
Evaluating Enterprise Distributed Real-time and Embedded System
Quality of Service with System Execution Modeling Tools

John M. Slaby

Raytheon
Portsmouth, RI, USA

john_m_slaby@raytheon.com

Steve Baker
Raytheon

Portsmouth, RI, USA
steven_d_baker@raytheon.com

James Hill
Vanderbilt University
Nashville, TN, USA
j.hill@vanderbilt.edu

Douglas C. Schmidt
Vanderbilt University
Nashville, TN, USA

d.schmidt@vanderbilt.edu

Abstract
 Component middleware is popular for enterprise dis-
tributed systems because it provides effective reuse of the
core intellectual property (i.e., the “business logic”).
Component-based enterprise distributed real-time and
embedded (DRE) systems, however, incur new system inte-
gration problems associated with component configura-
tion and deployment. New research is therefore needed to
minimize the gap between the development and deploy-
ment/configuration of components, such that deployment
and configuration strategies can be evaluated well before
system integration. This paper uses an industrial case
study from the domain of shipboard computing to show
how system execution modeling tools can provide software
and system engineers with quantitative estimates of system
bottlenecks and performance characteristics to help
evaluate quality of service of component-based enterprise
DRE systems and reduce time/effort in the integration
phase. The results from our case study experiments show
the benefits of system execution modeling tools and pin-
point where more work is needed.

1. Introduction
 Integration challenges of component-based enter-
prise DRE systems. Enterprise distributed systems in
many domains are increasingly developed using applica-
tions composed of distributed components running on fea-
ture–rich middleware frameworks. The distributed com-
ponents are designed to provide reusable services to a
range of application domains, which are then composed
into domain-specific assemblies for application (re)use.
Examples of component middleware platforms include
Microsoft .NET, Enterprise Java Beans and the CORBA
Component Model (CCM).
 The transition to component middleware is occurring
in enterprise business systems to address problems of in-
flexibility and reinvention of core capabilities associated
with prior monolithic, functionally-designed, and “stove-
piped” legacy applications. Legacy applications were de-
veloped with the precise capabilities required for a specific
set of requirements and operating conditions. Component-
based systems, however, are designed to have a range of
capabilities that enable their reuse in other contexts. More-
over, these systems are developed in layers, e.g., layer(s) of
infrastructure middleware services (such as naming and
discovery, event and notification, security and fault toler-

ance) and layer(s) of application components that use these
services in different compositions.
 Certain types of component middleware, such as Real-
time CCM [14], are also being applied to the domain of
enterprise distributed real-time and embedded (DRE) sys-
tems, such as shipboard computing environments and su-
pervisory control and data acquisition systems, to provide
users with quality of service (QoS) support to process the
right data in the right place at the right time over a grid of
computers. Some QoS properties required by enterprise
DRE systems include the low latency and jitter as expected
in conventional real-time and embedded systems, and high
throughput, scalability, and reliability as expected in con-
ventional enterprise distributed systems. It is hard to
achieve this combination of QoS capabilities in enterprise
DRE systems developed using today’s middleware and
tools.
 Component middleware can also complicate software
lifecycle processes by shifting responsibility from software
development engineers to software configura-
tion/deployment engineers and systems engineers. Soft-
ware development engineers traditionally created entire
applications in-house using top-down design methods that
could be evaluated throughout the lifecycle. In contrast,
software configuration and deployment engineers and sys-
tem engineers today assemble enterprise DRE systems by
customizing and composing reusable components, whose
combined properties are usually evaluated only during the
integration phase. Unfortunately, problems uncovered dur-
ing integration are much more costly to fix than if they
were discovered earlier in the lifecycle. A key research
challenge is thus exposing these types of issues (which
often have dependencies on components that are not avail-
able until late in development) earlier in the lifecycle, e.g.,
prior to the system integration phase.
 Component-based enterprise DRE systems use design-
and run-time configuration steps to customize the behavior
of reusable components to meet QoS requirements in the
context where they execute. Finding the right configura-
tions for components to meet application QoS require-
ments is hard. For example, tuning the concurrency con-
figuration of a DRE shipboard computing system to sup-
port both real-time and fault-tolerant QoS involves trade-
offs that challenge even the most experienced engineers.
Moreover, application functionality is distributed over
many components in a DRE system and developers must
interconnect and integrate their components correctly and

efficiently. This process can be tedious and error-prone us-
ing conventional handcrafted configuration processes.
 The components assembled into an application must
also be deployed on the appropriate nodes in an enterprise
DRE system. This deployment process is hard since host
and network characteristics can vary statically (e.g., due to
different hardware/software platforms used in a product-
line architecture) and dynamically (e.g., due to dam-
age/faults, change in computing objectives, or differences
in the real vs. expected behavior of applications during
actual operation). Evaluating the operational characteris-
tics of system deployments is therefore tedious and error-
prone when deployments are performed manually.
 Another complexity of evaluating deployments of
component-based enterprise DRE systems stems from ap-
plications sharing components with differing QoS require-
ments, such as a system resource manager responsible for
processing requests from high-priority tactical applications
and low-priority desktop applications. It is hard to assure
that a stand-alone application can meet stringent QoS re-
quirements using dedicated resources. It is harder to assure
these requirements with components sharing resources
with other applications in enterprise DRE systems.
 Solution approach → System execution modeling
tools. Despite the flexibility offered by component mid-
dleware, there are often surprisingly few configuration and
deployment designs that can satisfy the functional and
QoS requirements of an enterprise DRE system. We have
therefore developed a system execution modeling tool
chain called the Component Workload Emulator (Co-
WorkEr) Utilization Test Suite (CUTS), that combines
QoS-enabled component middleware and model-driven
development (MDD) technologies. Software architects,
developers, and systems engineers can use CUTS to ex-
plore design alternatives from multiple computational and
valuation perspectives at multiple lifecycle phases using
multiple quality criteria with multiple stakeholders and
suppliers. In addition to validating design rules and check-
ing for design conformance, CUTS facilitates “what if”
analysis of alternative designs to quantify the costs of cer-
tain design choices on end-to-end system performance.
For example, CUTS can help determine the maximum
number of components a host can handle before perform-
ance degrades, the average and worse response time for
various workloads, and the ability of alternative system
configurations and deployments to meet end-to-end QoS
requirements for a particular workload.

In the context of enterprise DRE systems, our CUTS
system execution modeling tool helps developers discover,
measure, and rectify performance problems early in the
system's lifecycle (e.g., in the architecture and design
phases), as opposed to the integration phase, when mis-
takes are much harder and more costly to fix. This paper
shows how we used CUTS to rapidly emulate component-
based applications in a representative enterprise DRE sys-
tem (i.e., shipboard computing) and then perform ex-

periments that systematically estimated and evaluated the
end-to-end QoS for key scenarios in this system.
 Paper organization. The remainder of this paper is
organized as follows: Section 2 summaries limitations with
prior work on QoS-enabled component middleware and
MDD tools in the context of a shipboard computing system
case study; Section 3 describes CUTS, shows how it over-
comes limitations with prior work, and explains how we
resolved key design challenges when developing CUTS;
Section 4 shows how we applied CUTS to evaluate the
QoS of various deployments in our case study; Section 5
compares our R&D efforts with related work; and Section
6 presents concluding remarks and lessons learned.

2. Background and Case Study
Our work on CUTS has evolved incrementally over

the past three years in the context of the DARPA Adaptive
and Reflective Middleware Systems (ARMS) program
(dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6).
ARMS is a multi-phase program that is developing multi-
layer resource management (MLRM) services to support
product-lines that coordinate a grid of computers to man-
age many aspects of a ship's power, navigation, command
and control, and tactical operations [15]. The ARMS
MLRM services have hundreds of different types and in-
stances of infrastructure components written in ~500,000
lines of Java and C++ code and ~1,000 files developed by
six teams at different geographic locations. This section
uses our experience on ARMS as a case study to motivate
the need for the CUTS system execution modeling tools

Our initial approach. To address the configuration
and deployment problems common to integrating compo-
nents in enterprise DRE systems, our initial work on
ARMS combined QoS-enabled component middleware
platforms with MDD tools. QoS-enabled component mid-
dleware supports the provisioning of key QoS properties,
e.g., (pre)allocating CPU resources, reserving network
bandwidth/connections, and monitoring/enforcing the
proper use of DRE system resources at runtime, to meet
end-to-end requirements. MDD tools combine
• Domain-specific modeling languages (DSMLs), which

provide programming notations that formalize the
process of specifying application logic and QoS-re-
lated requirements using type systems that precisely
express key characteristics and constraints associated
with DSMLs for particular application domains and

• Model transformations and code generation, which
automate and ensure the consistency of software im-
plementations via analysis information associated with
functional and QoS requirements captured by models
of domain-specific structure and behavior.

 In prior work with colleagues at Washington Univer-
sity, St. Louis we developed a QoS-enabled component
middleware platform called the Component-Integrated
ACE ORB (CIAO) [14] that combines Lightweight CCM
[4] capabilities (such as standards for specifying, imple-

menting, packaging, assembling, and deploying compo-
nents) with Real-time CORBA [12] features (such as
thread pools and priority preservation policies) to create a
Real-time CCM middleware platform. Likewise, we cre-
ated an MDD tool suite called Component Synthesis using
Model Integrated Computing (CoSMIC) [7], which is an
integrated set of DSMLs that support the development,
deployment, configuration, and evaluation of enterprise
DRE systems based on Real-time CCM. CoSMIC is imple-
mented using the Generic Modeling Environment (GME)
[9], which is an open-source MDD toolkit for creating and
using DSMLs. These tools/platforms are open-source and
available from www.dre.vanderbilt.edu.
 By combining CIAO and CoSMIC on ARMS, we
tackled many integration challenges associated with con-
figuring and deploying enterprise DRE systems by lever-
aging MDD tools to enforce correct-by-construction de-
sign. For example, we used CoSMIC’s model interpreters
to generate Real-time CCM XML configuration files [1]
and CIAO’s Deployment And Configuration Engine
(DAnCE) [5] to deploy the resulting component assemblies
on DRE system nodes, as shown in Figure 1.

Figure 1. Integrating CIAO, DAnCE, and CoSMIC

 Limitations with our initial approach and common
alternatives. To evaluate the benefits of combining CIAO,
DAnCE, and CoSMIC, we applied them in phase one of
ARMS [16]. Our experience, however, indicated that
CIAO, DAnCE, and CoSMIC were insufficient to evaluate
the QoS of applications in enterprise DRE systems due to
the following limitations:
• Insufficient performance evaluation. In the ARMS

enterprise DRE system environment, many different
applications ran concurrently across networks that in-
cluded both shared and dedicated components. CIAO,
DAnCE, and CoSMIC, however, provided insufficient
support for evaluating QoS-related characteristics
(such as communication delay, temporal phasing, par-
allel execution, and synchronization).

• Serialized phase ordering dependencies. Application
components that exercised the ARMS MLRM infra-
structure middleware services were not developed un-

til later in the system lifecycle. The QoS of the infra-
structure services therefore was not evaluated ade-
quately under realistic workloads to validate their ar-
chitecture and design.

 We initially considered evaluating enterprise DRE
system QoS characteristics in ARMS via simulation. Due
to size, interdependencies, and the sheer number of vari-
ables involved in ARMS it was impractical to develop and
evolve realistic models that simulate complex scenarios.
Moreover, while pure simulation can provide valuable in-
formation about system QoS behavior, it is hard to lever-
age simulation results directly in the production opera-
tional environment.

3. The Component Workload Emulator (Co-
WorkEr) Utilization Test Suite (CUTS)

To overcome the limitations encountered in the ARMS
program described in Section 2, we needed more effective
technologies to evaluate the end-to-end QOS characteris-
tics of ARMS applications in a production-scale environ-
ment, even before any actual application components were
developed. Our goals were motivated by our experience in
phase one of ARMS and involved:
• Not obtaining 100% precision, but providing systems

engineers and architects with rapid, reasonably accu-
rate estimates of system QoS early in the lifecycle.

• Improving the accuracy of our estimates of system
QoS incrementally as our understanding of application
requirements, implementations, and execution envi-
ronments increased.

• Automatically transitioning select artifacts used in our
evaluations (such as models of deployment plans that
met end-to-end QoS requirements) to the component-
based application and middleware deployments and
configurations we were creating.

 To meet our goals and overcome limitations with prior
work, we developed the Component Workload Emulator
(CoWorkEr) Utilization Test Suite (CUTS). CUTS is a sys-
tem execution modeling tool chain for creating component-
based applications rapidly and performing experiments that
systematically evaluate interactions that are hard to simu-
late. In particular, CUTS provides model-based workload
generation, data reduction, and visualization tools to con-
struct experiments rapidly and analyze results from alter-
nate execution architectures. CUTS can also import meas-
ured performance data from faux application components
running over actual configured and deployed infrastructure
middleware services to estimate enterprise DRE system
behavior in a realistic environment.
 When combined with our prior work on QoS-enabled
component middleware and MDD tools, CUTS allowed
more robust and complete solutions for emulating actual
application components and evaluating QoS earlier in the
enterprise DRE system lifecycle. For example, we used
CoSMIC to create models of DRE systems composed of
faux application components and actual system infrastruc-

ture components. We then used these models with CIAO
and DAnCE to deploy all these components based into a
representative testbed (www.dre.vanderbilt.edu/ISISlab)
and conduct systematic experiments that measured how
well the system performed relative to QoS specifications
from production computing systems. This remainder of this
section presents the CUTS architecture and solutions to de-
sign challenges we faced when developing it and applying
it to the ARMS case study.

3.1 CUTS Architecture
 As outlined in Section 2, CUTS is a system execution
modeling toolkit designed to (1) emulate portions of enter-
prise DRE systems (2) collect performance data provided
by the emulation, and (3) analyze the data to estimate sys-
tem QoS and pinpoint potential performance bottlenecks.
At the heart of CUTS is an assembly of CCM components,
called a CoWorkEr (Figure 2). A CoWorkEr is a faux com-
ponent that can be programmed rapidly to emulate the ex-
pected behavior and resource consumption of its counter-
part in the production application.

Figure 2. A CoWorkEr Component Assembly

CoWorkErs can be connected together via their exposed
ports to create operational strings, which are task graphs
that capture the partial ordering of a set of executing soft-
ware components. Figure 2 shows the key elements of the
CoWorkErs, which fall into two broad categories: work-
load generation and test control and analysis.
3.1.1. Workload generation is implemented in CUTS as
an assembly-based CCM component composed of the fol-
lowing monolithic CCM components:
• The EventHandler can receive user-defined events. It

records the number of events received for each type
and performance metrics regarding the delay between
original publication and the onset of processing. The
EventHandler also tracks the time required to process
each event it receives. Workloads, which are per-
formed by the worker components described next,
may also be associated with receiving combinations
and numbers of events.

• The CPUWorker performs CPU operations. As with
all workers, the quantity of work to perform is speci-
fied as a number of repetitions, which represent an ab-
stract unit of work.

• The MemoryWorker performs allocation and dealloca-
tion of memory.

• The DatabaseWorker performs a series of insert, up-
date, and delete operations on a specified database.

• The EventProducer (which is also a worker) publishes
events that carry a data payload of the desired size.
Events are time-stamped prior to transmission.

• The Trigger is provided to represent external input to a
simulated application, or regularly scheduled, time-
driven processing not resulting from the receipt of an
event. Triggers provide both periodic and pseudo-ran-
dom behavior by inducing workers to perform a work-
load at a specified interval and probability of oc-
currence. A Trigger can also perform startup work-
load during activation.

To simplify the programming and configuration of Co-
WorkErs, we created an MDD-based DSML called the
Workload Modeling Language (WML) [15]. WML is used
to characterize the behavior of individual CoWorkErs by
specifying their processor, memory, database, and in-
put/output usage profiles. XML characterization files are
then generated from a WML model, and subsequently
parsed by EventHandler and Trigger components to dictate
the behavior of their respective CoWorkEr.
3.1.2. Test control and analysis in CUTS includes the fol-
lowing elements:
• The BenchmarkAgent completes the CoWorkEr as-

sembly shown in Figure 2. It requests test data col-
lected by EventHandlers at a user-defined interval and
transmits this data to the BenchmarkDataCollector.

• The BenchmarkDataCollector (BDC) submits test data
to a centralized in-memory BenchmarkDatabase.

• The BenchmarkManagerWeb-interface (BMW) im-
plements the bulk of the test control and analysis func-
tionality via an ASP.NET application. This manager
processes data captured in the BenchmarkDatabase
and invokes DAnCE’s ExecutionManager to start and
end the deployment of test assemblies. In addition to
the web browser interface, the BMW provides a web-
services interface that allows any programming lan-
guage that understands the Simple Object Access Pro-
tocol (SOAP) to automate test in CUTS.

Figure 3. Example Setup of CUTS to Evaluate QoS in

an Enterprise DRE System

Figure 3 shows how CUTS can evaluate the QoS of enter-
prise DRE systems. Dedicated hosts, called test host, run
inside the test network and the BenchmarkDataCollector
and BenchmarkManagerWeb-interface exist outside the
test network. This setup limits outside interference on tests
run using CUTS while permitting users to analyze their re-
sults either during or after the test run.

3.2 CUTS Design Challenges and Solutions
 We now describe key problems encountered when
developing and applying CUTS and explain the solutions
adopted to resolve these problems.
 Challenge 1. Non-intrusive metrics collection. An
ad hoc metrics collection system might interfere with the
emulation and skew test results. Metric collection should
therefore have minimally intrusion and resource usage.
 Solution → Decouple metrics collection from emu-
lation, and collect metrics using a 3-phase data acqui-
sition process. The EventHandler, BenchmarkAgent and
BenchmarkDataCollector component, which were de-
scribed in Section 3.1, work together to collect perform-
ance metrics in three separate phases. In phase 1, the Even-
tHandler maintains for each event type a local in-memory
record of the number received, the maximum and mini-
mum transmission and processing time, and running totals
for transmission and processing time. In phase 2, the
BenchmarkAgent obtains the data from the EventHandler
at a user-specified interval in a dedicated thread, and resets
the EventHandler’s running totals. The BenchmarkAgent
transmits the collected data to the BenchmarkDataCollec-
tor, which immediately queues the data and returns. In
phase 3, the BenchmarkDataCollector dequeues the data
and inserts it into a MySQL database. Each phase of the
data acquisition process also uses a dedicated thread to
minimize the impact of data collection on the emulation
 All data stored and transmitted by the EventHandler
and the BenchmarkAgent is a fixed-size to ensure memory
usage is bounded by a constant factor. The aspects of met-
ric collection that cause variable memory usage and delays,
e.g., queuing and entry of data into a database, are placed
the BenchmarkDataCollector, which is deployed on a node
not used by a CoWorkEr. Moreover, separate network
interfaces can be used to decouple the transmission of met-
ric data from the transmission of CoWorkEr operations.
 Challenge 2. Simplify characterization of applica-
tion workload. Some users of CoWorkErs will be systems
engineers or architects, who may not be accomplished at
programming with third-generation languages, such as
C++ or Java, or configuration languages, such as XML. It
is therefore important for CUTS to offer alternatives to
programmatic interfaces and dense configuration files for
these types of users.
 Solution → Provide graphical user interfaces for
characterizing, deploying and analyzing applications.
CUTS allows users to design simulated applications en-
tirely through visual models. In particular, the CoSMIC

and WML DSMLs allow users to create structural and be-
havioral models of their applications without manually
editing configuration files or third-generation language
code. Deployment and analysis of the application is pro-
vided through an intuitive BenchmarkManagerWeb-inter-
face. More details and examples of WML appear in [15].

Challenge 3. Simplify Customization. CoWorkErs
can emulate four categories of core application work
(CPU, memory, database, and network resource utiliza-
tion), but the need for more customized behavior may arise
for particular types of enterprise DRE systems. The design
of the CoWorkErs therefore needs to support user-defined -
extensions to its basic work repertoire.
 Solution → Support custom CoWorkEr compo-
nents. In the spirit of CCM, CoWorkErs employ a modular
design where any monolithic components comprising the
CoWorkEr assembly shown in Figure 2 can be replaced
with a customized component that implements the same
interface, without requiring modification or recompilation
of other components. For example, it is straightforward to
replace the default CPUWorker with a FCPUWorker that
only performs floating-point arithmetic. In addition,
GME’s convenient inheritance support makes swapping of
components straightforward within a CoSMIC model,.
 Challenge 4. Descriptive analysis of performance. If
a particular emulation shows that a proposed configuration
and deployment of enterprise DRE system components
will not meet QoS expectations, CUTS users must be able
to pinpoint the source of the problem quickly to correct it.
 Solution → Present metrics in layers to support
general and detailed analysis. In addition to providing a
high-level, graphical representation of observed perform-
ance vs. deadlines along a critical path, CUTS Bench-
markManagerWeb-interface allows users to view statistics
for individual CoWorkErs. A tabular display allows users
to view summary statistics for operational strings of Co-
WorkErs simultaneously, whereas detailed graphs support
scrutiny of an individual CoWorkEr’s performance over
time. Statistics for processing time can also be subdivided
to reflect the four categories of work, thereby allowing
analysts to determine whether QoS target requirements are
being missed due to reliance upon a sluggish database,
paging due to excessive memory allocation, saturation of
network bandwidth, etc. Usage and further discussion of
these features can be found in Section 4.2.

4. Applying CUTS to Evaluate an Enterprise
DRE System
 This section describes the design and results of an ex-
periment that uses the CUTS systems execution modeling
toolchain to evaluate the QoS of a representative enterprise
DRE system from the domain of shipboard computing.
This experiment is based upon work conducted in the
DARPA ARMS program described in Section 2. The
ARMS program provides a representative case study for
evaluating CUTS since it runs on general-purpose oper-

ating systems (such as Solaris and Linux) with real-time
enhancements. It also uses a component-based architecture
developed using the CIAO and DAnCE Real-time CCM
middleware and CoSMIC MDD tools, has hundreds of
components types/instances and hundreds of thousands of
lines of C++ and Java code, and has been developed over
the past three years by a group of geographically distrib-
uted teams. As a result, the ARMS program and software
base incurs many of the same integration challenges asso-
ciated with configuration, deployment, and QoS evaluation
that occur in other production enterprise DRE systems.

4.1 The ARMS SLICE Experiment using CUTS
4.1.1. Experiment motivation. One of the challenging
problems in the second phase of the ARMS program is
called the SLICE scenario, which consists of 2 sensors, 2
planners, 1 configuration, 1 error recovery, and 2 effector
components. The SLICE scenario requires the transmission
of information detected by the sensors to each planner in
sequence, then to the configuration component, and lastly
to both effectors to perform actions that control devices in
the physical world. Components in the SLICE scenario are
deployed across 3 computing nodes because the workload
generated by each component collectively is more than a
single node can handle. The main sensor and effector (rep-
resented as sensor-1 and effector-1 in Figure 4 and in fol-
lowing sections) are deployed on separate nodes to reflect
the placement of physical equipment in the production
shipboard system. Figure 4 shows a model of the end-to-
end layout of SLICE components, with the critical path
specified by the dashed arrows.

Figure 4. Model of SLICE Showing the Components

and Their Interconnections

 In phase two of ARMS, the multi-layer resource man-
ager infrastructure was re-implemented to use Real-time
CCM (via CIAO and DAnCE), and MDD tools (via CoS-
MIC), instead of Real-time CORBA and ad hoc deploy-
ment mechanisms used in phase one of ARMS. Based on
the ARMS phase two development schedule, the integra-
tion of components that implemented the SLICE scenario
atop the new multi-layer resource management infrastruc-
ture was not slated to occur until 12 months into the pro-
gram to provide sufficient time to finish developing, test-
ing, and optimizing the multi-layer resource management
infrastructure. The SLICE scenario, however, uses soft-
ware components similar to product-lines and challenge
problems in phase one of the ARMS program. We there-
fore already understood each component’s behavior in
SLICE, but did not know how overall performance of the

SLICE scenario would be affected by the new ARMS
multi-layer resource management infrastructure.
 In phase one of ARMS, we waited until the integration
phase of our schedule to begin benchmarking the system,
only to learn none of the QoS requirements were met due
to improperly designed multi-layer resource management
infrastructure. As a consequence, our schedule slipped and
the process of reconfiguring and redeploying ARMS appli-
cation and middleware components to meet QoS require-
ments required significant manual effort. To prevent the
same problems from happening in phase two of the pro-
gram, we used CUTS to evaluate the QoS challenges of the
SLICE scenario prior to the integration phase. Our goal
was to determine which configuration and deployment
strategies will enable us to meet the QoS critical path dead-
line and create a pool of selectable deployment strategies
that meet the performance requirements. The underlying
hypothesis driving the experiment was much of the per-
formance information could be collected prior to the inte-
gration phase by emulating key properties of the SLICE
scenario components using CUTS. As a result, less time
would be spent integrating and testing the actual SLICE
components after they were completed.
4.1.2. Experiment design. For the SLICE scenario, there
is a 350 ms QoS critical path deadline, which is represen-
tative of the end-to-end execution time of a similar sce-
nario from phase one of the ARMS program. This deadline
corresponds to receiving a command event on sensor-1 up
to performing an action with effector-1. Sensor-1 and ef-
fector-1 must be deployed on separate nodes to meet the
constraints discussed in section 4.1.1. Table 1 describes the
predicted behavior for two of the SLICE components
(which were defined using the Workload Modeling Lan-
guage) to illustrate the various types of workload and ac-
tions for a CoWorkEr.

Planner -1 CoWorkEr
Workload performed
every second

publish command of size 24 bytes

Workload performed
after receipt of a track
event

alloc 30 KB; 55 dbase ops; 45 CPU ops;
publish assessment of size 132 bytes; dealloc
30 KB

Configuration-Optimization CoWorkEr
Workload performed at
startup time

alloc 1 KB; 25 dbase ops; 1 CPU ops; 10
dbase ops; dealloc 1 KB

Workload performed
after receipt of an as-
sessment event

alloc 5 KB; 40 dbase ops; 1 CPU op; publish
command of size 128 bytes; dealloc 5 KB

Workload performed
after receipt of a status
event

1 dbase op

Table 1. Expected Behavior for 2 SLICE CoWorkErs

The workload specifications for each component listed
in Table 1 is based on the behavior of components imple-
mented in phase one of ARMS. We obtained these values
by estimating the number and types of operations based
our understanding gained by implementing and testing the
functionality of the workload generators explained in Sec-

tion 3.1.1. For the predicted behavior for the remaining
components, please refer to [13].

Host Operating System Database
1 Fedora Core3 YES

2, 3, BDC Fedora Core3 NO
BMW Windows XP YES

Table 2. System Characteristics for Experiment Host

Each host used by ARMS developers in the CUTS-
based experiments was an IBM Blade Type L20, dual-CPU
2.8 GHz processor with 1 GB RAM with the characteris-
tics listed in Table 2. The middleware used for the experi-
ment was version 0.4.7 of CIAO/DAnCE, and the MDD
tools used were version 0.4.6 of CoSMIC, which is the
target middleware and MDD tool for the SLICE scenario
in ARMS phase 2. Each test was run for 10 minutes.

4.2 Viewing and Interpreting the Results of the
SLICE Experiment
 This section describes the results of tests that used
CUTS to evaluate various deployments of SLICE compo-
nents onto hosts to (1) test the capability of CUTS, (2) de-
termine which deployment strategies meet the 350 ms criti-
cal path deadline when components Sensor-1 and Effector-
1 are deployed on separate nodes, and (3) prove that work-
load generated by SLICE is too much when the critical
path components are deployed on a single node. The first
listing in Table 3 contains the legend for the CoWorkEr
symbols used in the second listing.
4.2.1. Discussion of the hypothesis. Test 4 and 5 were two
tests that not only missed the 350 ms deadline, they in-
curred the worst critical path execution time for all 11
tests. The main purpose of test 4 and 5 was to evaluate our
hypothesis that the 350 ms deadline could not be met if all
components were deployed on the same node. After com-
pleting test 4 and 5, we validated this hypothesis – the
workload generated by components in the critical path is
more than a single node can handle, so they must be de-
ployed across multiple nodes. On the other hand, test 6
deployed only the components in the critical path on the
same node, and had an average execution time of 323 ms.
CUTS therefore enabled us to learn that we could meet the
350 ms deadline if only the critical path components were
deployed on the same node.

SLICE CoWorkEr Legend for Test Table
Symbol CoWorkEr Symbol CoWorkEr

A Sensor-1 * E Config-Op *
B Sensor-2 F Error-Recovery
C Planner-2 * G Effector-1 *
D Planner-1 * H Effector-2

* represents CoWorkEr in the critical path

Deployment Strategy
Test Host 1 Host 2 Host 3

Critical Path
Execution Time

(avg./worse) (ms)
1 C,D,E,F A,B G,H 411 / 1,028
2 A,B,C,D F E,G,H 420 / 1,094
3 A,B,C,D,E F G,H 416,/ 1,085

4 A,B,C,D,E,F,G,H 463 / 1,247
5 A,B,C,D,E,G,H F 467 / 1,219
6 A,C,D,E,G F B,H 323 / 844
7 A,G C,D,E B,F,H 363 / 887
8 D A,B,C,

F,G,H
E 405 / 975

9 A,D C,E,G B,F,H 235 / 387
10 A,D E,G B,C,F,H 251 / 395
11 A,D,E C,G B,F,H 221 / 343
Table 3: SLICE Results for Experiments using Differ-

ent Deployment Strategies in CUTS

4.2.2. Interpreting the CUTS benchmark data results.
Running 11 tests with various deployment strategies pro-
vided key information about the current ARMS multi-layer
resource management infrastructure. Of the 11 tests, only 3
deployed the critical path components across multiple
nodes and completed their end-to-end execution in 350 ms.
Of these 3 tests, 2 deployed the critical path across all three
nodes and completed it within an average time of 350 ms,
and 1 test (test 11) completed it within a worse time of 350
ms. Although we did not exhaust all possible deployment
strategies in this experiment, we learned that only 18% (2
out of 11) of the current test passed on their planned infra-
structure while meeting the deployment requirements and
test 11 yield the best performance.
 After running test 1 through 8, only 1 test met the 350
ms end-to-end deadline, and 7 of the tests had faults in
their deployment specification, e.g., placing a CoWorkEr
on a host with insufficient resources to handle its workload
without missing deadlines. We used the CUTS graphical
analysis features to help investigate why these deployment
strategies did not meet their QoS requirements.

Workload Avg.
Samples

Avg./Rep
(ms)

Avg. Time
(ms)

Transmit Delay 5 6.19
Total Workload 5 169.6
CPU 2.20859 99.39
Memory 0.00727 0.51
Publication 1.40206 1.4
Table 4. Snapshot of Timing Data for Sensor-1 in Test 8

obtained from the BMW Test Results Page

CoWorkEr Transmission
Delay (ms)

Avg. Time of
Completion (ms)

Sensor-1 6.19 169.6
Planner-1 12.11 54.03
Planner-2 10.69 110.66
Config-Op 17.04 23.84
Effector-1 0.34
Table 5. Snapshot of the Critical Path Timing Data for

Test 8 from the BMW Analysis Page

Tables 4 and 5 show an excerpt of the results provided
via the BenchmarkManagerWeb-interface (BMW) for test
8, which measures behavior when the two components in
the critical path handling the most workload are deployed

on their own node. Table 4 shows the time to transmit a
particular message between two CoWorkErs and how long
it took to complete each type of workload – CPU, database,
or memory – for Sensor-1. For the CoWorkErs in the criti-
cal path in test 8, it took 169.6 ms for Sensor-1 to process
its workload after receipt of a command event from Plan-
ner-1; 54.03 ms for Planner-1 to perform its workload af-
ter receipt of a track event from Sensor-1 or Sensor-2; and
110.66 ms for Planner-2 to perform its workload after re-
ceipt of a command event from Planner-1.

For test 8, Sensor-1 and Planner-2 have the longest
completion times. As a result of the quantitative analysis
provide automatically by CUTS, we realized that the Sen-
sor-1 and Planner-2 CoWorkEr components had a heavier
workload than expected, and must be deployed on separate
nodes. We then used CoSMIC and DAnCE to place the
Sensor-1 and Planner-2 CoWokErs on different hosts,
which created the deployment strategies used in test 9, 10
and 11, all of which met the 350 ms deadline. Of those 3
tests, test 11 was the best test case and was the only test to
have a worse execution time that meets the 350 ms dead-
line. In addition, these deployment strategies meet the de-
ployment requirements of placing Sensor-1 and Effector-1
on different nodes, as discussed in Section 4.1.4.

More detailed examples of the types of visualizations
and analysis provided by CUTS is presented in [13].

5. Related Work
 Distrubuted system emulation environments . Vari-
ous environments can be used to emulate and evaluate dis-
tributed system behavior. A popular environment is Emu-
lab [6], which provides tools that can be used to configure
the topology of experiments, e.g., by modeling the underly-
ing communication links. This topology is mapped to
~250 physical nodes that can be accessed via the Internet.
CUTS enhances the Emulab network-centric focus via the
WML and CoSMIC DSMLs that create tests and deploy-
ment/configuration specifications at a high-level of ab-
straction that is more suitable for emulating component-
based DRE systems than the NS scripts provided by Emu-
lab to provision communication links.
 ModelNet [17] is another environment for evaluating
large-scaled distributed systems. In ModelNet, developers
emulate multiple clients and host using a single host. For
example, 100 gnutella clients each with a 1 Mbps bottle-
neck bandwidth can be emulated on a single dual proces-
sor-1 GHz machine. ModelNet also facilitates the emula-
tion of faux and real applications. The CUTS emulation
environment is similar to the ModelNet environment in
that both address large-scaled distributed systems. CUTS,
however, focuses on DRE systems and uses the target ar-
chitecture to facilitate emulation and performance accu-
racy. Whereas, ModelNet seeks to provide scalable and
accurate solutions using as few hosts as possible.

System execution modeling tools. KLAPER [8] is a
modeling language for specifying system behavior for

component-based systems. Similar to WML in CUTS,
KLAPER allows the specification of workload, such as
resource utilization, but it does not capture handling of
events. WML extends KLAPER by allowing sequential
specification of resource utilization, transmission and re-
ceipt of events, and workload types, e.g. event, periodic, or
startup.

UPPAAL [3] is a system execution modeling tool that
verifies properties of real-time systems. UPPAAL provides
a modeling-language and environment for verifying a sys-
tem’s specified behavior early in the development stage by
dynamically validating all possible behaviors with its
model-checking simulator. CUTS focuses on other areas,
such as (1) the emulation of system behavior on the target
systems, (2) benchmarking of a real-time system as a
whole and as individual components, and (3) monitoring of
flows in the system to verify QoS requirements are met.

RT-UML uses techniques designed to model and
evaluate the performance of component-based systems
[11]. These performance engineering techniques use RT-
UML to define services and QoS policies for components,
though modeling system behavior is future work. This
technique is designed to be supported by external simula-
tion tools, which are still under development. WML en-
hances this effort by providing a working DSML tool that
allows developers to specify a component-based system
behavior, which is emulated by CUTS.

Evaluation techniques for component architec-
tures. [20] discusses a technique called trace-based analy-
sis for Enterprise Java Bean (EJB) components. In trace-
based analysis, different execution traces in a component
are monitored and dumped to a trace file contained on the
host. After the emulation, the trace files are parsed and
combined with the deployment descriptors, which define
the structure of the system, to determine the different paths
of execution in the system. CUTS is similar to trace-based
analysis since it collects traces of execution times, but
these traces are logged to a central database. CUTS also
monitors predetermined execution paths in real-time,
whereas [20] uses methods to reconstruct every path
autonomously, but does not monitor performance in real-
time over the duration of the emulation. [20] also focuses
on service calls, or facet operations, whereas CUTS per-
formance metrics are based on events sent between com-
ponents.

[18] and [19] discuss vertical profiling evaluation
techniques in the context of EJB. In vertical profiling, per-
formance metrics based on the types of operations and ac-
tions (e.g., cache misses and CPU cycles) are collected in
trace files across multiple executions of the same tests. The
trace files are then fused through a process called trace-
alignment using a common metric that occurs in the source
traces. After the traces are aligned, correlation analysis is
applied to the traces to help determine what other metrics
collected in the trace may influence its behavior. [19] also
discusses how to automate this process. CUTS provides a

similar approach in the context of CCM that allows analy-
sis of individual actions and operations in a component.
CUTS, however, goes further to allow the analysis to hap-
pen at real-time with the emulation.

Architectures for deployment and configuration of
components. Proactive [2] is a framework for component
deployment and configuration designed for conventional
Java applications running on JVMs. In contrast, CUTS
leverages DAnCE [5], which is targeted for deploying and
configuration components in DRE systems.

The Globus Toolkit [10], which is part of the Open
Grid Standard Architecture (OGSA), is another framework
that handles deployment and configuration of components
for Grid computing. Unlike DAnCE, however, Globus
does not provide DSMLs for modeling various concerns of
enterprise DRE systems and validating systems before de-
ploying them. Lastly, the DAnCE framework conforms to
the OMG D&C standards, which allows it to leverage other
R&D efforts based on the OMG D&C specifications, such
as OpenCCM and MICO-CCM.

6. Concluding Remarks
 This paper described the Component Workload Emu-
lator (CoWorkEr) Utilization Test Suite (CUTS). CUTS is
a system execution modeling toolchain that simplifies the
creation of – and experimentation with –emulations of ap-
plications that help evaluate the QoS of component-based
enterprise DRE systems. We also described the design and
implementation of CUTS, along with the challenges we
encountered and solutions we applied.

Our experience applying CUTS to the SLICE scenario
in phase two of the ARMS program showed how systems
execution modeling tools can decrease the time spent re-
solving integration problems. Instead of waiting until full
system integration, CUTS allowed us to test deployments
of the ARMS multi-layer resource management infra-
structure in the actual target environment using emulated
application components. When combined with other QoS-
enabled component middleware and MDD tools, alterna-
tive deployment plans could be evaluated rapidly earlier in
the lifecycle, thereby reducing the time and effort spent in
integration. Although phase two of the ARMS program is
still ongoing, CUTS has already saved significant amounts
of time and effort compared to phase one.

The following summarizes the benefits of applying
CUTS based on our experience thus far:
• CUTS allowed us to emulate system components us-

ing the target hardware and software infrastructure, in-
stead of waiting until completely implementing the
real components and trying to resolve all issues during
integration phase, as we had attempted to do (rather
unsuccessfully) in ARMS phase 1.

• CUTS allowed us to rapidly create and quantitatively
evaluate a range of deployment plans to see how they
impacted end-to-end QoS behavior. Much more time
and effort would have been required if these tests were

conducted manually, i.e., without the visual MDD
functionality and automation provided by CUTS and
the underlying CoSMIC MDD tools and
CIAO/DAnCE middleware.

• CUTS provided qualitative performance analysis to
assist in locating deficiencies in current deployments
so we can determine alternative deployments that meet
end-to-end QoS requirements more effectively.

• The use of MDD tools enabled CUTS to substitute real
components for the emulated ones quickly, so we can
incrementally evaluate QoS performance with more
realistic workloads as knowledge of the application
and system infrastructure evolves.

 Although using CUTS in ARMS phase two provided
the benefits outlined above, we also discovered that the
following work is needed to improve the evaluation of QoS
in component-based enterprise DRE systems:
• There were test cases in the empirical results in Sec-

tion 4.2 where the critical path deadline was missed
significantly. After further analyzing these results,
specifically after test 8, we realized that messages not
on the critical path were handled at the same priority
as arbitrary messages in the system. We therefore need
to extend CUTS to allow QoS specifications for the
various components of a CoWorkEr.

• CoWorkErs currently generate a pre-defined set of
events, which is representative of a certain class of
statically provisioned DRE systems. Enterprise DRE
systems, however, often must adapt to changes in the
environment. We therefore need to extend CUTS and
WML to permit specification and enforcement of
adaptive behavior for QoS evaluation.

• CUTS uses XML specifications to configure the be-
havior of generic CoWorkErs, whose internals and -
interfaces do not resemble the components they emu-
late. We are therefore extending WML to generate
proxy CoWorkErs that simplify the interchange of -
emulated with production application components.
This enhancement will also enable the collection of
performance metrics from actual and emulated com-
ponents to evaluate their similarities and differences.

• Enterprise DRE systems can share resources either
locally or remotely, which affects QoS performance of
the system. Further work is therefore needed to extend
CUTS to allow CoWorkErs to share resources both
remotely and locally for QoS performance evaluation.

• QoS does not always depend on behavior at the appli-
cation level. In many instances, QoS can dependent on
performance metrics at the different layers of middle-
ware below the application, and the machine, e.g.,
CPU operations and cache misses. CUTS therefore
needs to be extended to monitor performance metrics
at all levels in an application and apply QoS require-
ments to these metrics.

• Derivation of workloads used in the SLICE scenario
required us to estimate each component’s workload
based on our understanding of performance character-
istics of similar component from ARMS phase one.
This process is labor intensive and faulty if the char-
acteristics are misinterpreted. Since we currently rely
on “trial and error” methods we are developing heuris-
tics that will allow us to automatically derive work-
loads using the workload heuristics and performance
characteristics.

CUTS is currently being transitioned from the DARPA
AMRS program to a production shipbuilding program to
assist system engineers and architects in evaluating QoS
performance metrics of DRE systems. Our future R&D
efforts will therefore focus on adding the capabilities listed
above to further enhance CUTS and provide system archi-
tects and engineers with a stronger tool suite.

References
[1] Balasubramanian, K., Balasubramanian, J., Parsons, J.,

Gokhale, A. and Schmidt, D., “A Platform-independent
Component Modeling Language for Distributed Real-
time and Embedded Systems,” Proceedings of the 11th
IEEE Real-Time and Embedded Technology and Applica-
tions Sym. San Francisco, CA, Mar 2005.

[2] Baude, F., Caromel, D., Huet, F., Mestre, L., and Vays-
siere, J.”Interactive and Descriptor-based Deployment of
Object-Oriented Grid Applications,” Proceedings of the
11th International Symposium on High Performance Dis-
tributed Computing, Edinburgh, UK, Jul 2002.

[3] Bengtsson, J. Larsen, K., Larsson, F., Pettersson, P., and
Yi, W., “UPPAAL: A Tool Suite for Automatic Verifi-
cation of Real-time Systems,” Proceedings of Workshop
on Verification and Control of Hybrid Systems III, 1066,
232 – 243, Oct 1995.

[4] Object Group Management, “Light Weight CORBA Com-
ponent Model Revised Submission,” Ed. OMG Docu-
ment realtime/03-05-05, May 2003.

[5] Deng, G., Balasubramanian, J., and Otte, W., Schmidt, D.
and Gokhale, A., “DAnCE: A QoS-enabled Component
Deployment and Conguration Engine,” Proceedings of
the 3rd Working Conference on Component Deployment.
Grenoble, France, Nov 2005.

[6] Ricci, R., Alfred, C., and Lepreau , J., “A Solver for the
Network Testbed Mapping Problem,” SIGCOMM Com-
puter Communications Review, 33, Apr 2003.

[7] Gokhale, A., Balasubramanian, K., Balasubramanian, J.,
Krishna, A., Edwards, G., Deng, G., Turkay, E., Parsons,
J. , and Schmidt, D. “Model Driven Middleware: A New
Paradigm for Deploying and Provisioning Distributed
Real-time and Embedded Applications,” The Journal of
Science of Computer Programming: Special Issue on
Model Driven Architecture, 2006 (to appear).

[8] Grassi, V., Mirandola, R., and Sabetta, A., “From Design
to Analysis Models: A Kernel Language for Performance
and Reliability Analysis of Component-based Systems,”
Fifth International Workshop on Software and Perform-
ance, Palma de Mallorca, Spain, Jul 2005.

[9] Karsai, G., Sztipanovits, J., Ledeczi, A. and Bapty, T.
“Model-Integrated Development of Embedded Soft-
ware,” Proceedings of the IEEE, 145-164, Jan 2003.

[10] Lacour, S., Perez, C., and Priol, T., “Deploying CORBA
Components on a Computational Grid: General Princi-
ples and Early Experiments using the Globus Toolkit,”
Proceedings of the 2nd International Working Confer-
ence on Component Deployment (CD 2004). Edinburgh,
UK, May 2004.

[11] Bertolino, A. and Mirandola, R., “Software Performance
Engineering of Component-based Systems,” Proceedings
of the 4th International Workshop on Software and Per-
formance, Jan 2004.

[12] Object Management Group, “Real-time CORBA Specifi-
cation,” OMG Document formal/02-08-02, Jul 2002.

[13] Slaby J., Baker, S. Hill, J., and Schmidt, D. “Defining
Behavior and Evaluating QoS Performance of the SLICE
Scenario,” ISIS Technical Report (ISIS-05-608), Vander-
bilt University, Nashville, TN, USA., Dec 2005.
www.dre.vanderbilt.edu/~schmidt/SLICE-TR.pdf.

[14] Wang, N. and Gill, C., “Improving Real-time System
Configuration via a QoS-aware CORBA Component
Model,” Hawaii International Conference on System Sci-
ences, Software Technology Track, Distributed Object
and Component-based Software Systems, Jan 2003.

[15] Paunov, S., Hill, J.,Schmidt, D., Slaby, J., and Baker, S.,
“Domain-Specific Modeling Languages for Configuring
and Evaluating Enterprise DRE System Quality of Ser-
vice,” Proceedings of the 13th IEEE International Con-
ference and Workshop on the Engineering of Computer
Based Systems, Potsdam, Germany, Mar 2006.

[16] Balasubramanian, J. Lardieri, P., Schmidt, D., Thaker,
G., Gokhale, A., and Damiano, T., “A Multi-layered Re-
source Management Framework for Dynamic Resource
Management in Enterprise DRE Systems,” the Journal of
Systems and Software: special issue on Dynamic Re-
source Management in Distributed Real-Time Systems,
editors C. Cavanaugh and F. Drews and L. Welch, sub-
mitted 2006 .

[17] Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kos-
tic, K., Chase, J., and Becker, D., “Scalability and Accu-
racy in a Large-Scale Network Emulator,” Proceedings
of 5th Symposium on Operating Systems Design and Im-
plementation (OSDI), Dec 2002.

[18] Hauswirth, M., Sweeney, P., Diwan, A., and Hind, M.,
“Vertical Profiling: Understanding the Behavior of Ob-
ject-Oriented Applications,” 18th Conference of Object
Oriented Programming, Systems, Languages and Appli-
cations, Oct 2004.

[19] Hauswirth, M., Diwan, A., Sweeney, P and Mozer, M.,
“Automating Vertical Profiling,” 19th Conference of Ob-
ject Oriented Programming, Systems, Languages and
Applications, Oct 2005.

[20] Mania, D., Murphy, J. and McManis, J., “Developing
Performance Models from Non-intrusive Monitoring
Traces,” Proceeding of Information Technology and
Telecommunications (IT&T), Oct 2002.

	1. Introduction
	2. Background and Case Study
	3. The Component Workload Emulator (Co WorkEr) Utili za tion Test Suite (CUTS)
	3.1 CUTS Architecture
	3.2 CUTS Design Challenges and Solutions

	4. Applying CUTS to Evaluate an Enterprise DRE System
	4.1 The ARMS SLICE Experiment using CUTS
	4.2 Viewing and Interpreting the Results of the SLICE Experiment

	5. Related Work
	6. Concluding Remarks
	References

