Object-Oriented Design and

Programming

C++ Advanced Examples with

Inheritance and Dynamic Binding

Introduction

Expression Tree Diagram

Expression Tree Behavior

C Version

Memory Layout of C Version

Print_Tree Function

Limitations with C Approach

OO Alternative

Relationships Between Trees and Nodes
C++4 Node Interface

C++4 Tree Interface

C++ Int_Node and Unar_Node Interface

C++ Binary_Node Interface

Memory Layout for C4+4 Version

C++ Int_Node and Unary_Node Implementations
C++4 Binary_Node Implementation
C++ Tree Implementation

C++ Main Program

Expression Tree Diagram 1

Expression Tree Diagram 2

Extending Solution with Ternary_Nodes
C++4 Ternary_Node Implementation
Differences from C Implementation
Summary

Introduction
e The following inheritance and dynamic bind-
ing example constructs expression trees

— Expression trees consist of nodes containing oper-
ators and operands

> Operators have different precedence levels and
different arities, e.g.,

- Multiplication takes precedence over addition

- The multiplication operator has two arguments,
whereas unary minus operator has only one

> Operands are integers, doubles, variables, etc.

- We'll just handle integers in the example...

Expression Tree Diagram

INTEGER
NODES




Expression Tree Behavior

e Expression trees

— These trees may be “evaluated” via different traver-
sals

> e.g., in-order, post-order, pre-order, level-order

— The evaluation step may perform various operations...

e.g.,

> Traverse and print the expression tree

> Return the “value” of the expression tree

> Generate code

> Perform semantic analysis

C Version

e A typical functional method for implement-
ing expression trees in C or Ada involves us-
ing a struct/union to represent data struc-
ture, e.g.,

typedef struct Tree_Node Tree_Node;
struct Tree Node {
enum {
NUM, UNARY, BINARY
} tag;
short use; /* reference count */
union {
int num;
char op[2];
} o
#define num o.num
#define op o.op
union {
Tree_Node *unary;
struct { Tree_Node *|, *r; } binary;
JR
#define unary c.unary
#define binary c.binary

1

Memory Layout of C Version

s N
tag
/,—/\\
use ( N~
) ) Tree [/
P < Node /
7777777 \ |
num 1|2 7
//’~“\ 1
\ e
unary N
/,‘ Tree [/
7777777 7 Node /
N ]
binary ‘\ _-
MEMORY CLASS
L LAYOUT RELATIONSHIPS )

e Here's what the memory layout of a struct
Tree_Node object looks like

Print_Tree Function

e Typical C or Ada implementation (cont'd)

— Use a switch statement and a recursive function
to build and evaluate a tree, e.g.,

void print_tree (Tree_Node *root) {
switch (root->tag) {
case NUM: cout << root->num; break;
case UNARY:
cout << " (" << root->op[0];
print_tree (root->unary);
cout << ")"; break;
case BINARY:
cout << " (";
print_tree (root->binary.l);
cout << root->op[0];
print_tree (root->binary.r);
cout << ")"; break;
default:
cerr << "error, unknown type\n";
exit (1);




Limitations with C Approach
e Problems or limitations with the typical de-
sign and implementation approach include
— Language feature limitations in C and Ada

> e.g., hosupport for inheritance and dynamic bind-
ing

— Incomplete modeling of the problem domain that
results in

1. Tight coupling between nodes and edges in union
representation

2. Complexity being in algorithms rather than the
data structures

> e.g., switch statements are used to select be-
tween various types of nodes in the expression
trees

- compare with binary search!

> Data structures are “passive” in that functions
do most processing work explicitly

Limitations with C Approach
(cont’d)

e Problems with typical approach (cont’'d)

— The program organization makes it difficult to ex-
tend, e.g.,

> Any small changes will ripple through the entire
design and implementation

. e.d., see the ternary extension below
> Easy to make mistakes switching on type tags..

— Solution wastes space by making worst-case as-
sumptions wrt structs and unions

> This not essential, but typically occurs

> Note that this problem becomes worse the bigger
the size of the largest item becomes!

OO Alternative

e Contrast previous functional approach with
an object-oriented decomposition for the same
problem:

— Start with OO modeling of the “expression tree”
problem domain:

> e.g., go back to original picture

— There are several classes involved:

class Node: base class that describes expression
tree vertices:
class Int_Node: used for implicitly
converting int to Tree node
class Unary_Node: handles unary operators,
e.g., —10, 410, 'a, or ~foo, etc.
class Binary_Node: handles binary operators,
e.g., a + b, 10 — 30, etc.
class Tree: “glue” code that describes
expression tree edges

— Note, these classes model elements in the problem
domain

> j.e., nodes and edges (or vertices and arcs)

10

Relationships Between Trees and

Nodes
N
)
\ \ \\\ 1 ~——
~——" 1 \ ~
3 Tree
" {
\ /’
\§ M7 J

11




C++ Node Interface

e // node.h

#ifndef _NODE_H
#define _NODE H
#include <stream.h>
#include "tree.h”

/* Describes the Tree vertices */

class Node {

friend class Tree;

friend ostream &operator << (ostream &, const Tree &);

protected: /* only visible to derived classes */

Node (void): use (1) {}

// pure virtual

virtual void print (ostream &) const = 0;

virtual “Node (void) {}; // important to make virtual!
private:

int use; /* reference counter */

¥
#endif

12

C++ Tree Interface

e // tree.h

#ifndef _TREE_H
#define _TREE_H
#include "node.h”

/* Describes the Tree edges */

class Tree {

friend class Node;

friend ostream &operator << (ostream &, const Tree &);

public:

Tree (int);

Tree (const Tree &t);

Tree (char *, Tree &);

Tree (char *, Tree &, Tree &);

void operator= (const Tree &t);

virtual “Tree (void); // important to make virtual
private:

Node *ptr; /* pointer to a rooted subtree */
i
#endif

13

C++ Int_Node and Unar_Node
Interface

e // int-node.h

#ifndef INT_NODE_H
#define INT_NODE_H
#include "node.h”
class Int_Node : public Node {
friend class Tree;
private:
int num; /* operand value */
public:
Int Node (int k);
virtual void print (ostream &stream) const;

gb;éendif
e // unary-node.h

#ifndef _UNARY_NODE_H
#define _UNARY_NODE_H
#include "node.h”
class Unary_Node : public Node {
friend class Tree;
public:
Unary_Node (const char *op, const Tree &t);
virtual void print (ostream &stream) const;
private:
const char *operation;
Tree operand;

#endif
14

C++ Binary_Node Interface

e // binary-node.h

#ifndef BINARY_NODE H
#define BINARY NODE H
#include "node.h”

class Binary_Node : public Node {
friend class Tree;

public:
Binary_Node (const char *op, const Tree &t1,
const Tree &t2);
virtual void print (ostream &s) const;
private:
const char *operation;
Tree left, right;
}
#endif

15




Memory Layout for C4++4 Version

(r Y
Ve Node Node Node
PART PART PART
|
1 ptr
— operator operator operator
Tree
—
operand left Ieft
[ (Treeparr) (Treeparr) (Treepar)
!
[
Unary Node
Node =44
Tight
(Tree pnsr) PRk
—
|
1 Node
| PART -
1 Binary
Node
right
1 num (TreeparT)
Ternary
Int_Node Node
. J

e Memory layouts for different subclasses of

C++ Int_Node and Unary_Node

Implementations

e // int-node.C

#include "int-node.h”
Int_Node::Int_Node (int k): num (k) { }

void Int_Node::print (ostream &stream) const {
stream << this->num;

}
e // unary-node.C

#include "unary-node.h”
Unary_Node::Unary_Node (const char *op, const Tree &t1)
: operation (op), operand (t1) { }

void Unary_Node::print (ostream &stream) const {
stream << " (" << this->operation << " "
<< this->operand // recursive call!

Node 1 <«
16 17
C++ Tree Implementation
o // tree.C

C++ Binary_Node

Implementation

e // binary-node.C

#include "binary-node.h”
Binary_Node::Binary_Node (const char *op, const Tree &t1,
const Tree &t2):
operation (op), left (t1), right (t2) { }

void Binary_Node::print (ostream &stream) const {
stream << " (" << this->left // recursive call

<< " << this->operation
<< " " << this->right // recursive call
<< lY)lY;

18

#include "tree.h”
#include "int-node.h”
#include " unary-node.h”
#include " binary-node.h”
#include "ternary-node.h”
Tree::Tree (int num) ptr (new Int_Node (num))
}
Tree::Tree (const Tree &t): ptr (t.ptr)
{ // Sharing, ref-counting.. ++this->ptr->use; }
Tree:: Tree (const char *op, const Tree &t)
. ptr (new Unary_Node (op, t)) {}
Tree::Tree (const char *op, const Tree &t1,
const Tree &t2):
: ptr (new Binary _Node (op, t1, t2)) {}
Tree::"Tree (void) { // Ref-counting, garbage collection
if (--this->ptr->use <= 0)
delete this->ptr;
}
void Tree::operator= (const Tree &t) {
++t.ptr->use;
if (--this->ptr->use == 0) // order important
delete this->ptr;
this->ptr = t.ptr;

19




C++ Main Program

e // main.C

#include <stream.h>
#include "tree.h”

ostream &operator<< (ostream &s, const Tree &tree) {
tree.ptr->print (s); /* Virtual calll */
// (<tree->ptr->vptr[1]) (tree->ptr, s);
return s;

}

int main (void) {
const Tree t1 = Tree ("*”, Tree ("-", 5),
Tree (" 4", 3, 4));
// Tree ("*" Tree ("-", Tree (5)),
// Tree ("4, Tree (3), Tree (4)));

/* prints ((=5) * (3 + 4)) */
cout << t1 << "\n";
const Tree t2 = Tree ("*", t1, t1);

/* prints (((=5) * (3 + 4)) * ((=5) * (3 + 4))) */

cout << t2 << ”"\n"";

/* virtual destructor recursively deletes
entire tree leaving scope */

20

Expression Tree Diagram 1

Binary
Node

Unary
Node

Node

e Expression tree for t1 = ((=5) * (3 + 4))

21

Expression Tree Diagram 2

L .

Binary
Node

p

Unary
Node

Int
Node

e Expression tree for t2 = (t1 * t1)

22

Extending Solution with

Ternary_Nodes

e Extending the existing solution to support
ternary nodes is very straight forward

— J.e., just derived new class Ternary_Node

class Ternary_Node: handles ternary
operators, e.g., a==b 7?7 c: d, etc.

e // ternary-node.h

#ifndef TERNARY_NODE
#define _TERNARY_NODE
#include "node.h”

class Ternary_Node : public Node {
friend class Tree;

private:
const char *operation;
Tree left, middle, right;

public:
Ternary_Node (const char *, const Tree &,
const Tree &, const Tree &);
virtual void print (ostream &) const;

#endif
23




C++ Ternary_Node

Implementation

e // ternary-node.C

#include "ternary-node.h"”
Ternary_Node:: Ternary_Node (const char *op,
const Tree &a,
const Tree &b,
const Tree &c
. operation (op), left (a), middle (b), right (c) {}
void Ternary_Node::print (ostream &stream) const
stream << this->operation << " ("
<< this->left // recursive call

<< """ << this->middle // recursive call
<< """ << this->right // recursive call
<< ” )H ;

}
e // Modified class Tree

class Tree { // add 1 class constructor
// Same as before
public:
// Same as before
Tree (const char *, const Tree &,
const Tree &, const Tree &);

Tree:: Tree (const char *op, const Tree &a,
const Tree &b, const Tree &c):
: ptr (new Ternary_Node (op, a, b, ¢)) {}
24

Differences from C

Implementation

e On the other hand, modifying the original
C approach requires changing:

— The original data structures, e.g.,

struct Tree Node {
enum
NUM, UNARY, BINARY, TERNARY

tag;
// .same as before
unlon
/ szércrj]e as before
a
{ruct
Tree Node *|, *m, *r;
} ternary;

def}lne ternary c.ternary

— and many parts of the code, e.g.,

void print_tree (Tree_Node *root) {
same as before
case TERNARY: /* must be TERNARY */
cout << " (",
print_tree (root- >ternary. 1);
cout << root->op[0];
print_tree (root- >ternary m);
cout << root->op[1];
print_tree (root >ternary r);
cout << ")";
// same as before

25

Summary

e OO version represents a more complete mod-
eling of the problem domain

— e.g., splits data structures into modules that cor-
respond to “objects” and relations in expression
trees

e Use of C++ language features simplify the
design and facilitate extensibility

— e.g., the original source was hardly affected

26

Summary (cont’d)

e Potential Problems with OO approach
— Solution is very “data structure rich”

> e.g., Requires configuration management to han-
dle many headers and .C files!

— May be somewhat less efficient than original C
approach

> e.g., due to virtual function overhead

— In general, however, virtual functions may be no
less inefficient than large switch statements or
if/else chains...

— As a rule, be careful of micro vs. macro optimiza-
tions

> i.e., always profile your code!

27







