microsystems

Java Card 2.0
Language Subset and
Virtual Machine
Specification

October 13, 1997

Revision 1.0 Final
©1997 Sun Microsystems, Inc.

Java Card 2.0 Language Subset and Virtual Machine Specification

Sun.

microsystems

©1997 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A.

This document is protected by copyright.

Sun Microsystems, Inc. ("SUN") hereby grantsto you afully-paid, nonexclusive, nontransferable, perpetual,
worldwide, limited license (without theright to sublicense), under Sun'sintellectual property rightsthat are essential
to use this specification (" Specification™), to use the Specification for the sole purpose of devel oping applications or
applets that may interoperate with implementations of the Specification devel oped pursuant to a separate license
agreement with SUN.

RESTRICTED RIGHTSLEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

This specification contains the proprietary information of Sun and may only be used in accordance with the license
terms set forth above. SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY

OF THE SPECIFICATION, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SPECIFICATION OR ITS DERIVATIVES.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, HotJava, HotJava Views, Java Card, Java

WorkShop, the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

THISPUBLICATION ISPROVIDED "ASIS' WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSOR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESSFOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS CHANGESARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGESWLL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS INC. MAY MAKE IMPROVEMENTS AND/OR CHANGESIN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THISPUBLICATION AT ANY
TIME.

© 1997 Sun Microsystems, Inc. October 13, 1997 Page 2
Revision 1.0 Final of 14

Java Card 2.0 Language Subset and Virtual Machine Specification

1. Introduction

Theinformation in this document describes the subset of standard Java which is
supported in the Java Card 2.0 specification. This document is not intended to stand on its
own; rather it relies heavily on existing documentation of standard Java. In particular,
two books are required for the reader to understand the material presented herein.

[1] Godling, James, Bill Joy, and Guy Steele. The Java™ Language Specification
Addison-Wesley, 1996, ISBN 0-201-63451-1 — provides a baseline definition of the Java
language. The language subset defined here is based on the language specified in this
book.

[2] Lindholm, Tim, and Frank YellinThe Java™ Virtual Machine Specification.
Addison-Wesley, 1996, ISBN 0-201-63452-X — defines the standard operation of the
Java Virtual Machine. The virtual machine material presented in this subset is based on
the definition specified in this book.

2. A Subset of Java

Java Card is a new system for programming smartcards. It is based on the Java language
and virtual machine. Java Card programs are written with standard Java development
tools, but may be installed and executed on smartcards. It would be ideal if Java Card
programs could be written using all of the Java language, but a full Java Virtual Machine
implementation is far too big to fit on even the most advanced smartcards available

today.

A typical smartcard has under 1K of RAM and 16K of ROM. The code for implementing
string manipulation, single and double-precision floating point arithmetic, and thread
management would be larger than the ROM space on a card. Even if it could be made to
fit, there would be no space left over for class libraries or application code. Then there is
the question of RAM use. The only workable option is to implement Java Card as a
subset of Java. In other words, we must leave some features out.

Fortunately, smartcard programs are by their nature extremely simple things. This allows
us to omit features from Java with little or no impact on the kinds of programs we would
write using Java Card.

3. Language

Java Card programs are written in Java. They are compiled using Java compilers. Java
Card is a subset of Java, and familiarity with Java is required to understand Java Card
programming. The items discussed in this section are not described to the level of a
language specification. For complete documentation on the Java language, Tie¢er to
Java Language Specification [1].

3.1 Unsupported Iltems

The items listed in this section are elements of the Java language which are not supported
in Java Card systems.

© 1997 Sun Microsystems, Inc. October 13, 1997 Page 3
Revision 1.0 Final of 14

Java Card 2.0 Language Subset and Virtual Machine Specification

3.1.1 Features

3.1.1.1 Dynamic Class Loading

A Java Card systemis not able to load classes dynamically. Classes are either masked
into the card during manufacturing or installed through a secure installation process after
the card has been issued. Programs executing on the card may only refer to classes which
aready exist onthe card, asthereis no way to download classes during the normal
execution of application code. See Java Card 2.0 — Programming Conceptsr more
information.

3.1.1.2 Security Manager

The security model of Java Card systems differs from standard Java in fairly significant
ways. Language security policies are implemented by the virtual machine. Thereisno
Security Manager class which makes policy decisions on whether to allow operations.

3.1.1.3 Threads

The Java Card Virtual Machine does not support multiple threads of control. Neither
class Thr ead or any of the thread-related keywords can be used in Java Card programs.

3.1.1.4 Cloning

Java Card does not support cloning of objects. Java Card's version diujlass does
not implement &l one() method, and there is i@ onabl e interface provided.

3.1.1.5 Garbage Collection & Finalization

Java Card does not require a garbage collector. Nor does Java Card allow explicit
deallocation of objects, as this would break Java’s required pointer-safety. Therefore,
application programmers may not assume that objects which are allocated are ever
deallocated. Storage for unreachable objects will not necessarily be reclaimed.

Finalization is also not requiretdi nal i ze() will not necessarily be called
automatically by the virtual machine, and programmers should not rely on this behavior.
3.1.2 Keywords

The following keywords indicate types which are not supported for Java Card, or
unsupported options related to Threads or memory management.

char fl oat synchroni zed volatile
doubl e | ong transi ent
3.1.3 Types

Java Card does not support typear , doubl e, f| oat orl ong, or operations on those
types. It also does not support arrays with more than one dimension.

© 1997 Sun Microsystems, Inc. October 13, 1997 Page 4
Revision 1.0 Final of 14

Java Card 2.0 Language Subset and Virtual Machine Specification

3.1.4 Classes

In general, none of the standard Java classes are supported in Java Card. Some classes
fromthej ava. | ang package are supported (83.2.4), but none of the rest are. Some
noteworthy classes which are not supportedsaré ng, Thr ead (and all thread-related
classes), wrapper classes sucBad ean andl nt eger, and clas€l ass.

3.2 Supported Items

3.2.1

It is much more difficult to succinctly describe what is left in Java Card than to describe
what is missing. If a language feature is not explicitly described as unsupported, it is part
of the supported subset. Notable supported features are described in this section.

Features

3.2.1.1 Packages

Java Card programs follow the standard rules for Java packages. Java Card classes are
written ag ava source files, which include package designations. Package mechanisms
are used to identify and control access to classes, static fields and static methods. In all
respects, packages in Java Card are used exactly the way they are in standard Java.

3.2.1.2 Dynamic Object Creation

Java Card programs can dynamically create objects, both class instances and arrays. This
is done, as usual, by using tiew operator. Objects are allocated out of the heap.

As noted in (83.1.1.5), a Java Card Virtual Machine will not necessarily garbage collect
objects. Any objects allocated on the card may continue to exist and consume resources
even after they become unreachable. @@ Card 2.0 — Programming Concefxs

more information.

3.2.1.3 Virtual Methods

Java Card objects are standard Java objects. Invoking virtual methods on objects in Java
Card is exactly the same asin Java. Inheritance is supported, including the use of the
super keyword.

3.2.1.4 Interfaces

Java Card classes may define or implement Interfaces as in standard Java. Invoking
virtual methods on interface types works as expected. Type checking and the
i nst anceof operator also work correctly with interfaces.

3.2.1.5 Exceptions

Java Card programs may define, throw and catch exceptions, asin standard Java. Class
Thr owabl e and its relevant subclasses are supported. (Some Except i on and Er r or
subclasses are omitted as those exceptions cannot occur in Java Card. See §4.3 for
specification of errors and exceptions.)

© 1997 Sun Microsystems, Inc. October 13, 1997 Page 5

Revision 1.0 Final of 14

Java Card 2.0 Language Subset and Virtual Machine Specification

3.2.2 Keywords

Thefollowing keywords are supported in Java Card. Their useis the same as in standard

Java.
abstract def aul t i f package switch
bool ean do i npl erents private this
br eak el se i mport protected t hr ow
byt e ext ends i nstanceof public t hr ows
case final i nt return try
catch finally interface short voi d
cl ass for native static whi | e
conti nue goto new super

3.2.3 Types

Java Card supports the use of the standard Java types bool ean, byt e, short,andi nt.
Objects (class instances and single-dimensional arrays) are also supported. Arrays can
contain the supported primitive data types, objects, and other arrays.

Some Java Card implementations do not support use of thei nt data type.

3.2.4 Classes

Most of the classesinthej ava. | ang package are not supported in Java Card. The
following classes fromj ava. | ang are supported on the card in a limited form.

3.2.4.1 Object

Java Card classes descend fromj ava. | ang. Obj ect , asin standard Java. Most of the
methods of Coj ect arenot available in the Java Card API, but the class itsdlf existsto
provide aroot for the class hierarchy.

3.2.4.2 Throwable

Since Java Card supports the use of exceptions, it supports class Thr owabl e and its
subclasses, where applicable. Maost of the methods of Thr owabl e are not available in the
Java Card AP, but the class itself exists to provide a common ancestor for all exceptions.

3.2.4.3 System

Classj ava. | ang. Syst emis not supported. Java Card supplies a class
j avacard. f ramewor k. Syst emwhich provides an interface to system behavior.

3.3 Conditional Support

Several features of the Java language are only supported in certain conditions. These
features are described bel ow.

© 1997 Sun Microsystems, Inc. October 13, 1997 Page 6
Revision 1.0 Final of 14

3.3.1

3.3.2

Java Card 2.0 Language Subset and Virtual Machine Specification

int
Thei nt keyword and 32-bit integer data types will not necessarily be supported on all

Java Card implementations. A Java Card Virtual Machine which does not support the
i nt datatypewill reject programs which use that type.

native

Native methods must be available when creating the classes for the card’'s mask. Support
of native methods in code installed post-issuance is optional.

3.4 Limitations

34.1

3.4.2

The limitations of card hardware prevent Java Card programs from supporting the full
range of functionality of certain Java features. The features in question are supported, but
a particular virtual machine may limit the range of operation to less than that of standard
Java.

To ensure a level of portability for application code, this section establishes a minimum
required level for partial support of these language features.

The limitations here are listed as maximums from the application programmer’s
perspective. Applets which do not violate these maximum values will be portable across
all Java Card implementations. From the Java Card VM implementer’s perspective, each
maximum listed indicates a minimum level of support which will allow portability of
applets.

In several cases, variations in data type encoding within the virtual machine make
portability of Java Card source code difficult to predict. These cases are so noted.

Objects

3.4.1.1 Methods

Classes can implement a maximum of 127 instance methods (including inherited
methods).

3.4.1.2 Class Instances

Java Card class instances can contain a maximum of 255 bytes of data in their fields.
Internal data encoding, and therefore the maximum number of fields in objects, may vary
from one virtual machine to another.

3.4.1.3 Arrays
Java Card arrays can hold a maximum of 32767 fields.

Methods

The maximum size of Java Card stack frame is 127 bytes. This includes the parameters,
locals, and operand stack. Internal data encoding, and therefore the number of items
which may be allocated on the stack, may vary from one virtual machine to another.

© 1997 Sun Microsystems, Inc. October 13, 1997 Page 7

Revision 1.0 Final of 14

3.4.3

3.4.4

4. VM

Java Card 2.0 Language Subset and Virtual Machine Specification

Switch Statements

Java Card systems which do not support thei nt datatype are limited to a maximum of
65536 cases in switch statement. Systems withi nt support have the same maximum as
standard Java.

Class Initialization

Thereislimited support for initialization of static field valuesin <cl i ni t > methods.
Static fields may only be initialized to primitive constant values, or arrays of primitive
constants. Primitive constant data types include bool ean, byt e, short ,andi nt .

4.1 cl ass File Subset

The Java Card Virtual Machine operates on standard Java cl ass files. Asthe Java Card
Virtual Machine supports only a subset of the behavior of the standard Java Virtual
Machine, it also supports only a subset of the standard cl ass file format.

4.1.1 Not Supported
4.1.1.1 Field Descriptors
Field descriptors may not contain BaseType characters C, D, F or L. ArrayType
descriptors for arrays of more than one dimension may not be used.
4.1.1.2 Constant Pool
Constant pool table entry tags which indicate unsupported types are not supported.
Constant Type Value
CONSTANT_Stri ng 8
CONSTANT_FI oat 4
CONSTANT_Long 5
CONSTANT_Doubl e 6
Table 4.1 Unsupported constant pool tags
Constant poal structures for types CONSTANT_St ri ng_i nf o, CONSTANT_FI oat _i nf o,
CONSTANT_Long_i nf o and CONSTANT_Doubl e_i nf o are not supported.
4.1.1.3 Fields
Infiel d_i nfo structures, the access flags ACC_VOLATI LE and ACC_TRANSI ENT are
not supported.
© 1997 Sun Microsystems, Inc. October 13, 1997 Page 8

Revision 1.0 Final of 14

Java Card 2.0 Language Subset and Virtual Machine Specification

4.1.1.4 Methods

Inmet hod_i nf o structures, the access flag ACC_SYNCHRONI ZED is not supported. The
access flag ACC_NATI VE is not necessarily supported in applet class files.

4.1.2 Supported
4.1.2.1 ClassFile
All itemsinthed assFi | e structure are supported.

4.1.2.2 Field Descriptors

Field descriptors may contain BaseType characters B, 1, Sand Z, aswell as any
ObjectType. ArrayType descriptors for arrays of a single dimension may also be used.

4.1.2.3 Method Descriptors
All forms of method descriptors are supported.

4.1.2.4 Constant Pool
Constant pool table entry tags for supported data types are supported.

Constant Type Value
CONSTANT_d ass 7
CONSTANT_Fi el dr ef 9
CONSTANT _Met hodr ef 10
CONSTANT _I nt er f aceMet hodr ef 11
CONSTANT_I nt eger 3
CONSTANT_NarmeAndType 12
CONSTANT_Ut f 8 1

Table 4.2 Supported constant pool tags

Constant poal structures for types CONSTANT_Cl ass_i nf o,

CONSTANT_Fi el dref _i nf o, CONSTANT_Met hodr ef _i nf o,

CONSTANT _I nt er f aceMet hodr ef _i nf o, CONSTANT_I nt eger _i nf o,
CONSTANT_NarreAndType_i nf o and CONSTANT_Ut f 8_i nf o are supported.

4.1.2.5 Fields

Infiel d_i nfo structures, the supported access flags are ACC_PUBLI C, ACC_PRI VATE,
ACC PROTECTED, ACC_STATI Cand ACC_FI NAL.

Theremaining components of fi el d_i nf o structures are fully supported.

© 1997 Sun Microsystems, Inc. October 13, 1997 Page 9
Revision 1.0 Final of 14

Java Card 2.0 Language Subset and Virtual Machine Specification

4.1.2.6 Methods

Inmet hod_i nf o structures, the supported access flags are ACC_PUBLI C,
ACC PRI VATE, ACC_PROTECTED, ACC_STATI C, ACC_FI NAL and ACC_ABSTRACT. The
access flag ACC_NATI VE is supported for non-applet class files.

The remaining components of et hod_i nf o structures are fully supported.

4.1.2.7 Attributes

Theattri but e_i nf o structureis supported. The Code, Const ant Val ue,
Excepti ons and Local Vari abl eTabl e attributes are supported.

4.2 Bytecode Subset

4.2.1 Unsupported Bytecodes

| const _<I > fconst _<f> dconst _<d> | dc2_w2

Il oad fl oad dl oad Il oad_<n>

fl oad_<n> dl oad_<n> | al oad f al oad

dal oad cal oad | store fstore

dstore | store_<n> fstore_<n> dst ore_<n>

| astore fastore dastore castore

| add f add dadd | sub

fsub dsub | rul f mul

drrul I div fdiv ddi v

I rem frem drem | neg

f neg dneg | shl | shr

| ushr | and | or | xor

i 2l i 2f i 2d | 2i

| 2f | 2d f 2i f2d

d2i d2l d2f i 2c

| cnp f crpl f crpg dcnpl

dcmpg I return freturn dreturn

nmoni t orent er nmoni t orexi t mul ti anewar r ay goto_w

jsr_w

4.2.2 Supported Bytecodes

nop aconst _nul | i const_<i > bi push

si push I dc | dc_w il oad

al oad i | oad_<n> al oad_<n> i al oad

aal oad bal oad sal oad istore

© 1997 Sun Microsystems, Inc. October 13, 1997 Page 10

Revision 1.0 Final of 14

Java Card 2.0 Language Subset and Virtual Machine Specification

astore i store_<n> ast ore_<n> i astore
aastore bastore sastore pop

pop2 dup dup_x1 dup_x2
dup?2 dup2_x1 dup2_x2 swap

i add i sub i mul idiv
irem i neg i or i shl

i shr i ushr i and i xor

iinc i 2b i 2s i f<cond>
i ficnp_<cond> i facnp_<cond> got o j sr

ret tabl eswi tch | ookupswi t ch ireturn
areturn return getstatic putstatic
getfield putfield i nvokevi rtual i nvokespeci al
i nvokestatic i nvokei nterface new newarr ay
anewar r ay arrayl ength at hr ow checkcast
i nst anceof wi de i fnull i f nonnul

4.2.3 Static Restrictions on Bytecodes

A cl ass file must conform to the following restrictions on the static form of bytecodes
for it to be acceptable to a Java Card Virtual Machine.

4.2.3.1 ldc,ldc_w

Thel dc and| dc_w bytecodes can only be used to load integer constants. The constant
pool entry at index must be a CONSTANT _| nt eger entry.

4.2.3.2 lookupswitch

The value of the npairs operand must be less than 65536. The bytecode can contain at
most 65535 cases.

4.2.3.3 tableswitch

The values of the high and low operands must both be less than 65536 (so they can fit in
16 hits). The bytecode can contain at most 65535 cases.

4.2.3.4 wide

Thewi de bytecode cannot be used to generate local indices greater than 127, and it
cannot be used with any instructions other thani i nc. It can only beused with ani i nc
bytecode to extend the range of the increment constant.

4.3 Exceptions

Java Card provides full support for the Java exception mechanism. Users can define,
throw and catch exceptions just as in standard Java. Java Card also makes use of the
standard exceptions and errors defined in The Java Language Specification [1]. An
updated list of Java’'s standard exceptions is provided in the JDK documentation.

© 1997 Sun Microsystems, Inc. October 13, 1997 Page 11
Revision 1.0 Final of 14

Java Card 2.0 Language Subset and Virtual Machine Specification

Not all of Java’s standard exceptions are supported in Java Card. Exceptions related to
unsupported features are naturally not supported. Class loader exceptions (the bulk of the
checked exceptions) are not supported. And no exceptions or errors defined in packages
other tharj ava. | ang are supported.

Note that some exceptions may be supported to the extent that their error conditions are
detected correctly, but classes for those exceptions will not necessarily be present in the
API.

The supported subset is described in Tables 4.3, 4.4 and 4.5.

4.3.1 Uncaught and Uncatchable Exceptions

In standard Java, uncaught exceptions and errors will cause the virtual machine to report

the error condition and exit. In Java Card, uncaught exceptions or errors should cause the
card to be muted. A virtual machine has the option of taking more drastic actions, such as
blocking the card from further use.

Throwing a runtime exception or error which cannot be caught should also cause the card
to be muted. Cards may also optionally take stricter actions in response to throwing such
an exception.

4.3.2 Checked Exceptions

Exception Supported Not Supported
ClassNotFoundException .
CloneNotSupportedException .
I1legal AccessException .
IngtantiationException o
InterruptedException .
NoSuchFiel dException .
NoSuchM ethodException .

Table 4.3 support of checked exceptions

© 1997 Sun Microsystems, Inc. October 13, 1997 Page 12
Revision 1.0 Final of 14

Java Card 2.0 Language Subset and Virtual Machine Specification

4.3.3 Runtime Exceptions

Runtime Exception Supported Not Supported
Arithmeti cException o
ArrayStoreException d
ClassCagtException o
I1legal ArgumentException d
I1legal ThreadStateException d
Number FormatException d
I1legal Monitor StateException o
I1legal StateException d
IndexOutOfBoundsException .
ArraylndexOutOfBoundsException d
StringlndexOutOfBoundsException d
NegativeArraySizeException .
Null PointerException o
SecurityException .

Table 4.4 Support of runtime exceptions

© 1997 Sun Microsystems, Inc. October 13, 1997 Page 13
Revision 1.0 Final of 14

Java Card 2.0 Language Subset and Virtual Machine Specification

4.3.4 Errors

Error

Supported

Not Supported

LinkageError

ClassCircularityError

ClassFormatError

ExceptionlninitializerError

IncompatibleClassChangeError

AbstractMethodError

I1legal AccessError

IngtantiationError

NoSuchFieldError

NoSuchMethodError

NoClassDefFoundError

UnsatisfiedLinkError

VerifyError

ThreadDeath

VirtualMachineError

Internal Error

OutOfMemoryError

StackOverflowError

UnknownError

Table4.5 Support of errors

© 1997 Sun Microsystems, Inc.

October 13, 1997

Revision 1.0 Final

Page 14
of 14

