
Active Object

an Object Behavioral Pattern for
Concurrent Programming

R. Greg Lavender Douglas C. Schmidt
G.Lavender@isode.com schmidt@cs.wustl.edu
ISODE Consortium Inc. Department of Computer Science

Austin, TX Washington University, St. Louis

An earlier version of this paper appeared in a chapter in
the book “Pattern Languages of Program Design 2” ISBN
0-201-89527-7, edited by John Vlissides, Jim Coplien, and
Norm Kerth published by Addison-Wesley, 1996.

Abstract

This paper describes the Active Object pattern, which decou-
ples method execution from method invocation in order to
simplify synchronized access to a shared resource by meth-
ods invoked in different threads of control. The Active Object
pattern allows one or more independent threads of execution
to interleave their access to data modeled as a single ob-
ject. A broad class of producer/consumer and reader/writer
problems are well-suited to this model of concurrency. This
pattern is commonly used in distributed systems requiring
multi-threaded servers. In addition, client applications (such
as windowing systems and network browsers), are increas-
ingly employing active objects to simplify concurrent, asyn-
chronous network operations.

1 Intent

The Active Object pattern decouples method execution from
method invocation in order to simplify synchronized access
to a shared resource by methods invoked in different threads
of control.

2 Also Known As

Concurrent Object, Actor, Serializer.

3 Motivation

To illustrate the Active Object pattern, consider the design
of a connection-oriented Gateway. A Gateway decouples
cooperating components in a distributed system and allows
them to interact without having direct dependencies among
each other [1]. For example, the Gateway shown in Fig-
ure 1 routes messages from one or more source processes
to one or more destination processes in a distributed system

GATEWAY

: Output

Handler

: Input

Handler

: Output

Handler

INCOMING

MESSAGES

OUTGOING

MESSAGES

2: find_route(msg)

: Routing
Table

: Input

Handler

3: enqueue(msg)

INCOMING

MESSAGES

OUTGOING

MESSAGES

SRC

DST

SRC

DST

: Message

Queue

: Message

Queue

1: recv(msg)

Figure 1: Connection-Oriented Gateway

[2]. Sources and destinationscommunicate with the Gateway
using TCP connections. Internally, the Gateway contains
a set of Input and Output Handler objects. Input
Handlers receive messages from sources and use address
fields in a message to determine the appropriate Output
Handlers associated with the destination. The Output
Handler then delivers the message to the destination.

Since communication between the sources, destinations,
and Gateway use TCP, Output Handlersmay encounter
flow control from the transport layer. Connection-oriented
protocols like TCP use flow control to ensure that a fast
source does not produce data faster than a slow destination
(or slow network) can buffer and consume the data.

To reduce end-to-end delay, an Output Handler ob-
ject must not block the entire Gateway waiting for flow con-
trol to abate on any single connection to a destination. One
way to ensure this is to design the Gateway as a single-

1

threaded reactive state machine that uses asynchronous net-
work I/O. This design typically combines the Reactor pat-
tern [3], non-blocking sockets, and a set of message queues
(one per Output Handler). The Reactor pattern and the
non-blocking sockets provide a single-threaded cooperative
event loop model of programming. The Reactor demulti-
plexes “ok to send” and “ok to receive” events to multiple
Input and Output Handler objects. These handlers
use non-blocking sends and receives to prevent the Gateway
from blocking. The message queues are used by Output
Handlers to store messages in FIFO order until they can
be delivered when flow control abates.

It is possible to build robust single-threaded connection-
oriented Gateways using the approach outlined above. There
are several drawbacks with this approach, however:

� Complicated concurrent programming – subtle pro-
gramming is required to ensure that Output
Handlers in the Gateway never block while routing
messages to their destinations. Otherwise, one misbe-
having output connection can cause the entire Gateway
to block indefinitely.

� Does not alleviate performance bottlenecks – the use of
single-threading does not take advantage of parallelism
available from the underlying hardware and software
platform. Since the entire Gateway runs in a single
thread of control it is not possible to transparently alle-
viate performance bottlenecks by running the system on
a multi-processor.

A more convenient, and potentially more efficient, way to
develop a connection-oriented Gateway is to use the Active
Object pattern. This pattern enables a method to execute
in a different thread than the one that invoked the method
originally. In contrast, passive objects execute in the same
thread as the object that called a method on the passive object.

Implementing Output Handlers as active objects in
the Gateway enables them to block independently, without
adversely affecting each other or the Input Handlers.
The active object Gateway design resolves the following
forces:

� Simplify flow control – since an Output Handler
active object has its own thread of control, it can block
waiting for flow control to abate. If an Output
Handler active object is blocked due to flow con-
trol,Input Handlerobjects can still insert messages
onto the message queue associated with the Output
Handler. After completing its current send, an
Output Handler active object dequeues the next
message from its queue. It then sends the message
across the TCP connection to its destination.

� Simplify concurrent programming – The message queue
used by the Output Handler active objects allows
enqueue and dequeue operations to proceed con-
currently. These operations are subject to synchroniza-
tion constraints that (1) guarantee serialized access to a

shared resource and (2) depend on the state of the re-
source (e.g., full vs. empty vs. neither). The Active
Object pattern makes is simple to program this class of
“producer/consumer” application.

� Take advantage of parallelism – the Gateway can trans-
parently take advantage of the inherent concurrency
between Input and Output Handler to improve
performance on multi-processor platforms. For exam-
ple, the processing atOutput Handlers can execute
concurrently with Input Handlers that pass them
messages to be delivered.

The structure of the Gateway application implemented us-
ing the Active Object pattern is illustrated in the following
Booch class diagram:

Output
Handler

put (msg)

Method
Object Queue

insert()
remove()

Scheduler

dispatch()
put'()

Output
Handler

Operations

loop {
 m = actQueue.remove()
 dispatch (m)
}

Output
Handler State

4 Applicability

Use the Active Object pattern when:

� The design and implementationof a concurrent program
can be simplified – concurrent programs can often be
simplified if the thread of control of an object O that
executes a method can be decoupled from the thread of
control of objects that invoke methods onO.

� Multiple threads of control require synchronized access
to shared data – the Active Object pattern shields ap-
plications from low-level synchronization mechanisms,
rather than having them acquire and release locks ex-
plicitly.

� The order of method execution can differ from the or-
der of method invocation – methods invoked asyn-
chronously are executed based on a synchronization
policy, not on the order of invocation.

� The operations on a shared object are relatively coarse-
grained – in contrast, if operations are very fine-
grained the synchronization, data movement, and con-
text switching overhead of active objects may be too
high [4].

2

5 Structure and Participants

The structure of the Active Object pattern is illustrated in the
following Booch class diagram:

ClientClient
InterfaceInterface

ResultHandle m1()
ResultHandle m2()
ResultHandle m3()

ActivationActivation
QueueQueue
insert()

remove()

SchedulerScheduler

dispatch()
m1'()
m2'()
m3'()

ResourceResource
RepresentationRepresentation

MethodMethod
ObjectsObjects

loop {
 m = actQueue.remove()
 dispatch (m)
}

INVISIBLEINVISIBLE
TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

nn

11

11
11

11

11

The key participants in the Active Object pattern include
the following classes shown below:

� Client Interface (Output Handler Interface)

– The Client Interface is a Proxy that presents a
method interface to client applications. The invo-
cation of a method defined by the Client Interface
triggers the constructionand queueing of a Method
Object (see next bullet).

� Method Objects (Output Handler Operations)

– A Method Object is constructed for any method
call that requires synchronized access to a shared
resource managed by the Scheduler. Each Method
Object maintains context information necessary
to (1) execute an operation following a method
invocation and (2) to return any results of that
invocation through the Client Interface.

� Activation Queue (Method Object Queue)

– Maintains a priority queue of pending method in-
vocations, which are represented as Method Ob-
jects created by the Client Interface. The Activa-
tion Queue is managed exclusively by the Sched-
uler (see next bullet).

� Scheduler (Method Object Scheduler)

– A Scheduler is a “meta-object” that manages an
Activation Queue containing Method Objects re-
quiring execution. The decision to execute an op-
eration is based on mutual exclusion and condition
synchronization constraints.

� Resource Representation (Output Handler
Implementation)

– Represents the shared resource that is being mod-
eled as an Active Object. The resource object typi-
cally defines methods that are defined in the Client
Interface. It may also contain other methods that
the Scheduler uses to compute run-time synchro-
nization conditions that determine the scheduling
order.

� Result Handle

– When a method is invoked on the Client Interface,
a Result Handle is returned to the caller. The
Result Handle allows the method result value to
be obtained after the Scheduler finishes executing
the method.

6 Collaborations

The following figure illustrates the three phases of collabo-
rations in the Active Object pattern:

INVOKEINVOKE

INSERT ININSERT IN
 PRIORITY QUEUE PRIORITY QUEUE

cons(m1')

remove(m1')DEQUEUE NEXTDEQUEUE NEXT
 METHOD OBJECT METHOD OBJECT

RETURN RESULTRETURN RESULT

EXECUTEEXECUTE

clientclient
: Client: Client

InterfaceInterface
: Activation: Activation

QueueQueue

insert(m1')

dispatch(m1')

M
E

T
H

O
D

 O
B

J
E

C
T

M
E

T
H

O
D

 O
B

J
E

C
T

C
O

N
S

T
R

U
C

T
IO

N
C

O
N

S
T

R
U

C
T

IO
N

S
C

H
E

D
U

L
IN

G
/

E
X

E
C

U
T

IO
N

C
O

M
P

L
E

T
IO

N

m1()

: Represent-: Represent-
ationation

: Scheduler: Scheduler

CREATE METHOD
OBJECT

reply_to_future()

future()RETURN RESULTRETURN RESULT
HANDLEHANDLE

1. Method Object construction – in this phase the client
application invokes a method defined by the Client In-
terface. This triggers the creation of a Method Object,
which maintains the argument bindings to the method,
as well as any other bindings required to execute the
method and return a result. For example, a binding to
a Result Handle object returned to the ’ caller of the
method. A Result Handle is returned to the client unless
the method is “oneway,” in which case no Result Handle
is returned.

2. Scheduling/execution – in this phase the Scheduler ac-
quires a mutual exclusion lock, consults the Activation
Queue to determine which Method Object(s) meet the
synchronization constraints. The Method Object is then
bound to the current Representation and the method is
allowed to access/update this Representation and create
a Result.

3

3. Return result – the final phase binds the Result value,
if any, to a future [5, 6] object that passes return values
back to the caller when the method finishes executing. A
future is a synchronization object that enforces “write-
once, read-many” synchronization. Subsequently, any
readers that rendezvous with the future will evaluate the
future and obtain the result value. The future and the
Method Object will be garbage collected when they are
no longer needed.

7 Consequences

The Active Object pattern offers the following benefits:

� Enhance application concurrency while reducing syn-
chronization complexity – especially if objects only
communicate via messages.

� Leverage parallelism available from the hardware and
software platform – if the hardware/software platform
supports multiple CPUs this pattern can allow multiple
active objects to execute in parallel (subject to their
synchronization constraints).

The Active Object pattern has the following drawbacks:

� It potentially increases context switching, data move-
ment, and synchronization overhead – depending on
how the Scheduler is implemented (e.g., in user-space
vs. kernel-space) overhead may occur to schedule and
execute multiple active objects

� It may be difficult to debug programs containing active
objects due to the concurrency and non-determinism
of the Scheduler – moreover, many debuggers do not
adequately support concurrent programs.

8 Implementation

The Active Object pattern can be implemented in a variety of
ways. This section discusses several issues that arise when
implementing the Active Object pattern. Section 9 illus-
trates the steps involved in using the Active Object pattern
to implement the connection-oriented Gateway described in
Section 3.

� Separate interface, implementation, and synchroniza-
tion policies – A common way to implement a shared
resource (such as a message queue) uses a single class
whose methods first acquire a mutual exclusion (mutex)
lock. The code then proceeds to access the resource,
subject to conditional synchronization constraints (e.g.,
the dequeue operation in Section 9 cannot execute
when the message queue is empty and the enqueue
operation cannot execute when the message queue is
full).

class Message_Queue
{
public:
// Enqueue message.
int enqueue (Message *new_msg)
{

mutex_.acquire ();

while (is_full ()) {
// Release the lock_ and wait for
// space to become available.
notFullCond_.wait ();

// Enqueue the message here...

mutex_.release ();
}

private:
Mutex mutex_;
Condition<Mutex> notFullCond_;
// ...

A drawback to using this technique is that it embeds
code representing the synchronization policy into meth-
ods that access the message queue representation. This
tight coupling often inhibits the reuse of the resource
implementation by derived classes that require special-
ized or different synchronization policies. This prob-
lem is commonly referred to as the inheritance anomaly
[7, 8, 9, 10].

A more flexible implementation is to decouple the ex-
plicit synchronizationpolicy code from the methods that
access and update the shared resource. This decoupling
requires that the Client Interface be defined separately.
It is used solely to cause the construction of a Method
Object for each method invocation.

A Method Object is an abstraction for the context (or
closure) of an operation. This context includes argument
values, a binding to the Resource Representation that
the operation is to be applied to, a result object, and the
code for the operation. Method Objects are constructed
when a client application invokes a method on a Client
Interface proxy.

Each Method Object is enqueued on a method Acti-
vation Queue. A Scheduler that enforces a particular
synchronization policy on behalf of a shared resource
will compute whether or not a Method Object operation
can execute. Predicates can be defined as part of the re-
source implementation that represent the different states
of the resource. Section 9 illustrates this decoupled im-
plementation approach.

� Determine rendezvous and return value policies – A
rendezvous policy is required since active objects do
not execute in the same thread as callers that invoke
their methods. Different implementations of the Active
Object pattern choose different rendezvous and return
value policies. Typical choices include the following:

– Synchronous waiting – block the caller syn-
chronously at the Client Interface until the active
object accepts the method call.

4

– Synchronous timed wait – block only for a bounded
amount of time and fail if the active object does
not accept the method call within that period. If
the timeout is zero this scheme is often referred to
as “polling.”

– Asynchronous – queue the method call and return
control to the caller immediately. If the method
produces a result value then some form of future
mechanism must be used to provide synchronized
access to the value (or the error status if the method
fails).

In the context of the Active Object pattern, a poly-
morphic future pattern may be required [11] for asyn-
chronous invocations that return a value to the caller. A
polymorphic future allows parameterization of the even-
tual result type represented by the future and enforces
the necessary synchronization. When a Method Object
computes a result, it acquires a write lock on the future
and updates the future with a result value of the same
type as that used to parameterize the future. Any read-
ers of the result value that are currently blocked waiting
for the result value are awakened and may concurrently
access the result value. A future object is eventually
garbage collected after the writer and all readers no
longer reference the future.

� Leverage off other patterns that support the implemen-
tation of the Active Object pattern –

The Active Object pattern requires a set of related pat-
terns for different forms of synchronization (such as mu-
tual exclusion, producer-consumer, and readers-writers)
and reusable mechanisms for implementing them (such
as mutexes, semaphores, and condition variables). A
current area of work is to define a collection of reusable
building block synchronization patterns to complement
the use of the Active Object pattern in a wide set of
circumstances.

9 Sample Code

This section presents sample code that illustrates an im-
plementation of the Active Object pattern. The following
steps define an Active Object for use as a message queue
by Output Handler objects in the Gateway described in
Section 3.

1. Define a non-concurrent queue abstraction that imple-
ments a bounded buffer – using an internal representa-
tion like a circular array or linked list. This implementa-
tion is not concerned with mutual exclusion or condition
synchronization. The following MessageQueueRep
class presents the interface for this queue:
// The template parameter T corresponds to
// the type of messages stored in the queue:

template<class T>
class MessageQueueRep

{
public:
void enqueue (T x);
T dequeue (void);

bool empty (void) const;
bool full (void) const;

private:
// Internal resource representation.

};

The methods in the MessageQueueRep’s representa-
tion should not include any code that implements syn-
chronization or mutual exclusion. A key goal of using
the Active Object pattern is to ensure that the synchro-
nization mechanisms remain external to the represen-
tation. This approach facilitates the specialization of
the class representing the resource, while avoiding the
inheritance anomaly described in Section 8. The two
predicates empty and full are used to distinguish
three internal states: empty, full, and neither empty nor
full. They are used by the Scheduler to evaluate syn-
chronization conditions prior to executing a method of
a resource instance.

2. Define a Scheduler that enforces the particular mutual
exclusion and condition synchronization constraints –
The Scheduler determines the order to process methods
based on synchronization constraints. These constraints
depend on the state of the resource being represented.
For example, if the MessageQueueRep is used to
implement an Output Handler, these constraints
would indicate whether the queue was empty, full, or
neither.

The use of constraints ensures fair shared access
to the MessageQueueRep. Each method of a
MessageQueueRep is represented by a class derived
from a MethodObject base class. This base class de-
fines pure virtual guard and call methods that must
be redefined by a derived class. The type parameter T
defined in the MessageQueueScheduler template
is the same type of message that is inserted and removed
from the MessageQueue.

template<class T>
class MessageQueueScheduler
{
protected:
class Enqueue : public MethodObject
{
public:

Enqueue (MessageQueueRep<T> *rep, T arg)
: rep_ (rep), arg_ (arg) {}

virtual bool guard (void) const {
// Synchronization constraint
return !rep_->full ();

}

virtual void call (void) {
// Insert message into message queue
rep_->enqueue (arg_);

}

private:

5

MessageQueueRep<T> *rep_;
T arg_;

};

class Dequeue : public MethodObject
{
public:
Dequeue (MessageQueueRep<T> *rep, Future<T> &f)
: rep_ (rep), result_ (f) {}

bool guard (void) const {
// Synchronization constraint.
return !rep_->empty ();

}

virtual void call (void) {
// Bind the removed message to the
// future result object.
result_ = rep_->dequeue ();

}

private:
MessageQueueRep<T> *rep_;
// Future message result value
Future<T> result_;

};

Instances of the MethodObjects derived classes
Enqueue and Dequeue are inserted into an
ActivationQueue according to synchronization
constraints, as follows:

public:

... // constructors/destructors, etc.,

void enqueue (T x) {
MethodObject *method = new Enqueue (rep_, x);
queue_->insert (method);

}

Future<T> dequeue (void) {
Future<T> result;

MethodObject *method = new Dequeue (rep_, result);
queue_->insert (method);
return result;

}

// These predicates can execute directly since
// they are "const".

bool empty (void) const {
return rep_->empty ();

}
bool full (void) const {
return rep_->full ();

}

protected:
MessageQueueRep<T> *rep_;
ActivationQueue *queue_;

The MessageQueueScheduler object executes its
dispatch method in a thread of control that is sep-
arate from client applications. Within this thread the
ActivationQueue is searched. The Scheduler se-
lects aMethodObjectwhose guard (corresponding
to a condition synchronization constraint) evaluates to
“true.” This MethodObject is then executed.

As part of method execution, a Method Object receives
a run-time binding to the current representation of the

MessageQueueRep object (this is similar to provid-
ing a “this” pointer to a sequential C++ method).
The method is then executed in the context of that
representation. The following code illustrates how the
MessageQueueScheduler dispatches Method Ob-
jects:
virtual void dispatch (void) {

for (;;) {
ActivationQueue::iterator i;

for (i = queue_->begin();
i != queue_->end();
i++) {

// ...
// Select a Method Object ‘m’
// whose guard evaluates to true.
m = queue_->remove ();
m->call();
delete m;

}
}

}
};

In general, a Scheduler may contain variables that rep-
resent the synchronization state of the shared resource.
The variables defined depend on the type of synchro-
nization mechanism that is required. For example, with
reader-writer synchronization, counter variables may be
used to keep track of the number of read and write re-
quests. In this case, the values of the counters are in-
dependent of the state of the shared resource since they
are only used by the scheduler to enforce the correct
synchronization policy on behalf of the shared resource.

3. Define a Client Interface called MessageQueue – A
MessageQueue is a MethodObject factory that
constructs instances of methods that are sent to the
MessageQueueScheduler for subsequent execu-
tion.

If the synchronization conditions enforced by the
MessageQueueScheduler prohibit the execution
of a MethodObject when a method is invoked, the
object is queued for later activation. In some cases, an
operation may not create a MethodObject if it is not
subject to the same synchronization constraint as other
operations (e.g., the “const” methods empty and full
shown above). Such operations can be executed di-
rectly without incurring synchronization or scheduling
overhead.

If a method in the Client Interface returns a result T,
a Future<T> is returned to the application that calls
it. The caller may block immediately waiting for the
Future to complete. Conversely, the caller may eval-
uate the Future’s value at a later point by using either
an implicit or explicit type conversion of aFuture<T>
object to a value of type T.
template <class T>
class MessageQueue
{
public:
enum { MAX_SIZE = 100 };
MessageQueue (int size = MAX_SIZE) {

6

sched_ = new MessageQueueScheduler<T> (size);
}

// Schedule enqueue to run as an active object.
void enqueue (T x) { sched_->enqueue (x); }

// Return a Future<T> as the ‘‘future’’ result
// of an asynchronous dequeue operation.

Future<T> dequeue (void) {
return sched_->dequeue ();

}

bool empty (void) const { sched_->empty (); }
bool full (void) const { sched_->full (); }

private:
MessageQueueScheduler<T> *sched_;

};

A Future<T> result can be evaluated immediately
by a client, possibly causing the caller to block. For
example, a Gateway Output Handler running in a
separate thread may choose to block until new messages
arrive from Input Handlers.

// Make an MessageQueue specialized for the Gateway.
typedef MessageQueue<RoutingMessage>

MESSAGE_QUEUE;

MESSAGE_QUEUE messageQueue;

// ...

// Type conversion of Future<Message> result
// causes the thread to block pending result
// of the dequeue operation.
Message msg = messageQueue.dequeue ();

// Transmit message to the destination.
sendMessage (msg);

Alternatively, the evaluation of a return result from an
Active Object method invocation can be delayed. For
example, if no messages are available immediately an
Output Handler can store the Future<T> return
value from messageQueue and perform other “book-
keeping” tasks (such as exchanging “keepalive mes-
sages” to make sure its destination is still active). When
it’s done with these various tasks it may choose to block
until a message arrives from an Input Handler, as
follows:
// Does not block
Future<Message> future = messageQueue.dequeue ();

// Do something else here...

// Evaluate future by implicit type conversion --
// may block if the result is not yet available.
Message msg = future;

10 Known Uses

The Active Object pattern is commonly used in distributed
systems requiring multi-threaded servers. In addition, the
Active Object pattern is used in client applications such as
windowing systems and network browsers that employ mul-

tiple active objects to simplify concurrent programs that per-
form non-blocking network operations.

The Gateway example from Section 3 is based on the com-
munication services portion of the Motorola Iridium project.
Output Handler objects in Iridium Gateways are imple-
mented as active objects to simplify concurrent programming
and improve performance on multi-processors. The active
object version of the Iridium Gateway uses the pre-emptive
multi-tasking capabilities provided by Solaris threads [12].
An earlier version of the Iridium Gateway [2] used a reactive
implementation described in Section 3. The reactive design
relied on a cooperative event loop-driven dispatcher within
a single thread. This design was more difficult to implement
and did not perform as well as the active object version on
multi-processor platforms.

The Active Object pattern has also been used to implement
Actors [13]. An Actor contains a set of instance variables
and behaviors that react to messages sent to an Actor by
other Actors. Messages sent to an Actor are queued in the
Actor’s message queue. In the Actor model, messages are
executed in order of arrival by the “current” behavior. Each
behavior nominates a replacement behavior to execute the
next message, possibly before the nominating behavior has
completed execution. Variations on the basic Actor model
allow messages in the message queue to be executed based
on criteria other than arrival order [14]. When the Active
Object pattern is used to implement Actors, the Scheduler
corresponds to the Actor scheduling mechanism, Method
Objects correspond to the behaviors defined for an Actor, and
the Resource Representation is the set of instance variables
that collectively represent the state of an Actor [15]. The
Client Interface is simply a strongly-typed mechanism used
to pass a message to an Actor.

11 Related Patterns

The Mutual Exclusion (Mutex) pattern is a simple locking
pattern that can occur in slightly different forms (such as
a spin lock or a semaphore) and can have subtle semantics
(such as recursive mutexes and priority mutexes).

The Consumer-Producer Condition Synchronization pat-
tern is a common pattern that occurs when the synchroniza-
tion policy and the resource are related by the fact that syn-
chronization is dependent on the state of the resource.

The Reader-Writer Condition Synchronization pattern is a
common synchronization pattern that occurs when the syn-
chronization mechanism is not dependent on the state of the
resource. A readers-writers synchronization mechanism can
be implemented independent of the type of resource requiring
reader-writer synchronization.

The Future pattern describes a typed future result value that
requires write-once, read-many synchronization. Whether a
caller blocks on a future depends on whether or not a re-
sult value has been computed. Hence, the future pattern
is a hybrid pattern that is partly a reader-writer condition

7

synchronization pattern and partly a producer-consumer syn-
chronization pattern.

The Half-Sync/Half-Async pattern [16] is an architectural
pattern that decouples synchronous I/O from asynchronous
I/O in a system to simplify concurrent programming effort
without degrading execution efficiency. This pattern typi-
cally uses the Active Object pattern to implement the Syn-
chronous task layer, the Reactor pattern [3] to implement the
Asynchronous task layer, and a Producer/Consumer pattern
to implement the Queueing layer.

References
[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[2] D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways,” The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages), vol. 2,
no. 1, 1996.

[3] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[4] D. C. Schmidt and T. Suda, “Measuring the Performance of
Parallel Message-based Process Architectures,” in Proceed-
ings of the Conference on Computer Communications (INFO-
COM), (Boston, MA), pp. 624–633, IEEE, April 1995.

[5] R. H. Halstead, Jr., “Multilisp: A Language for Concur-
rent Symbolic Computation,” ACM Trans. ProgrammingLan-
guages and Systems, vol. 7, pp. 501–538, Oct. 1985.

[6] B. Liskov and L. Shrira, “Promises: Linguistic Support for
Efficient Asynchronous Procedure Calls in Distributed Sys-
tems,” in Proceedingsof the SIGPLAN’88 Conferenceon Pro-
gramming Language Design and Implementation, pp. 260–
267, June 1988.

[7] P. America, “Inheritance and Subtyping in a Parallel Object-
Oriented Language,” in ECOOP’87 Conference Proceedings,
pp. 234–242, Springer-Verlag, 1987.

[8] D. G. Kafura and K. H. Lee, “Inheritance in Actor-Based Con-
current Object-Oriented Languages,” in ECOOP’89 Confer-
ence Proceedings, pp. 131–145, Cambridge University Press,
1989.

[9] S. Matsuoka, K. Wakita, and A. Yonezawa,“Analysis of Inher-
itance Anomaly in Concurrent Object-Oriented Languages,”
OOPS Messenger, 1991.

[10] M. Papathomas, “ConcurrencyIssues in Object-Oriented Lan-
guages,” in Object Oriented Development (D. Tsichritzis, ed.),
pp. 207–245, Centre Universitaire D’Informatique, University
of Geneva, 1989.

[11] R. G. Lavender and D. G. Kafura, “A Polymorphic Fu-
ture and First-Class Function Type for Concurrent Object-
Oriented Programming in C++,” in Forthcoming, 1995.
http://www.cs.utexas.edu/users/lavender/papers/futures.ps.

[12] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

[13] G. Agha, A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[14] C. Tomlinson and V. Singh, “Inheritance and Synchronization
with Enabled-Sets,” in OOPSLA’89 Conference Proceedings,
pp. 103–112, Oct. 1989.

[15] D. Kafura, M. Mukherji, and G. Lavender, “ACT++: A Class
Library for Concurrent Programming in C++ using Actors,”
Journalof Object-Oriented Programming, pp. 47–56, October
1992.

[16] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
Architectural Pattern for Efficient and Well-structured Con-
current I/O,” in Proceedings of the 2nd Annual Conference
on the Pattern Languages of Programs, (Monticello, Illinois),
pp. 1–10, September 1995.

8

