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This paper has been submitted to @& USENIX Confer- 1. Defining standard higher-level programming abstrac-
ence on Object-Oriented Technologies and Systems (COOTi®)s, such as distributed object interfaces, that provide loca-
San Antonio, Jan/Feb, 2001. tion transparency to clients and server components;

2. Shielding application developers from low-level con-
current network programming details, such as connection
Abstract management, data transfer, parameter (de)marshaling, end-

. ) , ) . point and request demultiplexing, error handling, multi-
Distributed object computing (DOC) middleware shields dﬁireading and synchronization; and
velopers from many tedious and error-prone aspects of pro—3 Amortizing software lifecvele costs by leveraging pre-
gramming distributed applications. Without proper support ~° 9 Y y ging p

from the middleware, however, it can be hard to evolve digous development expertise and capturing implementations

tributed applications after they are deployed. Therefore, Docé key design patterns in reusable middleware frameworks and

: . ._common services.
middleware should support meta-programming mechanisms,

such as smart proxies and interceptors, that improve the addpt-the case of standards-based DOC middleware, such as
ability of distributed applications by allowing their behaviolCORBA [2], these capabilities are realized via an open spec-
to be modified without drastically changing existing softwaréfication process. The resulting products can interoperate

This paper presents three contributions to the study of meggross many OS/network platforms and many programming
programming mechanisms for DOC middleware. First, it ilanguages [3].
lustrates, compares, and contrasts several meta-programmingo date, CORBA middleware has been used successfully to
mechanisms from an application developer’s perspective. Seigable developers to create applications rapidly that can meet a
ond, it outlines the key design and implementation challengigsticular set of requirements with a reasonable amount of ef-
associated with developing smart proxies and portable inté@rt. CORBA has been less successful, however, at shielding
ceptors features for CORBA. Third, it presents empirical réevelopers from the effects of changing requirements or en-
sults that pinpoint the performance impact of smart proxiggonmental conditions that occur late in an application’s life-
and interceptors. Our goal is to help researchers and develdycle,i.e., during deployment and/or at run-time. In this paper,
ers determine which meta-programming mechanisms best tigrefore, we describe and qualitatively compare the following
their application requirements. two meta-programming mechanisms:

e Smart proxies,which are application-provided stub im-
plementations that transparently override the default stubs cre-
1 Introduction gteq by an ORB to customize client behavior on a per-interface
asis.

Motivation: Developers of distributed applications face ® Intérceptors, which are objects that an ORB invokes in
many challenges stemming from inherent and accidental cdfft Path of an operation invocation to transparently monitor or
plexities, such as latency, partial failure, and non-portable Ioledify the behavior of the invocation.
level OS APIs [1]. The magnitude of these complexities, comhese two meta-programming mechanisms can be used to
bined with increasing time-to-market pressures, make it &onfigure new or enhanced functionality into CORBA appli-
creasingly impractical to develop distributed applications frogations with minimal impact on existing software. The mate-
scratch. Commercial-off-the-shelf (COTS) distributed objegh| presented in this paper is based on our experience imple-
gomputing (DOC) middleware helps address these challengfting and using smart proxies and interceptors in TAO [4],
y:



which is a open-source, CORBA-complaint ORB designed toe Certain remote operations may require additional param-
support applications with demanding quality-of-service (QoS) eters in order to execute securely in a particular environ-
requirements. ment.

e The priority at which clients invoke or servers handle a
request may vary according to environmental conditions,
such as the amount of CPU or network bandwidth avail-
able at run-time.

Paper organization: The remainder of this paper is struc-
tured as follows: Section 2 presents an overview of two
meta-programming mechanisnssaart proxiesandintercep-
tors; Section 3 presents several programming examples illus-
trating the use of smart proxies and interceptors; Section 4n applications based on traditional CORBA middleware
describe the patterns that (1) guide the architecture of TA@Jgh fixed stubs/skeletons, these types of changes often re-
smart proxy and interceptor mechanisms and (2) resolve kgjre re-engineering and re-structuring of existing application
design challenges; Section 5 illustrates the performance claftware. One way to minimize the impact of these changes
acteristics of TAO’s smart proxy and interceptor mechanisnis;ito devisemeta-programming mechanisnisat applications
Section 6 compares our work with related research; and Sesn use to adapt to various types of changes with little or no
tion 7 presents concluding remarks. modifications to existing software. For example, stubs, skele-
tons, and certain points in the end-to-end operation invocation
path can be treated aseta-object$7], as shown in Figure 1.

2 Overview of Smart Proxies and In- As shown in this figure, a stub implemented as a meta-object
terceptors

X in args (@] bjeCt
Client (Servant)
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DOC middleware providestubandskeletormechanisms that
serve as a “glue” between the client and servants, respec-

tively, and the ORB. For example, CORBA stubs implement | meta-object oS
the Proxy pattern [5] and marshal operation information and e ORB

data type parameters into a common request format. Likewise, Interfaces A
CORBA skeletons implement thdapterpattern [5] and de- [ POA J
marshal the common request format back into typed parame- 3

ters and operation information that are meaningful to a Serve | transport protocol e Transport protocol
. . meta-object Ofe meta-object
application.

Stubs and skeletons can be generated automatically from
schemas defined using some type of interface de_finition I%'i‘g‘ure 1: Interactions Between Requests and Meta-objects
guage (IDL). For example, an CORBA IDL compiler transgpq-to-End
forms OMG IDL definitions into stubs and skeletons writ-
ten using a particular programming language, such as C+4c@h act in conjunction with other interception meta-objects to
Java. In addition to providing programming language and platansform and transmit a client operation invocation across the
form transparency, IDL compilers eliminate common sourcgstwork to a server. Various meta-objects on the server’s re-
of network programming errors and provide opportunities fquest processing path can then reconstruct the original opera-
automated compiler optimizations [6]. tion invocation. Server meta-object’s are also responsible for
Traditionally, the stubs and skeletons generated by an OMéhding the result(s) of the invocation back to the client.
IDL compiler arefixed i.e., the code emitted by the IDL com- If all remote operation invocations are passed through meta-
piler is determined at translation time. This design shields ajbjects, certain aspects of application and middleware behav-
plication developers from tedious network programming dier can adapt transparently when system requirements and en-
tails needed to transmit client operation invocations to serv&monmental conditions change by simply modifying the be-
object implementations. Fixed stubs and skeletons mak&avior of the meta-objects. To change meta-object behav-
hard, however, for applications to adapt readily to certain tygess, the DOC middleware can either (1) provide modified
of changes in their requirements or environmental conditionseta-objects for the client or (2) embbdoksimplementing
such as the following: a meta-object protoco{]MOP) in the meta-objects to invoke
operations that provide customized behavior for meta-objects
e The need to monitor system resource utilization may nmsed on the data passed by the meta-objects. In the context
be recognized until after an application has been d#-CORBA, customized meta-objects are calldart prox-
ployed. iesand other meta-objects that implement the MOP are called

out args + return value

Server-side
meta-object

Client-side




interceptors The registration of smart proxies are not yet standardized in
CORBA, though many ORBs support this feature. In ORBs

2.1 Overview of Smart Proxies with smart proxy support they can be used as pluggable meta-
objects that are cognizant of their target objects. This design

Many CORBA application developers use the default fixedlows developers to modify the behavior of interfaces without

stubs generated by an IDL compiler without concern for haw-implementing client applications or target objects.

they are implemented. There are situations, however, where

default stub behavior is inadequate. For example, an applica- ]

tion developer may wish to change the stub code transparedig  Overview of Interceptors

to . . .
As described above, smart proxies are a meta-programming

¢ Perform application-specific functionality, such as lognechanism that increases the flexibility of client applications.
ging; Are another common meta-programming mechanism used in
e Add parameters to a request; DO.C.r.niddIeware gre’mterceptors which hglp increase the
flexibility of both client and server applications. In CORBA,
nﬂ"@érceptors are meta-objects that stubs, skeletons, and certain
points in the end-to-end operation invocation path can invoke
¢ Supportadvanced quality-of-service (QoS) features, sustpredefined “interception points.”

e Cache requests or replies to enable batch transfer or
imize calls to a remote target object, respectively;

as load balancing and fault-tolerance; or The interceptor specification defined prior to CORBA 2.3.1
e Enforce security mechanisms, such as authentication d&as not portable. Therefore, the interceptors discussed in
tificates. this paper are based on the “Portable Interceptors” specifica-

. . . _ tion [8], which currently being ratified by the OMG. Several
To support these capabilitiesthoutmodifying existing client 1y nheg of interceptors are defined in the CORBA Portable In-
code, applications must be able to override the default Sﬂégceptor specification. They can be divided into two major
|mplement<_':1t|ons. These_ application-defined stubs are _Caﬂ‘é?egories: (1yequest interceptor¢hat deal with operation
smart proxies In ORBs with smart proxy support, a stub is g ocations and (2)OR interceptorsthat insert information

meta-object that acts as the proxy to the “real” target objecing interoperable object references (IORs), both of which are
The two main entities in smart proxy designs are (1) thescribed below.

smart proxy factory and (2) the smart proxy meta-object,
which are shown in Figure 2. When using a smart proxy
2.2.1 Request Interceptors

CLIENT L The request interception points defined in the Portable Inter-
reaes operation() ceptor specification are shown in Figure 3. Interception points
SMART OBJECT occur in multiple parts of the end-to-end invocation path, in-

PROXY out args + return value (SERVANT) 1 H i H
5 cluding when an object is created, when a client sends a re-

- o 3

guest, when a server receives a request, when a server sends a
reply, and when a client receives a reply.

IDL
DEFAULT ORB [ REAL-T.ME] A server ORB has an additional interception point called

creates

proxy || INTERFACE TER receive _request _service _contexts , which is in-
voked by a POA before it dispatches a servant manager. This

; ORB CORE j interception point helps reduce the overhead of making unnec-
essary upcalls to a servant. For example, in the CORBA Secu-
Figure 2: TAO’s Smart Proxy Model rity Service framework this interceptor can be used to inspect

security-related credentials piggybacked in a service context
to modify the behavior of an interface, the developer implést entry. If the credentials are valid the upcall will occur; if
ments the smart proxy class and registers it with the ORBt, an exception will be returned to the client.
After installing the smart proxy factory, the ORB automati- Request interceptors can be decomposed dalint re-
cally uses the application-supplied factory to create object rgtiestinterceptors anderver requesinterceptors, which are
erences when thenarrow operation of an interface is in-designed to intercept the flow of a request/reply sequence
voked. Thus, if smart proxies are installed before a client dbrough the ORB at specific points on clients and servers, re-
cesses these interfaces, the client application can transparespifctively. Developers can install instances of these intercep-
use the new behavior of the proxy returned by the factory. tors into ORB via an IDL interface defined by the Portable



Accessing request information: Request interceptors can

R access various information associated with an invocation, such
mares A as the operation name, parameters, exception lists, return val-
CLIENT Speration () OBJECT ues, and the request id via the ORB interface. Interceptors
‘outargs + return value. (SERVANT) cannot however, modify parameters or return values. This
4 SERVER REQUEST " request/rgply information is encapsqlated in an mstqnce of a

INFO MANAGER class derived fronRequestinfo , which contains the infor-

DL mation listed above, per-invocation.
SN For example, client request interceptors are passed
OIS, OREED AR ClientRequestinfo and server request interceptors are
. 1 passedServerRequestinfo . TheseRequestinfo -

52

PORTABLE INTERCEPTOR API :

Dynamic module. This module is a combination of pseudo-
IDL types, such aRRequestContext and Parameter ,
declared in earlier CORBA specifications. These types fa-

] derived objects can use features provided by the CORBA

v

1) send request()/send poll{() cilitate on-demand access of request information from the
2) receive request service context () H H H

3) receive request()freceive poll () Requestinfo  to avoid unnecessary pverhegd if an inter-
4) send reply()/send exception()/send other () ceptor does not need all the information available with the

5) receive reply()/receive exception()/
receive other ()

Requestinfo

Figure 3: Request Interception Points in the CORBA Portallervice context manipulation: Although request intercep-
Interceptor Specification tors cannot change parameters or the return value of an oper-
ation, they can manipulatervice contextthat propagate be-
tween the clients and servers. Service contexts are messages
Interceptor Specification. Irrespective of the type of the ithat can be piggybacked in operation requests and replies to
terface or the operation that is being invoked, after requésghange “out-of-band” information, such as authentication
interceptors are installed they will be called everyopera- credentials, transaction contexts, operation priorities, or poli-
tion invocation at the pre-determined ORB interception poirfties associated with requests.
shown in Figure 3. Different hook methods will be called Each service context entry has a unique service context id
at different points in the interceptor chain, howeverg, that applications and CORBA components can use to extract
the send _request  hook is called on the client before théhe appropriate service context. For example, the CORBA
request is marshaled and theceive _request hook is Security Service uses interceptors to insert user identity via
called on the server after the request is demarshaled. request service contexts. Likewise, the CORBA Transaction

The behavior of an interceptor can be defined by an a%erv'ice uses .interceptors to insert transaction-related infgrma—
plication developer. An interceptor can examine the stateli@n into service contexts so it can perform extra operations,
the request that it is associated with and perform various 8#¢h @s commit/rollback, based on the operation results in a
tions based on the state. For example, interceptors can in/éfBsaction.
other CORBA operations, access information in a request, iication forwarding: Request interceptors can be used to
sert/extract piggybacked messages in a request’s service ¢fvard a request to a different location that may or may not
text list, redirect requests to other target objects, and/or thrgw known to the ORE priori. This is done via the standard
exceptions based on the object the original request is invokedRBA ForwardRequest  exception, which allows an in-
upon and the type of the operation. Each of these capabilii@geptor to inform the ORB that a retry should occur upon the
is described below: new object indicated in the exception. The exception can also

indicate whether the new object should be used for all future
Nested invocations: A requestinterceptor can invoke operanvocations or just for the forwarded request.
tions on other CORBA objects before the current invocation itSince theForwardRequest exception can be raised at
is intercepting completes. Monitoring and debugging utilitiesost interception points, it can be used to provide fault tol-
can take advantage of this feature to log information assagiance and load balancing. The replicated IOR can be used
ated with each operation invocation. Naturally, care must &g the forward object in this exception. When the object dies
taken when implementing nested invocations in an intercepfimr some reason, and this is notified to the interceptor by some
to act only on targeting objects that it intends to affect and rlling mechanism, this exception can be raised even before
cause infinite recursion. the POA tries to make an upcall. The “permanent” flag can be



used to set the replicated IOR as the one to which all future implementation portability. The Portable Interceptors specifi-
vocations will be made, thereby providing the building bloclsation resolves this problem by definif@R interceptors

to improve application fault tolerance [9, 10]. IOR interceptors are objects invoked by the ORB when it
Multiple interceptors: Multiple interceptors can be regis-Créates IORs in order to allow the IOR to be customizeg,

interceptor is handled according to the following rules: ~ access operation-related information \iequestinfo s,
whereas IOR interceptors access IOR-related information via

¢ Only one starting interception point can be called for 4@RInfo s. Figure 4 illustrates the lifecycle of IOR intercep-

invocation; tors.
¢ Only one ending interception point can be called for an 1. Create object
invocation;
IOR contains Server ORB
¢ There can be multiple intermediate interception points; Interceptor Comporent
e Intermediate interception points cannot be invoked in Repository / e
case of an exception; & -
L . . . . i & g
e The ending interception point will be called only if the 3 59@ .. g8
. . . . . c N - ¢ £
starting interception point runs to completion. 3 ,Véy\@ ¥
Multiple interceptors are invoked using a flow-stack model. 5. add ior P

When initiating an operation invocation, an interceptor is IORInterceptor component ™
pushed into the stack after it completes successfully. When the

invocation returns, the interceptors are popped off the stack Figure 4: IOR Interceptors
and invoked in reverse order. The flow-stack model ensures
that only interceptors that have “seen” the operation can pro-

cess the reply/exceptions. . . )

: . : 2.3 Evaluating Alternative Meta-Programming
Exception handling: Request interceptors can affect the Mechani for ORB Middl
outcome of a request by raising exceptions in the inbound or echanisms tor Iddleware
outbound invocation path. In such cases, sead -other  \e have presented an overview of smart proxies and inter-
operation is invoked on the reply path to the client and is rgsptors above. We now evaluate these two mechanisms, and
ceived at the clientin theeceive  _other  interceptor hook. then compare and contrast them with other meta-programming
On asynchronous calls, the reply does not immediately fgdachanisms, such as pluggable protocols and servant man-

low the request, so theceive _other interceptor hook is agers, that are provided by most CORBA implementations.
called. To cater to specific cases, such as time-independent in-

vocation (TII), the interceptor hoosend _poll is called by
the client ORB. For example, a Tll application can poll for
response to a request sent previously by the client, which Gnart proxies and interceptors are similar in that they can be

%.3.1 Smart Proxies vs. Interceptors

be obtained by theend _poll interceptor hook. used to extend ORB-mediated invocations and functions. They
differ, however, in their architecture and have their own pros
2.2.2 IOR Interceptors and cons, as described below.

Intent: A smart proxy can be used for a variety of purposes,
such as improving performance via caching, whereas inter-

able object reference (IOR). When an IOR is created, tag &tors are used primarily to (1) audit and verify information

components provide a placeholder for an ORB to store ex gng the invocation path and (2) redirect the operation if nec-

information pertinent to the object. This information can CO’??SSC%W(;rggrtﬁnstsgf%?; IIhaenFlgi :TS];EZ‘:IL?]’ean gﬁrceﬁiﬂ Cf:)n_
tain various types of QoS information dealing with securit IScov ' . e upcall, which p
ides an opportunity for redirecting the operation.

server thread priorities, network connections, CORBA poli-

cies, or other domain-specific information. Scope of control: A different smart proxy can be configured
The original IIOP 1.1 specification provided no standaffir €ach operation, whereas the same set of interceptors will

way for applications or services to add new tagged comp$ invoked aall the ORB mediated points of an invocation.

nents into an IOR. Services that require this field were thekdkewise, a smart proxy is a client mechanism, whereas inter-

fore forced to use proprietary ORB interfaces, which impedggptors are invoked on the request path from client-to-server
and on the reply path from server-to-client.

IIOP version 1.1 introduced an entity calledcamponent
which contains a list ofagged cormonens in an interoper-

5



whenever an operation is invoked on a stub, whereas intercep-
tors are invoked at many points, including at the IOR creation
time, before call is sent by the POA to the servant, etc.

Invocation points: A smart proxy invocation point occurs Servants
k g

invoke

Cardinality: A client proxy can have only a single smart
proxy, whereas multiple interceptors can be registered with the
ORB and will be invoked in FIFO registration order. [ Server ORB J

Modifiability: ~ Since smart proxies replace default ORB. : .
generated stubs completely, smart proxies can modify the iure 5: Using a Servant Locator in the CORBA Component
rameters or results of an operation. In contrast, the Porta gdel

Interceptor specification does not allow interceptors to change

operation parameters or return values. As a consequence, they are more tightly coupled with servant

Overhead: A smart proxy mechanism incurs a single extigplementations than are interceptors.

method call per-operation, whereas interceptors can incur ad-

ditiqnal overhead to access r_equest infqrmation bgcause infog 5 Pluggable Protocols Frameworks

mation related to the requestis bundled iatys , which have

higher overhead for their insertion and extraction operationdnother type of meta-programming mechanisms provided

Standardization: Smart proxies have not yet been standarBy skome DoC r;:iddlefware arplkuggable F:rOtﬁCOIS fr?me-
ized in the CORBA specification. CORBA interceptors will H&/Or s[11, 12]. These frameworks decouple the ORB's com-

portable shortly, as soon as the Portable Interceptor specifl@%\'—n'cat'or.] prptocols from its component archltecturg, thereby
tion is ratified as a CORBA standard. allow application developers to add new protocols without re-

quiring application changes.

In general, design problems that require pre-invocationFigure 6 illustrates TAO's pluggable protocols framework,
extensions are well-suited for smart proxies. Converselyhich allows developers to install new protocols into the
portable interceptors provide a suitable solution for applic@RB by implementing customized pluggable protocol objects.
tions that require a semantically richer, yet somewhat maigyher-level application components and CORBA services
expensive, meta-programming abstraction.

IN ARGS

O———»
CLIENT operation (args) OBJECT (SERVANT)
4+—O
2 . 3 . 2 Servant M anage rs OUT ARGS & RETURN VALUE ( GRS ADAETER

OTHER

ORB MESSAGING COMPONENT ORB CORE
SERVICES
REAL-TIME MULTICAST EMBEDDED POLICY

IoP 0P IoP ORB MESSAGE CONTROL
l ESIOP FACTORY CCONNECTION

The CORBA POA specification [2] allows server applicationf
to registerservant manageobjects that activate servants orj
demand, rather than creating all servants before listening

requests. There are two types of servant managers in CORE

GIOPuTE

MANAGEMENT

i ORB TRANSPORT PROFILE
ADAPTER FACTORY
RELIABLE, MANAGEMENT
TCcP BYTE-STREAM UDP

ATM CONCURRENCY
MODEL

e Servant activators,which provide a hook method called
incarnate  that creates a servant the first time an object
accessed by a C|| ent. =) ORB TRANSPORT ADAPTER COMPONENT evory

ADAPTIVE Communication Environment (ACE)

LUGGABLE PROTOCOLS FRAMEWORK

COMMUNICATION INFRASTRUCTURE

¢ Servant locatorswhich provide two hook methods called
preinvoke andpostinvoke that are invoked by a POA
to create a servant for every request on an object. Figure Filure 6: TAO’s Pluggable Protocols Framework Architecture
lustrates how servant locators are used in the CORBA Compo-
nent Model to perform various resource management activitigs the Facade pattern [5] to access the mechanisms provided
before dispatching an operation to a servant. by TAO’s pluggable protocols framework. Thus, applications

A servant locator is similar to an interceptor in several rean (re)configure custom protocols without requiring global
spects. For example, both can (1) intercept requests befdranges to themselves or the ORB.
they are dispatched to servants, (2) invoke extra operationg\s with interceptors and smart proxies, pluggable protocols
and (3) affect the outcome of request invocatiomag, by frameworks are a meta-programming mechanism that adds
throwing exceptions. Unlike interceptors, however, servannctionality to ORBs. Whereas other two mechanisms alter
locators only affect the POAs that install them and can onlye semantic of objects, however, pluggable protocols frame-
access to a limited subset of the request-related informatiworks alter the ORB message delivery mechanism. Thus, they



REQUEST

REQUEST

retval =
get_quote (
stockname);

do not permit fine-grained control over objects since they 2
fectall objects in an ORB and it is hard to vary the messa\
delivery mechanism at the level of object reference. Moreover,
since pluggable protocols deal directly with the communica-
tion infrastructure, they are usually more complex to program |:|
than interceptors or smart proxies.

Figure 7 compares the various meta-programming mecha- CLIENT \ SERV] / T
. . . . ERVER
nisms along a number of dimensions described above. When \

[\ AUTHENTICATION @
—11 SERVICE

retval =
get_quote (
stockname);

stockname
stockname

retval

retval

dednuIINE

SMART PROXY

High *#
Portable
Interceptors Figure 8: A Secure Transaction System Using Smart Proxies
Overhead Figure 8. Originally, clients accessed stock quotes via the fol-
Pluggable lowing IDL definition:
. Protocols
’ module Stock
Smart Proxies ServantLocat
L ors /I The interface for which with a smart proxy
ow - /I will be provided for authentication of the
Scope: Specific interface All interfaces /I client to the Quoter for validation purposes.
Arg. manipulation: Wi . interface Quoter {
g P Read-write Read-only /I Exception raised when stock_name does
/I not exist.

F!gure 7. Comparing Alternative Meta-programming Mecha- exception Invalid_Stock {
nisms string reason;

h
combined with patterns, such as Component Configurator [1] // Two-way operation to retrieve current stock
and OS features, such as explicit dynamic linking [13], all // value. This method will be customized by
h t . hani b fi dd /I the smart proxy to include authentication.
t ese meta-programming mechanisms can be configured dy- jong get_quote (in string stock_name)
namically into CORBA clients and servers. raises (Invalid_Stock);

/I One-way operation for auditing purposes.
oneway log_quote (long quote);

3 Programming with Smart Proxies ¥

and Portable Interceptors e
Before delving into the design challenges associated withour goal is to avoid changing this existing IDL, while
implementing smart proxies and interceptors, this sectigiding the ability to authenticate clients. By using smart
describes two examples that illustrate how these meRoxies, we can extend the original application transparently
programming mechanisms can be used to adapt existing $ySnvoke a security mechanism that performs authentication.
tems as requirements change with minimal impact on existoreover, if the security mechanism must be revised in the fu-
ing client and server applications. In particular, smart proxigfe, a new smart proxy can be used and the old one removed
and interceptors allow applications to modify their behavigjithout affecting application code.
by changing the behavior of their meta-objects, ratherthan(lggneraﬂng smart proxies in TAO: TAO's IDL compiler

redesigning interfaces and application implementations. 55 ses DL files containing CORBA interfaces and data types
and generates stubs/proxies and skeletons, which are then in-

3.1 Using Smart Proxies for Secure Transac-tegrated into client and server application code, respectively.

tions The front-end of TAO’s IDL compiler parses OMG IDL in-

put files and generates an abstract syntax tree (AST). The

Overview: Below, we illustrate the use of smart proxies tback-end of TAO'’s IDL compilewisits the AST to generate

simplify the addition of security to a stock quote system aft&@ORBA-compliant C++ source code [14].

it has been deployed. A sample system configuration consistfo add smart proxy support we added a new visitor to the

ing of a remote database server and two clients is showrbatk-end that can traverse every interface in the AST and gen-



erate the smart proxy framework classes shown in FigureaBlapter via a constructor in the base class. For example, a
TAQ'’s IDL compiler can be instructed to generate these sm@iaQStock _Quoter _Default _Proxy _Factory classis
generated from thQuoter interface and can be inherited

PROXY FACTORY SEELLT SMART from as shown below:
ADAPTER PROXY PROXY
{ SINGLETON} FACTORY FACTORY
pf: Default_Proxy_Factory class Smart_Quoter_Factory : public
l:lock &used) | +ereate_proxy() +create_proxy() virtual TAO_Stock_Quoter_Default_Proxy_Factory
+register_factory (df: Default_Proxy_Factory] - {
+unregister_factory () .
+create_proxy() pUbllC:
N /I This factory method will create the
& instantiates )y & instantiates )y /I smart proxy.
SMART PROXY SMART PROXY V|rt(usetloCSkt.c.)éIE:(:)%lJro:i;_Bf’gxt;rﬁate_proxy
PROXY FOR BASE h - ”
coLLocATED [ | /Il
OBJECT +smart_proxy_base +method_1 () i o
Cuseyy  (prproxy) +method_2 () g
PROXY FOR +method_1 0
REMOTE <! +method_2 () . .. - .
oBJECT Depending on policies set by applications, the scope of a smart
proxy factory in TAO can be defined orper-interfaceor per-
- GENERATED BY THE IDL ObjeCtbaSiS, as follows:

¢ Per-interface: With this policy the same smart proxy is
used for all target objects associated with a particular IDL in-

terface. When an object reference to a target object is obtained

proxy framework classes for every interface in an IDL f'l‘?/ia _harrow , a smart proxy is created to act as the stub for all

Below, we described each of the classes shown in Figure 9(')peration invocations on this object. This policy is the most

e Smart proxy factory, which is provided by an applicationtransparent because after a smart proxy factory is instantiated
developer to create a custom smart proxy. for an interfacd-00, all calls toFoo:: _narrow will use this

e Proxy factory adapter, which provides a singleton [5]factory to create their smart proxies.
container that manages the lifetime of the smart proxy factory, Per-object: With this policy each target object can have

reglstergd \_N'th, It When a smart proxy factory IS c'reat.ed lgxydiﬁerent smart proxy factory, which is less transparent but
an application it registers itself automatically V.V'th th|§ Slngl(T"ﬁore flexible. After the first invocation on a target object
toq. The proxy factqry adapter takes ownersh|p of this faCthWe smart proxy factory is unregistered from the proxy fac-
OhbJeCt and deletes it blefokre tge [)lrogram termmlates to engy adapter. This design ensures that new object references to
there are no memory leaks. Applications can also requesi 4l o objects of the same interface will use the default proxy

adapter to unregister its factory. unless a new smart proxy factory is installed explicitly for the

o Default proxy factory, which is the default factory ob-new object. This new smart proxy factory could either be an-
ject that returns the default proxye., the stub that commu-other instance of the one that was created earlier or a com-
nicates with remote target objects. This factory registers itsglétely different smart proxy factory that will create another
with the adapter singleton during program initialization. It igpe of smart proxy for the target object.
deleted when it is replaced by another proxy factory or when

the program terminates and the singleton proxy factory adaptefhe proxy factory adapter delegates the task of creating
is destroyed; and a smart proxy to the factory registered with it. By default,

this factory creates the default proxy. The following factory
method [5] shows how a smart proxy is created and how the
default proxy is passed as the formal parameter to the factory
Below, we illustrate how to programming using TAO'snethodcreate _proxy :
smart proxies framework.
Stock::Quoter_ptr

Smart proxy factory: This factory class is defined bySmart_Quoter_,:actory::Cr&,jlte_loroxy
application developers. It creates a smart proxy whenStock::Quoter_ptr proxy)

a clier_1t application calls the standard CORBAarrovy {. Il Verify the default proxy and use it
operation.  The smart proxy factory class must inherit; to create the new smart proxy.

from the default proxy factory class generated by TAO’sif ((CORBA:is nil (proxy)) .
IDL compiler. This design ensures the factory is auto- retuffgﬁ’o):y;”ew Smart_Quoter_Proxy  (proxy);
matically registered with the singleton [5] proxy factory

Figure 9: The Classes in TAO's Smart Proxy Framework

e Interface-specific smart proxy basewhich is a class ap-
plications inherit from to define their custom smart proxies.



In the _narrow operation used to obtain the target object, a result =

default proxy will be created. As shown in the method above, Q“&%L—ksr:;%_egffoxy_Basei399t_q“°te
this default proxy is passed along to toeeate _proxy } catch (Quoter:Invalid_Stock &) {
invocation on theSmart _Quoter _Factor . This factory /I Deal with the exception caught ...
method stores the default proxy in the smart proxy, which it , U™ -

can use to communicate with the remote target object. return result;

Smart proxy class: TAO’s IDL compiler generates a proto- 3/

type of the smart proxy that inherits from the default proxy arkd

the smart proxy base class. For example, the smart proxy base

class generated for tf@uoter interface is shown below:  Client implementation: Below, we show a function
_ that illustrates the per-interface smart proxy factory pol-

Z Xh's.c'ass helps_develop the smart proxy. icy, where the client application explicitly creates one
pplication-specific smart proxy classes ;

/I inherit from this class. Smart _Quoter _Factory instance that creates smart prox-

class Stock_Quoter_Smart_Proxy_Base ies each call tanarrow on theStock::Quoter interface:
. public virtual Stock::Quoter,

public virtual Smart_Proxy_Base int main (int argc, char *argv[])

. {
public: /I ... Initialize the ORB ...
Z ié(t’l:‘;l t\r/]v%rlgeg?u“ag(i)nxy ttr?e pgf%ren;t the /I Install the smart proxy factory for
I o th p 9 q /I the <Stock::Quoter> interface.
Sto?:k Qeussar:/(esrhart Proxy_Base Smart_Quoter_Factory *quoter_factory
(StEck:: Quo_ter ptr_proxy)_ = new Smart_Quoter_Factory;
© proxy_ (proxy) {} /I ... Call the <current_quote> method for
virtual CORBA::Long ) I various 10Rs ...
get_quote (CORBA::String stock_name)
throw Invalid_Stock; CORBA::Long current_quote (CORBA:ORB_ptr orb,
virtual void const char *ior)
. ) {
log_quote (CORBA:Long quote); CORBA::Object_var obj =
protected: orb->string_to_object (ior);

/I Cache the original proxy reference.
Stock::Quoter_var proxy_;

3

Stock::Quoter_var server
= Stock::Quoter::_narrow (obj.in ());

return server->get_quote ("ACME ORB");
Applications can inherit from this class and implement meth-
ods that they want to override. For example, authentication ) )
can be added to validate the client before it receives the stbS Shown above, the only change required to exist-
quote from theQuoter object, as follows: ing client application code is to create an instance of
Smart _Quoter _Factory before any calls tanarrow are

class Smart_Stock_Quoter_Proxy : made. Note thaBmart _Quoter _Factor must be allocated
‘ public Stock_Quoter_Smart_Proxy_Base on the heap since TAO’s smart proxy framework classes as-
/I Smart proxy method. sume ownership of destroying this object. This design simpli-
CORBA::Long fies the tasks of (1) application developers, who need not man-
Smart_Stock_Quoter_Proxy::get_quote f lifeti I d (2
(CORBA::String stock_quote) age smart proxy factory lifetimes at all an ( ).smart proxy
throw Invalid_Stock developers, who can manage the lifetime of their smart prox-

ies quite precisely.

CORBA::Long result = 0; . . . .
Smart proxies can also be installed dynamically into an ap-

try”{A thenticate the dlient using the plication via the Component Configurator pattern [1]. For ex-
| I | . .
Il C%RBA security Sewiceu. g gmple, the smart proxy factory can be s_tqred ina dyngmlcally
result = _ _ linkable library (DLL). To accomplish this in TAO, we simply
security_service_->authenticate (key_); add an entry into thevc.conf  configuration script to load
/I Verify result, else throw exception. this DLL on-demand:
...
dynamic Smart_Quoter_Factory Service_Object *
/I Call down to the default proxy to JSmart_Quoter_Factory :
/I send request to the target object. _make_Smart_Quoter_Factory() "™



As shown above, the smart proxy factory class r8ecure _Client _Request _Interceptor instance with
sides in a DLL with the factory function entry pointhe client ORB, as follows:
_make_Smart _Quoter _Factory ,whichis called automat-
ically when the TAO ORB is initialized. This design allows// Create and Install the client interceptor.
t proxies to be configured without requiring any change&.orablelnterceptor:
Smar_ p " A .g . _q gany g %IlentRequestlnterceptor_var
to existing client application implementations. interceptor = new

Secure_Client_Request_Interceptor
(orb.in ());

3.2 Using Portable Interceptors for Secure _ o
. orb->_register_client_interceptor
Transactions (interceptor);

Oyerwew: As shown'above, smart.promes can <”wthemlcaltﬁis interceptor hook is one of the first interception points in-
clients transparently via a trusted third-party. However, mor

o7 X . 'QSked on the client, as shown in Figure 3.
powerful authentication mechanisms allow user information,
such as credentials, to be sent for each request. To accom@istver interceptor: On the server, we use an interceptor to
this transparently in CORBA, interceptors can be used to passify the password sent via the service context list, as shown
user information via the service context list that is tunnel@dthereceive _request interceptor method below:
with each GIOP request.

Below, we revise our stock quoter system so it uses intercelpss Secure_Server_Request_Interceptor : public
tors to provide authentication information on a per-request Qa-P ortablelnterceptor::ServerRequestinterceptor
sis via service contextlists. In addition, we show how CORB#blic: _
Dynamic.:. module type; ganbe .Ljsed within interceptors to Ob_VOI(ch;?tZ%II\(/e?ﬁtrgr?:lé%?ér::ServerRequestInfo_ptr ri)
tain additional request information, such as parameters, returp

values, and request ids. IOP::ServiceContext *sc

. . . . = ri->get_request_service_context (1);
Client interceptor: On the client, we use the following

send _request interceptor hook to bundle authentication in- Corfcto rfgtafd:‘g:iff reinterpret_cast

formation into the service context. sc->context_data.get_buffer ()>;
class Secure_Client_Request_Interceptor : public /I Verify the password.
Portablelnterceptor::ClientRequestinterceptor if (strcmp (sc->context_data.get_buffer (),
"root") = 0)
public: /I throw exception ...
..
void send_request /I Now check the parameters passed.
(Portablelnterceptor::ClientRequestinfo_ptr ri) if (strcmp (ri->operation (),
{ "get_quote") == 0) {
/I The <password> is the authentication /I Obtain parameter list.
/I information we send to the server. Dynamic::ParameterList paramlist
= *ri->arguments ();
/I Create the context to send the context CORBA::Long stock_quote;
/I to the target. /I Extract from the any.
IOP::ServiceContext sc; paramlist[0].argument >>= stock_quote;
sc.context_data.replace (strlen (password_),
strlen (password_), /I if invalid stock quote throw exception
password_,
_ L _ }
/I Add this context to service context list. }
ri->add_request_service_context (sc, 0);
pri\}}ate: The receive _request hook method obtains the ser-
/I Password we send to the server per-request. vice context from the service context list stored in the

t char * d_; . .
const char “password_ ServerRequestinfo object and verifies the password. It

also uses types defined in the ORBynamic module to
A client request interceptor uses teend _request hook check the request parameters to ensure the quote is valid. The
method above to create a new service context entry tBymamic module helps to build the parameter list on-demand
adds a password into the existing request’s service cand inseriny variables that can be extracted by the intercep-
text list.  The ClientRequestinfo object encapsu- tor as needed.
lates the request's service context list so that it canFinally, theSecure _Server _Request _Interceptor
be accessed by an interceptor. Next, we register fheegistered with the server ORB, as shown below:
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Il Create and install the server interceptor. eration must be able to return either an IDL-generated default

ServerRequestinterceptor_var proxy or a custom smart proxy.
interceptor = new Since the_narrow operation is generated by TAO’s IDL
Secure_Server_Request_Interceptor compiler as part of the client’s stub it is not possible to mod-
(orbin-Q); ify this method externally from a client application. More-
orb->_register_server_interceptor over, since fixed default stubs were generated any changes re-
(interceptor); quired manually modifying the IDL-generated code. Clearly,

o ) o ) this solution was inflexible and had to be overcome at the stub-
After this interceptor has been installed, it will be 'nVOkegeneration level.

at all interception points along the server’s invocation pa

The part'lcular point that will call theepelve -Teq“eSt leton patterns: To configure TAO to create different types
method is after parameter demarshaling, but just before g?eproxies transparently, we applied the Factory Method

POA makes the upcall to the servant. We can add authori 3apter, and Singleton patterns [5] in TAO's IDL-generated

tion capabilities using the same interceptor by locating it a 8de to form a smart proxy framework that provides the nec-

d|ffer§nt Interception point. For example’ we could first a}%'ssary flexibility. We used the Factory Method pattern to de-
thenticate and then use the information passed to set poll%es

) : . f instantiation of various types of meta-objects to subclasses.
for the access rights granted to the client for a particular tarwé used the Adapter pattern to provide a higher level of ab-
object.

straction for the proxy factories and to delegate creation re-
guests to the appropriate factory. Finally, we used the Sin-
: gleton pattern to make the proxy factory adapter a singleton
4 Key DeSIgn Cha”enges and I:)attem_thatprovidesaglobal access point for factory registration from
based Resolutions program initialization to termination.

Figure 10 illustrates how we applied these three patterns in

In this section, we explore how smart proxies and intercefAO to provide flexible support for smart proxies. By using
tors are implemented in TAO. To clarify and generalize our E—

olution — Apply the Factory Method, Adapter, and Sin-

. . DEFAULT
approach, the discussion below focuses on the patterns [5] we PROXY
. . . PROXY FACTORY
applied to resolve the key design challenges we faced during ADAPTER [5] ) FACTORY
the development process. {SINGLETON} rerente_proxy 0
pf: Default_Proxy_Factory
. I:lock

4.1 Smart Proxy Design Challenges and Reso- )\

lutions o e SMART
As mentioned in Section 2.1, the goal of using smart proxies +unregister_factory 0; FACTORY
is to change/add behaviors to existing programs with minimal +ereate_proxy (); o N
modifications to client applications. Below, we discuss of the e
key design challenges we faced while refactoring the TAO'’s
existing stub architecture to support smart proxies. [] Genrsica s TrO L 5] cse peines

Compiler

Figure 10: Applying Patterns to Provide Flexible Support for

4.1.1 Challenge: Providing Flexible Support for Smart
9 viding X upp Smart Proxies

Proxies

Context: The proxy framework generated by TAO's ipLthese patterns, applications can obtajn either the.defaulit IpL-
compiler should allow applications to use customized pro¥€nerated proxy or a smart proxy without changing existing
ies transparently. For example, changes to client applicatiGR§® manually. For example, after an application registers a
that use customized proxies must be localized. In particulf'-interface smart proxy factory, thearrow operation call
developers should be able to install customized proxies jithdll automatically create the appropriate proxy.

or no changes to client application code.

4.1.2 Challenge: Treating Remote and Collocated Smart

Problem: TAO’s IDL compiler originally generated only Proxies Uniformly

fixed default proxies. In particular, thearrow operation
it generated for each interface returned a default proxy. If déentext: A target object can be either remote or it can be
velopers require more flexibility, however, thearrow op- collocated in the client's address space [15]. TAO provides
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customized meta-objects calledllocated proxie$o optimize 4.2.1 Challenge: Making Information Retrieval Possible
performance for collocated objects. Smart proxies should pro-  Per-Operation

vide similar functionality to collocated and remote proxies

since allowing developers to differentiate remote and coll
cated smart proxies provides developers with greater flexi

ontext: Request interceptor hook methods are invoked at

itferent interception points along the invocation path. These

ity. interceptors must be able to (1) verify and audit information
eing passed to the target object as the invocation continues

Problem:  Depending on V\_/here "’.‘tarQEt object resides, a & (2) potentially terminate the invocation before it reaches
veloper may or may not wish to invoke the smart proxy e target object

stalled for the objeck.g, a developer may not want to cache
operation results in a collocated smart proxy because calls@feblem: An ORB must provide information in response
already resolved locally. Originally TAO treated the geneli© interceptor queries. This information may be operation-
ation of collocated stubs as a special case. It is necesssgcific and even temporal,g, the result of an operation may
however, to distinguish remote and collocated case to take fiftl available only after the POA makes an upcall to a servant
advantage of this construct. In addition, smart proxies m@gtd the operation executes. Therefore, an ORB must have
provide applications with the same interface as default prékgeneric way to access operation-level information and dis-
ies, as well as be able to call down to the default proxy glpse this information to interceptors that are invoked at ORB-
communicate with remote target objects. mediated interception points. Originally, TAO did not main-
Solution — Apply the Composite pattern: The Composite tain th!s mformatlpn t.o a\{0|d degradlng the normgl execution
pattern [5] supports part/whole relationships and allows all gj-th€ invocation in situations where this information was not
jects in such composite structures to be processed uniforrdfiluired by the application. However, this design made it hard
We applied the Composite pattern to TAO as shown in Fi@-r applications to influence invocation behavior.

ure 11. In this design (1) smart proxy classes inherit from tBelution — Generation of nested Requestinfo classes for

DEFAULT each interface operation: To provide invocation informa-
e s tion dynamically and efficiently, we modified TAO’s IDL com-

i piler to generaté&kequestinfo  classes for each operation.
R Requestinfo  classes are instantiated for each operation in-
void shutdown ();

vocation and passed to the interceptors during the invocation.
Thus, interceptors can access operation-related information, as
‘ shown in Figure 12. Every operation in an IDL interface has

base_proxy
P'}gﬁv "?(())I;(Y Sril:::zi:: REQUEST INFO
omEct | |Comrar | ot ey GET QUOTE e
TR e =
stockname); stocknamo): INFRRFACK oo ok
Figure 11: Applying the Composite Pattern to TAO's Smart | &5 = ,,‘ ’
PrOXy DeS|gn stockname); ||pdn|eie-x-c-eptiun 03 "<< uses >>
h““:-‘.i(::)':g 01’ LOG QUOTE MODULE DYNAMIC
default proxy and (2) also store a pointer to the default proxy | v oo REQUEST INFO ——
to make invocations to remote target object. Collocated and Saquotelong -
remote proxies are children of the default proxy. Thus, smart
proxies can make calls to the remote or collocated proxy trans-
parently, while providing the same application interface as the
default proxies.

Figure 12: TAO's Portable Interceptor Design

4.2 Interceptor Design Challenges and Resolu- ,

tions dlﬁergpt f'ormal parameters, result. types, gnd user exceptions.

To minimize the overhead of copying multiple arguments and

As discussed in Section 2.2, interceptors can extend the the-return value of the upcall, we only store a reference, rather
havior of CORBA operations with minimal changes to clierthan a copy of the parameters, results, and exceptions.
and server applications. In this section, we discuss of the keyWe added TAO-specific methods to eaRbquestinfo
design challenges faced while refactoring TAO’s existing intass and used these methods internally to update the re-
vocation architecture to support interceptors. sult and the exception thrown, rather than instantiating a
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new Requestinfo  class before every interception poinbD Empirical Results

is called. For instance, the result of an operation is ob-

tained only after the POA makes the upcall and the clidpevelopers of distributed applications must often make trade-

receives a reply. At this point, the client can verify the r@ffs between time/space overhead and flexibility. Selecting

sultin thereceive _reply interceptor hook by querying thewhich meta-programming mechanism to usg, smart prox-

Requestinfo  object, making it necessary to update the rées or interceptors, is an example of this tradeoff. This section

sult before this interception point is invoked. Thus, temporalesents benchmarking results that quantify the time/space

information can also be propagated to interceptors. overhead and tradeoffs of using smart proxies and portable in-
terceptors.

4.2.2 Challenge: Avoiding Gratuitous Waste Construct-
ing Requestinfos 5.1 Overview of the Testbed Environment and

Context: Since interceptors can access any request-related Benchmarks

information their interface must be sufficiently general to ir"l’he experiments were conducted using a Bay Networks Lat-
corporate any type of data. In CORBany is the generic type tisCell 10114 ATM switch connected to two dual-processor

that can hold information of any other types, which are Stor?ﬁtraSPARC-Zs running SunOS 5.7. Each UltraSPARC-2
using type/value tuples. Althouginy s are flexible, they are contains 2 168 MHz CPUs with a 1 Megabyte cache per-CPU
less efficient and more resource consumptive than other cojgg Mbytes of RAM, and an ENI-155s-MF ATM adapter card ’
mon CORBA data types, such lemg or struct that supports 155 Megabits per-sec (Mbps) SONET multi-

In general, not all interceptors installed in an ORB are int%’ode fiber. The experimental testbed is shown in Figure 13.
ested in handling all information nor even all operations. F

. . . ghe benchmarking programs were compiled using the Sun CC
example, security-related interceptors may not be intereste

in
what operation is being invoked, but only want to know the

. . . . e . i =
contents of the service context list. Likewise, an auditing in- Services —
terceptor may only be interested in the parameters of certa ‘ @ =
operations of certain objects, while ignoring others altogethe| “= C C_ —a® | Object Adapter || ‘=

0 1 n ——

H . . .
Problem: We need to avoid the overheadarfy insertion o® | = = =
operators if installed interceptors are not interested in certai 8! Requests . %
operation information. However, there is no way to predict Client Server

what interceptors will be interested anpriori.

Solution — On-demand creation of operation informa- :x: ——

tion: To avoid unnecessary waste of resources, operation in- =
formation should only be inserted inmy objects the first ATM Switch
time a related interface is accessed by an interceptor via it|tra 2 Ultra2

Requestinfo  -derived interface. This design ensures that ) . .
pertinent information irRequestinfo  -derived objects will Elgure 13:  Testbed for Meta-programming Mechanism

not be created if no interceptor is interested in the informatid%‘?mhmarks

In TAO, we retrieve this information via types defined in thg.o compiler with all optimizations enabled. We conducted

C(_)riBgDynamc mgdlulef. litates bundli ¢ ¢ two different benchmarks: one measured the performance of
eynamic module faciitates bundiing of request pag . 4 proxies and the other the performance of interceptors.

rameters, results, and exceptions iaty variables that an

application interceptor can extract and use. The advantage of

using the types provided by tiynamic module in TAO is 9-1.1 Smart Proxy Results

that they are implemented to minimize the gratuitous wasthe overhead of calling an operation via a smart proxy is
of storing all informationde facto into lists ofanys . In = gqivalent to calling the default proxie. it is the cost of
particular, this information is inserted intmys only when g oc4 virtual method call. Therefore, we designed our smart
queried, which occurs just once. Subsequent queries simplyyy henchmark to show how performance can be improved
return theany variables created previously. Thus, unless &\mart proxies are used as a cache to minimize the number of

interceptor needs to query a particular piece of request infQliote operations. Here is the IDL interface we used for this
mation, it incurs no additional overhead. This optimization jg-

targeted for the common case where interceptors are used to
pass service contexts. interface Broadway_Show
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{ /I Throws a user exception.
/I Get the prices for the box void authenticate (in string user)
/I seats of the Broadway show. raises (Invalid);
short box_prices ();
/I updates a struct and returns a count.
/I Order tickets. long update_records (in long id,
long order_tickets (in short number); in Record val);

3 3

The servant in the test is a virtual box office that allowsach operation takes a different number and different
clients to purchase tickets to Broadway shows. A client ceingth of parameters and return values. Moreover, the
query the prices of box seats and if they are within a prigathenticate  operation throws a user exception, whereas
range, it buys them. Thus, the client normally makes two ithre other two do not. This diversity allowed us to measure
vocations: (1)ox _prices and (2)order _tickets ifthe the cost of preparing different types of generic information re-
prices are reasonable. By default, every time a client enquigesred by interceptors.
about ticket prices, a remote invocation occurs. The interceptor benchmarks were run using the five differ-

We can minimize overhead significantly by using a smasht configurations summarized below:
proxy that makes just one remote invocation and then cachei No interceptor support: In this configuration, inter-

the result and reuses it when subsequent enquiries occur. -Eglﬁor support was disabled completely in the ORB, which
caching improves the performance significantly, as Shownrf'{éasured TAO's baseline performance.

Figure 14. This figure illustrates that omitting unnecessary ) ) o
2. Nointerceptorinstalled: Thistime the ORB was com-

piled with interceptor support, although the test was performed
without installing an interceptor into the ORB. This configura-
tion measures the performance penalty applications must pay
for the potential of flexibility.

3. No-opinterceptor installed: This configuration uses a
no-op interceptor to measure the cost of invoking interceptors.

4. Accessing the service context list: The interceptor in-
stalled in this configuration manipulates the GIOP request’s
ServiceContextList , using a program similar to the one
o shown in Section 3.2. On the client, a request interceptor cre-
_ e ates a newServiceContext  containing an encapsulated
Figure 14: Performance Improvement Using a Smart Proxyd@ss\ord string of 7 bytes and inserts the service context ob-
Cache Information jectinto theServiceContextList of the invocation using
the Requestinfo  interface. On the server, a different re-
guest interceptor performs the reverse operation by (1) extract-
ing the password string from th®erviceContextList
using theRequestinfo  interface and (2) examining the
5.1.2 Portable Interceptor Results password via a string comparison.

Our portable interceptor benchmarks quantify the cost of sup5. Accessing Dynamic information: TAO implements
porting and using interceptors in TAO. Moreover, these tesite Dynamic module types in request/reply operations, such
guantified the costs of individual interceptor features, suchasparameters, results and exception list of an invocation, by
accessing a parameter list and accessing a service contextlistting these information on-demand. The interceptor in-
In the benchmark program, the following three IDL operatiostalled in this configuration accesses the dynamic information

600

500

8
8

Throughput (events/sec)
8
8

8

8

remote operation calls improve the performance~#80%,
even over a high-speed ATM network.

were defined in th&ecure _Vault interface: of the operations by checking their parameters and return val-
. ues.
interface Secure_Vault
{ . . Figure 15 shows the cost of supporting and using these vari-
exception Invalid {}; . . L .
ous features and configurations in interceptors. In the first con-
struct Record { long check_num; long amount; }; figuration (no interceptor support), all three measured opera-
_ _ tions perform similarly because there is no significant differ-
/I No args/exceptions operation. . . .
short ready () ence between the information these operations exchange. The

results are similar for the second configuration, which added
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out at ORB compile-time. To measure the memory increment
necessary to support smart proxies and interceptors, we com-
piled theSecure _Vault IDL interface shown above with
three different operations using the following configurations:
Dready

Bauthenticate
DOupdate_records

1. Interceptors and smart proxies disabled.
2. Interceptors and the smart proxies both enabled;

Throughput (events/sec)

3. Interceptors enabled but smart proxies disabled, which is
the default configuration in TAO; and

update_records

4. Interceptors disabled and smart proxies enabled.

authenticate
No Operations
No ready
interceptor interceptor No-op
support P interceptor

Table 1 shows the resulting sizes for different configura-

Accessing

staled Comext fotesend tions. Not counting the application-specific proxy and factory
Interceptor Types
. . . 1 0, 0,

Figure 15: Cost of Using Various Interceptor Features izﬁﬁgrtmg size ?élg; % Inc. S?stl(eég;' % Inc.
Neither 1,288 0 1,277 0

interceptor support to the ORB but without installing any inff_Smart proxies 1,321 25 1,277 0
terceptors. There is only-a9% performance penalty for using||_!nterceptors 1,479 148 1,485) 163
the ORB with interceptor support. Both 1517 178 1489| 166

The no-op interceptor provide the baseline cost of inV0ki[|l% _ i , ,
an interceptor. There is26% of performance penalty com- ble 1: Footprint Comparison for Smart Proxies and Inter-
pared to not installing the interceptor due to invocations &FPrs
interception points on every operation invocation. As shown
in Figure 15, however, all three operations reveal similar per-

formance characteristics, regardless of the number and siz%qgw()d’ smart proxies increase TAQ's client memory footprint

their parameters and return values y ~2.5%. In contrast, interceptors requird 5% extra foot-

L o . print to handle on-demand creation of parameters lists, excep-
Similar performance degradation is also observed for mtﬁg—ns list etc

ceptors that access ti8zrviceContextList . This con- e also performed the same test using the OM@imum
figuration measures the cost of adding and extracting a stto RBAconfiguration [16], which defines a subset of the com-
string from theServiceContext . Again, all three opera- ;

éadete ORB CORBA specification to reduce embedded system
memory footprints. By default, TAO’s Minimum CORBA
footprint is less than 1 MB. To determine the footprint growth
when smart proxies and/or interceptors are used, we measured
9K¥ size of the ORB again using the same IDL interface, as
Bwn in Table 2: The footprint increase for TAO's smart

tions experience-8% degradation in performance compar
to using the no-op interceptor.
The interceptor that access tlyynamic module types,

dation among the three operations we tested. There
~7%, ~19%, ~and 40% performance hits to theady ,
authenticate ,andupdate _record operations, respec-

. . . . . | Supporting Stub | % Inc. | Skeleton | % Inc.
tively, compared with no-op interceptor configuration. The Config. size (KB) size (KB)
performance penalty comes not only from the accessing p‘aN ~ther 573 5 295 5
rameters using thBynamic module types, but also from the Smart proxies 972 3 596 o
on-demand creation of the dynamic information. The resu“s’lnterceptors 1115 20'7 1104 531
show that the preparation @fynamic module types are ex- g 11148 24:3 11105 23:2
pensive, which justifies our decision not to create them if they

are not accessed by interceptors. Table 2: Footprint Comparison for Smart Proxies and Inter-

ceptors in TAO's Minimum CORBA Configuration
5.2 Memory Footprint Results

TAO is an open-source ORB that is used for real-time and epmexies in this configuration is 5.55% and the support for inter-
bedded systems with memory constraints. Therefore, sntaptors causes a significant 20-23% increment. These results
proxies and interceptors can be conditionally compiled in are not surprising since both these meta-programming features
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are new and have not yet been optimized for TAO’s MinimudynamicTAO: The dynamicTAO reflective ORB [23] sup-
CORBA configuration. ports interceptors for monitoring and security. Particular in-

In general, the results in this section show that CORBArceptor implementations are loaded into dynamicTAO using
meta-programming mechanisms can provide developers viita Component Configurator pattern [1]. Using component
significant improvements in functionality, performance, arnfigurators to install interceptors in dynamicTAO allows ap-
convenience without drastic changes to existing applicatiplications to exchange monitoring and security strategies at
software. Depending on which features are used, howeven-time. Moreover, there are extensive use of reflective pro-
developers need to consider the affect of time and space ogeamming technique in dynamicTAO to determine the module
head. the ORB requires.

Fault-tolerant ORB frameworks: Interceptors have been

applied in a number of fault-tolerant ORB frameworks such as
6 Related Work the Eternal system [24]. Eternal intercepts system calls made

by clients through the lower-level I/O subsystem and maps
CORBA is increasingly being adopted as the middleware thiese system calls to a reliable multicast subsystem. Eternal
choice for a wide-range of distributed applications and sy$ees not modify the ORB or the CORBA language mapping,
tems. As systems evolve, new features/services will be addegteby ensuring the transparency of fault tolerance from ap-
to the system. Smart proxies and interceptors are good wplsations.

to adapt existing applications to tal§e advantage of thesp NE¥M interceptors:  Hunt and Scott [25] describe how to
features. The following work on middleware technologies #hplement interceptors in COM. The concept they use to im-

related to our research. plement interceptors is similar to TAO's collocated stub [15].
QuO: The Quality Objects(QuO) distributed object mid- This technique uses alternative wrappers around the objectim-
dleware is developed at BBN Technologies [17] by applplementation to masquerade as operation targets, which are
ing Aspect-Oriented Programming (AOP) [18] techniques $§nilar to TAO’s smart proxies.

adaptive network applications. QuO is based on CORBA and

supports: .
PP 7 Concluding Remarks
1. Run-time performance tuning and configuration

through the specification of operating regions, behaviDistributed object computing (DOC) middleware has been ap-
alternatives, and reconfiguration strategies that allows f{ileed widely to domains ranging from telecommunications to
QuO run-time to adaptively trigger reconfiguration as syaerospace, process automation, and e-commerce. Although
tem conditions change, represented by transitions betwB€DC middleware shields developers from many distribution
operating regions; and challenges, it requireseta-programmingnechanisms to al-

N . low applications to adapt to changing requirements or environ-
2. Feedbackacross software and distribution boundari ental conditions that occur late in an application’s life-cycle

baged on a control loop in Wh'.Ch client appllcgtlons and sery; ithout requiring obtrusive changes in existing software.
objects request levels of service and are notified of changes B art proxies and interceptors are two examples of meta-

service. programming mechanisms that can both monitor and modify
QuO achieves this functionality via customized smart prowocation behavior via meta-objects. There are tradeoffs and
ies, calleddelegatesand embedded MOP interfaces withitimitations with each mechanisra,g:

the proxies. However, their framework does not allow users to, Smart proxies perform better, consume less memory, but

!ns}fllldusgr-de;ined proxies and the MOP interfaces are Spegﬁry apply to specific interfaces accessed by clients. In par-
ically designed for QoS purpose. ticular, smart proxies can only influence the behavior at the

Orbix filters:  Orbix defines the concept of filters, whicH€ginning of an invocation.

are an interceptor-like mechanism based on the concept ofhe smart proxy results in Section 5.1.1 show the circum-

“flexible bindings” [19]. By deriving from a predefined basétances where using smart proxies can improve performance.
class, developers can intercept events. Common eventsEen thought there is an extra layer of indirection, the over-

clude client-initiated transmission and arrival of remote opefll performance can be improved by removing the gratuitous

tions, as well as the object implementation-initiated transmfé.erhead of unnecessary remote invocations.

sion and arrival of replies. Developers can choose whether t@ Interceptors are more generic, can be applied to ei-

intercept the request or result before or after marshaling. @fer servers or clients, and can access operation-specific in-

bix programmers can leverage the same filtering mechaniimation. Therefore, they provide a more effective meta-
to build multi-threaded servers [20, 21, 22].
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programming mechanism to handle advanced features, suchc. O'Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The

inati it tA. Design and Performance of a Pluggable Protocols Framework for Real-
as authentication and authorization, transparently end-to-end. fime Distributed Object Computing Middleware.” Broceedings of the

Interceptors also incur more overhead than smart proxies, Middleware 2000 ConferencCM/IFIP, Apr. 2000.
however, because they influence the processing of operatie;iST. Nakajima, “Dynamic Transport Protocol Selection in a CORBA
at multiple points along the invocation path. The portable in- System.” inProceedings of the International Symposium on Object-

. . . Oriented Real-time Distributed Computing (ISOR@ewport Beach,
terceptor results in Section 5.1.2 illustrate the overhead of sup- ca), IEEE/IFIP, Mar. 2000. puting ( Gewp

porting interceptors and the run-time costs of specific interceg; w. w. Ho and R. Olsson, “An Approach to Genuine Dynamic Linking,”
tor features. Software: Practice and Experienceol. 21, pp. 375-390, Apr. 1991.

. . . [14% A. B. Arulanthu, C. O'Ryan, D. C. Schmidt, and M. Kircher, “Apply-
This paper describes how we have implemented smart ing C++, Patterns, and Components to Develop an IDL Compiler for

proxies and interceptors into TAO, which is an implementa- CORBA AMI Callbacks,"C++ Report vol. 12, Mar. 2000.
; i inati i inh[15] N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation Optimizations
tlonf of CORBA (;hat |Ist.targeteg for a.pphcat;OHSSWItht hlghL. for CORBA,” C++ Report, vol. 11, November/December 1999.
performance and real-time QoS requirements. Smart pro h%? Object Management Grouplinimum CORBA - Joint Revised Submis-
are not currently part of the CORBA standard. Although many" sion, OMG Document orbos/98-08-04 ed., August 1998.
ORBs provide smart proxies as extensions, this feature is gt 3. A. zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
portab'e_ There iS, however, a Portable |ntercept0rs Specifica_ Quality of Service for CORBA ObjectsTheory and Practice of Object
. . . Systemsvol. 3, no. 1, 1997.
tion [8] that is in the final stages of approval by the OMG. _ . _ - _

. [)18] G. Kiczales, “Aspect-Oriented Programming,” Rroceedings of the

All the source code, documentation, and tests fOr" 1ith European Conference on Object-Oriented Programmihgne

TAO are open-source and can be downloaded from

1997.
WwWW.cs.wustl.edu/ ~schmidt/TAO.html [19] M. Shapiro, “Flexible Bindings for Fine-Grain, Distributed Objects,”

Tech. Rep. Rapport de recherche INRIA 2007, INRIA, Aug. 1993.
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