
Context Object
A Design Pattern for Efficient Information Sharing across Multiple System Layers

Arvind S. Krishna, Douglas C. Schmidt

Electrical Engineering & Computer Science
Vanderbilt University, Nashville, TN

{arvindk, schmidt}@dre.vanderbilt.edu

Michael Stal
Siemens AG Corporate Technology

Munich, Germany
michael.stal@siemens.com

Abstract
Software systems with a layered architecture, such as mid-
dleware, need to propagate/share information across the
different system layers. In middleware for example, effi-
cient information sharing across different middleware lay-
ers enables timely processing of client requests; a critical
middleware functionality This paper presents the Context
Object pattern that allows efficient processing of requests
by propagating context information between different mid-
dleware layers. Using this pattern, a layer/session propa-
gates per-request information required by the next
layer/session in a context object, which eliminates the need
for (1) per-request state within each layer and (2) lock-
ing/synchronization to access per-request information
across different layers. This pattern is used in CORBA
Object Request Brokers (ORBs) for request processing.

1 Intent
This pattern provides an efficient, and application-
transparent way of sharing information between different
layers in a software system.

2 Example
Many applications use middleware to shield them from
system-specific issues, such as communication protocols,
concurrency strategies, (de)multiplexing strategies, or
(de)marshaling mechanisms. This transparency helps de-
velopers focus on application needs, rather than wrestling
with low-level distribution details explicitly and manually.
To provide the different middleware functionalities, mid-
dleware implementers apply the Layers Pattern [POSA1]
to group different responsibilities detailed above into
groups of tasks at different levels of abstraction. Figure 1
illustrates the different layers in a CORBA based middle-
ware implementations, including the I/O layer (that man-
ages request/response (de)multiplexing), ORB Core layer
(that manages message parsing and dispatching), Object
Adapter layer (that manages object lifecycle) and Applica-
tion layer (that hosts application defined entities called
servants). Middleware functionalities, such as re-
quest/response processing, however, crosscut the different
layers.

Figure 1. Layered CORBA Request Processing

In our example, as shown in Figure 1 (and discussed in
Appendix A), request processing steps 1-2 are carried out
in the I/O layer, steps 3-5 are carried out in the ORB core
layer, and step 6 is executed in the object adapter layer. In
addition, each layer requires some information processed
by a layer directly beneath it. For example, the name of the
operation demarshaled in the I/O layer is required in the
object adapter layer to perform the upcall. Similarly, a
message parser associated in the ORB core layer is re-
quired in the object adapter layer to create the appropriate
reply. Context information (e.g., the transport, message
parsers and memory buffers associated with each request)
must therefore be maintained at each layer and across dif-
ferent layers.

One way to associate and maintain context information at
different layers is to create a manager [Sommerlad:98] at
each layer (as shown in Figure 1) and store the state cre-
ated within a layer with each request. In our example, a
manager in the I/O layer can be used to associate the trans-
port with the request. The object adapter layer can then
query this manager to obtain the transport object associated
with the request to send the reply. This approach does not

© Arvind S. Krishna, Douglas C. Schmidt and Michael Stal, all rights reserved, Permission granted to print for PloP 05

1

mailto:schmidt%7D@dre.vanderbilt.edu
mailto:michael.stal@siemens.com

scale well, however, since it (1) forces the ORB to main-
tain a manager for every objected created as a part of re-
quest processing, (2) incurs lookup overhead since infor-
mation is distributed in different managers, and (3) re-
quires synchronization between the server threads in multi-
threaded ORB configurations.

A manager-per-layer model also necessitates removing the
state associated in each store after processing a request,
which increases the overhead of processing requests. These
factors therefore motivate the use of alternative techniques
that maximize the efficiency of processing requests, irre-
spective of the type of request, services associated, and the
context information.

3 Context
Software systems that provide rich and configurable set of
functionalities resulting in multiple layers.

4 Problem
Communication middleware provides developers with a
powerful and rich set of services for building applications.
These services often require context information to track
relationships between clients and servers. For example, in
QoS-enabled middleware implementations, such as Real-
time CORBA [RT-CORBA:00], priorities can be conveyed
with requests so that middleware implementations can
adapt their processing according to these priorities, i.e., by
assigning the incoming request to a thread with the appro-
priate priority. Since this context information often cross-
cuts normal request processing at each layer, developers
need to determine how context information can be passed
and maintained efficiently since using ad hoc context man-
agement mechanisms for each service or middleware layer
yields middleware implementations that are hard to main-
tain, change, or evolve.

Designing middleware implementations that pass context
information across middleware layers efficiently is hard
since the following forces must be resolved:

• Context information depends on the type of requests
and associated QoS policies. For example, the service
context information in the request depends on the ser-
vices associated with the ORB. Similarly, a CORBA
LocateRequest message (used to determine if the
server is capable of handling requests on an object ref-
erence) has a different format than a normal CORBA
request.

• The specifications for features and options for middle-
ware can be large. For example, new CORBA specifi-
cations (such as Deployment and Configuration of
Components [DnC:03]) has been recently added by the
OMG. Similarly, research efforts are examining inte-

grating fault-tolerance with real-time CORBA [Gok-
hale:02].

• Explicit (de)allocation of resources along the critical
request response path in a middleware implementation
should be minimized.

In addressing the previous forces care must be taken to
provide a solution that:

• Presents an architecture that can be extended easily,
e.g., adding a new protocol may require enhancements
to the I/O layer or the ORB core or Object Adapter
layers, but should not break the interface between the
layers nor increase overhead for other protocols.

• Is transparent to the application, i.e., does not expose
any API.

The problem is therefore how (1) context information re-
quired for processing different middleware functionalities
(such as different services or different message types) can
be propagated efficiently within middleware and (2) mid-
dleware developers can minimize/eliminate changes to the
critical processing path, while adding support for new
middleware functionality.

5 Solution
Associate state (such as remote address information, socket
information, and the right message parsers) required to
process a request with the request. For every request that a
client invokes on a service hosted in a server, create a ge-
neric context object to store all the state necessary to proc-
ess the request. As the request is processed at each layer,
add/remove the state required/redundant for further request
processing to the context object. The server uses informa-
tion in the context object to process the request and send
the response to the client. Likewise, the client uses the con-
text object to store request-specific information (such as
request priority) and map the response from the server to
the right application logic. To minimize memory alloca-
tions, recycle the context object after processing the re-
quest.
6 Structure
Figure 2 shows the structure of all the participants and their
relationships in the context object pattern.

7 Participants
The following are the participants in the Context Object
pattern.
• Layer1: Create the context object, initialize it, and

add context information to the object, and upcall the
next layer passing on the context object.

 In our example the I/O layer creates the context ob-
ject and adds context information, such as the socket,
transport, and buffers associated with the client con-
nection.

© Arvind S. Krishna, Douglas C. Schmidt and Michael Stal, all rights reserved, Permission granted to print for PloP 05

2

 Class:

 Layer 1

Responsibility:
• Creates Context Object
• Adds context information
• U pcalls next Layer passing Context

information

C ollaborator
• Layer 2
• Context

O bject
Factory

• LayerJ (where J=2..n): Receive the Context Object
from the layer below it, add context information, and
pass it on to the next layer, i.e, (J+1). If J is the final
layer, complete the request processing and send the
reply to the client. The call stack unwinds and Layer 1
can reuse the request for the next request processing
cycle.

 In our example, the ORB layer (layer 2) uses the
service context information in the context object cre-
ated by the I/O layer (layer 1) to take suitable action,
such as setting the right priority information and pass-
ing it to the object adapter layer (layer 3), which up-
calls the application layer (layer 4) and sends the re-
sponse using the socket information in the context ob-
ject.

 C la ss :
 L ayer J

R esp o n sib ility :
• A d d s and uses serv ice co n tex t

in fo rm atio n in the co n tex t o b jec t
• P ass it to the nex t layer if no t the la st

layer

C o lla b o ra to r
• L ayer J+ 1
• L ayer J -1

• ContextObjectFactory: Define an interface and a
factory method that creates a context object.
 In our example, the ORB defines a factory class
with a create() operation defined. The I/O layer
uses this factory to create a context object. The fac-
tory can also use the recycle method () to
cache/recycle context objects.
 C la ss :

 C ontex t_O bject_Fac to ry

R esp onsib ility :
• P rovides an in terface to create

d iffe ren t co ntex t o b jects

C o lla b ora tor
• L a yer 1

 C la ss :
 C o n te x t O b jec t

R esp o n s ib ility :
• P ro v id es accesso r and m u ta to r o p -

e ra tio ns to ad d an d re triev e co n tex t
in fo rm a tio n

C o lla b o ra to r
• L a yer 1

• ContextObject: Define accessor and mutator opera-
tions to get/set context information.

 In our example, the context object has operations
get_end_point_info () to get the IP address

Figure 2. Structure of Context Object Pattern

of the peer and operation () to set the name of the op-
eration to invoke on the application provided servant.

8 Dynamics
The following scenarios detail the interactions in the Con-
text Object pattern.

Scenario 1: Creation of a context object. A context ob-
ject is created by the first layer, e.g., Layer1 via the cre-
ate() operation provided by the ContextObjectFac-
tory. The following figure illustrates this scenario.

Scenario 2: Context addition and propagation. After a
ContextObject has been created, Layer1 adds context
information required by Layer2. Layer1 then upcalls
Layer2 passing the ContextObject. Layer2 (or any
LayerJ, where J is not the last layer) follows a similar
procedure of adding or obtaining context information
stored in the object. It is important to note that the first
layer, (Layer1) only adds context information, while the
last layer (Layern) only retrieves context information
associated with the ContextObject. The following figure
illustrates this scenario.

© Arvind S. Krishna, Douglas C. Schmidt and Michael Stal, all rights reserved, Permission granted to print for PloP 05

3

Scenario 3: Reusing context objects. After one re-
quest/response processing cycle, Layer1 uses the recycle
operation provided on the ContextObjectFactory.
This enables the factory to recycle the ContextObject.
The following figure illustrates this scenario.

9 Implementation
The following steps are involved in implementing the Con-
text Object pattern:

1. Determine the information associated with a con-
text object. For each layer, determine the context in-
formation that is required by the next layer and pro-
vide operations to set/get that context information.
Context information restricted to a single layer is not
added to the Context Object. Use the Strategy pattern
[GoF:95] to associate the right type of context infor-
mation within the context object. The use of Strategy
pattern also enables to accommodate variability. For
example, middleware solutions support multiple pro-
tocols such as Internet Inter-ORB protocol (IIOP),
User Datagram Protocol (UDP), and Stream Control
Transfer Protocol (SCTP) [SCTP:01] for communica-
tion. Rather than create different types of context ob-
jects for each protocol, a middleware developer asso-
ciates the context object with a base strategy class or
interface that each protocol implements. At run-time
this base strategy is associated with the concrete pro-
tocol used.

 The TAO [TAO:98] CORBA ORB supports differ-
ent protocols, such as Internet Inter-ORB protocol
(IIOP), User Datagram Protocol (UDP), and Stream
Control Transfer Protocol (SCTP) [SCTP:01] for
communication. To transparently access each proto-
col, the Strategy pattern is used to associate the right
protocol with the context object.

2. Define the representation of context object. The
application developer should be unaware of the exis-
tence of context objects. Moreover, the context object
representations should work seamlessly across differ-
ent request types. The following are the two types of
representations:

• Heap-allocated context objects. In this approach,
context objects are allocated dynamically using
new operators in C++ and Java. Pointers in C++
and references in Java are then used to access
(add or remove) context information within the
objects.

• Stack-allocated context objects. In this approach,
context objects are created on the thread’s stack
rather than the heap. This approach is restricted to
languages such as C++ that support stack alloca-
tion of non-primitive types.

The heap-allocated approach eases the sharing of con-
text objects across threads. In this approach, context
objects can be put in queues shared by (1) pro-
ducer/consumer threads and/or (2) asynchronous and
synchronous processing layers as in a Half-Sync/Half-
Async [POSA2:00] architectural pattern. The disad-
vantage of this approach is the need for dynamic allo-
cation along the critical request processing path, which
can be expensive. To alleviate this shortcoming, im-
plementations can create a pool of context objects to
service requests using an eager allocation strategy
[POSA3:04]. A stack allocated approach is less ex-
pensive than heap allocation and is used in high per-
formance C++ ORBs, such as TAO, to eliminate dy-
namic allocation along the critical path. An advantage
of this approach is that it can be used in the
Leader/Followers [POSA2:00] pattern that reduces
dynamic (de)allocation, synchronization, and context
switching when processing client requests. The disad-
vantage is the difficulty of sharing context objects
across different threads.

3. Determine how to pass Context Objects between
the middleware layers. This step is typically straight-
forward, i.e., context objects can be passed either ex-
plicitly or implicitly. Explicit parameters are defined
in signature of operations (as either pointers or refer-
ences) used for communication between middleware
layers. Implicit parameters are typically stored in a

© Arvind S. Krishna, Douglas C. Schmidt and Michael Stal, all rights reserved, Permission granted to print for PloP 05

4

thread specific storage [POSA2:00] or stored as envi-
ronment accessed transparently by different layers. In
the Example Resolved section, we show how to pass
context objects explicitly.

10 Example Resolved
Consider a scenario where a CORBA server provides fa-
cilities for clients to query current stock prices. We refer
to the server as a stock quoter. This server provides a
get_quote() operation to get stock quotes. A client, us-
ing the server’s object reference, invokes the
get_quote() operation as follows:

long quote = obj_ref get_quote (“Google”);

Figure 4 illustrates how the demultiplexing process
changes compared to Figure 1 when using a context object.
A reactor listening on the server socket detects the request
and reads the request onto an input buffer. The reactor no-
tifies an event Handler (IOEventHandler) to further

Figure 4: Layered CORBA demultiplexing using Con-
text Object

process the request using the process_request()
operation. This method creates a Con-
text_Object,associating with it the transport (protocol
specific (de) marshaling functionality and the buffer which
stores the request message. Next, the event handler, uses
the appropriate message parser to parse the message
header.

This example illustrates how each layer adds/retrieves con-
text information required/provided by the layer directly
above/below it. Finally we describe the Con-
text_Object class that encapsulates the information
along with the appropriate accessor/mutator operations for
individual data elements.

void
IOEventHandler::process_request ()
{
// Use the Object Factory to create the
// Context Object
Context_Object server_request =
 this->factory_->
 create_context_object (transport_,
 incoming_);

// Parse the request header
bool error =
 transport_->message_parser()->
 parse_header (server_request);

// Raise exception if bad header
if (error) throw (BAD_HEADER ());

// Ask the next layer to handle request
next_layer->dispatch (server_request);

}

This operation also populates the Context_Object
with the CORBA service context information, end point
information and the target operation name. This per request
context information is stored in the context object for use
by the next layers. If the request header information is
parsed properly, the next layer (which in our case is the
ORB_Core layer) can further process the request.

void
Message_Parser::parse_header
 (Context_Object &request)
{
 Input_Stream &input =
 request.incoming ();

 // Parse & populate the Context
 // information
 Service_Context & context =

input.parse_context_information ();
 request.context (context);

 // Parse & populate end-point information
 // i.e. target host name port
 request.end_point_info
 (input.unmarshall_target_info ());

 // Parse and populate operation name
 request.operation
 (input.operation_name ());
}

The ORB_Core layer uses service context information
stored in the Context_Object to take appropriate actions
such as setting the right priority of the thread processing
the request. This step shows how information stored in the

© Arvind S. Krishna, Douglas C. Schmidt and Michael Stal, all rights reserved, Permission granted to print for PloP 05

5

Context_Object by the lower layer is used in the next
layer. This layer then parses (parse_object_key op-
eration) the unique key information (ObjectKey) from
the request and uses it to find the next (Ob-
ject_Adapter) layer processing the request. The object
key is associated with the context object for use in the next
layer. The object adapter layer uses the context informa-
tion populated by both the I/O and ORB layers to further
process the request.

After the request has been processed completely, the call
stack un-winds and the I/O layer sends the response back
to the client.

void
ORB_Core::dispatch (Context_Object &request)
{
 // Process the context information
 this->

process_context_info
 (request.service_context ());

 // Parse request to find Object key
 ObjectKey &key =
 parse_object_key (request);
 request.object_key (key);

 // Consult internal map to get the right
 // Object_Adapter to process the request
 Object_Adapter *adapter =

this->map_[key];

 // Use this adapter to service request
 if (adapter)
 return adapter->dispatch (request);

 // Raise right exception
 throw (ADAPTER_NOT_FOUND ());
}

// Context Object class
class Context_Object {
public:

 /// Get/Set operation name

const char *operation (void) const;
 void operation (const char *operation,
 size_t length);

/// Return the context information
/// in the request/reply
Service_Context []&
 service_context (void);

/// Get and set the request id
long request_id (void) const;
void request_id (long req);

/// Check if response is required
bool is_response_expected () const;

/// Get/Set Object Key information
ObjectKey &object_key ();
void object_key (const ObjectKey &key);

/// Send reply to client

void send_reply ();

 private:
 Transport *transport_;
 // Transport interface

std::string operation_;
// Operation name of operation

Request_Context request_context_;
// Service Context information

ObjectKey object_key_ ;
// Unique identifier for each request

Profile end_point_;
// Representation of target host port
// details

};

11 Known Uses
Web servers and server pages engines provide context
objects to efficiently share information for different re-
quests within the same session. Due to the stateless design
of HTTP, this is the only way to provide context informa-
tion across otherwise independent HTTP requests. For ex-
ample, login information and other security related infor-
mation might be provided. Access to the context objects is
enabled using techniques such as cookies (which are asyn-
chronous completion tokens) or URL rewriting.

Scheduler activations are a mechanism where the kernel
notifies an address spaces about kernel events affecting it
[Andersen:92]. This approach allows an application to
have complete knowledge of its scheduling state. Simi-
larly, the user-level thread scheduler informs the kernel
(via scheduler activations), of user level events the kernel
should be aware of in making scheduling decisions.
Scheduler activations are context objects used to exchange
address space specific context information between the
kernel and user level schedulers. Scheduler activations
have also been implemented on the NetBSD [Nathan] op-
erating system.

CORBA Request Processing. The TAO CORBA ORB
[TAO] uses the Context Object pattern to demultiplex
various types of requests and responses efficiently, scal-
ably, and predictably. Upon receipt of a server request, a
TAO server creates a CORBA-specified ServerRe-
quest context object to hold the input and output buffers
for the request. As the request is demultiplexed, successive
layers add context information, such as the transport asso-
ciated with the requests, the service context details, and
protocol properties. Interceptors and fault-tolerance
mechanisms use this context object to add information to
the context object transparently. TAO also implements
service contexts, which is another CORBA-specified
mechanism for implicitly passing context information
(such as priorities, security keys, and transaction identifi-
ers) between a client and a server.

© Arvind S. Krishna, Douglas C. Schmidt and Michael Stal, all rights reserved, Permission granted to print for PloP 05

6

Theme Park tickets are human examples of the Context
Object pattern. Consider a theme park that offers both free
and paid rides. Visitors can choose packages that have
varying prices based on the different rides chosen by visi-
tors. The park uses a wrist-band as a ticket that has infor-
mation about the ticket, price, and number of rides, etc. As
a visitor proceeds through the park, her ticket is modified
by a scanner that adds context to the band. Subsequently,
all the information needed to validate her entry in the
same/different ride is present in the band. The band acts as
a context object that is efficient and easier for the park of-
ficials than having a database at each ride and tracking how
many times the user has visited a particular ride.

12 Consequences
The Context Object pattern has the following benefits:
• It allows middleware developers to provide service for

different request types without having to change the
critical request processing path within the middleware.

• It enables efficient use of resources, such as request
buffers, within the middleware since a context object
can be recycled for different requests, thereby mini-
mizing the number of dynamic allocations and reduc-
ing the amount of space needed.

• It eliminates the need for each middleware layer to
store per request state. A context object can be associ-
ated with each thread processing the request, which al-
leviates the need to synchronize access to context in-
formation in each layer.

• It does not dictate any concurrency approach within
the middleware, i.e., both synchronous and asynchro-
nous request processing can be implemented at a
server that uses context objects.

This pattern also incurs the following liabilities:
• Dynamically allocated context objects can degrade

request processing latency due to (de)allocation for
each request, which can also adversely affect latency
and cause memory leaks if memory management is
not done properly.

• As middleware implementations grow in functionality,
the interface provided by a context object can become
bloated. This can be ameliorated by using Decoupled
Context Interface pattern [Hen:05]. This pattern allows
the dependency between the context object and its
type to be specified using interfaces thereby enabling
different implementations of the Context Object to be
created.

• The Context Object can grow in size if the context
information added by a layer is not deleted by subse-
quent layers.

13 See Also
Existing patterns in the literature do not resolve all the
aforementioned forces. For example, the Chain of Respon-

sibility pattern [GOF:95] decouples the sender of a re-
quest/event from the actual component that handles the
request/event by propagating the event along the hierarchy
until a handler for the event is found. In this case, however,
each layer performs some computation based on the con-
text information and passes the request to the next layer in
the hierarchy.

In the Pipes and Filter pattern [POSA1:96], data streams
are transmitted via pipes to filters that transform the input
generating modified output. Filters are relatively inde-
pendent, i.e., an upstream filter makes as few assumptions
as possible about the downstream filter and vice versa. In
our case, however, a higher layer requires information
from its lower layer. Moreover, correctness depends on the
order in which the steps are executed (e.g., I/O ORB
core object adapter).

In the Asynchronous Completion Token (ACT)
[POSA2:00] pattern, a client invokes an asynchronous op-
eration on a service. To help the client process the response
from the service efficiently, it transmits an ACT which is a
value that identifies the state necessary for the client to
process the response, with the request. The response from
the service also contains the same information, which is
used by the client to find the completion handler effi-
ciently. Similar to context objects, an asynchronous com-
pletion token (ACT) simplifies the data structure that a
client needs to determine the right action. Context objects
are also valid for only one request/response cycle, i.e., they
are ephemeral, whereas multiple invocations of the same
operation can have the same ACT.

In the Encapsuate Context [EncapsulateContext:03] pat-
tern, a context container is used to hold all system or global
data that would otherwise be scattered throughout different
parts of the system. This pattern enables passing new sys-
tem information into existing interfaces without having to
add new parameters to a function’s parameter list. Other
patterns such as Role Specific/Partitioned Contexts
[Hen:05] enable encapsulate context objects to be split
according to usage roles. The Context object pattern is
similar to the Encapsulate Context pattern since it enables
new features to be added without having to modify existing
interfaces. In addition, context objects provide a mecha-
nism for accessing global/environment data and also en-
able addition/deletion of dynamic (per request) system
information efficiently across different system layers.

In the Variable Argument [Zdun:05] pattern, the argument
syntax allows for passing a variable number of parameters.
In the Optional Argument pattern, special syntax is used to
denote an argument as optional. A default value is supplied
in case the client does not provide the argument. The Non-
positional parameter passing pattern allows parameters to
be passed in any order by enabling arguments to be passed
as name/value pairs. The aforementioned patterns can be

© Arvind S. Krishna, Douglas C. Schmidt and Michael Stal, all rights reserved, Permission granted to print for PloP 05

7

used to implement a context object. For example, the vari-
able argument pattern can be used to store different data on
a per request basis. Similarly, the optional argument pat-
tern can be used to provide a default value for context data
in situations where a client does not provide one.

In the Abstract Session pattern [Abstract Session:97], a
server maintains per client state in the form of a type safe
session handle. The client uses this handle to access the
service provided by the server. Although the Context Ob-
ject pattern also maintains per-request client state at the
server, unlike the Abstract Session pattern, a context object
can be used to store context information across multiple
layers. Similarly, the context information stored in the con-
text object is typically valid only for one request/response
cycle, whereas a handle used in the abstract session pattern
is valid until the client closes or releases the session.

In the Thread-Specific Storage pattern [TSS:97], sequential
operations access thread-specific state atomically without
incurring locking overhead. The Context Object pattern
can use thread-specific storage to enable different layers to
access request-specific context information without incur-
ring locking overhead.

14 Acknowledgments
We would like to thank Michael Kircher from Siemens
Corporate Technology and Kevlin Henny for providing us
valuable insights into other related patterns and how this
pattern addresses forces not addressed by any one of the
earlier patterns. We also would like to thank our PloP
shepard Jorge L. Ortega Arjona and workshop reviewers
for their constructive comments and suggestions that
helped improve the paper.

References
[Abstract Session:97] Nat Pryce, Abstract Session Pattern,
4th Pattern Language of Program (PloP) Conference, 1997,
Allterton Park, Illinois

[Anderson:92] Thomas E. Anderson and Brian N. Bershad
and Edward D. Lazowska and Henry M. Levy, “Scheduler
Activation: Effective Kernel Support for the User-Level
Management of Parallelism,” ACM Transactions on Com-
puter Systems, Feb, 1992.

[CORBA:89] The Common Object Request Broker: Ar-
chitecture and Specification, Object Management Group
(OMG).

[CORBA-QoS:00] Douglas C. Schmidt and Steve Vinoski,
“An Overview of the CORBA Messaging Quality of Ser-
vice Framework,” C++ Report, March 2000, Volume 12,
Number 3.

[DCOM:98] Distributed Component Object Model Proto-
col, Microsoft Corporation, Jan 1998, Version 1.0, Micro-
soft Corporation

[DnC:03] Deployment and Configuration Adopted Sub-
mission, Object Management Group, OMG Document
ptc/03-07-08, July 2003

[EncapsulateContext:03] Allen Kelly, Encapsulated Con-
text Pattern, 10th European Conference on Pattern Lan-
guages of Program (EuroPloP), Irsee Germany, July 2003.

[GOF:95] Erich Gamma and Richard Helm and Ralph
Johnson and John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley,
Reading, MA, 1995.

[Gokhale:02] Aniruddha Gokhale and Balachandran Nata-
rajan and Douglas C. Schmidt and Joseph K. Cross, “To-
wards Real-time Fault-Tolerant CORBA Middleware”,
Cluster Computing: the Journal on Networks,
Software, and Applications, Special Issue on
Dependable Distributed Systems, 2002.
[Hen:05] Kevlin Henney, “Context encapsulation - three
stories, a language, and some sequences”, In Proceed-
ings of EuroPlop 2005, Irsee, Germany, July 2005.
[J2EE:01] Java™ 2 Platform Enterprise Edition, Sun Mi-
crosystems, 2001, java.sun.com/j2ee/index.html

[Williams:02] Nathan J Williams, “An Implementation of
Scheduler Activations on the NetBSD Operating System,”
Proceedings of the FREENIX Track: 2002 USENIX An-
nual Technical Conference (FREENIX '02), June 10-15,
Monterey, CA.

[POSA1:96] Frank Buschmann and Regine Meunier and
Hans Rohnert and Peter Sommerlad and Michael Stal, Pat-
tern-Oriented Software Architecture, Volume 1 – A System
of Patterns, Wiley & Sons, 1996..

[POSA2:00] Douglas Schmidt, Han Rohert, Michael Stal,
and Frank Buschmann, Pattern-Oriented Software Archi-
tecture, Volume 2 – Pattern for Concurrent and Networked
Objects Wiley & Sons, 2000.

[POSA3:04] M. Kircher and P. Jain: Pattern-Oriented
Software Architecture, Volume 3 – Patterns for Resouce
Management, John Wiley & Sons, 2004.

[RT-CORBA:00] Douglas C. Schmidt and Fred Kuhns,
“An Overview of the Real-time CORBA Specification,”
IEEE Computer Magazine, Special Issue on Object-ori-
ented Real-time Computing, June 200, Volume 33, Num-
ber 6.

[SCTP:01] Randall Stewart and Qiaobing Xie, Stream
Control Transmission Protocol (SCTP) A Reference Guide,
Addison-Wesley, 2001.

[Sommerlad:98] Peter Sommerlad, “The Manager Design
Pattern", Pattern Languages of Program Design 3, Addi-
son-Wesley, 1998.

© Arvind S. Krishna, Douglas C. Schmidt and Michael Stal, all rights reserved, Permission granted to print for PloP 05

8

[TAO:98] Douglas C. Schmidt, David Levine, and Sumedh
Mungee, “The Design of the TAO Real-Time Object Re-
quest Broker,” Computer Communications Special Issue
on Building Quality of Service into Distributed Systems,
Elsevier Science, Volume 21, No. 4, April, 1998.

[TSS:97] Douglas C. Schmidt and Nat Pryce, “Thread
Specific Storage C/C++”, 4th Pattern Language of Program
(PloP) Conference, 1997, Allterton Park, Illinois
[Zdun:05] Uwe Zdun, “Patterns of Argument Passing”, In
the Proceedings of Viking PloP Finland, September 2005.

Appendix A. Overview of Middleware Re-
quest Processing Steps
Consider a synchronous CORBA request:

result = obj_ref->operation (arg);
The sequence of steps required to process this request are
described below1 and illustrated in Figure 1.

1. On receipt of the request, the Reactor notifies a han-
dler driven by a leader/followers thread pool. The other
threads wait as followers on a condition variable or
semaphore.

2. The leader thread reads the header of the request on con-
nection to determine the size of the request. Each re-
quest is associated with a Transport that provides
protocol specific connection handling.

3. A Memory Buffer is allocated from a memory pool
to hold the request, after which the request data is read
into the buffer.

4. A Message Parser examines the request to glean
context information, e.g., the CORBA service context in-
formation (which can convey the request priority, secu-
rity policies, and transaction ID), type of request, and to-
tal size of request.

5. The request is demarshaled to find the target servant and
skeleton in the portable object adapter (POA); this proc-
ess is aided by a unique object key created by the server
and encoded in the request for every servant.

6. An upcall is dispatched to the application provided im-
plementation and the reply if any is marshaled back. Fi-
nally, the reply is sent back to the client using the same
incoming connection.

1 This discussion has been generalized using the Reactor, Accep-
tor-Connector, and Leader/Follower [Leader-Follower] patterns
from [POSA2].

© Arvind S. Krishna, Douglas C. Schmidt and Michael Stal, all rights reserved, Permission granted to print for PloP 05

9

http://www.cs.wustl.edu/%7Eschmidt/PDF/TAO.pdf
http://www.cs.wustl.edu/%7Eschmidt/PDF/TAO.pdf

