

Software Technologies for Developing Distributed Systems: Objects and Beyond

Douglas C. Schmidt
Vanderbilt University

Abstract
A distributed system is a computing system in which a number of components cooperate by communicating over a
network. The explosive growth of the Internet and the World Wide Web in the mid-1990's moved distributed systems
beyond their traditional application areas, such as industrial automation, defense, and telecommunication, and into
nearly all domains, including e-commerce, financial services, health care, government, and entertainment. This article
describes the key characteristics and challenges of developing distributed systems and evaluates key software
technologies that have emerged to resolve these challenges, including distributed object computing middleware,
component middleware, publish/subscribe and message-oriented middleware, and web services.

1 Introduction

Computer software traditionally ran in stand-alone systems, where the user interface, application ‘business’
processing, and persistent data resided in one computer, with peripherals attached to it by buses or cables. Few
interesting systems, however, are still designed this way. Instead, most computer software today runs in distributed
systems, where the interactive presentation, application business processing, and data resources reside in loosely-
coupled computing nodes and service tiers connected together by networks. Despite the increasing ubiquity and
importance of distributed systems, however, developers of software for distributed systems face a number of hard
challenges [POSA2], including:

• Inherent complexities, which arise from fundamental domain challenges: E.g., components of a distributed system
often reside in separate address spaces on separate nodes, so inter-node communication needs different mechanisms,
policies, and protocols than those used for intra-node communication in a stand-alone systems. Likewise,
synchronization and coordination is more complicated in a distributed system since components may run in parallel
and network communication can be asynchronous and non-deterministic. The networks that connect components in
distributed systems introduce additional forces, such as latency, jitter, transient failures, and overload, with
corresponding impact on system efficiency, predictability, and availability [VKZ04].

• Accidental complexities, which arise from limitations with software tools and development techniques, such as non-
portable programming APIs and poor distributed debuggers. Ironically, many accidental complexities stem from
deliberate choices made by developers who favor low-level languages and platforms, such as C and C-based
operating system APIs and libraries, that scale up poorly when applied to distributed systems. As the complexity of
application requirements increases, moreover, new layers of distributed infrastructure are conceived and released,
not all of which are equally mature or capable, which complicates development, integration, and evolution of
working systems.

• Inadequate methods and techniques. Popular software analysis methods and design techniques [DWT04] [SDL05]
have focused on constructing single-process, single-threaded applications with ‘best-effort’ quality of service (QoS)
requirements. The development of high-quality distributed systems—particularly those with stringent performance
requirements, such as video-conferencing or air traffic control systems—has been left to the expertise of skilled
software architects and engineers. Moreover, it has been hard to gain experience with software techniques for
distributed systems without spending much time wrestling with platform-specific details and fixing mistakes by
costly trial and error.

• Continuous re-invention and re-discovery of core concepts and techniques. The software industry has a long history
of recreating incompatible solutions to problems that have already been solved. There are dozens of general-purpose
and real-time operating systems that manage the same hardware resources. Similarly, there are dozens of
incompatible operating system encapsulation libraries, virtual machines, and middleware that provide slightly
different APIs that implement essentially the same features and services. If effort had instead been focused on

2 On Distributed Systems

enhancing a smaller number of solutions, developers of distributed system software would be able to innovate more
rapidly by reusing common tools and standard platforms and components.

2 Technologies for Supporting Distributed Computing

To address the challenge described above, therefore, three levels of support for distributed computing were developed:
ad hoc network programming, structured communication, and middleware. Ad hoc network programming includes
interprocess communication (IPC) mechanisms, such as shared memory, pipes, and sockets, that allow distributed
components to connect and exchange information. These IPC mechanisms help address a key challenge of distributed
computing: enabling components from different address spaces to cooperate with one another.

Certain drawbacks arise, however, when developing distributed systems only using ad hoc network programming
support. For instance, using sockets directly within application code tightly couples this code to the socket API. Porting
this code to another IPC mechanism or redeploying components to different nodes in a network thus becomes a costly
manual programming effort. Even porting this code to another version of the same operating system can require code
changes if each platform has slightly different APIs for the IPC mechanisms [POSA2] [SH02]. Programming directly
to an IPC mechanism can also cause a paradigm mismatch, e.g., local communication uses object-oriented classes and
method invocations, whereas remote communication uses the function-oriented socket API and message passing.

The next level of support for distributed computing is structured communication, which overcomes limitations with ad
hoc network programming by not coupling application code to low-level IPC mechanisms, but instead offering higher-
level communication mechanisms to distributed systems. Structured communication encapsulates machine-level
details, such as bits and bytes and binary reads and writes. Application developers are therefore presented with a
programming model that embodies types and a communication style closer to their application domain.

Historically significant examples of structured communication are remote procedure call (RPC) platforms, such as Sun
RPC and the Distributed Computing Environment (DCE). RPC platforms allow distributed applications to cooperate
with one another much like they would in a local environment: they invoke functions on each other, pass parameters
along with each invocation, and receive results from the functions they called. The RPC platform shields them from
details of specific IPC mechanisms and low-level operating system APIs. Another example of structured
communication is ACE [SH02] [SH03], which provides reusable C++ wrapper facades and frameworks that perform
common structured communication tasks across a range of OS platforms.

Despite its improvements over ad hoc network programming, structured communication does not fully resolve the
challenges described above. In particular, components in a distributed system that communicate via structured
communication are still aware of their peers’ remoteness—and sometimes even their location in the network. While
location awareness may suffice for certain types of distributed systems, such as statically configured embedded
systems whose component deployment rarely changes, structured communication does not fulfill the following the
properties needed for more complex distributed systems:

• Location-independence of components. Ideally, clients in a distributed system should communicate with collocated
or remote services using the same programming model. Providing this degree of location-independence requires the
separation of code that deals with remoting or location-specific details from client and service application code.
Even then, of course, distributed systems have failure modes that local systems do not have [WWWK96].

• Flexible component (re)deployment. The original deployment of an application’s services to network nodes could
become suboptimal as hardware is upgraded, new nodes are incorporated, and/or new requirements are added. A
redeployment of distributed system services may therefore be needed, ideally without breaking code and or shutting
down the entire system.

Mastering these challenges requires more than structured communication support for distributed systems. Instead it
requires dedicated middleware [ScSc02], which is distribution infrastructure software that resides between an
application and the operating system, network, or database underneath it. Middleware provides the properties described
above so that application developers can focus on their primary responsibility: implementing their domain-specific
functionality. Realizing the need for middleware has motivated companies, such as Microsoft, IBM, and Sun, and
consortia, such as the Object Management Group (OMG) and the World Wide Web Consortium (W3C), to develop

3

technologies for distributed computing. Below, we describe a number of popular middleware technologies, including
distributed object computing, component middleware, publish/subscribe middleware, and service-oriented architectures
and Web Services [Vin04a].

2.1 Distributed Object Computing Middleware

A key contribution to distributed system development was the emergence of distributed object computing (DOC)
middleware in the late 1980s and early 1990s. DOC middleware represented the confluence of two major information
technologies: RPC-based distributed computing systems and object-oriented design and programming. Techniques for
developing RPC-based distributed systems, such as DCE, focused on integrating multiple computers to act as a unified
scalable computational resource. Likewise, techniques for developing object-oriented systems focused on reducing
complexity by creating reusable frameworks and components that reify successful patterns and software architectures.
DOC middleware therefore used object-oriented techniques to distribute reusable services and applications efficiently,
flexibly, and robustly over multiple, often heterogeneous, computing and networking elements.

CORBA 2.x and Java RMI are examples of DOC middleware technologies for building applications for distributed
systems. These technologies focus on interfaces, which are contracts between clients and servers that define a location-
independent means for clients to view and access object services provided by a server. Standard DOC middleware
technologies like CORBA also define communication protocols and object information models to enable
interoperability between heterogeneous applications written in various languages running on various platforms.

Despite its maturity and performance, however, DOC middleware had key limitations, including:

• Lack of functional boundaries. The CORBA 2.x and Java RMI object models treat all interfaces as client/server
contracts. These object models do not, however, provide standard assembly mechanisms to decouple dependencies
among collaborating object implementations. For example, objects whose implementations depend on other objects
need to discover and connect to those objects explicitly. To build complex distributed applications, therefore,
application developers must explicitly program the connections among interdependent services and object
interfaces, which is extra work that can yield brittle and non-reusable implementations.

• Lack of software deployment and configuratoin standards. There is no standard way to distribute and start up object
implementations remotely in DOC middleware. Application administrators must therefore resort to in-house scripts
and procedures to deliver software implementations to target machines, configure the target machine and software
implementations for execution, and then instantiate software implementations to make them ready for clients.
Moreover, software implementations are often modified to accommodate such ad hoc deployment mechanisms. The
need of most reusable software implementations to interact with other software implementations and services further
aggravates the problem. The lack of higher-level software management standards results in systems that are harder
to maintain and software component implementations that are much harder to reuse.

2.2 Component Middleware

Starting in the mid to late 1990s, component middleware emerged to address the limitations of DOC middleware
described above. In particular, to address the lack of functional boundaries, component middleware allows a group of
cohesive component objects to interact with each other through multiple provided and required interfaces and defines
standard runtime mechanisms needed to execute these component objects in generic applications servers. To address
the lack of standard deployment and configuration mechanisms, component middleware specifies the infrastructure to
package, customize, assemble, and disseminate components throughout a distributed system.

Enterprise JavaBeans and the CORBA Component Model (CCM) are examples of component middleware that define
the following general roles and relationships:

• A component is an implementation entity that exposes a set of named interfaces and connection points that
components use to collaborate with each other. Named interfaces service method invocations that other components
call synchronously. Connection points are joined with named interfaces provided by other components to associate
clients with their servers. Some component models also offer event sources and event sinks, which can be joined
together to support asynchronous message passing.

4 On Distributed Systems

• A container provides the server runtime environment for component implementations. It contains various pre-
defined hooks and operations that give components access to strategies and services, such as persistence, event
notification, transaction, replication, load balancing, and security. Each container defines a collection of runtime
strategies and policies, such as transaction, persistence, security, and event delivery strategies, and is responsible for
initializing and providing runtime contexts for the managed components. Component implementations often have
associated metadata written in XML that specify the required container strategies and policies.

In addition to the building blocks outlined above, component middleware also typically automates aspects of various
stages in the application development lifecycle, notably component implementation, packaging, assembly, and
deployment, where each stage of the lifecycle adds information pertaining to these aspects via declarative metadata.
These capabilities enable component middleware to create applications more rapidly and robustly than their DOC
middleware predecessors.

2.3 Publish/Subscribe and Message-Oriented Middleware

RPC platforms, DOC middleware, and component middleware are largely based on a request/response communication
model, where requests flow from client to server and responses flow back from server to client. Certain types of
distributed applications, particularly those that react to external stimui and events, such as control systems and online
stock trading systems, are not well-suited certain aspects of the request/response communication model. These aspects
include synchronous communication between the client and server, which can underutilize the parallelism available in
the network and endsystems, designated communication, where the client must know the identity of the server, which
tightly couples it to a particular recipient, and point-to-point communication, where a client talks with just one server at
a time, which can limit its ability to convey its information to all interested recipients.

An alternative approach to structuring communication in certain types of distributed systems is therefore to use
message-oriented middleware, which is supported by IBM’s MQ Series, BEA’s MessageQ, and TIBCO’s Rendezvous,
or publish/subscribe middleware, which is supported by the Java Messaging Service (JMS), the Data Distribution
Service (DDS), and WS-NOTIFICATION. The main benefits of message-oriented middleware include its support for
asynchronous communication, where senders transmit data to receivers without blocking to wait for a response. Many
message-oriented middleware platforms provide transactional properties, where messages are reliably queued and/or
persisted until consumers can retrieve them. Publish/subscribe middleware augments this capability with anonymous
communication, where publishers and subscribers are loosely coupled and thus do not know about each other existence
since the address of the receiver is not conveyed along with the event data, and group communication, where multiple
subscribers can receive events sent by a publisher.

The elements of publish/subscribe middleware are separated into the following roles:

• Publishers are sources of events, that is, they produce events on certain topics that are then propagated through the
system. Depending on architecture implementation, publishers may need to describe the type of events they generate
a priori.

• Subscribers are the event sinks of the system, that is, they consume data on topics of interest to them. Some
architecture implementations require subscribers to declare filtering information for the events they require.

• Event channels are components in the system that propagate events from publishers to subscribers. These channels
can propagate events across distribution domains to remote subscribers. Event channels can perform various
services, such as filtering and routing, QoS enforcement, and fault management.

The events passed from publishers to consumers can be represented in various ways, ranging from simple text
messages to richly-typed data structures. Likewise, the interfaces used to publish and subscribe the events can be
generic, such as send and recv methods that exchange arbitrary dynamically typed XML messages in WS-
NOTIFICATION, or specialized, such as a data writer and data readers that exchange statically typed event data in
DDS.

2.4 Service-Oriented Architectures and Web Services

Service-Oriented Architecture (SOA) is a style of organizing and utilizing distributed capabilities that may be
controlled by different organizations or owners. It therefore provides a uniform means to offer, discover, interact with

5

and use capabilities of loosely coupled and interoperable software services to support the requirements of the business
processes and application users. The ubiquity of the World Wide Web (WWW) and the lessons learned from earlier
forms of middleware were leveraged to create SOAP, which is a protocol for exchanging XML-based messages over a
computer network, normally using HTTP.

The introduction of SOAP spawned a popular new variant of SOA called Web Services that is being standardized by
the World Wide Web Consortium (W3C). Web Services allow developers to package application logic into services
whose interfaces are described with the Web Service Description Language (WSDL). WSDL-based services are often
accessed using standard higher-level Internet protocols, such as SOAP over HTTP. Web Services can be used to build
an Enterprise Service Bus (ESB), which is a distributed computing architecture that simplifies interworking between
disparate systems. Mule and Celtix are open-source examples of the ESB approach to melding groups of heterogeneous
systems into a unified distributed application.

Despite some highly publicized drawbacks [Bell06] [Vin04b], Web Services have established themselves as the
technology of choice for most enterprise business applications. This does not mean, however, that Web Services will
completely displace earlier middleware technologies, such as EJB and CORBA. Rather, Web Services complements
these earlier successful middleware technologies and provides standard mechanisms for interoperability. For example,
the Microsoft Windows Communication Foundation (WCF) platform and the Service Component Architecture (SCA)
being defined by IBM, BEA, IONA, and others combine aspects of component-based development and Web
technologies. Like components, WCF and SCA platforms provide black-box functionality that can be described and
reused without concern for how a service is implemented. Unlike traditional component technologies, however, WCF
and SCA are not accessed using the object model-specific protocols defined by DCOM, Java RMI, or CORBA.
Instead, Web services are accessed using Web protocols and data formats, such as HTTP and XML, respectively.

Rather than trying to replace older approaches, today’s Web Services technologies are instead focusing on middleware
integration, thereby adding value to existing middleware platforms. WSDL allows developers to abstractly describe
Web Service interfaces while also defining concrete bindings, such as the protocols and transports required at runtime
to access the services. By providing these common communication mechanisms between diverse middleware
platforms, Web Services allow component reuse across an organization’s entire application set, regardless of their
implementation technologies. For example, projects such as the Apache Web Services Invocation Framework (WSIF)
[Apache06], Mule, and CeltiXfire, aim to allow applications to access Web Services transparently via EJB, JMS, or the
SCA. This move towards integration allows services implemented in these different technologies to be integrated into
an ESB and made available to a variety of client applications. Middleware integration is thus a key focus of Web
Services applications for the foreseeable future [Vin03]. By focusing on integration, Web Services increases reuse and
reduces middleware lock-in, so developers can use the right middleware to meet their needs without precluding
interoperability with existing systems.

3 Understanding Distributed Systems Software Technologies via Patterns

Although the various middleware technologies described in Section 2 differ widely in their programming interfaces and
language mappings they share many of the same patterns [VKZ04]. Design-focused patterns provide a vocabulary for
expressing architectural visions, as well as examples of representative designs and detailed implementations that are
clear and concise. Presenting pieces of software in terms of their constituent patterns also allows developers to
communicate more effectively, with greater conciseness and less ambiguity.

Distributed computing has been a popular focus for pattern authors for many years. For example, [POSA2] and
[VKZ04] present collections of patterns for developing distributed object computing middleware. Likewise,
[HOHPE03] and [FOW02] present collections of patterns for enterprise message-oriented middleware and service-
oriented architectures. Most recently, [POSA4] has captured an extensive pattern language for building distributed
software systems that connects over 250 patterns addressing topics ranging from defining and selecting an appropriate
baseline architecture and communication infrastructure, to specifying component interfaces, their implementations, and
their interactions. Together, the patterns covered in these books address key technical aspects of distributed computing,

6 On Distributed Systems

such as adaptation and extension, concurrency, database access, event handling, synchronization, and resource
management.

As software is integrated into mission-critical systems there is an increasing need for robust techniques to meet user
dependability requirements. Patterns on fault tolerance and fault management have therefore been an active focus over
the past decade. Several recent books [UTAS05] [HAN07] contain patterns and pattern languages that address fault
tolerance and fault management for systems with stringent operational requirements. Likewise, developing high-quality
distributed real-time and embedded (DRE) systems that provide predictable behavior in networked environments is
also increasingly crucial to support mission-critical systems. Patterns that guide the development of resource
management algorithms and architectures for DRE software appear in [DIP07] and [POSA3].

4 Concluding Remarks

Software for distributed systems has historically been developed largely from scratch. This development process has
been applied many times in many companies, by many projects in parallel. Even worse, it has been applied by the
same teams in a series of projects. Regrettably, this continuous rediscovery and reinvention of core concepts and code
has kept costs unnecessarily high throughout the software development life cycle. This problem is exacerbated by the
diversity of today’s hardware, operating systems, compilers, and communication platforms, which keep shifting the
foundations of software development for distributed systems.

In today’s competitive, time-to-market-driven environments, it is increasingly infeasible to develop custom solutions
manually from scratch. Such solutions are hard to customize and tune, because so much effort is spent just trying to
make the software operational. Moreover, as requirements change over time, evolving custom software solutions
becomes prohibitively expensive. End-users expect–or at least desire–software to be affordable, robust, efficient, and
agile, which is hard to achieve without the solid architectural underpinnings achievable via systematic reuse of the
middleware technologies described in this article. The past decade has yielded significant progress in the reuse of
software for distributed systems stemming from the systematic documentation of patterns and pattern languages that
help simplify the development and use of middleware.

Acknowledgements

Thanks to Frank Buschmann, Krishnakumar Balasubramanian, Kevlin Henney, and Steve Vinoski for providing
insightful comments that helped improve this article.

References

[Bell06] A.E. Bell: “Software Development Amidst the Whiz of Silver Bullets...”, ACM Queue vol. 4, no. 5 - June
2006

{DIP07] Dipippo et al, Design Patterns for Distributed Real-Time Embedded Systems, Springer 2007

[DWT04] A. Dennis, B. Haley Wixom, D. Tegarden: Systems Analysis and Design with UML Version 2.0: An Object-
Oriented Approach, John Wiley & Sons, 2004

[FOW02] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley 2002

[GoF95] E. Gamma, et al., Design Patterns: Elements of Reusable Object-Oriented Software, Addision Wesley, 1995

[HAN07] R.S. Hanmer: Patterns For Fault Tolerant Software, John Wiley and Sons, 2007

[HOHPE03] G. Hohpe, et al., Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions, Addison-Wesley 2003

[POSA2] D.C. Schmidt, M. Stal, H. Rohnert, F. Buschmann: Pattern-Oriented Software Architecture—Patterns for
Concurrent and Networked Objects, John Wiley and Sons, 2000

[POSA3] M. Kircher and P. Jain: Pattern-Oriented Software Architecture—Patterns for Resource Management, John

7

Wiley and Sons, 2003

[POSA4] F. Buschmann, K. Heneny, D.C. Schmidt: Pattern-Oriented Software Architecture—A Pattern Language for
Distributed Computing, John Wiley and Sons, 2007

[ScSc02] R.E. Schantz, D.C. Schmidt: “Middleware for Distributed Systems: Evolving the Common Structure for
Network-centric Applications,” Encyclopedia of Software Engineering, J. Marciniak, G. Telecki (eds.), John Wiley &
Sons, New York, 2002

[SDL05] A. Prinz, R. Reed, J. Reed (edts.): Conference Proceedings of SDL 2005: Model Driven: 12th International
SDL Forum, Grimstad, Norway, June 20-23, 2005, Proceedings, Springer Verlag, 2005

[SH02] D.C. Schmidt, S.D. Huston: C++ Network Programming, Volume 1: Mastering Complexity with ACE and
Patterns, Addison Wesley, 2002

[SH03] D.C. Schmidt, S.D. Huston: C++ Network Programming, Volume 2: Systematic Reuse with ACE an
Frameworks, Addison Wesley, 2003

[UTAS05] G. Utas, Robust Communications Software: Extreme Availability, Reliability and Scalability for Carrier-
Grade Systems, Wiley 2005

[VKZ04] M. Všlter, M. Kircher, U. Zdun: Object-Orieted Remoting Patterns — Foundations of Real-Time, Internet,
and Enterprise Distribution Infrastructures, John Wiley and Sons, 2004

[Vin03] S. Vinoski: “Toward Integration with Web Services,” IEEE Internet Computing, November / December 2003,
IEEE, 2003

[Vin04a] S. Vinoski: “An Overview of Middleware,” 9th International Conference on Reliable Software Technologies
Ada-Europe 2004, Palma de Mallorca, 14-18 June 2004

[WWWK96] J. Waldo, G. Wyant, A. Wollrath, S.C. Kendall (eds.): “A Note On Distributed Computing,” Lecture
Notes of Computer Science, vo. 1222, Springer Verlag, 1996

About the Author

Dr. Douglas C. Schmidt is a Professor of Computer Science at Vanderbilt University. His expertise focuses on distrib-
uted computing middleware, object-oriented patterns and frameworks, and distributed real-time and embedded (DRE)
systems. He has authored over 400 publications in IEEE, ACM, IFIP, and USENIX technical journals and conferences,
and 9 books that cover high-performance communication software systems, real-time distributed computing, and ob-
ject-oriented patterns for concurrent and distributed systems.

