Java Card Applet Developer's Guide

Sun.

micrasystems

Sun Microsystems, Inc
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300

Revision 1.12, August 19, 1998

Copyright 1998 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94043 USA.
All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and itslicensors, if any. Third-party software in this product, if any, is protected by copyright and licensed
from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, Solaris, Java, Java Powered, the Java Powered logo, the Coffee Cup logo, Java Card,
JavaPurse and all of Sun’s other Java-based marks are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR

CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents

Java Card Applet Developer’s Guide

Preface viii

1. Overview 1-1
Smart Card Architecture 1-1
Communication Interface 1-2
Smart Card CPU 1-2
On-Card Memory 1-2
Application Protocol Data Units 1-3
Java Technology Smart Cards 1-3

Blocked Card 1-5

2. Java Card Technology 2-1
The Virtual Machine 2-1
Language Specifications 2-2

Threads 2-2

Garbage Callection 2-2
Primitive Types 2-2
Arrays 2-5

Inheritance 2-6
Security 2-6

Portability 2-6

Exceptions 2-6

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. iii

Java Card Applet Developer’s Guide

Core Classes 2-8
The Throwable Class 2-9

The Object Class 2-10

3. Creating aJava Card Applet 3-1
A Basic Example 3-2
Java Card Applet Installation 3-5
The Applet Class 3-5
Registering the Applet 3-6
Applet Selection 3-7
Working with APDUs 3-8
APDU Communication Sequence 3-10
Receiving APDU Data 3-10
APDU Responses 3-12
Return Values 3-13
Atomicity 3-14

Commit Buffer 3-14

4. Optimizing Java Card Applets4-1
Reusing Objects 4-1
Allocating Memory 4-2

Accessing Array Elements 4-2

5. Files5-1
Elementary and Dedicated Files 5-1
Record Files 5-1
The FileSystem Class 5-3
File Operations 5-4
File Security 5-5
Finding Files 5-6

Record Operations 5-7

iv Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

Finding Records 5-7

Managing Files with the FileSystem Class 5-8

6. Cryptography 6-1
Cryptography Concepts 6-1
Symmetric Keys 6-2
Verification of Symmetrically-Encoded Messages 6-3
Asymmetric Keys 6-4

Authentication and Verification 6-5

Glossary 1

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

\Y

Java Card Applet Developer’s Guide

Figures
FIGURE 1-1 Front and Back of Smart Cards (not to scale) 1-1
FIGURE 1-2 Eight Contact Points of the Smart Card Chip 1-2

FIGURE 1-3 Card Acceptance Device 1-2
FIGURE 1-4 Java Card Technology Architecture 1-4

FIGURE 1-5 Downloading Converted Classes 1-5
FIGURE 3-1 Downloading Converted Classes 3-1
FIGURE 3-2 Applet Selection 3-7

FIGURE 3-3 Buffer Length 3-11

FIGURE 3-4 Split APDU Buffer 3-12

FIGURE 5-1 Linear Files 5-2

FIGURE 5-2 Cyclic File Record Order 5-2

FIGURE 5-3 Cyclic File after Record Appended 5-2
FIGURE 5-4 FileSystem Class Hierarchy 5-3
FIGURE 5-5 Applet Data Hierarchy 5-4

FIGURE 6-1 ECB Diagram 6-3

FIGURE 6-2 CBC Diagram 6-3

vi Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

Tables

TABLE 1-1 Smart Card Software Components 1-4
TABLE 2-1 Supported Primitive Types 2-2
TABLE 2-2 Unsupported Primitive Types 2-3
TABLE 2-3 Supported Exceptions 2-7

TABLE 2-4 Java Card Platform Core Classes 2-8
TABLE 5-1 Classes and File Types 5-3

TABLE 5-2 File Access Permission Flags 5-5
TABLE 5-3 File Flags 5-6

TABLE 5-4 Search Mode Direction Flags 5-8
TABLE 5-5 FileSystem Methods 5-8

TABLE 5-6 FileSystem Methods 5-9

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. Vil

Java Card Applet Developer’s Guide

Preface

Javan Cardo technology combines a subset of the Java programming language with a runtime environment
optimized for smart cards and related, small-memory embedded devices. The goal of Java Card technology is
to bring many of the benefits of Java software programming to the resource-constrained world of smart cards.

This document demonstrates the concepts and APIs that devel opers need to write applications for the Java
Card platform (Java Card applets). This document is specific to version 2.0 of the Java Card API specification
for use with version 1.0.2 of the Java Development Kit (JDK). After reading this guide, a developer will have
enough knowledge of the Java Card technology programming concepts and the Java Card API to develop Java
software applets for smart cards.

Who Should Use This Guide?

Java language devel opers, who wish to extend their devel opment efforts onto smart card platforms, are the
intended audience of thisguide. It isaso intended for use by existing smart card devel opers who are
accustomed to programming in assembler or C.

viii

Before Y ou Read This Guide

Before reading this guide, you should familiarize yourself with the Java programming language, the Java
Virtual Machine, and smart card technology. A good resource for becoming familiar with Java technology and
Java Card technology is the Sun Microsystems, Inc. website, located at: htt p: //j ava. sun. com To
download the JDK, seeht t p: / / j ava. sun. com products/j dk/ .

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

How This Guide I's Organized

Chapter 1, “Overview,” provides an overview of smart cards and the Java Card technol ogy architecture.

Chapter 2, “Java Card Technology,” provides alook at Java Card technology by way of comparison with
Java technology.

Chapter 3, “Creating a Java Card Applet,” provides a sample Java Card applet and describes how to create
your first Java Card applet.

Chapter 4, “Optimizing Java Card Applets,” describes the programming considerations for the resource-
constrained environment of the smart card.

Chapter 5, “Files,” explains how to use Java Card technology’s file classes.
Chapter 6, “Cryptography,” explains how to use Java Card technology’s cryptography classes.

Glossary is a list of words and their definitions to assist you in using this guide.

Related Documents

References to various documents or products are made in this manual. You should have the following
documents available:

m Java Card 2.0 Application Programming Interface, Sun Microsystems, Inc.

m Java Card 2.0 Language Subset and Virtual Machine Specification, Sun Microsystems, Inc.

m The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele. Addison-Wesley, 1996,

ISBN 0-201-63451-1.

m The Java Virtual Machine Specification (Java Series) by Tim Lindholm and Frank Yellin. Addison-
Wesley, 1996, ISBN 0-201-63452-X.

m |SO 7816 Specification Parts 1-6.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. ix

Java Card Applet Developer’s Guide

Overview

The Java Card specifications enable Java technology to run on smart cards and other devices with limited
memory. To simplify the material, the focus in this document is on the smart card. A smart card isidentical in
sizeto atypical credit card and stores and processes information through the e ectronic circuits embedded in
silicon in the plastic substrate of the card. There are two basic types of smart cards: memory and intelligent. A
memory card stores data locally, but does not contain a CPU for performing computations on that data. An
intelligent (smart) card includes a microprocessor and can perform calcul ations on locally-stored data.

There are several unique benefits of the Java Card technology in these smart cards, such as.

m Platform Independent—Java Card applets that comply with the Java Card API specification will run on
cards developed using the Java Card Application Environment (JCAE), allowing developers to use the
same Java Card applet to run on different vendors’ cards.

m Multi-Application Capable-—Multiple applications can run on a single card. In the Java programming
language, the inherent design around small, downloadable code elements makes it easy to securely run
multiple applications on a single card.

m Post-Issuance of Applications—The installation of applications, after the card has been issued, provides
card issuers with the ability to dynamically respond to their customer's changing needs.

m Flexible—The object-oriented methodology of the Java Card technology provides flexibility in
programming smart cards.

m Compatible with Existing Smart Card Standards—The Java Card API is compatible with formal
standards, such as, ISO7816, and industry-specific standards.

Smart Card Architecture

The smart card architecture consists of a communication interface, memory, and a CPU for performing
calculations and processing information. The front and back of the card is pictured in FIGURE 1-1.

Electrical Magnetic stripe

- contacts XYZ B800010
Microprocessor

Front Back

FIGURE 1-1 Front and Back of Smart Cards (not to scale)

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 1-1

Java Card Applet Developer’s Guide

Communication Interface

A smart card does not contain its own power supply, display, or keyboard. It interacts with a Card Acceptance
Device (CAD) through using a communication interface, provided by a collection of eight e ectrical contact
points, as pictured in FIGURE 1-2.

Power—(Vcc) / \ (GND)—Ground
Reset—(RST) (Vpp)—Optional
Clock—(CLK) (HO)—Input/Output
Reserved for future use—(RFUK / (RFU)—Reserved for future use

FIGURE 1-2 Eight Contact Points of the Smart Card Chip

Card Acceptance Device
The Card Acceptance Device (CAD) (also called a card reader, device reader, or card terminal) servesas a

conduit for information into and out of the card. The card must be inserted into the CAD, as pictured in
FIGURE 1-3, to provide the card with power (through its contacts, as described above).

FIGURE 1-3 Card Acceptance Device

Smart Card CPU

Many Java language devel opers are accustomed to a world of powerful, multitasking CPUs with large amounts
of RAM, virtual memory support, paging, and integrated 1/O devices. As aresult of the cost sensitivity and
low profile of smart card CPUs, current smart card technol ogy represents a return to the days when CPUs were
8-hit, single-tasking devices with 1KB of RAM or less.

On-Card Memory

There are three main types of memory on a smart card, they are:

m ROM (Read-Only Memory) — contains code and data that is read-only and cannot be modified.
Information stored in ROM persists even after power to the card is disconnected.

1-2 Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

m RAM (Random Access Memory) — is fast, volatile memory. Any information in RAM is lost when power
to the card is disconnected. A typical Java Card platform implementation uses RAM for the frame and
operand stacks and for storing temporary data.

m EEPROM (Electrically Erasable Programmable Read Only Memory) — is like ROM in that information
in this type of memory persists across power sessions (other forms of non-volatile memory are also used in
smart cards, for example, Flash and battery-backed RAM). EEPROM has the added advantage over ROM
of being both readable and writeable (like RAM), although writing to EEPROM is slower than writing to
RAM and EEPROM is subject to wear. After a large number of writes to a particular byte, typically more
than 100,000, the data integrity of that byte in EEPROM may fail. See the chip manufacturer's
specification for details.

The applet developer should ensure that temporary fields that are updated frequently are components of
transient arrays. This reduces potential wear on persistent memory and guarantees better write performance.
As a rule of thumb, if a temporary field is being updated multiple times for every Application Protocol Data
Unit (APDU), the applet developer should move it into a transient array.

Application Protocol Data Units

Smart cards communicate using a packet mechanism called Application Protocol DatARDifs), Smart
cards are reactive communicators—that is, they never initiate communications, they only regiibddo
from the CAD. The communication model is command-response based—that is, thexeamsra comand
APDU, performs the processing requested by tinencand, and returns a respordeDU. See th€reating a
Java Card Applet chapter for more information on working wigiPDUs.

The International Standards Organization (ISO) has set forth hardware and software specifications for
creating inter-operable smart cards. These specifications are containet S0 #846 Parts 1-6 documents.
For the purposes of developing Java Card applets, the most relevant docus@m8iks-4.

Java Technology Smart Cards

A Java technology smart card is a smart card that can execute Java Card applets. These applets run in the Ja
Card environment, which may be as small as:

m 24K of ROM
m 16K of EEPROM
m 512 bytes of RAM

In addition to a CPU and memory, a Java technology smart card contains various software components, as
described in the following table.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 1-3

Java Card Applet Developer's Guide

TABLE 1-1 Smart Card Software Components

Software Component Description

Native methods Performsthe 1/0, cryptographic, and memory allocation services of the
card.
VM The Java Card Virtual Machine (VM) provides bytecode execution and

Java language support.

Framework The set of classes which implement the API. Thisincludes core and
extension packages. Responsibilities include dispatching of APDUS,
applet selection, managing atomicity, and installing appl ets.

AP The Application Programming Interface (APl) definesthe calling
conventions by which an applet accesses the JCRE and native methods.

JCRE The Java Card runtime environment (JCRE) includes the Java Card
Virtual Machine (VM), the framework, the associated native methods,
and the API.

Industry-specific Add-on classes that extend the appletsinstalled on the card.

extensions

Applets Programs written in the Java programming language for use on a smart
card.

These components are illustrated in FIGURE 1-4.

/ — A A
Applet Applet Applet
_ Industry-Specific Extensions ’
JCRE
Framework
AP
ANy Ay
Java Card VM Native M ethods

FIGURE 1-4 Java Card Technology Architecture

A primary difference between the Java Card Virtual Machine (JCVM) and the Java Virtual Machine (JVM) is
that the JCVM isimplemented as two separate pieces. In effect, it is distributed in both space and time. The

1-4 Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

first piece of the VM executes off-card on a PC or workstation. This off-card part of the JCVM, the Java Card
Converter, does all thework required for oading classes and resolving references. The on-card part of the VM

includes the bytecode interpreter.

The interface between the two piecesis a converted applet (.cap file), as pictured in FIGURE 1-5, which is

produced by the off-card VM during the devel opment process and used by the on-card VM during execution.

Off-Card VM

Converter
.class
files

Java C

ard VM

On-Card VM

JCRE

v
.cap

file
I

FIGURE 1-5 Downloading Converted Classes

For further information, see the Java Card Technology chapter and the Java Card 2.0 Reference
Implementation (JC2RI), available on the Sun Microsystems, Inc. website, located at http://java.sun.com.

Blocked Card

There are afew conditions that cause the card to be blocked (or muted), preventing further use of the card. For
example, a card might be blocked when an attempt to breach the card’s security is detected (by perhaps, the
personal identification number (PIN) code being entered incorrectly more than five consecutive times). In this
case, the issuer needs to be contacted (and the card may need to be returned) to reset the VM from such a

blocked state.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

1-5

Java Card Applet Developer’s Guide

Java Card Technology

Java Card technology preserves many of the benefits of the Java programming language—productivity,
security, robustness, tools, and portability—while enabling Java technology for use on smart cards. The
Virtual Machine (VM), the language definition, and the core packages have been made more compact and
succinct to bring Java technology to the resource-constrained environment of smart cards.

The Virtual Machine

The Java Card Virtual Machine (VM) provides bytecode execution and Java language support. The Java Card
Runtime Environment (JCRE) includes a virtual machine (VM) and core classes to f\Rppbrtrouting,

ISO communication protocols, and transaction-based processing. The Java Card VM is actually split into two
parts, one for running off-card and the other for running on-card, as explainedivetkieaw chapter.

The on-card Java Card VM executes bytecode, manages classes and objects, enforces separation between
applications (firewalls), and enables secure data sharing.

The off-card Java Card VM contains a Java Card Converter tool for providing many of the verifications,
preparations, optimizations, and resolutions that the Java VM performs at class-loading time. Dynamic class
loading at runtime is not supported by the Java Card VM because:

m There are limited resources within the smart card environment

m Security aspects of the smart card environment prohibit most dynamic behavior (virtual method binding is
allowed)

The Java Card Converter tool is a “pre-loading” implementation of the Java VM. All classes in a package,

referenced by an applet, must be bound into the applet’s binary image when the applet is installed on the card.

The Java Card Converter acts as a pre-loading processor on the Java Card platform class files. The Java Carc

Converter performs the following steps:

1. Verification—checks that the load images of the classes are well formed, with proper symbol tables and
checks for language violations, specific to the Java Card specifications

2. Preparation—allocates the storage for and creates the VM data structures to represent the classes, create:
static fields and methods, and initializes static variables to default values

3. Resolution—resolves symbolic references to classes, methods, and fields into a more compact form which
can be handled more efficiently on the card. When dealing with intra-package references, some amount of

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 2-1

Java Card Applet Developer’s Guide

binding can be performed off-card, similar to the binding involved in the generation of “quick” bytecodes
(as in the JVM specifation).

2-2

L anguage Specifications

There are differences in the language specifications between the Java platform and the Java Card platform,
resulting from the resource-constrained environment of the smart card. One main difference between the Java
platform and the Java Card platform is that the Java Card platform supports only Java Card ap{é€s, not

style applets or applications.

The Java Card API uses a subset of the Java programming language as defined in version 1JRRK.of the
The reference implementation will run on any version oflibk after and including version 1.1. The Java
Card 2.0 Reference Implementation (JC2RI), available on the Sun Microsystems, Inc. website
(http://java.sun.com), is based on flawa Card 2.0 Language Subset and Virtual Machine Specification.

The language differences between the Java platform and the Java Card platform are summarized in this
section.

Threads

The Java Card platform does not support threads because current smart card central processing units (CPUs)
cannot support efficient multitasking. As a result, none of the thread keywords are supported.

There is also no support in the Java Card platform for synchronized or volatile (used to copt®ta
shared variables and methods among threads).

Garbage Collection

Java Card technology implementations are not required to support garbage collectiohj salthee()
method is not supported.

Primitive Types

As in Java technology, Java Card technology supports the following primitive lbypeshort, andboolean.

A byte is an 8-bit signed two’s complement number with a possible range of values between -128 to 127. A
short is a 16-bit signed two’s complement number with a possible range of values between -32768 to 32767.
Internally, Java Card technology representshitmean type as a byte. This is in contrast to Java technology,
which represents boolean intally as int. These are the only primitive types universally supported in Java
Card technology, reflecting the 8-bit and 16-bit microprocessors on which Java Card technology currently
executes.

Theint type is available for use on some advanced 32-bit smart cards (the int type could actually be
implemented on 16 or even 8 bit cards, but at a cost in execution and overhead). The int type represents a 32-
bit signed two’s complement number with a possible range of values between -2147483648 to 2147483647.
The following table describes the supported primitive types.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

TABLE 2-1 Supported Primitive Types

Type Width Range

byte 8 hits -128, 127

short 16 bits -32768, 32767
boolean 8 hits TRUE or FALSE
int (supportedon 32 hits -2147483648 to
some platforms) 2147483647

The Java Card platform does not support the char, double, float, or long primitive types. The transient and
volatile declaration modifiers are unsupported. The following table describes the unsupported primitive types.

TABLE 2-2 Unsupported Primitive Types

Type Width Range

Long 64 bits 2% 2841

Char 16 hits Unicode v1.1.5 character set
Float 32 hit Refer to IEEE 754

Double 64 bit Refer to IEEE 754

Variables of type “byte” may be widened to “short” using the (short) cast. The widening occurs without loss of
precision. Variables of type “short” may be narrowed to “byte” using the (byte) cast. The upper 8 bits of the
short value are discarded. It is also possible to form a short from two byte values using the

Uil .makeShort () method found in theavacar d. f r amewor k package.

To ensure that the results of arithmetic calculations are consistent with conventional Java technology, Java
Card technology uses casting rules. The general rule is that the results of intermediate or unassigned
arithmetic calculations must be explicitly cast to either a “byte” or short” value when used in combination with
certain other operations (otherwise they would default to type “int”). An unassigned result is one which is not
assigned to a variable (for example, an array index computed using an arithmetic calculation). In the
following example, the calculatiqra+1) yields an intermediate result which must be explicitly cast to either

a “byte” or “short” value:

byte b;

short a;

byte array[] = new byte[10];

b = (byte)((a+l)/2); /1 This causes the Java Card Converter to
/1issue an error

b = (byte)((byte)(a+l)/2); /1 QK

b = (byte)((short)(a+l)/2); /1 Ck

b = array[a+l]; [l Error

b = array[(byte)(a+l1)]; /1 QK

b = array[(short)(a+1)]; /1 QK

Replacing the intermediate calculation(afr1) with the symbol reduces the equation to:

b = (byte)(1/2);

A second arithmetic calculatiqn / 2) now occurs, but this second arithmetic calculation is neither
intermediate nor unassigned. The result of the second arithmetic calculation is directly assigned to the variable

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 2-3

Java Card Applet Developer’s Guide

2-4

b, and Java programming language rules require an explicit cast to the variable type, in this case a byte. Java
Card technology is consistent with Java technology by requiring the explicit cast when the results of the
arithmetic calculation are assigned to a typed variable.

The Java Card technology casting requirements on intermediate results of arithmetic calculations are
necessary because of the manner in which Java technology handles the calculation of intermediate results. Java
technology converts the intermediate results of operations involving bytes and shortsto int (32 bit) values,
unless an explicit cast to short or byte is used. Because Java Card technology is designed to run on 8- and 16-
bit CPUs, storing intermediate resultsin 32 bitsis not possible. (See the Java Card Converter documentation
for error reporting when an explicit cast is not performed.)

It can be shown that the overall result of a complex arithmetic expression (one involving intermediate results)
may vary, depending on the number of bits used to store the intermediate results. This discrepancy is dueto
the fact that overflow bits, which result from the intermediate cal cul ation, are preser ved when more bits are
used to store the intermediate values and are truncated when fewer bits are used. Explicitly casting the results
of intermediate or unassigned calculations, explicitly defines the number of bits used to store the intermediate
results, and ensures results consistent with Java technol ogy.

Intermediate or unassigned arithmetic operations that are subject to the explicit casting rules are:
List #1

Addition (+, ++)
Subtraction (-, --)
Unary negation (-)
Left shift (<<)
Multiplication (*)
Division (/)

Intermediate arithmetic results of the operations listed above must be cast when used as the operands to any of
the operations listed below:

List #2

Remainder (%) (both operands)

Unary negation (-)

Right shift (>>) (operand being shifted)

Unsigned right shift (>>>) (operand being shifted)
Division (/) (both operands)

In addition, unassigned (as opposed to intermediate) arithmetic results must be explicitly cast when used in the
following circumstances:

List #3

m Asthe eement count when creating a new array

m Asan array index

m Asthe parameter to a method (also required with Java technol ogy)
m Asthedecision valuein swi t ch statements

Intermediate results from operationsin List #1, which are used as inputs to the bitwise AND operation (&),
the bitwise OR operation (]), and the bitwise XOR operation ("), are subject to the casting rulesiif the result of
the &, |, or ~ operation isitself an input to one of the operationsin List #2 or List #3.

Here are some examples of applying the explicit casting rules:

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

short s=2, c=4, d=5;

byte a=1, b=3;

byte array[] = new byte[(byte)(a*b)];

S (short) ((byte)(al/b) >> 2);

(short) (b >> (a*b)); /Ino cast required — intermediate
/lis not operand being shifted

S

s = (short) ((byte) (a*b)/c);

s = (short) ((short) (a*b)/(short)(c*d));

s = (short) array[(short)(a/b)];

s = (short) ((short)((c*c) & d)/a); /lcast required on result of &
/loperation

if ((short)(a*b*c) < 10){ ... }

switch ((byte) (c>>b)){ ...}

Arrays

Java Card technology supports single-dimensional arrays, but does not support multidimensional arrays
because of the resource constraints of the smart card environment. Arrays must have e ements which are one
of the supported primitive types or objects. Array elements can be references to other arrays. The following are
examples of valid array declarations for both the Java platform and the Java Card platform:

byte a[] = new byte[10];

byte a[] ={1,1,2};

static final short MAX_ARRAY = 15;

short s[] = new shortfMAX_ARRAY];

AID aid[] = new AIDI[5]; /larray of 5 AID object references

The following are examples of invalid array declarations:

byte b[][] = new byte[5][2]; /Imultidimensional arrays in all these
/lexamples are not supported

short s[][] = new short[10][];

byte b[][l;

Arrays are objects (just asthey are in Java technology), so that the Object methods are available when using
arrays. Two array references can be compared for equality using theequals() method:

if (c.equals(d)) {...}

The return value is always TRUE or FALSE—either the array references are equal or they are not. More
elaborate comparisons between the elements of two byte-arrays can be performed using the
Uil.arrayConpare() method. This method allows you to compare any range of the elements of two
arrays, with a return value indicating whether the range is less than, equal to, or greater than the other. Any
range of one byte-array may be copied to the range of another (including the same array) using
Util.arrayCopy().

ThearrayCopy() method ensures the atomicity of the copy operation—removing (tearing) the card in the
middle of the operation does not result in a partially copied array. The non-atomic version of the same method
isUtil.arrayCopyNonAtoni c(). A similar methodlti |l . arrayFil | NonAt onmi c(), non-atomically

fills the elements of a byte array with a specified value.

The memory implications of source-to-source array copies and atomic array operations are discussed in more
detail in the section o®ptimizing Java Card Applets.

Two consecutive byte array elements may be returned as a short valuetlisinget Short . Likewise, two
consecutive byte array elements may be set using the first and second bytes in a short value using
Util.setShort.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 2-5

Java Card Applet Developer’s Guide

2-6

Inheritance

The Java Card platform fully supports all of the inheritance features available in the Java platform. Method
overrides, abstract methods, and interfaces are all supported. Thesuper andt hi s keywords are supported,
with identical usage rules: both may be used only in an instance method, constructor, or in theinitiaizer of an
instance variable of a class.

Security

All of the Java language and compilation security features are supported by Java Card technology, such as
bytecode verification, confirming that all targetsin the applet are reachable, and public, private, and protected
access modifiers.

Just asin the Java platform, members declared as:
m Public are accessible to other installed classes

m Private are accessible only from within the classin which it is declared

m Protected are accessible to and inherited by subclasses and accessible by code in the same package

Note — By default, members are accessible by any code within the same package.

Portability

The Java Card APl alows applications written for one Java Card-based smart card platform, to run on any
other Java Card-based smart card platform—allowing developers to use the same Java Card applet to run on
different vendors' cards.

A Java Card applet will not execute as a Java applet doetbK aurtime environment and a Java applet will
not execute as a Java Card applet does in the JCRE. However, if the JCRE is simulatdaKrr timéme
environment, the card applet will execute.

In general, Java Card technology provides your software with independence from the:

m CPU-specific features of the card (for example, instruction set, byte-ordering conventions, or data and
instruction bus width)

m |ISO protocol used to communicate between the card and the Card Acceptance Device

Java Card technology does not provide independence from all of the features of different models of smart
cards. For example, some smart cards may support the int primitive data type or garbage collection—if your
Java Card applet assumes such support is present, it will only work on smart cards that implement those
features.

Exceptions

Java Card applets must be tested thoroughly to avoid any fatal errors during execution on the smart card. To
assist developers in debugging the Java Card applets, the Java Card platform supports all of the Java
programming language constructs for exceptions. You can inctudecat ch, or final Iy constructs in

your Java Card applets, and they work the same as in the Java platfortrhr dtvékeyword is also

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

supported, however as discussed below, the preferred way to throw exceptions does not directly involve the use
of t hr ow.

The Java Card platform does not support all of the exception types found in the Java technology core packages
because many of them are not applicablein a smart card context. For example, threads are not supported
within the Java Card platform (as discussed in the Language Specifications section of this chapter) and asa
result, none of the thread-related exceptions are supported. The following table lists all of the supported
exceptions.

TABLE 2-3 Supported Exceptions

Exception Package Superclass Type
Exception javalang Throwable Checked
RuntimeException javalang Exception Unchecked
Arithmeti cException javalang RuntimeException Unchecked
ArrayStoreException javalang RuntimeException Unchecked
ArraylndexOutOfBoundsException javalang RuntimeException Unchecked
ClassCastException javalang RuntimeException Unchecked
IndexOutOfBoundsException javalang RuntimeException Unchecked
NegativeArraySizeException javalang RuntimeException Unchecked
Null Pointer Exception javalang RuntimeException Unchecked
SecurityException javalang RuntimeException Unchecked
APDUEXxception javacard.framework RuntimeException Unchecked
| SOException javacard.framework RuntimeException Unchecked
PINException javacard.framework RuntimeException Unchecked
SystemException javacard.framework RuntimeException Unchecked
TransactionException javacard.framework RuntimeException Unchecked
UserException javacard.framework Exception Checked

The implementation of exception classes (class Thr owabl e and its subclasses) within the Java Card platform

does not include support for a “message” string. Gassng itself is not supported within the Java Card

platform, therefore string messages cannot be supported in exceptions either. As an alternate way to attach
extra information to the exception, the exception classes within the Java Card platform supply a numerical
reason code. This reason code is used to describe optional details related to the throwing of the exception. The
value of the reason code is a “short.”

To optimize memory usage, all exception objects can be pre-created at initialization time and their references
saved permanently. When the exception event occurs, rather than create a new exception object, the code can

1. Retrieve and reuse the reference for the desired exception object.
2. Fill in the reason code in the object.
3. Throw the object.

The JCRE pre-creates an instance of each kind of specific exception defined in the Java Card API. Most of
these are unchecked exceptions. When these exception objects are needed, use the static owthoyl
within the appropriat€xcept i on class. Se@he Throwable Class section for more information.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 2-7

Java Card Applet Developer’s Guide

2-8

Y ou can define your own exceptions by creating subclasses of class Except i on. These are always checked
exceptions. These exceptions can be thrown and caught as desired by the applet. However, during
initialization the applet needs to:

1. Createasingleinstance of each such exception.
2. Savethereference in some persistent object field.

3. Reusethat instance whenever it is necessary to throw that exception.

Core Classes

The core classes of the Java Card APl are more compact and succinct than those in the Java platform and
provide essential servicesto Java Card applets. Devel opers familiar with the Java platform may not recognize
some of the Java Card platform core classes, with the exception of Obj ect and Thr owabl e inj ava. | ang.

TheString classes, | / O classes, AW classes, and net classes are not supported in the Java Card platform
core classes because of memory constraints within the smart card environment.

Thefollowing tablelists al of the Java Card platform packages and the classes they contain:

TABLE 2-4 Java Card Platform Core Classes

Package Class

Core Classes
javalang Object
Throwable
. Various language exceptions
javacard.framework AID
APDU
Applet
SO
PIN
System
Util
Various related exceptions

Extension Classes

javacardx.framework File system classes

javacardx.crypto Public key classes
Symmetric key classes
Random number generator
Message digest

javacardx.cryptoenc DES encryption classes

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

The Throwable Class

To support exceptions, the Thr owabl e classisimplemented within the Java Card platform. The
implementation is designed such that exception objects are allocated once system-wide, then customized and
reused by all installed classes. Although thisisan option for handling exception objects, it is highly
recommended as a space saver because the Java Card platform does not provide universal support for garbage
collection or for explicit deallocation of allocated memory (providing support for explicit deallocation of
allocated memory would violate the memory management model of the Java programming language).

Once an object isingtantiated, the storage set aside for that object is reserved for the lifetime of the smart
card—allowing a guarantee of space availability during future execution of that object.

By creating shared, system-wide exception objects, the Java Card platform allows exceptions to be thrown
using a reused exception object. An applet simply retrieves a reference to a shared exception-object of the
desired type, customizes the exception with an error code, and throws the exception by invoking the
exception’st hr owl t () method—not by using the hr ow keyword.

Like the Java platform, all exceptions are derived fronTthewabl e class, for example:

public class Throwabl e
/1 Met hods:

public short getReason(); //get the error code to throw with the
[l exception

public void setReason(); //set the error code to throw with the
[l exception

Unlike in the Java platform, the following methods are not parhobwabl e because of memory constraints
within the smart card environment:

toString

get Message

get Local i zedMessage
filllnStackTrace

Theprint StackTrace method is not supported because there is no printer on a smart card.

The declaration dtxcept i on in the Java Card platform is:

public class Exception extends Throwabl e
/I Menber vari abl es:
private static Exception exceptionl nstance;

/[Met hods:
public static void thromt (short reason) throws Exception {
i f (exceptionlnstance == null)

exceptionlnstance = new Exception();
exceptionl nstance. set Reason (reason);
throw excepti onl nst ance;

All Java Card platform exceptions in the core packages deriveskompt i on and override thehr ow t ()
method. An example of throwing an exception usihgow t () is provided in th®ptimizing Java Card
Applets chapter.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 2-9

Java Card Applet Developer’s Guide

The Object Class

The definition of the Obj ect classin the Java Card platform is more succinct than within Java technology to
accommodate the resource constraints of the smart card environment. The definition within the Java Card
platform is as follows:

public class Object {
publ i c bool ean equal s(bj ect obj) ...
}

The only supported method isequal s() , which, when implemented by subclasses of Obj ect , providesa
comparison of the equality of two object references. Notice that thereisnoget C ass() method
implemented—€l ass objects are unreachable by an applet in the Java Card platform.

Otherbj ect methods in the Java platform that are not in the Java Card platform include:

toString
hashcode
cl one
wai t
notify
noti fyAll
finalize

As a result of the resource constraints in devices with limited memory, the following methods are not
supported within the Java Card platform:

m Thehashcode() method—hash tables are not supported
m Thecl one() method—objects cannot be cloned
m Thewait(),notify(),andnotifyAl I () methods—threads are not supported

m Thefinalize() method—garbage collection is not universally supported and the concept of
relinquishing system resources owned by the object being garbage collected (for example, graphics) is not
meaningful in the smart card environment

2-10 Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

Creating a Java Card Applet

Off-the-shelf Java technol ogy devel opment tools can be used to create and compil e the source code for Java
Card applets. Once the Java software source code is compiled into a set of classfiles, a processed version of
the applet, suitable for loading on Java technology smart cards, is created using the Java Card Converter tool,
as discussed in the Overview chapter and pictured in FIGURE 3-1.

Off-Card VM On-Card VM
—»
Converter JCRE
.class
files
Java Card VM A

v

.cap

file

L

FIGURE 3-1 Downloading Converted Classes

Java Card technology differs from Java technology as a result of the resource constraints of the smart card
environment, as discussed in the Java Card Technology chapter. Smart cards communicate using a packet
mechanism called APDUS, as discussed in the Overview chapter and in the Working with APDUSs section of
this chapter.

Y ou now have enough background to begin the process of creating the source code for a Java Card applet. The
source code for the applet begins with the same package designations found in the Java language (the
j ava. | ang package need not be expressly imported into your applet).

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-1

Java Card Applet Developer’s Guide

A Basic Example

The following code listing shows a basic example of a Java Card applet that can be processed by the Java Card
Converter and installed onto a Java technology smart card:

Java Card supports package and
package bank. pur se; identifier name convention asin
standard Java technol ogy.

i nport javacard. framework. *;
i mport javacardx. framework. *;

) An applet is an instance of a class which
public class Wallet extends Applet {

/* constants declaration */ _extendsfrom:
javacard.framework.Appl et.

/1 code of CLA byte in the conmand APDU header CLA identifiesif the command isan

final static byte Wallet CLA =(byte)0xBO; | SO-conforming message

/1 codes of INS byte in the command APDU header

final static byte Deposit = (byte) 0x10; INS specifies the application

final static byte Debit = (byte) 0x20; instructions.

final static byte Bal ance = (byte) 0x30;

final static byte Validate = (byte) 0x40;

/1 maxi mum nunber of incorrect tries before the
/1 PINis blocked

final static byte PinTryLimt =(byte)0x03; PIN object parameters.
/1 maxi mum si ze PIN

final static byte MaxPi nSi ze =(byte)0x04;

/1 status word (SWL-SW2) to signal that the

/'l bal ance becones negati ve;

final static short SW NEGATI VE_BALANCE = (short)
0x6910;

/* instance variabl es declaration */

Omner PIN pin;

byt e bal ance;

byte buffer[]; // APDU buffer

Appl et-specific static word.

private Wallet() { private constructor—an instance of clgss
/1 1t is good programmng practice to allocate Wallet is instantiated by its install
/1 all the menmory that an appl et needs during method.

/1 its lifetime inside the constructor
pin = new Oamer Pl N(Pi nTryLi nmit, MxPinSize);

bal ance = 0; The applet registers itself with the JCRE

register(); . A L
by callingr egi st er method, which is

} // end of the constructor defined in clas#ppl et .

public static void install (APDU apdu) { . .

Il create a Wallet applet instance Methodi nstal | is Invc_)ked by the

wal l et = new Wallet(); JCRE as the last step in the applet

register (wallet); installation process.

} /1 end of install nethod
public bool ean select() {

/1l reset validation flag in the PIN object to This method is called by the JCRE to

Il false _ indicate that this applet has been
pin.reset(); selected. It performs necessary

/1 returns true to JCRE to indicate that the initialization which is required to

/1l applet is ready to accept incom ng APDUs. process the subsequent APDU messages.

return true;

3-2 Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

}// end of select nethod

public void process(APDU apdu) ({

/1 APDU object carries a byte array (buffer) to
/1 transfer inconming and out goi ng APDU header
/1 and data bytes between card and CAD

buffer = apdu.getBuffer();

After the applet is successfully selected,
the JCRE dispatchesincoming APDUs
to this method.

APDU object is owned and maintained
by the JCRE. It encapsulates details of
the underlying transmission protocol
(TOor T1 as specified in 1SO 7816-3)
by providing a common interface.

/'l verify that
/1 APDU nessage
if (buffer[lSO OFFSET_CLA]
| SOException.throw t
(1SO. SW CLA NOT_SUPPORTED) ;

if the applet can accept this

== Wall et CLA)

When an error occurs, the applet may
decide to terminate the process and
throw an exception containing the status
word (SW1 SW2) to indicate the
processing state of the card.

An exception that is not caught by an
applet is caught by the JCRE.

switch (buffer[lSO OFFSET_INS]) ({
case Bal ance: get Bal ance(apdu) ;
case Debit: debi t (apdu); return;
case Deposit: deposit (apdu);return;
case Validate: val i dat e(apdu);return
defaul t: | SOException.throwt
(1SO. SW.I NS_NOT_SUPPORTED) ;

}

} /1 end of process nethod

return;

The main function of thepr ocess
method is to perform an action as
specified in the APDU and to return an
appropriate response to the terminal.
INS byte specifies the type of action
needed to be performed.

private void deposit(APDU apdu) {

/1l access authentication
if (! pin.isvalidated())
| SOException.throwt (ISO SW PI N REQU RED);

/'l Lc byte denotes the nunber of bytes in the
/1 data field of the comarmd APDU
byte numBytes = (byte) (buffer[lSO OFFSET_LC]);

/1 indicate that this APDU has inconming data and
/1 receive data starting fromthe offset

/1 1SO OFFSET_CDATA

byt e byteRead =

(byte) (apdu. set | ncom ngAndRecei ve());

/1 it is an error if the nunber of data bytes
/'l read does not nmatch the nunber in Lc byte
if (byteRead != 1)

| SOException.throw t (I SO SWWRONG_LENGTh) ;

/'l increase the balance by the amount specified
/1l in the data field of the command APDU.
bal ance = (byte)

(bal ance + buffer[| SO OFFSET_CDATA]);

/1 return successfully
return;

} /1 end of deposit nethod

The parameter APDU object contains a
data field, which specifies the amount to
be added onto the balance.

Upon receiving the APDU object from
the JCRE, thefirst 5 bytes (CLA, INS,
P1, P2, Lc/Le) areavailablein the
APDU buffer. Their offsetsin the
APDU buffer are specified in the class
1SO. Because the datafield is optional,
the applet needs to explicitly inform the
JCRE to retrieve additional data bytes.

The communication between card and
CAD is exchanged between the
command APDU and response APDU
pair. In the deposit case, the response
APDU contains no data field. The JCRE
would take the status word 0x9000
(normal processing) to form the correct
response APDU. Applet developers do
not need to be concerned with the
details of constructing the proper
response APDU.

When the JCRE catches an Exception,
which signals an error during
processing the command, the JCRE
would use the status word contained in

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-3

Java Card Applet Developer’s Guide

the Exception to construct the response
APDU.

private void debit(APDU apdu) {

/1 access authentication
if (! pin.isvalidated())
| SOException.throw t (1S0O SW PI N REQUI RED) ;

byte nunBytes =
byt e byteRead =
(byte) (apdu. set | ncom ngAndRecei ve());

(byte) (buffer[1SO OFFSET_LC])

if (byteRead != 1)
| SOException.throw t (I SO SWWRONG_LENGTH)

/'l bal ance can not be negative
if ((balance - buffer[|SO OFFSET_CDATA]) < 0)
| SOExcepti on. t hr ow t (SW NEGATI VE_BALANCE) ;

bal ance = (byte)
(bal ance - buffer[| SO OFFSET_CDATA])

} /1 end of debit nethod

In the debit method, the APDU object
contains a data field, which specifies the
amount to be debited from the balance.

private void getBal ance(APDU apdu) {

/1 access authentication
if (! pin.isvalidated())
| SOException.throw t (1S0O SW Pl N REQUI RED) ;

/1 informsystemthat the applet has finished
/1 processing the command and the system shoul d
/1 now prepare to construct a response APDU

/'l which contains data field

apdu. set Qut goi ng() ;

/lindicate the nunber of bytes in the data field
apdu. set Qut goi ngLengt h((byte)1);

/!l move the data into the APDU buffer
/1l at offset O
buffer[0] = bal ance;

starting

/1 send 1 byte of data at offset 0 in the APDU
/'l buffer
apdu. sendByt es((short)0, (short)1l);

} /1 end of getBal ance net hod

getBalance returns the Wallet's balang

in the data field of the respona@®DU.

Because the data field in the response
APDU is optional, the applet needs to
explicitly inform the JCRE of the

additional data. The JCRE uses the data

array in the APDU object buffer and th
proper status word to construct a
complete response APDU.

e

private void validate(APDU apdu) {
/1l retrieve the PIN data for validation
/1l The user interface data is stored in the
// data field of the APDU
byt e byteRead =
(byte) (apdu. set | ncom ngAndRecei ve());

/ validate user interface and set the

/ validation flag in the user interface

/ object to be true if the validation

/ succeeds. If user interface validation

/ fails, PinException would be thrown from

/ the pin.check() mnethod.

i | SO. OFFSET_CDATA, byt eRead);

T -~

n. check(buffer,

} /1 end of validate nethod
} /1 end of class Wall et

The PIN is used in smart cards to
protect data from unauthorizedcass.

The number of unsuccessful tries in

using the PIN can be recorded. The card

would be blocked if the number of
unsuccessful tries exceeds the maxim
number of allowed tries.

After the applet is successfully selecte
the PIN needs to be validated first,
before any other instruction can be
performed on the applet.

um

L

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

Java Card Applet Installation

Applet installation occurs at the factory or at the office of the issuer and may also occur post-issuance, through
any of the following procedures:

m Loading the applet through a trusted terminal
m Loading the applet through an untrusted terminal that has a secure, signed host connection

m Loading the applet through a secure installation (that is, downloading a digitally-signed applet that is
verified by the JCRE as legitimate before installing the applet)

Appletsthat areinstalled through secure downloads cannot contain native method calls.

Note — Applets with native method calls must be installed at the factory or another trusted environment for
security reasons—native calls bypass the Java technology security framework and so must be highly trusted
before being allowed on the card.

Once installed, Java Card applets do not interact directly with the CAD or off-card applications. Installed
applets may interact directly with only the JCRE or with other installed classes. The JCRE selects an applet
and then passes APDUs to the selected applet. In essence, the JCRE shields the developer from the smart cal
CPU, the CAD, and the particular ISO communication protocol employed. The JCRE also translates uncaught
exceptions thrown by classes or normal return statements in applet methods into standard 1SO return values.

The storage for an installed applet cannot be reclaimed; if a newer version of the applet is installed, it occupies
a new storage location and the earlier version of the applet becomes unreachable. The Java Card applet can
also be made unreachable by removing its reference from the JCRE applet registry table. Once the reference i
removed, the applet can no longer be reached.

Installing the Java Card applet causes its static members to be initialized. Java Card technology supports
constant static initializers—the initializer cannot execute Java software code, nor can it set the static member
to a non-constant (variable) value. Installation also results in a call to the appsets | () method (unlike

Java applets).

The Applet Class

The Java Card applet is an instance of a class that exterjds/tuar d. f r amewor k. Appl et class. This
abstract class has a few methods that must be overridden by the specific implementation of the applet. This
section discusses these methods.

When the applet is installed on the smart cardi tise al | () method is called once by the JCRE, and never
again. The nstal | () method must be declaretat i ¢ because it is called before the applet is
instantiated—the JCRE witiot call the applet’s constructor directly (each instance must be registered with
the JCRE by using theegi st er () method).

The first thingi nst al | () should do is construct the applet by calling its constructor. This has the effect of
allocating and initializing any non-static class instance variables that the applet has declared. Static class
variables are allocated and initialized before the constructor is called when the applet is loaded onto the card.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-5

Java Card Applet Developer’s Guide

Sinceit isup to the applet itsalf to construct itsinstance data, the constructor should be declared as either
private or protected.

The APDU object, which is passed tothei nst al | () method by the JCRE, may contain one-time
initialization or personalization data for the applet.

The purse example above inherits methods from the Appl et class, relying upon their default implementation.
The Appl et class comprises part of the JCRE—a listing for it is provided below to show the methods and
their default implementation.

public abstract class Applet {

protected Applet() {}
public static void install (APDU apdu) throws | SOException {

| SOException.throwt (1 SO SW FUNC_NOT_SUPPORTED) ;

}
public void process (APDU apdu) throws | SCException {
byte buffer[] = apdu.getBuffer();
| SOException.throwt (Util.makeShort ((byte)Ox9F, buffer[1]));

protected bool ean select() {
return true;

}

public void deselect () {}

protected final void register () {
AppTabl e.regi ster (this);

The Applet class includes a method cappedcess() which is the sole mechanism for receiviregadfrom

the CAD, once the applet is installed. Informatioreiseived by way of an APDU parameteiptamcess() .

The default implementation pf ocess() shown above is merely exemplary. The Java Chatfiopm does

not require this behavior of the default implementatioprafcess() . Our default implementation of
process(), in the above example, returns an error dd#- along with the instruction byte from the APDU
header, indicating that the instruction is not supported.

Thei nst al | () method throws an ISOException (using an exception implementation that maximizes object
reuse) by default to indicate that the applet could not be installed. Unless you dvestidel (), your
applet will not be available on the card.

Remember that it is during the processingraft al | () that all one-time initializations should be performed,
including instantiating the applet, registering the applet with the JCRE, and making salls to

Registering the Applet

In the purse example above, theDU is passed along to the applet construetibhough there is no
requirement for this. The applet constructor does one thing—itreajisst er () to add a reference to the
installed applet table within the JCRE.

Every applet must catlegi st er () during the processing of the callitost al | () to ensure future
communication with the JCRE (the JCRE always searches the list of registered applets when deciding where
to route messages). Applets depend on the JCRE for all communication and to transfer control to one of the
applet’'s methods when the applet is selected, deselected, or the target of an APDU.

Note — The JCRE is single-threaded, which meansthat an infinite loop in any applet hangs all applets until
power to the card is disconnected. When power is returned, the default applet is selected.

3-6 Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

Applet Selection

The Appl et classalsoincludessel ect () and desel ect () methods. Unlikeprocess() andinstall (),
these methods do not receive APDUs from the JCRE. The JCRE filters the APDU stream between the installed
applets and the CAD, as pictured in FIGURE 3-2, and then calls these methods only when an APDU that
selects an installed applet is received.

= (=

FIGURE 3-2 Applet Selection

As mentioned in the Overview chapter, each Java Card applet is assigned a unique Application ID (AID). The
AID isused to identify a particular applet for selection. If the JCRE detects a SELECT APDU, it desdlects the
currently selected applet and then selects the applet indicated by the SELECT APDU data bytes. The JCRE

calls the applet’sel ect () method just before sending the SELECT APDU to the newly-selected applet’s
process() method. The SELECT APDU causes the JCREaliotice applet twice; one call &l ect (),
another call tpr ocess() to pass the applet the SELECT APDU.dtlg thedesel ect () method of the
currently selected applet to let the applet know that it is no longer currently selected.

There are two types of SELECT APDUs:
1. For selecting an applet
2. For selecting a file controlled by the selected applet

The two SELECT APDUs are veringlar, but are distinguished by the JCRE. Upeoeiving a SELECT

APDU, the JCRE treats the APDltd as an AID and searches through its applet table. If a match is found, a
new applet is selected. Otherwise, the JCRE regards the SELECT APDU as a file-selection APDU and passes
it to the currently selected applet’'s process method.

The default implementation ekl ect () returns TRUE, indicating that the applet has beenessfully
selected to receive subsequent APDUs. Any other return value causes the applet selaitiandalie JCRE
does not forward subsequent APDUSs to the applet.

The default implementation desel ect () does nothing. Notice that botlel ect () anddesel ect () are
instance methods. An instance of fppl et class must be created in order for the JCRE to call these
methods. Since the JCRE does not call the applet constructor, the applet must do so explicitly during the
processing of nstal | ().

The implementation afegi st er () is final and cannot be overridden. Thegi st er () method inserts an
object reference for the applet into the applet registration table within the JCRE. It is through this reference
that the JCRE is able to call the non-statitect () anddesel ect () applet methods.

The following pseudo code summarizes the procedure followed by the JCRE for handling the RHACT

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-7

Java Card Applet Developer’s Guide

i f (SELECT appl et APDU)
call deselect() of currently selected appl et
call select() of applet identified by APDU
call process() of applet identified by APDU

An APDU command is parsed by first calling APDU. get Buf f er () to retrieve the data packet attached to the
APDU. The data packet includes the APDU header and the command data. The JCRE provides constants for
quickly parsing the APDU packet. The following code fragment demonstrates the use of the
ISO.OFFSET_XXX congtants (the interpretation of the header bytesis explained in the Working with APDUs
section below):

byte buf[] = apdu. getBuffer();

byte cla buf [1 SO OFFSET_CLA] ;

byte ins buf [SO. OFFSET_I NS] ;

byte Ic buf[I SO. OFFSET_L(C] ;

byte pl buf[I SO OFFSET_P1] ;

byte p2 buf [I SO. OFFSET_P2] ;

/1 get APDU data

Util.arrayCopy(buf, |SO OFFSET_CDATA, databuf, 0, Ic);

Note — For proper APDU packet verification, it isa good ideato check all header values, including Lc for
valid values.

When the SELECT APDU isreceived, the applet can retrieveits own AID by calling Syst em get Al D() .
The AID in the APDU data buffer can be compared against the AID returned from get Al D() using the
Uil.arrayConpare() method. The method get Al D() returnsan AID object and a byte array,
representing the value of the AID and may be extracted by calling Al D. copyTo() .

3-8

Working with APDUs

APDU communicationsis based on a command-response model, as outlined in 1SO 7816-4. An applet sitsidle
until acommand APDU is passed to the applet, requesting some form of processing. The applet processes the
command and then returns a response.

The APDU buffer is formatted differently for command APDUs and response APDUSs. The general format of a
command APDU is.

|[CLA |INS |P1 | P2 | Lc |Data | Le |

The header describes the command for the applet to carry out. The first four bytes of the command APDU
represent the header, as follows:

|[CLA |INS |P1 P2 |

Where:

m CLA—indicates the class, which identifies if the command is an 1SO-conforming message
m INS—indicates the instruction

m P1, P2—indicates additional parameters

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

The precise values of CLA and INS for different commands are set forth in |SO 7816-4.

The other fields of the command APDU are optional (that is, they are not present in some commands). These
additional fields define any data passed with the command, as well as the expected length of the response
APDU. The other APDU fidds are:

| Lc |Data | Le |

Where:

m Lc—indicates the length of the command data

m Data—indicates the command data

m |e—indicates the length of the expected response

Four different formats of commaPDUs are possible, depending upon whettaga ds included with the
command and whether response data is required. When command data is not present and no response is
required, the format of th&PDU is:

|[CLA |INS |P1 P2 |

When command data is present but no response is required, the formaiRbitiés:

|[CLA |INS |P1 | P2 | Lc | Data |

When command data it present, but response data is required, the format afRB& is:

|[CLA |INS |P1 | P2 | Le |

When command data is present and response data is required, the formaidthis:

|[CLA |INS |P1 | P2 | Lc |Data | Le |

Note — An Levaue of 0 isnot the same as an APDU with no Le. An Levalue of O indicates that the applet
should provide all available response data in the response. Thiswould occur when the length of the response
varies (such as retrieving a variable-length record from afile).

Thefifth byte of the APDU (the first byte after the header) may:

m Bemissing (indicating that no command or response data is present)
m Contain an Lc value (indicating that command data is present)

m Contain an Levalue

The only interpretation of thefifth byteisimplicit, by reading CLA and INS and knowing the format of the
command they describe.

Applets should never read the Le value directly from the APDU header. Instead, call the APDU method
set Qut goi ng() toretrieve the value of Le. Applets should not read from the APDU buffer before calling
set I ncom ngAndRecei ve() or recei veByt es() totransfer the incoming datainto the APDU buffer.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-9

Java Card Applet Developer’s Guide

Responses are always required, even if they contain no data. The format of aresponse APDU is:

| Data | Sw1 | SW2

m Data—response data
m SWil—first byte of the status word
m SW2—second byte of the status word

The first and second bytes of the status word (SW1 and SW2) are always present in the response. However, th
card applet does not set these values directly in the response APDU buffer. Instead, these values are set by the
JCRE upon a normal return (SW1=90, SW2=00) or upon an exception thrown by the applet or JCRE.

Since the status word is set by the JCRE (upon applet return) and sent with the response data, the applet may
not send the response data (or at least, the last block of it) until the applet returns fsootésa ()

method. This has important implications for buffer management as discussedRé@ediveng APDU Data

section below.

APDU Communication Sequence

A general APDU communétion sequence for smart cards is as follows:

1. Receive an APDU object as a parameter tgptlezess() method.
2. Parse the APDU ecomand header.
3. Read any APDU ata.

Note — The command data will not be in the APDU buffer until it isread by the applet using
set | ncom ngAndRecei ve() orrecei veBytes().

Process the APDU command and generate any response data.
Send any response data from the applet.
Perform any additional processing, making sure to not change the response APDU buffer.

N o g &

Return from the pr ocess() method normally, or throw an | SOException object (the JCRE appends the
appropriate status word to the response APDU).

Receiving APDU Data

In order to receive command APDU data, the applet must first place the JCRE into receive data mode. Receive
mode tells the JCRE to look for data from the CAD and to buffer that data into the APDU data buffer. Data
may be received using either a character-oriented protocol or a block-oriented protocol.

As mentioned earlier, the JCRE shields the applet (and the appl et devel oper) from details of the specific
protocol implementation. A single method in the APDU class, called set | ncomi ngAndRecei ve(), isusedto
both set the JCRE to receive mode and to receive any available data into the APDU buffer.

The APDU buffer has a minimum size of 37 bytes—an increase in the buffer size is determined by the JCRE
developer and is dependent on the memory capacity of the card.

3-10 Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide
The datais placed in the buffer beginning at offset ISO.OFFSET_CDDATA. The number of bytesread, as
pictured in FIGURE 3-3, is determined by the following rule:
If the bytes remaining to beread are:
1. Lessthan or equal to the buffer length, then read all the remaining bytes

2. CGreater than the buffer length, then read up to the buffer length

Buffer

<«— Buffer Length

Data
<— Offset —»|<4— Remaining Bytes —»

FIGURE 3-3 Buffer Length

To access the data in the APDU buffer, the applet must retrieve areference to the APDU data buffer by calling
the APDU method get Buf f er () . The data buffer is a byte array whose length can be determined using

buf f er. | engt h. The APDU object received by the applet pr ocess() method is owned by the JCRE (a
single APDU object is shared among all applets on the card).

When there is more data available than can fit in the APDU buffer, the call toset | nconi ngAndRecei ve()
must be followed by one or more calls to the APDU method r ecei veByt es() . This method always reads the
available data into the APDU buffer (you cannot specify another applet-supplied buffer). Like

set I nconm ngAndRecei ve(),recei veByt es() isguaranteed to return synchronously, with as many bytes
asthe APDU buffer can hold, only if the remaining bytesfit in the APDU buffer. Otherwise, the method reads
as many remaining bytes as will fit in the buffer, and possibly less. The applet should call r ecei veByt es()
repeatedly, processing or moving the bytesin the APDU data buffer with each call, until all available datais
read. The amount of available data may be determined by checking the Lc byte at

buffer[| SO OFFSET_L(C].

For example,

byte[] buffer = apdu.getBuffer();
short bytes_left = (short) buffer[| SO OFFSET_LC];
short readCount = apdu. setl nconi ngAndRecei ve();
while (bytes_left > 0) {

/1 {process received data in buffer}

byt es_left -= readCount;
/1 get nore data
readCount = apdu.receiveBytes (| SO OFFSET_CDDATA);

Noticethat r ecei veByt es() specifies the buffer offset at which to place the data. This enables “buffer
splitting” to conserve memory resources. The applet can begin to preces®d dta and build a response
APDU, without using separate buffers.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-11

Java Card Applet Developer’s Guide

A split APDU buffer used for both reading data and sending aresponseis shown in FIGURE 3-4.

Response data goes here Read data here—receiveBytes(buffer.length/R)

FIGURE 3-4 Split APDU Buffer

Note — When the underlying protocol used by the JCRE to communicate with the CAD is block-oriented, the
offset used for reading into the APDU buffer (buffer.length/2) must leave enough space for at least one block
within the buffer. If the developer does not do this, r ecei veByt es() throwsan

APDUEXcept i on. BUFFER_BOUNDS.

The block size of the underlying protocol may be determined using the APDU method get | nBI ockSi ze() .
Character-oriented protocols return a block size of 1.

Therulesfor the behavior of r ecei veByt es() may be summarized as follows:

if (buffer.length-offset > bytes left)
read bytes_left;
if (buffer.length-offset < bytes left) {
if (buffer.length—offset < BLOCK_SIZE) throw
APDUException.BUFFER_BOUNDS;
else read up to buffer_size;

The setincomingAndReceive() method must be called before calling receiveBytes() . You cannot call
setincomingAndReceive() if the JCRE is already in receive mode from a previous call to
setincomingAndReceive() —otherwise, an APDUEXxception occurs for APDUException.ILLEGAL_USE.

APDU Responses

Response APDUs may or may not t@n data. If the response does not contain data, the applet need not do
anything but simply return (or throw an exception). The JCRE generates the appropriate status word and send
them to the CAD. If the response requires that the applet return data, then the applet must first place the JCRE
into data-send mode and then send the data. Whether or not response data is required, depends upon the
particular APDU class and instruction bytes.

When sending data from the applet, you must specify the total number of bytes to send. This total number
should always be less than or equal to the expected length of response specified by the Le byte. Once all the
response data bytes are sent, the applet must not modify the send buffer for the remaingdepoéttsé)

method. The bytes may not actually be sent pntlcess() returns to the JCRE. This enables the JCRE to
efficiently combine the response data with the status word by holding off on the last send until it is time to
send the status word.

Note — Datais always sent with the status word, but in a response APDU, datais optional.

To set the JCRE mode to send, call the APDU method set Qut goi ng() . Unlike the corresponding

set I ncom ngAndRecei ve() method for reading, set Qut goi ng() does not send any bytes; it just setsthe
mode. Unlike reading, you don’t have to send data right away after setting the transfer mode. The applet
cannot continue to receive bytes ose¢ Qut goi ng() is called, because the transfer mode is no longer
“receive.”

3-12 Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

The set Qut goi ng() method returns the number of response bytes expected by the application for the
command APDU to which the applet is responding. The applet should not respond with more than this
number of bytes. The applet must inform the JCRE of the number of response bytesit will be sending, using
the APDU method set Qut goi ngLengt h() .

The APDU class contains the set Qut goi ngAndSend() method for:

m Setting the transfer mode to send
m Setting the response data length
m Sending the response bytes

This method closely resembles the operation of set | nconi ngAndRecei ve() , except that it sends bytes, not
receives them. The set Qut goi ngAndSend() method usesthe APDU buffer for sending bytes. It isaso
possible to use an applet-supplied and owned buffer to send bytes, which can be bigger than the relatively
small APDU buffer.

Response data sent using this method must be short enough to fit in the APDU buffer. The bytes cannot
actually be sent until the applet returns from the pr ocess() method, at which time they are combined with
the status word—so once this method is called, the applet cannot akétDRhkbuffer uril pr ocess()
returns.

If you don’t want to send data right away after calkreg Cut goi ng(), callsendByt es() or

sendByt esLong() . The first method uses the APDU buffer, while the second method uses an applet-
supplied buffer. For both methods, you must not alter the contents of the buffer ontiss() returns. If

the response data is being prepared in an applet-supplied buffer, apduheendByt esLong() method

and provide the applet-supplied buffer as the parameter, to avoid having to copy the applet-supplied buffer to
the APDU buffer.

You must calkset Qut goi ng() before callingset Qut goi ngLengt h(), sendBytes(), or
sendByt esLong() . You cannot calset Qut goi ngLengt h(), sendByt es(), orsendByt esLong() after
callingset Qut goi ngAndSend() . For example, if you have three bytes that need to be sent, use either:

byte[] apduBuffer = apdu.getBuffer();

apduBuffer[0] = bytel;
apduBuffer[1] = byte2;
apduBuffer[2] = byte3;

apdu. set Qut goi ngAndSend(0, 3); //0-offset, 3-nunber of bytes to send

Or:

short | e = apdu. set Qut goi ng();

apdu. set Qut goi ngLengt h((short)3);

apduBuffer[0] = bytel,;

apduBuffer[1] = byte2;

apduBuffer[2] = byte3;

apdu. sendBytes ((short)0 , (short)3);
Return Values

An applet has several options for returning information from the appbetess() method. The most
straightforward method is to simply let the method return. When errors are encountered during APDU
processing, useSOException.throw t (short sw) to return SW errors. ISO SW error constants can be
found in thel SOclass.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 3-13

Java Card Applet Developer’s Guide

Atomicity

With smart cards, thereisarisk of losing power at any time during applet execution. A user of the smart card

may remove (“tear”) the card from the CAD, cutting off power to the card CPU and terminating execution of
any applets. The risk of tearing presents a challenge for preserving the integrity of operations on sensitive carc
data.

Java Card technology supports the notion of “transactions” with commit and rollback capability to guarantee
that complex operations can be accomplisitethically—either they successfully complete or their partial
results are not put into effect. Using transactions, you can guarantee that multiple fields of an object are
updated as a unit.

To create a transaction, enclose one or more operations between $adlsdm begi nTransacti on() and

Syst em conmi t Tr ansact i on() —the changes are temporary uisiilst em conmi t Tr ansacti on() is

called. If power is lost during the transaction, a rollback facility is invoked, when power is restored, to return
the destination values to their pre-transaction state.

Transactions can be expressly aborted using a c&jistoem abort Tr ansacti on() . A transaction must be
in progress wheabort Tr ansact i on() is called; otherwise, & ansact i onExcept i on is thrown.
Transactions cannot be nested—a caliedgi nTr ansact i on from within a transaction block also results in
aTransacti onException. The values 0 or 1 are returneddyst em get Tr ansact i onDept h() .

Commit Buffer

To support the rollback of uncommitted atomic transactions, the JCRE contamsid buffer where the

original contents of the updated locations are stored until the transaction is committed. This buffer also retains
the rollback information, should a power loss occur during the commit phase of the transaction. The more
operations inside a transaction block, the larger the commit buffer needs to be to accommodate it.

Before attempting a transaction, an applet may check the size of the available commit buffer against the size o
the data that requires an atomic update. If sufficient commit capacity is not available, the operations can either
be performed (risking power loss during the operations) or postponed until sufficient capacity is available.

The capacity checking options are as follows:

m System get MaxConmi t Capaci t y—returns the total size of the commit buffer

m System get UnusedConmi t Capaci t y—returns the available commit capacity

TheUti | class inj avacard. f ramewor k contains useful methods for copying and filling arrays
(arrayFill,arrayFil | NonAt omi c, copyArray, copyArrayNonAt ori ¢). The non-atomic versions of

these methods do not participate in transactions, meaning that they do not benefit from rollback and commit
capabilities, even when located in a transaction block. To achieve atomicity for array copy and fill, use
arrayCopy andarrayFi | | inside or outside of a transaction block.

The number of program statements located within a transaction block should be kept to a minimum to avoid
exceeding the fixed comit buffer space provided by the implementation.

3-14 Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

Optimizing Java Card Applets

A magjor factor influencing the design and features of Java Card appletsisthe limited availability of program
and data memory in the smart card environment. This chapter focuses on the issues related to creating Java
Card applets for devices with resource constraints.

The Java Card platform accommodates environments in which only 512 bytes of RAM are available. The
JCRE (including the Java Card VM and the system heap) must be contained within the available ROM and the
Java Card applets and class libraries need to be stored within the available EEPROM space on the device.

To optimize memory usage, the following restrictions apply when creating Java Card appl ets:
m A maximum of 127 instance methods in any class (including inherited methods)

® A maximum of 255 bytes of instance data
m Object spaceisallocated from EEPROM

Note — The Java Card 2.0 Reference Implementation (JC2RI) rel ease contains a simulation environment
which allows you to execute Java Card applets in a desktop workstation environment. This environment has
memory restrictions which are different from execution in an actual smart card memory environment.

Reusing Objects

Applets must not instantiate objects using new with the expectation that their storage will be reclaimed,

because the JCRE may not include a garbage collector. The general ruleisthat in Java Card technology, a

single instantiation of an object should be “recycled” repeatedly, with each new use “customizing” the member
variables of the object instance. This is a different model than Java technology developers may be accustomed
to.

In Java technology, an instance of an object is created as needed, its instance variables are set, and then the
object is discarded (typically by going out of scope). In Java Card technology, you should never allow objects
allocated withnew to go out of scope; they will become unreachable, but the storage space they occupy will
never be reclaimed.

In Java Card technology, objects should be referenced by variables or fields for the life of the applet and should
be reused by writing new values to their member variables.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 4-1

Java Card Applet Developer’s Guide

The following code sample shows how the JCRE implements exceptions in a manner that maximizes object
recycling by using thesyst enl nst ance each time the ISOException t hr owi t () method is used:

public class | SOExcepti on extends runti neException {
private static | SOExcepti on systenl nstance;
public | SOException (short sw) { this.reason = sw}
public static void throwit(short sw) {
if (systenm nstance == null) systenl nstance = new | SOException(sw);}
syst em nst ance. set Reason(sw) ;
t hrow systenl nst ance;

The exception isthrown by calling thet hr ow t () method with areason (sw) for the exception. The

throw t () method is declared static so that there is no need to instantiate an | SOExcept i on object in order
to throw the exception. Instead, simply call t hr ow t () and customize each call with areason code. The
throw t () method in turn invokest hr ow on the exception object. For example:

if (buffer[l1SO OFFSET_P1] != 0)
| SOExcept i on. t hr ow t (1 SO. SW | NCORRECT P1P2);

Allocating Memory

The Converter ensures that memory is allocated for the contents of static fields, namely, primitive data types
and references to arrays. Memory is allocated for instances by using the new bytecode from the system heap
and cannot be reclaimed (unless the smart card implements a garbage collector). Memory for method
variables, locals, and parameters is allocated from the stack and is reclaimed when the method returns.

To ensure that an applet will not malfunction due to allocation failures, new should not be called from any
applet method other than thei nst al | () method. Thei nstal | () method is called only once, when the
applet isinstalled on the card, sothat anewini nstal | () resultsin only a singleinstance of the object for
the lifetime of the applet. It is also recommended that each call to new be enclosed in a transaction block (see
the Atomicity section of the Creating a Java Card Applet chapter). This ensures that all of the available
memory required by the object is alocated, even if power islost before new returns. Multiple calls to new may
be enclosed in a single transaction block, but are subject to the limits of available commit capacity (more on
this bel ow).

4-2

Accessing Array Elements

When accessing an array e ement, bytecodes are generated to fulfill the array-access instruction. To optimize
memory usage, if the same element of an array is accessed multiple times from different locationsin the same
method, save the array value to a variable on the first access and then access the variable in subsequent
accesses. Using the array value as a variable in this way creates more compact bytecodes than re-accessing the

array.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

Files

Support for 1SO 7816-4 filesis provided by thej avacar dx. f r amewor k package. Thisis an extension
packageto the corej avacar d. * classes which may not be implemented on all Java Card platforms. Files are
identified collections of related data. Files are useful for organizing data into logical groups for storage on the
card. The two types of files supported in the javacardx classes, following the definitions of the 1SO 7816-4
specification, are:

m Elementary files
m Dedicated files

Elementary and Dedicated Files

Elementary files (EFs) store references to the byte arrays that contain the data and dedicated files (DFs) act as
containers for elementary files. The storing of references is done to conserve memory in situations where the
applet allocates a byte array and then passes the byte array to the file system to append to afile. Thefile stores
areference to the byte array and does not allocate new storage for the record. Asaresult, if the applet
subsequently modifies the contents of the byte array, it isin effect modifying the record.

Elementary files can be organized in two ways, as.

m Transparent files—an unstructured sequence of bytes

m Record files— one or more byte-arrays

There is no support in Java Card technology for structured records within files. That is, records are read and

written as byte arrays with no regard to the internal field structure of each record. It is left to the applet or
external application to interpret the field structure of the byte arrays stored in record files.

Record Files

Record files can beénear or cyclic.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 5-1

Java Card Applet Developer’s Guide

5-2

Linear Files

Linear files contain records organized in an ordered sequence. Therecordsin the file are kept in the order they
were inserted, that is, thefirst inserted record is record number one. The capacity of the linear file may be
expanded to include more records (up to the limits imposed by the JCRE).

Therecordsin alinear file may befixed or variablein length, as pictured in FIGURE 5-1.

Linear Fixed File Linear Variable File

> >

o »[] d >
—— [—— []
[] []

Fixed-Length Records Variable-Length Records

FIGURE 5-1 Linear Files

All of the bytesin afixed-length record do not need to contain meaningful data, but each record must still
contain afixed number of bytes.

Cyclic Files

In cyclicfiles, records are organized asaring (cyclic structure), with fixed and equal record sizes. The number

of recordsin acyclicfileis assigned at file creation time and cannot be changed. Records are in the reverse

order as they were inserted into the file—the last inserted record is identified as record number one. Once the
file is full, the next append instruction overwrites the oldest record in the file and it becomes the record
number one.

The record order of a cyclic file is shown in FIGURE 5-2, before an append command, with RecNum4 being
the oldest record:

RecNumé4 RecNum3 RecNum2 RecNum1

FIGURE 5-2 Cyclic File Record Order

After the append record command, the new record overwrites the oldest record, RecNum4 and the newly
inserted recorded becomes RecNum1, as pictured in FIGURE 5-3.

RecNum1 RecNumé4 RecNum3 RecNum2

FIGURE 5-3 Cyclic File after Record Appended

The maximum number of records for any file is 127, and the maximum length of a record is 255 bytes.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

The FileSystem Class

The Java Card APl includes aFi | eSyst emclass for processing of file-related APDUs. The Fi | eSyst em
class acts asthe master container for a hierarchy of files. TheFi | eSyst emclass directsincoming file-related
APDUSs to the appropriate member file, then parses and responds to the APDUs. Appletsthat do not use a

Fi | eSyst emclass must manage file-related APDUs on their own.

The following table describes the file types associated with each class:

TABLE 5-1 Classes and File Types
Class File Type Description
DedicatedFile Dedicated Act as containers for elementary files.
ElementaryFile Elementary Store references to the byte arrays that contain the data.
LinearVariableFile Linear Stores variable-length linear records.
LinearFixedFile Linear Stores fixed-length linear records.
CyclicFile Cyclic Stores fixed-length cyclic records.

The class hierarchy of thefile system is expressed in FIGURE 5-4:

Class: File

FIGURE 5-4

Class: Dedicated File
(OF)

Class: FileSystem

Class: Elementary File

(EF)

Class: TrangparentFile

(EF)

FileSystem Class Hierar chy

Class:
LinearVariableFile (EF)

Class: LinearFixedFile
(EF)

Class: Cyclic File (EF)

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

5-3

Java Card Applet Developer’s Guide

A typical applet file hierarchy is shown in FIGURE 5-5, as opposed to the class hierarchy shown above.

(2 FileSystem
.20 LinearariableFile L2 TransparentFile {:| DedicatedFile
Data crganized intc & A single, unstructured {:| CyclicFile {:| LinearFixedFile
variable number of byte aray
variabledength byte arrays Data nrg:riized into & Data nrg::nized into &
fixed number of varisble number of
fixed-langth byte arrays fixed-langth byte arrays

FIGURE 5-5 Applet Data Hierarchy

Notice that the dedicated file contains no data of its own—it only acts as a container for elementary file types
that do contain data.

5-4

File Operations

The operations that can be performed on files are:

Creating a new file

Adding a new file to a dedicated file

Setting security attributes for a file

Selecting a file in a file system as the target of implicit operations

A new file is created using theew operator on the file’s constructor, as follows:

cyclic = new CyclicFile (filelD, maxRecords, recordLength);
dedi cated = new Dedi catedFile (filelD, name, maxChildren);

Linear variable files use a constructor with at least the following two parameters:

m A unique file ID
m The maximum number of records the file can hold

The file ID uniquely identifies the file from other files. If the file is part of a group of files contained within a
dedicated file, the lower five bits of the file ID (called the Short File Identifier or SFI) are used to locate the
file and to distinguish the file from others in the group.

The maximum record count declares the maximum number of records the file can hold. The JCRE uses this
value to validate @ess operations on the file. The JCRE does not use this information to compute or set aside
storage for the file. Files in Java Card technology store references to byte arrays, not the byte arrays
themselves, but memory for the files is allocated during the installation of the Java Card applet. For example,
if a Java Card applet declares a file holding 100 records, each record holding 100 bytes (for a combined total
of 10,000 bytes), the VM will prevent the installation of this applet if less than 10,000 bytes of storage are
available on the card.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

Once the applet isinstalled, new records may be allocated by the applet (or file system) using the pr ocess()
method during normal card usage (as opposed to during thei nst al | () method). The maximum record count
for linear files may beincreased at a later point in time using a call to thei ncr easeMaxNunRecor ds()
method. To get the current maximum, call get MaxNunmRecor ds() . To get the current number of actual
records in thefile, call get NunRecor ds() . Fixed-length files (LinearFixedFile and CyclicFile) have an
additional parameter to the constructor; the record length. The JCRE uses this information to validate that
byte arrays added to the files as records are the correct length.

The constructor for dedicated files (DFs) contains an additional parameter specifying the name of the
dedicated file. Unlike elementary files (EFs), dedicated files are identified by alogical name aswell ashby a
short file ID. Thelogical name of a dedicated fileis a byte array, which is not necessarily null-terminated.

Dedicated files (DFs) do not contain records, but they do contain references to other DFs and EFs. These
references are called the children of the dedicated file. The constructor for a dedicated file declares the
maximum number of children, which may beincreased at a later time, but cannot exceed 30.

Adding a new child file to a dedicated file is accomplished by calling theaddChi | dFi | e() method of
Dedi cat edFi | e. For example:

dedi cat ed. addChi | dFi | e(cyclic);

The dedicated file on which the method is invoked becomes the container (parent) for the child file, expressed
as aparameter.

File Security

The security attributes of afile are designed to protect the file from external read and write access. Files
contain two flags: one to control read permissions and one to control write permissions. Permissions are set
independently of one other. The available permissions are shown in the table bel ow.

TABLE 5-2 File Access Permission Flags

Permission Meaning for Reading Meaning for Writing
ALLOW_ANY Reading of file data permitted Writing of file data permitted
ALLOW_NONE Reading of file data not permitted Writing of file data not permitted

ALLOW_AUTH1

ALLOW_AUTH2

Reading only allowed if AUTH1 flag is set
in the file system to which thisfile belongs

Reading only allowed if AUTH2 flag is set
in the file system to which thisfile belongs

Writing only allowed if AUTH1 flag is set
in the file system to which thisfile belongs

Writing only allowed if AUTH2 flag is set
in the file system to which thisfile belongs

Thelast two flags, ALLOW_AUTH1 and ALLOW_AUTH2, are used when thefile belongsto aFi | eSyst em
class. For example, suppose a file only supports reading and writing after verification of the user’s PIN
number. The applet verifies the PIN and sets the AUTH1 flag iRitheSyst emclass to TRUE. The applet
then would set the read and write permissions of the file to ALLOW_AUTHL1.

When reading and writing requests on the file are made throug ItleSyst emclass, an AND opation is
performed on the two flags. When the file is accessed through thesSyst emmethods, the applet is
responsible for ensuring that the proper conditions are met for granting read andcegsteta the file.

Only one file belonging to the file system hierarchy may be selected as the current file. The current file is the
target of file operations that do not explicitly declare which file they operate upon. Each file system may

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 5-5

Java Card Applet Developer’s Guide

contain one current elementary file and one current dedicated file. Theset Current El ement ar yFi | e()
and set Curr ent Dedi cat edFi | e() methods are used to set the current elementary and dedicated files,
respectively.

Note — Oncefiles are created, they remain on the card throughout the life of the card.

5-6

Finding Files

Thefile-finding methods are all part of the Dedi cat edFi | e class because dedicated files acts as containers

for al DFsand EFs. Files are located in several ways, but the most common method for locating afileis by

using the file’s short file-ID, which is set when the file object is constructed. Searching by file ID applies to
both dedicated and elementary files because both types have file IDs.

ThefindFi | e() method takes the file ID as an argument and lets the applet specify the scope of the search
using a flag as defined in the table below.

TABLE 5-3 File Flags

Flag Scope

FIND_CHILD_EF Search the children of the current dedicated file for a matching elementary file.
FIND_CHILD_DF Search the children of the current dedicated file for a matching dedicated file.

FIND_CHILD Search the children of the current dedicated file for a matching elementary or
dedicated file.

Up to 30 elementary files may be uniquely identified among the direct children of a dedicated file (the values O
and 31 are reserved). The last five bits of the file ID, referred to as the Short File Identifier (SFI) are used to
search for an elementary file, using the caflitadEl ement ar yFi | e() .

Dedicated files, unlike elementary files, are identified by both a file ID and a logical name. To search for a
dedicated file that is a child of the current dedicated file f¢altiDedi cat edFi | e() and specify the logical
name of the file. Another way to locate a file is by using the file's child id. The child id is just a value
identifying the sequential order in which the file was added to the current dedicated file. The

get Chi | dFi | e() method locates a file using its child id.

TheFi | eSyst emclass allows an applet to select a file using the file’s object reference. The method

sel ect Fi | e() takes an object reference as a parameter and makes the referenced file the current file. An
applet developer can bypass #i¢ eSyst emclass and access the dedicated file directly by using the file ID
(FID). For example, if the file structure is:

Dedi catedFil e master with FID (0x1234);

where master contains two files, namely a DF and an EF, then the applet would invoke:

df . findFile (FIND XXX, 0x1234)

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

If FIND flag isFIND_CHILD, then the fi ndFi | e() method returns null. If the FIND flag is FIND_ANY,
then thefi ndFi | e() method would search all the siblings, children, and parent of the associated DF, and
return the master filewith FID = 0x1234.

Record Operations

Files (except for dedicated files) are containers for data. Transparent files store data as a single unstructured
stream of bytes. Other files organize data into records. The Java Card APl enables the following operations on
files using records:

Add arecord to afile.
Writedatato arecord in afile.
Read data from a record.
Erase the datain arecord.

Aswith files, once arecord is created, it remains within the file throughout the life of the card. Erasing a
record is not the same as deleting it. Erasing simply resets the bytesin the record to zero.

Records may be added to files of type LinearVariableFile and LinearFixedFile using theaddRecor d()

method. Two varieties of addRecor d() are provided: one in which the applet allocates the byte array for the
record to add, another which relies upon the JCRE to allocate the byte array for the record. With either

method, the byte array does not become part of the file—only a reference to the array is added to the file.

According to ISO 7816-4, files of typ&ycl i cFi | e do not support the adding of records. Transparent files
and dedicated files do not contain records.

To write data to a record, use the following steps:
1. Calltheget Record() method to retrieve the byte array of the record.

2. Change the byte array, which in effect writes data to the record.

Finding Records

Once you have located a file, you must then locate the record to read or write. Records are located using either
the sequential record number or by searching on the record key. For linear files, the record number is a
sequential number valued 1 to N, where N is the number of records in the file. The record number is assigned
when the record is added to the file and never changed.

For cyclic files, the record number varies from 1 to N, where N is the number of records in the file. Unlike
linear files, the record numbers in a cyclic file are assigned in the reverse order from how the records were
written—the last record written to a cyclic file is assigned the record number 1 and thedea#qwitten

record is assigned record number N. UsegtiteRecor d() method and specify the record number to retrieve
the byte array for a particular record. SeeEhementary and Dedicated Files section above for dails on the
cyclic file.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 5-7

Java Card Applet Developer’s Guide

Therecord key is a combination of the first and second bytes of the record. Records are located by key, using
thefi ndRecor d() method. Thefi ndRecor d() method operatesin both arelative and absolute mode. In
relative mode, the search begins at the current record and either moves forward or backward from there. In
absol ute mode, the search begins at the beginning of the file and moves forward or progresses backward from
the end of thefile. A direction flag specifies the search mode, asindicated in the table bel ow.

TABLE 5-4 Search Mode Direction Flags

Flag Mode

DIRECTION_FIRST Search forward from start of file.
DIRECTION_LAST Search backward from end of file.
DIRECTION_NEXT Search forward from current record.
DIRECTION_PREV Search backward from current record.

Managing Files with the FileSystem Class

The Java Card API contains a special class called Fi | eSyst emfor managing file-related APDUs. The

Fi | eSyst emclass extends Dedi cat edFi | e, acting as a control point for commands referencing the
dementary (data) and dedicated (container) files it contains. See The FileSystem Class section above for more
information on the Fi | eSyst emclass.

TheFi | eSyst emclass provides a default implementation for:

m Reading, writing, updating, and erasing data in transparent files
m Reading, writing, updating, and appending recordsin record files
m Reading and writing to files with recordsin Tag-Length-Value format

TheFi | eSyst emclass also provides a security mechanism for providing a measure of access control to
individual files. The security mechanism is based upon two flags, AUTH1 and AUTH2. Theset Aut hFl ag()
method is used to set the value of AUTH1 and AUTH2 to either TRUE or FALSE. Theget Aut hFl ag()
method is used to get the value of these flags.

Central to the use of the Fi | eSyst emclassisthe concept of the current file and current record. An APDU

may omit the specification of a target file for its operation—in this situation, the current file becomes the
target. Likewise, an APDU may not specify a target record for itsatiper—in this situation, the current
record becomes the target. The current data file f@xRIDU opeation is always relative to the currently
selected dedicated file within the file system.

Since theFi | eSyst emclass is itself a dedicated file, it may contain other dedicated files, which, in turn, may
contain elementary files. The current record is always relative to the current elementary file. The

Fi | eSyst emclass contains methods for setting and getting the current dedicated file, the current elementary
file, and the current record, as outlined in the table below.

TABLE 5-5 FileSystem Methods

Method Description
getCurrentDedicatedFile() Gets current dedicated file.
getCurrentElementaryFile() Gets current elementary file.

5-8 Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

getCurrentRecNum()

setCurrentDedi catedFile()
setCurrentElementaryFile&()

setCurrentRecNum()

Gets current record number.
Sets current dedicated file.

Sets current elementary file.
Sets current record number.

These set methods are not the only mechanism for setting the current elementary file or record number.
Certain 1SO commands change the current elementary file or record. The following table shows the
Fi | eSyst emmethods used in processing various 1SO commands and the resulting outcome (a CLA of Ois

assumed for al 1SO commands):

TABLE 5-6 FileSystem M ethods
ISO Command INS Description FileSystem Method Resulting Outcome
READ BINARY BO Read datafrom a readBinary() Makestarget current EF
trangparent file and resets the current
record number to 0.
WRITE BINARY DO Writedatato a writeBinary() Makestarget current EF
trangparent file and resets the current
record number to O.
UPDATE BINARY D6 Update datain a updateBinary() Makestarget current EF
transparent file and resets the current
record number to O.
ERASE BINARY OE Mark dataaserased in eraseBinary() Makes target current EF.
atrangparent file
APPEND RECORD E2 Append arecordtoa appendRecord() Makes target current EF.
record-oriented file Make appended record
current record.
READ RECORD B2 Read data from a readRecord() Makes target current EF.
record-oriented file Make read record
current record.
WRITE RECORD D2 Writedatato arecord- writeRecord() Makes target current EF.
oriented file Make written record
current record.
UPDATERECORD DC Updatedataina updateRecord() Makes target current EF.
record-oriented file Make updated record
current record.
GET DATA CA Retrieve Tag-Length- getData() None
Value (TLV)
formatted data from
current file.
PUT DATA DA Sa Tag-Length-Value putData() None
(TLV) formatted data
into current file.
SELECT A4 Selectsafileasthe select() If target isan EF, sdlects

current EF or DF

the target’s DF as the
current DF.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 5-9

Java Card Applet Developer’s Guide

These methods are protected methods and are not meant to be invoked by applets. These methods not only
process the command APDU, but they also build a response APDU with the status word and send it out.

Note —An applet should not modify the commaiEDU buffer in any way once these methods return because
the JCRE uses the command buffer for the response. The last response (including the status word) may not be
sent until the applet returns from ftsocess() method.

Since the values of the CLA and INS bytes are standard for the APDUs processegi by 8yst emclass,

there is no reason to require the applet to first parse the APRbhaod header for the CLA and INS bytes,
perform aswi t ch() statement, and call the approprigté eSyst emmethod. Instead, thé | eSyst em

class provides ther ocess() method for performing this processing (not to be confused with the applet
process() method). Unless the applet needs to perform non-standard processing for one of the command
APDUs listed in the tablebave, there is no reason to parseAR®U canmand buffer or call any of the

Fi | eSyst emmethods set forth in the table. Usd eSyst em process() to route the APDUs to the
appropriate methods for standard processing. For example:

/1 The follow ng code fragment shows how an appl et del egates
//various APDUs for processing, particularly how an appl et passes
/11SO file-oriented APDUs to FileSystemfor it to handle.

buffer = apdu.getBuffer();

FileSystemfs = new Fil eSysten{(4);

if (buffer[lSO OFFSET_CLA] ==) { /] 1SOfile-oriented APDU
switch (buffer[I SO OFFSET_I NS] {
case XX

/1 what goes here is code for the applet to handle any ISO fil e-
/1 oriented APDU instructions or and APDU
/1 instructions that the Fil eSystem nethod does not support
return;

defaul t:
/1 standard file system APDU i nstruction
fs.process(apdu);

return;
}
}
/1 APPLET_CLA - applet CLA byte, a byte nunber specifically assigned to
/1 this applet
if (buffer[lISO OFFSET_CLA] == APPLET_CLA)
/'l applet-specific APDU instructions are handl ed here
return;
}

Cannot handl e other APDU instructions where CLA byte is
nei t her APPLET_CLA nor O.

11
11
| SCException. throw t (I SO. SW CLA NOT_SUPPORTED) ;

Developers interested in handling the file system APDUs themselves (for example, when the
j avacar dx. f ramewor k package is not implemented on the platform) should ref&Q@816-4 for a
complete reference on the command structure of #tieBdJs and the expected responses.

5-10 Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

6. Cryptography

Cryptography in Java Card technology is provided by two extension packages. j avacar dx. crypt o and
j avacar dx. crypt oEnc. Thecr ypt oEnc package keeps DES encryption capability separate. Neither
packageis part of the core required Java Card APl packages and so cryptography may not be supported on
some Java Card-based smart cards.

Understanding the Java Card API cryptography requires an understanding of basic cryptography concepts that
are discussed in this chapter.

Cryptography Concepts

Cryptography supports two basic functions. privacy and authentication. Privacy means the secure exchange of
information between two or more locations without the risk of eavesdropping by parties who are not the
intended recipients of the message. Authentication means proving that a message is actually from the expected
party and not from an imposter. Authentication also means proving that a message was not altered during
transmission.

A fundamental concept of cryptography isthekey. A key isastring of bitsthat isfed into an algorithm for
encoding or decoding information. Cryptography is based upon the concept that certain algorithms for
decoding information will only work if provided with a key identical or related to the key used in the
algorithm for encoding the information.

When an identical key is used to encode and decode, the algorithms are said to be symmetric. The following
exampleillustrates how two parties (A and B) communicate using symmetric algorithms. Party A creates a
message m and applies the encoding algorithm to it. The output of the encoding algorithm is the encoded

message C:
c = f(ks, m

The symbol ks represents the key used by both the encoding and decoding algorithms. The encoded message ¢
istransmitted to Party B. Party B decodes the message by applying the decoding algorithm to ¢ to reproduce
the original message m:

m = g(ks, c¢)

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 6-1

Java Card Applet Developer’s Guide

Symmetric algorithms are fast and efficient. However, both the sender and receiver of the information must
possess the key to exchange encoded information. For this reason, the key in a symmetric algorithm is

sometimes called a shared key. This creates a problem—how can the two parties exchange the shared key
without running the risk of a third party intercepting the key and gaining access to their subsequent
conversations?

To solve this problemasymmetric algorithms were developed. Using asymmetric algorithms, one key is used
in the encoding algorithm, and a different key is used in the decoding algorithm. The two keys are not
identical, but they are related. Most importantly, the relationship between the keys is such that the key for
decoding cannot be derived from the key for encoding. This important property makes it possible to publish
the key for encoding to the world, while keeping the key for decoding private. The following example
illustrates how two parties (A and B) communicate using asymmetric algorithms. Party A creates amessage
and applies the encoding algorithm to it. The output of the encoding algorithm is the encoded enessage

c=f (ki, m

The symbol k1 represents theblic key used by the encoding algorithm for a particular individual (Party B in
this case). The k1 key can only be used to encode messages to B, not decode them. The encodedsmessage
transmitted to Party B. Party B decodes the message by applying the decoding algaritbmepsoduce the
original message. The decoding algorithm uses the second key, k2:

m = g(k2, c¢)

Only Party B can decode messages encoded with key k1, because only Party B possesses the key k2—which i
why the ternprivate key is used to describe k2.

Asymmetric algorithms are slower than symmetric algorithms, but they are more secure because there is no
need for the communicating parties to exchange private keys. A hybrid approach that uses the best features of
both symmetric and asymmetric algorithms first uses the recipient’s public key to encode a shared key. The
shared key is used to encode the bulk of the message and then the encoded, shared key is attached to the
encoded message and sent. The recipient decodes the shared key first, using the recipient’s private key. Next,
the recipient uses the decoded, shared key to decode the bulk of the message.

The Java Card API supports both symmetric and asymmetric algorithms.

6-2

Symmetric Keys

Thej avacar dx. cr ypt o package contains support for creating keys for use in symmetric algorithms. The
base class for symmetric keyssignKey, which extends the bagiey class used for all keys. Before a
symmetric key can be used, its value must be set usirggthey () method. This method sets the bit string

for the key from a byte array, provided as a parameter. Unlike asymmetric algorithms, it is not necessary to
create two distinct, related keys.

The symmetric algorithms supported by the Java Card API are block oriented. That means that the algorithms
encode information one block at a time. A typical block size is 8 bytes. The Java Card API supports two modes
of block encoding: Electronic Code Book (ECB) and Cipher Block Chaining (CBC). ECB mode takes one
block of information at a time, encodes it, and produces an encoded block, as illustrated in FIGURE 6-1.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

RS

cl c2

FIGURE 6-1 ECB Diagram

CBC mode takes one block of information at atime, combines it with the previously encoded block, and
produces an encoded block from the combination, asillustrated in FIGURE 6-2.

m1+ICV m2+cl m3+c2 méd+c3
v v v v
cl c2

c3 A

FIGURE 6-2 CBC Diagram

CBC mode has the advantage of hiding block-sized repetitionsin the original message m. Notice that for the
first block, the CBC algorithm does not have a block of encoded information to add with thefirst block of the
message. A value called theinitial chaining vector (ICV) is added to the first message block to overcome this
problem.

The Java Card APl includes four classes for implementing DES symmetric encoding and decoding. The first
classisDES_Key. Thisclassis used for single DES decoding only. Single DES refersto the single-pass DES
algorithm, in which the message is encoded once using a single key. A second class, called DES3_Key,
implements triple DES decoding only. Triple DES refers to a three-stage application of the DES agorithm in
which the message is encoded three times using two single-length keys. Triple DES is considered more secure
in some situations than single DES.

Encoding functionality for the two DES algorithms is added by the DES_EncKey and DES3_EncKey classes,
which extend the DES_Key and DES3_Key decoding classes, respectively. These two classes are part of the
j avacar dx. cr ypt oEnc package, not thej avacar dx. crypt o class.

Verification of Symmetrically-Encoded M essages

Messages encoded using symmetric algorithms are verified by attaching a message authorization code (MAC)
to the message. The MAC serves to verify that the message has not been atered from its original form. The
MAC is created as a function of the message data and the key, using thegener at eMAC() method. To
authenti cate a message with an attached MAC, call veri f yMAC() . Verification of the integrity of a message
with an attached MAC is a function of the MAC value, the message data, and the key. The Java Card AP
supports the creation and verification of MACs using the CBC encoding method.

The CBC algorithm actsin aripple fashion by employing the block output of the previous iteration of the
algorithm to the next block input. The block output of the final iteration of the algorithm isa unique
representation of the entire message, incorporating information from all previous blocks in the message. This
final output isideally suited for use asa MAC. If the messageis altered in any way during transmission, the
attached MAC value will not equal the MAC value generated on the altered text.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 6-3

Java Card Applet Developer’s Guide

Asymmetric Keys

Unlike symmetric keys, asymmetric algorithms use two keys: one public, one private. This key-pair has a
mathematical relationship to one another. The base class for all asymmetric keysis AsynKey, and like

SynKey, AsynKey isan extension of the generic Key class. Creating a symmetric key is easy—simply set the
bit string for the key using theet Key() method. Creating asymmetric key pairs is more complicated,
because the key pair must be computed mathematically from certain key parameters.

To understand how to create asymmetric keys, one must first understand how they are computed. Since Java
Card technology implements the RSA asymmetric algorithm, we shall discuss key creation in terms of this
algorithm. Generating an RSA key-pair first requires two large prime nunpb@nsig. These two numbers

are multiplied to produce a modulus,

n = pq

Next, a values is chosen that meets the following mathematical relationships:

e<n and e has no common factors with thevalues (p-1) or (g-1)

The valuee is called the public exponent. Next, a vaduss chosen such that the vakte 1 is roundly

divisible by the valuep- 1) (g- 1) . d is called the private exponent. The pair (n,e) form the public key, and the
values (n,d) form the private key. The valued,gd, andg must be kept strictly secret, while the values of
ande are made public. To encode a message with the public key, use the following formula:

¢ = nf nod n

To decode a message using the private key, use the following formula:

m= c nod n

The formulas just described are the basis of one common form of the RSA algorithm, knowmckiihe
exponent form. Another common form is called tkinese Remainder Theorem (CRT) form. The CRT form

also has its roots in the prime factprandq, but it is computed differently, using a formula not relevant to

the discussion here. From a programming point of view, one needs only to realize that instead of setting the
values (n,e) for the public key and (n,d) for the private, one must set the following values for the private key
only:

! nod
mod (
mod (

O O0TOT

q
p-1)
q-1)

Java Card technology implements the RSA algorithm in both its modulus-exponent form and the CRT form.
The Java Card API contains classes for both public and private keys used in asymmetric algorithms. All public
keys descend from thibl i cKey class. All private keys descend from the vat eKey class. Specifically,

RSA_Publ i cKey defines a public key for use with the RSA algorithm in its modulus-exponent form and

RSA Pri vat ekey defines a corresponding private key.

6-4 Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

Java Card Applet Developer’s Guide

To create a public key in this form, you must specify the modulus n and the exponent e. To create a private
key, you must specify the modulus n and the exponent d. The classRSA_CRT_Pri vat eKey implements an
RSA private key in the CRT form. To create a private key in this form, you must specify al of the five
parameters listed above for the CRT algorithm. A CRT private key can be paired with a public key of the
modul us-exponent form.

Authentication and Verification

Asymmetric algorithms go beyond symmetric algorithms in that they allow the recipient of a message to verify
not only the integrity of a message, but also its source. Verifying the source of a messageis called
authentication. To create an authentic message, the sender of a message first creates a hash value for the
message. The hash value (also known as a message digest) is a string of bits that uniquely identifies the
message. The sender then encodes the hash value with their private key.

Next, the bulk of the message is encoded using the recipient’s public key. The encoded hash value is attached
to the encoded message and actsdigital signature for that message. The recipient of the message first
decodes the bulk of the message using the recipient’s private key. Then, the recipient compares the digital
signature with the message, using a simple mathematical relation involving:

m The sender’s public key
m The signature
m The message

TheShalMessageDi gest class creates a secure hash value for a message suitable for use in digital
signatures. This class extends the b&ssageDi gest class which incorporates general hash table
functionality. Notice from thel@ove discussion that signatures are only created using the sender’s private
key—the methods for signing messages in the Java Card API are only included in classes that extend

Pri vat eKey. Thesi gn() method is part of this class and takes as parameters the sender’s private key and
the message data to sign.

Verification/authentication requires only the sender’s public key—only classes extendiuplihe Key

class include a method for verification. e i f y() method is part of this class and includes parameters for
the hash value of the message to verify, along with the signed data itself.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 6-5

Java Card Applet Developer’s Guide

Glossary

AID isan acronym for Application |Dentifier as defined in SO 7816-5.
APDU isan acronym for Application Protocol Data Unit as defined in 1SO 7816-4.

API isan acronym for Application Programming Interface. The APl defines calling conventions by which an
application program accesses the operating system and other services.

Applet the basic unit of selection, context, functionality, and security in Java Card technology.
Applet developer refersto a person creating an applet using the Java Card 2.0 API.

Applet execution context. The JCRE keeps track of the currently selected applet as well as the currently
active applet. The currently active applet valueis referred to as the applet execution context. When a virtual
method isinvoked on an object, the appl et execution context is changed to correspond to the applet that owns
that object. When that method returns, the previous context is restored. Invocations of static methods have no
effect on the applet execution context. The applet execution context and sharing status of an object together
determine if access to an object is permissible.

Atomic Operation is an operation that either completesin its entirety (if the operation succeeds) or no part of
the operation completes at all (if the operation fails).

Atomicity refersto whether a particular operation isatomic or not and is necessary for proper data recovery in
cases where power islost or the card is unexpectedly removed from the CAD.

CAD isan acronym for Card Acceptance Device. The CAD isthe device in which the card isinserted.
Cast isthe explicit conversion from one data type to another.

Classisthe prototype for an object in an object-oriented language. A class may aso be considered a set of
objects which share a common structure and behavior. The structure of a class is determined by the class

variables which represent the state of an object of that class and the behavior is given by a set of methods
associated with the class.

Classes are related in a class hierarchy. One class may be a specialization (a “subclass”) of another (one of its
“superclasses”), it may be composed of other classes, or it may use other classes in a client-server relationship

EEPROM is an acronym for Electrically Erasable, Programmable Read Only Memory.

Framework is the set of classes which implement the API. This includes core and extension packages.
Responsibilities include dispatchingA&PDUs, applet selection, managing atomicity, anthifing applets.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc. 1

Java Card Applet Developer’s Guide

2

Garbage Callection isthe process by which dynamically allocated storage is automatically reclaimed during
the execution of a program.

Java Card Runtime Environment (JCRE) consists of the Java Card Virtual Machine, the framework, and
the associated native methods.

JC2RI isan acronym for the Java Card 2.0 Reference Implementation.

JCRE Developer refersto aperson or company creating a vendor-specific framework using the Java Card 2.0
API.

JDK isan acronym for Java Development Kit. The JDK isa Sun Microsystems, Inc. product which provides
the environment required for programming in the Java software language. The JDK is available for a variety
of platforms, for example Sun Solaris and Microsoft Windows®.

Instance Variables, also known as fields, represent a portion of an object’s internal state. Each object has its
own set of instance variables. Objects of the same class will have the same instance variables, but each object
can have different values.

Instantiation, in object-oriented programming, means to produce a particular object from its class template.
This involves allocation of a data structure with the types specified by the template, and initialization of
instance variables with either default values or those provided by the class’s constructor function.

MAC is an acronym for Message Authentication Code. MAC is an encryption of data for security purposes.

Method is the name given to a procedure or routine, associated with one or more classes, in object-oriented
languages.

Namespace is a set of names in which all names are unique.

Object-Oriented is a programming methodology based on the concept of an “object” which is a data structure
encapsulated with a set of routines, called “methods,” which operate on the data.

Objects, in object-oriented programming, are unique instances of a data structure defined according to the
template provided by its class. Each object has its own values for the variables belonging to its class and can
respond to the messages (methods) defined by its class.

Packageis a Java software namespace and can have classes and interfaces. A package is the smallest unit of
Java software that can be processed by the JCC utility and installed on a Java technology smart card.

Runtime Environment, see JCRE.

Transaction is an atomic operation where the developer defines the extent of the operation by indicating in
the program code the beginning and end of the transaction.

Rev.1.12 Copyright © August 19, 1998 Sun Microsystems, Inc.

