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Abstract 
Software systems with a layered architecture, such as mid-
dleware, need to propagate/share information across the 
different system layers. In middleware for example, effi-
cient information sharing across different middleware lay-
ers enables timely processing of client requests; a critical 
middleware functionality This paper presents the Context 
Object pattern that allows efficient processing of requests 
by propagating context information between different mid-
dleware layers. Using this pattern, a layer/session propa-
gates per-request information required by the next 
layer/session in a context object, which eliminates the need 
for (1) per-request state within each layer and (2) lock-
ing/synchronization to access per-request information 
across different layers. This pattern is used in CORBA 
Object Request Brokers (ORBs) for request processing.  
 
1 Intent 
This pattern provides an efficient, and application-
transparent way of sharing information between different 
layers in a software system. 
 
2 Example 
Many applications use middleware to shield them from 
system-specific issues, such as communication protocols, 
concurrency strategies, (de)multiplexing strategies, or 
(de)marshaling mechanisms. This transparency helps de-
velopers focus on application needs, rather than wrestling 
with low-level distribution details explicitly and manually. 
To provide the different middleware functionalities, mid-
dleware implementers apply the Layers Pattern [POSA1] 
to group different responsibilities detailed above into 
groups of tasks at different levels of abstraction. Figure 1 
illustrates the different layers in a CORBA based middle-
ware implementations, including the I/O layer (that man-
ages request/response (de)multiplexing), ORB Core layer 
(that manages message parsing and dispatching), Object 
Adapter layer (that manages object lifecycle) and Applica-
tion layer (that hosts application defined entities called 
servants). Middleware functionalities, such as re-
quest/response processing, however, crosscut the different 
layers.   

 
Figure 1. Layered CORBA Request Processing 

In our example, as shown in Figure 1 (and discussed in 
Appendix A), request processing steps 1-2 are carried out 
in the I/O layer, steps 3-5 are carried out in the ORB core 
layer, and step 6 is executed in the object adapter layer.  In 
addition, each layer requires some information processed 
by a layer directly beneath it. For example, the name of the 
operation demarshaled in the I/O layer is required in the 
object adapter layer to perform the upcall. Similarly, a 
message parser associated in the ORB core layer is re-
quired in the object adapter layer to create the appropriate 
reply.  Context information (e.g., the transport, message 
parsers and memory buffers associated with each request) 
must therefore be maintained at each layer and across dif-
ferent layers. 

One way to associate and maintain context information at 
different layers is to create a manager [Sommerlad:98] at 
each layer (as shown in Figure 1) and store the state cre-
ated within a layer with each request. In our example, a 
manager in the I/O layer can be used to associate the trans-
port with the request.   The object adapter layer can then 
query this manager to obtain the transport object associated 
with the request to send the reply.  This approach does not 
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scale well, however, since it (1) forces the ORB to main-
tain a manager for every objected created as a part of re-
quest processing, (2) incurs lookup overhead since infor-
mation is distributed in different managers, and (3) re-
quires synchronization between the server threads in multi-
threaded ORB configurations.  
 
A manager-per-layer model also necessitates removing the 
state associated in each store after processing a request, 
which increases the overhead of processing requests. These 
factors therefore motivate the use of alternative techniques 
that maximize the efficiency of processing requests, irre-
spective of the type of request, services associated, and the 
context information. 
 
3 Context  
Software systems that provide rich and configurable set of 
functionalities resulting in multiple layers.  
 
4 Problem 
Communication middleware provides developers with a 
powerful and rich set of services for building applications.  
These services often require context information to track 
relationships between clients and servers. For example, in 
QoS-enabled middleware implementations, such as Real-
time CORBA [RT-CORBA:00], priorities can be conveyed 
with requests so that middleware implementations can 
adapt their processing according to these priorities, i.e., by 
assigning the incoming request to a thread with the appro-
priate priority. Since this context information often cross-
cuts normal request processing at each layer, developers 
need to determine how context information can be passed 
and maintained efficiently since using ad hoc context man-
agement mechanisms for each service or middleware layer 
yields middleware implementations that are hard to main-
tain, change, or evolve.   
 
Designing middleware implementations that pass context 
information across middleware layers efficiently is hard 
since the following forces must be resolved: 

• Context information depends on the type of requests 
and associated QoS policies. For example, the service 
context information in the request depends on the ser-
vices associated with the ORB. Similarly, a CORBA 
LocateRequest message (used to determine if the 
server is capable of handling requests on an object ref-
erence) has a different format than a normal CORBA 
request. 

• The specifications for features and options for middle-
ware can be large. For example, new CORBA specifi-
cations (such as Deployment and Configuration of 
Components [DnC:03]) has been recently added by the 
OMG. Similarly, research efforts are examining inte-

grating fault-tolerance with real-time CORBA [Gok-
hale:02]. 

• Explicit (de)allocation of resources along the critical 
request response path in a middleware implementation 
should be minimized. 

In addressing the previous forces care must be taken to 
provide a solution that: 

• Presents an architecture that can be extended easily, 
e.g., adding a new protocol may require enhancements 
to the I/O layer or the ORB core or Object Adapter 
layers, but should not break the interface between the 
layers nor increase overhead for other protocols. 

• Is transparent to the application, i.e., does not expose 
any API.  

The problem is therefore how (1) context information re-
quired for processing different middleware functionalities 
(such as different services or different message types) can 
be propagated efficiently within middleware and (2) mid-
dleware developers can minimize/eliminate changes to the 
critical processing path, while adding support for new 
middleware functionality. 

5 Solution 
Associate state (such as remote address information, socket 
information, and the right message parsers) required to 
process a request with the request.  For every request that a 
client invokes on a service hosted in a server, create a ge-
neric context object to store all the state necessary to proc-
ess the request. As the request is processed at each layer, 
add/remove the state required/redundant for further request 
processing to the context object.  The server uses informa-
tion in the context object to process the request and send 
the response to the client. Likewise, the client uses the con-
text object to store request-specific information (such as 
request priority) and map the response from the server to 
the right application logic. To minimize memory alloca-
tions, recycle the context object after processing the re-
quest.  
6 Structure 
Figure 2 shows the structure of all the participants and their 
relationships in the context object pattern. 
 
7 Participants 
The following are the participants in the Context Object 
pattern. 
• Layer1: Create the context object, initialize it, and 

add context information to the object, and upcall the 
next layer passing on the context object. 

 In our example the I/O layer creates the context ob-
ject and adds context information, such as the socket, 
transport, and buffers associated with the client con-
nection. 
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 Class: 

 Layer 1  
 
Responsibility: 
• Creates Context Object 
• Adds context information 
• U pcalls next Layer passing Context 

information 

C ollaborator
• Layer 2 
• Context 

O bject 
Factory 

 
 

• LayerJ (where J=2..n): Receive the Context Object 
from the layer below it, add context information, and 
pass it on to the next layer, i.e, (J+1). If J is the final 
layer, complete the request processing and send the 
reply to the client. The call stack unwinds and Layer 1 
can reuse the request for the next request processing 
cycle.  

 In our example, the ORB layer (layer 2) uses the 
service context information in the context object cre-
ated by the I/O layer (layer 1) to take suitable action, 
such as setting the right priority information and pass-
ing it to the object adapter layer (layer 3), which up-
calls the application layer (layer 4) and sends the re-
sponse using the socket information in the context ob-
ject.  

 C la ss : 
 L ayer J  
 
R esp o n sib ility :  
•  A d d s and  uses serv ice  co n tex t 

in fo rm atio n  in  the  co n tex t o b jec t 
•  P ass it to  the  nex t layer if no t the  la st 

layer 

C o lla b o ra to r  
•  L ayer J+ 1  
•  L ayer J -1  

 
 

• ContextObjectFactory:  Define an interface and a 
factory method that creates a context object. 
     In our example, the ORB defines a factory class 
with a create() operation defined. The I/O layer 
uses this factory to create a context object.  The fac-
tory can also use the recycle method () to 
cache/recycle context objects.  
 C la ss : 

 C ontex t_O bject_Fac to ry 
 
R esp onsib ility : 
•  P rovides an  in terface  to  create  

d iffe ren t co ntex t o b jects 

C o lla b ora tor 
•  L a yer 1  

 
 

 C la ss : 
 C o n te x t O b jec t 
 
R esp o n s ib ility : 
•  P ro v id es accesso r and  m u ta to r o p -

e ra tio ns to  ad d  an d  re triev e  co n tex t  
in fo rm a tio n  

C o lla b o ra to r  
•  L a yer 1  

 
 

• ContextObject: Define accessor and mutator opera-
tions to get/set context information. 

 In our example, the context object has operations 
get_end_point_info () to get the IP address  

 

 
Figure 2. Structure of Context Object Pattern 

 
of the peer and operation () to set the name of the op-
eration to invoke on the application provided servant.  

 
8 Dynamics 
The following scenarios detail the interactions in the Con-
text Object pattern. 
 
Scenario 1: Creation of a context object. A context ob-
ject is created by the first layer, e.g., Layer1 via the cre-
ate() operation provided by the ContextObjectFac-
tory. The following figure illustrates this scenario. 
 

 
 

Scenario 2: Context addition and propagation.  After a 
ContextObject has been created, Layer1 adds context 
information required by Layer2. Layer1 then upcalls 
Layer2 passing the ContextObject. Layer2 (or any 
LayerJ, where J is not the last layer) follows a similar 
procedure of adding or obtaining context information 
stored in the object. It is important to note that the first 
layer, (Layer1) only adds context information, while the 
last layer (Layern) only retrieves context information 
associated with the ContextObject. The following figure 
illustrates this scenario. 
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Scenario 3: Reusing context objects.  After one re-
quest/response processing cycle, Layer1 uses the recycle 
operation provided on the ContextObjectFactory. 
This enables the factory to recycle the ContextObject.  
The following figure illustrates this scenario. 
 

 
 
9 Implementation 
The following steps are involved in implementing the Con-
text Object pattern: 

1. Determine the information associated with a con-
text object.  For each layer, determine the context in-
formation that is required by the next layer and pro-
vide operations to set/get that context information. 
Context information restricted to a single layer is not 
added to the Context Object. Use the Strategy pattern 
[GoF:95] to associate the right type of context infor-
mation within the context object. The use of Strategy 
pattern also enables   to accommodate variability. For 
example, middleware solutions support multiple pro-
tocols such as Internet Inter-ORB protocol (IIOP), 
User Datagram Protocol (UDP), and Stream Control 
Transfer Protocol (SCTP) [SCTP:01] for communica-
tion. Rather than create different types of context ob-
jects for each protocol, a middleware developer asso-
ciates the context object with a base strategy class or 
interface that each protocol implements. At run-time 
this base strategy is associated with the concrete pro-
tocol used.  

 The TAO [TAO:98] CORBA ORB supports differ-
ent protocols, such as Internet Inter-ORB protocol 
(IIOP), User Datagram Protocol (UDP), and Stream 
Control Transfer Protocol (SCTP) [SCTP:01] for 
communication.  To transparently access each proto-
col, the Strategy pattern is used to associate the right 
protocol with the context object.  

2. Define the representation of context object.  The 
application developer should be unaware of the exis-
tence of context objects. Moreover, the context object 
representations should work seamlessly across differ-
ent request types. The following are the  two types of  
representations: 

• Heap-allocated context objects.  In this approach, 
context objects are allocated dynamically using 
new operators in C++ and Java.  Pointers in C++ 
and references in Java are then used to access 
(add or remove) context information within the 
objects.   

• Stack-allocated context objects. In this approach, 
context objects are created on the thread’s stack 
rather than the heap. This approach is restricted to 
languages such as C++ that support stack alloca-
tion of non-primitive types.  

The heap-allocated approach eases the sharing of con-
text objects across threads. In this approach, context 
objects can be put in queues shared by (1) pro-
ducer/consumer threads and/or (2) asynchronous and 
synchronous processing layers as in a Half-Sync/Half-
Async [POSA2:00] architectural pattern.  The disad-
vantage of this approach is the need for dynamic allo-
cation along the critical request processing path, which 
can be expensive.  To alleviate this shortcoming, im-
plementations can create a pool of context objects to 
service requests using an eager allocation strategy 
[POSA3:04].  A stack allocated approach is less ex-
pensive than heap allocation and is used in high per-
formance C++ ORBs, such as TAO, to eliminate dy-
namic allocation along the critical path. An advantage 
of this approach is that it can be used in the 
Leader/Followers [POSA2:00] pattern that reduces 
dynamic (de)allocation, synchronization, and context 
switching when processing client requests. The disad-
vantage is the difficulty of sharing context objects 
across different threads. 

3. Determine how to pass Context Objects between 
the middleware layers. This step is typically straight-
forward, i.e., context objects can be passed either ex-
plicitly or implicitly. Explicit parameters are defined 
in signature of operations (as either pointers or refer-
ences) used for communication between middleware 
layers. Implicit parameters are typically stored in a 
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thread specific storage [POSA2:00] or stored as envi-
ronment accessed transparently by different layers. In 
the Example Resolved section, we show how to pass 
context objects explicitly. 

 
10 Example Resolved 
Consider a scenario where a CORBA server provides fa-
cilities for clients to query current stock prices.  We refer 
to the server as a stock quoter.  This server provides a 
get_quote() operation to get stock quotes. A client, us-
ing the server’s object reference, invokes the 
get_quote() operation as follows:  

long quote = obj_ref get_quote (“Google”); 

Figure 4 illustrates how the demultiplexing process 
changes compared to Figure 1 when using a context object.  
A reactor listening on the server socket detects the request 
and reads the request onto an input buffer. The reactor no-
tifies an event Handler (IOEventHandler) to further 

 

Figure 4: Layered CORBA demultiplexing using Con-
text Object 

process the request using the process_request() 
operation.  This method creates a Con-
text_Object,associating with it the transport (protocol 
specific (de) marshaling functionality and the buffer which 
stores the request message. Next, the event handler, uses 
the appropriate message parser to parse the message 
header. 

 
This example illustrates how each layer adds/retrieves con-
text information required/provided by the layer directly 
above/below it. Finally we describe the Con-
text_Object class that encapsulates the information 
along with the appropriate accessor/mutator operations for 
individual data elements.  
 
void  
IOEventHandler::process_request () 
{ 
// Use the Object Factory to create the  
// Context Object 
Context_Object server_request =  
   this->factory_-> 
     create_context_object (transport_, 
                            incoming_); 
 
// Parse the request header 
bool error =  
   transport_->message_parser()-> 
       parse_header (server_request); 
 
// Raise exception if bad header 
if (error) throw (BAD_HEADER ()); 
 
// Ask the next layer to handle request 
next_layer->dispatch (server_request); 

} 
 
This operation also populates the Context_Object 
with the CORBA service context information, end point 
information and the target operation name. This per request 
context information is stored in the context object for use 
by the next layers. If the request header information is 
parsed properly, the next layer (which in our case is the 
ORB_Core layer) can further process the request.   
 
void 
Message_Parser::parse_header  
   (Context_Object &request) 
{ 
  Input_Stream &input =  
     request.incoming (); 
 
  // Parse & populate the Context  
  // information 
  Service_Context & context =  

input.parse_context_information (); 
  request.context (context); 
 
  // Parse & populate end-point information 
  // i.e. target host name port 
  request.end_point_info  
   (input.unmarshall_target_info ()); 
 
  // Parse and populate operation name 
  request.operation  
     (input.operation_name ()); 
} 
 
The ORB_Core layer uses service context information 
stored in the Context_Object to take appropriate actions 
such as setting the right priority of the thread processing 
the request.  This step shows how information stored in the 
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Context_Object by the lower layer is used in the next 
layer. This layer then parses (parse_object_key op-
eration) the unique key information (ObjectKey) from 
the request and uses it to find the next (Ob-
ject_Adapter) layer processing the request. The object 
key is associated with the context object for use in the next 
layer.  The object adapter layer uses the context informa-
tion populated by both the I/O and ORB layers to further 
process the request.  
 
After the request has been processed completely, the call 
stack un-winds and  the I/O layer sends the response back 
to the client. 
 
void  
ORB_Core::dispatch (Context_Object &request) 
{ 
   // Process the context information 
   this-> 

process_context_info 
 (request.service_context ()); 
 

  // Parse request to find Object key 
  ObjectKey &key =  
      parse_object_key (request); 
  request.object_key (key); 
 
  // Consult internal map to get the right 
  // Object_Adapter to process the request 
  Object_Adapter *adapter =  

this->map_[key]; 
 
  // Use this adapter to service request 
  if (adapter) 
   return adapter->dispatch (request); 
 
  // Raise right exception 
  throw (ADAPTER_NOT_FOUND ()); 
} 
 
 
// Context Object class 
class Context_Object { 
public: 
 
    /// Get/Set operation name 

const char *operation (void) const; 
    void operation (const char *operation, 
                    size_t length); 
 

/// Return the context information 
/// in the request/reply 
Service_Context []& 
  service_context (void); 
 
/// Get and set the request id 
long request_id (void) const; 
void request_id (long req); 
 
/// Check if response is required 
bool is_response_expected () const; 
 
/// Get/Set Object Key information 
ObjectKey &object_key (); 
void object_key (const ObjectKey &key); 
 
/// Send reply to client 

void send_reply (); 
 

 private: 
    Transport *transport_; 
    // Transport interface 
 

std::string operation_; 
// Operation name of operation 
 
Request_Context request_context_; 
// Service Context information 
 
ObjectKey object_key_ ; 
// Unique identifier for each request 
 
Profile end_point_; 
// Representation of target host port  
// details 
  

}; 
 

11 Known Uses 
Web servers and server pages engines provide context 
objects to efficiently share information for different re-
quests within the same session. Due to the stateless design 
of HTTP, this is the only way to provide context informa-
tion across otherwise independent HTTP requests. For ex-
ample, login information and other security related infor-
mation might be provided. Access to the context objects is 
enabled using techniques such as cookies (which are asyn-
chronous completion tokens) or URL rewriting. 

Scheduler activations are a mechanism where the kernel 
notifies an address spaces about kernel events affecting it 
[Andersen:92]. This approach allows an application to 
have complete knowledge of its scheduling state. Simi-
larly, the user-level thread scheduler informs the kernel 
(via scheduler activations), of user level events the kernel 
should be aware of in making scheduling decisions. 
Scheduler activations are context objects used to exchange 
address space specific context information between the 
kernel and user level schedulers. Scheduler activations 
have also been implemented on the NetBSD [Nathan] op-
erating system. 

CORBA Request Processing. The TAO CORBA ORB 
[TAO] uses the Context Object pattern to demultiplex 
various types of requests and responses efficiently, scal-
ably, and predictably. Upon receipt of a server request, a 
TAO server creates a CORBA-specified ServerRe-
quest context object to hold the input and output buffers 
for the request. As the request is demultiplexed, successive 
layers add context information, such as the transport asso-
ciated with the requests, the service context details, and 
protocol properties.  Interceptors and fault-tolerance 
mechanisms use this context object to add information to 
the context object transparently.  TAO also implements 
service contexts, which is another CORBA-specified 
mechanism for implicitly passing context information 
(such as priorities, security keys, and transaction identifi-
ers) between a client and a server. 
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Theme Park tickets are human examples of the Context 
Object pattern. Consider a theme park that offers both free 
and paid rides. Visitors can choose packages that have 
varying prices based on the different rides chosen by visi-
tors.  The park uses a wrist-band as a ticket that has infor-
mation about the ticket, price, and number of rides, etc.  As 
a visitor proceeds through the park, her ticket is modified 
by a scanner that adds context to the band. Subsequently, 
all the information needed to validate her entry in the 
same/different ride is present in the band. The band acts as 
a context object that is efficient and easier for the park of-
ficials than having a database at each ride and tracking how 
many times the user has visited a particular ride. 
 
12 Consequences 
The Context Object pattern has the following benefits: 
• It allows middleware developers to provide service for 

different request types without having to change the 
critical request processing path within the middleware. 

• It enables efficient use of resources, such as request 
buffers, within the middleware since a context object 
can be recycled for different requests, thereby mini-
mizing the number of dynamic allocations and reduc-
ing the amount of space needed. 

• It eliminates the need for each middleware layer to 
store per request state. A context object can be associ-
ated with each thread processing the request, which al-
leviates the need to synchronize access to context in-
formation in each layer. 

• It does not dictate any concurrency approach within 
the middleware, i.e., both synchronous and asynchro-
nous request processing can be implemented at a 
server that uses context objects.  

This pattern also incurs the following liabilities: 
• Dynamically allocated context objects can degrade 

request processing latency due to (de)allocation for 
each request, which can also adversely affect latency 
and cause memory leaks if memory management is 
not done properly. 

• As middleware implementations grow in functionality, 
the interface provided by a context object can become 
bloated.  This can be ameliorated by using Decoupled 
Context Interface pattern [Hen:05]. This pattern allows 
the dependency between the context object and its 
type to be specified using interfaces thereby enabling 
different implementations of the Context Object to be 
created.  

• The Context Object can grow in size if the context 
information added by a layer is not deleted by subse-
quent layers. 

 
13 See Also 
Existing patterns in the literature do not resolve all the 
aforementioned forces. For example, the Chain of Respon-

sibility pattern [GOF:95] decouples the sender of a re-
quest/event from the actual component that handles the 
request/event by propagating the event along the hierarchy 
until a handler for the event is found. In this case, however, 
each layer performs some computation based on the con-
text information and passes the request to the next layer in 
the hierarchy.   

In the Pipes and Filter pattern [POSA1:96], data streams 
are transmitted via pipes to filters that transform the input 
generating modified output.  Filters are relatively inde-
pendent, i.e., an upstream filter makes as few assumptions 
as possible about the downstream filter and vice versa. In 
our case, however, a higher layer requires information 
from its lower layer. Moreover, correctness depends on the 
order in which the steps are executed (e.g., I/O  ORB 
core  object adapter).  

In the Asynchronous Completion Token (ACT) 
[POSA2:00] pattern, a client invokes an asynchronous op-
eration on a service. To help the client process the response 
from the service efficiently, it transmits an ACT which is a 
value that identifies the state necessary for the client to 
process the response, with the request. The response from 
the service also contains the same information, which is 
used by the client to find the completion handler effi-
ciently. Similar to context objects, an asynchronous com-
pletion token (ACT) simplifies the data structure that a 
client needs to determine the right action. Context objects 
are also valid for only one request/response cycle, i.e., they 
are ephemeral, whereas multiple invocations of the same 
operation can have the same ACT. 

In the Encapsuate Context [EncapsulateContext:03] pat-
tern, a context container is used to hold all system or global 
data that would otherwise be scattered throughout different 
parts of the system. This pattern enables passing new sys-
tem information into existing interfaces without having to 
add new parameters to a function’s parameter list.  Other 
patterns such as Role Specific/Partitioned Contexts 
[Hen:05] enable encapsulate context objects to be split 
according to usage roles. The Context object pattern is 
similar to the Encapsulate Context pattern since it enables 
new features to be added without having to modify existing 
interfaces. In addition, context objects provide a mecha-
nism for accessing global/environment data and also en-
able addition/deletion of dynamic (per request) system 
information efficiently across different system layers. 

In the Variable Argument [Zdun:05] pattern, the argument 
syntax allows for passing a variable number of parameters.  
In the Optional Argument pattern, special syntax is used to 
denote an argument as optional. A default value is supplied 
in case the client does not provide the argument. The Non-
positional parameter passing pattern allows parameters to 
be passed in any order by enabling arguments to be passed 
as name/value pairs.  The aforementioned patterns can be 
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used to implement a context object. For example, the vari-
able argument pattern can be used to store different data on 
a per request basis. Similarly, the optional argument pat-
tern can be used to provide a default value for context data 
in situations where a client does not provide one. 

In the Abstract Session pattern [Abstract Session:97], a 
server maintains per client state in the form of a type safe 
session handle. The client uses this handle to access the 
service provided by the server. Although the Context Ob-
ject pattern also maintains per-request client state at the 
server, unlike the Abstract Session pattern, a context object 
can be used to store context information across multiple 
layers. Similarly, the context information stored in the con-
text object is typically valid only for one request/response 
cycle, whereas a handle used in the abstract session pattern 
is valid until the client closes or releases the session. 

In the Thread-Specific Storage pattern [TSS:97], sequential 
operations access thread-specific state atomically without 
incurring locking overhead. The Context Object pattern 
can use thread-specific storage to enable different layers to 
access request-specific context information without incur-
ring locking overhead.  
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Appendix A.  Overview of Middleware Re-
quest Processing Steps  
Consider a synchronous CORBA request: 

result = obj_ref->operation (arg); 
The sequence of steps required to process this request are 
described below1 and illustrated in Figure 1. 

1. On receipt of the request, the Reactor notifies a han-
dler driven by a leader/followers thread pool.  The other 
threads wait as followers on a condition variable or 
semaphore.  

2. The leader thread reads the header of the request on con-
nection to determine the size of the request.  Each re-
quest is associated with a Transport that provides 
protocol specific connection handling.  

3. A Memory Buffer is allocated from a memory pool 
to hold the request, after which the request data is read 
into the buffer. 

4. A Message Parser examines the request to glean 
context information, e.g., the CORBA service context in-
formation (which can convey the request priority, secu-
rity policies, and transaction ID), type of request, and to-
tal size of request. 

5. The request is demarshaled to find the target servant and 
skeleton in the portable object adapter (POA); this proc-
ess is aided by a unique object key created by the server 
and encoded in the request for every servant. 

6. An upcall is dispatched to the application provided im-
plementation and the reply if any is marshaled back. Fi-
nally, the reply is sent back to the client using the same 
incoming connection. 

                                                 
1 This discussion has been generalized using the Reactor, Accep-
tor-Connector, and Leader/Follower [Leader-Follower] patterns 
from [POSA2]. 
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