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To be presented at the 17th IEEE/AIAA Digital Avionmeet all their deadlines.g, weapon solutions and naviga-
ics Systems Conference, Seattle, Washington, 31 OctobertioB. Support for statistical real-time requirements is desirable
November, 1998. for tasks such as built-in-test and low-priority display queues,

which can tolerate minor fluctuations in scheduling and relia-
Abstract bility guarantees, but nonetheless require QoS support.

Avionics mission computing systems have traditionally b%
scheduled statically. Static scheduling provides assurance o
schedulability prior to run-time and can be implemented with Figure 1 illustrates the architecture of an avionics mis-
low run-time overhead. However, static scheduling handigisn computing application developed at Boeing [1] using
non-periodic processing inefficiently, and treats invocation-t®O middleware components and services based on the Ob-
invocation variations in resource requirements inflexibly. Ag@ct Management Group’s Common Object Request Broker
consequence, processing resources are underutilized andArghitecture (CORBA) [2]. CORBA Object Request Brokers
resulting systems are hard to adapt to meet worst-case pro-
cessing requirements.

Dynamic scheduling has the potential to offer relief
from some of the restrictions imposed by strict static schedul-
ing approaches. Potential benefits of dynamic scheduling in-
clude better tolerance for variations in activities, more flexible
prioritization, and better CPU utilization in the presence of
non-periodic activities. However, the cost of these benefits is PRARIN

. . ' . 2:PUSH (EVENTS)
expected to be higher run-time scheduling overhead and ad-
ditional application development complexity. This report re-
views the implications of these tradeoffs for avionics mission Sensor Sensor

Design and Implementation Challenges

computing systems and presents experimental results obtained proxy proxy
using the Maximum Urgency First dynamic scheduling algo- St )
rithm.
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1 Introduction

1.1 Motivation

Supporting the quality of service (QoS) demands @figure 1: Example Avionics Mission Computing Application

next-generation real-time applications requires object-oriented

(O0O) middleware that is flexible, efficient, predictable, an@RBs) allow clients to invoke operations on target object im-
convenient to program. Applications with deterministic regllementations without concern for where the object resides,
time requirements, such as avionics mission computing sysat language the object is written in, the OS/hardware plat-
tems, impose severe constraints on the design and implenferm, or the type of communication protocols and networks
tation of real-time OO middleware. Avionics mission computised to interconnect distributed objects [3]. To achieve these
ing applications manage sensors and operator displays, nbgnefits for avionics applications, however, requires the reso-
gate the aircraft's course, and control weapon release. lution of the following design and implementation challenges:

Middleware for avionics mission computing must Su%cheduling assurance prior to run-time: In avionics ap-

port applicatiqns with both deterministic arl1d' s?atisticall "®lications, the consequences of missing a critical deadline at
time QoS requirements. Supportfor deterministic real-time i&4, time can be catastrophic. For example, failure to process
quirements is necessary for mission computing tasks that nﬁfﬂnput from the pilot within the necessary time frame could

“This work was supported in part by Boeing, DARPA contract 97015188 disastrous, especially in critical situations Su.Ch as air'tQ'air
and NSF grant NCR-9628218. engagement or weapons release. Therefore, it is essential to




validate that all critical processing deadlines will be inédr 2.1 Limitations of Static Scheduling

to run-time. . N
Many hard real-time systems have traditionally been

Severe resource limitations: Processing must be minimizedscheduled statically using rate monotonic scheduling (RMS).
due to limited resource availability, such as weight and powstatic scheduling provides schedulability assurance prior to
consumption restrictions. A consequence of using statign-time and can be implemented with low run-time over-
off-line scheduling is that worst-case processing requiteead [6]. However, static scheduling has these disadvantages:
ments drive the schedule. Therefore, resource allocation and

scheduling must always accommodate the worst case, evetifdficient handling of non-periodic processing: Static
non-worst case scenarios. scheduling treats aperiodic processing as if it was periodic,

i.e,, occurring at its maximum possible rate. Resources are
Distributed Processing: In complex avionics systems, misallocated to aperiodic operations either directly or through a
sion processing must be distributed over several physical pperadic servérto reduce latency. In typical operation, how-
cessors and computations on separate processors must ewet; aperiodic processing may not occur at its maximum pos-
municate effectively. Clients running on one processor mg#tle rate. One example is interrupts, which potentially may
be able to invoke operations on servants in other processocsur very frequently, but often do not.
Likewise, the allocation of operations to processors should be  Unfortunately, with static scheduling, resources must
flexible, e.g, it should be transparent whether a given opeitae allocated pessimistically and scheduled under the assump-
tion resides on the same processor as the client that invdi@s that interrupts occur at the maximum rate. When they do
it. not, utilization is effectively reduced because unused resources

cannot be reallocated.
Testability:  Avionics software is complex, critical, and

long-lived. Maintenance is particularly problematic and ekltilization phasing penalty for non-harmonic periods: In
pensive [4]. A large percentage of software maintenance étatically scheduled systems, achievable utilization can be re-
volves testing. Current scheduling approaches are validadeded if the periods of all operations are not harmonically re-
by extensive testing, which is tedious and non-comprehenslaged. Operations are harmonically related if their periods are
Thus, analytical assurance is essential to help reduce valideeger multiples of one another. When periods are not har-
tion costs by focusing the requisite testing on the most stratesnic, the phasing of the operations produces unscheduled
gic system components. gaps of time. This reduces the maximum schedulable percent-

N N o age of the CPUi.e., theschedulable boundo below unity.
Adaptability across product families: Current avionics ap-

plications are custom-built for a specific product family. Déaflexible handling of invocation-to-invocation variation
velopment and testing costs can be reduced if large, commonmesource requirements: Because priorities cannot be
portions can be factored out. In addition, validation and certhanged easifyat run-time, allocations must be based on
fication of components can be shared across product familigsrst-case conditions. Thus, if an operation usually requires
potentially reducing development time and effort. 5 msec of CPU time, but under certain conditions requires 8
The remainder of this paper is organized as followsisec, static scheduling analysis must assume that 8 msec will
Section 2 reviews the drawbacks of off-line, static schedulibg required for every invocation. Again, utilization is effec-
and introduces the dynamic scheduling strategy we are evéilely penalized because the resource will be idle for 3 msec
ating, Maximum Urgency FirsfMUF) [5]. Section 3 presentsin the usual case.
experimental results showing the cost of dynamic scheduling.

systems to changing conditions and changing configurations.

In addition, static scheduling compromises resource utilization
2 Dynamic Scheduling Strategies in order to guarantee access to resources at run-time. To over-
come the limitations of static scheduling, therefore, we are in-
This section describes the limitations of purely statigstigating the use of dynamic strategies to schedule CORBA
scheduling and outlines the potential benefits of applying dyserations for applications with real-time QoS requirements.
namic scheduling. We also evaluate the limitations of purely
dynamic scheduling strategies. This evaluation motivates theA sporadic server [7] reserves a portion of the schedule to allocate to

. . . . eriodic events when they arrive.
hybrid static/dynamic MUF scheduling approach for CORBA’ 2Priorities can be changed vimode changesut that is too coarse to cap-

opgratiqns used by TAO’s real-time scheduling service (4 invocation-to-invocation variations in the resource requirements of com-
scribed in [6]). plex applications.
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Figure 2: Relationships Between Operation, Scheduling, and Dispatching Terms

2.2 Synopsis of Scheduling Terminology Scheduling Strategy: A scheduling strategy (1) takes the in-
formation provided by an operationRT_Info , (2) assigns
Precise terminology is necessary to discuss and evalgency (and thus its components, static priority, dynamic
ate static, dynamic, and hybrid scheduling strategies in tergapriority and static subpriority) to the operation, (3) maps
of their priority assignment and dispatching characteristi¢ggency into dispatching priority and dispatching subpriority
Figure 2 shows the relationships between key terms, defiReglies for the operation, and (4) provides dispatching queue
below. configuration information so that each operation can be dis-
patched according to its assigned dispatching priority and dis-
RT_Operation and RT_Info:  In TAO, anRT_Operation patching subpriority. The key elements of this transformation
is a scheduled CORBA operation [6]. In this paper, weafse performed by the scheduling strategy, which is shown in Fig-
erationinterchangeably witlRT_Operation . AnRT.nfo  ure 2, are as follows:
struct  is associated with each operation and contains its ) . .
QoS parameters. THRT_Info structure contains the follow-. e Urge'ncy.. prgency [8] IS an ordgrgd tuple con5|sf[-
ing operation characteristics described in [6]: N9 Of.(l). static pnon}y ’.(2). dynam_lc subprlor[ty, anpl (.3) static
subpriority. Static priority is the highest ranking priority com-
ponentin the urgency tuple, then dynamic subpriority, and last

e Criticality:  Criticality is an application-supplied_,_ .. . : . i i
i L _~ static subpriority. Figure 2 illustrates these relationships.
value that indicates the significance of a CORBA operation’s P y-Hlg P

completion prior to its deadline. Higher criticality should be e Static priority:  Static priority assignment estab-
assigned to operations that incur greater cost to the applicatisihes a fixed number of priority partitions into which all oper-
if they fail to complete execution before their deadlines. Sorations must fall. The number of static priority partitions is es-
scheduling strategies, such as MUF, take criticality into coiablished off-line. An operation’s static priority value is often
sideration, so that more critical operations are given priorietermined off-line. However, the value assigned a particular

over less critical ones. dispatch of the operation could vary at run-time, depending on
the scheduling strategy.
e Worst Case Execution Time: This is the longest « Dynamic subpriority: Dynamic subpriority is a

time it can take to execute a single dispatch of the operatiogg) e generated and used at run-time to order operatitthis
a static priority level, according to the run-time and static char-
e Period: Period is the interval between dispatchegteristics of each operation. For example, a subpriority based
of an operation. on nearest deadline must be computed dynamically.

e Importance: Importance is a lesser indication of a * Static subpriority:  Static subpriority values are

CORBA operation’s significance. Like its criticality, an Operjetermlned prior to run_—tlm(.a. _Statlc subprlorlty acts.as_ a tie-
tion's importance value is supplied by the application. Imp reaker when both static priority and dynamic subpriority are
tance is used as a tie-breaker to distinguish between operat?&’rkal'
that otherwise would have identical priority. e Dispatching priority:  An operation’s dispatching
priority corresponds to the real-time priority of the thread in
e Dependencies: An operation depends on anothewhich it will be dispatched. Operations with higher dispatch-
operation if it is invoked only via a flow of control from theing priorities are dispatched in threads with higher real-time

other operation. priorities.



¢ Dispatching subpriority:  Dispatching subpriority dispatch of an operation is requested. The new dispatch may
is used to order operations within a dispatching priority levelr may not preempt the currently executing operation, depend-
Operations with higher dispatching subpriority are dispatchied) on the implementation strategy.
ahead of operations with the same dispatching priority but A key limitation of EDF is that an operation with the
lower dispatching subpriority. earliest deadline is dispatched whether or not there is sufficient

¢ Queue Configuration: A separate queue must bdime remaining to complete its execution prior to the deadline.
configured for each distinct dispatching priority. The scheddlherefore, the fact that an operation cannot meet its deadline
ing strategy assigns each queue a dispatching type (stalti},not be detected untifterthe deadline has passed.

deadline, or laxit), a dispatching priority, and a thread prior- If the operation is dispatched even though it cannot
ity. complete its execution prior to the deadline, the operation con-

Dispatching Module: The dispatching module (1) con-Sumes CPU time that could otherwise be allocated to other op-
structs the appropriate type of queue for each dispatching gf@tions. If the result of the operation is only useful to the ap-
ority, and (2) sets each dispatching thread’s priority to tRécation prior to the deadline, then the entire time consumed
value provided by the scheduling strategy. A TAO ORBY the operation is essentially wasted.

endsystem can be configured with dispatching modules in figimum Laxity First (MLF): MLF [8] refines the EDF

I/O subsystem, ORB Core, and/or the Event Channel. strategy by taking into account operation execution time. It
i ) ) dispatches the operation whdagity is least. Laxity is defined
2.3 Survey of Dynamic Scheduling Strategies as the time-to-deadline minus the remaining execution time.
Several other forms of scheduling exist beyond RMS.  Using MLF, it is possible to detect that an operation

For instance, Earliest Deadline First (EDF) scheduling assig§ not meet its deadline prior to the deadline itself. If this
higher priorities to operations with closer deadlines. EDF@§curs, a scheduler can reevaluate the operation prior to al-
commonly used for dynamic scheduling because it perni@§ating the CPU for the remaining computation time. For
run-time modification of rates and priorities. In contrast, stag&ample, one strategy is to simply drop the operation whose
techniques like RMS require fixed rates and priorities. laxity is not sufficient to meet its deadline. This strategy could
Dynamic scheduling does not suffer from the dravflecrease the chance that subsequent operations will miss their
backs described in Section 2.1. If these drawbacks dgrdlines, especially if the system is transiently overloaded.
be alleviated without incurring too much overhead or non-
determinism, dynamic scheduling can be beneficial for avigtya yation of EDF and MLF:
ics applications. However, many dynamic scheduling strate-
g Ll i o Quenices o e Schecing, « Aduaages: From a schecking erspecive, the
have non-det’erministically under heavy loads. Therefore 2N adyanta_ge of EDF and MLF IS thatthey oygrcqmethe uti-
erations that are critical to an application may hiss their déglrggnon I|m|tat|ons. of RMS. In partlcular, the ut|I|zat|on_phas-
lines because they were (1) delayed by non-critical operaticl)n% penalty described in Section 2.1 that can occur in RMS

. . . f . This i EDF MLF prioriti -
or (2) delayed by an excessive number of critical operat|0||flssnot a factor Is is because and prioritize op

; ) ! . erations according to their dynamic run-time characteristics.
e.g, if admission control of dynamically generated operatio

is not performed I:F?]ey handle harmonic and non-harmonic periods comparably,
P ; . . . and respond flexibly to invocation-to-invocation variations in
The remainder of this section reviews several strateg|

for dynamic and hybrid static/dynamic scheduling. These irﬂ%%ource requirements, allowing CPU time one operation does

clude purely dynamic strategies such as EDF and MLF, ar}%I use to be reallocated to other operations. Thus, they can

. . roduce schedules that are optimal in terms of CPU utiliza-
hybrid approachs such as MUF and two-level scheduling. Eon [9]. Moreover, both EDF gnd MLF can dispatch opera-

tions within a single static priority level and do not prioritize
231 Purely DynamiC SChedUIing Strategies Operations by rate [9, 8]

Earliest Deadline First (EDF): EDF [9, 10] is a dynamic e Disadvantages: Purely dynamic scheduling ap-
scheduling algorithm that orders dispatches operations proaches like MLF and EDF potentially relieve the utilization
based on time-to-deadline. Operation executions with cloggiitations of the static RMS approach. However, they have a
deadlines are dispatched before those with more distant deagher cost to evaluate the scheduling algorithm at run-time. In
lines. The EDF scheduling algorithm is invoked whenevera@dition, these purely dynamic scheduling strategies offer no
A — . . R _control overwhich operations will miss their deadlines if the

n operation’s laxity is the time until its deadline minus its remaining . .
execution time. Schedulable bound is exceeded. As operations are added to

4A dispatchis a particular execution of asperation the schedule to achieve higher utilization, the margin of safety




for all operations decreases. Therefore, the risk of missingraival pattern of operation requests, the dispatching order will
deadline increases for every operation as the system becam@ys be the same. This in turn improves the reliability and

overloaded. testability of the system.
The variant of MUF used in TAO's strategized schedul-
2.3.2 Maximum Urgency First ing service enforces a complete dispatching ordering by pro-

. : : viding animportance  field in the TAORT.Info CORBA
The Maximum Urgency First (MUF) [8] scheduling al eration QoS descriptiostruct  [6]. TAO's scheduling

gorithm supports both the deterministic rigor of the static RMBE" ; ) .
; o ; ervice uses importance, as well as a topological ordering of
scheduling approach and the flexibility of dynamic sched(: . . . : o
ing approaches such as EDF and MLF. RMS assigns all ;%.’-eratlpn.s’ to assign a unique static subpriority for each oper-
: X . . ation within a given criticality level.
ority components statically and EDF/MLF assign all priority
components dynamically. In contrast, MUF can assign bagth .
staticand dynamic priority components. The hybrid priorit)2'3'3 Hybrid Approaches
assignment in MUF overcomes the drawbacks of the individ- Hybrid static and dynamic approaches may be used to
ual scheduling algorithms by combining techniques from eachmbine the benefits of both. Multi-level scheduling integrates
The remainder of this section describes how each charactatifferent approaches at different scheduliegels One ex-
tic of the MUF scheduling algorithm helps to achieve this. ample is two-level hierarchical scheduling, which allows real-
Criticality:  In MUF, operations with higheeriticality are time applications to coexist with non-real-time applications
assigned to higher static priority levels. Assigning static pridf- @1 0pen OS environment [11]. Another is standardized in
ities according to criticality prevents operations critical to tH8€ ARINC Avionics Application Software Standard Interface
application from being preempted by non-critical operation§APEX) for Integrated Modular Avionics (IMA) [12]. One
Ordering operations by application-defined criticalitigvel consists opartitions, which are executed cyclically and
reflects a subtle and fundamental shift in the notion of pficheduled statically and off-line. Within each partition, appli-
ority assignment. RMS, EDF, and MLF (1) exhibit a rigi¢ationprocessesre scheduled using potentially more flexible
mapping from empirical operation characteristics to a singigProaches. ] o ] ]
priority value, and (2) offer scheduling guarantees only for aJl  E@chtaskina partition is characterized statically by pe-
operations or none. In contrast, MUF (1) gives applicatioHQd (for perlqdlc t'asks), deac.illn'e within the period, and worst-
the ability to distinguish operations arbitrarily, (2) can offd;@S€ execution time. Aperiodic tasks are supported; Auds-
scheduling guarantees for a criticalbsebf the entire set of 1€y @nd Wellings offer an analysis approach assuming mini-
operations. mum arrival time for aperiodic task periods [13]. TAO used

. . . ) this same approach initially to handle aperiodic tasks with rate
Dynamic Subpriority: At the instant of evaluation, dy- Pp Y P

i S . . . onotonic scheduling and analysis.
namic subpriority in MUF is a function of the the laxity O{n APEX Partitions are scheduled cyclically. Each parti-
an operation. g

o . _— . . ion is characterized statically by parameters including criti-
Assigning dynamic subpriorities according to laxity (1 y by P g

. A . ality level, period, and duration. Therefore, a straightforward
offers higher utilization of the CPU than static approaches, aliic scheduling approach can be used

(2) allows deadline failures can be Qetectmforethey ac- The APEX approach provides static schedulability
tually occur, except when an operation that would otherwiggaysis and fault tolerance across partitions. However, it suf-
meet its deadline is preempted by a higher criticality opefg;s from the drawbacks of static scheduling described in Sec-
tion. Moreover, MUF can apply various types of error hagsn 2 1. |n particular, it is not clear how APEX can apprecia-
dling policies when deadlines are missed [8]. For exampleb!i}/ improve resource utilization when compared to conven-
an operation has negative laxity prior to being dispatchedyjif, ) static scheduling approaches. For instance, jitter may
can be demoted in the priority queue, so an operation that ganigh when the the period of a task is not a multiple of its
still meet its deadline can be dispatched instead. partition’s period [13]. In that case, the task could become
Static Subpriority: In MUF, static subpriorityis a static, ready to run at a time when another partition was executing,
application-specific, optional priority. Static subpriority hasnd therefore would have to wait for its partition’s activation.
lower precedence than either criticality or dynamic subprior-
ity. Itis used to order the dispatches of operations that have §1e
same criticality and the same dynamic subpriority. Assigning
a unique static subpriority to each operation that has the same To assess the run-time cost of dynamic schedul-
criticality ensures a total dispatching ordering of operationsiat), we used an experimental setup based on TAO’s Event
run-time, for any operation laxity values having the same cr@hannel [14]. It consisted of a single high-priority sup-
icality. A total dispatching ordering ensures that for a givgalier/consumer pair, and a varied number of low-priority event

Dynamic Scheduling Overhead



suppliers and consumers. We measured the latency in evaniety of of operational conditions. Further work will also
delivery between the high-priority supplier and consumexplore scheduling in distributed systems. Dynamic schedul-
This latency included the time required for the TAO ruring appears to be a prerequisite for distributed system schedul-
time scheduler to satisfy the Event Channel dispatch modinlg, due to the loose coupling between operations on separate

scheduling request. processors.
The test was run on a Sun Ultra 30 in the RealTime

scheduling class, with a single 300 MHz UltraSPARC CP%,
for two different scheduling strategies. The static scheduling
strategy used off-line RMS and table lookup at runtime. This work was funded in part by Boeing. We gratefully ac-
dynamic strategy used MUF, and therefore required an adéiowledge the support and direction of the Boeing Principal
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