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Motivation: the Distributed Real-time
Communication Software Crisis
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� Symptoms

– Hardware gets smaller, faster,
cheaper

– Software gets larger, slower,
more expensive

� Culprits

– Accidental and inherent
complexity

� Solutions

– Frameworks, components, and
patterns
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Techniques for Improving Software
Quality and Productivity
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� Proven solutions

– Components

� Self-contained, “pluggable”
ADTs

– Frameworks

� Reusable, “semi-complete”
applications

– Patterns

� Problem/Solution/Context
– Architecture

� Families of related patterns and
components

UC Irvine 2

ACE Overview Douglas C. Schmidt

Roadmap to Levels of Middleware Abstraction
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� Observations

– Historically, apps built directly
atop OS

– Today, more and more apps
built atop middleware

– Middleware has several layers

� General R&D challenges

– Performance optimizations
– Quality of Service (QoS)
– Software architecture &

patterns
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Why We Need Communication Middleware

� System call-level programming is wrong abstraction for
application developers

– Too low-level ! error codes, endless reinvention
– Error-prone ! HANDLEs lack type-safety, thread cancellation

woes
– Mechanisms do not scale ! RTOS TSS
– Steep learning curve ! Win32 Named Pipes
– Non-portable ! socket bugs
– Inefficient ! i.e., tedious for humans

� GUI frameworks are inadequate for communication software

– Inefficient ! excessive use of virtual methods
– Lack of features ! minimal threading and synchronization

mechanisms, no network services
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The ADAPTIVE Communication Environment (ACE)
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http://www.cs.wustl.edu/�schmidt/ACE.html

� ACE Overview

– A concurrent OO
networking
framework

– Available in C++
and Java

– Ported to
VxWorks, POSIX,
and Win32

� Related work

– x-Kernel
– SysV STREAMS
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ACE Statistics

� ACE contain > 200,000 lines of C++

– Over 30 person-years of effort

� Ported to UNIX, Win32, MVS, and
embedded platforms

– e.g., VxWorks, LynxOS, Chorus,
pSoS, QNX

� Large user community

– www.cs.wustl.edu/�schmidt/ACE-
users.html

� Currently used by
dozens of companies

– Boeing, Cisco,
Ericsson, Kodak,
Lockheed, Lucent,
Motorola, Nokia,
Nortel, Raytheon,
SAIC, Siemens,
StorTek, etc.

� Supported commercially

– www.riverace.com
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Patterns for Communication Middleware
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� Observation

– Failures rarely result
from unknown scientific
principles, but from
failing to apply proven
engineering practices
and patterns

� Benefits of Patterns

– Facilitate design reuse
– Preserve crucial design

information
– Guide design choices
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Use-cases for ACE and TAO
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� Domains

– Real-time avionics
– Distributed

interactive
simulations

– Satellite
communication

– Network
management

– Medical imaging
– Multimedia services
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Applying ACE to Real-time Avionics
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Domain Challenges

� Deterministic & statistical
real-time deadlines

� Periodic & aperiodic processing

� COTS and open systems

� Reusable components

� Support platform upgrades

www.cs.wustl.edu/�schmidt/TAO-
boeing.html
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Applying ACE to Distributed
Interactive Simulations
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Applying ACE to Satellite Communication Systems
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� Domain Challenges

– Long latency satellite links
– High reliability
– Prioritization
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Applying ACE to Network Management
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� Domain Challenges

– Low latency
– Multi-platform
– Family of related

services
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Lessons Learned Building ACE

� Be patient

– Good components, frameworks,
and software architectures take
time to develop

� Reuse-in-the-large works best
when:

1. The marketplace is competitive
2. The domain is complex
3. Skilled middleware developers
4. Supportive corporate culture
5. “Reuse magnets” exist
6. Open source development

models

� The best components
come from solving real
problems

– Keep feedback loops tight
to avoid “runaway” reuse
efforts

� Produce reusable
components by
generalizing from working
applications

– i.e., don’t build
components in isolation
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Concluding Remarks

� Developers of real-time communication software confront recurring
challenges that are largely application-independent

– e.g., service initialization and distribution, error handling, flow
control, event demultiplexing, concurrency control,
synchronization, scheduling

� Programming directly to the underlying OS APIs is tedious,
error-prone, and non-portable

� Successful developers resolve these challenges by applying
appropriate design patterns to create communication frameworks

� Application frameworks are an effective way to achieve broad reuse
of software
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Obtaining ACE
� All source code for ACE is freely available

– www.cs.wustl.edu/�schmidt/ACE.html

� Mailing lists

– ace-users@cs.wustl.edu
– ace-users-request@cs.wustl.edu
– ace-announce@cs.wustl.edu
– ace-announce-request@cs.wustl.edu

� Newsgroup

– comp.soft-sys.ace

� Commercial support

– www.riverace.com
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Next Steps: POSIX ACE (PACE)

� PACE (POSIX ACE) is a bottom-up rework of ACE

� OS adaptation layer

– Strict POSIX.1 interface
– C, not C++
– Partitioned, not monolithic

� Corresponding to POSIX.1 sections

� Adds configurability, reduces learning curve

� The rest of ACE will ultimately migrate to PACE

– i.e., Utilities, Logging, Threads, Event Demultiplexing and
Handling, Sockets, IPC, Service Configuration, Streams, and
Memory Management

� Then, TAO will migrate to PACE
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PACE: Footprint Reduction

� Interface stability vs. small footprint

– PACE will not necessarily be backward compatible with ACE

� General purpose middleware vs. small footprint

– Revisit some “forgotten” techniques, such as a separate file for
each method, to minimize linking of unused code
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PACE: Miscellaneous

� Avoid static objects that require construction/destruction, multiple
inheritance, etc.

� Strict component hierarchy, to support subsetting

� No mandatory exception handling

� For rapid access to non-POSIX ACE platforms, PACE will be ported
to ACE’s OS adaptation layer (ACE OS)
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PACE Challenges
� How do we decide what to exclude from ACE?

– Knowledge of implementation concessions provides candidates,
such as backward compatibility for, e.g., Reactor and static objects

– Must support TAO

� How do we maintain two (three, with JavaACE) versions?

– Initially, host PACE on ACE to rapidly provide support for non-
POSIX platforms

– Long term, provide adapter from PACE to ACE to support existing
ACE applications
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