Cursor dragCursor,

Image dragImage,

Point dragImageOffset,

Transferable transferable,

DragSourceListener dsl

);

public FlavorMap getFlavorMap();

 public DragGestureRecongizer

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 8

 createDragGestureRecognizer(

 Class abstractRecognizerClass,

 Component c,

 int srcActions,

 DragGestureListener dgl

);

 public DragGestureRecongizer

 createDefaultDragGestureRecognizer(

 Component c,

 int srcActions,

 DragGestureListener dgl

);

}

TheDragSource may be used in a number of scenarios:

• 1 default instance per JVM for the lifetime of that JVM. (defined by this spec)

• 1 instance per class of potential Drag Initiator object (e.gTextField). [implementation
dependent]

• 1 per instance of a particularComponent, or application specific object associated with
aComponent instance in the GUI. [implementation dependent]

• some other arbitrary association. [implementation dependent]

A controlling object, shall obtain aDragSourceinstance prior to a users gesture, effecting
an associatedComponent, in order to process the operation. Once obtained aDragGestur-
eRecognizer should be obtained and used to associate theDragSource with aComponent.

The initial interpretation of the users gesture, and the subsequent starting of the Drag oper-
ation are the responsibility of the implementingComponent, this is usually implemented
by aDragGestureRecognizer.

When a gesture occurs, theDragSource’s startDrag()method shall be invoked in order to
cause processing of the users navigational gestures and delivery of Drag and Drop proto-
col notifications. A DragSource shall only permit a single Drag and Drop operation to be
current at any one time, and shall reject any furtherstartDrag() requests by throwing an
IllegalDnDOperationException until such time as the extant operation is complete.

In order to start a drag operation the caller of thestartDrag() method shall provide the fol-
lowing parameters:

• TheDragGestureEvent for the gesture.

• A Cursor representing the initial “Drag Over” feedback for the operation(s) specified.
(This shall be aCursor that provides “No Drop” visual feedback to the user).

• An (optional)Image to visually represent the item, or item(s) that are the subject(s) of
the operation.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 9

On platforms that can support this feature, a “Drag” image may be associated with the
operation to enhance the fidelity of the “Drag Over” feedback. This image would typi-
cally be a small “iconic” representation of the object, or objects being dragged, and
would be rendered by the underlying system, tracking the movement of, and coincident
with, but typically in addition to theCursor animation.

Where this facility is not available, or where the image is not of a suitable type to be
rendered by the underlying system, this parameter is ignored and onlyCursor “Drag
Over” animation results, so applications should not depend upon this feature. The pres-
ence of the facility on a particular platform may be tested by invoking the static method
isDragImageSupported().

• Where anImage is provided; aPoint (in the co-ordinate space of theComponent)spec-
ifying the initial origin of thatImagerelative to the co-ordinates of the “hotspot” of the
drag “Cursor”, in the co-ordinate space of theComponent, at the time of the initial ges-
ture, for the purposes of initiating a correctly positioned “Drag Over” animation of that
Image relative to that “hotspot”.

• A Transferablethat describes the variousDataFlavor(s) that represent the subject(s) of
any subsequent data transfer that may result from a successful Drop.

TheTransferableinstance associated with theDragSourceat the start of the Drag oper-
ation, represents the object(s) or data that are the operand(s), or the subject(s), of the
Drag and Drop operation, that is the information that will subsequently be passed from
theDragSource to theDropTargetas a result of a successful Drop on theComponent
associated with thatDropTarget.

Note that multiple (collections) of either homogeneous, or heterogeneous, objects may
be subject of a Drag and Drop operation, by creating a container object, that is the sub-
ject of the transfer, and implementsTransferable. However it should be noted that since
none of the targeted native platforms systems support a standard mechanism for
describing and thus transferring such collections it is not possible to implement such
transfers in a transparent, or platform portable fashion.

• A DragSourceListener instance, which will subsequently receive events notifying it of
changes in the state of the ongoing operation in order to provide the “Drag Over” feed-
back to the user.

As stated above, the primary role of thestartDrag() method is to initiate a Drag on behalf
of the user. In order to accomplish this, thestartDrag() method must create aDragSource-
Context instance to track the operation itself, and more importantly it must initiate the
operation itself in the underlying platform implementation. In order to accomplish this, the
DragSource must first obtain aDragSourceContextPeer from the underlying system (usu-
ally via an invocation ofjava.awt.Toolkit.createDragSourceContextPeer() method) and
subsequently associate this newly createdDragSourceContextPeer(which provides a plat-
form independent interface to the underlying systems capabilities) with aDragSource-
Context.ThestartDrag() method invokes thecreateDragSourceContext() method to
instantiate an appropriateDragSourceContext and associate theDragSourceContextPeer
with that.

If the Drag and Drop System is unable to initiate a Drag operation for some reason the
startDrag() method shall throw ajava.awt.dnd.InvalidDnDOperationException to signal

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 10

such a condition. Typically this exception is thrown when the underlying platform system
is either not in a state to initiate a Drag, or the parameters specified are invalid.

Note that during the Drag neither the set of operations the source exposed at the start of
the Drag operation may change for the duration of the operation, in other words the opera-
tion(s) and are constant for the duration of the operation with respect to theDragSource.

ThegetFlavorMap() method is used by the underlying system to obtain aFlavorMap
object in order to map theDataFlavorsexposed by theTransferableto data type names of
the underlying DnD platform. [see later for details of theFlavorMap]

A “private” FlavorMapmay be provided to thestartDrag()method of theDragSource, or
null, in which case the “default”FlavorMap for thatDragSource class or instance is used.

2.3.2 TheDragSourceContext Definition

As a result of aDragSource’s startDrag() method being successfully invoked an instance
of theDragSourceContext class is created. This instance is responsible for tracking the
state of the operation on behalf of theDragSource and dispatching state changes to the
DragSourceListener.

TheDragSourceContextclass is defined as follows:

public class DragSourceContext implements DragSourceListener
{

protected DragSourceContext(

DragSourceContextPeerdscp,

DragGestureEvent trigger,

Cursor dragCursor,

Image dragImage,

Point dragOffset,

Transferable transferable,

DragSourceListener dsl

);

public DragSource getDragSource();

public Component getComponent();

public DragGestureEventgetTrigger();

public Image getDragImage();

public Point getDragImageOffset();

 public void transferablesFlavorsChanged();

public int getSourceActions();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 11

public Cursor getCursor();

pbulic void setCursor(Cursor Cursor)

throws InvalidDnDOperationException;

public void

addDragSourceListener(DragSourceListener dsl)

 throws TooManyListenersException;

public void

removeDragSourceListener(DragSourceListener dsl);

 protected updateCurrentCursor(int dropOperation,

 int targetActions,

 int status

);

 // values for status parameter above.

 protected static final int DEFAULT = 0;

 protected static final int ENTER = 1;

 protected static final int OVER = 2;

 protected static final int CHANGED = 3;

 protected boolean cursorDirty;

 }

Note that theDragSourceContext itself implementsDragSourceListener, this is to allow
the platform peer, theDragSourceContextPeer instance, created by theDragSource, to
notify theDragSourceContext of changes in state in the ongoing operation, and thus
allows theDragSourceContext to interpose itself between the platform and theDrag-
SourceListener provided by the initiator of the operation.

The state machine the platform exposes, with respect to the source, or initiator of the Drag
and Drop operation is detailed below:

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 12

Notifications of changes in state with respect to the initiator during a Drag and Drop oper-
ation, as illustrated above, are delivered from theDragSourceContextPeer,to the appropri-
ateDragSourceContext, which delegates notifications, via a unicast JavaBeans compliant
EventListener subinterface, to an arbitrary object that implementsDragSourceListener
registered with theDragSource via startDrag().

The primary responsibility of theDragSourceListener is to monitor the progress of the
users navigation during the Drag and Drop operation and provide the “Drag-Over” effects
feedback to the user. Typically this is accomplished via changes to the “Drag Cursor”.

Every Drag operation has 2 logical cursor states (Drag Cursors) associated with it:

• TheDrop Cursor, the cursor displayed when dragging over a validDropTarget.

• TheNoDrop Cursor, the cursor displayed when dragging over everything else (the ini-
tial state of the cursor at the start of a Drag).

The state of theCursor may be modified by calling thesetCursor() method of theDrag-
SourceContext.

ds.startDrag()*

dsl.dragExit()*

dsl.dragEnter()*

dsl.dragOver()*

dsl.dragDropEnd()

ds = DragSource

dsl = DragSourceListener

dsl.dragGestureChanged()(*) <next>

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 13

2.3.3 TheDragSourceListener Definition

TheDragSourceListener interface is defined as follows:

public interface java.awt.dnd.DragSourceListener

extends java.util.EventListener {

void dragEnter (DragSourceDragEvent dsde);

void dragOver (DragSourceDragEvent dsde);

void dropActionChanged (DragSourceDragEvent dsde);

void dragExit (DragSourceEvent dse);

void dragDropEnd (DragSourceDropEvent dsde);

}

As the drag operation progresses, theDragSourceListener’sdragEnter(), dragOver(), and
dragExit() methods shall be invoked as a result of the users navigation of the logical
“Drag” cursor’s location intersecting the geometry of GUIComponent(s) with associated
DropTarget(s). [See below for details of theDropTarget’s protocol interactions].

TheDragSourceListener’s dragEnter() method is invoked when the following conditions
are true:

• The logical cursor’s hotspot initially intersects a GUIComponent’s visible geometry.

• ThatComponent has an activeDropTarget associated.

TheDropTarget’s registeredDropTargetListener dragEnter() method is invoked and
returns successfully.

The registeredDropTargetListenerinvokes theDropTargetDragEvent’s acceptDrag()
method to accept the Drag based upon interrogation of the source’s potential Drop actions
and available data types (DataFlavors).

TheDragSourceListener’s dragOver() method is invoked when the following conditions
are true:

• The cursor’s logical hotspot has moved but still intersects the visible geometry of the
Component associated with the previousdragEnter() invocation.

• ThatComponent still has aDropTarget associated.

• ThatDropTarget is still active.

• TheDropTarget’s registeredDropTargetListener dragOver() method is invoked and
returns successfully.

• TheDropTarget does not reject the drag viarejectDrag().

TheDragSourceListener’s dragExit() method is invoked when one of the following condi-
tions is true:

• The cursor’s logical hotspot no longer intersects the visible geometry of theComponent
associated with the previousdragEnter() invocation.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 14

Or:

• TheComponentthat the logical cursor’s hotspot intersected that resulted in the previous
dragEnter() invocation, no longer has an activeDropTarget (or DropTargetListener)
associated.

Or:

• The currentDropTarget’s DropTargetListener has invokedrejectDrag() since the last
dragEnter() or dragOver() invocation.

TheDragSourceListener’s dropActionChanged() method is invoked when the state of the
input device(s), typically the mouse buttons or keyboard modifiers, that the user is inter-
acting with in order to preform the Drag operation, changes.

ThedragDropEnd()method is invoked to signify that the operation is completed. Theget-
DropSuccess() method of theDragSourceDropEvent can be used to determine the termi-
nation state. ThegetDropAction() method returns the operation that theDropTarget
selected (via theDropTargetDropEvent acceptDrop() parameter) to apply to the Drop

operation.1

Once this method is complete the currentDragSourceContextand the associated resources
are invalid.

2.3.4 TheDragSourceEvent Definition

TheDragSourceEvent class is the rootEvent class for all events pertaining to the Drag-
Source, and is defined as follows:

public class java.awt.dnd.DragSourceEvent

 extends java.util.EventObject {

public DragSourceEvent(DragSourceContext dsc);

public DragSourceContext getDragSourceContext();

};

An instance of this event is passed to theDragSourceListener dragExit() method.

2.3.5 TheDragSourceDragEvent Definition

TheDragSourceDragEvent class is defined as follows:

1. It would be nice to design an API that would allow theDragSource to be notified of theDropTarget’s
selected operation before the DropTarget invokes the sourceTransferable’s getTransferData() method,
sadly however, OLE’s bass-ackwards DnD protocol forces the above design on us where the operation is
reported after it has occurred, this makes life for the source implementor harder when supporting certain
“Link” semantics.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 15

public class java.awt.dnd.DragSourceDragEvent

 extends DragSourceEvent {

public int getTargetActions();

 public int getUserAction();

public int getGestureModifiers();

public boolean isDropTargetLocal();

 public int getDropAction();

}

An instance of the above class is passed to aDragSourceListener’s dragEnter(),
dragOver(),and dragGestureChanged()methods.

ThegetDragSourceContext() method returns theDragSourceContext associated with the
current Drag and Drop operation.

ThegetTargetActions()method returns the drop actions, supported by, and returned from
the currentDropTarget (if any in the case of dropActionChanged()).

ThegetDropAction() method returns the action that is currently selected by the users ges-
ture.

ThegetTargetActions() method returns the set of actions supported by the current
DropTarget.

The logical OR of these two results defines the actual effect of a Drop.

ThegetGestureModifiers() returns the current state of the input device modifiers, usually
the mouse buttons and keyboard modifiers, associated with the users gesture.

The isDropTargetLocal() method returnstrue if the currentDropTarget is contained
within the same JVM as theDragSource, andfalse otherwise. This information can be
useful to the implementor of theDragSource’s Transferablein order to implement certain
local optimizations.

2.3.6 TheDragSourceDropEvent Definition

TheDragSourceDropEvent class is defined as follows:

public public class java.awt.dnd.DragSourceDropEvent

 extends java.util.EventObject {

public DragSourceDropEvent(DragSourceContext dsc);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 16

public DragSourceDropEvent(DragSourceContext dsc,

 int action,

 boolean success);

public boolean getDropSuccess();

public int getDropAction();

}

An instance of the above class is passed to aDragSourceListener’s dragDropEnd()
method. This event encapsulates the termination state of the Drag and Drop operation for
theDragSource.

If the Drop occurs, then the participatingDropTarget will signal the success or failure of
the data transfer via theDropTargetContext’s dropComplete() method, this status is made
available to the initiator via thegetDropSuccess() method. The operation that the destina-
tion DropTarget selected to perform on the subject of the Drag (passed by theDropTar-
get’s acceptDrop() method) is returned via thegetDropAction() method.

If the Drag operation was aborted for any reason prior to a Drop occurring, for example if
the users ends the gesture outside aDropTarget, or if theDropTargetinvokesrejectDrop(),
the isGetDropSuccess() method will returnfalse , otherwisetrue.

2.4 Drop Target

2.4.1 java.awt.Component additions for DropTarget (de)registration.

TheJava.awt.Componentclass has two additional methods added to allow the (dis)associ-
ation with aDropTarget.In particular:

public class java.awt.Component /* ... */ {

// ...

public synchronized

void setDropTarget(DropTarget dt);

public synchronized

DropTarget getDropTarget(DropTarget df);

//

}

To associate aDropTarget with aComponent one may invoke either;DropTarget.setCom-
pononent() or Component.setDropTarget() methods. Thus conforming implementations of
both methods are required to guard against mutual recursive invocations.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 17

To disassociate aDropTarget with aComponent one may invoke either;DropTarget.set-
Compononent(null) or Component.setDropTarget(null) methods.

Conformant implementations of both setter methods inDropTarget andComponent
should be implemented in terms of each other to ensure proper maintenance of each
other’s state.

ThesetDropTarget() method throwsIllegalArgumentException if theDropTarget actual
parameter is not suitable for use with this class/instance ofComponent. It may also throw
UnsupportedOperationException if, for instance, theComponent does not support exter-
nal setting of aDropTarget.

2.4.2 TheDropTarget Definition

A DropTargetencapsulates all of the platform-specific handling of the Drag and Drop pro-
tocol with respect to the role of the recipient or destination of the operation.

A singleDropTarget instance may typically be associated with any arbitrary instance of
java.awt.Component.Establishing such a relationship exports the associatedComponent’s
geometry to the client desktop as being receptive to Drag and Drop operations when the
coordinates of the logical cursor intersects that visible geometry.

TheDropTarget class is defined as follows:

public class java.awt.dnd.DropTarget

 implements DropTargetListener, Serializable {

 public DropTarget(Component c,

 int actions,

 DropTargetListener dsl,

 boolean isActive,

 FlavorMap fm

);

public DropTarget();

public DropTarget(Component c);

public DropTarget(Component c, DropTargetListener dsl);

public Component getComponent();

public void setComponent(Component c);

public DropTargetContext getDropTargetContext();

public void

 addDropTargetListener(DropTargetListener dte)

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 18

 throws TooManyListenersException;

public void

 removeDropTargetListener(DropTargetListener dte);

public void setActive(boolean active);

public boolean isActive();

public FlavorMap getFlavorMap();

 public void setFlavorMap(FlavorMap fm);

 public void setDefaultActions(int actions);

 public int getDefaultActions();

protected DropTargetContext createDropTargetContext();

public void addNotify(ComponentPeer cp);

public void removeNotify(ComponentPeer cp);

}

ThesetComponent() method throwsIllegalArgumentException if theComponent actual
parameter is not appropriate for use with this class/instance ofDropTarget, and may also
throwUnsupportedOperationExceptionif the Component specified disallows the external
setting of aDropTarget.

TheaddDropTargetListener() andremoveDropTargetListener() methods allow the unicast
DropTargetListener to be changed.

ThesetActive() andisActive() methods allow theDropTarget to be made active or other-
wise and for its current state to be determined.

ThegetFlavorMap() methods is used to obtain theFlavorMap associated with this
DropTargetfor the purposes of mapping any platform dependent type names to/from their
corresponding platform independentDataFlavors.

ThesetFlavorMap()method allows a newFlavorMapto be assigned to theDropTarget, a
parameter ofnull causes a “default”FlavorMap to be installed for theDropTarget.

ThecreateDropTargetContext() method is only invoked to provide the underlying plat-
form dependent peer with an instantiation of a newDropTargetContext as a Drag opera-
tion initially encounters theComponent associated with theDropTarget. If no
DropTargetContextis currently associated with aDropTarget, a permitted side-effect of an
invocation ofgetDropTargetContext() is to instantiate a newDropTargetContext.

TheaddNotify() andremoveNotify() methods are only called fromComponent to notify
theDropTarget of theComponent’s (dis)association with itsComponentPeer.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 19

Note that theDropTarget itself implementsDropTargetListener, this is to allow the plat-
form peer, theDropTargetContextPeer instance, created by the platform, to notify the
DropTarget of changes in state in the ongoing operation, and thus allows theDropTarget
to interpose itself between the platform and theDropTargetListener registered with the
DropTarget.

2.4.3 TheDropTargetContext Definition

As the logical cursor associated with an ongoing Drag and Drop operation first intersects
the visible geometry of aComponent with an associatedDropTarget, theDropTargetCon-
text associated with theDropTarget is the interface, through which, access to, and control
over state of the recipient protocol is achieved from theDropTargetListener.

A DropTargetContext is created by aDropTarget, via it’s createDropTargetContext()
method, as a side effect of a call to aDropTarget’s getDropTargetContext() method, if no
DropTargetContext currently exists for thatDropTarget.

TheDropTargetContext interface is defined as follows:

public class DropTargetContext {

public DropTarget getDropTarget();

public Component getComponent();

public void dropComplete(boolean success)

throws InvalidDnDOperationException;

public void acceptDrag(int dropAction);

public void rejectDrag();

public void acceptDrop(int dropAction);

public void rejectDrop();

public void addNotify(DropTargetContextPeer dtcp);

public void removeNotify();

protected Transferable

createTransferableProxy(Transferable t,

 boolean isLocal

);

 protected void setTargetActions(int actions);

 protected int getTargetActions();

 protected DataFlavor[] getCurrentDataFlavors();

 protected List getCurrentDataFlavorsAsList();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 20

 protected boolean isDataFlavorSupported(DataFlavor df);

 protected Transferable getTransferable();

}

Most of the access and control methods are protected, since public access to their state is
usually achieved by calling through a particularDropTargetEvent subclass that delegates
the request to theDropTargetContext.

ThegetDropTarget() method return theDropTarget that created thisDropTargetContext.

The getComponent() method returns theComponent associated with theDropTarget that
created thisDropTargetContext.

TheacceptDrag() method is delegated from the similar method onDropTargetDragEvent
and is invoked from one of theDropTargetListener’s methods; dragEnter(), dragOver()or
dropActionChanged() to signify that the recipient is prepared to accept a drop with the
operation specified, which is usually the user’s currently selected action.

TherejectDrag() method is delegated from the similar method onDropTargetDragEvent
and is invoked from one of theDropTargetListener’s methods; dragEnter(), dragOver()or
dropActionChanged()to signify that the recipient is unable to accept a drop with the user’s
currently selected action.

TheacceptDrop() method is delegated from the similar method onDropTargetDropEvent
and is invoked from theDropTargetListener’s drop()method to signify that the recipient is
prepared to accept a drop with the operation specified, which is usually the user’s cur-
rently selected action.

TherejectDrop() method is delegated from the similar method onDropTargetDropEvent
and is invoked from theDropTargetListener’s drop()method to signify that the recipient is
unable to accept a drop with the user’s currently selected action. This terminates a Drag
and Drop operation without a data transfer.

ThedropComplete() method signals to the originatingDragSource that theDropTar-
getListener has completed the transfer(s) that comprise the subject of the Drag and Drop
operation and that the operation is complete. The success (or failure) of the transfer(s) and
the subsequent application of the operation specified is signaled by the value of the actual
parameter.

ThegetDataFlavors() method returns an array of theDataFlavors available from the
DragSource.

ThegetTransferable() method returns aTransferable (not necessarily the one theDrag-
Source registered, it may be a proxy, and certainly shall be in the inter-JVM case) to
enable data transfers to occur via itsgetTransferData() method. Note that it is illegal to
invokegetTransferable() without first invoking anacceptDrop().

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 21

TheaddNotify() andremoveNotify() methods are exclusively called by the underlying plat-
form’s DropTargetContextPeer in order to notify theDropTargetContext that a Drag and
Drop operation is occurring/ceasing on theDropTargetContextand associatedDropTarget.

ThecreateTransferableProxy() method enables aDropTargetContext implementation to
interpose aTransferable between theDropTargetListener and theTransferable provided
by the caller, which is typically the underlying platformDropTargetContextPeer.

2.4.4 TheDropTargetListener Definition

Providing the appropriate “Drag-under” feedback semantics, and processing of any subse-
quent Drop, is enabled through theDropTargetListener asssociated with aDropTarget.

TheDropTargetListener determines the appropriate “Drag-under” feedback and its
response to theDragSourceregarding drop eligibility by inspecting the sources suggested
actions and the data types available.

A particularDropTargetListener instance may be associated with aDropTarget via add-
DropTargetListener() and removed viaremoveDropTargetListener() methods.

public interface java.awt.dnd.DropTargetListener

 extends java.util.EventListener {

void dragEnter (DropTargetDragEvent dtde);

void dragOver (DropTargetDragEvent dtde);

 void dropActionChanged (DropTargetDragEvent dtde);

void dragExit (DropTargetDragEvent dtde);

void drop (DropTargetDropEvent dtde);

}

(+) dtl.dragExit()

dtl.dragEnter()*

(+) dtl.dragOver()*

dtl = DropTargetListener

dtl.dropActionChanged()(*) (+)

dtl.drop()

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 22

ThedragEnter()method of theDropTargetListeneris invoked when the hotspot of the log-
ical “Drag” Cursor intersects a visible portion of theDropTarget’s associatedCompo-
nent’s geometry. TheDropTargetListener, upon receipt of this notification, shall
interrogate the operations or actions, and the types of the data (DataFlavors) as supplied
by theDragSource to determine the appropriate actions and “Drag-under” feedback to
respond with invocation of eitheracceptDrag() or rejectDrag().

ThedragOver()method of theDropTargetListeneris invoked while the hotspot of the log-
ical “Drag” Cursor, in motion, continues to intersect a visible portion of theDropTarget’s
associatedComponent’s geometry. TheDropTargetListener, upon receipt of this notifica-
tion, shall interrogate the operation “actions” and the types of the data as supplied by the
DragSourceto determine the appropriate “actions” and “Drag-under” feedback to respond
with an invocation of eitheracceptDrag() or rejectDrag().

The getLocation() method return the current co-ordinates, relative to the associatedCom-
ponent’s origin, of the hotspot of the logical “Drag” cursor.

ThegetSourceActions() method return the current “actions”, or operations
(ACTION_MOVE, ACTION_COPY, orACTION_LINK) theDragSourceassociates with
the current Drag and Drop gesture.

ThedragExit() method of theDropTargetListener is invoked when the hotspot of the logi-
cal “Drag” Cursor ceases to intersect a visible portion of theDropTarget’s associated
Component’s geometry, or immediately prior to adrop() notification. TheDropTargetLis-
tener,upon receipt of this notification, shall undo any “Drag-under” feedback effects it has
previously applied. Note that the DropTargetContext associated with theDropTarget is
invalidated as a side-effect

Thedrop()method of theDropTargetListeneris invoked as a result of the user terminating
their Drag gesture while intersecting. TheDropTargetListener, upon receipt of this notifi-
cation, shall perform the operation specified by the return value of thegetSourceActions()
method on theDropTargetDropEvent object, upon theTransferable object returned from
thegetTransferable()method, and subsequently invoke thedropComplete() method of the
associatedDropTargetContext to signal the success, or otherwise, of the operation.

2.4.5 TheDropTargetDragEvent and DropTargetDropEvent Definitions

TheDropTargetEvent andDropTargetDragEvent are defined as follows:

public abstract class java.awt.dnd.DropTargetEvent

 extends java.util.EventObject 1 {

public DropTargetContext getDropTargetContext();

}

A DropTargetEvent is passed to theDropTargetListener’s dragExit() method.

1. This could be a subclass of AWTEvent but there seems little motivation to make it so.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 23

public class java.awt.dnd.DropTargetDragEvent

 extends java.awt.dnd.DropTargetEvent {

public DataFlavor[] getDataFlavors();

public Point getLocation();

public int getSourceActions();

 public getDropAction();

 public DataFlavor[] getCurrentDataFlavors();

public List getCurrentDataFlavorsAsList();

 public boolean isDataFlavorSupported();

public void acceptDrag(int operation);

public void rejectDrag();

}

A DropTargetDragEvent is passed to theDropTargetListener’s dragEnter(), dragOver()
and dropActionChanged()methods.

The getLocation() method return the current co-ordinates, relative to the associatedCom-
ponent’s origin, of the hotspot of the logical “Drag” cursor.

ThegetSourceActions() method return the current “actions”, or operations
(ACTION_MOVE, ACTION_COPY, orACTION_REFERENCE) theDragSource asso-
ciates with the current Drag and Drop gesture.

ThegetCurrentDataFlavors(), getCurrentDataFlavorsAsList(), andisDataFlavorSup-
ported(), methods are provided in order for the recipient to interrogate the list of types
available from the source.

The is defined as follows:

public class java.awt.dnd.DropTargetDropEvent

 extends java.awt.dnd.DropTargetEvent {

public Point getLocation();

public int getSourceActions();

 public int getDropAction();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 24

public void acceptDrop(int dropAction);

public void rejectDrop();

public boolean isLocalTransfer();

 public DataFlavor[] getCurrentDataFlavors();

 public List getCurrentDataFlavorsAsList();

 public boolean isDataFlavorSupported(DataFlavor df);

public Transferable getTransferable();

 public void dropComplete(boolean success);

}

A DropTargetDropEventis passed to theDropTargetListener’s drop()method, as the Drop
occurs. TheDropTargetDropEvent provides theDropTargetListener with access to the
Data associated with the operation, via theTransferablereturned from thegetTransfer-
able() method.

The return value of thegetSourceActions()method is defined to be the action(s) defined by
the source at the time at which the Drop occurred.

The return value of thegetDropAction()method is defined to be the intersection of both
the Drop action selected by the users gesture, and the set of actions supported by the
source, at the time of the Drop. The resulting action is normally the intersection of this
value and the set of actions supported by the target at the time of the drop.

The return value of thegetLocation() method is defined to be the location at which the
Drop occurred.

ThegetCurrentDataFlavors(), getCurrentDataFlavorsAsList(), andisDataFlavorSup-
ported(), methods are provided in order for the recipient to interrogate the list of types
available from the source for subsequent transfer via thegetTransferData()method of the
Transferable.

A typical implementation of thedrop() method will inspect the actions and theDataFla-
vors’ available to determine if a successful exchange can occur or not.

When an exchange may occur, aDropTargetListener.drop() implementation shall invoke
acceptDrop() with the selected operation as an actual parameter, prior to any invocation of
getTransferable(). CallinggetTransferable() prior toacceptDrop() shall result in an
InvalidDnDOperationException.

TherejectDrop() shall be called to reject the Drop operation. Once called no further inter-
action can occur between the two participants, therefore it is typical to return from the
drop()method immediately after calling this.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 25

The isLocalTransfer() method shall returntrue , iff the source of the Drag and Drop
operation resides within the same physical JVM as the recipient of thedrop()notification,
andfalse otherwise.

This distinction is significant to the recipient when it receives object references back from
invokingTransferable.getTransferData()in the local case, since in this case the object ref-
erence it receives is the same object reference held by the source (i.e it is not a copy, proxy
or distinct object) thus the recipient must treat such a shared object reference differently in
the local case as follows:

• If the action isACTION_COPY then the recipient shall, depending upon the nature of
the object(s) and data transferred, either take a copy of; the object itself, the data encap-
sulated within, or both.

• If the action isACTION_MOVE , then the recipient shall not modify the state of the
object or the data encapsulated within until after it has signalled to the source, via an
invocation ofdropCompete() that the transfer is effected. (Note that a source is also
prohibited from modifying the state of such an object after it has returned such an
object from it’sgetTransferData() method, until such time as it receives adragDro-
pEnd()notification.)

• If the action isACTION_LINK , neither the recipient nor the source shall alter the state
of either the object exchanged or any data contained therein until after the dropCom-
plete() anddragDropEnd() methods have been processed. Thereafter the sharing
semantics are implementation dependent upon the object(s) shared.

ThedropComplete() method signals the end of the associated Drag and Drop operation,
and indicates the success (or failure) of the transfers performed by the recipient. Invoking
this method results in theDragSourceListener’s dragDropEnd()method being called with
the appropriate state available from it’sDragSourceDropEvent. Failure to invoke this
method will result in the Drag and Drop operation failing to terminate properly.

2.4.6 Autoscrolling support

Many GUIComponents present a scrollable “viewport” over a (potentially) large dataset.
During a Drag and Drop operation it is desirable to be able to “autoscroll” such “view-
ports” to allow a user to navigate over such a dataset, scrolling to locate a particular mem-
ber (initially not visible through the “viewport”) that they wish to drop the subject of the
operation upon.

Components that are scrollable provide Drag “autoscrolling” support to theirDropTarget
by implementing the following interface:

public interface Autoscroll {

Insets getAutoscrollInsets();

void autoScrollContent(Point cursorLocn);

}

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 26

An implementingDropTarget shall periodically call theautoscroll() method of its associ-
atedComponent (if present), passing the current logical cursor location inComponent co-
ordinates, when the following conditions are met:

• If the logical cursor’s hotspot intersects with the associatedComponent’s visible geom-
etry and the boundary region described by theInsets returned by thegetAutoscrollIn-
sets() method.

• If the logical cursor’s hotspot has not moved (subject to the next condition below) for
an implementation defined period (millisecs)

• If any cursor movement subsequent to the initial triggering occurrence does not exceed
a platform dependent hysteresis value (pixels).

Should any of the above conditions cease to be valid, autoscrolling shall terminate until
the next triggering condition occurs.

Both the initial delay prior to autoscrolling commencing, the interval between autoscroll-
ing notifications, and the pixel hysteresis value are externally configurable and can be que-
ried from theToolkit.getDesktopProperty() method.

2.5 Data Transfer Phase

In the case where a valid drop occurs, theDropTargetListener’s drop()method is responsi-
ble for undertaking the transfer of the data associated with the gesture. TheDropTarget-
DropEvent provides a means to obtain aTransferable object that represent that data
object(s) to be transferred.

From thedrop() method, theDropTargetListener shall initially eitherrejectDrop() (imme-
diately returning thereafter) oracceptDrop() specifying the selected operation from those
returned bygetSourceActions().

Subsequent to anacceptDrop(), but notbefore,getTransferable() may be invoked, and any
data transfers performed via the returnedTransferable’s getTransferData() method.
Finally, once the destination of the drop has completed the transfer(s) of the objects from
the source it shall signal the success, or immediate failure, of the transfer(s) via an invoca-
tion of DropTargetContext.ropComplete().

Upon returning from theDropTargetContext.dropComplete() method theTransferableand
DragSourceContext instances are no longer guaranteed to be valid and all references to
them shall be discarded by the recipient to allow them to be subsequently garbage col-
lected.

When using theACTION_REFERENCE operation the source and destination should
take care to agree upon the object and the associated semantics of the transfer. Typically in
intra-JVM transfers a live object reference would be passed between source and destina-
tion, but in the case of inter-JVM transfers, or transfers between native and Java applica-
tions, live object references do not make sense, so some other ‘reference’ type should be
exchanged such as a URI for example. Both theDragSourceandDropTargetcan detect if
the transfer is intra-JVM or not.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 27

2.5.1 FlavorMap and SystemFlavorMap

All the target DnD platforms represent their transfer data types using a similar mechanism,
however the representations do differ. The Java platform uses MIME types encapsulated
within aDataFlavorto represent its data types. Unfortunately in order to permit the trans-
fer of data between Java and platform native applications the existence of these platform
names need to be exposed, thus a mechanism is required in order to create an extensible
(platform independent) mapping between these platform dependent type names, their rep-
resentations, and the Java MIME basedDataFlavors.

The implementation will provide a mechanism to externally specify a mapping between
platform native data types (strings) and MIME types (strings) used to constructDataFla-
vors. This external mapping will be used by the underlying platform specific implementa-
tion code in order to expose the appropriateDataFlavors (MIME types), exported by the
source, to the destination, via the underlying platform DnD mechanisms.

Both theDragSource andDropTarget classes provide access for the underlying system to
map platform dependent names to and fromDataFlavors.

public interface java.awt.datatransfer.FlavorMap {

java.util.Map getNativesForFlavors(DataFlavor[] dfs);

java.util.Map getFlavorsForNatives(String[] natives);

}

ThegetNativesForFlavors() method takes an array ofDataFlavors and returns aMap
object containing zero or more keys of typeDataFlavor, from the actual parameterdfs,
with associated values of typeString, which correspond to the platform dependent type
name for that MIME type.

ThegetFlavorsForNatives() method takes an array ofStringtypes and returns aMapobject
containing zero or more keys of typeString, from the actual parameter natives, with asso-
ciated values of typeDataFlavor, which correspond to the platform independent type for
that platform dependent type name.

TheMap object returned by both methods may be mutable but is not required to be.

If NULL is passed to either of these methods they should return their current map of all
keys and values known to the implementation at the time of the call.

For example on Win32 the Clipboard Format Name for simple text is “CF_TEXT” (actu-
ally it is the integer 1) and on Motif it is the X11 Atom named “STRING”, the MIME type
one may use to represent this would be “text/plain charset=us-ascii”. Therefore a platform
portableFlavorMapwould map between these names; CF_TEXT on win32 and STRING
on Motif/X11.

Typically, as implemented in theSystemFlavorMapthese mappings are held in an external
persistent configuration format (a properties file or URL) and are loaded from the platform
to configure theFlavorMap appropriately for a given platform.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 28

TheSystemFlavorMap class is provided to implement a simple, platform configurable
mechanism for specifying a system-wide set of common mappings, and is defined as fol-
lows:

public class java.awt.datatransfer.SystemFlavorMap

 implements FlavorMap {

public static FlavorMap getSystemFlavorMap();

public synchronized Map

getNativesForFlavors(DataFlavor[] dfs);

public synchronized Map

getFlavorsForNatives(String[] natives);

public static String

encodeJavaMIMEType(DataFlavor df);

public static String

encodeJavaMimeType(java.util.mime.MimeType mime);

public static boolean

isEncodedJavaMimeType(String mimeStr);

public static DataFlavor

createFlavorFromEncodedJavaMimeType(String ejmts);

public static java.util.mime.MimeType

createMimeTypeFromEncodedJavaMimeType(

String ejmts

);

}

TheSystemFlavorMapclass provides a simple implementation, using a properties file (see
java.awt.Properties), of a persistent platformFlavorMap. Using the value of the AWT
property “AWT.flavorMapFileURL ” (seeToolkit.getProperty()) or the default file
location ofSystem.getProperty(“java.home ”) + File.separator + “lib” + File.separa-
tor + “ flavormap.properties ”, this class creates the appropriateMaps from the
properties found therein.

In addition the class provides several static convenience functions used to encode and
decode JavaMimeTypes to and from a platform dependent namespace. The syntax of the
properties file is:

{ <platform_type_name> ‘=’ <IETF_MIME_RFC_conformant_specification> <nl> } *

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 29

The default implementations ofDragSourceandDropTargetreturn theSystemFlavorMap
from theirgetFlavorMap() method, unless they have been provided with an overriding
implementation.

2.5.2 Transferring Data across the JVM boundary

Since one of the primary goals of this API is to allow Drag and Drop of data between Java
and native applications this has some significant consequences upon the method and
mechanism of the actual data encoding and exchange when data is passed across the
boundary of the Java Virtual Machine.

Since one of the participants in such an exchange may be a native application, and thus has
no knowledge of the Java type system, the Drag and Drop system cannot just exchange a
Java object reference since the other participant may have no knowledge of, or capability
to manipulate such a type.

When any exchange occurs, it can only do so, regardless of the implementation of the par-
ticipants, if and only if both participants are agreed upon a familiar data type and encod-
ing. Thus, sadly the burden of the exchange is born mostly by the participants themselves.

What this means in practical terms is that for “native” data formats, such as platform
dependent image, document, or other “Content-Types” the encoding and decoding of their
associated external data format is the responsibility of the source and destination of the
transfer.

The Drag and Drop system shall expose the external representation of such “native” data
types across the boundary of the Java Virtual Machine as encapsulated within a
java.io.InputStreamor a subclass thereof.

This means that anyDataFlavor with a representation class that extendsjava.io.Input-
Stream can be transferred, and will be exposed for transfer, across the Java Virtual
Machine boundary.

To implement the exchange of such a native data type, a developer would define a
DataFlavor with a MIME “Content-Type” that describes the nature of the “native” data
type, with a representation class that extends ajava.io.InputStream class that encodes the
data encapsulated into a stream of bytes.

In particular suchInputStream subclasses shall implement the following semantics:

• Provide a public constructor with a single argument of typejava.io.InputStream.

Provision of this constructor by a subclass ofjava.io.InputStream will allow the Drag
and Drop system (associated with theDropTarget) to automatically re-construct an
instance of the representation class specified by the requestedDataFlavor, and initial-
ize it with anInputStream containing the encapsulated data formatted according to the
expectations of that subclass. Once initialized this instance is returned to the caller of
the Transferable.getTransferData() method, thus allowing the caller to subsequently re-
read and interpret the formatted content of the data stream transferred.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 30

• Provide an implementation ofInputStream.read(byte b[], int off, int len).

Provision of this method (or inheriting a superclasses implementation) enables the Drag
and Drop system (associated with theDragSource) to automatically extract an encoded
stream of the encapsulated data from theTransferable, thus enabling the transfer of the
data across the JVM boundary as a simple byte stream to the requestor of the particular
DataFlavor.

2.5.3 Transferring lists of files across the JVM boundary.

A typical subject of a Drag and Drop transfer is a list of one or more platform dependent
filenames. In order to ease the programming task of developers either producing or con-
suming such lists the Drag and Drop system treats them as a special case.

If a DataFlavor is specified with a MIME “Content-Type” ofapplication/x-java-
file-list;class=java.util.List the Drag and Drop system will expect the
list elements to be a homogeneous list of objects of typejava.io.File. Thus a source shall,
if supporting the transfer of a list of files, construct such aList of File objects when such a
DataFlavor is requested, and a recipient shall expect such aList of File objects if it
requests such a validDataFlavor from it’s source. This special case provides a simple
mechanism for the transfer of lists of files between source and target.

2.5.4 Transferring java.rmi.Remote references across the JVM boundary.

It is possible to Drag and Drop object references between JVMs’ by using the facilities of
the RMI mechanism. The Drag and Drop system will automatically arrange for the trans-
fer of any object reference that adheres to these requirements:

• The representation class of interface associated with the requestedDataFlavor imple-
ments bothjava.rmi.Remote andjava.io.Serializable.

(the MIME “Content-Type” can be any suitable, arbitrary type orapplication/x-
java-remote-object)

(effectively the object implementation class transferred should be extended from
java.rmi.server.UnicastRemoteObjectsince the RMI system implements some required
initialization, without which the transfer will not complete properly).

• The drop action isACTION_LINK .

If these conditions are met, then if an appropriateDataFlavoris requested, then the object
returned to the requestor (if it is in a difference JVM from the source) will be an RMI ref-
erence to an instance of theRemote object subinterface specified as the representation
class of theDataFlavor.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 31

3.0 Issues

3.0.1 What are the implications of the various platform protocol engines?

Due to limitations of particular underlying platform Drag and Drop and Window System
implementations, the interaction of a Drag operation, and the event delivery semantics to
AWT Componentsis platform dependent. Therefore during a drag operation aDragSource
may process platform Window System Events pertaining to that drag to the exclusion of
normal event processing.

Due to interactions between the single-threaded design center of the platform native DnD
systems, and the native window system event dispatching implementations in AWT, “call-
backs” intoDropTargetListenerandDragSourceListener will occur either on, or synchro-
nized with the AWT system event dispatch thread. This behavior is highly undesirable for
security reasons but is an implementation, not architectural feature, and is unavoidable.

3.0.2 Inter/Intra VM transfers?

To enable intra-JVM Drag and Drop Transfers the existingDataFlavor class will be
extended to enable it to represent the type of a “live” object reference, as opposed to a
Serialized (persistent) representation of one. Such objects may be transferred between
source and destination within the same JVM andClassLoader context.

The MIME Content-Type shall beapplication/x-java-local-objectref.

3.0.3 Lifetime of the Transferable(s)?

Transferable objects, their associatedDataFlavors’, and the objects that encapsulate the
underlying data specified as the operand(s) of a drag and drop operation shall remain valid
until, at least, theDragSourceListener, associated with theDragSource controlling the
operation, receives adragDropEnd(). The lifetime of the subject(s) of the operation, trans-
ferred between source and target is implementation defined beyond that point in time.

3.0.4 Implications of ACTION_MOVE semantics on source objects exposed via
Transferable?

The “source” of a successful Drag and Drop (ACTION_MOVE) operation is required to
delete/relinquish all references to the object(s) that are the subject of theTransferable
immediately after transfer has been successfully completed. That is before returning from
theDragSourceListener.dragDropEnd() notification.

3.0.5 Semantics ofACTION_REFERENCE operation.

As a result of significant input from developers to an earlier version of the specification an
additional operation/action tag;ACTION_REFERENCE was added to include existing
platform Drag and Drop”Link” semantics.

It is believed that Reference, or Link, semantics are already sufficiently poorly specified
for the platform native Drag and Drop to render it essentially useless even between native

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 32

applications, thus between native and platform independent Java applications it is not rec-
ommended.

For Java to Java usage the required semantic; within the same JVM/ClassLoader, is
defined such that the destination shall obtain a Java object reference to the subject(s) of the
transfer. Between Java JVM’s orClassLoaders, the semantic is implementation defined,
but could be implemented through transferring either a URL from the source to the desti-
nation or an RMIRemote reference.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 33

Appendix A : DropTargetPeer definition

Although not a normative part of this specification this definition is included for clarity:

public interface DropTargetPeer {

 void addDropTarget(DropTarget dt);

 void removeDropTarget(DropTarget dt);

}

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 34

Appendix B : DragSourceContextPeer definition

Although not a normative part of this specification this definition is included for clarity:

public interface DragSourceContextPeer {

 void startDrag(DragSourceContext dsc,

 Cursor c,

 Image di,

 Point ioff

) throws InvalidDnDOperationException;

 Cursor getCursor();

 void setCursor(Cursor c)

 throws InvalidDnDOperationException;

 void transferablesFlavorsChanged();

}

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 24, 1998 35

Appendix C : DropTargetContextPeer definition

Although not a normative part of this specification this definition is included for clarity:

public interface DropTargetContextPeer {

 int getTargetActions();

 void setTargetActions(int actions);

 DropTarget getDropTarget();

 DataFlavor[] getTransferDataFlavors();

 Transferable getTransferable()

 throws InvalidDnDOperationException;

 boolean isTransferableJVMLocal();

 void acceptDrag(int dragAction);

 void rejectDrag();

 void acceptDrop(int dropAction);

 void rejectDrop();

 void dropComplete(boolean success);

}

