
Java Card Applet Developer’s Guide

Sun Microsystems, Inc
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300

Revision 1.12, August 19, 1998

Copyright 1998 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94043 USA.
All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any. Third-party software in this product, if any, is protected by copyright and licensed
from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, Solaris, Java, Java Powered, the Java Powered logo, the Coffee Cup logo, Java Card,
JavaPurse and all of Sun’s other Java-based marks are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. iii

Contents

Preface viii

1. Overview 1-1

Smart Card Architecture 1-1

Communication Interface 1-2

Smart Card CPU 1-2

On-Card Memory 1-2

Application Protocol Data Units 1-3

Java Technology Smart Cards 1-3

Blocked Card 1-5

2. Java Card Technology 2-1

The Virtual Machine 2-1

Language Specifications 2-2

Threads 2-2

Garbage Collection 2-2

Primitive Types 2-2

Arrays 2-5

Inheritance 2-6

Security 2-6

Portability 2-6

Exceptions 2-6

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.iv

Core Classes 2-8

The Throwable Class 2-9

The Object Class 2-10

3. Creating a Java Card Applet 3-1

A Basic Example 3-2

Java Card Applet Installation 3-5

The Applet Class 3-5

Registering the Applet 3-6

Applet Selection 3-7

Working with APDUs 3-8

APDU Communication Sequence 3-10

Receiving APDU Data 3-10

APDU Responses 3-12

Return Values 3-13

Atomicity 3-14

Commit Buffer 3-14

4. Optimizing Java Card Applets 4-1

Reusing Objects 4-1

Allocating Memory 4-2

Accessing Array Elements 4-2

5. Files 5-1

Elementary and Dedicated Files 5-1

Record Files 5-1

The FileSystem Class 5-3

File Operations 5-4

File Security 5-5

Finding Files 5-6

Record Operations 5-7

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. v

Finding Records 5-7

Managing Files with the FileSystem Class 5-8

6. Cryptography 6-1

Cryptography Concepts 6-1

Symmetric Keys 6-2

Verification of Symmetrically-Encoded Messages 6-3

Asymmetric Keys 6-4

Authentication and Verification 6-5

Glossary 1

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.vi

Figures

FIGURE 1-1 Front and Back of Smart Cards (not to scale) 1-1
FIGURE 1-2 Eight Contact Points of the Smart Card Chip 1-2
FIGURE 1-3 Card Acceptance Device 1-2
FIGURE 1-4 Java Card Technology Architecture 1-4
FIGURE 1-5 Downloading Converted Classes 1-5
FIGURE 3-1 Downloading Converted Classes 3-1
FIGURE 3-2 Applet Selection 3-7
FIGURE 3-3 Buffer Length 3-11
FIGURE 3-4 Split APDU Buffer 3-12
FIGURE 5-1 Linear Files 5-2
FIGURE 5-2 Cyclic File Record Order 5-2
FIGURE 5-3 Cyclic File after Record Appended 5-2
FIGURE 5-4 FileSystem Class Hierarchy 5-3
FIGURE 5-5 Applet Data Hierarchy 5-4
FIGURE 6-1 ECB Diagram 6-3
FIGURE 6-2 CBC Diagram 6-3

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. vii

Tables

TABLE 1-1 Smart Card Software Components 1-4
TABLE 2-1 Supported Primitive Types 2-2
TABLE 2-2 Unsupported Primitive Types 2-3
TABLE 2-3 Supported Exceptions 2-7
TABLE 2-4 Java Card Platform Core Classes 2-8
TABLE 5-1 Classes and File Types 5-3
TABLE 5-2 File Access Permission Flags 5-5
TABLE 5-3 File Flags 5-6
TABLE 5-4 Search Mode Direction Flags 5-8
TABLE 5-5 FileSystem Methods 5-8
TABLE 5-6 FileSystem Methods 5-9

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.viii

Preface

Java Card technology combines a subset of the Java programming language with a runtime environment
optimized for smart cards and related, small-memory embedded devices. The goal of Java Card technology is
to bring many of the benefits of Java software programming to the resource-constrained world of smart cards.

This document demonstrates the concepts and APIs that developers need to write applications for the Java
Card platform (Java Card applets). This document is specific to version 2.0 of the Java Card API specification
for use with version 1.0.2 of the Java Development Kit (JDK). After reading this guide, a developer will have
enough knowledge of the Java Card technology programming concepts and the Java Card API to develop Java
software applets for smart cards.

Who Should Use This Guide?
Java language developers, who wish to extend their development efforts onto smart card platforms, are the
intended audience of this guide. It is also intended for use by existing smart card developers who are
accustomed to programming in assembler or C.

Before You Read This Guide
Before reading this guide, you should familiarize yourself with the Java programming language, the Java
Virtual Machine, and smart card technology. A good resource for becoming familiar with Java technology and
Java Card technology is the Sun Microsystems, Inc. website, located at: http://java.sun.com. To
download the JDK, see http://java.sun.com/products/jdk/.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. ix

How This Guide Is Organized
Chapter 1, “Overview,” provides an overview of smart cards and the Java Card technology architecture.

Chapter 2, “Java Card Technology,” provides a look at Java Card technology by way of comparison with
Java technology.

Chapter 3, “Creating a Java Card Applet,” provides a sample Java Card applet and describes how to create
your first Java Card applet.

Chapter 4, “Optimizing Java Card Applets,” describes the programming considerations for the resource-
constrained environment of the smart card.

Chapter 5, “Files,” explains how to use Java Card technology’s file classes.

Chapter 6, “Cryptography,” explains how to use Java Card technology’s cryptography classes.

Glossary is a list of words and their definitions to assist you in using this guide.

Related Documents
References to various documents or products are made in this manual. You should have the following
documents available:

■ Java Card 2.0 Application Programming Interface, Sun Microsystems, Inc.

■ Java Card 2.0 Language Subset and Virtual Machine Specification, Sun Microsystems, Inc.

■ The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele. Addison-Wesley, 1996,
ISBN 0-201-63451-1.

■ The Java Virtual Machine Specification (Java Series) by Tim Lindholm and Frank Yellin. Addison-
Wesley, 1996, ISBN 0-201-63452-X.

■ ISO 7816 Specification Parts 1-6.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 1-1

1. Overview

The Java Card specifications enable Java technology to run on smart cards and other devices with limited
memory. To simplify the material, the focus in this document is on the smart card. A smart card is identical in
size to a typical credit card and stores and processes information through the electronic circuits embedded in
silicon in the plastic substrate of the card. There are two basic types of smart cards: memory and intelligent. A
memory card stores data locally, but does not contain a CPU for performing computations on that data. An
intelligent (smart) card includes a microprocessor and can perform calculations on locally-stored data.

There are several unique benefits of the Java Card technology in these smart cards, such as:

■ Platform Independent—Java Card applets that comply with the Java Card API specification will run on
cards developed using the Java Card Application Environment (JCAE), allowing developers to use the
same Java Card applet to run on different vendors’ cards.

■ Multi-Application Capable-—Multiple applications can run on a single card. In the Java programming
language, the inherent design around small, downloadable code elements makes it easy to securely run
multiple applications on a single card.

■ Post-Issuance of Applications—The installation of applications, after the card has been issued, provides
card issuers with the ability to dynamically respond to their customer's changing needs.

■ Flexible—The object-oriented methodology of the Java Card technology provides flexibility in
programming smart cards.

■ Compatible with Existing Smart Card Standards—The Java Card API is compatible with formal
standards, such as, ISO7816, and industry-specific standards.

Smart Card Architecture
The smart card architecture consists of a communication interface, memory, and a CPU for performing
calculations and processing information. The front and back of the card is pictured in FIGURE 1-1.

FIGURE 1-1 Front and Back of Smart Cards (not to scale)

Electrical
contacts

Magnetic stripe

Microprocessor
Front Back

XYZ B800010

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.1-2

Communication Interface

A smart card does not contain its own power supply, display, or keyboard. It interacts with a Card Acceptance
Device (CAD) through using a communication interface, provided by a collection of eight electrical contact
points, as pictured in FIGURE 1-2.

FIGURE 1-2 Eight Contact Points of the Smart Card Chip

Card Acceptance Device

The Card Acceptance Device (CAD) (also called a card reader, device reader, or card terminal) serves as a
conduit for information into and out of the card. The card must be inserted into the CAD, as pictured in
FIGURE 1-3, to provide the card with power (through its contacts, as described above).

FIGURE 1-3 Card Acceptance Device

Smart Card CPU

Many Java language developers are accustomed to a world of powerful, multitasking CPUs with large amounts
of RAM, virtual memory support, paging, and integrated I/O devices. As a result of the cost sensitivity and
low profile of smart card CPUs, current smart card technology represents a return to the days when CPUs were
8-bit, single-tasking devices with 1KB of RAM or less.

On-Card Memory

There are three main types of memory on a smart card, they are:

■ ROM (Read-Only Memory) — contains code and data that is read-only and cannot be modified.
Information stored in ROM persists even after power to the card is disconnected.

Power—(Vcc)

Reset—(RST)

Clock—(CLK)

Reserved for future use—(RFU)

(GND)—Ground

(Vpp)—Optional

(I/O)—Input/Output

(RFU)—Reserved for future use

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 1-3

■ RAM (Random Access Memory) — is fast, volatile memory. Any information in RAM is lost when power
to the card is disconnected. A typical Java Card platform implementation uses RAM for the frame and
operand stacks and for storing temporary data.

■ EEPROM (Electrically Erasable Programmable Read Only Memory) — is like ROM in that information
in this type of memory persists across power sessions (other forms of non-volatile memory are also used in
smart cards, for example, Flash and battery-backed RAM). EEPROM has the added advantage over ROM
of being both readable and writeable (like RAM), although writing to EEPROM is slower than writing to
RAM and EEPROM is subject to wear. After a large number of writes to a particular byte, typically more
than 100,000, the data integrity of that byte in EEPROM may fail. See the chip manufacturer's
specification for details.

The applet developer should ensure that temporary fields that are updated frequently are components of
transient arrays. This reduces potential wear on persistent memory and guarantees better write performance.
As a rule of thumb, if a temporary field is being updated multiple times for every Application Protocol Data
Unit (APDU), the applet developer should move it into a transient array.

Application Protocol Data Units
Smart cards communicate using a packet mechanism called Application Protocol Data Units (APDUs). Smart
cards are reactive communicators—that is, they never initiate communications, they only respond to APDUs
from the CAD. The communication model is command-response based—that is, the card receives a command
APDU, performs the processing requested by the command, and returns a response APDU. See the Creating a
Java Card Applet chapter for more information on working with APDUs.

The International Standards Organization (ISO) has set forth hardware and software specifications for
creating inter-operable smart cards. These specifications are contained in the ISO 7816 Parts 1-6 documents.
For the purposes of developing Java Card applets, the most relevant document is ISO 7816-4.

Java Technology Smart Cards
A Java technology smart card is a smart card that can execute Java Card applets. These applets run in the Java
Card environment, which may be as small as:

■ 24K of ROM
■ 16K of EEPROM
■ 512 bytes of RAM

In addition to a CPU and memory, a Java technology smart card contains various software components, as
described in the following table.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.1-4

TABLE 1-1 Smart Card Software Components

Software Component Description

Native methods Performs the I/O, cryptographic, and memory allocation services of the
card.

VM The Java Card Virtual Machine (VM) provides bytecode execution and
Java language support.

Framework The set of classes which implement the API. This includes core and
extension packages. Responsibilities include dispatching of APDUs,
applet selection, managing atomicity, and installing applets.

API The Application Programming Interface (API) defines the calling
conventions by which an applet accesses the JCRE and native methods.

JCRE The Java Card runtime environment (JCRE) includes the Java Card
Virtual Machine (VM), the framework, the associated native methods,
and the API.

Industry-specific
extensions

Add-on classes that extend the applets installed on the card.

Applets Programs written in the Java programming language for use on a smart
card.

These components are illustrated in FIGURE 1-4.

FIGURE 1-4 Java Card Technology Architecture

A primary difference between the Java Card Virtual Machine (JCVM) and the Java Virtual Machine (JVM) is
that the JCVM is implemented as two separate pieces. In effect, it is distributed in both space and time. The

JCRE

Industry-Specific Extensions

Java Card VM

Framework
API

Applet Applet Applet

Native Methods

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 1-5

first piece of the VM executes off-card on a PC or workstation. This off-card part of the JCVM, the Java Card
Converter, does all the work required for loading classes and resolving references. The on-card part of the VM
includes the bytecode interpreter.

The interface between the two pieces is a converted applet (.cap file), as pictured in FIGURE 1-5, which is
produced by the off-card VM during the development process and used by the on-card VM during execution.

FIGURE 1-5 Downloading Converted Classes

For further information, see the Java Card Technology chapter and the Java Card 2.0 Reference
Implementation (JC2RI), available on the Sun Microsystems, Inc. website, located at http://java.sun.com.

Blocked Card

There are a few conditions that cause the card to be blocked (or muted), preventing further use of the card. For
example, a card might be blocked when an attempt to breach the card’s security is detected (by perhaps, the
personal identification number (PIN) code being entered incorrectly more than five consecutive times). In this
case, the issuer needs to be contacted (and the card may need to be returned) to reset the VM from such a
blocked state.

Off-Card VM On-Card VM

Java Card VM

JCREConverter

.cap
file

.class
files

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 2-1

2. Java Card Technology

Java Card technology preserves many of the benefits of the Java programming language—productivity,
security, robustness, tools, and portability—while enabling Java technology for use on smart cards. The
Virtual Machine (VM), the language definition, and the core packages have been made more compact and
succinct to bring Java technology to the resource-constrained environment of smart cards.

The Virtual Machine
The Java Card Virtual Machine (VM) provides bytecode execution and Java language support. The Java Card
Runtime Environment (JCRE) includes a virtual machine (VM) and core classes to support APDU routing,
ISO communication protocols, and transaction-based processing. The Java Card VM is actually split into two
parts, one for running off-card and the other for running on-card, as explained in the Overview chapter.

The on-card Java Card VM executes bytecode, manages classes and objects, enforces separation between
applications (firewalls), and enables secure data sharing.

The off-card Java Card VM contains a Java Card Converter tool for providing many of the verifications,
preparations, optimizations, and resolutions that the Java VM performs at class-loading time. Dynamic class
loading at runtime is not supported by the Java Card VM because:

■ There are limited resources within the smart card environment

■ Security aspects of the smart card environment prohibit most dynamic behavior (virtual method binding is
allowed)

The Java Card Converter tool is a “pre-loading” implementation of the Java VM. All classes in a package,
referenced by an applet, must be bound into the applet’s binary image when the applet is installed on the card.
The Java Card Converter acts as a pre-loading processor on the Java Card platform class files. The Java Card
Converter performs the following steps:

1. Verification—checks that the load images of the classes are well formed, with proper symbol tables and
checks for language violations, specific to the Java Card specifications

2. Preparation—allocates the storage for and creates the VM data structures to represent the classes, creates
static fields and methods, and initializes static variables to default values

3. Resolution—resolves symbolic references to classes, methods, and fields into a more compact form which
can be handled more efficiently on the card. When dealing with intra-package references, some amount of

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.2-2

binding can be performed off-card, similar to the binding involved in the generation of “quick” bytecodes
(as in the JVM specification).

Language Specifications
There are differences in the language specifications between the Java platform and the Java Card platform,
resulting from the resource-constrained environment of the smart card. One main difference between the Java
platform and the Java Card platform is that the Java Card platform supports only Java Card applets, not JDK-
style applets or applications.

The Java Card API uses a subset of the Java programming language as defined in version 1.0.2 of the JDK.
The reference implementation will run on any version of the JDK after and including version 1.1. The Java
Card 2.0 Reference Implementation (JC2RI), available on the Sun Microsystems, Inc. website
(http://java.sun.com), is based on the Java Card 2.0 Language Subset and Virtual Machine Specification.

The language differences between the Java platform and the Java Card platform are summarized in this
section.

Threads

The Java Card platform does not support threads because current smart card central processing units (CPUs)
cannot support efficient multitasking. As a result, none of the thread keywords are supported.

There is also no support in the Java Card platform for synchronized or volatile (used to control access to
shared variables and methods among threads).

Garbage Collection

Java Card technology implementations are not required to support garbage collection, so the finalize()
method is not supported.

Primitive Types

As in Java technology, Java Card technology supports the following primitive types: byte, short, and boolean.
A byte is an 8-bit signed two’s complement number with a possible range of values between -128 to 127. A
short is a 16-bit signed two’s complement number with a possible range of values between -32768 to 32767.
Internally, Java Card technology represents the boolean type as a byte. This is in contrast to Java technology,
which represents boolean internally as int. These are the only primitive types universally supported in Java
Card technology, reflecting the 8-bit and 16-bit microprocessors on which Java Card technology currently
executes.

The int type is available for use on some advanced 32-bit smart cards (the int type could actually be
implemented on 16 or even 8 bit cards, but at a cost in execution and overhead). The int type represents a 32-
bit signed two’s complement number with a possible range of values between -2147483648 to 2147483647.
The following table describes the supported primitive types.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 2-3

TABLE 2-1 Supported Primitive Types

Type Width Range

byte 8 bits -128, 127

short 16 bits -32768, 32767

boolean 8 bits TRUE or FALSE

int (supported on
some platforms)

32 bits -2147483648 to
2147483647

The Java Card platform does not support the char, double, float, or long primitive types. The transient and
volatile declaration modifiers are unsupported. The following table describes the unsupported primitive types.

TABLE 2-2 Unsupported Primitive Types

Type Width Range

Long 64 bits -264, 264-1

Char 16 bits Unicode v1.1.5 character set

Float 32 bit Refer to IEEE 754

Double 64 bit Refer to IEEE 754

Variables of type “byte” may be widened to “short” using the (short) cast. The widening occurs without loss of
precision. Variables of type “short” may be narrowed to “byte” using the (byte) cast. The upper 8 bits of the
short value are discarded. It is also possible to form a short from two byte values using the
Util.makeShort() method found in the javacard.framework package.

To ensure that the results of arithmetic calculations are consistent with conventional Java technology, Java
Card technology uses casting rules. The general rule is that the results of intermediate or unassigned
arithmetic calculations must be explicitly cast to either a “byte” or short” value when used in combination with
certain other operations (otherwise they would default to type “int”). An unassigned result is one which is not
assigned to a variable (for example, an array index computed using an arithmetic calculation). In the
following example, the calculation (a+1) yields an intermediate result which must be explicitly cast to either
a “byte” or “short” value:

byte b;
short a;
byte array[] = new byte[10];
b = (byte)((a+1)/2); //This causes the Java Card Converter to

//issue an error
b = (byte)((byte)(a+1)/2); //Ok
b = (byte)((short)(a+1)/2); //Ok
b = array[a+1]; //Error
b = array[(byte)(a+1)]; //Ok
b = array[(short)(a+1)]; //Ok

Replacing the intermediate calculation of (a+1) with the symbol I reduces the equation to:

b = (byte)(I/2);

A second arithmetic calculation (I/2) now occurs, but this second arithmetic calculation is neither
intermediate nor unassigned. The result of the second arithmetic calculation is directly assigned to the variable

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.2-4

b, and Java programming language rules require an explicit cast to the variable type, in this case a byte. Java
Card technology is consistent with Java technology by requiring the explicit cast when the results of the
arithmetic calculation are assigned to a typed variable.

The Java Card technology casting requirements on intermediate results of arithmetic calculations are
necessary because of the manner in which Java technology handles the calculation of intermediate results. Java
technology converts the intermediate results of operations involving bytes and shorts to int (32 bit) values,
unless an explicit cast to short or byte is used. Because Java Card technology is designed to run on 8- and 16-
bit CPUs, storing intermediate results in 32 bits is not possible. (See the Java Card Converter documentation
for error reporting when an explicit cast is not performed.)

It can be shown that the overall result of a complex arithmetic expression (one involving intermediate results)
may vary, depending on the number of bits used to store the intermediate results. This discrepancy is due to
the fact that overflow bits, which result from the intermediate calculation, are preserved when more bits are
used to store the intermediate values and are truncated when fewer bits are used. Explicitly casting the results
of intermediate or unassigned calculations, explicitly defines the number of bits used to store the intermediate
results, and ensures results consistent with Java technology.

Intermediate or unassigned arithmetic operations that are subject to the explicit casting rules are:

List #1

■ Addition (+, ++)
■ Subtraction (-, --)
■ Unary negation (-)
■ Left shift (<<)
■ Multiplication (*)
■ Division (/)

Intermediate arithmetic results of the operations listed above must be cast when used as the operands to any of
the operations listed below:

List #2

■ Remainder (%) (both operands)
■ Unary negation (-)
■ Right shift (>>) (operand being shifted)
■ Unsigned right shift (>>>) (operand being shifted)
■ Division (/) (both operands)

In addition, unassigned (as opposed to intermediate) arithmetic results must be explicitly cast when used in the
following circumstances:

List #3

■ As the element count when creating a new array
■ As an array index
■ As the parameter to a method (also required with Java technology)
■ As the decision value in switch statements

Intermediate results from operations in List #1, which are used as inputs to the bitwise AND operation (&),
the bitwise OR operation (|), and the bitwise XOR operation (^), are subject to the casting rules if the result of
the &, |, or ^ operation is itself an input to one of the operations in List #2 or List #3.

Here are some examples of applying the explicit casting rules:

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 2-5

short s=2, c=4, d=5;
byte a=1, b=3;
byte array[] = new byte[(byte)(a*b)];
s = (short) ((byte)(a/b) >> 2);
s = (short) (b >> (a*b)); //no cast required – intermediate

//is not operand being shifted
s = (short) ((byte) (a*b)/c);
s = (short) ((short) (a*b)/(short)(c*d));
s = (short) array[(short)(a/b)];
s = (short) ((short)((c*c) & d)/a); //cast required on result of &

//operation
if ((short)(a*b*c) < 10) { … }
switch ((byte) (c >> b)) { … }

Arrays

Java Card technology supports single-dimensional arrays, but does not support multidimensional arrays
because of the resource constraints of the smart card environment. Arrays must have elements which are one
of the supported primitive types or objects. Array elements can be references to other arrays. The following are
examples of valid array declarations for both the Java platform and the Java Card platform:

byte a[] = new byte[10];
byte a[] = {1,1,2};
static final short MAX_ARRAY = 15;
short s[] = new short[MAX_ARRAY];
AID aid[] = new AID[5]; //array of 5 AID object references

The following are examples of invalid array declarations:

byte b[][] = new byte[5][2]; //multidimensional arrays in all these
//examples are not supported

short s[][] = new short[10][];
byte b[][];

Arrays are objects (just as they are in Java technology), so that the Object methods are available when using
arrays. Two array references can be compared for equality using the equals() method:

if (c.equals(d)) {...}

The return value is always TRUE or FALSE—either the array references are equal or they are not. More
elaborate comparisons between the elements of two byte-arrays can be performed using the
Util.arrayCompare() method. This method allows you to compare any range of the elements of two
arrays, with a return value indicating whether the range is less than, equal to, or greater than the other. Any
range of one byte-array may be copied to the range of another (including the same array) using
Util.arrayCopy().

The arrayCopy() method ensures the atomicity of the copy operation—removing (tearing) the card in the
middle of the operation does not result in a partially copied array. The non-atomic version of the same method
is Util.arrayCopyNonAtomic(). A similar method, Util.arrayFillNonAtomic(), non-atomically
fills the elements of a byte array with a specified value.

The memory implications of source-to-source array copies and atomic array operations are discussed in more
detail in the section on Optimizing Java Card Applets.

Two consecutive byte array elements may be returned as a short value using Util.getShort. Likewise, two
consecutive byte array elements may be set using the first and second bytes in a short value using
Util.setShort.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.2-6

Inheritance

The Java Card platform fully supports all of the inheritance features available in the Java platform. Method
overrides, abstract methods, and interfaces are all supported. The super and this keywords are supported,
with identical usage rules: both may be used only in an instance method, constructor, or in the initializer of an
instance variable of a class.

Security

All of the Java language and compilation security features are supported by Java Card technology, such as
bytecode verification, confirming that all targets in the applet are reachable, and public, private, and protected
access modifiers.

Just as in the Java platform, members declared as:

■ Public are accessible to other installed classes

■ Private are accessible only from within the class in which it is declared

■ Protected are accessible to and inherited by subclasses and accessible by code in the same package

Note – By default, members are accessible by any code within the same package.

Portability

The Java Card API allows applications written for one Java Card-based smart card platform, to run on any
other Java Card-based smart card platform—allowing developers to use the same Java Card applet to run on
different vendors' cards.

A Java Card applet will not execute as a Java applet does in a JDK runtime environment and a Java applet will
not execute as a Java Card applet does in the JCRE. However, if the JCRE is simulated in the JDK runtime
environment, the card applet will execute.

In general, Java Card technology provides your software with independence from the:

■ CPU-specific features of the card (for example, instruction set, byte-ordering conventions, or data and
instruction bus width)

■ ISO protocol used to communicate between the card and the Card Acceptance Device

Java Card technology does not provide independence from all of the features of different models of smart
cards. For example, some smart cards may support the int primitive data type or garbage collection—if your
Java Card applet assumes such support is present, it will only work on smart cards that implement those
features.

Exceptions

Java Card applets must be tested thoroughly to avoid any fatal errors during execution on the smart card. To
assist developers in debugging the Java Card applets, the Java Card platform supports all of the Java
programming language constructs for exceptions. You can include try, catch, or finally constructs in
your Java Card applets, and they work the same as in the Java platform. The throw keyword is also

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 2-7

supported, however as discussed below, the preferred way to throw exceptions does not directly involve the use
of throw.

The Java Card platform does not support all of the exception types found in the Java technology core packages
because many of them are not applicable in a smart card context. For example, threads are not supported
within the Java Card platform (as discussed in the Language Specifications section of this chapter) and as a
result, none of the thread-related exceptions are supported. The following table lists all of the supported
exceptions.

TABLE 2-3 Supported Exceptions

Exception Package Superclass Type

Exception java.lang Throwable Checked

RuntimeException java.lang Exception Unchecked

ArithmeticException java.lang RuntimeException Unchecked

ArrayStoreException java.lang RuntimeException Unchecked

ArrayIndexOutOfBoundsException java.lang RuntimeException Unchecked

ClassCastException java.lang RuntimeException Unchecked

IndexOutOfBoundsException java.lang RuntimeException Unchecked

NegativeArraySizeException java.lang RuntimeException Unchecked

NullPointerException java.lang RuntimeException Unchecked

SecurityException java.lang RuntimeException Unchecked

APDUException javacard.framework RuntimeException Unchecked

ISOException javacard.framework RuntimeException Unchecked

PINException javacard.framework RuntimeException Unchecked

SystemException javacard.framework RuntimeException Unchecked

TransactionException javacard.framework RuntimeException Unchecked

UserException javacard.framework Exception Checked

The implementation of exception classes (class Throwable and its subclasses) within the Java Card platform
does not include support for a “message” string. Class String itself is not supported within the Java Card
platform, therefore string messages cannot be supported in exceptions either. As an alternate way to attach
extra information to the exception, the exception classes within the Java Card platform supply a numerical
reason code. This reason code is used to describe optional details related to the throwing of the exception. The
value of the reason code is a “short.”

To optimize memory usage, all exception objects can be pre-created at initialization time and their references
saved permanently. When the exception event occurs, rather than create a new exception object, the code can:

1. Retrieve and reuse the reference for the desired exception object.

2. Fill in the reason code in the object.

3. Throw the object.

The JCRE pre-creates an instance of each kind of specific exception defined in the Java Card API. Most of
these are unchecked exceptions. When these exception objects are needed, use the static method throwIt()
within the appropriate Exception class. See The Throwable Class section for more information.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.2-8

You can define your own exceptions by creating subclasses of class Exception. These are always checked
exceptions. These exceptions can be thrown and caught as desired by the applet. However, during
initialization the applet needs to:

1. Create a single instance of each such exception.

2. Save the reference in some persistent object field.

3. Reuse that instance whenever it is necessary to throw that exception.

Core Classes
The core classes of the Java Card API are more compact and succinct than those in the Java platform and
provide essential services to Java Card applets. Developers familiar with the Java platform may not recognize
some of the Java Card platform core classes, with the exception of Object and Throwable in java.lang.

The String classes, I/O classes, AWT classes, and net classes are not supported in the Java Card platform
core classes because of memory constraints within the smart card environment.

The following table lists all of the Java Card platform packages and the classes they contain:

TABLE 2-4 Java Card Platform Core Classes

Package Class

Core Classes

java.lang Object

. Throwable

. Various language exceptions

javacard.framework AID

. APDU

. Applet

. ISO

. PIN

. System

. Util

. Various related exceptions

Extension Classes

javacardx.framework File system classes

javacardx.crypto Public key classes

. Symmetric key classes

. Random number generator

. Message digest

javacardx.cryptoenc DES encryption classes

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 2-9

The Throwable Class

To support exceptions, the Throwable class is implemented within the Java Card platform. The
implementation is designed such that exception objects are allocated once system-wide, then customized and
reused by all installed classes. Although this is an option for handling exception objects, it is highly
recommended as a space saver because the Java Card platform does not provide universal support for garbage
collection or for explicit deallocation of allocated memory (providing support for explicit deallocation of
allocated memory would violate the memory management model of the Java programming language).

Once an object is instantiated, the storage set aside for that object is reserved for the lifetime of the smart
card—allowing a guarantee of space availability during future execution of that object.

By creating shared, system-wide exception objects, the Java Card platform allows exceptions to be thrown
using a reused exception object. An applet simply retrieves a reference to a shared exception-object of the
desired type, customizes the exception with an error code, and throws the exception by invoking the
exception’s throwIt() method—not by using the throw keyword.

Like the Java platform, all exceptions are derived from the Throwable class, for example:

public class Throwable
//Methods:

public short getReason(); //get the error code to throw with the
//exception

public void setReason(); //set the error code to throw with the
//exception

Unlike in the Java platform, the following methods are not part of Throwable because of memory constraints
within the smart card environment:

toString
getMessage
getLocalizedMessage
fillInStackTrace

The printStackTrace method is not supported because there is no printer on a smart card.

The declaration of Exception in the Java Card platform is:

public class Exception extends Throwable
//Member variables:

private static Exception exceptionInstance;
//Methods:
public static void throwIt (short reason) throws Exception {

if (exceptionInstance == null)
exceptionInstance = new Exception();

exceptionInstance.setReason (reason);
throw exceptionInstance;

}

All Java Card platform exceptions in the core packages derive from Exception and override the throwIt()
method. An example of throwing an exception using throwIt() is provided in the Optimizing Java Card
Applets chapter.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.2-10

The Object Class

The definition of the Object class in the Java Card platform is more succinct than within Java technology to
accommodate the resource constraints of the smart card environment. The definition within the Java Card
platform is as follows:

public class Object {
public boolean equals(Object obj)…

}

The only supported method is equals(), which, when implemented by subclasses of Object, provides a
comparison of the equality of two object references. Notice that there is no getClass() method
implemented—Class objects are unreachable by an applet in the Java Card platform.

Other Object methods in the Java platform that are not in the Java Card platform include:

toString
hashcode
clone
wait
notify
notifyAll
finalize

As a result of the resource constraints in devices with limited memory, the following methods are not
supported within the Java Card platform:

■ The hashcode() method—hash tables are not supported

■ The clone() method—objects cannot be cloned

■ The wait(), notify(), and notifyAll() methods—threads are not supported

■ The finalize() method—garbage collection is not universally supported and the concept of
relinquishing system resources owned by the object being garbage collected (for example, graphics) is not
meaningful in the smart card environment

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-1

3. Creating a Java Card Applet

Off-the-shelf Java technology development tools can be used to create and compile the source code for Java
Card applets. Once the Java software source code is compiled into a set of class files, a processed version of
the applet, suitable for loading on Java technology smart cards, is created using the Java Card Converter tool,
as discussed in the Overview chapter and pictured in FIGURE 3-1.

FIGURE 3-1 Downloading Converted Classes

Java Card technology differs from Java technology as a result of the resource constraints of the smart card
environment, as discussed in the Java Card Technology chapter. Smart cards communicate using a packet
mechanism called APDUs, as discussed in the Overview chapter and in the Working with APDUs section of
this chapter.

You now have enough background to begin the process of creating the source code for a Java Card applet. The
source code for the applet begins with the same package designations found in the Java language (the
java.lang package need not be expressly imported into your applet).

Off-Card VM On-Card VM

Java Card VM

JCREConverter

.cap
file

.class
files

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.3-2

A Basic Example
The following code listing shows a basic example of a Java Card applet that can be processed by the Java Card
Converter and installed onto a Java technology smart card:

package bank.purse;

Java Card supports package and
identifier name convention as in
standard Java technology.

import javacard.framework.*;
import javacardx.framework.*;

public class Wallet extends Applet {
/* constants declaration */

An applet is an instance of a class which
extends from:
javacard.framework.Applet.

// code of CLA byte in the command APDU header
final static byte Wallet_CLA =(byte)0xB0;

CLA identifies if the command is an
ISO-conforming message

// codes of INS byte in the command APDU header
final static byte Deposit = (byte) 0x10;
final static byte Debit = (byte) 0x20;
final static byte Balance = (byte) 0x30;
final static byte Validate = (byte) 0x40;

INS specifies the application
instructions.

// maximum number of incorrect tries before the
// PIN is blocked
final static byte PinTryLimit =(byte)0x03;
// maximum size PIN
final static byte MaxPinSize =(byte)0x04;

PIN object parameters.

// status word (SW1-SW2) to signal that the
// balance becomes negative;
final static short SW_NEGATIVE_BALANCE = (short)
0x6910;

Applet-specific static word.

/* instance variables declaration */
OwnerPIN pin;
byte balance;
byte buffer[]; // APDU buffer

private Wallet() {
// It is good programming practice to allocate
// all the memory that an applet needs during
// its lifetime inside the constructor
pin = new OwnerPIN(PinTryLimit, MaxPinSize);
balance = 0;
register();

} // end of the constructor

private constructor—an instance of class
Wallet is instantiated by its install
method.

The applet registers itself with the JCRE
by calling register method, which is
defined in class Applet.

public static void install(APDU apdu){
// create a Wallet applet instance
wallet = new Wallet();
register (wallet);
} // end of install method

Method install is invoked by the
JCRE as the last step in the applet
installation process.

public boolean select() {

// reset validation flag in the PIN object to
// false
pin.reset();

// returns true to JCRE to indicate that the
// applet is ready to accept incoming APDUs.
return true;

This method is called by the JCRE to
indicate that this applet has been
selected. It performs necessary
initialization which is required to
process the subsequent APDU messages.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-3

}// end of select method

public void process(APDU apdu) {

// APDU object carries a byte array (buffer) to
// transfer incoming and outgoing APDU header
// and data bytes between card and CAD
buffer = apdu.getBuffer();

After the applet is successfully selected,
the JCRE dispatches incoming APDUs
to this method.

APDU object is owned and maintained
by the JCRE. It encapsulates details of
the underlying transmission protocol
(T0 or T1 as specified in ISO 7816-3)
by providing a common interface.

// verify that if the applet can accept this
// APDU message
if (buffer[ISO.OFFSET_CLA] !== Wallet_CLA)
 ISOException.throwIt
 (ISO.SW_CLA_NOT_SUPPORTED);

When an error occurs, the applet may
decide to terminate the process and
throw an exception containing the status
word (SW1 SW2) to indicate the
processing state of the card.

An exception that is not caught by an
applet is caught by the JCRE.

switch (buffer[ISO.OFFSET_INS]) {
 case Balance: getBalance(apdu); return;
 case Debit: debit(apdu); return;
 case Deposit: deposit(apdu);return;
 case Validate: validate(apdu);return
 default: ISOException.throwIt
 (ISO.SW_INS_NOT_SUPPORTED);
 }

} // end of process method

The main function of the process
method is to perform an action as
specified in the APDU and to return an
appropriate response to the terminal.
INS byte specifies the type of action
needed to be performed.

private void deposit(APDU apdu) {

// access authentication
if (! pin.isValidated())
 ISOException.throwIt (ISO.SW_PIN_REQUIRED);

// Lc byte denotes the number of bytes in the
// data field of the comamnd APDU
byte numBytes = (byte) (buffer[ISO.OFFSET_LC]);

// indicate that this APDU has incoming data and
// receive data starting from the offset
// ISO.OFFSET_CDATA
byte byteRead =
(byte)(apdu.setIncomingAndReceive());

// it is an error if the number of data bytes
// read does not match the number in Lc byte
if (byteRead != 1)
 ISOException.throwIt(ISO.SW_WRONG_LENGTh);

// increase the balance by the amount specified
// in the data field of the command APDU.
balance = (byte)
 (balance + buffer[ISO.OFFSET_CDATA]);

// return successfully
return;

} // end of deposit method

The parameter APDU object contains a
data field, which specifies the amount to
be added onto the balance.

Upon receiving the APDU object from
the JCRE, the first 5 bytes (CLA, INS,
P1, P2, Lc/Le) are available in the
APDU buffer. Their offsets in the
APDU buffer are specified in the class
ISO. Because the data field is optional,
the applet needs to explicitly inform the
JCRE to retrieve additional data bytes.

The communication between card and
CAD is exchanged between the
command APDU and response APDU
pair. In the deposit case, the response
APDU contains no data field. The JCRE
would take the status word 0x9000
(normal processing) to form the correct
response APDU. Applet developers do
not need to be concerned with the
details of constructing the proper
response APDU.

When the JCRE catches an Exception,
which signals an error during
processing the command, the JCRE
would use the status word contained in

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.3-4

the Exception to construct the response
APDU.

private void debit(APDU apdu) {

// access authentication
if (! pin.isValidated())
 ISOException.throwIt(ISO.SW_PIN_REQUIRED);

byte numBytes = (byte)(buffer[ISO.OFFSET_LC]);
byte byteRead =
(byte)(apdu.setIncomingAndReceive());

if (byteRead != 1)
 ISOException.throwIt(ISO.SW_WRONG_LENGTH);

// balance can not be negative
if ((balance - buffer[ISO.OFFSET_CDATA]) < 0)
 ISOException.throwIt(SW_NEGATIVE_BALANCE);

balance = (byte)
 (balance - buffer[ISO.OFFSET_CDATA]);

} // end of debit method

In the debit method, the APDU object
contains a data field, which specifies the
amount to be debited from the balance.

private void getBalance(APDU apdu) {

// access authentication
if (! pin.isValidated())
 ISOException.throwIt(ISO.SW_PIN_REQUIRED);

// inform system that the applet has finished
// processing the command and the system should
// now prepare to construct a response APDU
// which contains data field
apdu.setOutgoing();

//indicate the number of bytes in the data field
apdu.setOutgoingLength((byte)1);

// move the data into the APDU buffer starting
// at offset 0
buffer[0] = balance;

// send 1 byte of data at offset 0 in the APDU
// buffer
apdu.sendBytes((short)0, (short)1);

} // end of getBalance method

getBalance returns the Wallet’s balance
in the data field of the response APDU.

Because the data field in the response
APDU is optional, the applet needs to
explicitly inform the JCRE of the
additional data. The JCRE uses the data
array in the APDU object buffer and the
proper status word to construct a
complete response APDU.

private void validate(APDU apdu) {
// retrieve the PIN data for validation.
// The user interface data is stored in the
// data field of the APDU.
byte byteRead =
(byte)(apdu.setIncomingAndReceive());

// validate user interface and set the
// validation flag in the user interface
// object to be true if the validation.
// succeeds. If user interface validation
// fails, PinException would be thrown from
// the pin.check() method.
pin.check(buffer, ISO.OFFSET_CDATA, byteRead);

} // end of validate method
} // end of class Wallet

The PIN is used in smart cards to
protect data from unauthorized access.

The number of unsuccessful tries in
using the PIN can be recorded. The card
would be blocked if the number of
unsuccessful tries exceeds the maximum
number of allowed tries.

After the applet is successfully selected,
the PIN needs to be validated first,
before any other instruction can be
performed on the applet.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-5

Java Card Applet Installation
Applet installation occurs at the factory or at the office of the issuer and may also occur post-issuance, through
any of the following procedures:

■ Loading the applet through a trusted terminal

■ Loading the applet through an untrusted terminal that has a secure, signed host connection

■ Loading the applet through a secure installation (that is, downloading a digitally-signed applet that is
verified by the JCRE as legitimate before installing the applet)

Applets that are installed through secure downloads cannot contain native method calls.

Note – Applets with native method calls must be installed at the factory or another trusted environment for
security reasons—native calls bypass the Java technology security framework and so must be highly trusted
before being allowed on the card.

Once installed, Java Card applets do not interact directly with the CAD or off-card applications. Installed
applets may interact directly with only the JCRE or with other installed classes. The JCRE selects an applet
and then passes APDUs to the selected applet. In essence, the JCRE shields the developer from the smart card
CPU, the CAD, and the particular ISO communication protocol employed. The JCRE also translates uncaught
exceptions thrown by classes or normal return statements in applet methods into standard ISO return values.

The storage for an installed applet cannot be reclaimed; if a newer version of the applet is installed, it occupies
a new storage location and the earlier version of the applet becomes unreachable. The Java Card applet can
also be made unreachable by removing its reference from the JCRE applet registry table. Once the reference is
removed, the applet can no longer be reached.

Installing the Java Card applet causes its static members to be initialized. Java Card technology supports
constant static initializers—the initializer cannot execute Java software code, nor can it set the static member
to a non-constant (variable) value. Installation also results in a call to the applet’s install() method (unlike
Java applets).

The Applet Class
The Java Card applet is an instance of a class that extends the javacard.framework.Applet class. This
abstract class has a few methods that must be overridden by the specific implementation of the applet. This
section discusses these methods.

When the applet is installed on the smart card, the install() method is called once by the JCRE, and never
again. The install() method must be declared static because it is called before the applet is
instantiated—the JCRE will not call the applet’s constructor directly (each instance must be registered with
the JCRE by using the register() method).

The first thing install() should do is construct the applet by calling its constructor. This has the effect of
allocating and initializing any non-static class instance variables that the applet has declared. Static class
variables are allocated and initialized before the constructor is called when the applet is loaded onto the card.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.3-6

Since it is up to the applet itself to construct its instance data, the constructor should be declared as either
private or protected.

The APDU object, which is passed to the install() method by the JCRE, may contain one-time
initialization or personalization data for the applet.

The purse example above inherits methods from the Applet class, relying upon their default implementation.
The Applet class comprises part of the JCRE—a listing for it is provided below to show the methods and
their default implementation.

public abstract class Applet {
 protected Applet() {}
 public static void install (APDU apdu) throws ISOException {
 ISOException.throwIt(ISO.SW_FUNC_NOT_SUPPORTED);
 }
 public void process (APDU apdu) throws ISOException {
 byte buffer[] = apdu.getBuffer();
 ISOException.throwIt(Util.makeShort((byte)0x9F, buffer[1]));
 }
 protected boolean select() {
 return true;
 }
 public void deselect () {}
 protected final void register () {
 AppTable.register (this);
 }
}

The Applet class includes a method called process() which is the sole mechanism for receiving data from
the CAD, once the applet is installed. Information is received by way of an APDU parameter to process().
The default implementation of process() shown above is merely exemplary. The Java Card platform does
not require this behavior of the default implementation of process(). Our default implementation of
process(), in the above example, returns an error code 0x9F along with the instruction byte from the APDU
header, indicating that the instruction is not supported.

The install() method throws an ISOException (using an exception implementation that maximizes object
reuse) by default to indicate that the applet could not be installed. Unless you override install(), your
applet will not be available on the card.

Remember that it is during the processing of install() that all one-time initializations should be performed,
including instantiating the applet, registering the applet with the JCRE, and making calls to new.

Registering the Applet

In the purse example above, the APDU is passed along to the applet constructor, although there is no
requirement for this. The applet constructor does one thing—it calls register() to add a reference to the
installed applet table within the JCRE.

Every applet must call register() during the processing of the call to install() to ensure future
communication with the JCRE (the JCRE always searches the list of registered applets when deciding where
to route messages). Applets depend on the JCRE for all communication and to transfer control to one of the
applet’s methods when the applet is selected, deselected, or the target of an APDU.

Note – The JCRE is single-threaded, which means that an infinite loop in any applet hangs all applets until
power to the card is disconnected. When power is returned, the default applet is selected.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-7

Applet Selection
The Applet class also includes select() and deselect() methods. Unlike process() and install(),
these methods do not receive APDUs from the JCRE. The JCRE filters the APDU stream between the installed
applets and the CAD, as pictured in FIGURE 3-2, and then calls these methods only when an APDU that
selects an installed applet is received.

FIGURE 3-2 Applet Selection

As mentioned in the Overview chapter, each Java Card applet is assigned a unique Application ID (AID). The
AID is used to identify a particular applet for selection. If the JCRE detects a SELECT APDU, it deselects the
currently selected applet and then selects the applet indicated by the SELECT APDU data bytes. The JCRE
calls the applet’s select() method just before sending the SELECT APDU to the newly-selected applet’s
process() method. The SELECT APDU causes the JCRE to call the applet twice; one call to select(),
another call to process() to pass the applet the SELECT APDU. It calls the deselect() method of the
currently selected applet to let the applet know that it is no longer currently selected.

There are two types of SELECT APDUs:

1. For selecting an applet

2. For selecting a file controlled by the selected applet

The two SELECT APDUs are very similar, but are distinguished by the JCRE. Upon receiving a SELECT
APDU, the JCRE treats the APDU data as an AID and searches through its applet table. If a match is found, a
new applet is selected. Otherwise, the JCRE regards the SELECT APDU as a file-selection APDU and passes
it to the currently selected applet’s process method.

The default implementation of select() returns TRUE, indicating that the applet has been successfully
selected to receive subsequent APDUs. Any other return value causes the applet selection to fail, and the JCRE
does not forward subsequent APDUs to the applet.

The default implementation of deselect() does nothing. Notice that both select() and deselect() are
instance methods. An instance of the Applet class must be created in order for the JCRE to call these
methods. Since the JCRE does not call the applet constructor, the applet must do so explicitly during the
processing of install().

The implementation of register() is final and cannot be overridden. The register() method inserts an
object reference for the applet into the applet registration table within the JCRE. It is through this reference
that the JCRE is able to call the non-static select() and deselect() applet methods.

The following pseudo code summarizes the procedure followed by the JCRE for handling the SELECT APDU:

CAD

JCRE

Applet

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.3-8

if (SELECT applet APDU)
call deselect() of currently selected applet
call select() of applet identified by APDU
call process() of applet identified by APDU

An APDU command is parsed by first calling APDU.getBuffer() to retrieve the data packet attached to the
APDU. The data packet includes the APDU header and the command data. The JCRE provides constants for
quickly parsing the APDU packet. The following code fragment demonstrates the use of the
ISO.OFFSET_XXX constants (the interpretation of the header bytes is explained in the Working with APDUs
section below):

byte buf[] = apdu.getBuffer();
byte cla = buf[ISO.OFFSET_CLA];
byte ins = buf[ISO.OFFSET_INS];
byte lc = buf[ISO.OFFSET_LC];
byte p1 = buf[ISO.OFFSET_P1];
byte p2 = buf[ISO.OFFSET_P2];
//get APDU data
Util.arrayCopy(buf, ISO.OFFSET_CDATA, databuf, 0, lc);

Note – For proper APDU packet verification, it is a good idea to check all header values, including Lc for
valid values.

When the SELECT APDU is received, the applet can retrieve its own AID by calling System.getAID().
The AID in the APDU data buffer can be compared against the AID returned from getAID() using the
Util.arrayCompare() method. The method getAID() returns an AID object and a byte array,
representing the value of the AID and may be extracted by calling AID.copyTo().

Working with APDUs
APDU communications is based on a command-response model, as outlined in ISO 7816-4. An applet sits idle
until a command APDU is passed to the applet, requesting some form of processing. The applet processes the
command and then returns a response.

The APDU buffer is formatted differently for command APDUs and response APDUs. The general format of a
command APDU is:

CLA INS P1 P2 Lc Data Le

The header describes the command for the applet to carry out. The first four bytes of the command APDU
represent the header, as follows:

CLA INS P1 P2

Where:
■ CLA—indicates the class, which identifies if the command is an ISO-conforming message
■ INS—indicates the instruction
■ P1, P2—indicates additional parameters

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-9

The precise values of CLA and INS for different commands are set forth in ISO 7816-4.

The other fields of the command APDU are optional (that is, they are not present in some commands). These
additional fields define any data passed with the command, as well as the expected length of the response
APDU. The other APDU fields are:

Lc Data Le

Where:
■ Lc—indicates the length of the command data
■ Data—indicates the command data
■ Le—indicates the length of the expected response

Four different formats of command APDUs are possible, depending upon whether data is included with the
command and whether response data is required. When command data is not present and no response is
required, the format of the APDU is:

CLA INS P1 P2

When command data is present but no response is required, the format of the APDU is:

CLA INS P1 P2 Lc Data

When command data is not present, but response data is required, the format of the APDU is:

CLA INS P1 P2 Le

When command data is present and response data is required, the format of the APDU is:

CLA INS P1 P2 Lc Data Le

Note – An Le value of 0 is not the same as an APDU with no Le. An Le value of 0 indicates that the applet
should provide all available response data in the response. This would occur when the length of the response
varies (such as retrieving a variable-length record from a file).

The fifth byte of the APDU (the first byte after the header) may:

■ Be missing (indicating that no command or response data is present)

■ Contain an Lc value (indicating that command data is present)

■ Contain an Le value

The only interpretation of the fifth byte is implicit, by reading CLA and INS and knowing the format of the
command they describe.

Applets should never read the Le value directly from the APDU header. Instead, call the APDU method
setOutgoing() to retrieve the value of Le. Applets should not read from the APDU buffer before calling
setIncomingAndReceive() or receiveBytes() to transfer the incoming data into the APDU buffer.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.3-10

Responses are always required, even if they contain no data. The format of a response APDU is:

Data SW1 SW2

■ Data—response data
■ SW1—first byte of the status word
■ SW2—second byte of the status word

The first and second bytes of the status word (SW1 and SW2) are always present in the response. However, the
card applet does not set these values directly in the response APDU buffer. Instead, these values are set by the
JCRE upon a normal return (SW1=90, SW2=00) or upon an exception thrown by the applet or JCRE.

Since the status word is set by the JCRE (upon applet return) and sent with the response data, the applet may
not send the response data (or at least, the last block of it) until the applet returns from the process()
method. This has important implications for buffer management as discussed in the Receiving APDU Data
section below.

APDU Communication Sequence

A general APDU communication sequence for smart cards is as follows:

1. Receive an APDU object as a parameter to the process() method.

2. Parse the APDU command header.

3. Read any APDU data.

Note – The command data will not be in the APDU buffer until it is read by the applet using
setIncomingAndReceive() or receiveBytes().

4. Process the APDU command and generate any response data.

5. Send any response data from the applet.

6. Perform any additional processing, making sure to not change the response APDU buffer.

7. Return from the process() method normally, or throw an ISOException object (the JCRE appends the
appropriate status word to the response APDU).

Receiving APDU Data

In order to receive command APDU data, the applet must first place the JCRE into receive data mode. Receive
mode tells the JCRE to look for data from the CAD and to buffer that data into the APDU data buffer. Data
may be received using either a character-oriented protocol or a block-oriented protocol.

As mentioned earlier, the JCRE shields the applet (and the applet developer) from details of the specific
protocol implementation. A single method in the APDU class, called setIncomingAndReceive(), is used to
both set the JCRE to receive mode and to receive any available data into the APDU buffer.

The APDU buffer has a minimum size of 37 bytes—an increase in the buffer size is determined by the JCRE
developer and is dependent on the memory capacity of the card.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-11

The data is placed in the buffer beginning at offset ISO.OFFSET_CDDATA. The number of bytes read, as
pictured in FIGURE 3-3, is determined by the following rule:

If the bytes remaining to be read are:

1. Less than or equal to the buffer length, then read all the remaining bytes

2. Greater than the buffer length, then read up to the buffer length

FIGURE 3-3 Buffer Length

To access the data in the APDU buffer, the applet must retrieve a reference to the APDU data buffer by calling
the APDU method getBuffer(). The data buffer is a byte array whose length can be determined using
buffer.length. The APDU object received by the applet process() method is owned by the JCRE (a
single APDU object is shared among all applets on the card).

When there is more data available than can fit in the APDU buffer, the call to setIncomingAndReceive()
must be followed by one or more calls to the APDU method receiveBytes(). This method always reads the
available data into the APDU buffer (you cannot specify another applet-supplied buffer). Like
setIncomingAndReceive(), receiveBytes() is guaranteed to return synchronously, with as many bytes
as the APDU buffer can hold, only if the remaining bytes fit in the APDU buffer. Otherwise, the method reads
as many remaining bytes as will fit in the buffer, and possibly less. The applet should call receiveBytes()
repeatedly, processing or moving the bytes in the APDU data buffer with each call, until all available data is
read. The amount of available data may be determined by checking the Lc byte at
buffer[ISO.OFFSET_LC].

For example,

byte[] buffer = apdu.getBuffer();
short bytes_left = (short) buffer[ISO.OFFSET_LC];
short readCount = apdu.setIncomingAndReceive();
while (bytes_left > 0) {

//{process received data in buffer}
...
bytes_left -= readCount;
//get more data
readCount = apdu.receiveBytes (ISO.OFFSET_CDDATA);

}

Notice that receiveBytes() specifies the buffer offset at which to place the data. This enables “buffer
splitting” to conserve memory resources. The applet can begin to process received data and build a response
APDU, without using separate buffers.

Data

Offset Remaining Bytes

Buffer

Buffer Length

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.3-12

A split APDU buffer used for both reading data and sending a response is shown in FIGURE 3-4.

FIGURE 3-4 Split APDU Buffer

Note – When the underlying protocol used by the JCRE to communicate with the CAD is block-oriented, the
offset used for reading into the APDU buffer (buffer.length/2) must leave enough space for at least one block
within the buffer. If the developer does not do this, receiveBytes() throws an
APDUException.BUFFER_BOUNDS.

The block size of the underlying protocol may be determined using the APDU method getInBlockSize().
Character-oriented protocols return a block size of 1.

The rules for the behavior of receiveBytes()may be summarized as follows:

if (buffer.length-offset > bytes_left)
read bytes_left;

if (buffer.length-offset < bytes_left) {
if (buffer.length—offset < BLOCK_SIZE) throw

APDUException.BUFFER_BOUNDS;
else read up to buffer_size;

}

The setIncomingAndReceive() method must be called before calling receiveBytes() . You cannot call
setIncomingAndReceive() if the JCRE is already in receive mode from a previous call to
setIncomingAndReceive() —otherwise, an APDUException occurs for APDUException.ILLEGAL_USE.

APDU Responses

Response APDUs may or may not contain data. If the response does not contain data, the applet need not do
anything but simply return (or throw an exception). The JCRE generates the appropriate status word and sends
them to the CAD. If the response requires that the applet return data, then the applet must first place the JCRE
into data-send mode and then send the data. Whether or not response data is required, depends upon the
particular APDU class and instruction bytes.

When sending data from the applet, you must specify the total number of bytes to send. This total number
should always be less than or equal to the expected length of response specified by the Le byte. Once all the
response data bytes are sent, the applet must not modify the send buffer for the remainder of the process()
method. The bytes may not actually be sent until process() returns to the JCRE. This enables the JCRE to
efficiently combine the response data with the status word by holding off on the last send until it is time to
send the status word.

Note – Data is always sent with the status word, but in a response APDU, data is optional.

To set the JCRE mode to send, call the APDU method setOutgoing(). Unlike the corresponding
setIncomingAndReceive() method for reading, setOutgoing() does not send any bytes; it just sets the
mode. Unlike reading, you don’t have to send data right away after setting the transfer mode. The applet
cannot continue to receive bytes once setOutgoing() is called, because the transfer mode is no longer
“receive.”

Response data goes here Read data here—receiveBytes(buffer.length/2)

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-13

The setOutgoing() method returns the number of response bytes expected by the application for the
command APDU to which the applet is responding. The applet should not respond with more than this
number of bytes. The applet must inform the JCRE of the number of response bytes it will be sending, using
the APDU method setOutgoingLength().

The APDU class contains the setOutgoingAndSend() method for:

■ Setting the transfer mode to send
■ Setting the response data length
■ Sending the response bytes

This method closely resembles the operation of setIncomingAndReceive(), except that it sends bytes, not
receives them. The setOutgoingAndSend() method uses the APDU buffer for sending bytes. It is also
possible to use an applet-supplied and owned buffer to send bytes, which can be bigger than the relatively
small APDU buffer.

Response data sent using this method must be short enough to fit in the APDU buffer. The bytes cannot
actually be sent until the applet returns from the process() method, at which time they are combined with
the status word—so once this method is called, the applet cannot alter the APDU buffer until process()
returns.

If you don’t want to send data right away after calling setOutgoing(), call sendBytes() or
sendBytesLong(). The first method uses the APDU buffer, while the second method uses an applet-
supplied buffer. For both methods, you must not alter the contents of the buffer until process() returns. If
the response data is being prepared in an applet-supplied buffer, use the apdu.sendBytesLong() method
and provide the applet-supplied buffer as the parameter, to avoid having to copy the applet-supplied buffer to
the APDU buffer.

You must call setOutgoing() before calling setOutgoingLength(), sendBytes(), or
sendBytesLong(). You cannot call setOutgoingLength(), sendBytes(), or sendBytesLong() after
calling setOutgoingAndSend(). For example, if you have three bytes that need to be sent, use either:

byte[] apduBuffer = apdu.getBuffer();

apduBuffer[0] = byte1;
apduBuffer[1] = byte2;
apduBuffer[2] = byte3;

apdu.setOutgoingAndSend(0, 3); //0-offset, 3-number of bytes to send
Or:

short le = apdu.setOutgoing();

apdu.setOutgoingLength((short)3);
apduBuffer[0] = byte1;
apduBuffer[1] = byte2;
apduBuffer[2] = byte3;

apdu.sendBytes ((short)0 , (short)3);

Return Values

An applet has several options for returning information from the applet process() method. The most
straightforward method is to simply let the method return. When errors are encountered during APDU
processing, use ISOException.throwIt(short sw) to return SW errors. ISO SW error constants can be
found in the ISO class.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.3-14

Atomicity
With smart cards, there is a risk of losing power at any time during applet execution. A user of the smart card
may remove (“tear”) the card from the CAD, cutting off power to the card CPU and terminating execution of
any applets. The risk of tearing presents a challenge for preserving the integrity of operations on sensitive card
data.

Java Card technology supports the notion of “transactions” with commit and rollback capability to guarantee
that complex operations can be accomplished atomically—either they successfully complete or their partial
results are not put into effect. Using transactions, you can guarantee that multiple fields of an object are
updated as a unit.

To create a transaction, enclose one or more operations between calls to System.beginTransaction() and
System.commitTransaction()—the changes are temporary until System.commitTransaction() is
called. If power is lost during the transaction, a rollback facility is invoked, when power is restored, to return
the destination values to their pre-transaction state.

Transactions can be expressly aborted using a call to System.abortTransaction(). A transaction must be
in progress when abortTransaction() is called; otherwise, a TransactionException is thrown.
Transactions cannot be nested—a call to beginTransaction from within a transaction block also results in
a TransactionException. The values 0 or 1 are returned by System.getTransactionDepth().

Commit Buffer

To support the rollback of uncommitted atomic transactions, the JCRE contains a commit buffer where the
original contents of the updated locations are stored until the transaction is committed. This buffer also retains
the rollback information, should a power loss occur during the commit phase of the transaction. The more
operations inside a transaction block, the larger the commit buffer needs to be to accommodate it.

Before attempting a transaction, an applet may check the size of the available commit buffer against the size of
the data that requires an atomic update. If sufficient commit capacity is not available, the operations can either
be performed (risking power loss during the operations) or postponed until sufficient capacity is available.

The capacity checking options are as follows:

■ System.getMaxCommitCapacity—returns the total size of the commit buffer

■ System.getUnusedCommitCapacity—returns the available commit capacity

The Util class in javacard.framework contains useful methods for copying and filling arrays
(arrayFill, arrayFillNonAtomic, copyArray, copyArrayNonAtomic). The non-atomic versions of
these methods do not participate in transactions, meaning that they do not benefit from rollback and commit
capabilities, even when located in a transaction block. To achieve atomicity for array copy and fill, use
arrayCopy and arrayFill inside or outside of a transaction block.

The number of program statements located within a transaction block should be kept to a minimum to avoid
exceeding the fixed commit buffer space provided by the implementation.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 4-1

4. Optimizing Java Card Applets

A major factor influencing the design and features of Java Card applets is the limited availability of program
and data memory in the smart card environment. This chapter focuses on the issues related to creating Java
Card applets for devices with resource constraints.

The Java Card platform accommodates environments in which only 512 bytes of RAM are available. The
JCRE (including the Java Card VM and the system heap) must be contained within the available ROM and the
Java Card applets and class libraries need to be stored within the available EEPROM space on the device.

To optimize memory usage, the following restrictions apply when creating Java Card applets:

■ A maximum of 127 instance methods in any class (including inherited methods)

■ A maximum of 255 bytes of instance data

■ Object space is allocated from EEPROM

Note – The Java Card 2.0 Reference Implementation (JC2RI) release contains a simulation environment
which allows you to execute Java Card applets in a desktop workstation environment. This environment has
memory restrictions which are different from execution in an actual smart card memory environment.

Reusing Objects
Applets must not instantiate objects using new with the expectation that their storage will be reclaimed,
because the JCRE may not include a garbage collector. The general rule is that in Java Card technology, a
single instantiation of an object should be “recycled” repeatedly, with each new use “customizing” the member
variables of the object instance. This is a different model than Java technology developers may be accustomed
to.

In Java technology, an instance of an object is created as needed, its instance variables are set, and then the
object is discarded (typically by going out of scope). In Java Card technology, you should never allow objects
allocated with new to go out of scope; they will become unreachable, but the storage space they occupy will
never be reclaimed.

In Java Card technology, objects should be referenced by variables or fields for the life of the applet and should
be reused by writing new values to their member variables.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.4-2

The following code sample shows how the JCRE implements exceptions in a manner that maximizes object
recycling by using the systemInstance each time the ISOException throwIt() method is used:

public class ISOException extends runtimeException {
private static ISOException systemInstance;
public ISOException (short sw) { this.reason = sw;}
public static void throwIt(short sw) {

if (systemInstance == null) systemInstance = new ISOException(sw);}
systemInstance.setReason(sw);
throw systemInstance;

}

The exception is thrown by calling the throwIt() method with a reason (sw) for the exception. The
throwIt() method is declared static so that there is no need to instantiate an ISOException object in order
to throw the exception. Instead, simply call throwIt()and customize each call with a reason code. The
throwIt() method in turn invokes throw on the exception object. For example:

if (buffer[ISO.OFFSET_P1] != 0)
ISOException.throwIt(ISO.SW_INCORRECT_P1P2);

Allocating Memory
The Converter ensures that memory is allocated for the contents of static fields, namely, primitive data types
and references to arrays. Memory is allocated for instances by using the new bytecode from the system heap
and cannot be reclaimed (unless the smart card implements a garbage collector). Memory for method
variables, locals, and parameters is allocated from the stack and is reclaimed when the method returns.

To ensure that an applet will not malfunction due to allocation failures, new should not be called from any
applet method other than the install() method. The install() method is called only once, when the
applet is installed on the card, so that a new in install() results in only a single instance of the object for
the lifetime of the applet. It is also recommended that each call to new be enclosed in a transaction block (see
the Atomicity section of the Creating a Java Card Applet chapter). This ensures that all of the available
memory required by the object is allocated, even if power is lost before new returns. Multiple calls to new may
be enclosed in a single transaction block, but are subject to the limits of available commit capacity (more on
this below).

Accessing Array Elements
When accessing an array element, bytecodes are generated to fulfill the array-access instruction. To optimize
memory usage, if the same element of an array is accessed multiple times from different locations in the same
method, save the array value to a variable on the first access and then access the variable in subsequent
accesses. Using the array value as a variable in this way creates more compact bytecodes than re-accessing the
array.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 5-1

5. Files

Support for ISO 7816-4 files is provided by the javacardx.framework package. This is an extension
package to the core javacard.* classes which may not be implemented on all Java Card platforms. Files are
identified collections of related data. Files are useful for organizing data into logical groups for storage on the
card. The two types of files supported in the javacardx classes, following the definitions of the ISO 7816-4
specification, are:

■ Elementary files

■ Dedicated files

Elementary and Dedicated Files
Elementary files (EFs) store references to the byte arrays that contain the data and dedicated files (DFs) act as
containers for elementary files. The storing of references is done to conserve memory in situations where the
applet allocates a byte array and then passes the byte array to the file system to append to a file. The file stores
a reference to the byte array and does not allocate new storage for the record. As a result, if the applet
subsequently modifies the contents of the byte array, it is in effect modifying the record.

Elementary files can be organized in two ways, as:

■ Transparent files—an unstructured sequence of bytes

■ Record files— one or more byte-arrays

There is no support in Java Card technology for structured records within files. That is, records are read and
written as byte arrays with no regard to the internal field structure of each record. It is left to the applet or
external application to interpret the field structure of the byte arrays stored in record files.

Record Files

Record files can be linear or cyclic.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.5-2

Linear Files

Linear files contain records organized in an ordered sequence. The records in the file are kept in the order they
were inserted, that is, the first inserted record is record number one. The capacity of the linear file may be
expanded to include more records (up to the limits imposed by the JCRE).

The records in a linear file may be fixed or variable in length, as pictured in FIGURE 5-1.

FIGURE 5-1 Linear Files

All of the bytes in a fixed-length record do not need to contain meaningful data, but each record must still
contain a fixed number of bytes.

Cyclic Files

In cyclic files, records are organized as a ring (cyclic structure), with fixed and equal record sizes. The number
of records in a cyclic file is assigned at file creation time and cannot be changed. Records are in the reverse
order as they were inserted into the file—the last inserted record is identified as record number one. Once the
file is full, the next append instruction overwrites the oldest record in the file and it becomes the record
number one.

The record order of a cyclic file is shown in FIGURE 5-2, before an append command, with RecNum4 being
the oldest record:

FIGURE 5-2 Cyclic File Record Order

After the append record command, the new record overwrites the oldest record, RecNum4 and the newly
inserted recorded becomes RecNum1, as pictured in FIGURE 5-3.

FIGURE 5-3 Cyclic File after Record Appended

The maximum number of records for any file is 127, and the maximum length of a record is 255 bytes.

RecNum4 RecNum3 RecNum1RecNum2

RecNum1 RecNum2RecNum3RecNum4

Linear Fixed File

Fixed-Length Records

Linear Variable File

Variable-Length Records

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 5-3

The FileSystem Class
The Java Card API includes a FileSystem class for processing of file-related APDUs. The FileSystem
class acts as the master container for a hierarchy of files. The FileSystem class directs incoming file-related
APDUs to the appropriate member file, then parses and responds to the APDUs. Applets that do not use a
FileSystem class must manage file-related APDUs on their own.

The following table describes the file types associated with each class:

TABLE 5-1 Classes and File Types

Class File Type Description

DedicatedFile Dedicated Act as containers for elementary files.

ElementaryFile Elementary Store references to the byte arrays that contain the data.

LinearVariableFile Linear Stores variable-length linear records.

LinearFixedFile Linear Stores fixed-length linear records.

CyclicFile Cyclic Stores fixed-length cyclic records.

The class hierarchy of the file system is expressed in FIGURE 5-4:

FIGURE 5-4 FileSystem Class Hierarchy

Class: File

Class: Dedicated File
(DF)

Class: Elementary File
(EF)

Class: FileSystem

Class: TransparentFile
(EF)

Class:
LinearVariableFile (EF)

Class: LinearFixedFile
(EF)

Class: Cyclic File (EF)

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.5-4

A typical applet file hierarchy is shown in FIGURE 5-5, as opposed to the class hierarchy shown above.

FIGURE 5-5 Applet Data Hierarchy

Notice that the dedicated file contains no data of its own—it only acts as a container for elementary file types
that do contain data.

File Operations
The operations that can be performed on files are:

■ Creating a new file
■ Adding a new file to a dedicated file
■ Setting security attributes for a file
■ Selecting a file in a file system as the target of implicit operations

A new file is created using the new operator on the file’s constructor, as follows:

cyclic = new CyclicFile (fileID, maxRecords, recordLength);
dedicated = new DedicatedFile (fileID, name, maxChildren);

Linear variable files use a constructor with at least the following two parameters:

■ A unique file ID
■ The maximum number of records the file can hold

The file ID uniquely identifies the file from other files. If the file is part of a group of files contained within a
dedicated file, the lower five bits of the file ID (called the Short File Identifier or SFI) are used to locate the
file and to distinguish the file from others in the group.

The maximum record count declares the maximum number of records the file can hold. The JCRE uses this
value to validate access operations on the file. The JCRE does not use this information to compute or set aside
storage for the file. Files in Java Card technology store references to byte arrays, not the byte arrays
themselves, but memory for the files is allocated during the installation of the Java Card applet. For example,
if a Java Card applet declares a file holding 100 records, each record holding 100 bytes (for a combined total
of 10,000 bytes), the VM will prevent the installation of this applet if less than 10,000 bytes of storage are
available on the card.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 5-5

Once the applet is installed, new records may be allocated by the applet (or file system) using the process()
method during normal card usage (as opposed to during the install() method). The maximum record count
for linear files may be increased at a later point in time using a call to the increaseMaxNumRecords()
method. To get the current maximum, call getMaxNumRecords(). To get the current number of actual
records in the file, call getNumRecords(). Fixed-length files (LinearFixedFile and CyclicFile) have an
additional parameter to the constructor; the record length. The JCRE uses this information to validate that
byte arrays added to the files as records are the correct length.

The constructor for dedicated files (DFs) contains an additional parameter specifying the name of the
dedicated file. Unlike elementary files (EFs), dedicated files are identified by a logical name as well as by a
short file ID. The logical name of a dedicated file is a byte array, which is not necessarily null-terminated.

Dedicated files (DFs) do not contain records, but they do contain references to other DFs and EFs. These
references are called the children of the dedicated file. The constructor for a dedicated file declares the
maximum number of children, which may be increased at a later time, but cannot exceed 30.

Adding a new child file to a dedicated file is accomplished by calling the addChildFile() method of
DedicatedFile. For example:

dedicated.addChildFile(cyclic);

The dedicated file on which the method is invoked becomes the container (parent) for the child file, expressed
as a parameter.

File Security

The security attributes of a file are designed to protect the file from external read and write access. Files
contain two flags: one to control read permissions and one to control write permissions. Permissions are set
independently of one other. The available permissions are shown in the table below.

TABLE 5-2 File Access Permission Flags

Permission Meaning for Reading Meaning for Writing

ALLOW_ANY Reading of file data permitted Writing of file data permitted

ALLOW_NONE Reading of file data not permitted Writing of file data not permitted

ALLOW_AUTH1 Reading only allowed if AUTH1 flag is set
in the file system to which this file belongs

Writing only allowed if AUTH1 flag is set
in the file system to which this file belongs

ALLOW_AUTH2 Reading only allowed if AUTH2 flag is set
in the file system to which this file belongs

Writing only allowed if AUTH2 flag is set
in the file system to which this file belongs

The last two flags, ALLOW_AUTH1 and ALLOW_AUTH2, are used when the file belongs to a FileSystem
class. For example, suppose a file only supports reading and writing after verification of the user’s PIN
number. The applet verifies the PIN and sets the AUTH1 flag in the FileSystem class to TRUE. The applet
then would set the read and write permissions of the file to ALLOW_AUTH1.

When reading and writing requests on the file are made through the FileSystem class, an AND operation is
performed on the two flags. When the file is accessed through the FileSystem methods, the applet is
responsible for ensuring that the proper conditions are met for granting read and write access to the file.

Only one file belonging to the file system hierarchy may be selected as the current file. The current file is the
target of file operations that do not explicitly declare which file they operate upon. Each file system may

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.5-6

contain one current elementary file and one current dedicated file. The setCurrentElementaryFile()
and setCurrentDedicatedFile() methods are used to set the current elementary and dedicated files,
respectively.

Note – Once files are created, they remain on the card throughout the life of the card.

Finding Files
The file-finding methods are all part of the DedicatedFile class because dedicated files acts as containers
for all DFs and EFs. Files are located in several ways, but the most common method for locating a file is by
using the file’s short file-ID, which is set when the file object is constructed. Searching by file ID applies to
both dedicated and elementary files because both types have file IDs.

The findFile() method takes the file ID as an argument and lets the applet specify the scope of the search
using a flag as defined in the table below.

TABLE 5-3 File Flags

Flag Scope

FIND_CHILD_EF Search the children of the current dedicated file for a matching elementary file.

FIND_CHILD_DF Search the children of the current dedicated file for a matching dedicated file.

FIND_CHILD Search the children of the current dedicated file for a matching elementary or
dedicated file.

Up to 30 elementary files may be uniquely identified among the direct children of a dedicated file (the values 0
and 31 are reserved). The last five bits of the file ID, referred to as the Short File Identifier (SFI) are used to
search for an elementary file, using the call to findElementaryFile().

Dedicated files, unlike elementary files, are identified by both a file ID and a logical name. To search for a
dedicated file that is a child of the current dedicated file, call findDedicatedFile() and specify the logical
name of the file. Another way to locate a file is by using the file’s child id. The child id is just a value
identifying the sequential order in which the file was added to the current dedicated file. The
getChildFile() method locates a file using its child id.

The FileSystem class allows an applet to select a file using the file’s object reference. The method
selectFile() takes an object reference as a parameter and makes the referenced file the current file. An
applet developer can bypass the FileSystem class and access the dedicated file directly by using the file ID
(FID). For example, if the file structure is:

DedicatedFile master with FID (0x1234);

where master contains two files, namely a DF and an EF, then the applet would invoke:

df.findFile (FIND_XXX, 0x1234)

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 5-7

If FIND flag is FIND_CHILD, then the findFile() method returns null. If the FIND flag is FIND_ANY,
then the findFile() method would search all the siblings, children, and parent of the associated DF, and
return the master file with FID = 0x1234.

Record Operations
Files (except for dedicated files) are containers for data. Transparent files store data as a single unstructured
stream of bytes. Other files organize data into records. The Java Card API enables the following operations on
files using records:

■ Add a record to a file.
■ Write data to a record in a file.
■ Read data from a record.
■ Erase the data in a record.

As with files, once a record is created, it remains within the file throughout the life of the card. Erasing a
record is not the same as deleting it. Erasing simply resets the bytes in the record to zero.

Records may be added to files of type LinearVariableFile and LinearFixedFile using the addRecord()
method. Two varieties of addRecord() are provided: one in which the applet allocates the byte array for the
record to add, another which relies upon the JCRE to allocate the byte array for the record. With either
method, the byte array does not become part of the file—only a reference to the array is added to the file.

According to ISO 7816-4, files of type CyclicFile do not support the adding of records. Transparent files
and dedicated files do not contain records.

To write data to a record, use the following steps:

1. Call the getRecord() method to retrieve the byte array of the record.

2. Change the byte array, which in effect writes data to the record.

Finding Records
Once you have located a file, you must then locate the record to read or write. Records are located using either
the sequential record number or by searching on the record key. For linear files, the record number is a
sequential number valued 1 to N, where N is the number of records in the file. The record number is assigned
when the record is added to the file and never changed.

For cyclic files, the record number varies from 1 to N, where N is the number of records in the file. Unlike
linear files, the record numbers in a cyclic file are assigned in the reverse order from how the records were
written—the last record written to a cyclic file is assigned the record number 1 and the least-recently-written
record is assigned record number N. Use the getRecord() method and specify the record number to retrieve
the byte array for a particular record. See the Elementary and Dedicated Files section above for details on the
cyclic file.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.5-8

The record key is a combination of the first and second bytes of the record. Records are located by key, using
the findRecord() method. The findRecord() method operates in both a relative and absolute mode. In
relative mode, the search begins at the current record and either moves forward or backward from there. In
absolute mode, the search begins at the beginning of the file and moves forward or progresses backward from
the end of the file. A direction flag specifies the search mode, as indicated in the table below.

TABLE 5-4 Search Mode Direction Flags

Flag Mode

DIRECTION_FIRST Search forward from start of file.

DIRECTION_LAST Search backward from end of file.

DIRECTION_NEXT Search forward from current record.

DIRECTION_PREV Search backward from current record.

Managing Files with the FileSystem Class
The Java Card API contains a special class called FileSystem for managing file-related APDUs. The
FileSystem class extends DedicatedFile, acting as a control point for commands referencing the
elementary (data) and dedicated (container) files it contains. See The FileSystem Class section above for more
information on the FileSystem class.

The FileSystem class provides a default implementation for:

■ Reading, writing, updating, and erasing data in transparent files
■ Reading, writing, updating, and appending records in record files
■ Reading and writing to files with records in Tag-Length-Value format

The FileSystem class also provides a security mechanism for providing a measure of access control to
individual files. The security mechanism is based upon two flags, AUTH1 and AUTH2. The setAuthFlag()
method is used to set the value of AUTH1 and AUTH2 to either TRUE or FALSE. The getAuthFlag()
method is used to get the value of these flags.

Central to the use of the FileSystem class is the concept of the current file and current record. An APDU
may omit the specification of a target file for its operation—in this situation, the current file becomes the
target. Likewise, an APDU may not specify a target record for its operation—in this situation, the current
record becomes the target. The current data file for an APDU operation is always relative to the currently
selected dedicated file within the file system.

Since the FileSystem class is itself a dedicated file, it may contain other dedicated files, which, in turn, may
contain elementary files. The current record is always relative to the current elementary file. The
FileSystem class contains methods for setting and getting the current dedicated file, the current elementary
file, and the current record, as outlined in the table below.

TABLE 5-5 FileSystem Methods

Method Description

getCurrentDedicatedFile() Gets current dedicated file.

getCurrentElementaryFile() Gets current elementary file.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 5-9

getCurrentRecNum() Gets current record number.

setCurrentDedicatedFile() Sets current dedicated file.

setCurrentElementaryFile() Sets current elementary file.

setCurrentRecNum() Sets current record number.

These set methods are not the only mechanism for setting the current elementary file or record number.
Certain ISO commands change the current elementary file or record. The following table shows the
FileSystem methods used in processing various ISO commands and the resulting outcome (a CLA of 0 is
assumed for all ISO commands):

TABLE 5-6 FileSystem Methods

ISO Command INS Description FileSystem Method Resulting Outcome

READ BINARY B0 Read data from a
transparent file

readBinary() Makes target current EF
and resets the current
record number to 0.

WRITE BINARY D0 Write data to a
transparent file

writeBinary() Makes target current EF
and resets the current
record number to 0.

UPDATE BINARY D6 Update data in a
transparent file

updateBinary() Makes target current EF
and resets the current
record number to 0.

ERASE BINARY 0E Mark data as erased in
a transparent file

eraseBinary() Makes target current EF.

APPEND RECORD E2 Append a record to a
record-oriented file

appendRecord() Makes target current EF.
Make appended record
current record.

READ RECORD B2 Read data from a
record-oriented file

readRecord() Makes target current EF.
Make read record
current record.

WRITE RECORD D2 Write data to a record-
oriented file

writeRecord() Makes target current EF.
Make written record
current record.

UPDATE RECORD DC Update data in a
record-oriented file

updateRecord() Makes target current EF.
Make updated record
current record.

GET DATA CA Retrieve Tag-Length-
Value (TLV)
formatted data from
current file.

getData() None

PUT DATA DA Set Tag-Length-Value
(TLV) formatted data
into current file.

putData() None

SELECT A4 Selects a file as the
current EF or DF

select() If target is an EF, selects
the target’s DF as the
current DF.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.5-10

These methods are protected methods and are not meant to be invoked by applets. These methods not only
process the command APDU, but they also build a response APDU with the status word and send it out.

Note –An applet should not modify the command APDU buffer in any way once these methods return because
the JCRE uses the command buffer for the response. The last response (including the status word) may not be
sent until the applet returns from its process() method.

Since the values of the CLA and INS bytes are standard for the APDUs processed by the FileSystem class,
there is no reason to require the applet to first parse the APDU command header for the CLA and INS bytes,
perform a switch() statement, and call the appropriate FileSystem method. Instead, the FileSystem
class provides the process() method for performing this processing (not to be confused with the applet
process() method). Unless the applet needs to perform non-standard processing for one of the command
APDUs listed in the table above, there is no reason to parse the APDU command buffer or call any of the
FileSystem methods set forth in the table. Use FileSystem.process() to route the APDUs to the
appropriate methods for standard processing. For example:

//The following code fragment shows how an applet delegates
//various APDUs for processing, particularly how an applet passes
//ISO file-oriented APDUs to FileSystem for it to handle.

buffer = apdu.getBuffer();
FileSystem fs = new FileSystem(4);

if (buffer[ISO.OFFSET_CLA] == 0) { // ISO file-oriented APDU
 switch (buffer[ISO.OFFSET_INS] {
 case XX:
 // what goes here is code for the applet to handle any ISO file-
 // oriented APDU instructions or and APDU
 // instructions that the FileSystem method does not support
 return;
 default:
 // standard file system APDU instruction
 fs.process(apdu);
 return;
 }
}

// APPLET_CLA - applet CLA byte, a byte number specifically assigned to
// this applet
if (buffer[ISO.OFFSET_CLA] == APPLET_CLA)
// applet-specific APDU instructions are handled here
 return;
}

// Cannot handle other APDU instructions where CLA byte is
// neither APPLET_CLA nor 0.
ISOException.throwIt(ISO.SW_CLA_NOT_SUPPORTED);

Developers interested in handling the file system APDUs themselves (for example, when the
javacardx.framework package is not implemented on the platform) should refer to ISO 7816-4 for a
complete reference on the command structure of these APDUs and the expected responses.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 6-1

6. Cryptography

Cryptography in Java Card technology is provided by two extension packages: javacardx.crypto and
javacardx.cryptoEnc. The cryptoEnc package keeps DES encryption capability separate. Neither
package is part of the core required Java Card API packages and so cryptography may not be supported on
some Java Card-based smart cards.

Understanding the Java Card API cryptography requires an understanding of basic cryptography concepts that
are discussed in this chapter.

Cryptography Concepts
Cryptography supports two basic functions: privacy and authentication. Privacy means the secure exchange of
information between two or more locations without the risk of eavesdropping by parties who are not the
intended recipients of the message. Authentication means proving that a message is actually from the expected
party and not from an imposter. Authentication also means proving that a message was not altered during
transmission.

A fundamental concept of cryptography is the key. A key is a string of bits that is fed into an algorithm for
encoding or decoding information. Cryptography is based upon the concept that certain algorithms for
decoding information will only work if provided with a key identical or related to the key used in the
algorithm for encoding the information.

When an identical key is used to encode and decode, the algorithms are said to be symmetric. The following
example illustrates how two parties (A and B) communicate using symmetric algorithms. Party A creates a
message m and applies the encoding algorithm to it. The output of the encoding algorithm is the encoded
message c:

c = f(ks, m)

The symbol ks represents the key used by both the encoding and decoding algorithms. The encoded message c
is transmitted to Party B. Party B decodes the message by applying the decoding algorithm to c to reproduce
the original message m:

m = g(ks, c)

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.6-2

Symmetric algorithms are fast and efficient. However, both the sender and receiver of the information must
possess the key to exchange encoded information. For this reason, the key in a symmetric algorithm is
sometimes called a shared key. This creates a problem—how can the two parties exchange the shared key
without running the risk of a third party intercepting the key and gaining access to their subsequent
conversations?

To solve this problem, asymmetric algorithms were developed. Using asymmetric algorithms, one key is used
in the encoding algorithm, and a different key is used in the decoding algorithm. The two keys are not
identical, but they are related. Most importantly, the relationship between the keys is such that the key for
decoding cannot be derived from the key for encoding. This important property makes it possible to publish
the key for encoding to the world, while keeping the key for decoding private. The following example
illustrates how two parties (A and B) communicate using asymmetric algorithms. Party A creates a message m
and applies the encoding algorithm to it. The output of the encoding algorithm is the encoded message c:

c = f (k1, m)

The symbol k1 represents the public key used by the encoding algorithm for a particular individual (Party B in
this case). The k1 key can only be used to encode messages to B, not decode them. The encoded message c is
transmitted to Party B. Party B decodes the message by applying the decoding algorithm to c to reproduce the
original message m. The decoding algorithm uses the second key, k2:

m = g(k2, c)

Only Party B can decode messages encoded with key k1, because only Party B possesses the key k2—which is
why the term private key is used to describe k2.

Asymmetric algorithms are slower than symmetric algorithms, but they are more secure because there is no
need for the communicating parties to exchange private keys. A hybrid approach that uses the best features of
both symmetric and asymmetric algorithms first uses the recipient’s public key to encode a shared key. The
shared key is used to encode the bulk of the message and then the encoded, shared key is attached to the
encoded message and sent. The recipient decodes the shared key first, using the recipient’s private key. Next,
the recipient uses the decoded, shared key to decode the bulk of the message.

The Java Card API supports both symmetric and asymmetric algorithms.

Symmetric Keys
The javacardx.crypto package contains support for creating keys for use in symmetric algorithms. The
base class for symmetric keys is SymKey, which extends the basic Key class used for all keys. Before a
symmetric key can be used, its value must be set using the setKey() method. This method sets the bit string
for the key from a byte array, provided as a parameter. Unlike asymmetric algorithms, it is not necessary to
create two distinct, related keys.

The symmetric algorithms supported by the Java Card API are block oriented. That means that the algorithms
encode information one block at a time. A typical block size is 8 bytes. The Java Card API supports two modes
of block encoding: Electronic Code Book (ECB) and Cipher Block Chaining (CBC). ECB mode takes one
block of information at a time, encodes it, and produces an encoded block, as illustrated in FIGURE 6-1.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 6-3

FIGURE 6-1 ECB Diagram

CBC mode takes one block of information at a time, combines it with the previously encoded block, and
produces an encoded block from the combination, as illustrated in FIGURE 6-2.

FIGURE 6-2 CBC Diagram

CBC mode has the advantage of hiding block-sized repetitions in the original message m. Notice that for the
first block, the CBC algorithm does not have a block of encoded information to add with the first block of the
message. A value called the initial chaining vector (ICV) is added to the first message block to overcome this
problem.

The Java Card API includes four classes for implementing DES symmetric encoding and decoding. The first
class is DES_Key. This class is used for single DES decoding only. Single DES refers to the single-pass DES
algorithm, in which the message is encoded once using a single key. A second class, called DES3_Key,
implements triple DES decoding only. Triple DES refers to a three-stage application of the DES algorithm in
which the message is encoded three times using two single-length keys. Triple DES is considered more secure
in some situations than single DES.

Encoding functionality for the two DES algorithms is added by the DES_EncKey and DES3_EncKey classes,
which extend the DES_Key and DES3_Key decoding classes, respectively. These two classes are part of the
javacardx.cryptoEnc package, not the javacardx.crypto class.

Verification of Symmetrically-Encoded Messages
Messages encoded using symmetric algorithms are verified by attaching a message authorization code (MAC)
to the message. The MAC serves to verify that the message has not been altered from its original form. The
MAC is created as a function of the message data and the key, using the generateMAC() method. To
authenticate a message with an attached MAC, call verifyMAC(). Verification of the integrity of a message
with an attached MAC is a function of the MAC value, the message data, and the key. The Java Card API
supports the creation and verification of MACs using the CBC encoding method.

The CBC algorithm acts in a ripple fashion by employing the block output of the previous iteration of the
algorithm to the next block input. The block output of the final iteration of the algorithm is a unique
representation of the entire message, incorporating information from all previous blocks in the message. This
final output is ideally suited for use as a MAC. If the message is altered in any way during transmission, the
attached MAC value will not equal the MAC value generated on the altered text.

m1 m2 m3 m4

c1 c2 c3 c4

m1+ICVm2+c1 m3+c2 m4+c3

c1 c2 c3 c4

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.6-4

Asymmetric Keys
Unlike symmetric keys, asymmetric algorithms use two keys: one public, one private. This key-pair has a
mathematical relationship to one another. The base class for all asymmetric keys is AsymKey, and like
SymKey, AsymKey is an extension of the generic Key class. Creating a symmetric key is easy—simply set the
bit string for the key using the setKey() method. Creating asymmetric key pairs is more complicated,
because the key pair must be computed mathematically from certain key parameters.

To understand how to create asymmetric keys, one must first understand how they are computed. Since Java
Card technology implements the RSA asymmetric algorithm, we shall discuss key creation in terms of this
algorithm. Generating an RSA key-pair first requires two large prime numbers, p and q. These two numbers
are multiplied to produce a modulus, n:

n = pq

Next, a value e is chosen that meets the following mathematical relationships:

e<n and e has no common factors with the values (p-1) or (q-1)

The value e is called the public exponent. Next, a value d is chosen such that the value ed-1 is roundly
divisible by the value (p-1)(q-1). d is called the private exponent. The pair (n,e) form the public key, and the
values (n,d) form the private key. The values of d, p, and q must be kept strictly secret, while the values of n
and e are made public. To encode a message with the public key, use the following formula:

c = me mod n

To decode a message using the private key, use the following formula:

m = cd mod n

The formulas just described are the basis of one common form of the RSA algorithm, known as the modulus-
exponent form. Another common form is called the Chinese Remainder Theorem (CRT) form. The CRT form
also has its roots in the prime factors p and q, but it is computed differently, using a formula not relevant to
the discussion here. From a programming point of view, one needs only to realize that instead of setting the
values (n,e) for the public key and (n,d) for the private, one must set the following values for the private key
only:

p
q
p-1 mod q
d mod (p-1)
d mod (q-1)

Java Card technology implements the RSA algorithm in both its modulus-exponent form and the CRT form.
The Java Card API contains classes for both public and private keys used in asymmetric algorithms. All public
keys descend from the PublicKey class. All private keys descend from the PrivateKey class. Specifically,
RSA_PublicKey defines a public key for use with the RSA algorithm in its modulus-exponent form and
RSA_PrivateKey defines a corresponding private key.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 6-5

To create a public key in this form, you must specify the modulus n and the exponent e. To create a private
key, you must specify the modulus n and the exponent d. The class RSA_CRT_PrivateKey implements an
RSA private key in the CRT form. To create a private key in this form, you must specify all of the five
parameters listed above for the CRT algorithm. A CRT private key can be paired with a public key of the
modulus-exponent form.

Authentication and Verification
Asymmetric algorithms go beyond symmetric algorithms in that they allow the recipient of a message to verify
not only the integrity of a message, but also its source. Verifying the source of a message is called
authentication. To create an authentic message, the sender of a message first creates a hash value for the
message. The hash value (also known as a message digest) is a string of bits that uniquely identifies the
message. The sender then encodes the hash value with their private key.

Next, the bulk of the message is encoded using the recipient’s public key. The encoded hash value is attached
to the encoded message and acts as a digital signature for that message. The recipient of the message first
decodes the bulk of the message using the recipient’s private key. Then, the recipient compares the digital
signature with the message, using a simple mathematical relation involving:

■ The sender’s public key
■ The signature
■ The message

The Sha1MessageDigest class creates a secure hash value for a message suitable for use in digital
signatures. This class extends the base MessageDigest class which incorporates general hash table
functionality. Notice from the above discussion that signatures are only created using the sender’s private
key—the methods for signing messages in the Java Card API are only included in classes that extend
PrivateKey. The sign() method is part of this class and takes as parameters the sender’s private key and
the message data to sign.

Verification/authentication requires only the sender’s public key—only classes extending the PublicKey
class include a method for verification. The verify() method is part of this class and includes parameters for
the hash value of the message to verify, along with the signed data itself.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 1

Glossary

AID is an acronym for Application IDentifier as defined in ISO 7816-5.

APDU is an acronym for Application Protocol Data Unit as defined in ISO 7816-4.

API is an acronym for Application Programming Interface. The API defines calling conventions by which an
application program accesses the operating system and other services.

Applet the basic unit of selection, context, functionality, and security in Java Card technology.

Applet developer refers to a person creating an applet using the Java Card 2.0 API.

Applet execution context. The JCRE keeps track of the currently selected applet as well as the currently
active applet. The currently active applet value is referred to as the applet execution context. When a virtual
method is invoked on an object, the applet execution context is changed to correspond to the applet that owns
that object. When that method returns, the previous context is restored. Invocations of static methods have no
effect on the applet execution context. The applet execution context and sharing status of an object together
determine if access to an object is permissible.

Atomic Operation is an operation that either completes in its entirety (if the operation succeeds) or no part of
the operation completes at all (if the operation fails).

Atomicity refers to whether a particular operation is atomic or not and is necessary for proper data recovery in
cases where power is lost or the card is unexpectedly removed from the CAD.

CAD is an acronym for Card Acceptance Device. The CAD is the device in which the card is inserted.

Cast is the explicit conversion from one data type to another.

Class is the prototype for an object in an object-oriented language. A class may also be considered a set of
objects which share a common structure and behavior. The structure of a class is determined by the class
variables which represent the state of an object of that class and the behavior is given by a set of methods
associated with the class.

Classes are related in a class hierarchy. One class may be a specialization (a “subclass”) of another (one of its
“superclasses”), it may be composed of other classes, or it may use other classes in a client-server relationship.

EEPROM is an acronym for Electrically Erasable, Programmable Read Only Memory.

Framework is the set of classes which implement the API. This includes core and extension packages.
Responsibilities include dispatching of APDUs, applet selection, managing atomicity, and installing applets.

Java Card Applet Developer’s Guide

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.2

Garbage Collection is the process by which dynamically allocated storage is automatically reclaimed during
the execution of a program.

Java Card Runtime Environment (JCRE) consists of the Java Card Virtual Machine, the framework, and
the associated native methods.

JC2RI is an acronym for the Java Card 2.0 Reference Implementation.

JCRE Developer refers to a person or company creating a vendor-specific framework using the Java Card 2.0
API.

JDK is an acronym for Java Development Kit. The JDK is a Sun Microsystems, Inc. product which provides
the environment required for programming in the Java software language. The JDK is available for a variety
of platforms, for example Sun Solaris and Microsoft Windows®.

Instance Variables, also known as fields, represent a portion of an object’s internal state. Each object has its
own set of instance variables. Objects of the same class will have the same instance variables, but each object
can have different values.

Instantiation, in object-oriented programming, means to produce a particular object from its class template.
This involves allocation of a data structure with the types specified by the template, and initialization of
instance variables with either default values or those provided by the class’s constructor function.

MAC is an acronym for Message Authentication Code. MAC is an encryption of data for security purposes.

Method is the name given to a procedure or routine, associated with one or more classes, in object-oriented
languages.

Namespace is a set of names in which all names are unique.

Object-Oriented is a programming methodology based on the concept of an “object” which is a data structure
encapsulated with a set of routines, called “methods,” which operate on the data.

Objects, in object-oriented programming, are unique instances of a data structure defined according to the
template provided by its class. Each object has its own values for the variables belonging to its class and can
respond to the messages (methods) defined by its class.

Package is a Java software namespace and can have classes and interfaces. A package is the smallest unit of
Java software that can be processed by the JCC utility and installed on a Java technology smart card.

Runtime Environment, see JCRE.

Transaction is an atomic operation where the developer defines the extent of the operation by indicating in
the program code the beginning and end of the transaction.

