Active Object

An Object Behavioral Pattern for
Concurrent Programming

R. Greg Lavender Douglas C. Schmidt
G.Lavender@isode.com schmidt@cs.wustl.edu
ISODE Consortium Inc. Department of Computer Science

Austin, TX Washington University, St. Louis

An earlier version of this paper appeared in a chapter in
the book “Pattern Languages of Program Design 2" ISBN SATELLITES TRACKING
0-201-89527-7, edited by John Vlissides, Jim Coplien, and s
Norm Kerth published by Addison-Wesley, 1996.

FreS
o

Abstract ,
This paper describes the Active Object pattern, which decou- STA"; wros =)
ples method execution from method invocation in order to WIDE AREA / S
simplify synchronized access to an object that resides in its NETWORK f ro
own thread of control. The Active Object pattern allows one comanps ||/ e B NorER
or more independent threads of execution to interleave their / / i

access to data modeled as a single object. A broad class of
producer/consumer and reader/writer applications are well-
suited to this model of concurrency. This pattern is com-
monly used in distributed systems requiring multi-threaded
servers. In addition, client applications, such as window-

ing systems and network browsers, employ active objects to gTI?AOTIngDV
simplify concurrent, asynchronous network operations. PEERS

Figure 1: Communication Gateway
1 Intent

The Active Object design pattern decouples method execu- " OUr example, the Gateway, suppliers, and consumers
tion from method invocation to enhance concurrency and communicate over TCP, which is a connection-oriented pro-

simplify synchronized access to an object that resides in its ©0¢°! [4]. Therefore, the Gateway software may encounter
own thread of control. flow control from the TCP transport layer when it tries to

send data to a remote consumer. TCP uses flow control to
ensure that fast suppliers or Gateways do not produce data

2 Also Known As more rapidly than slow consumers or congested networks
can buffer and process the data.
Concurrent Object and Actor To improve end-to-end quality of service (QoS) for all

suppliers and consumers, the entire Gateway process must
not block waiting for flow control to abate over any one con-

3 Examp|e nection to a consumer. In addition, the Gateway must be
able to scale up efficiently as the number of suppliers and

To illustrate the Active Object pattern, consider the design CONSUMErs increase.

of a communication Gateway [1]. A Gateway decouples co- An effective way to prevent blocking and to improve per-
operating components and allows them to interact without formance is to introduce concurrency into the Gateway de-
having direct dependencies among each other [2]. The Gatesign. Concurrent applications allow the thread of control of
way shown in Figure 1 routes messages from one or morean objeciO that executes a method to be decoupled from the
supplier processes to one or more consumer processes in ghreads of control that invoke methods 6n Moreover, us-
distributed system [3]. ing concurrency in the gateway enables threads whose TCP

connections are flow controlled to block without impeding This decoupling is designed so the client thread appears to

the progress of threads whose TCP connections are not flowinvoke an ordinary method. This method is automatically

controlled. converted into a method request object and passed to another
thread of control, where it is converted back into a method
and executed on the object implementation.

4 Context An active object consists of the following components.

A Proxy [5, 2] represents the interface of the object and a
Clients that access objects running in separate threads of congeryan(6] provides the object's implementation. Both the

trol. Proxy and the Servant run in separate threads so that method
invocation and method execution can run concurrently: the
5 Problem proxy runs in the client thread, while the servant runs in a dif-

ferent thread. At run-time, the Proxy transforms the client’s
method invocation into Method Requestvhich is stored

in anActivation Queudy aScheduler The Scheduler runs
continuously in the same thread as the servant, dequeueing
Method Requests from the Activation Queue when they be-
come runnable and dispatching them on the Servant that im-
plements the Active Object. Clients can obtain the results of
a method'’s execution via tHeuturereturned by the Proxy.

Many applications benefit from using concurrent objects to
improve their QoSe.g, by allowing an application to handle
multiple client requests in parallel. Instead of using single-
threadegassive objectsvhich execute their methods in the
thread of control of the client that invoked the methods, con-
current objects reside in their own thread of control. How-
ever, if objects run concurrently we must synchronize access
to their methods and data if these objects are shared by mul-

tiple client threads. In the presence of this problem, three
forces arise: 7 Structure

1. Methods invoked on an object concurrently should not
block the entire process in order to prevent degrading the
QoS of other methods: For instance, if one outgoing TCP
connection to a consumer in our Gateway example becomes
blocked due to flow control, the Gateway process should still

The structure of the Active Object pattern is illustrated in the
following Booch class diagram:

be able to queue up new messages while waiting for flow —»S "’I%P:{act wete.dequeuc()
control to abate. Likewise, if other outgoing TCP connec- j P1:6§y M *? if(m,gugfld()) lﬁfcaﬁ]()
tions arenot flow controlled, they should be able to send /

Future m1() \\ 1: enqueue(new M1)

messages to their consumers independently of any blocked> Future m2() | P T TN o
connections. \\ Future m3() | AN 3}s/patch() \/ Actlvatlon/\
2. Synchronized access to shared objects should be sim- e < SMr\ i) e?iﬁ:loe ’\/
ple: Applications like the Gateway example are often hard |, , ¢ " dispatch()”, 1 degueue() }
to program if developers must explicitly use low-level syn- 10 erlqueueo .#
> : . . CLIENTS 1 ~——7 2 enqueue(Ml))
chronization mechanisms, such as acquiring and releasing] er\
mutual exclusion (mutex) locks. In general, methods that are fS ~Jd]_ = - N
subject to synchronization constraints should be serialized INVISIBLE - e;}f(z)m . /Method /! MZ\
transparently when an object is accessed by multiple client CLITE(}’VTS | m2() //1 1 " Request \ / e
threads. \lm3()/:Q guard() <\\M3 A

" 4mip S~call)
3. Applications should be designed to transpar- =7
ently leverage the parallelism available on a hard-
ware/software platform: In our Gateway example, mes- There are six key participants in the Active Object pattern:
sages destined for different consumers should be sent in par-

allel by a Gateway over different TCP connections. If the Proxy

entire Gateway is programmed to only run in a single thread

of control, however, performance bottlenecks cannot be al- ® A Proxy [2, 5] provides an interface that allows clients

leviated transparently by running the Gateway on a multi- to invoke publically accessible methods on an Ac-
Processor. tive Object using standard, strongly-typed program-

ming language features, rather than passing loosely-

typed messages between threads. When a client invokes
6 Solution a method defined by the Proxy, this triggers the con-

struction and queueing of a Method Request object onto
For each object that requires concurrent execution, decou- the Scheduler’s Activation Queue, all of which occurs
ple method invocation on the object from method execution. in the client’s thread of control.

Method Request Proxy, a Future is returned immediately to the client.
The Future reserves space for the invoked method to
store its results. When a client wants to obtain these re-
sults, it can “rendezvous” with the Future, either block-
ing or polling until the results are computed and stored
into the Future.

e A Method Request is used to passntext information
about a specific method invocation on a Proxy, such
as method parameters and code, from the Proxy to a
Scheduler running in a separate thread. An abstract
Method Request class defines an interface for execut-
ing methods of an Active Object. The interace also
containsguard methods that can be used to determine o] Dynamics
when a Method Request’'s synchronization constraints
are met. For every Active Object method offered by e following figure illustrates the three phases of collabo-
the Proxy that requires synchronized access in its Ser- otions in the Active Object pattern:
vant, the abstract Method Request class is subclassed to
create a concrete Method Request class. Instances of

these classes are created by the proxy when its methods Client Scheduler Ml
are invoked and contain the specific context informa- Proxy Agiuvealgon Servant
tion necessary to execute these method invocations and E é INVOKE Lmlg | | | |
return any results back to clients. S S CREATE METHOD lenqueue(new M1) | l 1
E g REQUEST [—— | | |
future() | I I I

. . RETURN FUTURE
Activation Queue £8 A 1 1 1
I enqueue(M1) I I
. . . . INSERT INTO

e An Activation Queue maintains a bounded buffer of S % ACTIVATION QUEUE 1)| 1 1
. . | | | |
pending Method Requests created by the Proxy. This : § D rronst | dequeue(M1) | |
queue keeps track of which Method Requests to exe- § = xECUTE | i"disp?amh(m‘) |
cute. It also decouples the client thread from the servant | all) | | |

) e
thread so the two threads can run concurrently. g \ \ Lm0
g RETURN RESULT reply_to_future() | ! |
S I I I I
Scheduler S T ! T ! \ !

e A Scheduler runs in a different thread than its clients,
managing an Activation Queue of Method Requests 1. Method Request construction and scheduling: In this
that are pending execution. A Scheduler decides which phase, the client invokes a method on the Proxy. This trig-
Method Request to dequeue next and execute on thegers the creation of a Method Request, which maintains the
Servant that implements this method. This schedul- argument bindings to the method, as well as any other bind-
ing decision is based on various criteria, suchoas ings required to execute the method and return its results.
dering e.g, the order in which methods are inserted The Proxy then passes the Method Request to the Scheduler,
into the Activation Queue, andynchronization con- which enqueues it on the Activation Queue. If the method is
straints e.g, the fulfillment of certain properties or the defined as avo-way[6], a binding to a Future is returned to
occurrence of specific events, such as space becominghe client that invoked the method. No Future is returned if a
available for new elements in a bounded data structure.method is defined asanewayi.e., it has no return values.
A Scheduler typically evaluates synchronization con-

straints by using method request guards. 2. Method execution: In this phase, the Scheduler runs

continuously in a different thread than its clients. Within this

thread, the Scheduler monitors the Activation Queue and de-

termines which Method Request(s) have become runnable,

e A Servant defines the behavior and state that is be- e.g, when their synchronization constraints are met. When a
ing modeled as an Active Object. Servants implement Method Request becomes runnable, the Scheduler dequeues
the methods defined in the Proxy and the correspond-it, binds it to the Servant, and dispatches the appropriate
ing Method Requests. A Servant method is invoked method on the Servant. When this method is called, it can
when its corresponding Method Request is executed by access/update the state of its Servant and create its result(s).
a Scheduler; thus, Servants execute in the Scheduler’s

thread of control. Servants may provide other methods 3. Corr_lpletlon: In the final phase, the resglts, it any, are
used by Method Requests to implement their guards. stored in the Future and the Scheduler continues to monitor

the Activation Queue for runnable Method Requests. After

a two-way method completes, clients can retrieve its results

by rendezvousing with the Future. In general, any clients

e A Future [7, 8] allows a client to obtain the results of that rendezvous with the Future can obtain its results. The
method invocations after the Servant finishes executing Method Request and Future are deleted or garbage collected
the method. When a client invokes methods through a when they are no longer referenced.

Servant

Future

9 Implementation /I Predicates.

bool empty_i (void) const;
This section explains the steps involved in building a concur- Pe0! full_i (void) const;
rent application using the Active Object pattern. The appli- private:
cation implemented using the Active Object patternis a por- // Internal Queue representation, e.g., a
tion of the Gateway from Section 3. Figure 2 illustrates the ,, // crevlar aray or a linked list, etc.

structure and participants in this example. The example in~’

Theput i andget _.i methods implement the insertion
and removal operations on the queue, respectively. In ad-

It ", . . .

- —S$ ”3 (Tr?qp:{act_queue_dequeue() dition, the servant defines twpredicates empty .i and
//1\/[\I: s / MQ if (m.guard()) m.call() full i , that distinguish three internal states: (1) empty, (2)
/ Q_Proxy (Scheduler| -~ full, and (3) neither empty nor full. These predicates are used
\ pulmse) | dispatch() /—-3:dispach) ~"~__==~ " in the implementation of the Method Requgstard meth-

~ Future get() ! Activation ; ;

R [\enqueuf(i < Queue | ods, which allow the Scheduler to enforce run-time synchro-

" (new Put 7 1: enqueue(Put) > ————| njzation constraints that dictate the order in whimlt _i
) 7~ enqueue()
vistoLE ' andget i method lled
0 o ~ get _i methods are called on a Servant.

1 deqliege() y

CLIENTS (\ 1;,16 \(\ /"/ Note how theMQServant class is designed so that syn-
INVISIBLE) Servant) TSN put \ chronization mechanisms remain external to the Servant.
cmnts | i/ /ll\ltetll:gs(i(/\/\“) For instance, in our Gateway example, the methods in the

(\ get)) : (1_1 ! gird() ! < Get MQServant class do not include any code that imple-
SO Aput) N el [/ _____’ ments synchronization. This class only provides methods

T that implement the Servant’s functionality and check its in-

))) ternal state. This design avoids tiwheritance anomaly

Figure 2: Implementing a Message Queue as an Active Ob-110 11, 12, 13] problem, which inhibits the reuse of Servant
ject forConsumer Handler s implementations if subclasses require different synchroniza-

. . tion policies. Thus, a change to the synchronization con-
this section uses reusable components from the ACE frame-gyaints of the Active Object need not affect its servant im-
work [9]. ACE provides a rich set of reusable C++ wrappers plementation.

and framework components that perform common commu-

nication software tasks across a wide range of OS platforms.2. Implement the Proxy and Method Requests: The
Proxy provides clients with an interface to the Servant's

1. Implement the Servant: A Servant defines the behav- o045, For each method invocation by a client, the Proxy

ior and state that is_being modeled as an Active Object. T.hecreates a Method Request. A Method Request is an abstrac-
methods a Servant implements are accessible by clients via 3ion for the contest of a method. This context typically in-

Proxy. In addition, a Servant may contain other methods thatcludes the method parameters, a binding to the Servant the

Method Requests can use to implement guards that allow gy a04 will be applied to, a Future for the result, and the
Scheduler to evaluate run-time synchronization constraints.Code for the Method Requestall method

These constraints determine the order in which a Scheduler | " . Gateway example, thdQProxy provides an ab-

dispatches Method Requests. . stract interface to th1QServant defined in Step 1. This

In our Gateway example, the Servant' is a message que“‘?‘nessage queue is used bgansumer Handler to queue
that buffeFrs mesrs]ages that are pend;}ng o(lgwery o Con'messages for delivery to consumers, as shown in Figure 2. In
Sumers. or eac rgmote consumer, t_ erefoasumer addition, theMQProxy is a factory that constructs instances
Handler that contains a TCP connection to the consumer of Method Requests and passes them to a Scheduler, which

process. In addition, é:onsumer' Handler C‘”.“a'”s a ueues them for subsequent execution in a separate thread.
message queue model as an Active Object and implemente he C++ implementation d¥QProxy is shown below:
with anMQServant . EachConsumer Handler 's Ac- '

tive Object message gqueue stores messages passed from suflass MQ_Proxy
plier to the Gateway while they are waiting to be sent to their {

Y WA

: : ; public:
remoFe consumer. The following class provides an interface /I Bound the message queue size.
for this Servant: enum { MAX_SIZE = 100 };
class MQ_Servant MQ_Proxy (size_t size = MAX_SIZE)
. scheduler_ (new MQ_Scheduler (size)),
public: servant_ (new MQ_Servant (size)) {}

MQ_Servant (size_t mq_size);
/I Schedule <put> to execute on the active object.

/I Message queue implementation operations. void put (const Message &m) {

void put_i (const Message &msg); Method_Request *method_request =

Message get_i (void);

LThis context is often called elosure

new Put (servant_, m); /I Synchronization constraint: only allow

scheduler_->enqueue (method_request); /I <put_i> calls when the queue is not full.

} return Iservant_->full_i ();
}

/I Return a Message_Future as the “future”
/I result of an asynchronous <get> virtual void call (void) {
/I method on the active object. /I Insert message into the servant.
Message_Future get (void) { servant_->put_i (arg_);

Message_Future result; }

Method_Request *method_request = private:

new Get (servant_, result); MQ_Servant *servant_;

scheduler_->enqueue (method_request); Message arg_;

return result; ¥
}

Note how theguard method uses th&QServant 's
/... empty() and full) predicate implementations ... full _i predicate toimplementa synchronization constraint
protected: that allows the Scheduler to determine whenRé method
/I The Servant that implements the request can execute. Wheat method request can be ex-
/r\//| Acgve O?JECt metthf’ds- ecuted, the Scheduler invokes @all hook method. This
ervant *servant_; . . L

Q- - call hook uses its run-time binding to thdQServant
II' A scheduler for the Message Queue. to invoke the Servant’put _i method. This method is ex-
MQ_Scheduler *scheduler_; ecuted in the context of that Servant and does not require

any explicit serialization mechanisms since the Scheduler
enforces all the necessary synchronization constraints via the
ethod Requegjuard s.

The Proxy also transforms thget method into an in-
stance of thé&et class, which is defined as follows:

Each method of arMQProxy transforms its invoca-
tion into a Method Request and passes the request to itV
MQScheduler , which enqueues it for subsequent acti-
vation. A Method _Request base class defines virtual
guard andcall methods that are used by its Scheduler class Get : public Method_Request
to determine if a Method Request can be executed and to{ubnc,

execute the Method Request on its Servant, respectively, as Get (MQ_Servant *rep,

follows: const Message_Future &f)
. servant_ (rep), result_ (f) {}

class Method_Request bool guard (void) const {

public: /I Synchronization constraint:

/I Evaluate the synchronization constraint. /" cannot call a <get_i> method until

virtual bool guard (void) const = O; /I the queue is not empty.
return !servant_->empty_i ();

/I Implement the method. }

} virtual void call (void) = 0; virtual void call (void) {

/I Bind the dequeued message to the

. . . /I future result object.
The methods in this class must be defined by subclasses, one result_ = servant_->get_i ();

subclass for each method defined in the Proxy. The ratio- }

nale for defining these two methods is to provide Sched- private:

ulers with a uniform interface to evaluate and execute con- MQ_Servant *servant_;
creteMethod _Request s. Thus, Schedulers can be decou-
pled from specific knowledge of how to evaluate the syn-
chronization constraints or trigger the execution of concrete y;
Method _Request .

For instance, when a client invokes that method on
the Proxy in our Gatway example, this method is trans-
formed into an instance of theut subclass, which inher-
its from Method _Request and contains a pointer to the
MQServant , as follows:

/I Message_Future result value.
Message_Future result_;

For every two-way method in the Proxy that returns a
value, such as thget _i method in our Gateway example, a
Message _Future is returned to the client thread that calls
it, as shown in implementation Step 4 below. The client may
choose to evaluate thidessage _Future ’s value immedi-
ately, in which case the client blocks until the method request

class Put : public Method_Request is executed by the scheduler. Conversely, the evaluation of
{ bic a return result from a method invocation on an Active Ob-
PUBLE (MO Servant *rep. ject can be deferred, in which case the client thread and the
Message arg) thread executing the method can proceed asynchronously.
+ servant_ (rep), arg_ (arg) { 3. Implement the Activation Queue: Each Method Re-
virtual bool guard (void) const { quest is enqueued on an Activation Queue. This is typically

implemented as a thread-safe bounded-buffer that is sharedl. Implement the Scheduler: A Scheduler maintains the
between the client threads and the thread where the SchedActivation Queue and executes pending Method Requests
uler and Servant run. An Activation Queue also provides an whose synchronization constraints are met. The public in-
iterator that allows the Scheduler to traverse its elements interface of a Scheduler typically provides one method for

accordance with the Iterator pattern [5].
The

ing C++ code illustrates how th&ctivation

used in the Gateway:

follow-
Queue is

class Activation_Queue

{
public:
/I Block for an "infinite" amount of time
/I waiting for <enqueue> and <dequeue> methods
/I to complete.
const int INFINITE = -1,

/I Define a "trait".
typedef Activation_Queue_lterator
iterator;

/I Constructor creates the queue with the

/I specified high water mark that determines
/I its capacity.

Activation_Queue (size_t high_water_mark);

/I Insert <method_request> into the queue, waiting

/I up to <msec_timeout> amount of time for space

/I to become available in the gqueue.

void enqueue (Method_Request *method_request,
long msec_timeout = INFINITE);

/I Remove <method_request> from the queue, waiting

/I up to <msec_timeout> amount of time for a

/I <method_request> to appear in the queue.

void dequeue (Method_Request *method_request,
long msec_timeout = INFINITE);

private:
/I Synchronization mechanisms, e.g., condition
/I variables and mutexes, and the queue
/I implementation, e.g., an array or a linked
I list, go here.
...

3

Theenqueue anddequeue methods provide a “bounded-

buffer producer/consumer” concurrency model that al- monitors itsActivation
lows multiple threads to simultaneously insert and remove lecting a Method _Request
Method _Request s without corrupting the internal state of
_Queue. One or more client threads play Method _Request is then executed by invoking itsall

anActivation
the role of producers, enqueueidgthod _Request sviaa

the Proxy to enqueue Method Requests into the Activation
Queue and another method that dispatches method requests
on the Servant. These methods run in separate threagls,
the Proxy runs in different threads than the Scheduler and
Servant, which run in the same thread.

In our Gateway example, we define MfQScheduler
class, as follows:

class MQ_Scheduler

{

public:
/I Initialize the Activation_Queue to have the
/I specified capacity and make the Scheduler
/I run in its own thread of control.
MQ_Scheduler (size_t high_water_mark);

/I ... Other constructors/destructors, etc.,

/I Insert the Method Request into

/I the Activation_Queue. This method

/I runs in the thread of its client, i.e.,

/I in the Proxy's thread.

void enqueue (Method_Request *method_request) {
act_queue_->enqueue (method_request);

}

/I Dispatch the Method Requests on their Servant
/I in the Scheduler’s thread.
virtual void dispatch (void);

protected:
/I Queue of pending Method_Requests.
Activation_Queue *act_queue_;

/I Entry point into the new thread.

static void *svc_run (void *arg);
h

The Scheduler executes tisspatch method in a dif-
ferent thread of control than its client threads. These client
threads make the Proxy enqueMethod Request s in
the Scheduler'sActivation _Queue. The Scheduler
_Queue in its own thread, se-
whose guard evaluates to
“true,” i.e., whose synchronization constraints are met. This

hook method. Note that multiple client threads can share

Proxy. The Scheduler thread plays the role of consumer, de-the same Proxy. The Proxy methods need not be thread-

gueueingMethod _Request s when theiguard s evaluate
to “true” and invoking theircall
methods.

The Activation

fore, the Scheduler thread will block fonsec_timeout
amount of time when trying to remoWethod _Requests
from an emptyActivation _Queue. Likewise, client
threads will block for up tansec_timeout amount of time
when they try to insert onto a fulctivation _Queue,
i.e, aqueue whose curretethod _Request count equals
its high water mark. If amnqueue method times out, con-

trol returns to the client thread and the method is not exe-y

cuted.

hooks to execute Servant

_Queue is designed as a bounded-
buffer using condition variables and mutexes [14]. There- spawns a new thread of control to run MQScheduler

safe since the Scheduler and Activation Queue handle con-
currency control.

For instance, in our Gateway example, the constructor of
MQScheduler initializes theActivation _Queue and
'S

dispatch method, as follows:

MQ_Scheduler (size_t high_water_mark)
: act_queue_ (new Activation_Queue
(high_water_mark))

/I Spawn a separate thread to dispatch

/I method requests.

Thread_Manager::instance ()->spawn (svc_run,
this);

This new thread executes thec _run static method, which
is simply an adapter that calls thiispatch method, as
follows:

void *
MQ_Scheduler::svc_run (void *args)

MQ_Scheduler *this_obj =
reinterpret_cast<MQ_Scheduler *> (args);

this_obj->dispatch ();
}

Thedispatch method determines the order thait and

Get method requests are processed based on the underly-

ing MQServant predicateempty _i andfull _i . These

predicates reflect the state of the Servant, such as whether

the message queue is empty, full, or neither. By evaluating
these predicate constraints via the Method Reqgeatd

5. Determine rendezvous and return value policies: The
rendezvous policy determines how clients obtain return val-
ues from methods invoked on active objects. A rendezvous
policy is required since Active Object servants do not execute
in the same thread as clients that invoke their methods. Im-
plementations of the Active Object pattern typically choose
from the following rendezvous and return value policies:

1. Synchronous waiting- Block the client thread syn-
chronously in the Proxy until the Method Request is
dispatched by the Scheduler and the result is computed
and stored in the future.

2. Synchronous timed wait Block only for a bounded
amount of time and fail the result of a two-way call
is not returned within the allocated time period. If the
timeout s zero the client thread “polls.k., it returns to
the caller without queueing the Method Request if the

Scheduler cannot dispatch it immediately.

methods, the Scheduler can ensure fair shared access to the

MQServant , as follows:

virtual void
MQ_Scheduler::dispatch (void)
{

/I Iterate continuously in a
/I separate thread.
for (i) {

Activation_Queue::iterator i;

/I The iterator’'s <begin> call blocks
/I when the <Activation_Queue> is empty.
for (i = act_queue_->begin ();
i = act_queue_->end ();
i++) {
/I Select a Method Request ‘mr’
/I whose guard evaluates to true.
Method_Request *mr = *i;

if (mr->guard ()) {
/I Remove <mr> from the queue first
/I in case <call> throws an exception.
act_queue_->dequeue (mr);
mr->call ();
delete mr;

In our Gateway example, thdispatch implementation

of theMQScheduler class continuously executes the next
Method _Request whoseguard evaluates to true. Sched-
uler implementations can be more sophisticated, however,

and may contain variables that represent the synchronization

state of the Servant. For example, to implement a multiple-
readers/single-writer synchronization policy several counter
variables can be stored in the Scheduler to keep track of the
number of read and write requests. The Scheduler can use
these counts to determine when a single writer can proceed,
that is, when the current number of readers is 0 and no other
writer is currently running. Note that the counter values are
independent of the Servant's state since they are only used by
the Scheduler to enforce the correct synchronization policy
on behalf of the Servant.

3. Asynchronous- Queue the Method Request and return
control to the client thread immediately. If the method
is a two-way call that produces a result then some form
of Future mechanism must be used to provide synchro-
nized access to the value (or to the error status if the

method call fails).

The Future construct allows two-way asynchronous invo-
cations that return a value to the client. When a Servant com-
pletes the method execution, it acquires a write lock on the
Future and updates the Future with a result value. Any client
threads that are currently blocked waiting for the result value
are awakened and may access the result value concurrently.
A Future object can be garbage collected after the writer and
all readers no longer reference the Future. In languages like
C++, which do not support garbage collection natively, the
Future objects can be reclaimed when they are no longer in
use via idioms like Counter Pointer [2].

In our Gateway example, tiget method invoked on the
MQProxy ultimately results in theGet::call method
being dispatched by thdQScheduler , as shown in Step
2 above. Since thelQProxy get method returns a value, a
Message _Future is returned when the client calls it. The
Message _Future is defined as follows:

class Message Future

public:

/I Copy constructor binds <this> and <f> to the

/I same <Message Future_Rep>, which is created if
/I necessary.

Message_Future (const Message_ Future &f);

/I Constructor that initializes <Message_Future> to
/I point to <Message> <m> immediately.

Message_Future (const Message &m);

/I Assignment operator that binds <this> and <f>
/I to the same <Message_ Future_Rep>, which is
/I created if necessary.

void operator= (const Message Future &f);

/I ... other constructors/destructors, etc.,

/I Type conversion, which blocks

/I waiting to obtain the result of the
/I asynchronous method invocation
operator Message ()

k

- ' Routing
Table
The Message _Future is implemented using the Counted

Pointer idiom [2]. This idiom simplifies memory manage- \ 2: find route (msg)
ment for dynamically allocated C++ objects by using a refer-
ence countetflessage _Future _Rep bodythatis accessed
solely through thé/lessage _Future handle

In general, a client can obtain tiMessage result value
from aMessage _Future objectin either of the followings
ways: \ |

3‘: put (msg)

|
|
|
|
|
‘.

. .) OUTGOING
e Immediate evaluation: The client may choose to MESSAGES

evaluate theMessage _Future 's value immediately. For
example, a Gatewagonsumer Handler running in a
separate thread may choose to block until new messages ar-
rive from suppliers, as follows:

MQ_Proxy mg; SUPPLIER SUPPLIER
.. . L
Figure 3: Communication Gateway
/I Conversion of Message_Future from the
/I get() method into a Message causes the

/I thread to block until a message is Handler s, each of which is responsible for delivering mes-
/i available. _ sages to its remote consumer over a separate TCP connec-
Message msg = mq.get (); .

tion.
/I Transmit message to the consumer. To handle flow control over various TCP connections,
send (msg); eachConsumer Handler contains aMessage Queue

implemented using the Active Object described in Section 9.
« Deferred evaluation: The evaluation of a return re- 1heConsumer Handler class is defined as follows:

sult from a method invocation on an Active Object can class Consumer_Handler

be deferred. For example, if messages are not avail-{

able immediately, &Consumer Handler can store the p“té'c‘fnsumer_Handler (void):
Message _Future return value frommqgand perform other

“bookkeeping” tasks, such as exchangiepp-alive mes- /I Put the message into the queue.
sagesto ensure its consumer is still active. When the V°'r?]e‘;g;g(gogateu'\gessl"j‘tg?mgs‘?fg) {
Consumer Handler is done with these tasks it can block } - - '

until a message arrives from suppliers, as follows: vat
private:
/I Proxy to the Active Object.

/I Obtain a future (does not block the client). MQ_Proxy message_queue_;

Message_Future future = mq.get ();

/I Connection to the remote consumer.

/I Do something else here... SOCK_Stream connection_:

/I Evaluate future in the conversion operator;
/I may block if the result is not available yet.
Message msg = Message (future); ¥

/I Entry point into the new thread.
static void *svc_run (void *arg);

Supplier Handler s running in their

10 Examp|e Resolved own threadput messages into the appropri@ensumer
Handler ’'s Message Queue, as follows:

Internally, the Gateway software contaispplier and Supplier_Handler:route_message (const Message &msg)
Consumer Handler s that act as local proxies [2, 5] for { _
remote suppliers and consumers, respectively. As shown in // Locate the appropriate consumer based on the
Fi 35 l Handl . f /I address information in the Message.

igure 3, Supplier Handlers receive messages from Consumer_Handler *ch =
remote suppliers, inspect address fields in the messages, and routing_table_.find (msg.address ());
use the address as a key intRauting Table thatiden- _

e . . /I Put the Message into the Consumer Handler's queue.
tifies which remote consumer should receive the message. cp.>put (msg);

The Routing Table maintains a map offonsumer I3

To process the messages placed into its message queue,

each Consumer Handler spawns a separate thread of
control in its constructor, as follows:

Consumer_Handler::Consumer_Handler (void)
{
/I Spawn a separate thread to get messages
/I from the message queue and send them to
/I the consumer.
Thread_Manager::instance ()->spawn (svc_run,
this);
}

This new thread executes th®/c _run method, which
gets the messages placed into the queueSogplier
Handler threads and sends them to the consumer over the
TCP connection, as follows:

void *
Consumer_Handler::svc_run (void *args)
{
Consumer_Handler *this_obj =
reinterpret_cast<Consumer_Handler *> (args);

for () {
/I Conversion of Message_Future from the
/I get() method into a Message causes the
/I thread to block until a message is
/I available.
Message msg = this_obj->message_queue_.get ();

/I Transmit message to the consumer.
this_obj->connection_.send (msg);
}
}

act_queue_->enqueue (method_request);

}

Message_Future get (void) {
Message_Future result;

Method_Request *method_request =
/I The <MQ_Scheduler> is the servant.
new Get (this, result);
act_queue_->enqueue (method_request);
return result;

}

...

private:
/I Message queue servant operations.
void put_i (const Message &msg);
Message get_i (void);

/I Predicates.
bool empty_i (void) const;
bool full_i (void) const;

Activation_Queue *act_queue_;
...

¥

By centralizing where Method Requests are generated, the
pattern implementation can be simplified since there are
fewer components. The drawback, of course, is that the
Scheduler must know the type of the Servant and Proxy,
which makes it hard to reuse a Scheduler for different types
of Active Objects.

Message passing: A further refinement of the integrated
Scheduler variant is to remove the Proxy and Servant alto-

Since the message queue is implemented as an Ac-gether and use direchessage passingetween the client

tive Object thesend operation can block in any given
Consumer _Handler object without affecting the quality
of service of otheConsumer _Handler s.

11 Variants

The following are variations of the Active Object pattern.

Integrated Scheduler: To reduce the number of compo-

nents needed to implement the Active Object pattern, the
roles of the Proxy and Servant are often integrated into the
Scheduler component, though servants still execute in a dif-
ferent thread than the proxies. Moreover, the transformation
of the method call into a Method Request can also be inte-
grated into the Scheduler. For instance, the following is an-

thread and the Scheduler thread, as follows:

class Scheduler
public:
Scheduler (size_t size)
: act_queue_ (new Activation_Queue (size))

¢

/I ... other constructors/destructors, etc.,

/I Enqueue a Message Request in the thread of

/I the client.

void enqueue (Message_Request *message_request) {
act_queue_->enqueue (message_request);

}

/I Dispatch Message Requests in the thread of
/I the Scheduler.
virtual void dispatch (void) {

Message_Request *mr;

other way to implement the Message Queue example using

an integrated Scheduler:

class MQ_Scheduler
public:
MQ_Scheduler (size_t size)
1 act_queue_ (new Activation_Queue (size))

i

/I ... other constructors/destructors, etc.,
void put (const Message &msg) {
Method_Request *method_request =
/I The <MQ_Scheduler> is the servant.
new Put (this, msg);

/I Block waiting for next request to arrive.
while (act_queue_->dequeue (mr)) {
/I Process the message request <mr>.
}
}
}

protected:
Activation_Queue *act_queue_;
...

h

In this design, there is no Proxy, so clients sim-
ply create an appropriate type dflessage _Request

and call enqueue , which inserts the request into the // Obtain a future (does not block the client).
Activation _Queue. Likewise, there is no Servant, so Future<Message> future = mq.get ();
thedispatch method running in th&cheduler ’sthread
simply dequeues the neiXlessage Request and pro-
cesses the request according toits type. /I Evaluate future in the conversion operator;
. . . /I may block if the result is not available yet.
I.n genera!, itis easier to develop amessage passing mechyessage msg = Message (future);
anism than it is to develop an Active Object since there are
fewer components to develop. However, message passin
is typically more tedious and error-prone since application
developers are responsible for programming the Proxy and
Servant logic, rather than letting the Active Object develop-
ers write this code.

/I Do something else here...

Distributed Active Object: In this variant, a distribution
boundary exists between the Proxy and the Scheduler, rather
than a threading boundary, as with the conventional Ac-
tive Object pattern. Therefore, the client-side Proxy plays
the role of astuly which is responsible for marshaling the
Polymorphic futures: A Polymorphic Future [15] allows ~ Method parameters into a Method Request format that can
parameterization of the eventual result type represented byP€ transmitted across a network and executed by a Servantin
the Future and enforces the necessary synchronization. Ir Séparate address space. In addition, this variant also typ-
particular, a Polymorphic Future result value provides write- ically introduces the notion of a server-siskeleton which
once, read-many synchronization. Whether a client blocks Performs demarshaling on the Method Request parameters
on a future depends on whether or not a result value hasPefore they are passed to a Servant method in the server.

been computed. Hence, a Polymorphic Future is partly @ Thread pool: A thread poolis a generalization of Ac-
reader-writer condition synchronization pattern and partly a tive Object that supports multiple Servants per Active Ob-

producer-consumer synchronization pattern. ject. These Servants can offer the same services to increase
The following class illustrates a polymorphic future tem- throughput and responsiveness. Every Servant runs in its
plate in C++: own thread and actively ask the Scheduler to assign a new
request when it is ready with its current job. The Scheduler
template <class T> then assigns a new job as soon as one is available.

class Future

/I This class implements a ‘single write, multiple

Il read’ pattern that can be used to return results 12 Known Uses
/I from asynchronous method invocations.

pu?,"céonstmctor_ The following are specific known uses of the Active Object
Future (void); pattern:

/I Copy constructor that binds <this> and <r> to CORBA ORBs: The Active Object pattern has been used
{i the same <Future> representation to implement concurrent ORB middleware frameworks, such
uture (const Future<T> &n); as CORBA [6] and DCOM [16]. For instance, the TAO
/I Destructor. ORB [17] implements the Active Object pattern for its de-

“Future (void); fault concurrency model [18]. In this design, CORBA

/I Assignment operator that binds <this> and stubs correspond to the Active Object pattern’s Proxies,

Il <r> to the same <Future>. which transform remote operation invocations into CORBA

void operator = (const Future<T> &r); Request s. The TAO ORB Core'Reactor is the Sched-

/| Cancel a <Future>. Put the future into its uler and the socket queues in the ORB Core correspondto the

// initial state. Returns O on success and -1 Activation Queues. Developers create Servants that execute

/I on failure. the methods in the context of the server. Clients can either

int cancel (void); make synchronous two-way invocations, which block the

Il Type conversion, which obtains the result calling thread until the operation returns, or they can make

/I of the asynchronous method invocation. asynchronous method invocations, which return a Poller fu-

j1 Ui Diock forever untl the result is ture object that can be evaluated at a later point [19].

operator T () ACE Framework: Reusable implementations of the

/I Check if the result is available. Method Request , Activation Queue , andFuture

int ready (void); components in the Active Object pattern are provided in the
private: ACE framework [9]. These components have been used to

Future_Rep<T> *future_rep_; implement many production distributed systems.

/I Future representation implemented using
/I the Counted Pointer idiom.

%

Siemens MedCom: The Active Object pattern is used in

the Siemens MedCom framework, which provides a black-
box component-oriented framework for electronic medical
A client can use a polymorphic future as follows: systems [20]. MedCom employ the Active Object pattern

10

in conjunction with the Command Processor pattern to sim- Complicated debugging: It may be difficult to debug pro-
plify client windowing applications that access patient infor- grams containing active objects due to the concurrency and
mation on various medical servers. non-determinism of the Scheduler. Moreover, many debug-

. . r n rt concurren lication ly.
Siemens Call Center management system:This system gers do not support concurrent applications adequately

uses the thread pool variant of the Active Object pattern.

Actors: The Active Object pattern has been used toimple- 14 See Also
ment Actors [21]. An Actor contains a set of instance vari-
ables and behaviors that react to messages sent to an Actof he Monitor pattern ensures that only one method at a time
by other Actors. Messages sent to an Actor are queued in th@xecutes within a Passive ObjeCt, regardless of the number of
Actor’s message queue. In the Actor mode|, messages aréhreads that invoke this ObjeCt,S methods ConCUrrentIy. Mon-
executed in order of arrival by the “current” behavior. Each itors are generally more efficient than Active Objects since
behavior nominates a replacement behavior to execute thethey incur less context switching and data movement over-
next message, possib]y before the nominating behavior haé’]ead. However, it is harder to add a distribution bOUndary
Comp|eted execution. Variations on the basic Actor model between client and server threads USing the Monitor pattern.
allow messages in the message queue to be executed based The Reactor pattern [24] is responsible for demultiplexing
on criteria other than arrival order [22]. When the Active Ob- and dispatching of multiple event handlers that are triggered
ject pattern is used to implement Actors, the Scheduler cor- When it is possible to initiate an operation without blocking.
responds to the Actor Schedu”ng mechanism, Method Re_ThiS pattern is often used in lieu of the Active Object pattern
quest correspond to the behaviors defined for an Actor, andto schedule callback operations to passive objects. It can
the Servant is the set of instance variables that collectively @lso be used in conjunction of the Active Object pattern to
represent the state of an Actor [23] The Proxy is s|mp|y a form the Half-SynC/HaIf-Async pattern described in the next
strongly-typed mechanism used to pass a message to an Addaragraph.
tor. The Half-Sync/Half-Async pattern [25] is an architectural
pattern that decouples synchronous I/O from asynchronous
I/0 in a system to simplify concurrent programming effort
13 Consequences without degrading execution efficiency. This pattern typi-
cally uses the Active Object pattern to implement the Syn-
The Active Object pattern provides the following benefits: chronous task layer, the Reactor pattern [24] to implement

L . the Asynchronous task layer, and a Producer/Consumer pat-
Enhance application concurrency and simplify synchro- y Y P

o X . tern to implement the Queueing layer.
nization complexity: Concurrency is enhanced by allow- S
. . . The Command Processor pattern [2] is similar to the Ac-
ing client threads and asynchronous method executions to,. : . . o
. o oo Utive Object pattern. Its intent is to separate the issuing of
run simultaneously. Synchronization complexity is simpli-

fied by the Scheduler, which evaluates synchronization Con_requests from their execution. A command processor, which
y ' y corresponds to the scheduler, maintains pending service re-

stralnt§ to guarantee serialized access to Servants, dEpend'nguests, which are implemented as Commands [5]. These are
on their state. . .
executed on suppliers, which correspond to servants. The
Transparently leverage available parallelism: If the Command Processor pattern does not focus on concurrency,
hardware and software platforms support multiple CPUs ef- however, and clients, the command processor, and suppli-
ficiently, this pattern can allow multiple active objects to ex- ers reside in the same thread of control. Thus, there are no
ecute in parallel, subject to their synchronization constraints. proxies that represent the servants to clients. Clients create
commands and pass them directly to the command processor.
The Broker pattern [2] has many of the same components
as the Active Object pattern. In particular, clients access Bro-
kers via Proxies and servers implement remote objects via
Servants. The primary difference between the Broker pat-
However, the Active Object pattern has the following liabil- ternand the Active Object pattern is that there’s a distribution
ities: boundary between proxies and servants in the Broker pattern
, vs. a threading boundary between proxies and servants in the
Pe.rformance overhegd: Depending on how the Scheduler aqtive Object pattern.
is |mplefme.ntede.g, in user-space vs. kernel-space, con- 1o Mutual Exclusion (Mutex) pattern [26] is a simple
text switching, synchronization, and data movement OVer- |,cying pattern that is often used in lieu of Active Objects

head may occur when scheduling and executing active objecten jmplementing concurrent Passive Objects, also known
method invocations. In general, the Active Object pattern is as Monitors. The Mutex pattern can occur in slightly differ-

most applicable on relatively coarse-grained objects. In con- 4 ¢ forms, such as a spin lock or a semaphore. The Mutex

trasth if thefobjgcts are very fine-grained, the performance , erm can have various semantics, such as recursive mu-
overhead of active objects can be excessive, compared wWithqyag and priority inheritance mutexes.

other concurrency patterns such as Monitors.

Method execution order can differ from method invoca-
tionorder: Methods invoked asynchronously are executed
based on their synchronization constraints, which may differ
from their invocation order.

11

Acknowledgements [16] D. Box, Essential COM Addison-Wesley, Reading, MA,

1997.
The genesis for the Active Object pattern originated with [17] D.C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Greg Lavender. Thanks to Frank Buschmann, Hans Rohn- Performance of Real-Time Object Request Broke3gm-
ert, Martin Botzler, Michael Stal, Christa Schwanninger, and puter Communications/ol. 21, pp. 294-324, Apr. 1998.
Greg Gallant for extensive comments that greatly improved [18] D. C. Schmidt, “Evaluating Architectures for Multi-threaded
the form and content of this version of the pattern descrip- CORBA Object Request BrokersCommunications of the
tion. ACM special issue on CORBxol. 41, Oct. 1998.

[19] Object Management Groug;ORBA Messaging Specifica-
tion, OMG Document orbos/98-05-05 ed., May 1998.

References [20] P. Jain, S. Widoff, and D. C. Schmidt, “The Design and Per-
e) . formance of MedJava — Experience Developing Performance-
[1] D. C. Schmidt, “Acceptor and Connector: Design Patterns for Sensitive Distributed Applications with JavaEE/BCS Dis-

Initializing Communication Services,” iRattern Languages

of Program Desigr{R. Martin, F. Buschmann, and D. Riehle, L

eds.), Reading, MA: Addison-Wesley, 1997. [21] G. Agha,A Model of Concurrent Computation in Distributed
[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and SystemsMIT Press, 1986.

M. Stal, Pattern-Oriented Software Architecture - A System of [22] C. Tomlinson and V. Singh, “Inheritance and Synchronization
Patterns Wiley and Sons, 1996. with Enabled-Sets,” iDOPSLA'89 Conference Proceedings

[3] D.C. Schmidt, “A Family of Design Patterns for Application- pp. 103-112, Oct. 1989.
level Gateways,The Theory and Practice of Object Systems [23] D. Kafura, M. Mukherji, and G. Lavender, “ACT++: A Class

tributed Systems Engineering Journ998.

(Special Issue on Patterns and Pattern Languages). 2, Library for Concurrent Programming in C++ using Actors,”

no. 1, 1996. Journal of Object-Oriented Programmingp. 47-56, Octo-
[4] W. R. StevensTCP/IP lllustrated, Volume .1Reading, Mas- ber 1992.

sachusetts: Addison Wesley, 1993. [24] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
[5] E.Gamma, R. Helm, R. Johnson, and J. Vlissidkssign Pat- Concurrent Event Demultiplexing and Event Handler Dis-

terns: Elements of Reusable Object-Oriented SoftwRead- patching,” inPattern Languages of Program Desigd. O.

ing, MA: Addison-Wesley, 1995. Coplien and D. C. Schmidt, eds.), pp. 529-545, Reading, MA:

[6] Object Management Groupfhe Common Object Request Addlson-We.sIey, 1995.
Broker: Architecture and SpecificatipB.2 ed., Feb. 1998. [25] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
[7] R. H. Halstead, Jr., “Multilisp: A Language for Concur- Architectural Pattern for Efficient and Well-structured Con-

rent Symbolic ComputationACM Trans. Programming Lan- current I/0,” in Proceedings of the™! Annual Conference
guages and Systemsl. 7, pp. 501-538, Oct. 1985. on the Pattern Languages of Progranislonticello, lllinois),

. 1-10, September 1995.
[8] B. Liskov and L. Shrira, “Promises: Linguistic Support for PP .p . -,
Efficient Asynchronous Procedure Calls in Distributed Sys- [26] Paul E. McKinney, “A Pattern Language for Parallelizing Ex-

tems,” inProceedings of the SIGPLAN’88 Conference on Pro- isting Programs on Shared Memory MultiprocessorsPait-

gramming Language Design and Implementatipp. 260— tern Languages of Program Desidd. O. Coplien, J. Vlis-

267, June 1988. sides, and N. Kerth, eds.), Reading, MA: Addison-Wesley,
1996.

[9] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” ifProceedings of the
6" USENIX C++ Technical Conferenc¢Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[10] P. America, “Inheritance and Subtyping in a Parallel Object-
Oriented Language,” iECOOP’87 Conference Proceedings
pp. 234-242, Springer-Verlag, 1987.

[11] D.G.Kafuraand K. H. Lee, “Inheritance in Actor-Based Con-
current Object-Oriented Languages,” HCOOP’89 Confer-
ence Proceedingpp. 131-145, Cambridge University Press,
1989.

[12] S. Matsuoka, K. Wakita, and A. Yonezawa, “Analysis of
Inheritance Anomaly in Concurrent Object-Oriented Lan-
guages,O0OPS Messenget991.

[13] M. Papathomas, “Concurrency Issues in Object-Oriented
Languages,” irDbject Oriented Developme(. Tsichritzis,
ed.), pp. 207-245, Centre Universitaire D’'Informatique, Uni-
versity of Geneva, 1989.

[14] W. R. StevensNIX Network Programming, Second Edition
Englewood Cliffs, NJ: Prentice Hall, 1997.

[15] R. G. Lavender and D. G. Kafura, “A Polymorphic Fu-
ture and First-Class Function Type for Concurrent Object-
Oriented Programming in C++,” irForthcoming 1995.
http://www.cs.utexas.edu/users/lavender/papers/futures.ps.

12

