Object-Oriented Design and

Programming

Overview of Basic CH4+

Constructs

Outline

Lexical Elements

T he Preprocessor

Variables, Functions, and Classes
Definition and Declaration

Compound Statement

Iteration Statements

for Loop

while Loop

do while loop 1

break and continue Statements
Conditional Branching

If Statement

switch Statement

C++ Arrays

Multi-Dimensional Arrays
Pointers

Passing Arrays as Parameters
Character Strings

Lexical Elements

Identifiers: A sequence of letters (including
'_") and digits. The first character must
be a letter. Identifiers are case sensitive,
i.e., Foo_Barl is different from foo_barl.

Reserved Words. Keywords that are not re-
definable by the programmer, e.qg., int,
while, double, return, catch, delete. There
are currently 48 C++4 reserved words.

Operators. Tokens that perform operations
upon operands of various types. There are
around 50 operators and 16 precedence
levels.

Lexical Elements (cont’d)

Preprocessor Directives: Used for conditional
compilation. Always begin with #, e.g.,
#include, #ifdef, #define, #if, #en-
dif.

Comments: Delimited by either /* */ or //,
comments are ignored by the \

compiler. Note that comment of the same style do
#if 0

Fendif

Constants and Literals: For strings, inte-
gers, floating point types, and enumera-
tions, e.qg., "hello world”, 2001, 3.1416,
and FOOBAR.

The Preprocessor

e Less important for C++ than for C due
to inline functions and const objects.

e [he CH++4 preprocessor has 4 major func-
tions:

— File Inclusion:

#include <stream.h>
#include " foo.h"

— Symbolic Constants:

#define SCREEN_SIZE 80
#define FALSE O

— Parameterized Macros:

#define SQUARE(A) g(A) * (A))

#define NIL(TYPE) STYPE *)0)

#define IS_.UPPER(C) ((C) >="A" && (C) <="Z")
— Conditional Compilation:

#ifdef __" cplusplus”
#include " c++-prototypes.h”
#elif _STDC__

#include " c-prototypes.h”
#else

#include "nonprototypes.h”
#endif

Variables, Functions, and Classes

e Variables

— In C+4++4 all variables must be declared before
they are used. Furthermore, variables must be
used in @ manner consistent with their associ-
ated type.

e Functions

— Unlike C, all C4++4 functions must be declared
before being used, their return type defaults
to int. However, it is considered good style to
fully declare all functions.

— Use void keyword to specify that a function
does not return a value.

e (Classes

— Combines data objects and functions to pro-
vide an Abstract Data Type (ADT).

Definition and Declaration

e It is important in C to distinguish between
variable and function declaration and def-
inition:

Definition: Refers to the place where a variable or
function is created or assigned storage. Each
external variable and function must be defined
exactly once in a program.

Declaration: Refers to places where the nature
of the variable is stated, but no storage is al-
located.

Note that a class, struct, union, or enum dec-
laration is also a definition in the sense that it
cannot appear multiple times in a single com-
pilation unit.

e Variables and function must be declared
for each function that wishes to access
them. Declarations provide sizes and types
to the compiler so that it can generate
correct code.

Compound Statement

e General form:

[decl-list]
[stmt-list]

3%
e 2.J.,

int c = 'A’; // Global variable
int main (void) {
if (argc > 1) {
putchar ('[');

for (int c = ::c; c <= 'Z’; putchar (c++))
putchar ('1');
e Note the use of the scope resolution op-

erator :: to reference otherwise hidden
global int c.

Iteration Statements

e C+-+ has 5 methods for repeating an ac-
tion in a program:

1.

for: test at loop top

. While: test at loop top

. do/while: test at loop bottom

Recursion

. Unconditional Branch: local (goto) and non-

local (setjmp and longjmp)

for Loop

General form

for (<initialize>; <exit test>; <increment>)
<stmt>

The for loop localizes initialization, test
for exit, and incrementing in one general
syntactic construct.

All three loop header sections are optional,
and they may contain arbitrary expressions.

Note that it is possible to declare variables
in the <initialize> section (unlike C).

for loop (cont’'d)

e 2.9,
for (;;); /* Loop forever. */

/* Copy stdin to stdout. */
for (int c; (c = getchar ()) !'= EOF; putchar (c));

/* Compute n! factorial. */
for (inti=n;n>2;n--)i*=(n — 1);

/* Walk through a linked list. */
for (List *p = head; p != 0; p = p->next) action (p);

10

while Loop

e General form

while (<condition>)
<stmt>

e repeats execution of stmt as long as con-
dition evaluates to non-zero

e In fact, a for loop is expressible as a while
loop:

<initialize>
while (<exit test>)

{

<loop body>
<increment>

11

while Loop (cont’d)

e .4g.,
while (1); /* Loop forever. */

int c;
while ((c = getchar ()) !'= EOF)
putchar (c);

i = n; /* Compute n! factorial. */
while (n >= 0)

| *= --n,;

/* Walk through a linked list. */
p = head,;
while (p !'= 0) {

action (p);

p = p->nhext;

12

do while loop

e General form:

do <stmt> while (<condition>);

e Less commonly used than for or while
lOOpS.

e Note that the exit test is at the bottom of
the loop, this means that the loop always
executes at least once!

int main (void) {

const int MAX_LEN = 80;

char name_str[MAX_LEN];

do {
cout << "enter name (“exit” to quit)"”;
cin.getline (name_str, MAX_LEN);
process (name_str);

} while (strcmp (name_str, "exit”) 1= 0);

return O;

13

break and continue Statements

e Provides a controlled form of goto inside
loopsS.

#include <stream.h>
int main (void) {
/* Finds first negative number. */
int number;
while (cin >> number)
if (number < 0)
break;
cout << "number =" << number << "\n";
// ...
/* Sum up all even numbers, counts total numbers read
int sum, total;
for (sum = total = 0; cin >> number; total++) {
if (number & 1)
continue;
sum += number;
}
cout << "sum =" << sum << ", total ="
<< total << "\n";

14

Conditional Branching

e T here are two general forms of conditional
branching statements in C++:

e if/else: general method for selecting an
action for conditional execution, linearly
checks conditions and chooses first one
that evaluates to TRUE.

e switch: a potentially more efficient method
of selecting actions, since it can use a
“lump table.”

15

If Statement

e General form

if (<cond>)
<stmtil>

[else
<stmt2>]

e Common mechanism for conditionally ex-
ecuting a statement sequence.

#include <ctype.h>
char *character_class (char c) {
iIf (isalpha (c)) {
iIf (isupper (c))
return "is upper case’;
else
return "is lower case’;
}
else if (isdigit (c))
return "is a digit”;
else if (isprint (c))
return "is a printable char”;
else
return "is an unprintable char’ ;

16

switch Statement

e General form

switch (<expr>) { <cases> }

e switch only works for scalar variables e.qg.,
integers, characters, enumerations.

e Permits efficient selection from among a
set of values for a scalar variable.

enum symbol_type {
CONST, SCALAR, STRING, RECORD, ARRAY

} symbol,;
* o o o *
switch (symbol) {
case CONST: puts ("constant”); /* FALLTHRU */
case SCALAR: puts ("scalar"); break;

case RECORD: puts ("record”); break;
default: puts ("either array or string”); break;

e A break occurring inside a switch is sim-
ilar to one occurring inside a looping con-
struct.

17

C++ Arrays

e Arrays are a data type that consist of ho-
mogenous elements.

o A k-element one-dimensional array of EL-
EMENT typein C++4 is a contiguous block
of memory with size (k * sizeof (ELE-
MENT)).

e C array’s have several distinct limitations:

— All array bounds run from O to kK — 1.
— The size must be a compile-time constant.
— Size cannot vary at run-time.

— No range checking performed at run-time, e.g.,

int a[10];

for (int i = 0; i <= 10; i++)
ali]l = 0;

18

Arrays (cont’d)

e Arrays are defined by providing their type,
their name, and their size, for example,
two integer arrays with size 10 and 1000
are declared as:

int array[10], vector[1000]:

e Arrays and pointers are similar in CH4+.
An array name is automatically converted
to a constant pointer to the array’s first
element (only exception is sizeof array-
name).

e Arrays can be initialized at compile-time
and at run-time, e.qg.,

int eight_primes[] = {2, 3, 5, 7, 11, 13, 17, 19};
int eight_count[8], i;
for (i =0; i< 8; i++)

eight_countl[i] = eight_primesl[il;

19

Multi-Dimensional Arrays

C++ provides rectangular multi-dimensional
arrays.

Elements are stored in row-order.

I\(Iu]ti—dimensional arrays can also be ini-
tialized, e.q.,

static char daytab[2][13] = {
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},

1

It is possible to leave out certain initializer
values. ..

Pointers

20

A pointer is a variable that can hold the
address of another variable, e.qg.,

inti=10;
int *ip = &i;

It is possible to change i indirectly through
ip, €.9.,

Xip =i+ 1;
/* ALWAYS true! */
if (Xip==1i) /*...%/

Note: the size of a pointer is usually the
same as int, but be careful on some ma-
chines, e.qg., Intel 80286!

Note: it is often possible to use reference
variables instead of pointers in C++4, e.g.,
when passing variables by reference.

Passing Arrays as Parameters

C+-+'s syntax for passing arrays as pa-
rameters is very confusing.

For example, the following declarations are
equivalent:

int sort (int base[], int size);
int sort (int *base, Int size);

Fur_th_ermore, the c_ompiler wiII_not com-
plain if you pass an incorrect variable here:

int i, Xip;
sort (&i, sizeof i);
sort (ip, sizeof *ip);

!\Iote that what you really want to do here
IS:

int a[] = {10,9,8,7,6,5, 4,3, 2,1}
sort (a, sizeof a / sizeof *a);

But it is difficult to tell this from the func-
tion prototype...

21

Character Strings

e A CH+4 string literal is implemented as a
pointer to a NUL-terminated (i.e., '\0")
character array. There is an implicit ex-
tra byte in each string literal to hold the
terminating NUL character.

e ©.0.,

char *p; /* a string not bound to storage */
char buf[40]; /* a string of 40 chars */
char *s = malloc (40); /* a string of 40 chars */

char *string = " hello”;

sizeof (string) == 4; /* On a VAX. */
sizeof (" hello") == 6;

sizeof buf == 40;

strlen (" hell0") ==

e A number of standard string manipula-
tion routines are available in the <string.h>
header file.

22

Character Strings (cont’d)

BE CAREFUL WHEN USING C+4++4 STRINGS.
They do not always work the way you
might expect. In particular the follow-

ing causes both strl and str2 to point at
"bar”:

char *strl = "foo”, *str2 = "bar”;

strl = str2;

In order to perform string copies you must
use the strcpy function, e.g.,

strcpy (strl, str2);

Beware of the difference between arrays
and pointers...

char *foo = "I am a string constant”;

char bar[] = "I am a character array”;
sizeof foo == 4;
sizeof bar == 23;

It is often better to use a C+-+ String
class instead of built-in strings...

23

