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Abstract

This paper makes two contributions to the development and
evaluation of object-oriented communication software. First,
it reports performance results from benchmarking several
network programming mechanisms (such as sockets and
CORBA) on Ethernet and ATM networks. These results il-
lustrate that developers of high-bandwidth, low-delay appli-
cations (such as interactive medical imaging or teleconfer-
encing) must evaluate their performance requirements and
the efficiency of their communication infrastructure carefully
before adopting a distributed object solution. Second, the
paper describes the software architecture and design princi-
ples of the ACE object-oriented network programming com-
ponents. These components encapsulate UNIX and Win-
dows NT network programming interfaces (such as sockets,
TLI, and named pipes) with C++ wrappers. Developers of
object-oriented communication software have traditionally
had to choose between high-performance, lower-level inter-
faces provided by sockets or TLI or less efficient, higher-
level interfaces provided by communication frameworks like
CORBA or DCE. ACE represents a midpoint in the solution
space by improving the correctness, programming simplicity,
portability, and reusability of performance-sensitive commu-
nication software.

1 Introduction

Distributed object computing (DOC) frameworks like the
Common Object Request Broker Architecture (CORBA) [1],
OODCE [2], and OLE/COM [3] are well-suited for applica-
tions that exchange richly typed data via request/response or
oneway communication. However, current implementations
of DOC frameworks may be less suitable for an important
class of performance-sensitive applications that stream rela-
tively simple datatypes over high-speed networks. Medical
imaging, interactive teleconferencing, and video-on-demand
are common examples of this class of streaming applications.

Streaming applications with stringent throughput and de-
lay requirements are ideal candidates for high-speed networks
such as ATM and FDDI. However, these applications may
not be able to tolerate the overhead associated with con-
temporary DOC frameworks. This overhead stems from
non-optimized presentation layer conversions, data copying,
and memory management; inefficient and inflexible receiver-
side demultiplexingand dispatchingoperations; synchronous
stop-and-wait flow control; and non-adaptive retransmission
timer schemes. Meeting the throughput demands of stream-
ing applications has traditionally required direct access to
network programming interfaces such as sockets [4] or Sys-
tem V TLI [5]. These lower-level interfaces are efficient
since they omit unnecessary functionality (such as presenta-
tion layer conversions for ASCII data). They also allow fine-
grained control of memory management, protocol buffering,
demultiplexing, and flow control.

However, conventional network programming interfaces
are low-level, non-portable, and non-typesafe. This compli-
cates programming and permits subtle run-time errors. For
instance, communication endpoints in the socket interface
are identified by weakly-typed integer handles (also known
as socket descriptors). Weak type-checking increases the po-
tential for run-time errors since compilers cannot detect or
prevent improper use of handles. Thus, operations can be
applied to handles incorrectly (such as invoking a read or
write on a passive-mode socket handle that can only accept
connections).

Traditionally, developers of high-performance streaming
applications had to choose between two solutions:

1. Higher-level, but less efficient network programming
interfaces – such as DOC frameworks or RPC toolkits;

2. Lower-level, but more efficient network programming
interfaces – such as sockets or TLI.

This paper describes object-oriented network programming
components that provide a midpoint in the solution space.
These components are part of the ACE toolkit [6], which
encapsulates conventional network programming interfaces
with a family of C++ wrappers. As shown below, the ACE
toolkit improves the correctness, ease of use, portability and
reusability of communication software without sacrificing
performance.
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This paper is organized as follows: Section 2 compares the
performance of several network programming mechanisms
(C sockets, C++ wrappers for sockets, and two implementa-
tions of CORBA) for a representative streaming application
over Ethernet and ATM networks; Section 3 outlines the de-
sign of the object-oriented ACE components that encapsulate
UNIX and Windows NT network programming interfaces
(such as sockets, TLI, STREAM pipes, and named pipes);
Section 4 illustrates the differences between programming
with C sockets, ACE, and CORBA; Section 5 summarizes
the design principles of the ACE wrappers; and Section 6
presents concluding remarks.

2 Performance Experiments

This section describes performance results from comparing
several network programming mechanisms that transfer large
streams of data using TCP/IP over Ethernet and ATM net-
works. The network programming mechanisms compared
below include C sockets, C++ wrappers for sockets, and
two implementations of CORBA. The benchmark tests are
representative of applications written by the authors for the
Motorola Iridium project [7] and Project Spectrum [8]. Irid-
ium is a next-generation satellite-based global personal com-
munication system; Spectrum is an enterprise-wide medical
imaging system that transports radiology images across high-
speed ATM LANs and WANs.

2.1 Test Platform and Benchmarks

The performance results in this section were collected using
a Bay Networks LattisCell 10114 ATM switch connected to
two uni-processor SPARCstation 20 Model 5Os. The Lat-
tisCell 10114 is a 16 Port, OC3 155Mbs/port switch. The
SPARCstations contain 100 MIP Super SPARC CPUs run-
ning SunOS 5.4. The SunOS 5.4 TCP/IP protocol stack is
implemented using the STREAMS communication frame-
work [9]. Each SPARCstation 20 has 64 Mbytes of RAM
and an ENI-155s-MF ATM adaptor card, which supports 155
Megabits per-sec (Mbps) SONET multimode fiber. The Max-
imum Transmission Unit (MTU) on the ENI ATM adaptor
is 9,180 bytes. Each ENI card has 512 Kbytes of on-board
memory. 32 Kbytes is alloted per ATM virtual circuit con-
nection for receiving and transmitting frames (for a total of
64K). This allows up to 8 connections per card.

Data for the experiments was produced and consumed by
an extended version of the widely availablettcp [10] proto-
col benchmarking tool. This tool measures end-to-end data
transfer throughput in Mbps from a transmitter process to
a remote receiver process. The flow of user data is uni-
directional, with the transmitter flooding the receiver with a
user-specified number of data buffers. Various sender and
receiver parameters may be selected at run-time. These pa-
rameters include the number of data buffers transmitted, the
size of data buffers, and the size of the socket transmit and
receive queues.

The following versions of ttcp were implemented and
benchmarked:

� C version – this is the standard ttcp program imple-
mented in C. It uses C socket calls to transfer and receive
data via TCP/IP.

� ACE version – this version replaces all C socket calls
in ttcp with the C++ wrappers for sockets provided
by the ACE network programming components (version
3.2) [6]. The ACE wrappers encapsulate sockets with
typesafe, portable, and efficient C++ interfaces.

� CORBA versions – two implementations of CORBA
were used: version 1.3 of Orbix from IONA Technolo-
gies and version 1.2 of ORBeline from Post Modern
Computing. These versions replace all C socket calls
in ttcp with stubs and skeletons generated from a pair
of CORBA interface definition language (IDL) specifi-
cations. One IDL specification uses a sequence pa-
rameter for the data buffer and the other uses a string
parameter.

Each version of ttcp was compiled using SunC++ 4.0.1
with the highest level of optimization (-O4). To control
for confounding factors, the timing mechanisms, command-
line options, socket options, and communication protocols
were held constant for all implementations of ttcp. Only
the connection establishment and data transfer mechanisms
were varied.

2.2 Results

We ran a series of tests that transferred 64 Mbytes of user data
in buffers ranging from 1 byte to 128 Kbytes using TCP/IP
over Ethernet and ATM networks. Data buffers were run
in increments of 1 byte, 1K, 2K, 4K, 8K, 16K, 32K, 64K,
and 128K sizes. Two different sizes for socket queues were
used: 8K (the default on SunOS 5.4) and 64K (the maximum
size supported by SunOS 5.4). Each test was run 20 times
to account for performance variation due to transient load
on the networks and hosts. The variance between runs was
very low since the tests were conducted on otherwise unused
networks.

Figure 1 summarizes the performance results for all the
benchmarks using 64K socket queues over a 155 Mbps ATM
link and a 10 Mbps Ethernet (the 8K socket queue results are
presented in Figures 2 and 3 and Tables 1 and 2 summarize
the results for all the tests). The C and ACE C++ wrapper
versions of ttcp obtained the highest throughput: 62 Mbps
using 8K data buffers. In contrast, the Orbix and ORBeline
CORBA versions of ttcp peaked at around 39 Mbps with
64K data buffers using IDL sequences.

The results for Ethernet show much less variation, with the
performance for all tests ranging from around 8 to 8.7 Mbps
with 64K socket queues. None of the Ethernet benchmarks
ran faster than 8.7 Mbps, which is 87 percent of the maxi-
mum speed of a 10 Mbps Ethernet. Although the absolute
throughput of ttcp is almost 8 times faster over ATM, the
relative utilization of the network channel speed was much
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Figure 1: C, ACE, Orbix and ORBeline Performance over
ATM and Ethernet

lower (i.e., 62 Mbps represents only 40 percent of the 155
Mbps ATM link).

The disparity between network channel speed and end-
to-end application throughput is known as the throughput
preservation problem [11]. This problem occurs when only a
portion of the available bandwidth is actually delivered to ap-
plications. The throughput preservation problem stems from
operating system and protocol processing overhead (such
as data movement, context switching, and synchronization
[12]). As shown in Section 2.2.2, the throughputpreservation
problem is exacerbated by contemporary implementations of
DOC frameworks like CORBA, which copy data multiple
times during fragmentation/reassembly, marshalling, and de-
marshalling.

Sections 2.2.1 and 2.2.2 examine these performance results
in detail and Section 2.3 presents recommendations based on
an analysis of the benchmark results.

2.2.1 C and ACE Wrapper Implementations of TTCP

Figure 2 illustrates the performance results from the C and
ACE wrapper versions of ttcp over ATM and Ethernet.
The performance of C sockets and ACE C++ wrappers are
roughly equivalent. Both peak at 62 Mbps over ATM using
8K data buffers and 64K socket queues. This indicates that
the performance penalty for using the ACE C++ wrappers is
insignificant, compared with using C library function calls
directly.

Figure 2 illustrates the impact of data buffer size on per-
formance. When the data buffers exceeded 8K performance
began to decline, leveling off at around 48 Mbps with 64K
data buffers. This behavior is caused primarily by the MTU
size of the ATM network, which is 9,180 bytes. When data
buffers exceed the MTU size they are fragmented and re-
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Figure 2: C and ACE Performance over ATM and Ethernet

assembled, thereby lowering performance.
Figure 2 also illustrates the impact of socket queue size on

throughput. Larger socket queues increase the TCP window
size [13], which allows the transmission of multiple TCP
segments back-to-back. In the case of ATM, increasing the
socket queue from 8K to 64K improves ttcp performance
significantly from 23 Mbps to 62 Mbps.

The Ethernet results for large and small socket queues
show less variation than the ATM results. They peak at 8.4
Mbps with 8K socket queues and 8.7 Mbps with 64K socket
queues. In both cases, the factor limiting performance is the
slow speed of the network.

2.2.2 CORBA Implementations of TTCP

Figure 3 illustrates the results of measuring two versions of
ttcp implemented with two different versions of CORBA.
The CORBA implementations were developed using single-
threaded versions of Orbix 1.3 and ORBeline 1.2. At the time
these tests were performed, neither Orbix nor ORBeline fully
supported the OMG 2.0 CORBA standard. This complicated
the CORBA implementations of ttcp since different ver-
sions were required to account for incompatibilities between
Orbix and ORBeline.

Extending ttcp to use CORBA required several modi-
fications to the original C/socket code. All C socket calls
were replaced with stubs and skeletons generated from a pair
of CORBA interface definitions. One IDL interface uses a
sequence to transmit the data and the other IDL interface
uses a string, as follows:

typedef sequence<char> ttcp_sequence;

interface TTCP_Sequence
{
oneway void send (in ttcp_sequence ttcp_seq);

};
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Figure 3: Orbix and ORBeline Performance over ATM and
Ethernet

interface TTCP_String
{
oneway void send (in string ttcp_string);

};

Thesend operations useoneway semantics since thettcp
benchmarks measure the performance of uni-directional data
transfer. This behavior is consistent with the flow of com-
munication in electronic medical imaging applications and
video distribution.

The client-side of ttcp was modified as follows:

// Use locator service to acquire bindings.
TTCP_String *t_str = TTCP_String::_bind ();
TTCP_Sequence *t_seq = TTCP_Sequence::_bind ();

The bind method is a factory generated by the IDL com-
piler from an IDL specification (such as TTCP Sequence
and TTCP String). This factory obtains object refer-
ences to object implementations of TTCP Sequence and
TTCP String located on a server. Object references are
opaque, immutable “handles” that uniquely identify objects.
All CORBA object implementations must have one before
they can be accessed by client applications, and all client
applications must have an object reference before they can
access the object implementations in the server.

Once the object references were obtained, data buffers of
the appropriate size were initialized and then transmitted by
calling the IDL-generated send stubs, as follows:

// String transfer.

char *buffer = new char[buffer_size];
// Initialize data in char * buffer...

while (--buffers_sent >= 0)
t_str->send (buffer);

// Sequence transfer.

ttcp_sequence sequence_buffer;
// Initialize data in TTCP_Sequence buffer...

while (--buffers_sent >= 0)
t_seq->send (sequence_buffer);

The server-side was modified to create object implemen-
tations for TTCP Sequence and TTCP String. CORBA
IDL compilers generate skeletons that translate IDL interface
definitions (such asTTCP Sequence) into C++ base classes
(such as TTCP SequenceBOAImpl). Each IDL opera-
tion (such as oneway void send) is mapped to a corre-
sponding C++ pure virtual method (such asvirtual void
send). Programmers then define C++ derived classes that
override these virtual methods to implement application-
specific functionality, as follows:1

// Implementation class for IDL interface
// that inherits from automatically-generated
// CORBA skeleton class.

class TTCP_Sequence_i
: virtual public TTCP_SequenceBOAImpl

{
public:
TTCP_Sequence_i (void): nbytes_ (0) {}

// Upcall invoked by the CORBA skeleton.
virtual void send

(const ttcp_sequence &ttcp_seq,
CORBA::Environment &IT_env)

{
this->nbytes_ += ttcp_seq._length;

}
// ...

private:
// Keep track of bytes received.
u_long nbytes_;

};

The server-side used the CORBAimpl is ready event
loop to demultiplex incoming requests to the appropriate ob-
ject implementation, as follows:

int main (int argc, char *argv[])
{
// Implements the Sequence object.
TTCP_Sequence_i ttcp_sequence;

// Implements the String object.
TTCP_String_i ttcp_string;

// Single-threaded event loop that handles
// CORBA requests by making callbacks to
// user-supplied object implementations
// of TTCP_Sequence_i and TTCP_String_i.
CORBA::BOA::impl_is_ready ();

/* NOTREACHED */
return 0;

}

Porting ttcp to use CORBA over ATM demonstrated
the importance of having hooks to manipulate underlying
OS mechanisms (such as transport layer and socket layer

1Both CORBA implementations of ttcp used inheritance since ORBe-
line does not support Orbix’s “TIE” technique (which uses object composi-
tion to associate application-specific CORBA class implementations to the
generated IDL skeletons).
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Test %Time #Calls msec/call Name

C sockets 99.6 527 92.8 write
(sender)
C sockets 99.3 7201 6.2 read
(receiver)

ACE C++ wrapper 99.4 527 87.3 write
(sender)
ACE C++ wrapper 99.6 7192 6.2 read
(receiver)

Orbix Sequence 94.6 532 89.1 write
(sender) 4.1 2121 1.0 memcpy
Orbix Sequence 92.7 7860 6.1 read
(receiver) 4.8 2581 0.6 memcpy
Orbix String 89.0 532 85.6 write
(sender) 4.6 2121 1.1 memcpy

4.1 2700 0.7 strlen
Orbix String 86.3 7744 5.7 read
(receiver) 5.5 6740 0.4 strlen

4.5 2581 0.9 memcpy

ORBeline Sequence 91.0 551 74.9 write
(sender) 5.2 6413 0.4 memcpy

1.8 1032 0.8 sigaction
ORBeline Sequence 89.0 7568 5.8 read
(receiver) 5.1 7222 0.3 memcpy

3.3 1071 1.5 poll
ORBeline String 83.8 551 83.9 write
(sender) 5.4 920 3.2 strcpy

4.3 5901 0.4 memcpy
3.9 1728 1.2 strlen
1.1 1032 0.6 sigaction

ORBeline String 85.4 7827 5.5 read
(receiver) 4.6 6710 0.3 memcpy

4.2 1702 1.3 strlen
2.8 1071 1.3 poll

Figure 4: High cost Functions for ttcp Tests

options) that significantly affect performance. In particular,
high performance data transfers over TCP and ATM require
large socket queues. This is illustrated by the considerable
difference in throughput for the 8K and 64K socket queues
in Figures 2 and 3.

Orbix provides hooks to enlarge socket queues via
setsockopt by invoking a user-defined callback function
whenever a new socket is connected. In contrast, it was hard
to enlarge the socket queues using ORBeline 1.2 since it did
not provide direct access to sockets (subsequent versions of
ORBeline will provide this functionality).

By comparing Figure 3 with Figure 2 it is clear that
the CORBA-based ttcp implementations ran considerably
slower than the C and ACE wrapper versions on the ATM net-
work, particularly for 8K data buffers. The highest through-
put (39 Mbps) was obtained by the Orbix sequence im-
plementation using 64K data buffers and 64K socket queues.
The throughput leveled off beyond 64K data buffers.

Unlike the C and ACE wrapper results in Figure 1, the
performance of the CORBA versions did not decrease when
the size of the data buffers exceeded 8K. This behavior stems
from the higher fixed overhead of CORBA (such as demul-
tiplexing and memory management) that lowers its perfor-
mance for small buffer sizes. As the buffer size increases,
however, the relative impact of this fixed overhead is re-

duced. However, as the size of the buffers increase so does
the overhead of data copying. As shown below, data copying
ultimately limits the throughput achievable with the CORBA
implementations.

Detailed profiling and examination of the IDL stubs and
skeletons generated by Orbix and ORBeline revealed that the
CORBA overhead stems from the following sources:

� Data Copying: The data buffers exchanged between the
sender and receiver inttcp are treated as a stream of untyped
bytes. This is consistent with the type of data transmitted by
streaming applications such as teleconferencing and medical
imaging [14]. Since the data is untyped the CORBA presen-
tation layer need not perform complex marshalling to handle
byte-ordering differences between sender and receiver.

Although marshalling is not required, the CORBA im-
plementations incurred significant data copying overhead.
The UNIX execution profiler prof was used to pinpoint the
sources of this overhead. The C++ compiler was directed to
instrument the source code with monitoring instructions and
prof was then used to measure the amount of time spent in
functions during program execution. Figure 4 lists the func-
tions where the most time was spent sending and receiving
64 Mbytes using 128K data buffers and 64K socket queues.

The read and write system calls accounted for more
than 99% of the execution time in the C and ACE C++
wrapper implementations of ttcp. Note that although the
data was transmitted as 512 separate 128K buffers it was read
by the receiver in much smaller chunks of around 8K. This
illustrates the fragmentation and reassembly performed by
the ATM network adaptors (whose MTU is 9,180 bytes).

The read and write system calls dominated the execu-
tion of the CORBA implementations, as well. Unlike the C
and ACE wrapper versions, however, these implementations
spent 4 to 15 percent of their time performing other tasks,
such as copying and/or inspecting data (memcpy, strcpy,
and strlen), checking for activity on other I/O handles
( poll), and manipulating signal handlers ( sigaction).

The highest cost tasks involved data copying and data
inspection. The IDL stubs and skeletons copy data multi-
ple times (e.g., from the TCP data buffer into a marshalling
buffer, and then again into the parameter passed to the send
upcall). The test results illustrate that the choice of CORBA
IDL parameter datatypes has a significant impact on perfor-
mance. The sequence implementations shown in Figure 3
peaked at 39 Mbps for Orbix and 38 Mbps for ORBeline. In
contrast, the string implementations peaked at 34 Mbps
for Orbix and 30 Mbps for ORBeline.

The performance variation between the sequence and
string results are due to differences in their IDL-to-C++
mappings. In particular, the IDL sequence mapping con-
tains a length field, whereas the string mapping does not.
The generated IDL stubs and skeletons use this length field
to avoid searching each sequence parameter for a termi-
nating NUL character. In contrast, the IDL string im-
plementations use strlen to determine the length of their
parameters.
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Program Socket Queue 1 Byte 1K 2K 4K 8K 16K 32K 64K 128K

C Code 64K 0.16 23.52 32.19 43.16 61.77 58.10 56.13 48.91 48.6
8K 0.16 20.77 22.19 23.30 23.57 23.22 22.43 22.63 22.69

ACE Wrapper 64K 0.14 22.29 31.85 42.54 61.81 60.41 56.65 47.67 47.90
8K 0.14 20.48 22.13 23.66 23.12 23.85 23.58 23.63 23.72

Orbix (Sequence) 64K 0.01 7.85 12.72 18.94 25.79 31.65 34.87 39.15 38.44
8K 0.01 7.71 11.58 16.60 21.90 22.81 21.89 21.01 20.98

ORBeline (Sequence) 64K 0.01 6.06 12.14 24.36 26.13 35.23 36.70 37.67 36.72
8K 0.01 10.61 16.09 19.44 21.83 22.75 22.45 21.45 21.05

Orbix (String) 64K 0.01 8.15 13.18 19.02 23.02 29.71 30.98 33.78 32.23
8k 0.01 8.43 11.62 16.61 22.11 22.76 21.27 20.07 20.00

ORBeline (String) 64K 0.01 9.35 14.97 22.02 22.91 28.99 29.58 28.66 28.42
8K 0.01 10.22 17.14 20.61 21.16 21.93 19.84 18.28 18.10

Table 1: Results for ATM ttcp Tests (in Mbps)

Program Socket Queue 1 Byte 1K 2K 4K 8K 16K 32K 64K 128K

C Code 64K 0.12 8.30 8.46 8.67 8.78 8.66 8.67 8.68 8.71
8K 0.12 8.10 8.21 8.33 8.30 8.22 8.32 8.36 8.37

ACE Wrapper 64K 0.12 8.22 8.34 8.74 8.72 8.61 8.65 8.68 8.70
8K 0.12 7.97 8.06 8.38 8.31 8.28 8.19 8.31 8.41

Orbix (Sequence) 64K 0.01 6.68 8.30 8.52 8.51 8.45 8.47 8.44 8.38
8K 0.01 6.66 7.80 7.97 8.18 8.11 8.20 8.29 8.25

ORBeline (Sequence) 64K 0.01 8.14 8.37 8.63 8.58 8.61 8.64 8.79 8.38
8K 0.01 7.28 7.70 7.99 8.02 8.21 8.30 8.20 8.22

Orbix (String) 64K 0.01 6.42 8.36 8.55 8.66 8.59 8.58 8.52 8.45
8k 0.01 6.47 7.82 7.85 8.10 8.17 8.23 8.34 8.30

ORBeline (String) 64K 0.01 8.02 8.44 8.68 8.65 8.67 8.70 8.72 8.29
8K 0.01 7.40 7.56 7.85 8.00 8.05 8.04 7.99 8.01

Table 2: Results for Ethernet ttcp Tests (in Mbps)

The performance variation between Orbix and ORBe-
line results from differences in their message fragmenta-
tion/reassembly implementations, as well as the design of
their socket event handling. As shown in Figure 4, ORBe-
line copies data approximately 3 more times than Orbix on
the sender and receiver for both sequence and string.

In addition,ORBeline invokes thesigaction andpoll
system calls twice for each message that is sent and received,
respectively. The sigaction call disables the SIGPIPE
signal during a write system call. On most UNIX systems
the default behavior on SIGPIPE is to exit the program.
SIGPIPE occurs when data is sent over a socket whose peer
has reset the connection. To unobtrusively prevent this from
happening, ORBeline replaces any existing handlers with
SIG IGN disposition before the write and resets it to the
original disposition following the write.

The Orbix implementation does not perform these opera-
tions, which is one reason why ORBeline’s throughput was
consistently lower than Orbix (as shown in Figure 3).

� Demultiplexing: Each CORBA request message con-
tains the name of its intended remote operation, which is
represented as a string. Orbix demultiplexes incoming mes-
sages to the appropriate upcall by performing a linear search
through the list of operations in the IDL interface. In the
case of ttcp, linear search suffices since there was only one
choice (send). However, this strategy does not scale well
since search time grows linearly with the number of opera-
tions in the IDL interface. Moreover, the order of operations

will determine the demultiplexing performance. Therefore,
operations in Orbix should be ordered by decreasing fre-
quency of use.

In contrast, ORBeline use hashing to determine the appro-
priate upcall associated with an incoming request. Hashing is
likely to scale better for large IDL interfaces, but may be less
efficient for small interfaces due to the overhead of computing
the hash function. To handle these and other cases efficiently,
the demultiplexing of requests can benefit from adaptive opti-
mizations. These optimizations select customized strategies
depending on the properties of the IDL interface. For exam-
ple, perfect hashing [15] or some type of integral indexing
scheme could be negotiated between sender and receiver to
improve performance and to shield developers from having
to manually tune their IDL interfaces.

� Memory allocation: IDL skeletons generated automat-
ically by a CORBA IDL compiler do not know how the
user-supplied upcall will use the parameters passed to it from
the request message. Thus, they use conservative memory
management techniques that dynamically allocate and release
copies of messages before and after an upcall, respectively.
These memory management policies are important in some
circumstances (e.g., if an upcall is used in a multi-threaded
application). However, this strategy needlessly increases
processing overhead for streaming applications like ttcp
that consume their data immediately without modifying it.
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2.3 Evaluation and Recommendations

Section 2.2 compared the performance of C, ACE wrapper,
and CORBA versions of ttcp in terms of their ability to
transfer large qualities of data using TCP/IP over Ethernet
and ATM networks. Tables 1 and 2 summarize the results
for all the ATM and Ethernet tests, respectively. The remain-
der of this section evaluates these results and presents rec-
ommendations for using DOC frameworks over high-speed
networks.

As shown in Table 2, all the benchmark tests perform
roughly the same on Ethernet. In contrast, Table 1 illustrates
how the data copying overhead of the CORBA implementa-
tions significantly limits their throughput on ATM. The per-
formance results illustrate that the overhead of CORBA im-
plementations are not revealed until the network is no longer
the limiting factor. In addition, the profiler results in Figure 4
illustrate that small design and implementation differences
have a much larger performance impact over high-speed net-
works than over low-speed networks.

As users and organizations migrate to high-speed networks
the performance limitationsof contemporary CORBA imple-
mentations will become more evident. This should encourage
vendors to optimize their ORBs for streaming performance-
sensitive applications running over high-speed networks like
ATM and FDDI. Key areas of optimization include data
copying and data inspection, presentation layer conversions,
memory management, and receiver-side demultiplexing and
dispatching. In particular, implementations must reduce the
number of times that large data buffers are copied on the
sender and receiver. The need for these optimizations is
widely recognized in the communication protocol commu-
nity [12] and prototypes that implementate these optimiza-
tions are available [16].

Until these optimizations are widely implemented in pro-
duction systems, however, we recommend that developers of
performance-sensitive streaming applications on high-speed
networks consider the following when adopting a distributed
object computing solution:

� Carefully measure the performance of the commu-
nication infrastructure (i.e., the network/host hard-
ware and software). The ttcp benchmarks
and ACE source code described in this paper
are freely available and may be obtained via
anonymous ftp from wuarchive.wustl.edu in
the file /languages/c++/ACE/ or from URL
http://www.cs.wustl.edu/˜schmidt/. We
encourage others to replicate our ttcp experiments us-
ing different implementations of CORBA and other net-
work/host platforms and report the results.

� Evaluate tools based on empirical measurements and
thorough understanding of application requirements,
rather than adopting a particular communication model
or implementation unconditionally.

� Integrate higher-level DOC frameworks with high-
performance object-oriented encapsulations of lower-
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TRANSPORT

LAYER

INTERFACE  API

STREAM  PIPE

API

NAMED  PIPE
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Figure 5: IPC SAP Class Category Relationships

level network programming interfaces (such as the ACE
socket wrappers described in Section 3).

� Insist that CORBA implementors provide hooks to ma-
nipulate the underlying protocol layer and socket layer
options conveniently. It is particularly important to in-
crease the size of the socket queues to the largest values
supported by the OS.

� Tune the size of transmitted data buffers to match the
MTU of the network where appropriate.

� Use IDL sequences rather than strings to avoid
unnecessary data access.

The performance results and recommendations in this pa-
per are not intended as a criticism of the CORBA model
or of particular ORB vendors. It is beyond the scope of
this paper to discuss the benefits (such as extensibility and
maintainability) of CORBA, as well as its limitations [17].
Clearly, implementations of other DOC frameworks (such as
OODCE or OLE/COM) that do not address the key sources
of overhead on high-speed networks will exhibit similar per-
formance problems.

3 An Object-Oriented Network Pro-
gramming Interface

Low-level network programming interfaces like sockets or
TLI are difficult to program. They require strict attention to
many tedious details, making them hard to learn and error
prone to use. In addition, programming directly to low-level
interfaces limits portability and reuse.

One solution is to develop applications using higher-
level distributed object computing (DOC) frameworks like
CORBA. DOC frameworks shield developers from low-level
programming details and facilitate a reasonably portable dis-
tributed computing platform. As described in the previous
section, however, the performance of conventional imple-
mentations of CORBA may be inadequate for bandwidth-
intensive and delay-sensitive streaming applications on high-
speed networks.
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One method for satisfying the tension between program-
ming simplicity, portability, and run-time efficiency is to en-
capsulate lower-level network programming interfaces with
object-oriented wrappers. Through judicious use of lan-
guages features (such as inlining and templates) and design
patterns (such as Factories [18], Connectors and Acceptors
[19]) it is possible to create reusable object-oriented compo-
nents that are typesafe, portable, convenient to program, and
efficient.

This section outlines the design of the IPC SAP object-
oriented network programming components provided by the
ACE toolkit [6]. ACE contains a set of object-oriented net-
working programming components that perform active and
passive connection establishment, data transfer, event de-
multiplexing, event handler dispatching, routing, dynamic
(re)configuration of application services, and concurrency
control [6].

IPC SAP stands for “InterProcess Communication Ser-
vice Access Point.” It consists of a family of class categories
shown in Figure 5 that encapsulate handle-based network
programming interfaces such as sockets (SOCK SAP), TLI
(TLI SAP), UNIX SVR4 STREAM pipes (SPIPE SAP),
and UNIX named pipes (FIFO SAP). These network pro-
gramming wrappers are designed to improve the correct-
ness, programming simplicity, portability, and reusability of
performance-sensitive communication software. This sec-
tion describes the SOCK SAP socket wrappers, focusing on
design techniques that shield programmers from shortcom-
ings of C, C++, and existing OS network programming in-
terfaces.

3.1 Limitations with Sockets

Sockets were originally developed in BSD UNIX to pro-
vide an interface to the TCP/IP protocol suite [4]. From
an application’s perspective, a socket is a local endpoint of
communication that can be bound to an address residing on a
local or a remote host. Sockets are accessed via handles (also
called descriptors). Handles are unsigned integers that index
into a table maintained in the OS. Handles shield applica-
tions from the internal representation of OS data structures.
In UNIX and Windows NT, socket handles share the same
name space as other handles (such as files, named pipes, and
terminal devices).

The standard socket interface is defined by the C func-
tions shown in Figure 6. It contains several dozen routines
that perform tasks such as locating address information for
network services, establishing and terminating connections,
and sending and receiving data [20]. Although the socket
interface is widely available and widely used, its design has
several notable limitations discussed below. These limita-
tions are shared by other lower-level network programming
interfaces such as TLI, STREAM pipes, and named pipes.
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Figure 6: Socket Interface

3.1.1 High Potential for Error

In UNIX any integral value can be passed as a handle to
a socket routine. Therefore, compilers are unable to detect
or prevent the erroneous use of handles. This weak type-
checking allows subtle errors to occur at run-time since the
socket interface cannot enforce the correct use of routines for
different connection roles (such as active vs. passive con-
nection establishment) or communication services (such as
datagram vs. stream communication). Therefore, operations
(such as invoking a data transfer operation on a handle desig-
nated for establishing connections) can be applied improperly
on handles.

Figure 7 depicts the following subtle (and all-to-common)
errors that occur when using the socket interface:

1. Forgetting to initialize the length parameter (used by
accept) to the size of struct sockaddr in;

2. Forgetting to “zero-out” all bytes in the socket address
structure;

3. Using an address family type that is inconsistent with
the protocol family of the socket (e.g., PF UNIX vs.
AF INET);

4. Neglecting to use thehtons library function to convert
port numbers from host byte-order to network byte-order
and vice versa;

5. Applying the accept function on a SOCK DGRAM
socket;

6. Erroneously omitting parentheses in an assignment ex-
pression;

7. Trying toread from a passive-mode socket that should
only be used to accept connections;

8. Failing to properly detect and handle “short-writes” that
occur due to buffering in the OS and flow control in the
transport protocol.

Other common misuses of sockets not shown in this example
are forgetting to call listen when creating a passive-mode
SOCK STREAM listener socket and miscalculating the length
of the pathname in a UNIX-domain socket address (the trail-
ing NUL should not be counted).

Several of the problems listed above are classic problems
with programming in C. For instance, by omitting the paren-
theses in the following expression:
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int echo_server (u_short port_num)
{
struct sockaddr_in s_addr;
int length; // (1) uninitialized variable.
char buf[BUFSIZ];
int s_sd, n_sd;
// Create a local endpoint of communication.
s_sd = socket (PF_UNIX, SOCK_DGRAM, 0);

// Set up address information to become a server.
// (2) forgot to "zero out" structure first...

// (3) used the wrong address family ...
s_addr.sin_family = AF_INET;

// (4) forgot to use htons() on port_num...
s_addr.sin_port = port_num;
s_addr.sin_addr.s_addr = INADDR_ANY;

bind (s_sd, (struct sockaddr *) &s_addr,
sizeof s_addr) == -1)

// Create a new endpoint of communication.
// (5) can’t accept() on a SOCK_DGRAM.
// (6) Omitted a crucial set of parens...
if (n_sd = accept (s_sd,

(struct sockaddr *) &s_addr,
&length) == -1) {

int n;
// (6) Omitted another set of parens...
// (7) error to read from s_sd.
while (n = read (s_sd, buf, sizeof buf) > 0)

// (8) forgot to check for "short-writes"
write (n_sd, buf, n);

// Remainder omitted...
}

}

Figure 7: Socket version of Echo Server

if (n_sd = accept (s_sd,
(struct sockaddr *) &s_addr,
&length) == -1)

the value of n sd will always be set to either 0 or 1, de-
pending on whether accept() == -1. This problem is
exacerbated by the fact that accept returns the handle of
the newly connected socket. If this handle were passed back
as a reference parameter there would be less incentive to use
accept in an assignment expression.

A deeper problem is that C’s lack of support for data ab-
straction and object-oriented programming makes it hard to
define typesafe, reusable, and extensible component inter-
faces. For example, the generic sockaddr socket address
structure uses a crude form of inheritance to express the
commonality between Internet domain and UNIX domain
address structures (sockaddr in and sockaddr un, re-
spectively). These “subclass” address structures require the
use of a non-typesafe cast to overlay the sockaddr “base
class.” In an object-oriented language this commonality
would be expressed more cleanly and robustly using inheri-
tance and dynamic binding.

In general, the use of unsafe typecasts, combined with the
weakly-typed handle-based socket interface, makes it im-
possible for a compiler to detect mistakes at compile-time.
Instead, error checking is deferred until run-time, which com-
plicates error handling and reduces application robustness.
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Figure 8: A Taxonomy of Socket Communication Dimen-
sions

3.1.2 Complex Interface

Sockets support multiple protocol families (such as TCP/IP,
IPX/SPX, ISO OSI, and UNIX domain sockets) with a single
interface. The socket interface contains many functions to
support different connection roles (such as active vs. pas-
sive connection establishment), communication optimiza-
tions (such as writev/readv that send/receive multiple
buffers in a single system call), and protocol options (such
as broadcasting, multicasting, asynchronous I/O, and urgent
data delivery).

Although sockets combine this functionality into a com-
mon interface, the result is complex and hard to master. Much
of this complexity stems from the overly broad and one-
dimensional design of the socket interface. That is, all the
routines appear at a single level of abstraction (as shown in
Figure 6). This design increases the amount of effort required
to learn and use sockets correctly. In particular, programmers
must understand most of the interface to use any part of it
effectively.

If the socket routines are examined carefully, however,
it is clear that the interface decomposes naturally into the
following communication dimensions:

1. Type of communication service – i.e., stream vs. data-
gram vs. connected datagram;

2. Connection role – i.e., active vs. passive (clients are
typically active, whereas servers are typically passive);

3. Communication domain – i.e., local IPC only vs. lo-
cal/remote IPC.

Figure 8 classifies the socket routines according to these
dimensions. This natural clustering of functionality is
obscured, however, because the socket interface is one-
dimensional.

Another problem with the socket interface is that its sev-
eral dozen routines lack uniform naming conventions. Non-
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Figure 9: The SOCK SAP Class Categories

uniform naming makes it hard to determine the scope of the
socket interface. For example, it is not immediately obvi-
ous that socket, bind, accept, and connect routines
are related. Other network programming interfaces solve this
problem by prepending a common prefix before each routine.
For example, a “t ” is prepended before each routine in the
TLI library.

3.2 The SOCK SAP Class Category

SOCK SAP is designed to overcome the limitations with
sockets described above. It improves the correctness, ease of
learning and ease of use, reusability, and portability of com-
munication software. As shown in Section 2, SOCK SAP en-
hances these qualities without sacrificing performance. This
section outlines the software architecture of SOCK SAP and
explains the classes used by the programming examples in
Section 4. Readers who are not interested in this level of
detail may want to skip to Section 5, which discusses the
general principles underlying the design of the SOCK SAP
wrappers.
SOCK SAP consists of around one dozen C++ classes that

are related by inheritance and composition. These classes and
their relationships are illustrated via Booch notation [21] in
Figure 9. Dashed clouds indicate classes and directed edges
indicate inheritance relationships between these classes (e.g.,
SOCK Stream inherits from SOCK). The general structure
of SOCK SAP corresponds to the taxonomy of communica-
tion services, connection roles, and communication domains
shown in Figure 10. It is instructive to compare Figure 8
with Figure 10. The latter is more concise since it uses
C++ wrappers to encapsulate the behavior of multiple socket
mechanisms within classes related by inheritance.

Each class in SOCK SAP provides an abstract interface

for a subset of mechanisms that together comprise the overall
class category. The functionalityof various types of Internet-
domain and UNIX-domain sockets is achieved by inheriting
mechanisms from the appropriate classes described below.
These classes are presented according to the groupings shown
in Figure 9.

3.2.1 Base Classes

The IPC SAP, SOCK, and LSOCK classes anchor the inher-
itance hierarchy and enable subsequent derivation and code
sharing. Objects of these classes cannot be instantiated since
their constructors are declared in the protected section of
the class definition.

� IPC SAP: This class is the root of theIPC SAPhierar-
chy of C++ wrappers for interprocess communication mech-
anisms. It provides mechanisms common to all classes, such
as handling options like setting a handle into non-blocking
mode or enabling asynchronous signal-driven I/O.

� SOCK: This class is the root of the SOCK SAP hier-
archy. It provides mechanisms common to all other classes,
such as opening and closing local endpoints of communica-
tion and handling options (like selecting socket queue sizes
and enabling group communication).

� LSOCK: This class provides mechanisms that allow
applications to send and receive open file handles between
unrelated processes on the local host machine (hence the
prefix ’L’). Note that System V and BSD UNIX both support
this feature, though Windows NT does not. Other classes
inherit from LSOCK to obtain this functionality.

SOCK SAPdistinguishes theLSOCK* andSOCK* classes
on the basis of network address formats and communication
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Figure 10: Taxonomy of SOCK SAP Classes and Commu-
nication Dimensions

semantics. In particular, the LSOCK* classes use UNIX
pathnames as addresses and allow only intra-machine IPC.
The SOCK* classes, on the other hand, use Internet Protocol
(IP) addresses and port numbers and allow both intra- and
inter-machine IPC.

3.2.2 Connection Establishment

Communication software is typified by asymmetric connec-
tion roles between clients and servers. In general, servers
listen passively for clients to initiate connections actively
[19]. The structure of passive/active connection establish-
ment and data transfer relationships are captured by the fol-
lowing connection-oriented SOCK SAP classes:

� SOCK Acceptor and LSOCK Acceptor: The
*Acceptor classes are factories [18] that passively estab-
lish new endpoints of communication in response to active
connection requests. The SOCK Acceptor and LSOCK
Acceptor factories produce SOCK Stream and LSOCK
Stream connection endpoint objects, respectively.

� SOCK Connector and LSOCK Connector: The
*Connector classes are factories that actively establish
new endpoints of communication. These classes estab-
lish connections with remote endpoints and produce the
appropriate *Stream object when a connection is estab-
lished. A connection may be initiated either synchronously
or asynchronously. The SOCK Connector and LSOCK
Connector factories produceSOCK Stream and LSOCK
Stream connection endpoint objects, respectively.

Note that the *Acceptor and Connector classes do
not provide methods for sending or receiving data. Instead,
they are factories that produce the *Stream data transfer
objects described below. The use of strongly-typed factory
interfaces detects and prevents accidental misuse of local and

non-local*Stream objects at compile-time. In contrast, the
socket interface can only detect these type mismatches at run-
time.

3.2.3 Stream Communication

Although establishing connections requires a distinction be-
tween active and passive roles, once a connection is estab-
lished data may be exchanged in any order according to the
protocol used by the endpoints. SOCK SAP isolates the data
transfer behavior in the following classes:

� SOCK Stream and LSOCK Stream: These two
classes are produced by the *Acceptor or *Connector
factories described above. The *Stream classes provide
mechanisms for transferring data between two processes.
LSOCK Stream objects exchange data between processes
on the same host machine; SOCK Stream objects exchange
data between processes that can reside on different host ma-
chines.

The overloaded send and recv *Stream methods pro-
vide standard UNIX write and read semantics. Thus, a
send may write less (and a recv may read more) than the
requested number of bytes. These “short-writes” and “short-
reads” occur due to buffering in the OS and flow control in
the transport protocol. To reduce programming effort, the
the *Stream classes provide send n and recv n meth-
ods that allow transmission and reception of exactly n bytes.
“Scatter-read” and “gather-write” methods are also provided
to efficiently send and receive multiple buffers of data simul-
taneously.

3.2.4 Datagram Communication

This paper has focused primarily on connection-oriented
stream communication. However, the socket interface also
provides connectionless service that uses the UDP and IP
protocols in the Internet protocol suite. UDP and IP are un-
reliable datagram services that do not guarantee a particular
message will arrive at its destination. Connectionless service
is used by applications (such as rwho daemons [20]) that can
tolerate some degree of loss. They also form the foundation
for higher-layer reliable protocols.

The SOCK SAP socket wrappers encapsulate socket data-
gram communication with the following classes:

� SOCK Dgram and LSOCK Dgram: These classes
provide mechanisms for exchanging datagrams between pro-
cesses running on local and/or remote hosts. Unlike the
connected-datagram classes described below, each send and
recv operation must provide the address of the service with
every datagram sent or received. LSOCK Dgram inherits
all the operations of both SOCK Dgram and LSOCK. It only
exchanges datagrams between processes on the same host.
The SOCK Dgram class, on the other hand, may exchange
datagrams between processes on local and/or remote hosts.
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� SOCK CODgram and LSOCK CODgram: These
classes provide a “connected-datagram” mechanism. Un-
like the connectionless classes described above, these classes
allow the send and recv operations to omit the address
of the service when exchanging datagrams. Note that the
connected-datagram mechanism is only a syntactic conve-
nience since there are no additional semantics associated with
the data transfer (i.e., datagram delivery remains unreliable).
SOCK CODgram inherits mechanisms from the SOCK base
class. LSOCK CODgram inherits mechanisms from both
SOCK CODgram and LSOCK (which provides the ability to
pass file handles).

3.2.5 Group Communication

Standard TCP and UDP communication is point-to-point.
However, some applicationsbenefit from more flexible deliv-
ery mechanisms that provide group communication. There-
fore, the following classes encapsulate the broadcast and
multicast protocols provided by the Internet protocol suite:

� SOCK Dgram Bcast: This class provides mechanisms
for broadcasting UDP datagrams to processes running on
local and/or remote hosts attached to local subnets. The
interface for this class supports the broadcast of datagrams to
(1) all network interfaces connected to the host machine or (2)
a particular network interface. This class shields the end-user
from the low-level details required to utilize broadcasting
effectively.

� SOCK Dgram Mcast: This class provides mecha-
nisms for multicasting UDP datagrams to processes running
on local and/or remote hosts attached to local subnets. The
interface for this class supports the multicast of datagrams to
a particular multicast group. This class shields the end-user
from the low-level details required to utilize multicasting
effectively.

3.3 Network Addressing

Designing an efficient, general-purpose network addressing
interface is hard. The difficulty stems from trying to represent
different network address formats with a space efficient and
uniform interface. Different address formats store diverse
types of information represented with various sizes. For ex-
ample, an Internet-domain service (such as ftp or telnet)
is identified using two fields: (1) a four-byte IP address
(which uniquely identifies the remote host machine through-
out the Internet) and (2) a two-byte port number (which is
used to demultiplex incoming protocol data units to the ap-
propriate client or server process on the remote host ma-
chine). In contrast, UNIX-domain sockets rendezvous via
UNIX pathnames (which may be up to 108 bytes in length
and are meaningful only on a single local host machine).

The existingsockaddr-based network addressing struc-
tures provided by the socket interface is cumbersome and
error-prone. It requires developers to explicitly initialize all
the bytes in the address structure to 0 and to use explicit

 Addr

 INET

Addr
 UNIX

Addr
SPIPE

Addr

Figure 11: The SOCK SAP Address Class Hierarchy

casts. In contrast, the SOCK SAP addressing classes shown
in Figure 11 contain mechanisms for manipulating network
addresses. The constructors for the Addr base class ensure
that all fields are automatically initialized correctly. More-
over, the different sizes, formats, and functionality that exist
between different address families are encapsulated in the
derived address subclasses. This makes it easier to extend
the network addressing scheme to encompass new commu-
nication domains. For example, the UNIX Addr subclass is
associated with the LSOCK* classes, the INET Addr sub-
class is associated with the SOCK* and TLI* classes, and
the SPIPE Addr subclass is associated with the STREAM
pipe wrappers in SPIPE SAP.

4 Programming with SOCK SAP C++
Wrappers

This section illustrates the ACE SOCK SAP C++ wrappers
by using them to develop a client/server streaming appli-
cation. This application is simplified version of the ttcp
program described in Section 2. For comparison, this appli-
cation is also written with sockets and CORBA. Most of the
error checking has been omitted in these examples to keep
them short. Naturally, robust programs should check the
return values of library and system calls.

Figures 12 and 13 present a client/server program written
in C that uses Internet-domain sockets andselect to imple-
ment the stream application. The server shown in Figure 13
creates a passive-mode listener socket and waits for clients
to connect to it. Once connected, the server receives the
data transmitted from the client and displays the data on its
standard output stream. The client-side shown in Figure 12
establishes a TCP connection with the server and transmits
its standard input stream across the connection. The client
uses non-blocking connections to limit the amount of time it
waits for a connection to be accepted or refused.

Most of the error checking for return values has been omit-
ted to save space. However, it is instructive to note all the
socket initialization, network addressing, and flow control
details that must be programmed explicitly to make even this
simple example work correctly. Moreover, the code in Fig-
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ures 12 and 13 is not portable to platforms that do not support
both sockets and select.

Figures 14 and 15 use SOCK SAP to reimplement the C
versions of the client/server programs. The SOCK SAP pro-
grams implement the same functionalityas those presented in
Figure 12 and Figure 13. The SOCK SAPC++ programs ex-
hibit the following benefits compared with the socket-based
C implementation:

� Increased clarity – e.g., network addressing and host
location is handled by the Addr class shown in Fig-
ure 11, which hides the subtle and error-prone de-
tails that must be programmed explicitly in Figures 12
and 13. Moreover, the low-level details of non-blocking
connection establishment are performed by the SOCK
Connector factory.

� Increased typesafety – e.g., the SOCK Acceptor and
SOCK Connector connection factories create SOCK
Stream objects. This prevents the type errors shown
in Figure 7 from occurring at run-time.

� Decreased program size – e.g., a substantial reduction in
the lines of code results from localizing active and pas-
sive connection establishment in theSOCK Acceptor
and SOCK Connector connection factories. In addi-
tion, default values are provided for constructor and
method parameters, which reduces the number of argu-
ments needed for common usage patterns.

� Increased portability – e.g., switching between sockets
and TLI simply requires changing

send_data <TLI_Connector, TLI_Stream,
INET_Addr> (s_addr);

in the client to

send_data <SOCK_Connector, SOCK_Stream,
INET_Addr> (s_addr);

and

recv_data<SOCK_Acceptor, SOCK_Stream,
INET_Addr> (s_addr);

in the server to

recv_data<TLI_Acceptor, TLI_Stream,
INET_Addr> (s_addr);

Conditional compilation directives can be used to fur-
ther decouple the communication software from reliance
upon a particular type of network programming inter-
face.

However, the ACE wrappers share some of the same draw-
backs as sockets. In particular, too much of the code required
to program at this level is not directly related to the appli-
cation. In contrast, Figures 16 and 17 illustrate the CORBA
version of the stream application implemented using Orbix
1.3. This implementation is more concise than both the C and
ACE C++ wrapper versions. CORBA performs the low-level
communication details associated with service location, pas-
sive and active connection establishment, message framing,
marshalling and demarshalling, demultiplexing, and upcall

#define PORT_NUM 10000
#define TIMEOUT 5

/* Socket client. */

void send_data (const char host[], u_short port_num)
{
struct sockaddr_in peer_addr;
struct hostent *hp;
char buf[BUFSIZ];
int s_sd, w_bytes, r_bytes, n;

/* Create a local endpoint of communication */
s_sd = socket (PF_INET, SOCK_STREAM, 0);

/* Set s_sd to non-blocking mode. */
n = fcntl (s_sd, F_GETFL, 0);
fcntl (s_sd, F_SETFL, n | O_NONBLOCK);

/* Determine IP address of the server */
hp = gethostbyname (host);

/* Set up address information to contact server */
memset ((void *) &peer_addr, 0, sizeof peer_addr);
peer_addr.sin_family = AF_INET;
peer_addr.sin_port = port_num;
memcpy (&peer_addr.sin_addr,

hp->h_addr, hp->h_length);

/* Establish non-blocking connection server. */
if (connect (s_sd, (struct sockaddr *) &peer_addr,

sizeof peer_addr) == -1) {
if (errno == EINPROGRESS) {

struct timeval tv = {TIMEOUT, 0};
fd_set rd_sds, wr_sds;
FD_ZERO (&rd_sds);
FD_ZERO (&wr_sds);
FD_SET (s_sd, &wr_sds);
FD_SET (s_sd, &rd_sds);

/* Wait up to TIMEOUT seconds to connect. */
if (select (s_sd + 1, &rd_sds, &wr_sds,

0, &tv) <= 0)
perror ("connection timedout"), exit (1);

// Recheck if connection is established.
if (connect (s_sd,

(struct sockaddr *) &peer_addr,
sizeof peer_addr) == -1

&& errno != EISCONN)
perror ("connect failed"), exit (1);

}
}

/* Send data to server (correctly handles
"short writes" due to flow control) */

while ((r_bytes = read (0, buf, sizeof buf)) > 0)
for (w_bytes = 0; w_bytes < r_bytes; w_bytes += n)

n = write (s_sd, buf + w_bytes,
r_bytes - w_bytes);

/* Close down the connection. */
close (s_sd);

}

int main (int argc, char *argv[])
{
char *host = argc > 1 ? argv[1] : "ics.uci.edu";
u_short port_num =

htons (argc > 2 ? atoi (argv[2]) : PORT_NUM);

/* Send data to the server. */
send_data (host, port_num);
return 0;

}

Figure 12: Socket-based Client Example
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#define PORT_NUM 10000

/* Socket server. */

void recv_data (u_short port_num)
{
struct sockaddr_in s_addr;
int s_sd;

/* Create a local endpoint of communication */
s_sd = socket (PF_INET, SOCK_STREAM, 0);

/* Set up the address information for a server */
memset ((void *) &s_addr, 0, sizeof s_addr);
s_addr.sin_family = AF_INET;
s_addr.sin_port = port_num;
s_addr.sin_addr.s_addr = INADDR_ANY;

/* Associate address with endpoint */
bind (s_sd, (struct sockaddr *) &s_addr,

sizeof s_addr);

/* Make endpoint listen for service requests */
listen (s_sd, 5);

/* Performs the iterative server activities */

for (;;) {
char buf[BUFSIZ];
int r_bytes, n_sd;
struct sockaddr_in peer_addr;
int peer_addr_len = sizeof peer_addr;
struct hostent *hp;

/* Create a new endpoint of communication */
while ((n_sd = accept (s_sd, &peer_addr,

&peer_addr_len)) == -1
&& errno == EINTR)

continue;

hp = gethostbyaddr (&peer_addr.sin_addr,
peer_addr_len, AF_INET);

printf ("client %s\n", hp->h_name);

/* Read data from client (terminate on error) */

while ((r_bytes = read (n_sd, buf, sizeof buf)) > 0)
write (1, buf, r_bytes);

/* Close the new endpoint
(listening endpoint remains open) */

close (n_sd);
}
/* NOTREACHED */

}

int main (int argc, char *argv[])
{
u_short port_num =
htons (argc > 1 ? atoi (argv[1]) : PORT_NUM);

// Receive data from clients.
recv_data (port_num);
return 0;

}

Figure 13: Socket-based Server Example

static const int PORT_NUM = 10000;
static const int TIMEOUT = 5;

// SOCK_SAP Client.

template <class CONNECTOR,
class STREAM,
class ADDR>

void send_data (ADDR peer_addr)
{
// Data transfer object.
STREAM peer_stream;

// Establish connection without blocking.
CONNECTOR connector

(peer_stream, peer_addr, ACE_NONBLOCK);

if (peer_stream.get_handle () == -1) {
// If non-blocking connection is in progress,
// wait up to TIMEOUT seconds to complete.
Time_Value timeout (TIMEOUT);

if (errno != EWOULDBLOCK ||
connector.complete
(peer_stream, peer_addr, &timeout) == -1)

perror ("connector"), exit (1);
}

// Send data to server (send_n() handles
// "short writes" correctly).

char buf[BUFSIZ];

for (int r_bytes;
(r_bytes = read (0, buf, sizeof buf)) > 0;)

peer_stream.send_n (buf, r_bytes);

// Explicitly close the connection.
peer_stream.close ();

}

int main (int argc, char *argv[])
{
char *host = argc > 1 ? argv[1] : "ics.uci.edu";
u_short port_num =

htons (argc > 2 ? atoi (argv[2]) : PORT_NUM);

// Address of the server.
INET_Addr s_addr (port_num, host)

// Use TLI wrappers on client’s side.
send_data <TLI_Connector, TLI_Stream,

INET_Addr> (s_addr);
return 0;

}

Figure 14: SOCK SAP-based Client Example
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static const int PORT_NUM = 10000;

// SOCK_SAP Server.

template <class ACCEPTOR,
class STREAM,
class ADDR>

void recv_data (ADDR s_addr)
{

// Factory for passive connection establishment.
ACCEPTOR acceptor (s_addr);

// Data transfer object.
STREAM peer_stream;

// Remote peer address.
ADDR peer_addr;

// Performs iterative server activities.

for (;;) {
// Create a new STREAM endpoint
// (automatically restarted if errno == EINTR).
acceptor.accept (peer_stream, &peer_addr);

printf ("client %s\n", peer_addr.get_host_name ());

// Read data from client (terminate on error).

char buf[BUFSIZ];

for (int r_bytes;
peer_stream.recv (buf, sizeof buf,

r_bytes) > 0;)
write (1, buf, r_bytes);

// Close peer_stream endpoint
// (acceptor endpoint stays open).
peer_stream.close ();

}
/* NOTREACHED */

}

int main (int argc, char *argv[])
{
u_short port_num =
argc == 1 ? PORT_NUM : atoi (argv[1]);

// Port for the server.
INET_Addr s_addr (port_num);

// Use socket wrappers on server’s side.
recv_data<SOCK_Acceptor, SOCK_Stream,

INET_Addr> (s_addr);
return 0;

}

Figure 15: SOCK SAP-based Server Example

// CORBA IDL interface.

interface Data_Stream
{
typedef sequence<char> Stream_Buf;

exception Disconnected {};

oneway void send (in Stream_Buf buf)
raises (Disconnected);

};

// CORBA Client.

void send_data (Data_Stream *peer_stream)
{
// Constructor allocates memory.
Data_Stream::Stream_Buf buf (BUFSIZ);

// Read from stdin and send to server.

while ((buf._length =
read (0, buf._buffer, BUFSIZ)) > 0)

peer_stream->send (buf);

// Decrement object reference’s ref count.
peer_stream->_release ();

}

int main (int argc, char *argv[])
{
char *marker

= argc > 1 ? argv[1] : "data_stream";
Data_Stream *peer_stream =

Data_Stream::_bind (marker);

send_data (peer_stream);
return 0;

}

Figure 16: CORBA-based Client Example
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// Implementation class for IDL interface
// that inherits from automatically-generated
// CORBA skeleton class.

class Data_Stream_i
: public Data_StreamBOAImpl

{
// Upcall invoked by the CORBA skeleton.
virtual void send
(const Data_Stream::Stream_Buf &,
CORBA::Environment &);

};

// Upcall invoked by the CORBA skeleton.

void
Data_Stream_i::send
(const Data_Stream::Stream_Buf &buf,
CORBA::Environment &IT_env)

{
// Write data to standard output.
write (1, buf._buffer, buf._length);

}

// CORBA persistent server.

int main (int argc, char *argv[])
{
char *executable = argv[0];
char *marker
= argc > 1 ? argv[1] : "data_stream";

// Define an implementation object.
Data_Stream_i data_stream (marker);

// ACE method that registers service
// with the ORB automatically.
CORBA_Handler::activate_service
("Data_Stream", object_name, executable);

// Tell the ORB that the objects are active.
CORBA::Orbix.impl_is_ready ("Data_Stream");

/* NOTREACHED */
return 0;

}

Figure 17: CORBA-based Server Example

dispatching. This allows developers to concentrate on defin-
ing application-specific behavior, rather than wrestling with
the details of network programming.

The persistent CORBA server shown in Figure 17 creates
an implementation of a Data Stream IDL interface and
informs the ORB that it is ready to receive send requests
from clients. It uses a standard ACE class CORBA Handler
to automatically register the server and object name with the
Orbix daemon.

The client shown in Figure 16 uses the Orbix locator ser-
vice to bind to the marker exported by the Data Stream
server. Once bound, the client transmits all data from its
standard input to the server via the Data Stream::send
proxy. This example behaves slightly differently than the C
and ACE wrapper versions since CORBA does not provide
a standard means to obtain the host and port of the sender.
Moreover, CORBA communication semantics are request-
oriented rather than connection-oriented. Thus, other clients
could conceivably bind to the same marker name and trans-
mit data via its send method. To get the same behavior with
CORBA would require the use of an object factory.

5 Socket Wrapper Design Principles

This section describes the following design principles that
are applied throughout the SOCK SAP class category:

� Enforce typesafety at compile-time

� Allow controlled violations of typesafety

� Simplify for the common case

� Replace one-dimensional interfaces with hierarchical
class categories

� Enhance portability with parameterized types

� Inline performance critical methods

� Define auxiliary classes to hide error-prone details

Although these principles are widely known and widely used
in domains like graphical user interfaces they have been less
widely applied in the communication software domain.

�Enforce typesafety at compile-time: Several limitations
with sockets discussed in Section 3.1 stem from the lack of
typesafety in its interface. To enforce typesafety, SOCK SAP
ensures all its objects are properly initializedvia constructors.
In addition, to prevent accidental violations of typesafety,
only legal operations are permitted on SOCK SAP objects.
This latter point is illustrated in the SOCK SAP revision of
echo server shown in Figure 18. This version fixes the
problems with sockets and C identified in Figure 7. Since
SOCK SAP classes are strongly typed, invalid operations
are rejected at compile-time rather than at run-time. For
example, it is not possible to invoke recv or send on a
SOCK Acceptor connection factory since these methods
are not part of its interface. Likewise, return values are only
used to convey success or failure of operations. This reduces
the potential for misuse in assignment expressions.
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int echo_server (u_short port_num)
{
// Address of local server.
INET_Addr s_addr (port_num);

// Initialize the passive mode server.
SOCK_Acceptor acceptor (s_addr);

// Data transfer object.
SOCK_Stream peer_stream;

// Client remote address object.
INET_Addr peer_addr;

// Accept a new connection.
if (acceptor.accept (peer_stream,

&peer_addr) != -1) {
char buf[BUFSIZ];
for (size_t n;

peer_stream.recv (buf, sizeof buf, n) > 0;)
// Handles "short-writes."
if (peer_stream.send_n (buf, n) != n)
// Remainder omitted.

}
}

Figure 18: SOCK SAP Revision of the Echo Server

� Allow controlled violations of typesafety: This princi-
ple is exemplified by the get handle and set handle
methods provided by the IPC SAP root class. These meth-
ods extract and assign the underlying handle, respectively.
By providing get handle and set handle, IPC SAP
allows applications to circumvent its type-checking mecha-
nisms in situations where applications must interface directly
with UNIX system calls (such as select) that expect a han-
dle. Another way of stating this principle is “make it easy
to use SOCK SAP correctly, hard to use it incorrectly, but
not impossible to use it in ways the class designers did not
anticipate.”

� Simplify for the common case: This principle is applied
in the following ways in the ACE C++ socket wrappers:

� Supply default parameters for common method argu-
ments – for instance, theSOCK Connector construc-
tor has six parameters:
SOCK_Connector
(SOCK_Stream &new_stream,
const Addr &remote_sap,
int blocking_semantics = 0,
const Addr &local_sap = Addr::sap_any,
int protcol_family = PF_INET,
int protocol = 0);

However, only the first two commonly vary from call to
call:
SOCK_Stream stream;
// Compiler supplies default values.
SOCK_Connector con (stream,

INET_Addr (port, host));
// ...

Therefore, to simplify programming, the values are
given as defaults in the SOCK Connector construc-
tor so that programmers need not provide them every
time.

� Define parsimonious interfaces – This principle local-
izes the cost of using a particular abstraction. The IPC

SAP interfaces limits the amount of details that appli-
cation developers must remember. IPC SAP provides
developers with clusters of classes that perform various
types of communication (such as connection-oriented
vs. connectionless) and various connection roles (such
as active vs. passive). To reduce the chance of error,
the SOCK Acceptor class only permits operations
that apply for programs playing passive roles and the
SOCK Connector class only permits operations that
apply for programs playing an active role. In addition,
sending and receiving open file handles has a much sim-
pler calling interface using SOCK SAP compared with
using the highly-general UNIX sendmsg/recvmsg
routines. For example, using LSOCK* classes to pass
socket descriptors is very concise:
LSOCK_Stream stream;
LSOCK_Acceptor acceptor ("/tmp/foo");

// Accept connection.
acceptor.accept (stream);

// Pass the socket descriptor back to caller.
stream.send_handle (stream.get_handle ());

versus the code that is required to implement this using
the socket interface:
int n_sd;
int u_sd;
sockaddr_un addr;
u_char a[2];
iovec iov;
msghdr send_msg;

u_sd = socket (PF_UNIX, SOCK_STREAM, 0);

memset ((void *) &addr, 0, sizeof addr);
addr.sun_family = AF_UNIX;
strcpy (addr.sun_path, "/tmp/foo");

bind (u_sd, &addr, sizeof addr.sun_family +
strlen ("/tmp/foo"));

listen (u_sd, 5);

// Accept connection.
n_sd = accept (u_sd, 0, 0);

// Sanity check.
a[0] = 0xab; a[1] = 0xcd;

iov.iov_base = (char *) a;
iov.iov_len = sizeof a;

send_msg.msg_iov = &iov;
send_msg.msg_iovlen = 1;
send_msg.msg_name = (char *) 0;
send_msg.msg_namelen = 0;
send_msg.msg_accrights = (char *) &n_sd;
send_msg.msg_accrightslen = sizeof n_sd;

// Pass the socket descriptor back to caller.
sendmsg (n_sd, &send_msg, 0);

� Combine multiple operations into a single operation –
Creating a conventional passive-mode socket requires
multiple calls:
int s_sd = socket (PF_INET, SOCK_STREAM, 0);
sockaddr_in addr;
memset (&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_port = htons (port);
addr.sin_addr.s_addr = INADDR_ANY;
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template <class ACCEPTOR,
class STREAM,
class ADDR>

int echo_server (u_short port_num)
{

// Local address of server.
ADDR s_addr (port_num);

// Initialize the passive mode server.
ACCEPTOR acceptor (s_addr);

// Data transfer object.
STREAM peer_stream;

// Remote address object.
ADDR peer_addr;

// Accept a new connection.
if (acceptor.accept (peer_stream,

&peer_addr) != -1) {
char buf[BUFSIZ];
for (size_t n;

peer_stream.recv (buf, sizeof buf,
n) > 0;)

if (peer_stream.send_n (buf, n) != n)
// Remainder omitted.

}
}

Figure 19: Template Version of the Echo Server

bind (s_sd, &addr, addr_len);
listen (s_sd);
// ...

In contrast, the SOCK Acceptor is a factory for pas-
sive connection establishment. Its constructor performs
the socket calls socket, bind, and listen required
to create a passive-mode listener endpoint. Therefore,
applications simply write the following:

SOCK_Acceptor acceptor (INET_Addr (port));

to achieve the functionality presented above.

� Replace one-dimensional interfaces with hierar-
chical class categories: This principle involves using
hierarchically-related class categories to restructure exist-
ing one-dimensional socket interfaces (shown in Figure 9).
The criteria used to structure the SOCK SAP class category
involved identifying, clustering, and encapsulating related
socket routines to maximize the reuse and sharing of class
components.

Inheritance supports different subsets of functionality for
theSOCK SAP class categories. For instance, not all operat-
ing systems support passing open file handles (e.g., Windows
NT). Thus, it is possible to omit the LSOCK class (described
in Section 3.2) from the inheritance hierarchy without affect-
ing the interfaces of other classes in the SOCK SAP design.

Inheritance also increases code reuse and improves mod-
ularity. Base classes express similarities between class cate-
gory components and derived classes express the differences.
For example, the IPC SAP design places shared mecha-
nisms towards the “root” of the inheritance hierarchy in the
IPC SAP and SOCK SAP base classes. These mechanisms
include operations for opening/closing and setting/retrieving

the underlying socket handles, as well as certain option man-
agement functions that are common to all the derived SOCK
SAP classes. Subclasses located towards the “bottom” of
the inheritance hierarchy implement specialized operations
that are customized for the type of communication provided
(such as stream vs. datagram communication or local vs.
remote communication). This approach avoids unnecessary
duplication of code since the more specialized derived classes
reuse the more general mechanisms provided at the root of
the inheritance hierarchy.

� Enhance portability with parameterized types: Wrap-
ping sockets with C++ classes (rather than stand-alone C
functions) helps to improve portability by allowing the
wholesale replacement of network programming interfaces
via parameterized types. Parameterized types decouple ap-
plications from reliance on specific network programming
interfaces. Figure 19 illustrates this technique by modifying
theecho server to become a C++ function template. De-
pending on certain properties of the underlying OS platform
(such as whether it implements TLI or sockets more effi-
ciently), the echo server may be instantiated with either
SOCK SAP or TLI SAP classes, as shown below:

// Conditionally select IPC mechanism.
#if defined (USE_SOCKETS)
typedef SOCK_Stream STREAM;
typedef SOCK_Acceptor ACCEPTOR;
#else
typedef TLI_Stream STREAM;
typedef TLI_Acceptor ACCEPTOR;
#endif // USE_SOCKETS.

const int PORT_NUM = 10000;

int main (void)
{
// ...

// Invoke the echo_server with appropriate
// network programming interfaces.
echo_server<ACCEPTOR, STREAM,

INET_Addr> (PORT_NUM);
}

In general, the use of parameterized types is less intrusive
and more extensible that conventional alternatives (such as
implementing multiple versions or littering conditional com-
pilation directives throughout the source code).

� Inline performance critical methods: To encourage de-
velopers to replace existing low-level network programming
interfaces with C++ wrappers, the SOCK SAP implementa-
tion must operate efficiently. To ensure this, methods in the
critical performance path (such as theSOCK Streamrecv
and send methods) are specified as C++ inline functions to
eliminate run-time overhead. Inlining is both time and space
efficient since these methods are very short (approximately 2
or 3 lines per method). The use of inliningimplies that virtual
functions should be used sparingly since most contemporary
C++ compilers do not fully optimize away virtual function
overhead.

� Define auxiliary classes that hide error-prone details:
The C interface to socket addressing is awkward and error-

18



prone. It is easy to neglect to zero-out a sockaddr in
or convert port numbers to network byte-order. To shield
applications from these low-level details, IPC SAP define
the Addr class hierarchy (shown in Figure 11). This hier-
archy supports several diverse network addressing formats
via a typesafe C++ interface. The Addr hierarchy elim-
inates common programming errors associated with using
the C-based family of struct sockaddr data structures
directly. For example, the constructor of INET Addr auto-
matically zeros-out the sockaddr addressing structure and
converts the port number to network byte order, as follows:

class INET_Addr : public Addr {
public:
INET_Addr::INET_Addr (u_short port,

long ip_addr = 0) {
memset (&this->inet_addr_, 0,

sizeof this->inet_addr_);
this->inet_addr_.sin_family = AF_INET;
this->inet_addr_.sin_port = htons (port);
memcpy (&this->inet_addr_.sin_addr,

&ip_addr, sizeof ip_addr);
}

private:
sockaddr_in inet_addr_;

};

6 Concluding Remarks

An important class of applications require high-performance
streaming communication. Bandwidth-intensive and delay-
sensitive streaming applications like medical imaging or tele-
conferencing are not supported efficiently by contemporary
CORBA implementations due to data copying, demultiplex-
ing, and memory management overhead. As shown in Sec-
tion 2, this overhead is often masked on low-speed networks
like Ethernet and Token Ring. On high-speed networks like
ATM or FDDI, however, this overhead becomes a significant
factor limiting communication performance.

The ACE socket wrappers described in this paper pro-
vide a high-performance network programming interface that
shields developers from lower-level details of sockets or TLI
without sacrificing performance. The ACE wrappers auto-
mate and simplify many aspects (such as initialization, ad-
dressing, and handling short-writes) of using lower-level net-
work programming interfaces. They improve portability by
shielding applications from platform-specific network pro-
gramming interfaces. Wrapping sockets with C++ classes
(rather than stand-alone C functions) makes it convenient to
switch wholesale between different network programming in-
terfaces by using parameterized types. In addition, as shown
in Figure 2, the ACE socket wrappers do not introduce any
significant overhead compared with programming to sockets
directly.

The primary drawback with the ACE network program-
ming wrappers is that they do not address higher-level issues
related to system reliability and availability, flexibility of ob-
ject location and selection, support for transactions, security,
and deferred process activation, and the exchange of binary
data between different computer architectures. For exam-

ple, programmers must explicitly program presentation layer
conversions in conjunction with the ACE wrappers. There-
fore, these wrappers are most useful when the datatypes are
simple (like those used by the high-performance streaming
applications described in this paper).

The ACE C++ wrappers for sockets may be integrated with
CORBA to enhance the performance of streaming applica-
tions. We’ve combined CORBA and the ACE wrappers in a
high-speed teleradiology system that transfers 10-40 Mbyte
medical images over ATM. In this system, CORBA is used
as a signaling mechanism to identify endpoints of communi-
cation in a location-independent manner. The ACE wrappers
are then used to establish point-to-pointTCP connections and
transmit bulk data efficiently across the connections. This
strategy builds on the strengths of both CORBA and ACE.

ACE has been ported to many versions of UNIX and
Windows NT and is currently being used in many com-
mercial products including the Bellcore and Siemens Q.port
ATM signaling software product, the Ericsson EOS fam-
ily of telecommunication monitoring applications, the Sys-
tem Control Segment of the Motorola Iridium project, and
a high-speed enterprise-wide medical image delivery system
for Kodak Health Imaging Systems.
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