
Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.2

Page 1
of 11

Java Card 2.0 Language Subset and Virtual
Machine Specification

1. Introduction
The information in this document describes the subset of standard Java which is
supported in the Java Card 2.0 specification. This document is not intended to stand on its
own; rather it relies heavily on existing documentation of standard Java. In particular,
two books are required for the reader to understand the material presented herein.

The Java Language Specification provides a baseline definition of the Java language. The
language subset defined here is based on the language specified in this book.

The Java Virtual Machine Specification defines the standard operation of the Java Virtual
Machine. The virtual machine material presented in this subset is based on the definition
specified in this book.

2. A Subset of Java
Java Card is a new system for programming smartcards. It is based on the Java language
and virtual machine. Java Card programs are written with standard Java development
tools, but may be installed and executed on smartcards. It would be ideal if Java Card
programs could be written using all of the Java language, but a full Java Virtual Machine
implementation is far too big to fit on even the most advanced smartcards available
today.

A typical smartcard has under 1K of RAM and 16K of ROM. The code for implementing
string manipulation, single and double-precision floating point arithmetic, and thread
management would be larger than the ROM space on a card. Even if it could be made to
fit, there would be no space left over for class libraries or application code. Then there is
the question of RAM use. The only workable option is to implement Java Card as a
subset of Java. In other words, we must leave some features out.

Fortunately, smartcard programs are by their nature extremely simple things. This allows
us to omit features from Java with little or no impact on the kinds of programs we would
write using Java Card.

3. Language
Java Card programs are written in Java. They are compiled using Java compilers. Java
Card is a subset of Java, and familiarity with Java is required to understand Java Card
programming. The items discussed in this section are not fully described. For complete
documentation on the Java language, refer to The Java Language Specification.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.2

Page 2
of 11

3.1 Unsupported Items
The items listed in this section are elements of the Java language which are not supported
in Java Card systems.

3.1.1 Features

3.1.1.1 Dynamic Class Loading

A Java Card system is not able to load classes dynamically. Classes are either masked
into the card’s ROM or installed through the secure installation process after the card has
been issued. Programs running on the card may only refer to classes which already exist
on the card, as there is no way to download classes during the card’s normal operation.
See The Java Card 2.0 Programmers Guide for more information.

3.1.1.2 Security Manager

The security model of Java Card systems differs from standard Java in fairly significant
ways. Security policies are implemented in code which is masked into a card’s ROM.
There is no Security Manager class which makes policy decisions on allowing operations.

3.1.1.3 Threads

The Java Card Virtual Machine does not support multiple threads of control. Neither
class Thread or any of the thread-related keywords can be used in Java Card programs.

3.1.1.4 Cloning

Java Card does not support cloning of objects. Java Card’s version of class Object does
not implement a clone() method, and there is no Clonable interface provided.

3.1.1.5 Garbage Collection & Finalization

Java Card does not implement a garbage collector. Nor does Java Card allow explicit
deallocation of objects, as this would break Java’s required pointer-safety. Therefore,
objects which are allocated are never deallocated. Unreachable objects are just garbage
and their storage will never be reclaimed. As second-order effect of this is that
finalize() methods will never be called.

3.1.2 Keywords

The following keywords indicate types which are not supported for Java Card, or
unsupported options related to Threads.

char float synchronized volatile

double long transient

3.1.3 Types

Java Card does not support types char, double, float or long, or operations on those
types. It also does not support arrays with more than one dimension.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.2

Page 3
of 11

3.1.4 Classes

In general, none of the standard Java classes are supported in Java Card. Some classes
from the java.lang package are supported (§3.2.4), but none of the rest are. Some
noteworthy classes which are not supported are String, Thread (and all thread-related
classes), wrapper classes such as Boolean and Integer, and class Class.

3.2 Supported Items
It is much more difficult to succinctly describe what is left in Java Card than to describe
what is missing. If a language feature is not explicitly described as unsupported, it is part
of the supported subset. Notable supported features are described in this section.

3.2.1 Features

3.2.1.1 Packages

Java Card programs follow the standard rules for Java packages. Java Card classes are
written as java source files, which include package designations. Package mechanisms
are used to identify and control access to classes, static fields and static methods. In all
respects, packages in Java Card are used exactly the way they are in standard Java.

3.2.1.2 Dynamic Object Creation

Java Card programs can dynamically create objects, both class instances and arrays. This
is done, as usual, by using the new operator. Objects are allocated out of the heap.

As noted in (§3.1.1.5), Java Card does not garbage collect objects. Any objects allocated
on the card may continue to exist and consume resources even after they become
unreachable.

3.2.1.3 Virtual Methods

Java Card objects are real Java objects. Invoking virtual methods on objects in Java Card
is exactly the same as in standard Java. Inheritance is supported, including the use of the
super keyword.

3.2.1.4 Interfaces

Java Card classes may define or implement Interfaces, just as in standard Java. Invoking
virtual methods on interface types works as expected. Type checking and the
instanceof operator also work correctly with interfaces.

3.2.1.5 Exceptions

Java Card programs may define, throw and catch exceptions, as in standard Java. Class
Throwable and its relevant subclasses are supported. (Some Exception and Error
subclasses are omitted as those exceptions cannot occur in Java Card.)

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.2

Page 4
of 11

3.2.2 Keywords

The following keywords are supported in Java Card. Their use is the same as in standard
Java.

abstract default if package switch

boolean do implements private this

break else import protected throw

byte extends instanceof public throws

case final int return try

catch finally interface short void

class for native static while

continue goto new super

3.2.3 Types

Java Card supports the use of the standard Java types boolean, byte, short, and int.
Objects (class instances and single-dimensional arrays) are also supported.

Some Java Card implementations do not support use of the int data type.

3.2.4 Classes

None of the classes in the java.lang package are supported directly. Instead, classes
from java.lang are mapped to classes in the java.card package.

3.2.4.1 Object

Java Card classes descend from java.lang.Object, as in standard Java. Most of the
methods of Object are not supported, but the class itself is.

3.2.4.2 Throwable

Since Java Card supports the use of exceptions, it supports class Throwable and its
subclasses, where applicable.

3.2.4.3 System

Class java.lang.System is not supported. Java Card supplies a class
java.card.System which provides an interface to system behavior.

3.3 Conditional Support
Several features of the Java language are only supported in certain conditions. These
features are described below.

3.3.1 int

The int keyword and 32-bit integer data types may not be supported on all Java Card
implementations. A Java Card Virtual Machine which does not support the int data type
will reject programs which use that type.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.2

Page 5
of 11

3.3.2 native

Native methods are only available when creating the classes which are masked into ROM
on a card. For reasons of both security and portability, native methods are not allowed in
code which is installed post-issuance.

3.4 Limitations
In addition to the static limitations described previously, Java Card also imposes some
limitations on the runtime behavior of programs.

3.4.1 Objects

3.4.1.1 Methods

Classes can implement a maximum of 127 instance methods (including inherited
methods).

3.4.1.2 Class Instances

Java Card class instances can contain a maximum of 255 bytes of data in their fields.

3.4.1.3 Arrays

Java Card arrays can hold a maximum of 16383 (14 bits of addressing) fields.

3.4.2 Methods

The maximum size of Java Card stack frame is 127 bytes. This includes the parameters,
locals, and operand stack.

3.4.3 Switch Statements

Java Card systems which do not support the int data type are limited to a maximum of
65536 cases in switch statement. Systems with int support have the same maximum as
standard Java.

3.4.4 <clinit>

There is limited support for initialization of static field values in <clinit> methods.
Static fields may only be initialized to values of primitive data types, or arrays of
primitive data types. Primitive data types include boolean, byte, short, and int.

4. VM

4.1 class File Subset
The Java Card Virtual Machine operates on standard Java class files. As the Java Card
Virtual Machine supports only a subset of the behavior of the standard Java Virtual
Machine, it also supports only a subset of the standard class file format.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.2

Page 6
of 11

4.1.1 Not Supported

4.1.1.1 Field Descriptors

Field descriptors may not contain BaseType characters C, D, F or L. ArrayType
descriptors for arrays of more than one dimension may not be used.

4.1.1.2 Constant Pool

Constant pool table entry tags which indicate unsupported types are not supported.

Constant Type Value

CONSTANT_String 8

CONSTANT_Float 4

CONSTANT_Long 5

CONSTANT_Double 6

Table 4.1 Unsupported constant pool tags

Constant pool structures for types CONSTANT_String_info, CONSTANT_Float_info,
CONSTANT_Long_info and CONSTANT_Double_info are not supported.

4.1.1.3 Fields

In field_info structures, the access flags ACC_VOLATILE and ACC_TRANSIENT are
not supported.

4.1.1.4 Methods

In method_info structures, the access flag ACC_SYNCHRONIZED is not supported. The
access flag ACC_NATIVE is not supported in applet class files.

4.1.2 Supported

4.1.2.1 ClassFile

All items in the ClassFile structure are supported.

4.1.2.2 Field Descriptors

Field descriptors may contain BaseType characters B, I, S and Z, as well as any
ObjectType. ArrayType descriptors for arrays of a single dimension may also be used.

4.1.2.3 Method Descriptors

All forms of method descriptors are supported.

4.1.2.4 Constant Pool

Constant pool table entry tags for supported data types are supported.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.2

Page 7
of 11

Constant Type Value

CONSTANT_Class 7

CONSTANT_Fieldref 9

CONSTANT_Methodref 10

CONSTANT_InterfaceMethodref 11

CONSTANT_Integer 3

CONSTANT_NameAndType 12

CONSTANT_Utf8 1

Table 4.2 Supported constant pool tags

Constant pool structures for types CONSTANT_Class_info,
CONSTANT_Fieldref_info, CONSTANT_Methodref_info,
CONSTANT_InterfaceMethodref_info, CONSTANT_Integer_info,
CONSTANT_NameAndType_info and CONSTANT_Utf8_info are supported.

4.1.2.5 Fields

In field_info structures, the supported access flags are ACC_PUBLIC, ACC_PRIVATE,
ACC_PROTECTED, ACC_STATIC and ACC_FINAL.

The remaining components of field_info structures are fully supported.

4.1.2.6 Methods

In method_info structures, the supported access flags are ACC_PUBLIC,
ACC_PRIVATE, ACC_PROTECTED, ACC_STATIC, ACC_FINAL and ACC_ABSTRACT. The
access flag ACC_NATIVE is supported for non-applet class files.

The remaining components of method_info structures are fully supported.

4.1.2.7 Attributes

The attribute_info structure is supported. The Code, ConstantValue,
Exceptions and LocalVariableTable attributes are supported. The
LocalVariableTable attribute is not merely supported, but required.

4.2 Bytecode Subset

4.2.1 Unsupported Bytecodes
lconst_<l> fconst_<f> dconst_<d> ldc2_w2 lload

fload dload lload_<n> fload_<n> dload_<n>

laload faload daload caload lstore

fstore dstore lstore_<n> fstore_<n> dstore_<n>

lastore fastore dastore castore ladd

fadd dadd lsub fsub dsub

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.2

Page 8
of 11

lmul fmul dmul ldiv fdiv

ddiv lrem frem drem lneg

fneg dneg lshl lshr lushr

land lor lxor i2l i2f

i2d l2i l2f l2d f2i

f2d d2i d2l d2f i2c

lcmp fcmpl fcmpg dcmpl dcmpg

lreturn freturn dreturn monitorenter monitorexit

multianewarray goto_w jsr_w

4.2.2 Supported Bytecodes
nop aconst_null iconst_<i> bipush sipush

ldc ldc_w iload aload iload_<n>

aload_<n> iaload aaload baload saload

istore astore istore_<n> astore_<n> iastore

aastore bastore sastore pop pop2

dup dup_x1 dup_x2 dup2 dup2_x1

dup2_x2 swap iadd isub imul

idiv irem ineg ishl ishr

iushr iand ixor iinc i2b

i2s if<cond> ificmp_<cond> ifacmp_<cond> goto

jsr ret tableswitch lookupswitch ireturn

areturn return getstatic putstatic getfield

putfield invokevirtual invokespecial invokestatic invokeinterface

new newarray anewarray arraylength athrow

checkcast instanceof wide ifnull ifnonnull

4.2.3 Static Restrictions on Bytecodes

A class file must conform to the following restrictions on the static form of bytecodes
for it to be acceptable to a Java Card Virtual Machine.

4.2.3.1 ldc, ldc_w

The ldc and ldc_w bytecodes can only be used to load integer constants. The constant
pool entry at index must be a CONSTANT_Integer entry.

4.2.3.2 lookupswitch

The value of the npairs operand must be less than 65536. The bytecode can contain at
most 65535 cases.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.2

Page 9
of 11

4.2.3.3 tableswitch

The values of the high and low operands must both be less than 65536 (so they can fit in
16 bits). The bytecode can contain at most 65535 cases.

4.2.3.4 wide

The wide bytecode cannot be used to generate local indices greater than 127, and it
cannot be used with any instructions other than iinc. It can only be used with an iinc
bytecode to extend the range of the increment constant.

4.3 Exceptions
Java Card provides full support for the Java exception mechanism. Users can define,
throw and catch exceptions just as in standard Java. Java Card also makes use of the
standard exceptions and errors defined in The Java Language Specification. An updated
list of Java’s standard exceptions is provided in the JDK documentation.

Not all of Java’s standard exceptions are supported in Java Card. Exceptions related to
unsupported features are naturally not supported. Class loader exceptions (the bulk of the
checked exceptions) are not supported. And no exceptions or errors defined in packages
other than java.lang are supported.

Note that some exceptions may be supported to the extent that their error conditions are
detected correctly, but classes for those exceptions may not be present in the API.

The supported subset is described in Tables 4.3, 4.4 and 4.5.

4.3.1 Checked Exceptions

Exception Supported Not Supported

ClassNotFoundException •
CloneNotSupportedException •
IllegalAccessException •
InstantiationException •
InterruptedException •
NoSuchFieldException •
NoSuchMethodException •

Table 4.3 support of checked exceptions

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.2

Page 10
of 11

4.3.2 Runtime Exceptions

Runtime Exception Supported Not Supported

ArithmeticException •
ArrayStoreException •
ClassCastException •
IllegalArgumentException •

IllegalThreadStateException •
NumberFormatException •

IllegalMonitorStateException •
IllegalStateException •
IndexOutOfBoundsException •

ArrayIndexOutOfBoundsException •
StringIndexOutOfBoundsException •

NegativeArraySizeException •
NullPointerException •
SecurityException •

Table 4.4 Support of runtime exceptions

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.2

Page 11
of 11

4.3.3 Errors

Error Supported Not Supported

LinkageError •
ClassCircularityError •
ClassFormatError •
ExceptionInInitializerError •
IncompatibleClassChangeError •

AbstractMethodError •
IllegalAccessError •
InstantiationError •
NoSuchFieldError •
NoSuchMethodError •

NoClassDefFoundError •
UnsatisfiedLinkError •
VerifyError •

ThreadDeath •
VirtualMachineError •

InternalError •
OutOfMemoryError •
StackOverflowError •
UnknownError •

Table 4.5 Support of errors

