Active Object

an Object Behaviora Pattern for
Concurrent Programming

R. Greg Lavender
G.Lavender @isode.com
ISODE Consortium Inc.

Austin, TX

An earlier version of this paper appeared in a chapter in
the book “Pattern Languages of Program Design 2" I1SBN
0-201-89527-7, edited by John Vlissides, Jim Coplien, and
Norm Kerth published by Addison-Wesley, 1996.

Abstract

Thispaper describesthe Active Object pattern, which decou-
ples method execution from method invocation in order to
simplify synchronized access to a shared resource by meth-
odsinvoked in different threads of control. The Active Object
pattern allows one or more independent threads of execution
to interleave their access to data modeled as a single ob-
ject. A broad class of producer/consumer and reader/writer
problems are well-suited to thismodel of concurrency. This
pattern is commonly used in distributed systems requiring
multi-threaded servers. Inaddition, client applications(such
as windowing systems and network browsers), are increas-
ingly employing active objects to simplify concurrent, asyn-
chronous network operations.

1 Intent

The Active Object pattern decouples method execution from
method invocation in order to simplify synchronized access
to a shared resource by methods invoked in different threads
of control.

2 AlsoKnown As

Concurrent Object, Actor, Serializer.

3 Motivation

To illustrate the Active Object pattern, consider the design
of a connection-oriented Gateway. A Gateway decouples
cooperating components in a distributed system and allows
them to interact without having direct dependencies among
each other [1]. For example, the Gateway shown in Fig-
ure 1 routes messages from one or more source processes
to one or more destination processes in a distributed system

Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science
Washington University, St. Louis

: Output
Handler

: Input
Handler

\\ 2: ﬁnd_route(mysg\

: Output
Handler

: Input

Handler

Figure 1: Connection-Oriented Gateway

[2]. Sourcesand destinationscommuni cate withthe Gateway
using TCP connections. Internally, the Gateway contains
aset of | nput and Qut put Handl er objects. | nput

Handl er s receive messages from sources and use address
fields in a message to determine the appropriate Qut put

Handl er s associated with the destination. The Qut put

Handl er then delivers the message to the destination.

Since communication between the sources, destinations,
and Gateway use TCP, Qut put Handl er s may encounter
flow control from the transport layer. Connection-oriented
protocols like TCP use flow control to ensure that a fast
source does not produce data faster than a dow destination
(or slow network) can buffer and consume the data

To reduce end-to-end delay, an Qut put Handl er ob-
ject must not block the entire Gateway waiting for flow con-
trol to abate on any single connection to a destination. One
way to ensure this is to design the Gateway as a single-

threaded reactive state machine that uses asynchronous net-
work /0. This design typically combines the Reactor pat-
tern [3], non-blocking sockets, and a set of message queues
(one per Qut put Handl er). The Reactor pattern and the
non-blocking sockets provide a single-threaded cooperative
event loop model of programming. The Reactor demulti-
plexes “ok to send” and “ok to receive’ events to multiple
I nput and Qut put Handl er objects. These handlers
use non-blocking sends and receives to prevent the Gateway
from blocking. The message queues are used by Qut put
Handl er s to store messages in FIFO order until they can
be delivered when flow control abates.

It is possible to build robust single-threaded connection-
oriented Gateways using the approach outlined above. There
are several drawbacks with this approach, however:

e Complicated concurrent programming — subtle pro-
gramming is required to ensure that Qut put
Handl er s in the Gateway never block while routing
messages to their destinations. Otherwise, one misbe-
having output connection can cause the entire Gateway
to block indefinitely.

o Does not alleviate performance bottlenecks — the use of
single-threading does not take advantage of parallelism
available from the underlying hardware and software
platform. Since the entire Gateway runs in a single
thread of controal it is not possibleto transparently ale-
viate performance bottleneckshby running the system on
amulti-processor.

A more convenient, and potentially more efficient, way to
develop a connection-oriented Gateway is to use the Active
Object pattern. This pattern enables a method to execute
in a different thread than the one that invoked the method
originaly. In contrast, passive objects execute in the same
thread asthe object that called amethod onthe passive object.

Implementing Qut put Handl er s as active objectsin
the Gateway enables them to block independently, without
adversdly affecting each other or the | nput Handl er s.
The active object Gateway design resolves the following
forces:

o Smplify flow control — since an Qut put Handl er
active object hasits own thread of control, it can block
waiting for flow control to abate. If an Cut put
Handl er active object is blocked due to flow con-
trol,| nput Handl er objectscandtill insert messages
onto the message queue associated with the Qut put
Handl er. After completing its current send, an
Qut put Handl er active object degqueues the next
message from its queue. It then sends the message
across the TCP connection to its destination.

o Simplify concurrent programming— The message queue
used by the Qut put Handl er active objects adlows
enqueue and dequeue operations to proceed con-
currently. These operations are subject to synchroniza-
tion constraints that (1) guarantee seriaized access to a

shared resource and (2) depend on the state of the re-
source (e.g., full vs. empty vs. neither). The Active
Object pattern makes is simple to program this class of
“producer/consumer” application.

¢ Take advantage of parallelism—the Gateway can trans-
parently take advantage of the inherent concurrency
between | nput and Qut put Handl er to improve
performance on multi-processor platforms. For exam-
ple theprocessingat Qut put Handl er s canexecute
concurrently with | nput Handl er s that pass them
messages to be ddlivered.

The structure of the Gateway applicationimplemented us-
ing the Active Object pattern is illustrated in the following
Booch class diagram:

(A
\/ h T loop {
/ Olltput e~ _ m = actQueue.remove()
{ TN dispatch (m)

7 \ \
S Handler ’\Scheduler/////}

| 4

N
S put (msg) J \ dispatch()/‘/ P N
> - = "
~— _ put() /" Method
—~_ < .
- \Object Queue{
;S imsert) v
- ——— I =<\
// ~__ \)) ~N_) N re?O\LeQ///
7~ Output ~ Output < -
{_ Handler State | / Handler \
~———-""~___- _Operations
S e
N y,

4 Applicability
Use the Active Object pattern when:

¢ Thedesignandimplementationof a concurrent program
can be simplified — concurrent programs can often be
simplified if the thread of control of an object O that
executes a method can be decoupled from the thread of
control of objects that invoke methods on O.

o Multiplethreads of control require synchronized access
to shared data — the Active Object pattern shields ap-
plicationsfrom low-level synchronization mechanisms,
rather than having them acquire and release locks ex-
plicitly.

e The order of method execution can differ from the or-
der of method invocation — methods invoked asyn-
chronously are executed based on a synchronization
policy, not on the order of invocation.

¢ Theoperationson a shared object are relatively coarse-
grained — in contrast, if operations are very fine-
grained the synchronization, data movement, and con-
text switching overhead of active objects may be too
high[4].

5 Structure and Participants

The structure of the Active Object patternisillustratedin the
following Booch class diagram:

~~—

/
| ~— \\ —> loop {
/) Client /‘ m = actQueue.remove()
¢~ Interface }diSpatch (m)
% ResultHandle m1() /] ///\\x/'\\ —
I ResultHandle m2() | ‘Scheduler ! _ -~
\\ ResultHandle m3() / } 7L - -
N /;‘Rl// _ dispatch()~ " - '\\/"‘\
> ml / / Actlvatlon/‘
L m20 1 \ Queue /
VISIBLE \ m3 0 ! \/ insert() /\
To * remove())
CLIENTS]
1
‘M
INVISIBLE \) / N— ’\\/
To - Resource N ¢ Method \
CLIENTS Representatlon {_ Objects ‘}

S——— ~ / ——— "/

The key participants in the Active Object pattern include
the following classes shown below:

e Client Interface (Qut put Handl er Interface)

— The Client Interface is a Proxy that presents a
method interface to client applications. Theinvo-
cation of amethod defined by the Client Interface
triggersthe constructionand queueing of aMethod
Object (see next bullet).

e Method Objects (Qut put Handl er Oper ati ons)

— A Method Object is constructed for any method
call that requires synchronized access to a shared
resource managed by the Scheduler. Each Method
Object maintains context information necessary
to (1) execute an operation following a method
invocation and (2) to return any results of that
invocation through the Client Interface.

o Activation Queue (Met hod Cbj ect Queue)

— Maintains a priority queue of pending method in-
vocations, which are represented as Method Ob-
jects created by the Client Interface. The Activa
tion Queue is managed exclusively by the Sched-
uler (see next bullet).

e Scheduler (Met hod Obj ect Schedul er)

— A Scheduler is a “meta-object” that manages an
Activation Queue containing Method Objects re-
quiring execution. The decision to execute an op-
eration isbased on mutual exclusion and condition
synchronization constraints.

e Resource Representation Handl er

| npl enent ati on)

(Qut put

— Represents the shared resource that is being mod-
eled asan ActiveObject. Theresource object typi-
cally defines methodsthat are defined inthe Client
Interface. It may also contain other methods that
the Scheduler uses to compute run-time synchro-
nization conditionsthat determine the scheduling
order.

o Result Handle

— When amethod isinvoked onthe Client Interface,
a Result Handle is returned to the caller. The
Result Handle allows the method result value to
be obtained after the Schedul er finishes executing
the method.

6 Collaborations

The following figure illustrates the three phases of collabo-
rationsin the Active Object pattern:

(. A
. : Client : Activation : Represent-
client : Scheduler .
B - Interface Queue ation
S m 1() | M | |
% E INVOKE 1m0 o | |
5] | | |
S & CREATE METHOD jcons(m1') | |
g g OBJECT " | |
5 future() | | |
1) RETURN RESULT
s g HANDLE -« } } }
g 5 INSERT IN } insert(m1') } }
S § PRIORITY QUEUE } 564,} }
8 Q
£ & DEQUEUE NEXT ! remove(ml) ! |
$ N METHOD OBJECT } 4"‘ }
. I I I
S I . ol I
g EXECUTE | dispatch(m1') | |
o] I T I
|
S RETURN RESULT reply_to_future() } }
S T
QS | | |
L | T | |

1. Method Object construction — in this phase the client
application invokes a method defined by the Client In-
terface. This triggers the creation of a Method Object,
which maintains the argument bindings to the method,
as well as any other bindings required to execute the
method and return a result. For example, a binding to
a Result Handle object returned to the ' caler of the
method. A Result Handleisreturned to the client unless
themethodis*oneway,” inwhich case no Result Handle
isreturned.

2. Scheduling/execution — in this phase the Scheduler ac-
quiresamutua exclusion lock, consults the Activation
Queue to determine which Method Object(s) meet the
synchronization constraints. The Method Object isthen
bound to the current Representation and the method is
allowed to access/update this Representation and create
aResult.

7

3.

Return result — the final phase binds the Result value,
if any, to afuture[5, 6] object that passes return values
back to the call er when themethod finishesexecuting. A
future is a synchronization object that enforces “write-
once, read-many” synchronization. Subsequently, any
readersthat rendezvous with the futurewill evaluate the
future and obtain the result value. The future and the
Method Object will be garbage collected when they are
no longer needed.

Consequences

The Active Object pattern offers the following benefits:

8

Enhance application concurrency while reducing syn-
chronization complexity — especialy if objects only
communicate via messages.

Leverage parallelism available from the hardware and
software platform — if the hardware/software platform
supports multiple CPUs this pattern can allow multiple
active objects to execute in parallel (subject to their
synchronization constraints).

The Active Object pattern has the following drawbacks:

It potentially increases context switching, data move-
ment, and synchronization overhead — depending on
how the Scheduler is implemented (e.g., in user-space
vs. kernel-space) overhead may occur to schedule and
execute multiple active objects

It may be difficult to debug programs containing active
objects due to the concurrency and non-determinism
of the Scheduler — moreover, many debuggers do not
adequately support concurrent programs.

| mplementation

The Active Object pattern can beimplemented in avariety of
ways. This section discusses several issues that arise when
implementing the Active Object pattern. Section 9 illus-
trates the steps involved in using the Active Object pattern
to implement the connection-oriented Gateway described in
Section 3.

Separate interface, implementation, and synchroniza-
tion policies— A common way to implement a shared
resource (such as a message queue) uses asingle class
whose methodsfirst acquire amutual exclusion (mutex)
lock. The code then proceeds to access the resource,
subject to conditional synchronization constraints (e.g.,
the dequeue operation in Section 9 cannot execute
when the message queue is empty and the enqueue
operation cannot execute when the message queue is
full).

cl ass Message_Queue

{
publi c:
/'l Enqueue message.
int enqueue (Message *new_nsg)

mut ex_.acquire ();

while (is_full ()) {
/! Release the lock_ and wait for
/] space to becone avail abl e.
not Ful | Cond_.wait ();

/'l Enqueue the nessage here...

mutex_.rel ease ();

}

private:

Mut ex nutex_;

Condi ti on<Mut ex> not Ful | Cond_;

o
A drawback to using this technique is that it embeds
code representing the synchroni zation policy into meth-
odsthat access the message queue representation. This
tight coupling often inhibits the reuse of the resource
implementation by derived classes that require special-
ized or different synchronization policies. This prob-
lemiscommonly referred to astheinheritance anomaly
[7,8,9, 10].

A more flexible implementation is to decouple the ex-
plicit synchronization policy code from themethodsthat
access and update the shared resource. This decoupling
requires that the Client Interface be defined separately.
It is used solely to cause the construction of a Method
Object for each method invocation.

A Method Object is an abstraction for the context (or
closure) of an operation. Thiscontext includesargument
values, a binding to the Resource Representation that
the operation isto be applied to, aresult object, and the
code for the operation. Method Objects are constructed
when a client application invokes a method on a Client
Interface proxy.

Each Method Object is enqueued on a method Acti-
vation Queue. A Scheduler that enforces a particular
synchronization policy on behalf of a shared resource
will compute whether or not a Method Object operation
can execute. Predicates can be defined as part of there-
sourceimplementation that represent thedifferent states
of theresource. Section 9 illustratesthis decoupled im-
plementation approach.

Determine rendezvous and return value policies — A
rendezvous policy is required since active objects do
not execute in the same thread as callers that invoke
their methods. Different implementations of the Active
Object pattern choose different rendezvous and return
value palicies. Typica choicesinclude the following:

— Synchronous waiting — block the caller syn-
chronoudly at the Client Interface until the active
object accepts the method call.

— Synchronoustimed wait —block only for abounded
amount of time and fail if the active object does
not accept the method call within that period. If
the timeout is zero this scheme is often referred to
as“polling.”

— Asynchronous — queue the method call and return
control to the caller immediately. If the method
produces a result value then some form of future
mechanism must be used to provide synchronized
access tothevaue(or theerror statusif the method
fails).

In the context of the Active Object pattern, a poly-
mor phic future pattern may be required [11] for asyn-
chronousinvocationsthat return avalueto thecaler. A
polymorphicfuturealows parameterization of theeven-
tual result type represented by the future and enforces
the necessary synchronization. When a Method Object
computes aresult, it acquires awrite lock on the future
and updates the future with a result value of the same
type as that used to parameterize the future. Any read-
ers of theresult value that are currently blocked waiting
for the result value are awakened and may concurrently
access the result value. A future object is eventualy
garbage collected after the writer and al readers no
longer reference the future.

o Leverage off other patterns that support the implemen-
tation of the Active Object pattern —

The Active Object pattern requires a set of related pat-
ternsfor different formsof synchronization (such asmu-
tual exclusion, producer-consumer, and readers-writers)
and reusable mechanisms for implementing them (such
as mutexes, semaphores, and condition variables). A
current area of work isto define a collection of reusable
building block synchronization patterns to complement
the use of the Active Object pattern in a wide set of
circumstances.

9 Sample Code

This section presents sample code that illustrates an im-
plementation of the Active Object pattern. The following
steps define an Active Object for use as a message queue
by Qut put Handl er objectsin the Gateway described in
Section 3.

1. Define a non-concurrent queue abstraction that imple-
ments a bounded buffer — using an internal representa
tionlikeacircular array or linkedlist. Thisimplementa-
tionisnot concerned with mutua exclusionor condition
synchronization. The following MessageQueueRep
class presents the interface for this queue:

/1 The tenplate parameter T corresponds to
/1 the type of nessages stored in the queue:

tenpl at e<cl ass T>
cl ass MessageQueueRep

{

publi c:
voi d enqueue (T Xx);
T dequeue (void);

bool empty (void) const;
bool full (void) const;

private:
/1 Internal resource representation.

h

Themethodsinthe MessageQueueRep’srepresenta
tion should not include any code that implements syn-
chronization or mutual exclusion. A key goa of using
the Active Object pattern isto ensure that the synchro-
nization mechanisms remain external to the represen-
tation. This approach facilitates the specidization of
the class representing the resource, while avoiding the
inheritance anomaly described in Section 8. The two
predicates enpty and ful | are used to distinguish
threeinternal states: empty, full, and neither empty nor
full. They are used by the Scheduler to evauate syn-
chronization conditions prior to executing a method of
aresource instance.

. Define a Scheduler that enforces the particular mutual

exclusion and condition synchronization constraints —
The Scheduler determines the order to process methods
based on synchronization constraints. These constraints
depend on the state of the resource being represented.
For example, if the MessageQueueRep is used to
implement an Qut put Handl er, these constraints
would indicate whether the queue was empty, full, or
neither.

The use of congraints ensures fair shared access
to the MessageQueueRep. Each method of a
MessageQueueRep isrepresented by aclass derived
fromaMet hod(Cbj ect baseclass. Thisbaseclassde-
fines purevirtua guar d and cal | methods that must
be redefined by a derived class. The type parameter T
defined in the MessageQueueSchedul er template
isthe same type of message that isinserted and removed
fromthe MessageQueue.

t enpl at e<cl ass T>

cl ass MessageQueueSchedul er

{
protected:
cl ass Enqueue : public MethodObject

{
public:
Enqueue (MessageQueueRep<T> *rep, T arg)
: rep_ (rep), arg_ (arg) {}

virtual bool guard (void) const {
/1 Synchronization constraint
return !rep_->full ();

}

virtual void call (void) {
/1 Insert nessage i nto nessage queue
rep_->enqueue (arg_);

}

private:

MessageQueueRep<T> *rep_;
T arg_;

3
cl ass Dequeue : public Methodbject

{
publi c:

Dequeue (MessageQueueRep<T> *rep, Future<T> &f)

:rep_ (rep), result_ (f) {}

bool guard (void) const {
/1 Synchroni zation constraint.
return !rep_->enpty ();

}

virtual void call (void) {
/1 Bind the renpved nessage to the
/] future result object.
result _ = rep_->dequeue ();

}

private:
MessageQueueRep<T> *rep_;
/1 Future nmessage result val ue
Fut ure<T> resul t _;

}s

Instances of the Met hodObj ect' s derived classes
Enqueue and Dequeue are inserted into an
Acti vati onQueue according to synchronization
constraints, as follows:

publi c:
. I/ constructors/destructors, etc.,

voi d enqueue (T x) {

Met hodCbj ect *met hod = new Enqueue (rep_, X);

queue_->insert (nethod);

}

Fut ur e<T> dequeue (void) {
Fut ure<T> resul t;

Met hodObj ect *net hod = new Dequeue (rep_, result);

queue_->insert (nethod);
return result;

}

/] These predicates can execute directly since
/1 they are "const".

bool enpty (void) const {
return rep_->enpty ();

bool full (void) const {
return rep_->full ();

}

protected:

MessageQueueRep<T> *rep_;

Activati onQueue *queue_;
The MessageQueueSchedul er object executes its
di spat ch method in athread of control that is sep-
arate from client applications. Within this thread the
Act i vat i onQueue is searched. The Scheduler se-
lectsaMet hodObj ect whoseguar d (corresponding
to a condition synchronization constraint) evaluates to
“true.” ThisMet hodCbj ect isthen executed.

As part of method execution, aMethod Object receives
a run-time binding to the current representation of the

MessageQueueRep object (thisis similar to provid-
ing a “t hi s” pointer to a sequential C++ method).
The method is then executed in the context of that
representation. The following code illustrates how the
MessageQueueSchedul er dispatches Method Ob-
jects:

virtual void dispatch (void) {

for () {

ActivationQueue::iterator i;

for (i = queue_->begin();
i = queue_->end();
i++) {

o

/1 Select a Method hject ‘mi

/1 whose guard eval uates to true.

m = queue_->renove ();

m>call ();

delete m

}
}
}

H
In general, a Scheduler may contain variables that rep-
resent the synchronization state of the shared resource.
The variables defined depend on the type of synchro-
ni zation mechanism that isrequired. For example, with
reader-writer synchronization, counter variablesmay be
used to keep track of the number of read and write re-
guests. In this case, the values of the counters are in-
dependent of the state of the shared resource since they
are only used by the scheduler to enforce the correct
synchronization policy on behalf of the shared resource.

. Define a Client Interface called MessageQueue — A

MessageQueue is a Met hodObj ect factory that
congtructs instances of methods that are sent to the
MessageQueueSchedul er for subsequent execu-
tion.

If the synchronization conditions enforced by the
MessageQueueSchedul er prohibit the execution
of a Met hodObj ect when a method is invoked, the
object is queued for later activation. In some cases, an
operation may not create a Met hodQbj ect if itisnot
subject to the same synchronization constraint as other
operations(e.g., the“const” methodsenpt y andf ul |
shown above). Such operations can be executed di-
rectly without incurring synchronization or scheduling
overhead.

If a method in the Client Interface returns a result T,
aFut ur e<T> isreturned to the application that calls
it. The caller may block immediately waiting for the
Fut ur e to complete. Conversaly, the caler may eval-
uatethe Fut ur e’svaueat alater point by using either
animplicitor explicit typeconversion of aFut ur e<T>
object to avalue of typeT.

tenpl ate <class T>

cl ass MessageQueue

{

publi c:
enum { MAX_SI ZE = 100 };
MessageQueue (int size = MAX_SIZE) {

sched_ = new MessageQueueSchedul er <T> (si ze);

}

/1 Schedul e enqueue to run as an active object.

voi d enqueue (T x) { sched_->enqueue (x); }

/'l Return a Future<T> as the ‘‘future’’ result

/1 of an asynchronous dequeue operati on.

Fut ure<T> dequeue (void) {
return sched_->dequeue ();

}

bool enpty (void) const { sched_->enpty (); }
bool full (void) const { sched_->full (); }

private:
MessageQueueSchedul er <T> *sched_;

A Fut ur e<T> result can be evaluated immediately
by a client, possibly causing the caller to block. For
example, a Gateway Qut put Handl er runningina
separate thread may choose to block until new messages
arrivefrom| nput Handl ers.

/1 Make an MessageQueue specialized for the Gateway

typedef MessageQueue<Routi ngMessage>
MESSAGE_QUEUE;

MESSAGE_QUEUE nessageQueue;
...

/1 Type conversion of Future<Message> result
/] causes the thread to bl ock pending result
/1 of the dequeue operation.

Message nsg = nessageQueue. dequeue ();

/1 Transmit nmessage to the destination.

sendMessage (nsgQ);
Alternatively, the evaluation of a return result from an
Active Object method invocation can be delayed. For
example, if no messages are available immediately an
Qut put Handl er can store the Fut ur e<T> return
valuefrom messageQueue and perform other “book-
keeping” tasks (such as exchanging “keepalive mes-
sages’ to make sureitsdestinationis still active). When
it'sdonewiththese varioustasksit may chooseto block
until a message arrivesfroman | nput Handl er, as
follows:

/1 Does not bl ock

Fut ur e<Message> future = nmessageQueue. dequeue ();

/1 Do sonething el se here...

// Evaluate future by inplicit type conversion --
/1 may block if the result is not yet avail able.

Message nsg = future;

10 Known Uses

The Active Object pattern is commonly used in distributed
systems requiring multi-threaded servers. In addition, the
Active Object pattern is used in client applications such as
windowing systems and network browsers that employ mul-

tiple active objectsto simplify concurrent programsthat per-
form non-blocking network operations.

The Gateway example from Section 3 isbased on the com-
munication services portion of the Motorolalridium project.
Qut put Handl er objectsinlridium Gateways are imple-
mented as active objectsto simplify concurrent programming
and improve performance on multi-processors. The active
object version of the Iridium Gateway uses the pre-emptive
multi-tasking capabilities provided by Solaris threads [12].
Anearlier version of the Iridium Gateway [2] used areactive
implementation described in Section 3. The reactive design
relied on a cooperative event loop-driven dispatcher within
asinglethread. This design was more difficult to implement
and did not perform as well as the active object version on
multi-processor platforms.

The Active Object pattern has a so been used to implement
Actors [13]. An Actor contains a set of instance variables
and behaviors that react to messages sent to an Actor by
other Actors. Messages sent to an Actor are queued in the
Actor’s message queue. In the Actor model, messages are
executed in order of arrival by the “current” behavior. Each
behavior nominates a replacement behavior to execute the
next message, possibly before the nominating behavior has
completed execution. Variations on the basic Actor model
allow messages in the message queue to be executed based
on criteria other than arrival order [14]. When the Active
Object pattern is used to implement Actors, the Scheduler
corresponds to the Actor scheduling mechanism, Method
Objectscorrespond to the behaviors defined for an Actor, and
the Resource Representation is the set of instance variables
that collectively represent the state of an Actor [15]. The
Client Interface is simply a strongly-typed mechanism used
to pass a message to an Actor.

11 Related Patterns

The Mutua Exclusion (Mutex) pattern is a smple locking
pattern that can occur in dightly different forms (such as
a spin lock or a semaphore) and can have subtle semantics
(such as recursive mutexes and priority mutexes).

The Consumer-Producer Condition Synchronization pat-
tern isa common pattern that occurs when the synchroniza-
tion policy and the resource are related by the fact that syn-
chronization is dependent on the state of the resource.

The Reader-Writer Condition Synchronization patternisa
common synchronization pattern that occurs when the syn-
chronization mechanism is not dependent on the state of the
resource. A readers-writers synchronization mechanism can
beimplemented independent of thetypeof resourcerequiring
reader-writer synchronization.

TheFuture pattern describesatyped futureresult valuethat
requires write-once, read-many synchronization. Whether a
caler blocks on a future depends on whether or not a re-
sult value has been computed. Hence, the future pattern
is a hybrid pattern that is partly a reader-writer condition

synchronization pattern and partly a producer-consumer syn-
chronization pattern.

The Half-Sync/Half-Async pattern [16] is an architectural
pattern that decouples synchronous I/O from asynchronous
I/0 in a system to simplify concurrent programming effort
without degrading execution efficiency. This pattern typi-
cally uses the Active Object pattern to implement the Syn-
chronoustask layer, the Reactor pattern [3] to implement the
Asynchronous task layer, and a Producer/Consumer pattern
to implement the Queueing layer.

References

[1] F Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture- A Systemof
Patterns. Wiley and Sons, 1996.

[2] D.C. Schmidt, “A Family of Design Patternsfor Application-
level Gateways,” The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages), vol. 2,
no. 1, 1996.

[3] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[4] D. C. schmidt and T. Suda, “Measuring the Performance of
Parallel Message-based Process Architectures,” in Proceed-
ings of the Conferenceon Computer Communications (INFO-
COM), (Boston, MA), pp. 624-633, IEEE, April 1995.

[5] R. H. Halstead, Jr., “Multilisp: A Language for Concur-
rent Symbolic Computation,” ACM Trans. Programming Lan-
guagesand Systems, vol. 7, pp. 501-538, Oct. 1985.

[6] B. Liskov and L. Shrira, “Promises: Linguistic Support for
Efficient Asynchronous Procedure Calls in Distributed Sys-
tems,” in Proceedingsof the SSIGPLAN' 88 Conferenceon Pro-
gramming Language Design and Implementation, pp. 260—
267, June 1988.

[7] P. America, “Inheritance and Subtyping in a Parallel Object-
Oriented Language,” in ECOOP’ 87 Conference Proceedings,
pp. 234-242, Springer-Verlag, 1987.

[8] D.G.KafuraandK. H. Lee, “Inheritancein Actor-Based Con-
current Object-Oriented Languages,” in ECOOP’89 Confer-
ence Proceedings, pp. 131-145, Cambridge University Press,
1989.

[9] S.Matsuoka, K. Wakita, and A. Yonezawa, “ Analysisof Inher-
itance Anomaly in Concurrent Object-Oriented Languages,”
OOPS Messenger, 1991.

[10] M. Papathomas, “ Concurrency I ssuesin Object-Oriented Lan-
guages,” in Object Oriented Development (D. Tsichritzis, ed.),
pp. 207245, Centre Universitaire D’ Informatique, University
of Geneva, 1989.

[11] R. G. Lavender and D. G. Kafura, “A Polymorphic Fu-
ture and First-Class Function Type for Concurrent Object-
Oriented Programming in C++,” in Forthcoming, 1995.
http://ww.cs.utexas.edu/users/lavender/papers/futures.ps.

[12] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

[13] G. Agha, AModel of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[14] C. Tomlinson and V. Singh, “Inheritance and Synchronization
with Enabled-Sets,” in OOPSLA' 89 Conference Proceedings,
pp. 103-112, Oct. 1989.

[15] D. Kafura, M. Mukherji, and G. Lavender, “ACT++: A Class
Library for Concurrent Programming in C++ using Actors,”
Journal of Object-Oriented Programming, pp. 47-56, October
1992.

[16] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
Architectural Pattern for Efficient and Well-structured Con-
current 1/0,” in Proceedings of the 2"¢ Annual Conference
on the Pattern Languagesof Programs, (Monticello, lllinois),
pp. 1-10, September 1995.

