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Abstract 
 Component middleware is popular for enterprise dis-
tributed systems because it provides effective reuse of the 
core intellectual property (i.e., the “business logic”). 
Component-based enterprise distributed real-time and 
embedded (DRE) systems, however, incur new system inte-
gration problems associated with component configura-
tion and deployment. New research is therefore needed to 
minimize the gap between the development and deploy-
ment/configuration of components, such that deployment 
and configuration strategies can be evaluated well before 
system integration. This paper uses an industrial case 
study from the domain of shipboard computing to show 
how system execution modeling tools can provide software 
and system engineers with quantitative estimates of system 
bottlenecks and performance characteristics to help 
evaluate quality of service of component-based enterprise 
DRE systems and reduce time/effort in the integration 
phase. The results from our case study experiments show 
the benefits of system execution modeling tools and pin-
point where more work is needed. 

1. Introduction 
 Integration challenges of component-based enter-
prise DRE systems. Enterprise distributed systems in 
many domains are increasingly developed using applica-
tions composed of distributed components running on fea-
ture–rich middleware frameworks. The distributed com-
ponents are designed to provide reusable services to a 
range of application domains, which are then composed 
into domain-specific assemblies for application (re)use. 
Examples of component middleware platforms include 
Microsoft .NET, Enterprise Java Beans and the CORBA 
Component Model (CCM).  
 The transition to component middleware is occurring 
in enterprise business systems to address problems of in-
flexibility and reinvention of core capabilities associated 
with prior monolithic, functionally-designed, and “stove-
piped” legacy applications. Legacy applications were de-
veloped with the precise capabilities required for a specific 
set of requirements and operating conditions.  Component-
based systems, however, are designed to have a range of 
capabilities that enable their reuse in other contexts. More-
over, these systems are developed in layers, e.g., layer(s) of 
infrastructure middleware services (such as naming and 
discovery, event and notification, security and fault toler-

ance) and layer(s) of application components that use these 
services in different compositions.  
 Certain types of component middleware, such as Real-
time CCM [14], are also being applied to the domain of 
enterprise distributed real-time and embedded (DRE) sys-
tems, such as shipboard computing environments and su-
pervisory control and data acquisition systems, to provide 
users with quality of service (QoS) support to process the 
right data in the right place at the right time over a grid of 
computers.  Some QoS properties required by enterprise 
DRE systems include the low latency and jitter as expected 
in conventional real-time and embedded systems, and high 
throughput, scalability, and reliability as expected in con-
ventional enterprise distributed systems. It is hard to 
achieve this combination of QoS capabilities in enterprise 
DRE systems developed using today’s middleware and 
tools. 
 Component middleware can also complicate software 
lifecycle processes by shifting responsibility from software 
development engineers to software configura-
tion/deployment engineers and systems engineers. Soft-
ware development engineers traditionally created entire 
applications in-house using top-down design methods that 
could be evaluated throughout the lifecycle. In contrast, 
software configuration and deployment engineers and sys-
tem engineers today assemble enterprise DRE systems by 
customizing and composing reusable components, whose 
combined properties are usually evaluated only during the 
integration phase. Unfortunately, problems uncovered dur-
ing integration are much more costly to fix than if they 
were discovered earlier in the lifecycle. A key research 
challenge is thus exposing these types of issues (which 
often have dependencies on components that are not avail-
able until late in development) earlier in the lifecycle, e.g., 
prior to the system integration phase.  
 Component-based enterprise DRE systems use design- 
and run-time configuration steps to customize the behavior 
of reusable components to meet QoS requirements in the 
context where they execute. Finding the right configura-
tions for components to meet application QoS require-
ments is hard. For example, tuning the concurrency con-
figuration of a DRE shipboard computing system to sup-
port both real-time and fault-tolerant QoS involves trade-
offs that challenge even the most experienced engineers. 
Moreover, application functionality is distributed over 
many components in a DRE system and developers must 
interconnect and integrate their components correctly and 



efficiently. This process can be tedious and error-prone us-
ing conventional handcrafted configuration processes.  
 The components assembled into an application must 
also be deployed on the appropriate nodes in an enterprise 
DRE system. This deployment process is hard since host 
and network characteristics can vary statically (e.g., due to 
different hardware/software platforms used in a product-
line architecture) and dynamically (e.g., due to dam-
age/faults, change in computing objectives, or differences 
in the real vs. expected behavior of applications during 
actual operation). Evaluating the operational characteris-
tics of system deployments is therefore tedious and error-
prone when deployments are performed manually.  
 Another complexity of evaluating deployments of 
component-based enterprise DRE systems stems from ap-
plications sharing components with differing QoS require-
ments, such as a system resource manager responsible for 
processing requests from high-priority tactical applications 
and low-priority desktop applications. It is hard to assure 
that a stand-alone application can meet stringent QoS re-
quirements using dedicated resources. It is harder to assure 
these requirements with components sharing resources 
with other applications in enterprise DRE systems.  
 Solution approach → System execution modeling 
tools. Despite the flexibility offered by component mid-
dleware, there are often surprisingly few configuration and 
deployment designs that can satisfy the functional and 
QoS requirements of an enterprise DRE system. We have 
therefore developed a system execution modeling tool 
chain called the Component Workload Emulator (Co-
WorkEr) Utilization Test Suite (CUTS), that combines 
QoS-enabled component middleware and model-driven 
development (MDD) technologies. Software architects, 
developers, and systems engineers can use CUTS to ex-
plore design alternatives from multiple computational and 
valuation perspectives at multiple lifecycle phases using 
multiple quality criteria with multiple stakeholders and 
suppliers. In addition to validating design rules and check-
ing for design conformance, CUTS facilitates “what if” 
analysis of alternative designs to quantify the costs of cer-
tain design choices on end-to-end system performance. 
For example, CUTS can help determine the maximum 
number of components a host can handle before perform-
ance degrades, the average and worse response time for 
various workloads, and the ability of alternative system 
configurations and deployments to meet end-to-end QoS 
requirements for a particular workload. 

In the context of enterprise DRE systems, our CUTS 
system execution modeling tool helps developers discover, 
measure, and rectify performance problems early in the 
system's lifecycle (e.g., in the architecture and design 
phases), as opposed to the integration phase, when mis-
takes are much harder and more costly to fix. This paper 
shows how we used CUTS to rapidly emulate component-
based applications in a representative enterprise DRE sys-
tem (i.e., shipboard computing) and then perform ex-

periments that systematically estimated and evaluated the 
end-to-end QoS for key scenarios in this system.  
 Paper organization. The remainder of this paper is 
organized as follows: Section 2 summaries limitations with 
prior  work on QoS-enabled component middleware and 
MDD tools in the context of a shipboard computing system 
case study; Section 3 describes CUTS, shows how it over-
comes limitations with prior work, and explains how we 
resolved key design challenges when developing CUTS; 
Section 4 shows how we applied CUTS to evaluate the 
QoS of various deployments in our case study; Section 5 
compares our R&D efforts with related work; and Section 
6 presents concluding remarks and lessons learned. 

2. Background and Case Study 
Our work on CUTS has evolved incrementally over 

the past three years in the context of the DARPA Adaptive 
and Reflective Middleware Systems (ARMS) program 
(dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6). 
ARMS is a multi-phase program that is developing multi-
layer resource management (MLRM) services to support 
product-lines that coordinate a grid of computers to man-
age many aspects of a ship's power, navigation, command 
and control, and tactical operations [15]. The ARMS 
MLRM services have hundreds of different types and in-
stances of infrastructure components written in ~500,000 
lines of Java and C++ code and ~1,000 files developed by 
six teams at different geographic locations. This section 
uses our experience on ARMS as a case study to motivate 
the need for the CUTS system execution modeling tools  

Our initial approach. To address the configuration 
and deployment problems common to integrating compo-
nents in enterprise DRE systems, our initial work on 
ARMS combined QoS-enabled component middleware 
platforms with MDD tools. QoS-enabled component mid-
dleware supports the provisioning of key QoS properties, 
e.g., (pre)allocating CPU resources, reserving network 
bandwidth/connections, and monitoring/enforcing the 
proper use of DRE system resources at runtime, to meet 
end-to-end requirements. MDD tools combine  
• Domain-specific modeling languages (DSMLs), which 

provide programming notations that formalize the 
process of specifying application logic and QoS-re-
lated requirements using type systems that precisely 
express key characteristics and constraints associated 
with DSMLs for particular application domains and  

• Model transformations and code generation, which 
automate and ensure the consistency of software im-
plementations via analysis information associated with 
functional and QoS requirements captured by models 
of domain-specific structure and behavior.  

 In prior work with colleagues at Washington Univer-
sity, St. Louis we developed a QoS-enabled component 
middleware platform called the Component-Integrated 
ACE ORB (CIAO) [14] that combines Lightweight CCM 
[4] capabilities (such as standards for specifying, imple-



menting, packaging, assembling, and deploying compo-
nents) with Real-time CORBA [12] features (such as 
thread pools and priority preservation policies) to create a 
Real-time CCM middleware platform. Likewise, we cre-
ated an MDD tool suite called Component Synthesis using 
Model Integrated Computing (CoSMIC) [7], which is an 
integrated set of DSMLs that support the development, 
deployment, configuration, and evaluation of enterprise 
DRE systems based on Real-time CCM. CoSMIC is imple-
mented using the Generic Modeling Environment (GME) 
[9], which is an open-source MDD toolkit for creating and 
using DSMLs.  These tools/platforms are open-source and 
available from www.dre.vanderbilt.edu. 
 By combining CIAO and CoSMIC on ARMS, we 
tackled many integration challenges associated with con-
figuring and deploying enterprise DRE systems by lever-
aging MDD tools to enforce correct-by-construction de-
sign. For example, we used CoSMIC’s model interpreters 
to generate Real-time CCM XML configuration files [1] 
and CIAO’s Deployment And Configuration Engine 
(DAnCE) [5] to deploy the resulting component assemblies 
on DRE system nodes, as shown in Figure 1. 

 
Figure 1. Integrating CIAO, DAnCE, and CoSMIC 

 
 Limitations with our initial approach and common 
alternatives. To evaluate the benefits of combining CIAO, 
DAnCE, and CoSMIC, we applied them in phase one of 
ARMS [16]. Our experience, however, indicated that 
CIAO, DAnCE, and CoSMIC were insufficient to evaluate 
the QoS of applications in enterprise DRE systems due to 
the following limitations: 
• Insufficient performance evaluation. In the ARMS 

enterprise DRE system environment, many different 
applications ran concurrently across networks that in-
cluded both shared and dedicated components. CIAO, 
DAnCE, and CoSMIC, however, provided insufficient 
support for evaluating QoS-related characteristics 
(such as communication delay, temporal phasing, par-
allel execution, and synchronization).   

• Serialized phase ordering dependencies. Application 
components that exercised the ARMS MLRM infra-
structure middleware services were not developed un-

til later in the system lifecycle. The QoS of the infra-
structure services therefore was not evaluated ade-
quately under realistic workloads to validate their ar-
chitecture and design. 

 We initially considered evaluating enterprise DRE 
system QoS characteristics in ARMS via simulation. Due 
to size, interdependencies, and the sheer number of vari-
ables involved in ARMS it was impractical to develop and 
evolve realistic models that simulate complex scenarios. 
Moreover, while pure simulation can provide valuable in-
formation about system QoS behavior, it is hard to lever-
age simulation results directly in the production opera-
tional environment.   

3. The Component Workload Emulator (Co-
WorkEr) Utilization Test Suite (CUTS) 

To overcome the limitations encountered in the ARMS 
program described in Section 2, we needed more effective 
technologies to evaluate the end-to-end QOS characteris-
tics of ARMS applications in a production-scale environ-
ment, even before any actual application components were 
developed. Our goals were motivated by our experience in 
phase one of ARMS and involved: 
• Not obtaining 100% precision, but providing systems 

engineers and architects with rapid, reasonably accu-
rate estimates of system QoS early in the lifecycle.  

• Improving the accuracy of our estimates of system 
QoS incrementally as our understanding of application 
requirements, implementations, and execution envi-
ronments increased. 

• Automatically transitioning select artifacts used in our 
evaluations (such as models of deployment plans that 
met end-to-end QoS requirements) to the component-
based application and middleware deployments and 
configurations we were creating. 

 To meet our goals and overcome limitations with prior 
work, we developed the Component Workload Emulator 
(CoWorkEr) Utilization Test Suite (CUTS). CUTS is a sys-
tem execution modeling tool chain for creating component-
based applications rapidly and performing experiments that 
systematically evaluate interactions that are hard to simu-
late. In particular, CUTS provides model-based workload 
generation, data reduction, and visualization tools to con-
struct experiments rapidly and analyze results from alter-
nate execution architectures. CUTS can also import meas-
ured performance data from faux application components 
running over actual configured and deployed infrastructure 
middleware services to estimate enterprise DRE system 
behavior in a realistic environment. 
 When combined with our prior work on QoS-enabled 
component middleware and MDD tools, CUTS allowed 
more robust and complete solutions for emulating actual 
application components and evaluating QoS earlier in the 
enterprise DRE system lifecycle. For example, we used 
CoSMIC to create models of DRE systems composed of 
faux application components and actual system infrastruc-



ture components. We then used these models with CIAO 
and DAnCE to deploy all these components based into a 
representative testbed (www.dre.vanderbilt.edu/ISISlab) 
and conduct systematic experiments that measured how 
well the system performed relative to QoS specifications 
from production computing systems. This remainder of this 
section presents the CUTS architecture and solutions to de-
sign challenges we faced when developing it and applying 
it to the ARMS case study. 

3.1 CUTS Architecture 
 As outlined in Section 2, CUTS is a system execution 
modeling toolkit designed to (1) emulate portions of enter-
prise DRE systems (2) collect performance data provided 
by the emulation, and (3) analyze the data to estimate sys-
tem QoS and pinpoint potential performance bottlenecks. 
At the heart of CUTS is an assembly of CCM components, 
called a CoWorkEr (Figure 2). A CoWorkEr is a faux com-
ponent that can be programmed rapidly to emulate the ex-
pected behavior and resource consumption of its counter-
part in the production application. 

 

Figure 2. A CoWorkEr Component Assembly 
 
CoWorkErs can be connected together via their exposed 
ports to create operational strings, which are task graphs 
that capture the partial ordering of a set of executing soft-
ware components. Figure 2 shows the key elements of the 
CoWorkErs, which fall into two broad categories: work-
load generation and test control and analysis.  
3.1.1. Workload generation is implemented in CUTS as 
an assembly-based CCM component composed of the fol-
lowing monolithic CCM components: 
• The EventHandler can receive user-defined events. It 

records the number of events received for each type 
and performance metrics regarding the delay between 
original publication and the onset of processing. The 
EventHandler also tracks the time required to process 
each event it receives. Workloads, which are per-
formed by the worker components described next, 
may also be associated with receiving combinations 
and numbers of events.  

• The CPUWorker performs CPU operations. As with 
all workers, the quantity of work to perform is speci-
fied as a number of repetitions, which represent an ab-
stract unit of work. 

• The MemoryWorker performs allocation and dealloca-
tion of memory. 

• The DatabaseWorker performs a series of insert, up-
date, and delete operations on a specified database.  

• The EventProducer (which is also a worker) publishes 
events that carry a data payload of the desired size. 
Events are time-stamped prior to transmission. 

• The Trigger is provided to represent external input to a 
simulated application, or regularly scheduled, time-
driven processing not resulting from the receipt of an 
event. Triggers provide both periodic and pseudo-ran-
dom behavior by inducing workers to perform a work-
load at a specified interval and probability of oc-
currence. A Trigger can also perform startup work-
load during activation. 

To simplify the programming and configuration of Co-
WorkErs, we created an MDD-based DSML called the 
Workload Modeling Language (WML) [15]. WML is used 
to characterize the behavior of individual CoWorkErs by 
specifying their processor, memory, database, and in-
put/output usage profiles. XML characterization files are 
then generated from a WML model, and subsequently 
parsed by EventHandler and Trigger components to dictate 
the behavior of their respective CoWorkEr. 
3.1.2. Test control and analysis in CUTS includes the fol-
lowing elements: 
• The BenchmarkAgent completes the CoWorkEr as-

sembly shown in Figure 2. It requests test data col-
lected by EventHandlers at a user-defined interval and 
transmits this data to the BenchmarkDataCollector. 

• The BenchmarkDataCollector (BDC) submits test data 
to a centralized in-memory BenchmarkDatabase.  

• The BenchmarkManagerWeb-interface (BMW) im-
plements the bulk of the test control and analysis func-
tionality via an ASP.NET application. This manager 
processes data captured in the BenchmarkDatabase 
and invokes DAnCE’s ExecutionManager to start and 
end the deployment of test assemblies. In addition to 
the web browser interface, the BMW provides a web-
services interface that allows any programming lan-
guage that understands the Simple Object Access Pro-
tocol (SOAP) to automate test in CUTS. 

 
Figure 3. Example Setup of CUTS to Evaluate QoS in 

an Enterprise DRE System 



Figure 3 shows how CUTS can evaluate the QoS of enter-
prise DRE systems. Dedicated hosts, called test host, run 
inside the test network and the BenchmarkDataCollector 
and BenchmarkManagerWeb-interface exist outside the 
test network. This setup limits outside interference on tests 
run using CUTS while permitting users to analyze their re-
sults either during or after the test run. 

3.2 CUTS Design Challenges and Solutions  
 We now describe key problems encountered when 
developing and applying CUTS and explain the solutions 
adopted to resolve these problems. 
 Challenge 1. Non-intrusive metrics collection. An 
ad hoc metrics collection system might interfere with the 
emulation and skew test results. Metric collection should 
therefore have minimally intrusion and resource usage. 
 Solution → Decouple metrics collection from emu-
lation, and collect metrics using a 3-phase data acqui-
sition process. The EventHandler, BenchmarkAgent and 
BenchmarkDataCollector component, which were de-
scribed in Section 3.1, work together to collect perform-
ance metrics in three separate phases. In phase 1, the Even-
tHandler maintains for each event type a local in-memory 
record of the number received, the maximum and mini-
mum transmission and processing time, and running totals 
for transmission and processing time. In phase 2, the 
BenchmarkAgent obtains the data from the EventHandler 
at a user-specified interval in a dedicated thread, and resets 
the EventHandler’s running totals. The BenchmarkAgent 
transmits the collected data to the BenchmarkDataCollec-
tor, which immediately queues the data and returns. In 
phase 3, the BenchmarkDataCollector dequeues the data 
and inserts it into a MySQL database. Each phase of the 
data acquisition process also uses a dedicated thread to 
minimize the impact of data collection on the emulation  
 All data stored and transmitted by the EventHandler 
and the BenchmarkAgent is a fixed-size to ensure memory 
usage is bounded by a constant factor. The aspects of met-
ric collection that cause variable memory usage and delays, 
e.g., queuing and entry of data into a database, are placed 
the BenchmarkDataCollector, which is deployed on a node 
not used by a CoWorkEr.  Moreover, separate network 
interfaces can be used to decouple the transmission of met-
ric data from the transmission of CoWorkEr operations. 
 Challenge 2. Simplify characterization of applica-
tion workload. Some users of CoWorkErs will be systems 
engineers or architects, who may not be accomplished at 
programming with third-generation languages, such as 
C++ or Java, or configuration languages, such as XML.  It 
is therefore important for CUTS to offer alternatives to 
programmatic interfaces and dense configuration files for 
these types of users. 
 Solution → Provide graphical user interfaces for 
characterizing, deploying and analyzing applications. 
CUTS allows users to design simulated applications en-
tirely through visual models. In particular, the CoSMIC 

and WML DSMLs allow users to create structural and be-
havioral models of their applications without manually 
editing configuration files or third-generation language 
code. Deployment and analysis of the application is pro-
vided through an intuitive BenchmarkManagerWeb-inter-
face. More details and examples of WML appear in [15]. 

Challenge 3. Simplify Customization. CoWorkErs 
can emulate four categories of core application work 
(CPU, memory, database, and network resource utiliza-
tion), but the need for more customized behavior may arise 
for particular types of enterprise DRE systems. The design 
of the CoWorkErs therefore needs to support user-defined -
extensions to its basic work repertoire. 
 Solution → Support custom CoWorkEr compo-
nents. In the spirit of CCM, CoWorkErs employ a modular 
design where any monolithic components comprising the 
CoWorkEr assembly shown in Figure 2 can be replaced 
with a customized component that implements the same 
interface, without requiring modification or recompilation 
of other components. For example, it is straightforward to 
replace the default CPUWorker with a FCPUWorker that 
only performs floating-point arithmetic. In addition, 
GME’s convenient inheritance support makes swapping of 
components straightforward within a CoSMIC model,. 
 Challenge 4. Descriptive analysis of performance. If 
a particular emulation shows that a proposed configuration 
and deployment of enterprise DRE system components 
will not meet QoS expectations, CUTS users must be able 
to pinpoint the source of the problem quickly to correct it. 
 Solution → Present metrics in layers to support 
general and detailed analysis. In addition to providing a 
high-level, graphical representation of observed perform-
ance vs. deadlines along a critical path, CUTS Bench-
markManagerWeb-interface allows users to view statistics 
for individual CoWorkErs. A tabular display allows users 
to view summary statistics for operational strings of Co-
WorkErs simultaneously, whereas detailed graphs support 
scrutiny of an individual CoWorkEr’s performance over 
time.  Statistics for processing time can also be subdivided 
to reflect the four categories of work, thereby allowing 
analysts to determine whether QoS target requirements are 
being missed due to reliance upon a sluggish database, 
paging due to excessive memory allocation, saturation of 
network bandwidth, etc. Usage and further discussion of 
these features can be found in Section 4.2. 

4. Applying CUTS to Evaluate an Enterprise 
DRE System 
 This section describes the design and results of an ex-
periment that uses the CUTS systems execution modeling 
toolchain to evaluate the QoS of a representative enterprise 
DRE system from the domain of shipboard computing.  
This experiment is based upon work conducted in the 
DARPA ARMS program described in Section 2. The 
ARMS program provides a representative case study for 
evaluating CUTS since it runs on general-purpose oper-



ating systems (such as Solaris and Linux) with real-time 
enhancements. It also uses a component-based architecture 
developed using the CIAO and DAnCE Real-time CCM 
middleware and CoSMIC MDD tools, has hundreds of 
components types/instances and hundreds of thousands of 
lines of C++ and Java code, and has been developed over 
the past three years by a group of geographically distrib-
uted teams. As a result, the ARMS program and software 
base incurs many of the same integration challenges asso-
ciated with configuration, deployment, and QoS evaluation 
that occur in other production enterprise DRE systems. 

4.1 The ARMS SLICE Experiment using CUTS 
4.1.1. Experiment motivation. One of the challenging 
problems in the second phase of the ARMS program is 
called the SLICE scenario, which consists of 2 sensors, 2 
planners, 1 configuration, 1 error recovery, and 2 effector 
components. The SLICE scenario requires the transmission 
of information detected by the sensors to each planner in 
sequence, then to the configuration component, and lastly 
to both effectors to perform actions that control devices in 
the physical world. Components in the SLICE scenario are 
deployed across 3 computing nodes because the workload 
generated by each component collectively is more than a 
single node can handle. The main sensor and effector (rep-
resented as sensor-1 and effector-1 in Figure 4 and in fol-
lowing sections) are deployed on separate nodes to reflect 
the placement of physical equipment in the production 
shipboard system. Figure 4 shows a model of the end-to-
end layout of SLICE components, with the critical path 
specified by the dashed arrows. 

 
Figure 4. Model of SLICE Showing the Components 

and Their Interconnections 

 In phase two of ARMS, the multi-layer resource man-
ager infrastructure was re-implemented to use Real-time 
CCM (via CIAO and DAnCE), and MDD tools (via CoS-
MIC), instead of Real-time CORBA and ad hoc deploy-
ment mechanisms used in phase one of ARMS. Based on 
the ARMS phase two development schedule, the integra-
tion of components that implemented the SLICE scenario 
atop the new multi-layer resource management infrastruc-
ture was not slated to occur until 12 months into the pro-
gram to provide sufficient time to finish developing, test-
ing, and optimizing the multi-layer resource management 
infrastructure. The SLICE scenario, however, uses soft-
ware components similar to product-lines and challenge 
problems in phase one of the ARMS program. We there-
fore already understood each component’s behavior in 
SLICE, but did not know how overall performance of the 

SLICE scenario would be affected by the new ARMS 
multi-layer resource management infrastructure. 
 In phase one of ARMS, we waited until the integration 
phase of our schedule to begin benchmarking the system, 
only to learn none of the QoS requirements were met due 
to improperly designed multi-layer resource management 
infrastructure. As a consequence, our schedule slipped and 
the process of reconfiguring and redeploying ARMS appli-
cation and middleware components to meet QoS require-
ments required significant manual effort. To prevent the 
same problems from happening in phase two of the pro-
gram, we used CUTS to evaluate the QoS challenges of the 
SLICE scenario prior to the integration phase. Our goal 
was to determine which configuration and deployment 
strategies will enable us to meet the QoS critical path dead-
line and create a pool of selectable deployment strategies 
that meet the performance requirements. The underlying 
hypothesis driving the experiment was much of the per-
formance information could be collected prior to the inte-
gration phase by emulating key properties of the SLICE 
scenario components using CUTS. As a result, less time 
would be spent integrating and testing the actual SLICE 
components after they were completed. 
4.1.2. Experiment design. For the SLICE scenario, there 
is a 350 ms QoS critical path deadline, which is represen-
tative of the end-to-end execution time of a similar sce-
nario from phase one of the ARMS program. This deadline 
corresponds to receiving a command event on sensor-1 up 
to performing an action with effector-1. Sensor-1 and ef-
fector-1 must be deployed on separate nodes to meet the 
constraints discussed in section 4.1.1. Table 1 describes the 
predicted behavior for two of the SLICE components 
(which were defined using the Workload Modeling Lan-
guage) to illustrate the various types of workload and ac-
tions for a CoWorkEr. 
 

Planner -1 CoWorkEr  
Workload performed 
every second 

publish command of size 24 bytes 

Workload performed 
after receipt of a track 
event 

alloc 30 KB;  55 dbase ops; 45 CPU ops; 
publish assessment of size 132 bytes; dealloc 
30 KB 

Configuration-Optimization CoWorkEr 
Workload performed at 
startup time 

alloc 1 KB;  25 dbase ops; 1 CPU ops; 10 
dbase ops; dealloc 1 KB 

Workload performed 
after receipt of an as-
sessment event 

alloc 5 KB; 40 dbase ops; 1 CPU op; publish 
command of size 128 bytes; dealloc 5 KB 

Workload performed 
after receipt of a status 
event 

1 dbase op 

Table 1. Expected Behavior for 2 SLICE CoWorkErs 

The workload specifications for each component listed 
in Table 1 is based on the behavior of components imple-
mented in phase one of ARMS. We obtained these values 
by estimating the number and types of operations based 
our understanding gained by implementing and testing the 
functionality of the workload generators explained in Sec-



tion 3.1.1. For the predicted behavior for the remaining 
components, please refer to [13].  
 

Host Operating System Database 
1 Fedora Core3 YES 

2, 3, BDC Fedora Core3 NO 
BMW Windows XP YES 

Table 2. System Characteristics for Experiment Host 

Each host used by ARMS developers in the CUTS-
based experiments was an IBM Blade Type L20, dual-CPU 
2.8 GHz processor with 1 GB RAM with the characteris-
tics listed in Table 2. The middleware used for the experi-
ment was version 0.4.7 of CIAO/DAnCE, and the MDD 
tools used were version 0.4.6 of CoSMIC, which is the 
target middleware and MDD tool for the SLICE scenario 
in ARMS phase 2. Each test was run for 10 minutes. 

4.2 Viewing and Interpreting the Results of the 
SLICE Experiment 
 This section describes the results of tests that used 
CUTS to evaluate various deployments of SLICE compo-
nents onto hosts to (1) test the capability of CUTS, (2) de-
termine which deployment strategies meet the 350 ms criti-
cal path deadline when components Sensor-1 and Effector-
1 are deployed on separate nodes, and (3) prove that work-
load generated by SLICE is too much when the critical 
path components are deployed on a single node. The first 
listing in Table 3 contains the legend for the CoWorkEr 
symbols used in the second listing. 
4.2.1. Discussion of the hypothesis. Test 4 and 5 were two 
tests that not only missed the 350 ms deadline, they in-
curred the worst critical path execution time for all 11 
tests. The main purpose of test 4 and 5 was to evaluate our 
hypothesis that the 350 ms deadline could not be met if all 
components were deployed on the same node. After com-
pleting test 4 and 5, we validated this hypothesis – the 
workload generated by components in the critical path is 
more than a single node can handle, so they must be de-
ployed across multiple nodes. On the other hand, test 6 
deployed only the components in the critical path on the 
same node, and had an average execution time of 323 ms. 
CUTS therefore enabled us to learn that we could meet the 
350 ms deadline if only the critical path components were 
deployed on the same node. 
 

SLICE CoWorkEr Legend for Test Table 
Symbol CoWorkEr Symbol CoWorkEr 

A Sensor-1 * E Config-Op * 
B Sensor-2 F Error-Recovery 
C  Planner-2 * G Effector-1 * 
D Planner-1 * H Effector-2 

* represents CoWorkEr in the critical path 
 

Deployment Strategy 
Test Host 1 Host 2 Host 3 

Critical  Path  
Execution Time 

(avg./worse) (ms) 
1 C,D,E,F A,B G,H 411 / 1,028 
2 A,B,C,D F E,G,H 420 / 1,094 
3 A,B,C,D,E F G,H 416,/ 1,085 

4 A,B,C,D,E,F,G,H   463 / 1,247 
5 A,B,C,D,E,G,H F  467 / 1,219 
6 A,C,D,E,G F B,H 323 / 844 
7 A,G C,D,E B,F,H 363 / 887 
8 D A,B,C, 

F,G,H 
E 405 / 975 

9  A,D C,E,G B,F,H 235 / 387 
10 A,D E,G B,C,F,H 251 / 395 
11 A,D,E C,G B,F,H 221 / 343 
Table 3: SLICE Results for Experiments using Differ-

ent Deployment Strategies in CUTS 

4.2.2. Interpreting the CUTS benchmark data results. 
Running 11 tests with various deployment strategies pro-
vided key information about the current ARMS multi-layer 
resource management infrastructure. Of the 11 tests, only 3 
deployed the critical path components across multiple 
nodes and completed their end-to-end execution in 350 ms. 
Of these 3 tests, 2 deployed the critical path across all three 
nodes and completed it within an average time of 350 ms, 
and 1 test (test 11) completed it within a worse time of 350 
ms. Although we did not exhaust all possible deployment 
strategies in this experiment, we learned that only 18% (2 
out of 11) of the current test passed on their planned infra-
structure while meeting the deployment requirements and 
test 11 yield the best performance. 
 After running test 1 through 8, only 1 test met the 350 
ms end-to-end deadline, and 7 of the tests had faults in 
their deployment specification, e.g., placing a CoWorkEr 
on a host with insufficient resources to handle its workload 
without missing deadlines. We used the CUTS graphical 
analysis features to help investigate why these deployment 
strategies did not meet their QoS requirements. 

Workload Avg. 
Samples 

Avg./Rep 
(ms) 

Avg. Time 
(ms) 

Transmit Delay 5  6.19 
Total Workload 5  169.6 
CPU  2.20859 99.39 
Memory  0.00727 0.51 
Publication  1.40206 1.4 
Table 4. Snapshot of Timing Data for Sensor-1 in Test 8 

obtained from the BMW Test Results Page 
 

CoWorkEr Transmission  
Delay (ms) 

Avg. Time of  
Completion (ms) 

Sensor-1 6.19 169.6 
Planner-1 12.11 54.03 
Planner-2 10.69 110.66 
Config-Op 17.04 23.84 
Effector-1  0.34 
Table 5. Snapshot of the Critical Path Timing Data for 

Test 8 from the BMW Analysis Page 

Tables 4 and 5 show an excerpt of the results provided 
via the BenchmarkManagerWeb-interface (BMW) for test 
8, which measures behavior when the two components in 
the critical path handling the most workload are deployed 



on their own node. Table 4 shows the time to transmit a 
particular message between two CoWorkErs and how long 
it took to complete each type of workload – CPU, database, 
or memory – for Sensor-1. For the CoWorkErs in the criti-
cal path in test 8, it took 169.6 ms for Sensor-1 to process 
its workload after receipt of a command event from Plan-
ner-1; 54.03 ms for Planner-1 to perform its workload af-
ter receipt of a track event from Sensor-1 or Sensor-2; and 
110.66 ms for Planner-2 to perform its workload after re-
ceipt of a command event from Planner-1. 

For test 8, Sensor-1 and Planner-2 have the longest 
completion times. As a result of the quantitative analysis 
provide automatically by CUTS, we realized that the Sen-
sor-1 and Planner-2 CoWorkEr components had a heavier 
workload than expected, and must be deployed on separate 
nodes. We then used CoSMIC and DAnCE to place the 
Sensor-1 and Planner-2 CoWokErs on different hosts, 
which created the deployment strategies used in test 9, 10 
and 11, all of which met the 350 ms deadline. Of those 3 
tests, test 11 was the best test case and was the only test to 
have a worse execution time that meets the 350 ms dead-
line. In addition, these deployment strategies meet the de-
ployment requirements of placing Sensor-1 and Effector-1 
on different nodes, as discussed in Section 4.1.4. 

More detailed examples of the types of visualizations 
and analysis provided by CUTS is presented in [13]. 

5. Related Work 
 Distrubuted system emulation environments . Vari-
ous environments can be used to emulate and evaluate dis-
tributed system behavior. A popular environment is Emu-
lab [6], which provides tools that can be used to configure 
the topology of experiments, e.g., by modeling the underly-
ing communication links.  This topology is mapped to 
~250 physical nodes that can be accessed via the Internet. 
CUTS enhances the Emulab network-centric focus via  the 
WML and CoSMIC DSMLs that create tests and deploy-
ment/configuration specifications at a high-level of ab-
straction that is more suitable for emulating component-
based DRE systems than the NS scripts provided by Emu-
lab to provision communication links. 
 ModelNet [17] is another environment for evaluating 
large-scaled distributed systems. In ModelNet, developers 
emulate multiple clients and host using a single host. For 
example, 100 gnutella clients each with a 1 Mbps bottle-
neck bandwidth can be emulated on a single dual proces-
sor-1 GHz machine. ModelNet also facilitates the emula-
tion of faux and real applications. The CUTS emulation 
environment is similar to the ModelNet environment in 
that both address large-scaled distributed systems. CUTS, 
however, focuses on DRE systems and uses the target ar-
chitecture to facilitate emulation and performance accu-
racy. Whereas, ModelNet seeks to provide scalable and 
accurate solutions using as few hosts as possible. 

System execution modeling tools. KLAPER [8] is a 
modeling language for specifying system behavior for 

component-based systems. Similar to WML in CUTS, 
KLAPER allows the specification of workload, such as 
resource utilization, but it does not capture handling of 
events. WML extends KLAPER by allowing sequential 
specification of resource utilization, transmission and re-
ceipt of events, and workload types, e.g. event, periodic, or 
startup.  

UPPAAL [3] is a system execution modeling tool that 
verifies properties of real-time systems. UPPAAL provides 
a modeling-language and environment for verifying a sys-
tem’s specified behavior early in the development stage by 
dynamically validating all possible behaviors with its 
model-checking simulator.  CUTS focuses on other areas, 
such as (1) the emulation of system behavior on the target 
systems, (2) benchmarking of a real-time system as a 
whole and as individual components, and (3) monitoring of 
flows in the system to verify QoS requirements are met. 

RT-UML uses techniques designed to model and 
evaluate the performance of component-based systems 
[11]. These performance engineering techniques use RT-
UML to define services and QoS policies for components, 
though modeling system behavior is future work. This 
technique is designed to be supported by external simula-
tion tools, which are still under development. WML en-
hances this effort by providing a working DSML tool that 
allows developers to specify a component-based system 
behavior, which is emulated by CUTS.  

Evaluation techniques for component architec-
tures. [20] discusses a technique called trace-based analy-
sis for Enterprise Java Bean (EJB) components. In trace-
based analysis, different execution traces in a component 
are monitored and dumped to a trace file contained on the 
host. After the emulation, the trace files are parsed and 
combined with the deployment descriptors, which define 
the structure of the system, to determine the different paths 
of execution in the system. CUTS is similar to trace-based 
analysis since it collects traces of execution times, but 
these traces are logged to a central database. CUTS also 
monitors predetermined execution paths in real-time, 
whereas [20] uses methods to reconstruct every path 
autonomously, but does not monitor performance in real-
time over the duration of the emulation. [20] also focuses 
on service calls, or facet operations, whereas CUTS  per-
formance metrics are based on events sent between com-
ponents. 

[18] and [19] discuss vertical profiling evaluation 
techniques in the context of EJB. In vertical profiling, per-
formance metrics based on the types of operations and ac-
tions (e.g., cache misses and CPU cycles) are collected in 
trace files across multiple executions of the same tests. The 
trace files are then fused through a process called trace-
alignment using a common metric that occurs in the source 
traces. After the traces are aligned, correlation analysis is 
applied to the traces to help determine what other metrics 
collected in the trace may influence its behavior. [19] also 
discusses how to automate this process. CUTS provides a 



similar approach in the context of CCM that allows analy-
sis of individual actions and operations in a component. 
CUTS, however, goes further to allow the analysis to hap-
pen at real-time with the emulation.  

Architectures for deployment and configuration of 
components. Proactive [2] is a framework for component 
deployment and configuration designed for conventional 
Java applications running on JVMs. In contrast, CUTS 
leverages DAnCE [5], which is targeted for deploying and 
configuration components in DRE systems. 

The Globus Toolkit [10], which is part of the Open 
Grid Standard Architecture (OGSA), is another framework 
that handles deployment and configuration of components 
for Grid computing. Unlike DAnCE, however, Globus 
does not provide DSMLs for modeling various concerns of 
enterprise DRE systems and validating systems before de-
ploying them. Lastly, the DAnCE framework conforms to 
the OMG D&C standards, which allows it to leverage other 
R&D efforts based on the OMG D&C specifications, such 
as OpenCCM and MICO-CCM. 

6. Concluding Remarks 
 This paper described the Component Workload Emu-
lator (CoWorkEr) Utilization Test Suite (CUTS). CUTS is 
a system execution modeling toolchain that simplifies the 
creation of – and experimentation with –emulations of ap-
plications that help evaluate the QoS of component-based 
enterprise DRE systems. We also described the design and 
implementation of CUTS, along with the challenges we 
encountered and solutions we applied.   

Our experience applying CUTS to the SLICE scenario 
in phase two of the ARMS program showed how systems 
execution modeling tools can decrease the time spent re-
solving integration problems. Instead of waiting until full 
system integration, CUTS allowed us to test deployments 
of the ARMS multi-layer resource management infra-
structure in the actual target environment using emulated 
application components. When combined with other QoS-
enabled component middleware and MDD tools, alterna-
tive deployment plans could be evaluated rapidly earlier in 
the lifecycle, thereby reducing the time and effort spent in 
integration.  Although phase two of the ARMS program is 
still ongoing, CUTS has already saved significant amounts 
of time and effort compared to phase one. 

The following summarizes the benefits of applying 
CUTS based on our experience thus far:  
• CUTS allowed us to emulate system components us-

ing the target hardware and software infrastructure, in-
stead of waiting until completely implementing the 
real components and trying to resolve all issues during 
integration phase, as we had attempted to do (rather 
unsuccessfully) in ARMS phase 1. 

• CUTS allowed us to rapidly create and quantitatively 
evaluate a range of deployment plans to see how they 
impacted end-to-end QoS behavior. Much more time 
and effort would have been required if these tests were 

conducted manually, i.e., without the visual MDD 
functionality and automation provided by CUTS and 
the underlying CoSMIC MDD tools and 
CIAO/DAnCE middleware. 

• CUTS provided qualitative performance analysis to 
assist in locating deficiencies in current deployments 
so we can determine alternative deployments that meet 
end-to-end QoS requirements more effectively. 

• The use of MDD tools enabled CUTS to substitute real 
components for the emulated ones quickly, so we can 
incrementally evaluate QoS performance with more 
realistic workloads as knowledge of the application 
and system infrastructure evolves.  

 Although using CUTS in ARMS phase two provided 
the benefits outlined above, we also discovered that the 
following work is needed to improve the evaluation of QoS 
in component-based enterprise DRE systems: 
• There were test cases in the empirical results in Sec-

tion 4.2 where the critical path deadline was missed 
significantly. After further analyzing these results, 
specifically after test 8, we realized that messages not 
on the critical path were handled at the same priority 
as arbitrary messages in the system. We therefore need 
to extend CUTS to allow QoS specifications for the 
various components of a CoWorkEr.  

• CoWorkErs currently generate a pre-defined set of 
events, which is representative of a certain class of 
statically provisioned DRE systems.  Enterprise DRE 
systems, however, often must adapt to changes in the 
environment. We therefore need to extend CUTS and 
WML to permit specification and enforcement of 
adaptive behavior for QoS evaluation.  

• CUTS uses XML specifications to configure the be-
havior of generic CoWorkErs, whose internals and -
interfaces do not resemble the components they emu-
late. We are therefore extending WML to generate 
proxy CoWorkErs that simplify the interchange of -
emulated with production application components. 
This enhancement will also enable the collection of 
performance metrics from actual and emulated com-
ponents to evaluate their similarities and differences. 

• Enterprise DRE systems can share resources either 
locally or remotely, which affects QoS performance of 
the system. Further work is therefore needed to extend 
CUTS to allow CoWorkErs to share resources both 
remotely and locally for QoS performance evaluation. 

• QoS does not always depend on behavior at the appli-
cation level. In many instances, QoS can dependent on 
performance metrics at the different layers of middle-
ware below the application, and the machine, e.g., 
CPU operations and cache misses. CUTS therefore 
needs to be extended to monitor performance metrics 
at all levels in an application and apply QoS require-
ments to these metrics. 



• Derivation of workloads used in the SLICE scenario 
required us to estimate each component’s workload 
based on our understanding of performance character-
istics of similar component from ARMS phase one. 
This process is labor intensive and faulty if the char-
acteristics are misinterpreted. Since we currently rely 
on “trial and error” methods we are developing heuris-
tics that will allow us to automatically derive work-
loads using the workload heuristics and performance 
characteristics. 

CUTS is currently being transitioned from the DARPA 
AMRS program to a production shipbuilding program to 
assist system engineers and architects in evaluating QoS 
performance metrics of DRE systems. Our future R&D 
efforts will therefore focus on adding the capabilities listed 
above to further enhance CUTS and provide system archi-
tects and engineers with a stronger tool suite. 
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