
Developing Distributed Real-time Systems
Using OS System-Hiding Frameworks

Douglas C. Schmidt
Associate Professor Elec. & Comp. Eng. Dept.
schmidt@uci.edu University of California, Irvine
www.ece.uci.edu/�schmidt/ (949) 824-1901

Sponsors
NSF, DARPA, ATD, BBN, Boeing, Cisco, Comverse, GDIS, Experian, Global MT,

Hughes, Kodak, Krones, Lockheed, Lucent, Microsoft, Mitre, Motorola, NASA, Nokia,
Nortel, OCI, Oresis, OTI, Raytheon, SAIC, Siemens SCR, Siemens MED, Siemens

ZT, Sprint, Telcordia, USENIX

ACE Overview Douglas C. Schmidt

Motivation: the Distributed Real-time
Communication Software Crisis
BOARD BOARD 11

VMEVME

15531553

BOARD BOARD 22

� Symptoms

– Hardware gets smaller, faster,
cheaper

– Software gets larger, slower,
more expensive

� Culprits

– Accidental and inherent
complexity

� Solutions

– Frameworks, components, and
patterns

UC Irvine 1

ACE Overview Douglas C. Schmidt

Techniques for Improving Software
Quality and Productivity

ADTS

NETWORKING

DATABASE

GUI

EVENT

LOOP

APPLICATION -
SPECIFIC

FUNCTIONALITY

EVENT

LOOP

EVENT

LOOP

CALL

BACKSINVOKES

MATH

(A) CLASS LIBRARY ARCHITECTURE

(B) FRAMEWORK ARCHITECTURE

ADTS

MATH

GUI
NETWORKING

DATA

BASE

APPLICATION -
SPECIFIC

FUNCTIONALITY

EVENT

LOOP

GLUE

CODE

INVOKES

� Proven solutions

– Components

� Self-contained, “pluggable”
ADTs

– Frameworks

� Reusable, “semi-complete”
applications

– Patterns

� Problem/Solution/Context
– Architecture

� Families of related patterns and
components

UC Irvine 2

ACE Overview Douglas C. Schmidt

Roadmap to Levels of Middleware Abstraction

INFRASTRUCTURE
MIDDLEWARE

DISTRIBUTION
MIDDLEWARE

COMMON
MIDDLEWARE

SERVICES

APPLICATIONS

Cons

ConsConsEVENTEVENT

CHANNELCHANNEL

OPERATINGOPERATING
SYSTEMS SYSTEMS &&
PROTOCOLSPROTOCOLS

HARDWAREHARDWARE DEVICESDEVICES

� Observations

– Historically, apps built directly
atop OS

– Today, more and more apps
built atop middleware

– Middleware has several layers

� General R&D challenges

– Performance optimizations
– Quality of Service (QoS)
– Software architecture &

patterns

UC Irvine 3

ACE Overview Douglas C. Schmidt

Why We Need Communication Middleware

� System call-level programming is wrong abstraction for
application developers

– Too low-level ! error codes, endless reinvention
– Error-prone ! HANDLEs lack type-safety, thread cancellation

woes
– Mechanisms do not scale ! RTOS TSS
– Steep learning curve ! Win32 Named Pipes
– Non-portable ! socket bugs
– Inefficient ! i.e., tedious for humans

� GUI frameworks are inadequate for communication software

– Inefficient ! excessive use of virtual methods
– Lack of features ! minimal threading and synchronization

mechanisms, no network services

UC Irvine 4

ACE Overview Douglas C. Schmidt

The ADAPTIVE Communication Environment (ACE)

PROCESSES//
THREADSTHREADS

DYNAMICDYNAMIC

LINKINGLINKING

MEMORYMEMORY

MAPPINGMAPPING

SELECTSELECT//
IO COMPIO COMP

SYSTEMSYSTEM

VV IPCIPC
STREAMSTREAM

PIPESPIPES

NAMEDNAMED

PIPESPIPES

C
APISS

SOCKETSSOCKETS//
TLITLI

COMMUNICATIONCOMMUNICATION

SUBSYSTEMSUBSYSTEM

VIRTUAL MEMORYVIRTUAL MEMORY

SUBSYSTEMSUBSYSTEM

GENERAL POSIX AND WIN32 SERVICES

PROCESSPROCESS//THREADTHREAD

SUBSYSTEMSUBSYSTEM

FRAMEWORKS ACCEPTORACCEPTOR CONNECTORCONNECTOR

SELF-CONTAINED

DISTRIBUTED

SERVICE

COMPONENTS

NAMENAME

SERVERSERVER

TOKENTOKEN

SERVERSERVER

LOGGINGLOGGING

SERVERSERVER

GATEWAYGATEWAY

SERVERSERVER

SOCKSOCK__SAPSAP//
TLITLI__SAPSAP

FIFOFIFO

SAPSAP

LOGLOG

MSGMSG

SERVICESERVICE

HANDLERHANDLER

TIMETIME

SERVERSERVER

C++
WRAPPER

FACADES

SPIPESPIPE

SAPSAP

CORBACORBA

HANDLERHANDLER

SYSVSYSV
WRAPPERSWRAPPERS

SHAREDSHARED

MALLOCMALLOC

THE ACE ORBTHE ACE ORB

((TAOTAO))

JAWS ADAPTIVEJAWS ADAPTIVE

WEB SERVERWEB SERVER

MIDDLEWARE

APPLICATIONS

REACTORREACTOR//
PROACTORPROACTOR

PROCESSPROCESS//
THREADTHREAD

MANAGERSMANAGERS

STREAMSSTREAMS

SERVICESERVICE

CONFIGCONFIG--
URATORURATOR

SYNCHSYNCH

WRAPPERSWRAPPERS

MEMMEM

MAPMAP

OS ADAPTATION LAYER

http://www.cs.wustl.edu/�schmidt/ACE.html

� ACE Overview

– A concurrent OO
networking
framework

– Available in C++
and Java

– Ported to
VxWorks, POSIX,
and Win32

� Related work

– x-Kernel
– SysV STREAMS

UC Irvine 5

ACE Overview Douglas C. Schmidt

ACE Statistics

� ACE contain > 200,000 lines of C++

– Over 30 person-years of effort

� Ported to UNIX, Win32, MVS, and
embedded platforms

– e.g., VxWorks, LynxOS, Chorus,
pSoS, QNX

� Large user community

– www.cs.wustl.edu/�schmidt/ACE-
users.html

� Currently used by
dozens of companies

– Boeing, Cisco,
Ericsson, Kodak,
Lockheed, Lucent,
Motorola, Nokia,
Nortel, Raytheon,
SAIC, Siemens,
StorTek, etc.

� Supported commercially

– www.riverace.com

UC Irvine 6

ACE Overview Douglas C. Schmidt

Patterns for Communication Middleware

Event
Patterns

Concurrency
Patterns

External
Polymorphism

Wrapper
Facade

Connector

Acceptor

Thread
Pool

Thread-per
Session

Thread-per
Request

Asynchronous
Completion

Token

Thread
Specific
Storage

Active
Object

Half-Sync/
Half-Async

Leader/
Followers

Service
Configurator

Object
 Lifetime
Manager

Reactor

Proactor

Double
Checked
Locking

Thread-
Safe

Interface

Scoped
Locking

Strategized
Locking

Initialization
Patterns

Synchronization
Patterns

� Observation

– Failures rarely result
from unknown scientific
principles, but from
failing to apply proven
engineering practices
and patterns

� Benefits of Patterns

– Facilitate design reuse
– Preserve crucial design

information
– Guide design choices

UC Irvine 7

ACE Overview Douglas C. Schmidt

Use-cases for ACE and TAO

APPLICATIONSAPPLICATIONAPPLICATION--
SPECIFICSPECIFIC

APPLICATIONAPPLICATION--
INDEPENDENTINDEPENDENT

APPLICATIONSAPPLICATIONS
APPLICATIONSAPPLICATIONS

ConcurrencyConcurrency
globalglobal

ReactorReactor

ServiceService
InitializationInitialization

ServiceService
ConfiguratorConfigurator

StreamStream
FrameworkFramework

InterprocessInterprocess
CommunicationCommunication

NetworkNetwork
ServicesServices

� Domains

– Real-time avionics
– Distributed

interactive
simulations

– Satellite
communication

– Network
management

– Medical imaging
– Multimedia services

UC Irvine 8

ACE Overview Douglas C. Schmidt

Applying ACE to Real-time Avionics

REPLICATION

SERVICE

OBJECT REQUEST BROKER

1: SENSORS

GENERATE

DATA

FLIRGPS IFF

3:PUSH (EVENTS)

2: SENSOR PROXIES DEMARSHAL DATA

& PASS TO EVENT CHANNEL

3:PUSH (EVENTS)

EVENT

CHANNEL

HUD Nav
Air

Frame
WTS

4: PULL(DATA)

Domain Challenges

� Deterministic & statistical
real-time deadlines

� Periodic & aperiodic processing

� COTS and open systems

� Reusable components

� Support platform upgrades

www.cs.wustl.edu/�schmidt/TAO-
boeing.html

UC Irvine 9

ACE Overview Douglas C. Schmidt

Applying ACE to Distributed
Interactive Simulations

NETWORKNETWORK
OPERATIONSOPERATIONS

CENTERCENTER

HSMHSM

ARCHIVEARCHIVE

SERVERSERVER

AGENTAGENT

INTERACTIVEINTERACTIVE

AUDIOAUDIO//VIDEOVIDEO

AGENTAGENT ARCHITECTUREARCHITECTURE

SPCSPC

HARDWAREHARDWARE

EMBEDDEDEMBEDDED

TAOTAO

MIBMIB

AGENTAGENT

www.cs.wustl.edu/�schmidt/Words99.ps.gz

UC Irvine 10

ACE Overview Douglas C. Schmidt

Applying ACE to Satellite Communication Systems

WIDE AREA

NETWORK

SATELLITESSATELLITES
TRACKINGTRACKING
STATIONSTATION

PEERSPEERS

STATUS INFO

COMMANDS BULK DATA

TRANSFER

LOCAL AREA NETWORK

GROUND
STATION

PEERS

GATEWAY

www.cs.wustl.edu/�schmidt/TAPOS-
95.ps.gz

� Domain Challenges

– Long latency satellite links
– High reliability
– Prioritization

UC Irvine 11

ACE Overview Douglas C. Schmidt

Applying ACE to Network Management

Session Router
Module

Presentation
Module

Event Filter
Module

Event Analysis
Module

Presentation
Module

Switch Router
Module

Reactor

MD110MD110 ERICSSONERICSSON

TELECOMTELECOM

SWITCHESSWITCHES

SUPERSUPER

VISORSVISORS

MD110MD110 ERICSSONERICSSON

MD110MD110 ERICSSONERICSSON

SUPERSUPER

VISORSVISORS

SUPERSUPER

VISORSVISORS

Switch IO

Session IO

www.cs.wustl.edu/�schmidt/DSEJ-
94.ps.gz

� Domain Challenges

– Low latency
– Multi-platform
– Family of related

services

UC Irvine 12

ACE Overview Douglas C. Schmidt

Lessons Learned Building ACE

� Be patient

– Good components, frameworks,
and software architectures take
time to develop

� Reuse-in-the-large works best
when:

1. The marketplace is competitive
2. The domain is complex
3. Skilled middleware developers
4. Supportive corporate culture
5. “Reuse magnets” exist
6. Open source development

models

� The best components
come from solving real
problems

– Keep feedback loops tight
to avoid “runaway” reuse
efforts

� Produce reusable
components by
generalizing from working
applications

– i.e., don’t build
components in isolation

UC Irvine 13

ACE Overview Douglas C. Schmidt

Concluding Remarks

� Developers of real-time communication software confront recurring
challenges that are largely application-independent

– e.g., service initialization and distribution, error handling, flow
control, event demultiplexing, concurrency control,
synchronization, scheduling

� Programming directly to the underlying OS APIs is tedious,
error-prone, and non-portable

� Successful developers resolve these challenges by applying
appropriate design patterns to create communication frameworks

� Application frameworks are an effective way to achieve broad reuse
of software

UC Irvine 14

ACE Overview Douglas C. Schmidt

Obtaining ACE
� All source code for ACE is freely available

– www.cs.wustl.edu/�schmidt/ACE.html

� Mailing lists

– ace-users@cs.wustl.edu
– ace-users-request@cs.wustl.edu
– ace-announce@cs.wustl.edu
– ace-announce-request@cs.wustl.edu

� Newsgroup

– comp.soft-sys.ace

� Commercial support

– www.riverace.com

UC Irvine 15

ACE Overview Douglas C. Schmidt

Next Steps: POSIX ACE (PACE)

� PACE (POSIX ACE) is a bottom-up rework of ACE

� OS adaptation layer

– Strict POSIX.1 interface
– C, not C++
– Partitioned, not monolithic

� Corresponding to POSIX.1 sections

� Adds configurability, reduces learning curve

� The rest of ACE will ultimately migrate to PACE

– i.e., Utilities, Logging, Threads, Event Demultiplexing and
Handling, Sockets, IPC, Service Configuration, Streams, and
Memory Management

� Then, TAO will migrate to PACE

UC Irvine 16

ACE Overview Douglas C. Schmidt

PACE: Footprint Reduction

� Interface stability vs. small footprint

– PACE will not necessarily be backward compatible with ACE

� General purpose middleware vs. small footprint

– Revisit some “forgotten” techniques, such as a separate file for
each method, to minimize linking of unused code

UC Irvine 17

ACE Overview Douglas C. Schmidt

PACE: Miscellaneous

� Avoid static objects that require construction/destruction, multiple
inheritance, etc.

� Strict component hierarchy, to support subsetting

� No mandatory exception handling

� For rapid access to non-POSIX ACE platforms, PACE will be ported
to ACE’s OS adaptation layer (ACE OS)

UC Irvine 18

ACE Overview Douglas C. Schmidt

PACE Challenges
� How do we decide what to exclude from ACE?

– Knowledge of implementation concessions provides candidates,
such as backward compatibility for, e.g., Reactor and static objects

– Must support TAO

� How do we maintain two (three, with JavaACE) versions?

– Initially, host PACE on ACE to rapidly provide support for non-
POSIX platforms

– Long term, provide adapter from PACE to ACE to support existing
ACE applications

UC Irvine 19

