The C++4+ Programming

Language

Single and Multiple Inheritance in

C++

Douglas C. Schmidt
www.cs.wustl.edu/~schmidt/
schmidt@cs.wustl.edu

Washington University, St. Louis

Data Abstraction vs. Inheritance

e N
—— DATA ABSTRACTION
(\ = (2 DIMENTIONAL) TN
v/ y o — \ —
([(\\\ s /)
) J \ / S [
N~ s v N
K\ \4///
- \//’\-/“\\ﬁ/
)))
7 / 7 7/
N [K\ [
\;/// \;/’/
RN
) - ~~
— 4 /) _)
o~ \\ k\ [\\ /\
- /
/\ /) N —— \)
{ [S~ /r
N g -
N« ~
\7 - b -
/ u (
k\ [\\ N
N _/ \)
_ . P
~——_/
INHERITANCE
(3 DIMENTIONAL)
\ J

Background

e Object-oriented programming is often de-

fined as the combination of Abstract Data
Types (ADTs) with Inheritance and Dy-
namic Binding

Each concept addresses a different aspect
of system decomposition:

1. ADTs decompose systems into two-dimensional
grids of modules

— Each module has public and private inter-
faces

2. Inheritance decomposes systems into three-dimensional
hierarchies of modules

— Inheritance relationships form a “lattice”

3. Dynamic binding enhances inheritance

— e.g., defer implementation decisions until late
in the design phase or even until run-time!

2

Motivation for Inheritance

Inheritance allows you to write code to
handle certain cases and allows other de-
velopers to write code that handles more
specialized cases, while your code contin-
ues to work

Inheritance partitions a system architec-
ture into semi-disjoint components that
are related hierarchically

Therefore, we may be able to modify and/or
reuse sections of the inheritance hierarchy
without disturbing existing code, e.g.,
— Change sibling subtree interfaces

* i.e., a consequence of inheritance

— Change implementation of ancestors

* i.e., a consequence of data abstraction

4

Inheritance Overview

e A type (called a subclass or derived type)
can inherit the characteristics of another
type(s) (called a superclass or base type)

— The term subclass is equivalent to derived type

e A derived type acts just like the base type,
except for an explicit list of:

1. Specializations

— Change implementations without changing
the base class interface

* Most useful when combined with dynamic
binding

2. Generalizations/Extensions

— Add new operations or data to derived classes

Types of Inheritance

e Inheritance comes in two forms, depend-
ing on number of parents a subclass has
1. Single Inheritance (SI)

— Only one parent per derived class

— Form an inheritance “tree”

SI requires a small amount of run-time over-
head when used with dynamic binding

— e.g., Smalltalk, Simula, Object Pascal
2. Multiple Inheritance (MI)
— More than one parent per derived class

— Forms an inheritance “Directed Acyclic Graph”
(DAG)

— Compared with SI, MI adds additional run-
time overhead (also involving dynamic bind-

ing)

— e.g., C++, Eiffel, Flavors (a LISP dialect)

Visualizing Inheritance

N

j \

\ Derlved i/
\ Derlved i/ \ 4 [
3 { __—"

N U

N ——

I 6

~—_/

Inheritance Trees vs. Inheritance

DAGs
e)
/ -
——
" Base T 1 N
(Derlved X /é } N Derived,’
({
- 2
{ _/
\ 47/\ - \\
(~=_ INHERITANCE 'Derived)
J
(\Derivedl\ TREE — 4 k)
\
)3 -
"
(Base \ /j Base /
(Derlved‘ -
,_l \7
J N
(Derived', INHERITANCE ’Derlved)
)3 DAG (\\ 4 \
S/ N
_ J

Inheritance Benefits Inheritance Liabilities

1. Increase reuse and software quality
) 1. May create deep and/or wide hierarchies
e Programmers reuse the base classes instead of

writing new classes that are difficult to understand and navi-

. gate without class browser tools
— Integrates black-box and white-box reuse by

allowing extensibility and modification with-

out changing existing code .
ging g 2. May decrease performance slightly

e Using well-tested base classes helps reduce bugs

in applications that use them e i.e., when combined with multiple inheritance

and dynamic binding

e Reduce object code size

3. Without dynamic binding, inheritance has
only limited utilit
2. Enhance extensibility and comprehensibil- y v
ity e Likewise, dynamic binding is almost totally use-

. . less without inheritance
e Helps support more flexible and extensible ar-

chitectures (along with dynamic binding)

— i.e., supports the open/closed principle
4. Brittle hierarchies, which may impose de-

e Often useful for modeling and classifying hierarchically- pendencies upon ancestor names
related domains

Key Properties of C++4
Inheritance
Inheritance in C+4++4 e The base/derived class relationship is ex-

plicitly recognized in C+4-+4 by predefined
standard conversions

e Deriving a class involves an extension to — j.e., a pointer to a derived class may always be
. assigned to a pointer to a base class that was
the C++ class declaration syntax inherited publically

* But not vice versa...

e The class head is modified to allow a deriva-

tion list consisting of base classes e When combined with dynamic binding, this
special relationship between inherited class
types promotes a type-secure, polymor-
phic style of programming

e €.4g.,
— i.e., the programmer need not know the actual
type of a class at compile-time

class Foo { /* ... };

class Bar : public Foo { /* ...}; — Note, C++ is not truly polymorphic

class Foo : public Foo, public Bar { /* ...};

* i.e., operations are not applicable to objects
that don't contain definitions of these op-
erations at some point in their inheritance
hierarchy

11 12

Simple Screen Class

e The following code is used as the base
class:

class Screen {

public:
Screen (int = 8, int = 40, char ="' ’);
~Screen (void);

short height (void) const { return this->height_; }
short width (void) const { return this->width_; }

void height (short h) { this->height_ = h; }
void width (short w) { this->width_ = w; }
Screen &forward (void);
Screen &up (void);
Screen &down (void);
Screen &home (void);
Screen &bottom (void);
Screen &display (void);
Screen © (const Screen &);
// -
private:
short height_, width_;
char *screen_, *cur_pos_;

+

13

Multiple Levels of Derivation

e A derived class can itself form the basis
for further derivation, e.g.,

class Menu : public Window {
public:
void set_label (const char *I);
Menu (const Point &, int rows = 24,
int columns = 80,

char default_char ="' ");
// ...
private:
char *label_;
// ..

+

e class Menu inherits data and methods from
both Window and Screen

— j.e., sizeof (Menu) >= sizeof (Window) >= sizeof

(Screen)

15

Subclassing from Screen

e class Screen can be a public base class of

class Window

e €.Jg.,

class Window : public Screen {
public:
Window (const Point &, int rows = 24,
int columns = 80,
char default_char = ' ');
void set_foreground_color (Color &);
void set_background_color (Color &);
void resize (int height, int width);
// ...
private:
Point center_;
Color foreground_;
Color background_;
// .-
h

14

The Screen Inheritance Hierarchy

(_)
J/ \\l
ST — (\POint AN
J B) 2
(| -7 rT—<
~ Screen N -/)
) _ (
‘4)Color :\
\ o/
T~
J RN
. \
(Window 4 \
N | Y
)) » Menu ,
C S E— (
\. J

e Screen/Window/Menu hierarchy

16

Variations on a Screen...

s N
(J/ \1\\ /e ~<
\Sps * N (. ps2: |

JScreen)Screen)
U=
-

7w \\ _ \

N YW]
)Wmdow"\ ~ Menu
D M

_ «
G y,

e A pointer to a derived class can be as-

signed to a pointer to any of its public
base classes without requiring an explicit
cast:

Menu m; Window &w = m; Screen *psl = &w;
Screen *ps2 = &m;
17

Using Inheritance for

Specialization

e A derived class specializes a base class by

adding new, more specific state variables
and methods

— Method use the same interface, even though
they are implemented differently

* [.e., “overridden"

— Note, thereis an important distinction between
overriding, hiding, and overloading...

e A variant of this is used in the template

method pattern

— i.e., behavior of the base class relies on func-
tionality supplied by the derived class

— This is directly supported in C++ via abstract
base classes and pure virtual functions

19

Using the Screen Hierarchy

e €.Jg.,

class Screen { public: virtual void dump (ostream &); = 0

class Window : public Screen {
public: virtual void dump (ostream &);
h

class Menu : public Window {
public: virtual void dump (ostream &);
}

// stand-alone function

void dump_image (Screen *s, ostream &0) {
// Some processing omitted
s->dump (0);
// (*¥s->vptr[1]) (s, 0));

}

Screen s; Window w; Menu m;
Bit_Vector bv;

// OK: Window is a kind of Screen
dump_image (&w, cout);
// OK: Menu is a kind of Screen
dump_image (&m, cout);
// OK: argument types match exactly
dump_image (&s, cout);
// Error: Bit_Vector is not a kind of Screen!
dump_image (&bv, cout);

18

Specialization Example

Inheritance may be used to obtain the fea-
tures of one data type in another closely
related data type

For example, class Date represents an ar-
bitrary Date:

class Date {
public:
Date ﬁlnt m, int d, int y);
virtual void print (ostream &s) const;

private:
int month_, day_, year_;

Class Birthday derives from Date, adding
a name field representing the person’s birth-
day, e.g.,

clagls Birthday : public Date {
pu
Blrthday const char *n, int m, int d, int y
d, y), person_ (strdup (n)) }
~B|rthday (v0|d) { free (perso
wrtual void print (ostream &s) const;

prlvate
const char *person_;

20

}

Implementation and Use-case

e Birthday::print could print the person’s name
as well as the date, e.g.,

void Birthday::print (ostream &s) const {
s << this->person_ << " was born on ";
Date::print (s);
s << "\n";

e €.4d.,

const Date july_4th (7, 4, 1993);

Birthday my_birthday (" Douglas C. Schmidt”, 7, 18, 1962);

july_4th.print (cerr);

// july 4th, 1993

my_birthday.print (cout);

// Douglas C. Schmidt was born on july 18th, 1962

Date *dp = &my_birthday;
dp->print (cerr);

// 7?77 what gets printed 777
// (kdp->vptr[11)(dp, cerr);

21

Using Inheritance for
Extension/Generalization
e Derived classes add state variables and/or

operations to the properties and opera-
tions associated with the base class

— Note, the interface is generally widened!

— Data member and method access privileges may
also be modified

e Extension/generalization is often used to
faciliate reuse of implementations, rather
than interface

— However, it is not always necessary or correct
to export interfaces from a base class to de-
rived classes

23

Alternatives to Specialization

e Note that we could also use object com-

position instead of inheritance for this ex-
ample, e.g.,

class Birthday {
public
Birthday (char *n, int m, int d, int y):
date_ (m, d, y), person_ (n) {}
// same as before
private:
Date date_;
char *person_;

+

e However, in this case we would not be able

to utilize the dynamic binding facilities for
base classes and derived classes

- eg.,

Date *dp = &my_birthday;
// ERROR, Birthday is not a subclass of date!

— While this does not necessarily affect reusabil-
ity, it does affect extensibility...

22

Extension/Generalization

Example

e Using class Vector as a private base class

for derived class Stack

class Stack : private Vector { /* ...*/ };

e In this case, Vector's operator[] may be
reused as an implementation for the Stack
push and pop methods

— Note that using private inheritance ensures that
operator[] does not show up in the interface
for class Stack!

e Often, a better approach in this case is
to use a composition/Has-A rather than
a descendant/Is-A relationship...

24

Vector Interface

] Vector Implementation
e Using class Vector as a base class for a

derived class such as class Checked Vector
or class Ada_Vector

e c.g.,
— One can define a Vector class that implements
an unchecked, uninitialized array of elements template <class T>
of type T Vector<T>::Vector (size_t s): size_ (s), buf_ (new TI[s]) {}

template <class T>

e e.g., /* File Vector.h (incomplete wrt ini- Vector<T>::"Vector (void) { delete [] this->buf_; }

tialization and assignment) */
template <class T> size_t

Vector<T>::size (void) const { return this->size_;
// Bare-bones implementation, fast but not safe () { 4

template <class T>

class Vector { template <class T> T &
public: Vector<T>::operator[] (size_t i) { return this->buf_[il; }
Vector (size_t s);
~Vector (void); int main (void) {
size_t size (void) const; Vector<int> v (10);
T &operator[] (size_t index); v[6] = v[5] + 4; // oops, no initial values
int i = v[v.size ()1; // oops, out of range!
private: // destructor automatically called
T *buf_; }
size_t size_;
+
25 26

Benefits of Inheritance
Checked_Vector Interface

e Inheritance enables modification and/or ex-

?ﬁglsfonuggeAcDoEZ without changing the orig- e The following is a subclass of Vector that

allows run-time range checking:
— e.g., someone may want a variation on the ba-
sic Vector abstraction:

e /* File Checked-Vector.h (incomplete wrt
1. A vector whose bounds are checked on every initialization and assignment) */
reference

struct RANGE_ERROR {
"range_error" (size_t index);

/] ...

2. Allow vectors to have lower bounds other
than O

3. Other vector variants are possible too... }

. . N template <class T>
* e.d., automatically-resizing vectors, initial- . .
ized vectors, etc. class Checked_Vector : public Vector<T> {

public:
Checked _Vector (size_t s);
T &operator[] (size_t i) throw (RANGE_ERROR);

e This is done by defining new derived classes // Vector::size () inherited from base class Vector.
that inherit the characteristics of the Vector protected:
base class bool in_range (size_t i) const;
private:
— Note that inheritance also allows code to be typedef Vector<T> inherited;
shared ¥

27 28

Implementation of

Checked Vector Checked Vector Use-case

e £.4J.,
g ® €.g.,
template <class T> bool
Checked _Vector<T>::in_range (size_t i) const {
return i < this->size ();

#include " Checked_Vector.h”

} typedef Checked_Vector<int> CV_INT,;
template <class T> int foo (int size)
Checked _Vector<T>::Checked_Vector (size_t s) {

. inherited (s) {} try

CV_INT cv (size);

int i = cvicv.size ()1; // Error detected!
// exception raised...

// Call base class destructor

template <class T> T &
Checked _Vector<T>::operator[] (size_t i)
throw (RANGE_ERROR)

{ }
if (this->in_range (i)) catch (RANGE_ERROR)
return (*(inherited *) this)[il; { /* */ 1
// return BASE::operator[](i); }

else
throw RANGE_ERROR (i);

29 30

Design Tip

. . Ada_Vector Interface
e Note, dealing with parent and base classes

— It is often useful to write derived classes that])
do not encode the names of their direct parent e The following is an Ada Vector example,

class or base class in any of the method bodies
v where we can have array bounds start at

— Here's one way to do this systematically: something other than zero
class Base {) o
public: e /* File ada_vector.h (still incomplete wrt
int foo (void); initialization and assignment....)
}.

class Derived_1 : public Base {

include " vector.h”
typedef Base inherited; #*

// Ada Vectors are also range checked!

public: template <class T>
int foo (void inherited::foo (); .
% () Oi} class Ada_Vector : private Checked_Vector<T> {
class Derived 2 : public Derived_1 { public: . .
typedef Derived_1 inherited; Ada_Vector (size_t |, size_t h);
public: T &operator ()(size_t i) throw (RANGE_ERROR)
int foo (void) { inherited::size; // explicitly extend visibility
inherited::foo (); private:
} typedef Checked_Vector<T> inherited,;
+ size_t lo_bnd_;
— This scheme obviously doesn’t work as trans- h

parently for multiple inheritance...

31 32

Ada Vector Use-case

e Example Ada Vector Usage (File main.C)
Ada Vector Implementation

#include <iostream.h>
#include <stdlib.h>

e e.g., class Ada_Vector (cont'd) #include "ada-vector.h

int main (int argc, char *argv[l) {

template <class T> try {
Ada_Vector<T>::Ada_Vector (size_t lo, size_t hi) size_t lower = ::atoi (argv[1]);
. inherited (hi — lo 4+ 1), lo_bnd_ (lo) {} size_t upper = ::atoi (argv[2]1);

Ada_Vector<int> ada_vec (lower, upper);
template <class T> T &
Ada_Vector<T>::operator ()(size_t i) ada_vec (lower) = 0;
throw (RANGE_ERROR) {
i (this->in range (i — this->lo bnd.))] for (size_t i = lower + 1; i <= ada_vec.size (); i++)
return Vector<T>::operator[] (i — this->lo_bnd_); ada_vec (i) = ada.vec (i — 1) + 1:
// or Vector<T> &self = *(Vector<T> *) this; N B '
// selfli — this->lo_bnd_1;
else // Run-time error, index out of range

throw RANGE ERROR (i); ada.vec (upper + 1) = 100;

// Vector destructor called when
// ada_vec goes out of scope

}
catch (RANGE_ERROR) { /* ...*/ }

33 34

Memory Layout

e Memory layouts in derived classes are cre- Base Class Constructor

ated by concatenating memory from the
base class(es)

e Constructors are called from the “bottom

— e.g., // from the cfront-generated .c file
up71
struct Vector {
T *buf__6Vector,;

i _t si __6Vector; w“ "
sizet size_6Vector; e Destructors are called from the “top down

h
struct Checked_Vector {
T *buf__6Vector,;

size_t size__6Vector; *eg.,
e
struct Ada_Vector { /* Vector constructor */
T *buf__6Vector; // Vector struct Vector *
size_t size__6Vector; // part __ct_6VectorFi (struct Vector *_0this, size t _0s) {
size_t lo_bnd__10Ada_Vector; // Ada_Vector if (__Othis || (__Othis =
¥ __nw__FUi (sizeof (struct Vector))))

((--Othis->size__6Vector = __0s),
(_-Othis->buf__6Vector =
__nw__FUi ((sizeof (int)) * __0s)));
return __Othis;

e The derived class constructor calls the base
constructor in the “base initialization sec-
tion,"” i.e.,

Ada_Vector<T>::Ada_Vector (size_t lo, size_t hi)

. inherited (hi — lo 4 1), lo_bnd_ (lo) {}
35 36

Derived Class Constructors

Destructor
® €.g.,
/* Checked_Vector constructor */ e Note, destructors, constructors, and as-
struct Checked Vector *__ct_14Checked_VectorFi (signment operators are not inherited
struct Checked_Vector *__Othis, size_t __0s) {
if (__Othis || (__Othis =
--nw__FUi (sizeof (struct Checked_ Vector)))) e However, they may be called automati-
__Othis = __ct__6VectorFi (__0Othis, __0s); cally were necessary, e.g.,
return __Othis;
¥ char __dt__6VectorFv (

/* Ada_Vector constructor */

% .
struct Ada_Vector *__ct__10Ada_VectorFiT1 (struct Vector *_Othis, int _0_free) {

struct Ada_Vector *__Othis, size_t __0Olo, size_t __Ohi) { " (__Ot;ls)FLV ((char *) _Othis->buf__6Vector);
if (__Othis || (__Othis = it (_othis) - - ’

__nw__FUi (sizeof (struct Ada_Vector))))
if (((__Othis = __ct__14Checked_VectorFi (__Othis,

__0hi — _0lo 4+ 1)))) }
__Othis->lo_bnd__10Ada_Vector = __0lo;

if (_0_free & 1)
__dI__FPv ((char *) __0Othis);

return __Othis; }
}
37 38
Describing Relationships Between
Classes
e Consumer/ Composition/Aggregation Has-A vs. Is-A Relationships
— A class is a consumer of another class when
it makes use of the other class's services, as (h
defined in its interface CONSUMER [~ ~~~, DESCENDANT
RELATIONSHIP (/ l\ RELATIONSHIP
* For example, a Stack implementation could —— \Vector
rely on an array for its implementation and // \I
thus be a consumer of the Array class
v \> Stack \>
— Consumers are used to describe a Has-A rela- S
tionship ——
<
\/ |
\/Vector\
_
e Descendant/Inheritance/Specialization S N
— A class is a descendant of one or more other L)

classes when it is designed as an extension or
specialization of these classes. This is the no-
tion of inheritance

— Descendants are used to describe an Is-A rela-
tionship

39 40

Interface vs. Implementation

Inheritance

e Class inheritance can be used in two pri-
mary ways:

1. Interface inheritance: a method of creating a
subtype of an existing class for purposes of set-
ting up dynamic binding, e.g.,

— Circle is a subclass of Shape (i.e., Is-A rela-
tion)

— A Birthday is a subclass of Date

2. Implementation inheritance: a method of reusing

an implementation to create a new class type

— e.g., a class Stack that inherits from class
Vector. A Stack is not really a subtype or
specialization of Vector

— In this case, inheritance makes implementa-
tion easier, since there is no need to rewrite
and debug existing code.
% This is called “using inheritance for reuse”

* i.e., a pseudo-Has-A relation

41

Private vs Public vs Protected

Derivation

e Access control specifiers (i.e., public, pri-
vate, protected) are also meaningful in
the context of inheritance

e In the following examples:

— <....> represents actual (omitted) code

— [....]1 is implicit

e Note, all the examples work for both data
members and methods

43

The Dangers of Implementation

Inheritance

e Using inheritance for reuse may sometimes
be a dangerous misuse of the technique

— Operations that are valid for the base type may
not apply to the derived type at all

* e.d., performing an subscript operation on a
stack is a meaningless and potentially harm-
ful operation

class Stack : public Vector {

/] ...
}.

Stack s;
s[10] = 20; // could be big trouble!
— In C+4++4, the use of a private base class mini-
mizes the dangers

* [.e., if a class is derived “private,” it is illegal
to assign the address of a derived object to
a pointer to a base object

— On the other hand, a consumer/Has-A relation
might be more appropriate. ..

42

Public Derivation

® €.4g.,

class A {
public;
<public A>
protected:
<protected A>
private:
<private A>

}

class B : public A {
public:
[public A]
<public B>
protected:
[protected Al
<protected B>
private:
<private B>

+

a4

Private Derivation Protected Derivation

e €.4d., e €0,
class A { class A {
public;: public;:
<public A> <public A>
private: protected:
<private A> <protected A>
protected: private:
<protected A> <private A>
i i
class B : private A { // also class B : A class B : protected A {
public: public:
<public B> <public B>
protected: protected:
<protected B> [protected Al
private: [public A]
[public Al <protected B>
[protected Al private:
<private B> <private B>
h h
45 46

Summary of Access Rights

Other Uses of Access Control
e The following table describes the access
rights of inherited methods Specifiers

— The vertical axis represents the access rights

of the methods of base class e Selectively redefine visibility of individual

methods from base classes that are de-

— The horizontal access represents the mode of rived privately
inheritance
INHERITANCE class A {
ACCESS public:
; LA int f ();
M A | public | pub | pro | pri | int g
EC -
M C | protected | pro | pro | pri |
BE private:
E S | private | n/a | n/a | n/a | int p_;
RS]
P p P b
u r r
b o i B -
1 t v class_ B : private A {
public:
A::f; // Make public
protected:

A:g_; Mak tected
e Note that the resulting access is always ¥ 9-i // Make protecte

the most restrictive of the two

47 48

Common Errors with Access

Control Specifiers

e It is an error to ‘“increase” the access of

an inherited method in a derived class
— e.dg., you may not say:

class B : private A {
// nor protected nor public!
public:
A::p_; // ERROR!
h

e It is also an error to derive publically and

then try to selectively decrease the visibil-
ity of base class methods in the derived
class

— e.dg., you may not say:
class B : public A {
private:

A::f, // ERROR!
}

49

Caveats

e Using protected methods weakens the data

hiding mechanism since changes to the
base class implementation might affect all
derived classes. e.g.,

class Vector {
public:
//. ..
protected:
// allow derived classes direct access
T *buf_;
size_t size_;
h
class Ada_Vector : public Vector {
public:
T &operator[] (size_t i) {
return this->buf_[i];

// Note the strong dependency on the name buf_

However, performance and design reasons
may dictate use of the protected access
control specifier

— Note, inline functions often reduces the need
for these efficiency hacks...

51

General Rules for Access Control

Specifiers

e Private methods of the base class are not
accessible to a derived class (unless the
derived class is a friend of the base class)

e If the subclass is derived publically then:

1. Public methods of the base class are accessible
to the derived class

2. Protected methods of the base class are acces-
sible to derived classes and friends only

50

Overview of Multiple Inheritance

in C4++

o C++ allows multiple inheritance

— j.e., a class can be simultaneously derived from
two or more base classes

- edg.,
class X { /* ¥/ };
class Y : public X { /* */ };
class Z : public X { /* ¥/ };
class YZ : public Y, public Z { /* */ };

— Derived classes Y, Z, and YZ inherit the data
members and methods from their respective
base classes

52

Multiple Inheritance Illustrated

. N

(TN —

) Base) . - (\

Y (NON-VIRTUAL '\ Base

N\

\ _://a’ INHERITANCE ~ +___ [
\ S 0

Derlved /\\Derlved) \\Del‘lved(\

\ 1))
A ¥ %ﬁ\ 2
- L -
/ Base /
VIRTUAL
INHERITANCE
y -
Derlved \\Derwe a7 \Derlved N
\ \ \ .)
- / < 12 /v B
- J
53

Motivation for Virtual Base

Classes

Consider a user who wants an Init_Checked Vector:

class Checked_Vector : public virtual Vector

{/*.... %/ };
class Init_Vector : public virtual Vector
{/*.... %/ };

class Init_Checked_Vector :
public Checked_Vector, public Init_Vector

{/%.... %/}
In this example, the virtual keyword, when

applied to a base class, causes Init_Checked_Vector
to get one Vector base class instead of two

55

Liabilities of Multiple Inheritance

e A base class may legally appear only once
in a derivation list, e.g.,

— class Two_Vector : public Vector, public Vec-
tor // ERROR!

e However, a base class may appear multiple
times within a derivation hierarchy

— e.g., class YZ contains two instances of class

e This leads to two problems with multiple
inheritance:

1. It gives rise to a form of method and data
member ambiguity

— Explicitly qualified names and additional meth-
ods are used to resolve this

2. It also may cause unnecessary duplication of
storage

— “Virtual base classes” are used to resolve
this

54

Overview of Virtual Base Classes

e Virtual base classes allow class designers
to specify that a base class will be shared
among derived classes

— No matter how often a virtual base class may
occur in a derivation hierarchy, only “one"” shared
instance is generated when an object is instan-
tiated

* Under the hood, pointers are used in derived
classes that contain virtual base classes

e Understanding and using virtual base classes
correctly is a non-trivial task since you
must plan in advance

— Also, you must be aware when initializing sub-
classes objects...

e However, virtual base classes are used to
implement the client and server side of
many implementations of CORBA distributed
objects

56

Virtual Base Classes Illustrated

e — N
Vector 7 -
o veetor - NON-VIRTUAL \\\Vector S
A\
N 7/ INHERITANCE S /
A v
\ S= (. ~_ ~=7 /
) ~Checked , y Init \\Checked\\
~ Vector / Checked | Vector
R \Vector SN
/Vector /
VIRTUAL
. INHERITANCE
/
/ Checked/ \(\ Inlt \ < Checked ‘)
\\Ve“"r; UChecked |\ Vector,©
- Vector | ==
\ i y,
57

Vector Interface Revised

e The following example illustrates templates,
multiple inheritance, and virtual base classes
in C++

#include <iostream.h>
#include <assert.h>
// A simple-minded Vector base class,
// no range checking, no initialization.
template <class T>
class Vector
{
public:
Vector (size_t s): size_ (s), buf_ (new TI[sl) {}

T &operator[] (size_t i) { return this->buf_[il; }

size_t size (void) const { return this->size_; }
private:

size_t size_;

T *buf;

59

Initializing Virtual Base Classes

e With C++ you must chose one of two
methods to make constructors work cor-
rectly for virtual base classes:

1. You need to either supply a constructor in a
virtual base class that takes no arguments (or
has default arguments), e.g.,

Vector::Vector (size_t size = 100); // has problems...

2. Or, you must make sure the most derived class
calls the constructor for the virtual base class
in its base initialization section, e.g.,

Init_Checked _Vector (size_t size, const T &init):
Vector (size), Check_Vector (size),
Init_Vector (size, init)

58

Init_Vector Interface

e A simple extension to the Vector base class,

that enables automagical vector initializa-
tion

template <class T>
class Init_Vector : public virtual Vector<T>

{
public:
Init_Vector (size_t size, const T &init)
. Vector<T> (size)
{
for (size_t i = 0; i < this->size (); i++)
(*this) [i]1 = init;
}
// Inherits subscripting operator and size().
}

60

Init_Checked Vector Interface and

Checked_Vector Interface Driver
_) e A simple multiple inheritance example that
e A simple extension to the Vector base class provides for both an initialized and range
that provides range checked subscripting checked Vector
template <class T>
template <class T> L class Init_Checked_Vector : .
class Checked_Vector : public virtual Vector<T> blpub"c Checked_Vector<T>, public Init_Vector<T> {
public:
{ o Init_Checked_Vector (size_t size, const T &init):
public: }/etct\(;r<:[r> size), | it)
Checked_Vector (size_t size): Vector<T> (size) {} nit_vector< 1> (size, Init),
. - Checked_Vector<T> (size
T &operator[] (size_t i) throw (RANGE_ERROR) { // Inherits Checked_Vect(()r::oz)el]:ator[]
if (this->in_range (i)) i

return (*(inherited *) this)[il;

else throw RANGE_ERROR (i); e Driver program

// Inherits inherited::size. int mt?,';‘ (int argc, char *argv(l) {

private: size,’% _sizte = ::atto'i ((argv[[zlj]));
. . size_t init = ::atoi (argv ;
typedef Vector<T> inherited; Init_Checked_Vector<?nt> V (size, init);
cout << "vector size =" << v.size ()

. .) << ", vector contents = ";
bool in_range (size_t i) const {

return i < this->size (); for (%:igSEtJ:v([)i;]-i < v.size (); i++)

}

} "

cout << "\n" << ++v[v.size () — 1] << "\n";
catch (RANGE_ERROR
{7%...%/}

61 62

Multiple Inheritance Ambiguity Summary

e Consider the following:

e Inheritance supports evolutionary, incre-
struct Base_1 { int foo (void); /* */ }; _
struct Base 2 { int foo (void): /* ... */ }. mental development of reusable compo
struct Derived : Base 1, Base 2 { /* */ }; nents by specializing and/or extending a
int main (void) { general interface/implementation

Derived d;
d.foo (); // Error, ambiguous call to foo ()

e Inheritance adds a new dimension to data
abstraction, e.g.,
e There are two ways to fix this problem:

— Classes (ADTs) support the expression of com-

1. Explicitly qualify the call, by prefixing it with monality where the general aspects of an ap-
the name of the intended base class using the plication are encapsulated in a few base classes
scope resolution operator, e.g.,
d.Base_1::foo (); // or d.Base_2::foo () — Inheritance supports the development of the

application by extension and specialization with-

2. Add a new method foo to class Derived (similar out affecting existing code. ..

to Eiffel’s renaming concept) e.g.,

struct Derived : Base_1, Base 2 {

int f id . e
" OBOaS(Zf)ll::zog (): // either, both e Without browser support, navigating through

Base 2::foo (); // or neither complex inheritance hierarchies is difficult. ..

63 64

