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Abstract

This paper makes two contributionsto the devel opment and
eval uation of object-oriented communication software. First,
it reports performance results from benchmarking several
network programming mechanisms (such as sockets and
CORBA) on Ethernet and ATM networks. These results il-
lustrate that devel opers of high-bandwidth, low-delay appli-
cations (such as interactive medical imaging or teleconfer-
encing) must evaluate their performance requirements and
theefficiency of their communi cationinfrastructure carefully
before adopting a distributed object solution. Second, the
paper describes the software architecture and design princi-
ples of the ACE object-oriented network programming com-
ponents. These components encapsulate UNIX and Win-
dows NT network programming interfaces (such as sockets,
TLI, and named pipes) with C++ wrappers. Developers of
object-oriented communication software have traditionally
had to choose between high-performance, lower-level inter-
faces provided by sockets or TLI or less efficient, higher-
level interfaces provided by communication frameworks like
CORBA or DCE. ACE represents a midpoint in the solution
space by improving the correctness, programming simplicity,
portability, and reusability of performance-sensitive commu-
nication software.

1 Introduction

Distributed object computing (DOC) frameworks like the
Common Object Request Broker Architecture (CORBA) [1],
OODCE [2], and OLE/COM [3] are well-suited for applica-
tionsthat exchange richly typed data via request/response or
oneway communication. However, current implementations
of DOC frameworks may be less suitable for an important
class of performance-sensitive applicationsthat stream rela
tively simple datatypes over high-speed networks. Medica
imaging, interactive tel econferencing, and video-on-demand
are common examples of thisclass of streaming applications.

Streaming applications with stringent throughput and de-
lay requirementsareidea candidatesfor high-speed networks
such as ATM and FDDI. However, these applications may
not be able to tolerate the overhead associated with con-
temporary DOC frameworks. This overhead stems from
non-optimized presentation layer conversions, data copying,
and memory management; inefficient and inflexiblereceiver-
sidedemultiplexing and di spatching operations; synchronous
stop-and-wait flow control; and non-adaptive retransmission
timer schemes. Meeting the throughput demands of stream-
ing applications has traditionally required direct access to
network programming interfaces such as sockets [4] or Sys-
tem V TLI [5]. These lower-level interfaces are efficient
since they omit unnecessary functionality (such as presenta-
tionlayer conversionsfor ASCII data). They also allow fine-
grained control of memory management, protocol buffering,
demultiplexing, and flow control.

However, conventional network programming interfaces
are low-level, non-portable, and non-typesafe. This compli-
cates programming and permits subtle run-time errors. For
instance, communication endpoints in the socket interface
are identified by weakly-typed integer handles (aso known
assocket descriptors). Weak type-checking increases the po-
tential for run-time errors since compilers cannot detect or
prevent improper use of handles. Thus, operations can be
applied to handles incorrectly (such as invoking ar ead or
wr i t e onapassive-mode socket handlethat can only accept
connections).

Traditionally, developers of high-performance streaming
applications had to choose between two solutions:

1. Higher-level, but less efficient network programming
interfaces — such as DOC frameworks or RPC toolkits;

2. Lower-level, but more efficient network programming
interfaces— such as sockets or TLI.

This paper describes object-oriented network programming
components that provide a midpoint in the solution space.
These components are part of the ACE toolkit [6], which
encapsulates conventional network programming interfaces
with a family of C++ wrappers. As shown below, the ACE
toolkit improves the correctness, ease of use, portability and
reusability of communication software without sacrificing
performance.



Thispaper isorganized asfollows: Section 2 comparesthe
performance of severa network programming mechanisms
(C sockets, C++ wrappers for sockets, and two implementa-
tions of CORBA) for arepresentative streaming application
over Ethernet and ATM networks; Section 3 outlinesthe de-
sign of the obj ect-oriented ACE componentsthat encapsul ate
UNIX and Windows NT network programming interfaces
(such as sockets, TLI, STREAM pipes, and named pipes);
Section 4 illustrates the differences between programming
with C sockets, ACE, and CORBA; Section 5 summarizes
the design principles of the ACE wrappers, and Section 6
presents concluding remarks.

2 Performance Experiments

This section describes performance results from comparing
severa network programming mechanismsthat transfer large
streams of data using TCP/IP over Ethernet and ATM net-
works. The network programming mechanisms compared
below include C sockets, C++ wrappers for sockets, and
two implementations of CORBA. The benchmark tests are
representative of applications written by the authors for the
Motorolalridium project [7] and Project Spectrum [8]. Irid-
iumisanext-generation satellite-based globa persona com-
munication system; Spectrum is an enterprise-wide medical
imaging system that transportsradiol ogy images across high-
speed ATM LANs and WANS.

2.1 Test Platform and Benchmarks

The performance resultsin this section were collected using
a Bay Networks LattisCell 10114 ATM switch connected to
two uni-processor SPARCstation 20 Model 50s. The Lat-
tisCell 10114 is a 16 Port, OC3 155Mbs/port switch. The
SPARCdtations contain 100 MIP Super SPARC CPUs run-
ning SUunOS 5.4. The SunOS 5.4 TCP/IP protocol stack is
implemented using the STREAMS communication frame-
work [9]. Each SPARCstation 20 has 64 Mbytes of RAM
and an ENI-155s-MF ATM adaptor card, which supports 155
M egabitsper-sec (Mbps) SONET multimodefiber. TheMax-
imum Transmission Unit (MTU) on the ENI ATM adaptor
is 9,180 bytes. Each ENI card has 512 Kbytes of on-board
memory. 32 Kbytesis alloted per ATM virtual circuit con-
nection for receiving and transmitting frames (for a total of
64K). Thisalows up to 8 connections per card.

Data for the experiments was produced and consumed by
an extended version of thewidely availablet t cp [10] proto-
col benchmarking tool. This tool measures end-to-end data
transfer throughput in Mbps from a transmitter process to
a remote receiver process. The flow of user data is uni-
directional, with the transmitter flooding the receiver with a
user-specified number of data buffers. Various sender and
receiver parameters may be selected at run-time. These pa
rameters include the number of data buffers transmitted, the
size of data buffers, and the size of the socket transmit and
receive queues.

The following versions of t t cp were implemented and
benchmarked:

e Cversion —thisisthe standard t t cp program imple-
mented inC. It uses C socket callstotransfer and receive
dataviaTCP/IP,

o ACE version — this version replaces al C socket calls
inttcp with the C++ wrappers for sockets provided
by the ACE network programming components (version
3.2) [6]. The ACE wrappers encapsul ate sockets with
typesafe, portable, and efficient C++ interfaces.

e CORBA versions — two implementations of CORBA
were used: version 1.3 of Orbix from IONA Technolo-
gies and version 1.2 of ORBeline from Post Modern
Computing. These versions replace all C socket cals
int t cp with stubsand skeletons generated from a pair
of CORBA interface definition language (IDL) specifi-
cations. One IDL specification uses asequence pa
rameter for the data buffer and the other usesast ri ng
parameter.

Each version of t t cp was compiled using SunC++ 4.0.1
with the highest level of optimization (- O4). To control
for confounding factors, the timing mechanisms, command-
line options, socket options, and communication protocols
were held constant for all implementations of t t cp. Only
the connection establishment and data transfer mechanisms
were varied.

2.2 Reaults

Weran aseries of teststhat transferred 64 Mbytesof user data
in buffers ranging from 1 byte to 128 Kbytes using TCP/IP
over Ethernet and ATM networks. Data buffers were run
in increments of 1 byte, 1K, 2K, 4K, 8K, 16K, 32K, 64K,
and 128K sizes. Two different sizes for socket queues were
used: 8K (thedefault on SUNOS 5.4) and 64K (the maximum
size supported by SunOS 5.4). Each test was run 20 times
to account for performance variation due to transient load
on the networks and hosts. The variance between runs was
very low since the testswere conducted on otherwise unused
networks.

Figure 1 summarizes the performance results for al the
benchmarks using 64K socket queues over a155 MbpsATM
link and a 10 Mbps Ethernet (the 8K socket queue resultsare
presented in Figures 2 and 3 and Tables 1 and 2 summarize
the results for al the tests). The C and ACE C++ wrapper
versionsof t t cp obtained the highest throughput: 62 Mbps
using 8K data buffers. In contrast, the Orbix and ORBeline
CORBA versions of t t cp peaked at around 39 Mbps with
64K data buffersusing IDL sequences.

Theresultsfor Ethernet show much lessvariation, with the
performance for all tests ranging from around 8 to 8.7 Mbps
with 64K socket queues. None of the Ethernet benchmarks
ran faster than 8.7 Mbps, which is 87 percent of the maxi-
mum speed of a 10 Mbps Ethernet. Although the absolute
throughput of t t cp isamost 8 times faster over ATM, the
relative utilization of the network channel speed was much
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Figure 1: C, ACE, Orbix and ORBeline Performance over
ATM and Ethernet

lower (i.e., 62 Mbps represents only 40 percent of the 155
Mbps ATM link).

The disparity between network channel speed and end-
to-end application throughput is known as the throughput
preservation problem[11]. Thisproblem occurswhen only a
portion of the avail able bandwidthisactually delivered to ap-
plications. The throughput preservation problem stems from
operating system and protocol processing overhead (such
as data movement, context switching, and synchronization
[12]). Asshownin Section 2.2.2, thethroughput preservation
problem is exacerbated by contemporary implementati ons of
DOC frameworks like CORBA, which copy data multiple
times during fragmentati on/reassembly, marshalling, and de-
marshalling.

Sections2.2.1 and 2.2.2 examinethese performance results
in detail and Section 2.3 presents recommendations based on
an analysis of the benchmark results.

221 Cand ACE Wrapper Implementationsof TTCP

Figure2illustratesthe performance results fromthe C and
ACE wrapper versions of tt cp over ATM and Ethernet.
The performance of C sockets and ACE C++ wrappers are
roughly equivalent. Both pesk at 62 Mbps over ATM using
8K data buffers and 64K socket queues. This indicates that
the performance penalty for using the ACE C++ wrappersis
insignificant, compared with using C library function calls
directly.

Figure 2 illustrates the impact of data buffer size on per-
formance. When the data buffers exceeded 8K performance
began to decline, leveling off at around 48 Mbps with 64K
data buffers. This behavior is caused primarily by the MTU
size of the ATM network, which is 9,180 bytes. When data
buffers exceed the MTU size they are fragmented and re-
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Figure2: C and ACE Performance over ATM and Ethernet

assembl ed, thereby lowering performance.

Figure 2 dsoillustratestheimpact of socket queue sizeon
throughput. Larger socket queues increase the TCP window
size [13], which alows the transmission of multiple TCP
segments back-to-back. In the case of ATM, increasing the
socket queue from 8K to 64K improvest t cp performance
significantly from 23 Mbps to 62 M bps.

The Ethernet results for large and small socket queues
show less variation than the ATM results. They peak at 8.4
Mbpswith 8K socket queues and 8.7 Mbps with 64K socket
queues. In both cases, the factor limiting performance isthe
dow speed of the network.

2.2.2 CORBA Implementationsof TTCP

Figure 3 illustrates the results of measuring two versions of
t t cp implemented with two different versions of CORBA.
The CORBA implementations were devel oped using single-
threaded versionsof Orbix 1.3 and ORBeline1.2. Atthetime
thesetestswere performed, neither Orbix nor ORBelinefully
supported the OMG 2.0 CORBA standard. Thiscomplicated
the CORBA implementations of t t cp since different ver-
sionswere required to account for incompatibilities between
Orbix and ORBeline.

Extending t t cp to use CORBA required several modi-
fications to the original C/socket code. All C socket cdls
werereplaced with stubs and skel etons generated from apair
of CORBA interface definitions. One IDL interface uses a
seqguence to transmit the data and the other IDL interface
usesastri ng, asfollows:

typedef sequence<char> ttcp_sequence;
interface TTCP_Sequence

{
oneway void send (in ttcp_sequence ttcp_seq);

h

140
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Figure 3: Orbix and ORBédline Performance over ATM and
Ethernet

interface TTCP_String

{
oneway void send (in string ttcp_string);

h

Thesend operationsuseoneway semanticssincethet t cp
benchmarks measure the performance of uni-directional data
transfer. This behavior is consistent with the flow of com-
munication in electronic medical imaging applications and
video distribution.

Theclient-side of t t cp was modified as follows:

/1 Use locator service to acquire bindings.
TTCP_String *t_str = TTCP_String::_bind ();
TTCP_Sequence *t_seq = TTCP_Sequence::_bind ();

The _bi nd method is a factory generated by the IDL com-
piler from an IDL specification (such as TTCP_Sequence
and TTCP_Stri ng). This factory obtains object refer-
ences to object implementations of TTCP_Sequence and
TTCP_St ri ng located on a server. Object references are
opaque, immutable “handles’ that uniquely identify objects.
All CORBA object implementations must have one before
they can be accessed by client applications, and al client
applications must have an object reference before they can
access the object implementationsin the server.

Once the object references were obtained, data buffers of
the appropriate size were initialized and then transmitted by
caling the IDL-generated send stubs, as follows:

/1 String transfer.

char *buffer = new char[buffer_size];
/1 Initialize data in char * buffer...

while (--buffers_sent >= 0)
t_str->send (buffer);

/1 Sequence transfer.

ttcp_sequence sequence_buffer;
/1 Initialize data in TTCP_Sequence buffer...

while (--buffers_sent >= 0)
t _seqg->send (sequence_buffer);

The server-side was modified to create object implemen-
tationsfor TTCP_Sequence and TTCP_St r i ng. CORBA
IDL compilersgenerate skeletonsthat trandate IDL interface
definitions(suchasTTCP_Sequence) into C++baseclasses
(such as TTCP_SequenceBQAI npl ). Each IDL opera-
tion (such asoneway voi d send) is mapped to a corre-
sponding C++ purevirtual method (suchasvi rt ual voi d
send). Programmers then define C++ derived classes that
override these virtua methods to implement application-
specific functionality, as follows:*

/1 Inmplementation class for IDL interface
/1 that inherits from automatically-generated
/1 CORBA skel eton cl ass.

class TTCP_Sequence_i
virtual public TTCP_SequenceBQAl npl

-
public:

TTCP_Sequence_i (void): nbytes_ (0) {}

/1 Upcall invoked by the CORBA skel eton.
virtual void send

(const ttcp_sequence & tcp_seq,

CORBA: : Envi ronnment & T_env)

this->nbytes_ += ttcp_seq. _| ength;
}
/1

private:
/1 Keep track of bytes received.
u_l ong nbytes_;

H

The server-side used the CORBA i npl _i s_r eady event
loop to demultiplex incoming requests to the appropriate ob-
ject implementation, as follows:

int nain (int argc, char *argv[])

/1 1 nmplenents the Sequence object.
TTCP_Sequence_i ttcp_sequence;

/1 1mplenents the String object.
TTCP_String_i ttcp_string;

/'l Single-threaded event |oop that handl es
/1 CORBA requests by naking call backs to
/1 user-supplied object inplenentations

/1 of TTCP_Sequence_i and TTCP_String_i.
CORBA: : BOA: ;i npl _is_ready ();

/* NOTREACHED */
return O;

Porting t t cp to use CORBA over ATM demonstrated
the importance of having hooks to manipulate underlying
OS mechanisms (such as transport layer and socket layer

1Both CORBA implementationsof t t cp used inheritance since ORBe-
line does not support Orbix’s“TIE" technique (which uses object composi-
tion to associate application-specific CORBA class implementationsto the
generated IDL skeletons).



[ Test | %Time | #Calls | msec/call | Name [
C sockets 99.6 527 92.8 | _write
(sender)

C sockets 99.3 7201 6.2 | _read
(receiver)
ACE C++ wrapper 99.4 527 87.3 | _write
(sender)
ACE C++ wrapper 99.6 7192 6.2 | _read
(receiver)
Orbix Sequence 94.6 532 89.1 | _write
(sender) 4.1 2121 1.0 | memcpy
Orbix Sequence 92.7 7860 6.1 | _read
(receiver) 4.8 2581 0.6 | memcpy
Orbix String 89.0 532 85.6 | _write
(sender) 4.6 2121 1.1 | memcpy
41 2700 0.7 | strlen
Orbix String 86.3 7744 5.7 | _read
(receiver) 55 6740 04 | strlen
45 2581 0.9 | memcpy
ORBéline Seguence 91.0 551 749 | _write
(sender) 5.2 6413 0.4 | memcpy
18 1032 0.8 | __sigaction
ORBeéline Seguence 89.0 7568 58 | _read
(receiver) 51 7222 0.3 | memcpy
33 1071 15 | _poll
ORBeéline String 83.8 551 83.9 | _write
(sender) 54 920 3.2 | strepy
43 5901 04 | memcpy
39 1728 12 | strlen
11 1032 0.6 | __sigaction
ORB¢line String 85.4 7827 55 | _read
(receiver) 4.6 6710 0.3 | memcpy
42 1702 1.3 | strlen
28 1071 1.3 | _poll

Figure 4: High cost Functionsfor t t cp Tests

options) that significantly affect performance. In particular,
high performance data transfers over TCP and ATM require
large socket queues. Thisisillustrated by the considerable
difference in throughput for the 8K and 64K socket queues
inFigures2 and 3.

Orbix provides hooks to enlarge socket queues via
set sockopt by invoking a user-defined callback function
whenever anew socket is connected. In contrast, it was hard
to enlarge the socket queues using ORBeline 1.2 since it did
not provide direct access to sockets (subsequent versions of
ORBédinewill providethisfunctionality).

By comparing Figure 3 with Figure 2 it is clear that
the CORBA-based t t cp implementations ran considerably
dower thanthe C and ACE wrapper versionsonthe ATM net-
work, particularly for 8K data buffers. The highest through-
put (39 Mbps) was obtained by the Orbix sequence im-
plementation using 64K databuffersand 64K socket queues.
The throughput leveled off beyond 64K data buffers.

Unlike the C and ACE wrapper results in Figure 1, the
performance of the CORBA versions did not decrease when
thesize of the databuffersexceeded 8K. Thisbehavior stems
from the higher fixed overhead of CORBA (such as demul-
tiplexing and memory management) that lowers its perfor-
mance for small buffer sizes. As the buffer size increases,
however, the relative impact of this fixed overhead is re-

duced. However, as the size of the buffers increase so does
the overhead of datacopying. Asshown below, datacopying
ultimately limitsthe throughput achievable with the CORBA
implementations.

Detailed profiling and examination of the IDL stubs and
skeletonsgenerated by Orbix and ORBelinerevea ed that the
CORBA overhead stems from the following sources:

e Data Copying: The data buffers exchanged between the
sender andreceiverint t cp aretreated asastream of untyped
bytes. Thisis consistent with the type of data transmitted by
streaming applications such as tel econferencing and medical
imaging [14]. Sincethe datais untyped the CORBA presen-
tation layer need not perform complex marshalling to handle
byte-ordering differences between sender and receiver.

Although marshalling is not required, the CORBA im-
plementations incurred significant data copying overhead.
The UNIX execution profiler pr of was used to pinpoint the
sources of thisoverhead. The C++ compiler was directed to
instrument the source code with monitoring instructionsand
pr of was then used to measure the amount of time spent in
functions during program execution. Figure 4 liststhe func-
tions where the most time was spent sending and receiving
64 Mbytesusing 128K data buffers and 64K socket queues.

Theread and wri t e system calls accounted for more
than 99% of the execution time in the C and ACE C++
wrapper implementations of t t cp. Note that although the
datawastransmitted as 512 separate 128K buffersit was read
by the receiver in much smaller chunks of around 8K. This
illustrates the fragmentation and reassembly performed by
the ATM network adaptors (whose MTU is 9,180 bytes).

Ther ead andwr i t e system calls dominated the execu-
tion of the CORBA implementations, as well. Unlike the C
and ACE wrapper versions, however, these implementations
spent 4 to 15 percent of their time performing other tasks,
such as copying and/or inspecting data (mencpy, st r cpy,
and st r| en), checking for activity on other I/O handles
(pol |'), and manipulatingsignal handlers(__si gact i on).

The highest cost tasks involved data copying and data
inspection. The IDL stubs and skeletons copy data multi-
pletimes (e.g., from the TCP data buffer into a marshalling
buffer, and then again into the parameter passed to thesend
upcall). Thetest resultsillustrate that the choice of CORBA
IDL parameter datatypes has a significant impact on perfor-
mance. Thesequence implementationsshown in Figure 3
peaked at 39 Mbps for Orbix and 38 Mbps for ORBeline. In
contrast, the st ri ng implementations peaked at 34 Mbps
for Orbix and 30 Mbpsfor ORBeline.

The performance variation between the sequence and
stri ng results are due to differences in their IDL-to-C++
mappings. In particular, the IDL sequence mapping con-
tainsalength field, whereas the st r i ng mapping does not.
The generated IDL stubs and skeletons use this length field
to avoid searching each sequence parameter for a termi-
nating NUL character. In contrast, the IDL string im-
plementations use st r | en to determine the length of their
parameters.



[[ Program | SocketQueue [ 1Byte | IK [ 2K [ 4K [8K [ 16K [ 32K [ 64K [ 128K |
C Code 64K 0.16 2352 | 3219 | 4316 | 61.77 | 58.10 | 56.13 | 48.91 | 486
8K 0.16 20.77 | 2219 | 2330 | 2357 | 2322 | 2243 | 22.63 | 22.69
ACE Wrapper 64K 0.14 2229 | 31.85 | 4254 | 61.81 | 60.41 | 56.65 | 47.67 | 47.90
8K 0.14 2048 | 2213 | 23.66 | 23.12 | 23.85 | 2358 | 23.63 | 23.72
Orbix (Sequence) 64K 0.01 785 | 1272 | 1894 | 2579 | 31.65 | 3487 | 39.15 | 3844
8K 0.01 771 | 1158 | 16.60 | 21.90 | 22.81 | 21.89 | 21.01 | 20.98
ORBdline (Sequence) | 64K 0.01 6.06 | 1214 | 2436 | 26.13 | 3523 | 36.70 | 37.67 | 36.72
8K 0.01 10.61 | 16.09 | 19.44 | 21.83 | 22.75 | 22.45 | 21.45 | 21.05
Orbix (String) 64K 0.01 815 | 1318 | 19.02 | 2302 | 29.71 | 30.98 | 33.78 | 32.23
8k 0.01 843 | 1162 | 1661 | 2211 | 22.76 | 21.27 | 20.07 | 20.00
ORBédline (String) 64K 0.01 035 | 1497 | 22.02 | 2291 | 2899 | 2958 | 28.66 | 28.42
8K 0.01 10.22 | 17.14 | 2061 | 21.16 | 21.93 | 19.84 | 18.28 | 18.10
Table 1: Resultsfor ATM t t cp Tests (in Mbps)
[[ Program | Socket Queue [[ 1Byte | IK [ 2K [ 4K 8K [ 16K [ 32K | 64K | 128K ||
C Code 64K 0.12 830 [ 846 | 867 | 878 | 866 | 867 | 868 | 871
8K 0.12 810 | 821 | 833 | 830 | 822 | 832 | 836 | 837
ACE Wrapper 64K 0.12 822 | 834 | 874 | 872 | 861 | 865 | 868 | 8.70
8K 0.12 797 | 806 | 838 | 831 | 828 | 819 | 831 | 841
Orbix (Sequence) 64K 0.01 668 | 830 | 852 | 851 | 845 | 847 | 844 | 838
8K 0.01 666 | 780 | 797 | 818 | 811 | 820 | 829 | 825
ORBédline (Sequence) | 64K 0.01 814 | 837 | 863 | 858 | 861 | 864 | 879 | 838
8K 0.01 728 | 770 | 7.99 | 8.02 | 821 | 830 | 820 | 822
Orbix (String) 64K 0.01 642 | 836 | 855 | 866 | 859 | 858 | 852 | 845
8k 0.01 647 | 782 | 785 | 810 | 817 | 823 | 834 | 830
ORBédline (tring) 64K 0.01 802 | 844 | 868 | 865 | 867 | 8.70 | 872 | 829
8K 0.01 740 | 756 | 785 | 800 | 805 | 804 | 7.99 | 801

Table 2: Resultsfor Ethernett t cp Tests (in Mbps)

The performance variation between Orbix and ORBe-
line results from differences in their message fragmenta
tion/reassembly implementations, as well as the design of
their socket event handling. As shown in Figure 4, ORBe-
line copies data approximately 3 more times than Orbix on
the sender and receiver for bothsequence and st ri ng.

Inaddition, ORBdineinvokesthesi gact i on andpol |
system callstwicefor each message that is sent and received,
respectively. The si gact i on call disables the SI GPI PE
signal duringawr i t e system cal. On most UNIX systems
the default behavior on SI GPI PE is to exit the program.
SI GPI PE occurswhen datais sent over asocket whose peer
has reset the connection. To unobtrusively prevent thisfrom
happening, ORBdline replaces any existing handlers with
S| G.I GN disposition beforethewr i t e and resetsit to the
original dispositionfollowingthewr i t e.

The Orbix implementation does not perform these opera
tions, which is one reason why ORBeline's throughput was
consistently lower than Orbix (as shown in Figure 3).

e Demultiplexing: Each CORBA reguest message con-
tains the name of its intended remote operation, which is
represented as a string. Orbix demultiplexes incoming mes-
sages to the appropriate upcal by performing alinear search
through the list of operations in the IDL interface. In the
caseof t t cp, linear search suffices since therewas only one
choice (send). However, this strategy does not scae well
since search time grows linearly with the number of opera-
tionsinthe IDL interface. Moreover, the order of operations

will determine the demultiplexing performance. Therefore,
operations in Orbix should be ordered by decreasing fre-
guency of use.

In contrast, ORBéline use hashing to determine the appro-
priateupcall associated with anincoming request. Hashingis
likely to scale better for large IDL interfaces, but may beless
efficient for small interfacesdueto the overhead of computing
thehash function. To handlethese and other cases efficiently,
the demultiplexing of requestscan benefit from adaptive opti-
mizations. These optimizations select customized strategies
depending on the properties of the IDL interface. For exam-
ple, perfect hashing [15] or some type of integra indexing
scheme could be negotiated between sender and receiver to
improve performance and to shield devel opers from having
to manually tune their IDL interfaces.

e Memory allocation: IDL skeletons generated automat-
icaly by a CORBA IDL compiler do not know how the
user-supplied upcall will usethe parameters passed to it from
the request message. Thus, they use conservative memory
management techniquesthat dynamically allocateand release
copies of messages before and after an upcall, respectively.
These memory management policies are important in some
circumstances (e.g., if an upcal is used in a multi-threaded
application). However, this strategy needlessly increases
processing overhead for streaming applications likett cp
that consume their dataimmediately without modifying it.



2.3 Evaluation and Recommendations

Section 2.2 compared the performance of C, ACE wrapper,
and CORBA versions of tt cp in terms of their ability to
transfer large qualities of data using TCP/IP over Ethernet
and ATM networks. Tables 1 and 2 summarize the results
for al the ATM and Ethernet tests, respectively. Theremain-
der of this section evaluates these results and presents rec-
ommendations for using DOC frameworks over high-speed
networks.

As shown in Table 2, dl the benchmark tests perform
roughly the same on Ethernet. In contrast, Table 1 illustrates
how the data copying overhead of the CORBA implementa
tions significantly limitstheir throughput on ATM. The per-
formance resultsillustrate that the overhead of CORBA im-
plementations are not revealed until the network isno longer
thelimitingfactor. Inaddition, the profiler resultsin Figure4
illustrate that small design and implementation differences
have amuch larger performance impact over high-speed net-
works than over low-speed networks.

Asusersand organi zationsmigrateto high-speed networks
theperformance limitationsof contemporary CORBA imple-
mentationswill becomemoreevident. Thisshouldencourage
vendors to optimize their ORBsfor streaming performance-
sensitive applications running over high-speed networkslike
ATM and FDDI. Key areas of optimization include data
copying and data inspection, presentation layer conversions,
memory management, and receiver-side demultiplexing and
dispatching. In particular, implementations must reduce the
number of times that large data buffers are copied on the
sender and receiver. The need for these optimizations is
widely recognized in the communication protocol commu-
nity [12] and prototypes that implementate these optimiza:
tionsare available[16].

Until these optimizations are widely implemented in pro-
duction systems, however, we recommend that devel opers of
performance-sensitive streaming applications on high-speed
networks consider the foll owing when adopting a distributed
object computing solution:

o Carefully measure the performance of the commu-
nication infrastructure (i.e, the network/host hard-
ware and software). The ttcp benchmarks
and ACE source code described in this paper
are fredy avalable and may be obtained via
anonymous ftp from wuar chi ve. wust | . edu in
the file /| anguages/ c++/ ACE/ or from URL
http://ww. cs. wstl.edu/“schnidt/. We
encourage otherstoreplicateour t t cp experiments us-
ing different implementationsof CORBA and other net-
work/host platforms and report the results.

o Evduate tools based on empirica measurements and
thorough understanding of application requirements,
rather than adopting a particular communication model
or implementation unconditionally.

o Integrate higher-level DOC frameworks with high-
performance object-oriented encapsulations of lower-
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Figure5: IPC SAP Class Category Relationships

level network programming interfaces (such asthe ACE
socket wrappers described in Section 3).

¢ Insist that CORBA implementors provide hooksto ma-
nipul ate the underlying protocol layer and socket layer
options conveniently. It is particularly important to in-
crease the size of the socket queuesto the largest values
supported by the OS.

e Tune the size of transmitted data buffers to match the
MTU of the network where appropriate.

e Use IDL sequences rather than st ri ngs to avoid
unnecessary data access.

The performance results and recommendations in this pa
per are not intended as a criticism of the CORBA model
or of particular ORB vendors. It is beyond the scope of
this paper to discuss the benefits (such as extensibility and
maintainability) of CORBA, as well as its limitations [17].
Clearly, implementations of other DOC frameworks (such as
OODCE or OLE/COM) that do not address the key sources
of overhead on high-speed networkswill exhibit similar per-
formance problems.

3 An Object-Oriented Network Pro-
gramming I nterface

Low-level network programming interfaces like sockets or
TLI are difficult to program. They require strict attention to
many tedious details, making them hard to learn and error
proneto use. In addition, programming directly to low-level
interfaces limits portability and reuse.

One solution is to develop applications using higher-
level distributed object computing (DOC) frameworks like
CORBA. DOC frameworks shield devel opersfrom low-level
programming detailsand facilitate areasonably portable dis-
tributed computing platform. As described in the previous
section, however, the performance of conventional imple-
mentations of CORBA may be inadequate for bandwidth-
intensiveand del ay-sensitive streaming applicationson high-
speed networks.



One method for satisfying the tension between program-
ming simplicity, portability, and run-time efficiency isto en-
capsul ate lower-level network programming interfaces with
object-oriented wrappers. Through judicious use of lan-
guages features (such as inlining and templates) and design
patterns (such as Factories [18], Connectors and Acceptors
[19]) itis possibleto create reusable object-oriented compo-
nentsthat are typesafe, portable, convenient to program, and
efficient.

This section outlines the design of the | PC SAP object-
oriented network programming components provided by the
ACE toolkit [6]. ACE contains a set of object-oriented net-
working programming components that perform active and
passive connection establishment, data transfer, event de-
multiplexing, event handler dispatching, routing, dynamic
(re)configuration of application services, and concurrency
control [6].

| PC SAP stands for “InterProcess Communication Ser-
vice Access Point.” It consists of afamily of class categories
shown in Figure 5 that encapsulate handle-based network
programming interfaces such as sockets (SOCK SAP), TLI
(TLI SAP), UNIX SVR4 STREAM pipes (SPI PE SAP),
and UNIX named pipes (FI FO SAP). These network pro-
gramming wrappers are designed to improve the correct-
ness, programming simplicity, portability, and reusability of
performance-sensitive communication software.  This sec-
tion describes the SOCK SAP socket wrappers, focusing on
design techniques that shield programmers from shortcom-
ings of C, C++, and existing OS network programming in-
terfaces.

3.1 Limitationswith Sockets

Sockets were originally developed in BSD UNIX to pro-
vide an interface to the TCP/IP protocol suite [4]. From
an application’s perspective, a socket is aloca endpoint of
communi cation that can be bound to an address residing on a
local or aremote host. Socketsare accessed viahandles(aso
called descriptors). Handlesare unsigned integersthat index
into a table maintained in the OS. Handles shield applica
tions from the internal representation of OS data structures.
In UNIX and Windows NT, socket handles share the same
name space as other handles (such as files, named pipes, and
terminal devices).

The standard socket interface is defined by the C func-
tions shown in Figure 6. It contains several dozen routines
that perform tasks such as locating address information for
network services, establishing and terminating connections,
and sending and receiving data [20]. Although the socket
interface iswidely available and widely used, its design has
several notable limitations discussed below. These limita-
tions are shared by other lower-level network programming
interfaces such as TLI, STREAM pipes, and named pipes.

connect()
setsockopt()
getsockopt()
getpeername()
getsockname()
gethostbyname()
getservbyname()

listen()
recvfrom()

socket()
bind()
accept()
read()
write()
readv()
writev()
recv()
send()
sendto()
recvmsg()
sendmsg()

Figure 6: Socket Interface

3.1.1 High Potential for Error

In UNIX any integral value can be passed as a handle to
a socket routine. Therefore, compilers are unable to detect
or prevent the erroneous use of handles. This weak type-
checking allows subtle errors to occur at run-time since the
socket interface cannot enforce the correct use of routinesfor
different connection roles (such as active vs. passive con-
nection establishment) or communication services (such as
datagram vs. stream communication). Therefore, operations
(such asinvoking adatatransfer operation on ahandle desig-
nated for establishing connections) can be applied improperly
on handles.

Figure 7 depictsthe following subtle (and all-to-common)
errors that occur when using the socket interface:

1. Forgettingtoinitidizethel engt h parameter (used by
accept)tothesizeof st ruct sockaddr . n;

2. Forgetting to “zero-out” al bytesin the socket address
structure;

3. Using an address family type that is inconsistent with
the protocol family of the socket (e.g., PF_UNI X vs.
AF_l NET);

4. Neglectingto usetheht ons library function to convert
port numbersfrom host byte-order to network byte-order
and viceversa;

5. Applying the accept function on a SOCK DGRAM
socket;

6. Erroneoudly omitting parentheses in an assignment ex-
pression;

7. Tryingtor ead from apassive-mode socket that should
only beused toaccept connections;

8. Failingto properly detect and handle*” short-writes’ that
occur dueto buffering in the OS and flow control in the
transport protocol.

Other common misuses of sockets not shown in thisexample
areforgettingtocall | i st en when creating a passive-mode
SCOCK_STREAMIistener socket and miscal culating thelength
of the pathname in a UNIX-domain socket address (thetrail-
ing NUL should not be counted).

Severa of the problems listed above are classic problems
with programming in C. For instance, by omitting the paren-
theses in the following expression:



int echo_server (u_short port_num

struct sockaddr_in s_addr;

int length; // (1) uninitialized variable.
char buf[BUFSI Z] ;

int s_sd, n_sd;

/] Create a |l ocal endpoint of conmmunication.
s_sd = socket (PF_UN X, SOCK _DGRAM 0);

/1 Set up address information to becorme a server.
/1 (2) forgot to "zero out" structure first...

/1 (3) used the wong address fanmly ...
s_addr.sin_famly = AF_I NET;

/1 (4) forgot to use htons() on port_num..
s_addr.sin_port = port_num
s_addr.sin_addr.s_addr = | NADDR_ANY;

bind (s_sd, (struct sockaddr *) &s_addr,
sizeof s_addr) == -1)

Create a new endpoi nt of communi cati on.
(5) can't accept() on a SOCK_DGRAM
(6) Ormitted a crucial set of parens...
(n_sd = accept (s_sd,
(struct sockaddr *) &s_addr,
& ength) == -1) {

/1
/1
/1
if

n
(6) Omtted another set of parens...

(7) error to read from s_sd.

le (n = read (s_sd, buf, sizeof buf) > 0)

/1 (8) forgot to check for "short-wites"

wite (n_sd, buf, n);
/1 Remai nder omitted...

Figure 7: Socket version of Echo Server

if (n_sd = accept (s_sd,
(struct sockaddr *) &s_addr,
& ength) == -1)

the value of n_sd will aways be set to either 0 or 1, de-
pending on whether accept () == -1. This problemis
exacerbated by the fact that accept returns the handle of
the newly connected socket. If this handle were passed back
as areference parameter there would be lessincentiveto use
accept inan assignment expression.

A deeper problemisthat C'slack of support for data ab-
straction and object-oriented programming makes it hard to
define typesafe, reusable, and extensible component inter-
faces. For example, the generic sockaddr socket address
structure uses a crude form of inheritance to express the
commonality between Internet domain and UNIX domain
address structures (sockaddr _i n and sockaddr _un, re-
spectively). These “subclass’ address structures require the
use of a non-typesafe cast to overlay the sockaddr “base
class.” In an object-oriented language this commonality
would be expressed more cleanly and robustly using inheri-
tance and dynamic binding.

In generd, the use of unsafe typecasts, combined with the
weakly-typed handle-based socket interface, makes it im-
possible for a compiler to detect mistakes at compile-time.
Instead, error checking isdeferred until run-time, which com-
plicates error handling and reduces application robustness.
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Figure 8: A Taxonomy of Socket Communication Dimen-
sions

3.1.2 Complex Interface

Sockets support multiple protocol families (such as TCP/IR,
IPX/SPX, 1SO OSl, and UNIX domain sockets) withasingle
interface. The socket interface contains many functions to
support different connection roles (such as active vs. pas-
sive connection establishment), communication optimiza-
tions (such as wri t ev/r eadv that send/receive multiple
buffersin a single system call), and protocol options (such
as broadcasting, multicasting, asynchronous I/O, and urgent
dataddivery).

Although sockets combine this functionality into a com-
moninterface, theresult iscomplex and hard to master. Much
of this complexity stems from the overly broad and one-
dimensional design of the socket interface. That is, al the
routines appear at a single level of abstraction (as shown in
Figure6). Thisdesignincreasestheamount of effort required
tolearn and use sockets correctly. In particular, programmers
must understand most of the interface to use any part of it
effectively.

If the socket routines are examined carefully, however,
it is clear that the interface decomposes naturaly into the
following communication dimensions:

1. Type of communication service —i.e., stream vs. data
gram vs. connected datagram;

2. Connection role — i.e, active vs. passive (clients are
typically active, whereas servers are typically passive);

3. Communication domain —i.e., loca IPC only vs. lo-
cal/remote | PC.

Figure 8 classifies the socket routines according to these
dimensions. This natura clustering of functionality is
obscured, however, because the socket interface is one-
dimensional.

Another problem with the socket interface is that its sev-
eral dozen routineslack uniform naming conventions. Non-
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Figure9: The SOCK SAP Class Categories

uniform naming makes it hard to determine the scope of the
socket interface. For example, it is not immediately obvi-
ousthat socket , bi nd, accept, and connect routines
arerelated. Other network programming interfaces solvethis
problem by prepending acommon prefix before each routine.
For example, a“t _" is prepended before each routinein the
TLI library.

3.2 TheSOCK SAP Class Category

SOCK SAP is designed to overcome the limitations with
sockets described above. It improvesthe correctness, ease of
learning and ease of use, reusability, and portability of com-
munication software. Asshownin Section2, SOCK SAP en-
hances these qualities without sacrificing performance. This
section outlines the software architecture of SOCK SAP and
explains the classes used by the programming examples in
Section 4. Readers who are not interested in this level of
detail may want to skip to Section 5, which discusses the
general principles underlying the design of the SOCK SAP
wrappers.

SOCK SAP consists of around one dozen C++ classes that
arerelated by inheritanceand composition. Theseclassesand
their relationships are illustrated via Booch notation [21] in
Figure 9. Dashed cloudsindicate classes and directed edges
indicateinheritancerel ationshipsbetween these classes (e.g.,
SOCK St r eaminheritsfrom SOCK). The general structure
of SOCK SAP corresponds to the taxonomy of communica-
tion services, connection roles, and communication domains
shown in Figure 10. It is instructive to compare Figure 8
with Figure 10. The latter is more concise since it uses
C++ wrappersto encapsul ate the behavior of multiple socket
mechanisms within classes related by inheritance.

Each class in SOCK SAP provides an abstract interface
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for asubset of mechanisms that together comprisethe overall
classcategory. Thefunctionality of varioustypesof Internet-
domain and UNIX-domain socketsis achieved by inheriting
mechanisms from the appropriate classes described below.
Theseclassesare presented according to the groupings shown
inFigure9.

3.2.1 BaseClasses

Thel PC SAP, SOCK, and LSQOCK classes anchor the inher-
itance hierarchy and enable subsequent derivation and code
sharing. Objects of these classes cannot beinstantiated since
their constructorsare declared inthe pr ot ect ed section of
the class definition.

¢ IPCSAP: Thisclassistheroot of thel PC SAP hierar-
chy of C++ wrappers for interprocess communication mech-
anisms. It provides mechanisms common to al classes, such
as handling options like setting a handle into non-blocking
mode or enabling asynchronous signal-driven 1/0.

¢ SOCK: Thisclassistheroot of the SOCK SAP hier-
archy. It provides mechanisms common to al other classes,
such as opening and closing local endpoints of communica-
tion and handling options (like selecting socket queue sizes
and enabling group communication).

¢ LSOCK: This class provides mechanisms that allow
applications to send and receive open file handles between
unrelated processes on the local host machine (hence the
prefix 'L'). Notethat System V and BSD UNIX both support
this feature, though Windows NT does not. Other classes
inherit from LSOCK to obtain thisfunctionality.

SOCK SAP distinguishestheLSOCK* and SOCK* classes
on the basis of network address formats and communication
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Figure 10: Taxonomy of SOCK SAP Classes and Commu-
nication Dimensions

semantics. In particular, the LSOCK* classes use UNIX
pathnames as addresses and allow only intra-machine IPC.
The SOCK* classes, on the other hand, use Internet Protocol
(IP) addresses and port numbers and alow both intra- and
inter-machine | PC.

3.2.2 Connection Establishment

Communication software is typified by asymmetric connec-
tion roles between clients and servers. In genera, servers
listen passively for clients to initiate connections actively
[19]. The structure of passive/active connection establish-
ment and data transfer relationships are captured by the fol-
lowing connection-oriented SOCK  SAP classes:

e SOCK Acceptor and LSOCK Acceptor: The
* Accept or classes are factories [18] that passively estab-
lish new endpoints of communication in response to active
connection requests. The SOCK Accept or and LSOCK
Accept or factories produce SOCK St r eamand LSOCK
St r eamconnection endpoint objects, respectively.

e SOCK Connector and LSOCK Connector: The
*Connect or classes are factories that actively establish
new endpoints of communication. These classes estab-
lish connections with remote endpoints and produce the
appropriate * St r eam object when a connection is estab-
lished. A connection may be initiated either synchronously
or asynchronously. The SOCK Connect or and LSOCK
Connect or factories produce SOCK St r eamand LSOCK
St r eamconnection endpoint objects, respectively.

Note that the * Accept or and Connect or classes do
not provide methods for sending or receiving data. Instead,
they are factories that produce the * St r eamdata transfer
objects described below. The use of strongly-typed factory
interfaces detects and preventsaccidental misuse of local and
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non-local * St r eamobjectsat compile-time. In contrast, the
socket interface can only detect these typemismatchesat run-
time.

3.2.3 Stream Communication

Although establishing connections reguires a distinction be-
tween active and passive roles, once a connection is estab-
lished data may be exchanged in any order according to the
protocol used by the endpoints. SOCK SAP isolatesthe data
transfer behavior in the following classes:

e SOCK Stream and LSOCK Stream: These two
classes are produced by the* Accept or or * Connect or
factories described above. The * St r eamclasses provide
mechanisms for transferring data between two processes.
LSOCK St r eamobjects exchange data between processes
onthe samehost machine; SOCK St r eamobjectsexchange
data between processes that can reside on different host ma
chines.

Theoverloaded send and r ecv * St r eammethods pro-
vide standard UNIX wri t e and r ead semantics. Thus, a
send may writeless (and ar ecv may read more) than the
requested number of bytes. These “short-writes’” and “short-
reads’ occur due to buffering in the OS and flow control in
the transport protocol. To reduce programming effort, the
the * St r eamclasses provide send_n and r ecv_n meth-
odsthat alow transmission and reception of exactly n bytes.
“Scatter-read” and “gather-write” methods are al so provided
to efficiently send and receive multiplebuffers of datasimul-
taneoudly.

3.2.4 Datagram Communication

This paper has focused primarily on connection-oriented
stream communication. However, the socket interface also
provides connectionless service that uses the UDP and IP
protocolsin the Internet protocol suite. UDP and IP are un-
reliable datagram services that do not guarantee a particular
message will arriveat itsdestination. Connectionlessservice
isused by applications(such asr who daemons[20]) that can
tolerate some degree of loss. They aso form the foundation
for higher-layer reliable protocols.

The SOCK SAP socket wrappers encapsul ate socket data
gram communication with the following classes:

e SOCK Dgram and LSOCK Dgram: These classes
provide mechanisms for exchanging datagrams between pro-
cesses running on local and/or remote hosts.  Unlike the
connected-datagram classes described below, each send and
r ecv operation must providethe address of the service with
every datagram sent or received. LSOCK Dgr aminherits
all the operations of both SOCK Dgr amand LSOCK. It only
exchanges datagrams between processes on the same host.
The SOCK Dgr amclass, on the other hand, may exchange
datagrams between processes on local and/or remote hosts.



e SOCK CODgram and LSOCK CODgram: These
classes provide a “connected-datagram” mechanism. Un-
like the connectionless classes described above, these classes
allow the send and r ecv operations to omit the address
of the service when exchanging datagrams. Note that the
connected-datagram mechanism is only a syntactic conve-
nience sincethereare no additional semantics associated with
the datatransfer (i.e., datagram delivery remains unreliable).
SOCK CODgr aminherits mechanisms from the SOCK base
class. LSOCK CODgr aminherits mechanisms from both
SOCK CODgr amand LSOCK (which providesthe ability to
pass file handles).

3.25 Group Communication

Standard TCP and UDP communication is point-to-point.
However, some applicationsbenefit frommoreflexibledeliv-
ery mechanisms that provide group communication. There-
fore, the following classes encapsulate the broadcast and
multicast protocols provided by the Internet protocol suite:

¢ SOCK Dgram Bcast: Thisclassprovidesmechanisms
for broadcasting UDP datagrams to processes running on
local and/or remote hosts attached to local subnets. The
interface for this class supportsthe broadcast of datagramsto
(2) dl network interfaces connected to the host machineor (2)
aparticular network interface. Thisclassshieldsthe end-user
from the low-level details required to utilize broadcasting
effectively.

e SOCK Dgram Mcast: This class provides mecha
nisms for multicasting UDP datagrams to processes running
on local and/or remote hosts attached to local subnets. The
interface for thisclass supportsthe multicast of datagrams to
a particular multicast group. This class shields the end-user
from the low-level details required to utilize multicasting
effectively.

3.3 Network Addressing

Designing an efficient, general-purpose network addressing
interfaceishard. Thedifficulty stemsfromtryingto represent
different network address formats with a space efficient and
uniform interface. Different address formats store diverse
types of information represented with various sizes. For ex-
ample, an Internet-domain service (suchasft port el net)
is identified using two fields: (1) a four-byte |P address
(which uniquely identifies the remote host machine through-
out the Internet) and (2) a two-byte port number (which is
used to demultiplex incoming protocol data units to the ap-
propriate client or server process on the remote host ma
ching). In contrast, UNIX-domain sockets rendezvous via
UNIX pathnames (which may be up to 108 bytes in length
and are meaningful only on asinglelocal host machine).
The existingsockaddr -based network addressing struc-
tures provided by the socket interface is cumbersome and
error-prone. It requires developersto explicitly initiaize all
the bytes in the address structure to O and to use explicit
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Figure11: The SOCK SAP Address Class Hierarchy

casts. In contrast, the SOCK SAP addressing classes shown
in Figure 11 contain mechanisms for manipulating network
addresses. The constructors for the Addr base class ensure
that all fields are automatically initialized correctly. More-
over, the different sizes, formats, and functionality that exist
between different address families are encapsulated in the
derived address subclasses. This makes it easier to extend
the network addressing scheme to encompass new commu-
nication domains. For example, the UNI X Addr subclassis
associated with the LSOCK* classes, thel NET Addr sub-
class is associated with the SOCK* and TLI * classes, and
the SPI PE Addr subclassisassociated with the STREAM
pipewrappersin SPI PE SAP.

4  Programming with SOCK SAP C++
Wrappers

This section illustrates the ACE SOCK SAP C++ wrappers
by using them to develop a client/server streaming appli-
cation. This application is simplified version of thett cp
program described in Section 2. For comparison, this appli-
cation is also written with sockets and CORBA. Most of the
error checking has been omitted in these examples to keep
them short. Naturally, robust programs should check the
return values of library and system cdlls.

Figures 12 and 13 present a client/server program written
inCthat usesInternet-domain socketsandsel ect toimple-
ment the stream application. The server shown in Figure 13
creates a passive-mode listener socket and waits for clients
to connect to it. Once connected, the server receives the
data transmitted from the client and displays the data on its
standard output stream. The client-side shown in Figure 12
establishes a TCP connection with the server and transmits
its standard input stream across the connection. The client
uses non-blocking connectionsto limit the amount of timeit
waits for a connection to be accepted or refused.

Most of theerror checking for return val ues has been omit-
ted to save space. However, it isinstructive to note al the
socket initialization, network addressing, and flow control
detailsthat must be programmed explicitly to make even this
simple example work correctly. Moreover, the code in Fig-



ures 12 and 13 isnot portableto platformsthat do not support
both socketsand sel ect .

Figures 14 and 15 use SOCK SAP to reimplement the C
versions of the client/server programs. The SOCK SAP pro-
gramsimplement the same functionality asthose presented in
Figure12 and Figure 13. The SOCK SAP C++ programsex-
hibit the following benefits compared with the socket-based
C implementation:

e Increased clarity — e.g., network addressing and host
location is handled by the Addr class shown in Fig-
ure 11, which hides the subtle and error-prone de-
tails that must be programmed explicitly in Figures 12
and 13. Moreover, thelow-level detail sof non-blocking
connection establishment are performed by the SOCK
Connect or factory.

¢ Increased typesafety — e.g., the SOCK Accept or and
SOCK Connect or connection factories create SOCK
St r eamobjects. This prevents the type errors shown
in Figure 7 from occurring at run-time.

o Decreased programsize—e.g., asubstantial reductionin
thelines of code results from localizing active and pas-
sive connection establishment inthe SOCK Accept or
and SOCK Connect or connection factories. In addi-
tion, default values are provided for constructor and
method parameters, which reduces the number of argu-
ments needed for common usage patterns.

¢ Increased portability — e.g., switching between sockets
and TLI simply requires changing
send_data <TLI_Connector, TLI_Stream
I NET_Addr > (s_addr);
intheclient to

send_data <SOCK_Connector, SOCK Stream
I NET_Addr > (s_addr);

and

recv_dat a<SOCK_Accept or, SOCK Stream
I NET_Addr > (s_addr);

inthe server to

recv_dat a<TLI| _Acceptor, TLI_Stream
I NET_Addr > (s_addr);

Conditional compilation directives can be used to fur-
ther decoupl ethe communi cation softwarefromreliance

upon a particular type of network programming inter-
face.

However, the ACE wrappers share some of the same draw-
backs as sockets. In particular, too much of the coderequired
to program at this level is not directly related to the appli-
cation. In contrast, Figures 16 and 17 illustrate the CORBA
version of the stream application implemented using Orbix
1.3. Thisimplementationismore concise than boththe C and
ACE C++ wrapper versions. CORBA performsthelow-level
communi cation details associated with servicelocation, pas-
sive and active connection establishment, message framing,
marshalling and demarshalling, demultiplexing, and upcall
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#def i ne PORT_NUM 10000
#defi ne TI MEQUT 5

/* Socket client. */
voi d send_data (const char host[], u_short port_num
{

struct sockaddr_in peer_addr;

struct hostent *hp;

char buf [ BUFSI Z] ;

int s_sd, wbytes, r_bytes, n;

/* Create a | ocal endpoint of conmmunication */

}

int nain (int argc,

}

s_sd = socket (PF_INET, SOCK_STREAM O0);
/* Set s_sd to non-bl ocking node. */
n = fentl (s_sd, F_GETFL, 0);

fentl (s_sd, F_SETFL, n | O_NONBLOCK);

/* Determine | P address of the server */
hp = gethostbynane (host);

/* Set up address information to contact server */
menset ((void *) &peer_addr, 0, sizeof peer_addr);
peer _addr.sin_famly = AF_I NET;
peer _addr.sin_port = port_num
mencpy (&peer_addr. si n_addr,

hp->h_addr, hp->h_I ength);

/* Establish non-bl ocking connection server. */
if (connect (s_sd, (struct sockaddr *) &peer_addr,
si zeof peer_addr) 1) {
if (errno == ElI NPROGRESS) {
struct tineval tv = {TI MEQUT, O0};
fd_set rd_sds, w_sds;
FD_ZERO (& d_sds);
FD_ZERO (& _sds) ;
FD SET (s_sd, &w _sds);
FD SET (s_sd, &rd_sds);

/* Wait up to TI MEQUT seconds to connect. */
if (select (s_sd + 1, &rd_sds, &w_sds,
0, &v) <=0)
perror ("connection tinedout"), exit (1);
/'l Recheck if connection is established.
if (connect (s_sd,
(struct sockaddr *) &peer_addr,

si zeof peer_addr) == -1
&& errno !'= El SCONN)
perror ("connect failed"), exit (1);

}

}

/* Send data to server (correctly handl es
"short wites" due to flow control) */

while ((r_bytes = read (0, buf,

for (w.bytes = 0; w bytes < r_bytes;
n=wite (s_sd, buf + w_bytes,
r_bytes - w_bytes);

sizeof buf)) > 0)
w_bytes += n)

/* O ose down the connection. */

close (s_sd);

char *argv[])

char *host = argc > 1 ? argv[1] : "ics.uci.edu";

u_short port_num=
htons (argc > 2 ? atoi

(argv[2]) : PORT_NUM;

/* Send data to the server. */
send_data (host, port_nun);

return O;

Figure 12: Socket-based Client Example



#def i ne PORT_NUM 10000

/*

Socket server. */

voi d recv_data (u_short port_nun)

{

}

{

struct sockaddr_in s_addr;
int s_sd;
/*

Create a local endpoint of comunication */

s_sd = socket (PF_INET, SOCK_STREAM 0);

/* Set up the address information for a server */
menset ((void *) &s_addr, 0, sizeof s_addr);
s_addr.sin_famly = AF_I NET; {
s_addr.sin_port = port_num

s_addr.sin_addr.s_addr = | NADDR_ANY;

/* Associ ate address w th endpoint */
bind (s_sd, (struct sockaddr *) &s_addr,
si zeof s_addr);

/* Make endpoi nt
listen (s_sd, 5);

listen for service requests */

/* Perfornms the iterative server activities */
for () {

char buf[BUFSI Z] ;

int r_bytes, n_sd;

struct sockaddr_in peer_addr;
int peer_addr_|en = sizeof peer_addr;
struct hostent *hp;

/* Create a new endpoint of communication */

while ((n_sd = accept (s_sd, &peer_addr,
&peer _addr _len)) == -1
&& errno == ElI NTR)
conti nue;

hp = get host byaddr (&peer_addr. si n_addr,
peer _addr _|l en, AF_I NET);

printf ("client %\n", hp->h_nane);

}

/* Read data fromclient (terminate on error) */

while ((r_bytes = read (n_sd, buf, sizeof buf)) > Of{

wite (1, buf, r_bytes);

/* Cl ose the new endpoi nt

(l'istening endpoint renains open) */
close (n_sd);
}
/* NOTREACHED */
int main (int argc, char *argv[])
u_short port_num = }
htons (argc > 1 ? atoi (argv[1]) PORT_NUM ;

/'l Receive data fromclients.
recv_data (port_num;
return O;

Figure 13: Socket-based Server Example
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static const
static const

nt main (int argc,

int PORT_NUM = 10000;
int TIMEQUT = 5;

/1 SOCK_SAP dient.

tenpl ate <cl ass CONNECTOR,

cl ass STREAM
cl ass ADDR>

voi d send_data (ADDR peer_addr)

/1 Data transfer object.
STREAM peer _st ream

/1 Establish connection w thout blocking.
CONNECTOR connect or
(peer _stream peer_addr, ACE_NONBLOCK);
if (peer_streamget_handle () == -1) {
/1 1f non-bl ocking connection is in progress,
/1 wait up to TI MEQUT seconds to conplete.
Ti me_Val ue timeout (TIMEQOUT);

if (errno != EWOULDBLOCK | |
connect or. conpl ete
(peer _stream peer_addr, &tineout)
perror ("connector"), exit (1);

== -l)

/1 Send data to server (send_n() handles
/1 "short wites" correctly).

char buf [ BUFSI Z] ;
for (int r_bytes;
(r_bytes = read (0, buf, sizeof buf)) > 0;)
peer _stream send_n (buf, r_bytes);
/1 Explicitly close the connection.
peer _streamcl ose ();
char *argv[])
char *host = argc > 1 ? argv[1]

u_short port_num=
htons (argc > 2 ? atoi

"ics.uci.edu";

(argv[2]) PORT_NUM ;

/1 Address of the server.
I NET_Addr s_addr (port_num host)

/1 Use TLI wappers on client’s side.
send_data <TLI _Connector, TLI_Stream

I NET_Addr > (s_addr);
return O;

Figure14: SOCK SAP-based Client Example



static const int PORT_NUM = 10000;

/] SOCK_SAP Server.

tenpl ate <cl ass ACCEPTOR,

{

cl ass STREAM

cl ass ADDR>
voi d recv_data (ADDR s_addr)
/1 Factory for passive connection establishnment. /] CORBA IDL interface.

}

ACCEPTOR acceptor (s_addr);
interface Data_Stream

/1 Data transfer object. {
STREAM peer _stream typedef sequence<char> Stream Buf;
/! Renote peer address. exception Disconnected {};

ADDR peer _addr;
oneway void send (in Stream Buf buf)

/1 Perfornms iterative server activities. rai ses (Di sconnected);
}s
for () { )
/] Create a new STREAM endpoi nt /1 CORBA Qient.
/1 (automatically restarted if errno == EINTR). )
acceptor.accept (peer_stream &peer_addr); }{/0' d send_data (Data_Stream *peer_streamn

printf ("client %\n", peer_addr.get host_name ()); {D{at gogftr re;ﬁqt 'OrSt ?LL%CSL]?SbE?n?E{J#S| 2

/!l Read data fromclient (terminate on error). // Read fromstdin and send to server

char buf [BUFSI 7] ; while ((buf. length =
read (0, buf. buffer, BUFSIZ)) > 0)

for (int r_bytes; peer _stream >send (buf);

peer _streamrecv (buf, sizeof buf,

_ r_bytes) > 0;) /1 Decrement object reference’s ref count.
wite (1, buf, r_bytes); peer_stream > rel ease ();

/1 O ose peer_stream endpoi nt }
/1 (acceptor endpoint stays open). int nain (int argc, char *argv[])
peer _streamcl ose ();
} char *marker
/* NOTREACHED */ = argc > 1 ? argv[1l] : "data_streant;
Dat a_St ream *peer _stream =
Data_Stream: _bind (narker);

int main (int argc, char *argv[])

send_data (peer_strean);
u_short port_num = return O;
argc == 1 ? PORT_NUM : atoi (argv[1]); }
/] Port for the server. Figure 16: CORBA-based Client Example
I NET_Addr s_addr (port_num;

/'l Use socket wappers on server’'s side.
recv_dat a<SOCK_Accept or, SOCK_Stream

I NET_Addr > (s_addr);
return O;

Figure15: SOCK SAP-based Server Example

15



/1 Inplenentation class for |IDL interface
/1 that inherits fromautomatically-generated
/1 CORBA skel eton cl ass.

class Data_Stream.i
publ i c Data_StreanBOAl npl

/1 Upcall invoked by the CORBA skel eton.
virtual void send
(const Data_Stream: Stream Buf &,
CORBA: : Envi ronment &) ;
3

/1 Upcall invoked by the CORBA skel eton.

voi d
Data_Stream.: :send
(const Data_Stream: Stream Buf &buf,
CORBA: : Envi ronnment & T_env)

/!l Wite data to standard out put.
wite (1, buf._buffer, buf._length);
}

/1 CORBA persistent server.

int main (int argc, char *argv[])
{
char *executable = argv[O0];
char *marker
= argc > 1 ? argv[1l] : "data_streant;
/1 Define an inplenmentation object.
Data_Stream.i data_stream (marker);

/1 ACE nmethod that registers service

/1 with the ORB automatically.

CORBA _Handl er: : activate_service
("Data_Streant, object_nane, executable);

/1 Tell the ORB that the objects are active.

CORBA: : O bix.inpl _is_ready ("Data_Streant);

/* NOTREACHED */
return O;

Figure 17: CORBA-based Server Example
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dispatching. This allows developers to concentrate on defin-
ing application-specific behavior, rather than wrestling with
the details of network programming.

The persistent CORBA server shown in Figure 17 creates
an implementation of a Dat a_St r eamIDL interface and
informs the ORB that it is ready to receive send requests
fromclients. It usesastandard ACE class CORBA_ Handl er
to automatically register the server and object name with the
Orbix daemon.

The client shown in Figure 16 uses the Orbix locator ser-
viceto bind to thermar ker exported by the Dat a_St r eam
server. Once bound, the client transmits al data from its
standard input to the server viathe Dat a_St r eam : send
proxy. This example behaves dightly differently than the C
and ACE wrapper versions since CORBA does not provide
a standard means to obtain the host and port of the sender.
Moreover, CORBA communication semantics are request-
oriented rather than connection-oriented. Thus, other clients
could conceivably bind to the same marker name and trans-
mit dataviaitssend method. To get the same behavior with
CORBA would require the use of an object factory.

5 Socket Wrapper Design Principles

This section describes the following design principles that
are applied throughout the SOCK  SAP class category:

o Enforcetypesafety at compile-time
o Allow controlled violations of typesafety
o Simplify for the common case

¢ Replace one-dimensional interfaces with hierarchical
class categories

o Enhance portability with parameterized types
¢ Inline performance critical methods
o Define auxiliary classes to hide error-prone details

Althoughthese principlesare widely known and widely used
in domainslike graphical user interfaces they have been less
widely applied in the communication software domain.

¢ Enforcetypesafety at compile-time:  Severa limitations
with sockets discussed in Section 3.1 stem from the lack of
typesafety initsinterface. To enforcetypesafety, SOCK SAP
ensuresall itsobjectsare properly initializedviaconstructors.
In addition, to prevent accidental violations of typesafety,
only legal operations are permitted on SOCK SAP objects.
This latter point isillustrated in the SOCK SAP revision of
echo_server shown in Figure 18. This version fixes the
problems with sockets and C identified in Figure 7. Since
SOCK SAP classes are strongly typed, invalid operations
are rgjected a compile-time rather than at run-time. For
example, it is not possible to invoke r ecv or send on a
SOCK_Accept or connection factory since these methods
are not part of itsinterface. Likewise, return values are only
used to convey success or failure of operations. Thisreduces
the potential for misuse in assignment expressions.



int echo_server (u_short port_num

{

/1 Address of |ocal server.
I NET_Addr s_addr (port_num;

/1 Initialize the passive npbde server.
SOCK_Accept or acceptor (s_addr);

/1 Data transfer object.
SOCK_St ream peer _stream

/1 Cdient renote address object.
| NET_Addr peer _addr;

/'l Accept a new connection.
if (acceptor.accept (peer_stream

&peer _addr) !'= -1) {
char buf [ BUFSI Z] ;
for (size_t n;
peer _streamrecv (buf, sizeof buf, n) > 0;)
/1 Handl es "short-wites."
if (peer_streamsend_n (buf, n) !=n)

/! Remai nder omitted.

Figure 18: SOCK SAP Revision of the Echo Server

o Allow controlled violationsof typesafety: This princi-
pleis exemplified by the get _handl e and set _handl e
methods provided by the | PC SAP root class. These meth-
ods extract and assign the underlying handle, respectively.
By providing get _handl e and set _handl e, | PC SAP
allows applications to circumvent its type-checking mecha
nismsin situationswhere applicationsmust interface directly
withUNIX system calls(suchassel ect ) that expect ahan-
dle. Another way of stating this principleis “make it easy
to use SOCK SAP correctly, hard to use it incorrectly, but
not impossible to use it in ways the class designers did not
anticipate.”

o Simplify for thecommon case:  Thisprincipleisapplied
in the following waysin the ACE C++ socket wrappers:

o Supply default parameters for common method argu-

ments—for instance, the SOCK Connect or construc-
tor has six parameters:
SOCK_Connect or
(SOCK_St ream &new_stream

const Addr &renote_sap,

int blocking_semantics = 0,

const Addr & ocal _sap = Addr::sap_any,

int protcol _famly = PF_I NET,

int protocol = 0);
However, only the first two commonly vary from call to
cal:
SOCK_St r eam st r eam
/1 Conpiler supplies default val ues.

SOCK_Connect or con (stream

I NET_Addr (port, host));
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Therefore, to simplify programming, the values are
given as defaults in the SOCK Connect or construc-
tor so that programmers need not provide them every
time,

Define parsimonious interfaces — This principle local -
izes the cost of using a particular abstraction. Thel PC

17

SAP interfaces limits the amount of details that appli-
cation devel opers must remember. | PC SAP provides
devel operswith clusters of classes that perform various
types of communication (such as connection-oriented
vs. connectionless) and various connection roles (such
as active vs. passive). To reduce the chance of error,
the SOCK Accept or class only permits operations
that apply for programs playing passive roles and the
SOCK Connect or class only permits operations that
apply for programs playing an active role. In addition,
sending and receiving open file handleshasamuch sim-
pler caling interface using SOCK SAP compared with
using the highly-general UNIX sendnsg/ recvinsg
routines. For example, using LSOCK* classes to pass
socket descriptorsis very concise:

LSOCK_St r eam st r eam
LSOCK_Acceptor acceptor ("/tnp/foo");

/1 Accept connection.
acceptor.accept (stream;

/1 Pass the socket descriptor back to caller.
stream send_handl e (stream get_handle ());

versus the code that is required to implement thisusing
the socket interface;

int n_sd;

int u_sd;
sockaddr _un addr;
u_char a[2];
iovec iov;
nmsghdr send_nsg;

u_sd = socket (PF_UNI X, SOCK _STREAM 0);
menmset ((void *) &addr, O,

addr.sun_famly = AF_UN X;
strcpy (addr.sun_path, "/tnp/foo");

si zeof addr);

bind (u_sd, &addr, sizeof addr.sun _famly +
strlen ("/tnmp/foo"));

listen (u_sd, 5);

/1 Accept connection.
n_sd = accept (u_sd, 0, 0);

/1 Sanity check.
a[ 0] = Oxab; a[1l] = Oxcd;
iov.iov_base = (char *) a;
iov.iov_|len = sizeof a;

send_nsg. nBg_i OV = & ov;

send_nsg. msg_i ovlen = 1;

send_nsg. nsg_nane = (char *) O;
send_nsg. msg_nanel en = 0;

send_nsg. nsg_accrights = (char *) &n_sd;
send_nsg. nsg_accri ghtslen = sizeof n_sd;

/1 Pass the socket descriptor back to caller.
sendnsg (n_sd, &send_nsg, 0);

Combine multiple operations into a single operation —
Creating a conventional passive-mode socket requires
multiplecadls:

int s_sd = socket (PF_INET, SOCK_STREAM 0);
sockaddr _i n addr;

menset (&addr, 0, sizeof addr);

addr.sin_famly = AF_I NET;

addr.sin_port = htons (port);

addr. si n_addr.s_addr = | NADDR_ANY;



tenpl ate <cl ass
cl ass
cl ass
int echo_server

ACCEPTOR,

STREAM

ADDR>

(u_short port_num

/1 Local address of server.
ADDR s_addr (port_num;

/1 Initialize the passive npbde server.
ACCEPTOR acceptor (s_addr);

/1 Data transfer object.
STREAM peer _stream

/! Renote address object.
ADDR peer _addr;

/'l Accept a new connection.
if (acceptor.accept (peer_stream
&peer _addr) !'= -1) {
char buf[BUFSI Z] ;
for (size_t n;
peer _streamrecv (buf, sizeof buf,
n) > 0;)
if (peer_streamsend_n (buf,
/! Remai nder omitted.

n) !'=n)

Figure 19: Template Version of the Echo Server

bind (s_sd, &addr,
listen (s_sd);
...

addr _l en);

In contrast, the SOCK Accept or isafactory for pas-
sive connection establishment. Its constructor performs
the socket callssocket , bi nd,and| i st en required
to create a passive-mode listener endpoint. Therefore,
applications simply write the following:

SCCK_Accept or (1 NET_Addr
to achieve the functionality presented above.

accept or (port));

e Replace one-dimensional interfaces with hierar-
chical class categories: This principle involves using
hierarchically-related class categories to restructure exist-
ing one-dimensional socket interfaces (shown in Figure 9).
The criteria used to structure the SOCK SAP class category
involved identifying, clustering, and encapsulating related
socket routines to maximize the reuse and sharing of class
components.

Inheritance supports different subsets of functionality for
the SOCK SAP class categories. For instance, not all operat-
ing systems support passing openfile handles(e.g., Windows
NT). Thus, itis possible to omit the LSOCK class (described
in Section 3.2) from theinheritance hierarchy without affect-
ing the interfaces of other classes inthe SOCK SAP design.

Inheritance also increases code reuse and improves mod-
ularity. Base classes express similarities between class cate-
gory componentsand derived classes express the differences.
For example, the | PC SAP design places shared mecha
nisms towards the “root” of the inheritance hierarchy in the
| PC SAPand SOCK SAP base classes. These mechanisms
include operationsfor opening/closing and setting/retrieving
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the underlying socket handles, aswell as certain option man-
agement functions that are common to all the derived SOCK
SAP classes.  Subclasses located towards the “bottom” of
the inheritance hierarchy implement speciaized operations
that are customized for the type of communication provided
(such as stream vs. datagram communication or loca vs.
remote communication). This approach avoids unnecessary
duplication of codesincethemore specialized derived classes
reuse the more general mechanisms provided at the root of
theinheritance hierarchy.

e Enhance portability with parameterized types:  Wrap-
ping sockets with C++ classes (rather than stand-alone C
functions) helps to improve portability by alowing the
wholesale replacement of network programming interfaces
via parameterized types. Parameterized types decouple ap-
plications from reliance on specific network programming
interfaces. Figure 19 illustrates thistechnique by modifying
theecho_ser ver to become aC++ functiontemplate. De-
pending on certain properties of the underlying OS platform
(such as whether it implements TLI or sockets more effi-
ciently), theecho_ser ver may be instantiated with either
SOCK SAPor TLI SAP classes, as shown below:

/1 Conditionally select |IPC mechani sm
#if defined (USE_SOCKETS)

t ypedef SOCK_Stream STREAM

typedef SOCK_ Acceptor ACCEPTOR;

#el se

typedef TLI_Stream STREAM

typedef TLI _Acceptor ACCEPTOR;

#endi f // USE_SOCKETS.

const int PORT_NUM = 10000;

int main (void)
{
...

/'l Invoke the echo_server with appropriate
/'l network progranmm ng interfaces.
echo_server <ACCEPTOR, STREAM

| NET_Addr > ( PORT_NUM ;

In general, the use of parameterized typesislessintrusive
and more extensible that conventiona alternatives (such as
implementing multipleversionsor littering conditional com-
pilation directives throughout the source code).

¢ Inlineperformancecritical methods:  To encourage de-
velopersto replace existing low-level network programming
interfaces with C++ wrappers, the SOCK SAP implementa-
tion must operate efficiently. To ensure this, methodsin the
critical performance path (suchasthe SOCK St r eamr ecv
and send methods) are specified as C++ inlinefunctionsto
eliminate run-timeoverhead. Inliningis both time and space
efficient since these methods are very short (approximately 2
or 3linesper method). Theuseof inliningimpliesthat virtua
functions should be used sparingly since most contemporary
C++ compilers do not fully optimize away virtual function
overhead.

¢ Define auxiliary classes that hide error-prone details:
The C interface to socket addressing is awkward and error-



prone. It is easy to neglect to zero-out a sockaddr _i n
or convert port numbers to network byte-order. To shield
applications from these low-level details, | PC SAP define
the Addr class hierarchy (shown in Figure 11). This hier-
archy supports several diverse network addressing formats
via a typesafe C++ interface. The Addr hierarchy dim-
inates common programming errors associated with using
the C-based family of st ruct sockaddr datastructures
directly. For example, the constructor of | NET Addr auto-
matically zeros-out thesockaddr addressing structure and
converts the port number to network byte order, as follows:

class | NET_Addr :
publi c:
I NET_Addr: : | NET_Addr (u_short port,
long ip_addr = 0) {
menset (& his->inet_addr_, O,
si zeof this->inet_addr_);
this->inet_addr_.sin_fanmily = AF_I NET;
this->inet_addr_.sin_port = htons (port);
menmcpy (& his->inet_addr_. si n_addr,
& p_addr, sizeof ip_addr);
}

private:
sockaddr _i n inet_addr_;

h

public Addr {

6 Concluding Remarks

Animportant class of applicationsrequire high-performance
streaming communication. Bandwidth-intensive and delay-
sensitive streaming applicationslikemedical imaging or tele-
conferencing are not supported efficiently by contemporary
CORBA implementations due to data copying, demultiplex-
ing, and memory management overhead. As shown in Sec-
tion 2, thisoverhead is often masked on low-speed networks
like Ethernet and Token Ring. On high-speed networks like
ATM or FDDI, however, thisoverhead becomes a significant
factor limiting communication performance.

The ACE socket wrappers described in this paper pro-
videahigh-performance network programming interfacethat
shieldsdevel opersfrom lower-level details of socketsor TLI
without sacrificing performance. The ACE wrappers auto-
mate and simplify many aspects (such as initialization, ad-
dressing, and handling short-writes) of using lower-level net-
work programming interfaces. They improve portability by
shielding applications from platform-specific network pro-
gramming interfaces. Wrapping sockets with C++ classes
(rather than stand-alone C functions) makes it convenient to
switch whol esal ebetween different network programmingin-
terfaces by using parameterized types. In addition, as shown
in Figure 2, the ACE socket wrappers do not introduce any
significant overhead compared with programming to sockets
directly.

The primary drawback with the ACE network program-
ming wrappersisthat they do not address higher-level issues
related to system reliability and avail ability, flexibility of ob-
ject location and selection, support for transactions, security,
and deferred process activation, and the exchange of binary
data between different computer architectures. For exam-
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ple, programmers must explicitly program presentation layer
conversions in conjunction with the ACE wrappers. There-
fore, these wrappers are most useful when the datatypes are
simple (like those used by the high-performance streaming
applications described in this paper).

The ACE C++ wrappersfor socketsmay beintegrated with
CORBA to enhance the performance of streaming applica
tions. We' ve combined CORBA and the ACE wrappersin a
high-speed teleradiology system that transfers 10-40 Mbyte
medical images over ATM. In this system, CORBA is used
as a signaling mechanism to identify endpoints of communi-
cationin alocation-independent manner. The ACE wrappers
arethen used to establish point-to-point TCP connectionsand
transmit bulk data efficiently across the connections. This
strategy builds on the strengths of both CORBA and ACE.

ACE has been ported to many versions of UNIX and
Windows NT and is currently being used in many com-
mercia productsincluding the Bellcore and Siemens Q.port
ATM signaling software product, the Ericsson EOS fam-
ily of telecommunication monitoring applications, the Sys-
tem Control Segment of the Motorola Iridium project, and
a high-speed enterprise-wide medical image delivery system
for Kodak Health Imaging Systems.
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