
DYNAMIC SCHEDULING STRATEGIES FOR AVIONICS MISSION COMPUTING

David L. Levine, Christopher D. Gill, and Douglas C. Schmidt
flevine,cdgill,schmidtg@cs.wustl.edu

Department of Computer Science, Washington University, St. Louis, MO 63130, USA�

To be presented at the 17th IEEE/AIAA Digital Avion-
ics Systems Conference, Seattle, Washington, 31 October – 6
November, 1998.

Abstract

Avionics mission computing systems have traditionally been
scheduled statically. Static scheduling provides assurance of
schedulability prior to run-time and can be implemented with
low run-time overhead. However, static scheduling handles
non-periodic processing inefficiently, and treats invocation-to-
invocation variations in resource requirements inflexibly. As a
consequence, processing resources are underutilized and the
resulting systems are hard to adapt to meet worst-case pro-
cessing requirements.

Dynamic scheduling has the potential to offer relief
from some of the restrictions imposed by strict static schedul-
ing approaches. Potential benefits of dynamic scheduling in-
clude better tolerance for variations in activities, more flexible
prioritization, and better CPU utilization in the presence of
non-periodic activities. However, the cost of these benefits is
expected to be higher run-time scheduling overhead and ad-
ditional application development complexity. This report re-
views the implications of these tradeoffs for avionics mission
computing systems and presents experimental results obtained
using the Maximum Urgency First dynamic scheduling algo-
rithm.

1 Introduction

1.1 Motivation

Supporting the quality of service (QoS) demands of
next-generation real-time applications requires object-oriented
(OO) middleware that is flexible, efficient, predictable, and
convenient to program. Applications with deterministic real-
time requirements, such as avionics mission computing sys-
tems, impose severe constraints on the design and implemen-
tation of real-time OO middleware. Avionics mission comput-
ing applications manage sensors and operator displays, navi-
gate the aircraft’s course, and control weapon release.

Middleware for avionics mission computing must sup-
port applications with both deterministic and statistical real-
time QoS requirements. Support for deterministic real-time re-
quirements is necessary for mission computing tasks that must
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meet all their deadlines,e.g., weapon solutions and naviga-
tion. Support for statistical real-time requirements is desirable
for tasks such as built-in-test and low-priority display queues,
which can tolerate minor fluctuations in scheduling and relia-
bility guarantees, but nonetheless require QoS support.

1.2 Design and Implementation Challenges

Figure 1 illustrates the architecture of an avionics mis-
sion computing application developed at Boeing [1] using
OO middleware components and services based on the Ob-
ject Management Group’s Common Object Request Broker
Architecture (CORBA) [2]. CORBA Object Request Brokers
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Figure 1: Example Avionics Mission Computing Application

(ORBs) allow clients to invoke operations on target object im-
plementations without concern for where the object resides,
what language the object is written in, the OS/hardware plat-
form, or the type of communication protocols and networks
used to interconnect distributed objects [3]. To achieve these
benefits for avionics applications, however, requires the reso-
lution of the following design and implementation challenges:

Scheduling assurance prior to run-time: In avionics ap-
plications, the consequences of missing a critical deadline at
run-time can be catastrophic. For example, failure to process
an input from the pilot within the necessary time frame could
be disastrous, especially in critical situations such as air-to-air
engagement or weapons release. Therefore, it is essential to
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validate that all critical processing deadlines will be metprior
to run-time.

Severe resource limitations: Processing must be minimized
due to limited resource availability, such as weight and power
consumption restrictions. A consequence of using static,
off-line scheduling is that worst-case processing require-
ments drive the schedule. Therefore, resource allocation and
scheduling must always accommodate the worst case, even in
non-worst case scenarios.

Distributed Processing: In complex avionics systems, mis-
sion processing must be distributed over several physical pro-
cessors and computations on separate processors must com-
municate effectively. Clients running on one processor must
be able to invoke operations on servants in other processors.
Likewise, the allocation of operations to processors should be
flexible, e.g., it should be transparent whether a given opera-
tion resides on the same processor as the client that invokes
it.

Testability: Avionics software is complex, critical, and
long-lived. Maintenance is particularly problematic and ex-
pensive [4]. A large percentage of software maintenance in-
volves testing. Current scheduling approaches are validated
by extensive testing, which is tedious and non-comprehensive.
Thus, analytical assurance is essential to help reduce valida-
tion costs by focusing the requisite testing on the most strate-
gic system components.

Adaptability across product families: Current avionics ap-
plications are custom-built for a specific product family. De-
velopment and testing costs can be reduced if large, common
portions can be factored out. In addition, validation and certi-
fication of components can be shared across product families,
potentially reducing development time and effort.

The remainder of this paper is organized as follows:
Section 2 reviews the drawbacks of off-line, static scheduling
and introduces the dynamic scheduling strategy we are evalu-
ating,Maximum Urgency First(MUF) [5]. Section 3 presents
experimental results showing the cost of dynamic scheduling.
Section 4 presents concluding remarks.

2 Dynamic Scheduling Strategies

This section describes the limitations of purely static
scheduling and outlines the potential benefits of applying dy-
namic scheduling. We also evaluate the limitations of purely
dynamic scheduling strategies. This evaluation motivates the
hybrid static/dynamic MUF scheduling approach for CORBA
operations used by TAO’s real-time scheduling service (de-
scribed in [6]).

2.1 Limitations of Static Scheduling

Many hard real-time systems have traditionally been
scheduled statically using rate monotonic scheduling (RMS).
Static scheduling provides schedulability assurance prior to
run-time and can be implemented with low run-time over-
head [6]. However, static scheduling has these disadvantages:

Inefficient handling of non-periodic processing: Static
scheduling treats aperiodic processing as if it was periodic,
i.e., occurring at its maximum possible rate. Resources are
allocated to aperiodic operations either directly or through a
sporadic server1 to reduce latency. In typical operation, how-
ever, aperiodic processing may not occur at its maximum pos-
sible rate. One example is interrupts, which potentially may
occur very frequently, but often do not.

Unfortunately, with static scheduling, resources must
be allocated pessimistically and scheduled under the assump-
tion that interrupts occur at the maximum rate. When they do
not, utilization is effectively reduced because unused resources
cannot be reallocated.

Utilization phasing penalty for non-harmonic periods: In
statically scheduled systems, achievable utilization can be re-
duced if the periods of all operations are not harmonically re-
lated. Operations are harmonically related if their periods are
integer multiples of one another. When periods are not har-
monic, the phasing of the operations produces unscheduled
gaps of time. This reduces the maximum schedulable percent-
age of the CPU,i.e., theschedulable bound, to below unity.

Inflexible handling of invocation-to-invocation variation
in resource requirements: Because priorities cannot be
changed easily2 at run-time, allocations must be based on
worst-case conditions. Thus, if an operation usually requires
5 msec of CPU time, but under certain conditions requires 8
msec, static scheduling analysis must assume that 8 msec will
be required for every invocation. Again, utilization is effec-
tively penalized because the resource will be idle for 3 msec
in the usual case.

In general, static scheduling limits the adaptability of
systems to changing conditions and changing configurations.
In addition, static scheduling compromises resource utilization
in order to guarantee access to resources at run-time. To over-
come the limitations of static scheduling, therefore, we are in-
vestigating the use of dynamic strategies to schedule CORBA
operations for applications with real-time QoS requirements.

1A sporadic server [7] reserves a portion of the schedule to allocate to
aperiodic events when they arrive.

2Priorities can be changed viamode changes, but that is too coarse to cap-
ture invocation-to-invocation variations in the resource requirements of com-
plex applications.
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Figure 2: Relationships Between Operation, Scheduling, and Dispatching Terms

2.2 Synopsis of Scheduling Terminology

Precise terminology is necessary to discuss and evalu-
ate static, dynamic, and hybrid scheduling strategies in terms
of their priority assignment and dispatching characteristics.
Figure 2 shows the relationships between key terms, defined
below.

RT Operation and RT Info: In TAO, anRT Operation
is a scheduled CORBA operation [6]. In this paper, we useop-
eration interchangeably withRT Operation . An RT Info
struct is associated with each operation and contains its
QoS parameters. TheRT Info structure contains the follow-
ing operation characteristics described in [6]:

� Criticality: Criticality is an application-supplied
value that indicates the significance of a CORBA operation’s
completion prior to its deadline. Higher criticality should be
assigned to operations that incur greater cost to the application
if they fail to complete execution before their deadlines. Some
scheduling strategies, such as MUF, take criticality into con-
sideration, so that more critical operations are given priority
over less critical ones.

� Worst Case Execution Time: This is the longest
time it can take to execute a single dispatch of the operation.

� Period: Period is the interval between dispatches
of an operation.

� Importance: Importance is a lesser indication of a
CORBA operation’s significance. Like its criticality, an opera-
tion’s importance value is supplied by the application. Impor-
tance is used as a tie-breaker to distinguish between operations
that otherwise would have identical priority.

� Dependencies: An operation depends on another
operation if it is invoked only via a flow of control from the
other operation.

Scheduling Strategy: A scheduling strategy (1) takes the in-
formation provided by an operation’sRT Info , (2) assigns
urgency (and thus its components, static priority, dynamic
subpriority and static subpriority) to the operation, (3) maps
urgency into dispatching priority and dispatching subpriority
values for the operation, and (4) provides dispatching queue
configuration information so that each operation can be dis-
patched according to its assigned dispatching priority and dis-
patching subpriority. The key elements of this transformation
performed by the scheduling strategy, which is shown in Fig-
ure 2, are as follows:

� Urgency: Urgency [8] is an ordered tuple consist-
ing of (1) static priority, (2) dynamic subpriority, and (3) static
subpriority. Static priority is the highest ranking priority com-
ponent in the urgency tuple, then dynamic subpriority, and last
static subpriority. Figure 2 illustrates these relationships.

� Static priority: Static priority assignment estab-
lishes a fixed number of priority partitions into which all oper-
ations must fall. The number of static priority partitions is es-
tablished off-line. An operation’s static priority value is often
determined off-line. However, the value assigned a particular
dispatch of the operation could vary at run-time, depending on
the scheduling strategy.

� Dynamic subpriority: Dynamic subpriority is a
value generated and used at run-time to order operationswithin
a static priority level, according to the run-time and static char-
acteristics of each operation. For example, a subpriority based
on nearest deadline must be computed dynamically.

� Static subpriority: Static subpriority values are
determined prior to run-time. Static subpriority acts as a tie-
breaker when both static priority and dynamic subpriority are
equal.

� Dispatching priority: An operation’s dispatching
priority corresponds to the real-time priority of the thread in
which it will be dispatched. Operations with higher dispatch-
ing priorities are dispatched in threads with higher real-time
priorities.

3



� Dispatching subpriority: Dispatching subpriority
is used to order operations within a dispatching priority level.
Operations with higher dispatching subpriority are dispatched
ahead of operations with the same dispatching priority but
lower dispatching subpriority.

� Queue Configuration: A separate queue must be
configured for each distinct dispatching priority. The schedul-
ing strategy assigns each queue a dispatching type (static,
deadline, or laxity3), a dispatching priority, and a thread prior-
ity.
Dispatching Module: The dispatching module (1) con-
structs the appropriate type of queue for each dispatching pri-
ority, and (2) sets each dispatching thread’s priority to the
value provided by the scheduling strategy. A TAO ORB
endsystem can be configured with dispatching modules in the
I/O subsystem, ORB Core, and/or the Event Channel.

2.3 Survey of Dynamic Scheduling Strategies

Several other forms of scheduling exist beyond RMS.
For instance, Earliest Deadline First (EDF) scheduling assigns
higher priorities to operations with closer deadlines. EDF is
commonly used for dynamic scheduling because it permits
run-time modification of rates and priorities. In contrast, static
techniques like RMS require fixed rates and priorities.

Dynamic scheduling does not suffer from the draw-
backs described in Section 2.1. If these drawbacks can
be alleviated without incurring too much overhead or non-
determinism, dynamic scheduling can be beneficial for avion-
ics applications. However, many dynamic scheduling strate-
gies do not offer thea priori guarantees of static scheduling.
For instance, purely dynamically scheduled systems can be-
have non-deterministically under heavy loads. Therefore, op-
erations that are critical to an application may miss their dead-
lines because they were (1) delayed by non-critical operations
or (2) delayed by an excessive number of critical operations,
e.g., if admission control of dynamically generated operations
is not performed.

The remainder of this section reviews several strategies
for dynamic and hybrid static/dynamic scheduling. These in-
clude purely dynamic strategies such as EDF and MLF, and
hybrid approachs such as MUF and two-level scheduling.

2.3.1 Purely Dynamic Scheduling Strategies

Earliest Deadline First (EDF): EDF [9, 10] is a dynamic
scheduling algorithm that orders dispatches4 of operations
based on time-to-deadline. Operation executions with closer
deadlines are dispatched before those with more distant dead-
lines. The EDF scheduling algorithm is invoked whenever a

3An operation’s laxity is the time until its deadline minus its remaining
execution time.

4A dispatchis a particular execution of anoperation.

dispatch of an operation is requested. The new dispatch may
or may not preempt the currently executing operation, depend-
ing on the implementation strategy.

A key limitation of EDF is that an operation with the
earliest deadline is dispatched whether or not there is sufficient
time remaining to complete its execution prior to the deadline.
Therefore, the fact that an operation cannot meet its deadline
will not be detected untilafter the deadline has passed.

If the operation is dispatched even though it cannot
complete its execution prior to the deadline, the operation con-
sumes CPU time that could otherwise be allocated to other op-
erations. If the result of the operation is only useful to the ap-
plication prior to the deadline, then the entire time consumed
by the operation is essentially wasted.

Minimum Laxity First (MLF): MLF [8] refines the EDF
strategy by taking into account operation execution time. It
dispatches the operation whoselaxity is least. Laxity is defined
as the time-to-deadline minus the remaining execution time.

Using MLF, it is possible to detect that an operation
will not meet its deadline prior to the deadline itself. If this
occurs, a scheduler can reevaluate the operation prior to al-
locating the CPU for the remaining computation time. For
example, one strategy is to simply drop the operation whose
laxity is not sufficient to meet its deadline. This strategy could
decrease the chance that subsequent operations will miss their
deadlines, especially if the system is transiently overloaded.

Evaluation of EDF and MLF:

� Advantages: From a scheduling perspective, the
main advantage of EDF and MLF is that they overcome the uti-
lization limitations of RMS. In particular, the utilization phas-
ing penalty described in Section 2.1 that can occur in RMS
is not a factor. This is because EDF and MLF prioritize op-
erations according to their dynamic run-time characteristics.
They handle harmonic and non-harmonic periods comparably,
and respond flexibly to invocation-to-invocation variations in
resource requirements, allowing CPU time one operation does
not use to be reallocated to other operations. Thus, they can
produce schedules that are optimal in terms of CPU utiliza-
tion [9]. Moreover, both EDF and MLF can dispatch opera-
tions within a single static priority level and do not prioritize
operations by rate [9, 8].

� Disadvantages: Purely dynamic scheduling ap-
proaches like MLF and EDF potentially relieve the utilization
limitations of the static RMS approach. However, they have a
higher cost to evaluate the scheduling algorithm at run-time. In
addition, these purely dynamic scheduling strategies offer no
control overwhichoperations will miss their deadlines if the
schedulable bound is exceeded. As operations are added to
the schedule to achieve higher utilization, the margin of safety
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for all operations decreases. Therefore, the risk of missing a
deadline increases for every operation as the system become
overloaded.

2.3.2 Maximum Urgency First

The Maximum Urgency First (MUF) [8] scheduling al-
gorithm supports both the deterministic rigor of the static RMS
scheduling approach and the flexibility of dynamic schedul-
ing approaches such as EDF and MLF. RMS assigns all pri-
ority components statically and EDF/MLF assign all priority
components dynamically. In contrast, MUF can assign both
staticanddynamic priority components. The hybrid priority
assignment in MUF overcomes the drawbacks of the individ-
ual scheduling algorithms by combining techniques from each.
The remainder of this section describes how each characteris-
tic of the MUF scheduling algorithm helps to achieve this.

Criticality: In MUF, operations with highercriticality are
assigned to higher static priority levels. Assigning static prior-
ities according to criticality prevents operations critical to the
application from being preempted by non-critical operations.

Ordering operations by application-defined criticality
reflects a subtle and fundamental shift in the notion of pri-
ority assignment. RMS, EDF, and MLF (1) exhibit a rigid
mapping from empirical operation characteristics to a single
priority value, and (2) offer scheduling guarantees only for all
operations or none. In contrast, MUF (1) gives applications
the ability to distinguish operations arbitrarily, (2) can offer
scheduling guarantees for a criticalsubsetof the entire set of
operations.

Dynamic Subpriority: At the instant of evaluation, dy-
namic subpriority in MUF is a function of the the laxity of
an operation.

Assigning dynamic subpriorities according to laxity (1)
offers higher utilization of the CPU than static approaches, and
(2) allows deadline failures can be detectedbefore they ac-
tually occur, except when an operation that would otherwise
meet its deadline is preempted by a higher criticality opera-
tion. Moreover, MUF can apply various types of error han-
dling policies when deadlines are missed [8]. For example, if
an operation has negative laxity prior to being dispatched, it
can be demoted in the priority queue, so an operation that can
still meet its deadline can be dispatched instead.

Static Subpriority: In MUF, static subpriorityis a static,
application-specific, optional priority. Static subpriority has
lower precedence than either criticality or dynamic subprior-
ity. It is used to order the dispatches of operations that have the
same criticality and the same dynamic subpriority. Assigning
a unique static subpriority to each operation that has the same
criticality ensures a total dispatching ordering of operations at
run-time, for any operation laxity values having the same crit-
icality. A total dispatching ordering ensures that for a given

arrival pattern of operation requests, the dispatching order will
always be the same. This in turn improves the reliability and
testability of the system.

The variant of MUF used in TAO’s strategized schedul-
ing service enforces a complete dispatching ordering by pro-
viding animportance field in the TAORT Info CORBA
operation QoS descriptionstruct [6]. TAO’s scheduling
service uses importance, as well as a topological ordering of
operations, to assign a unique static subpriority for each oper-
ation within a given criticality level.

2.3.3 Hybrid Approaches

Hybrid static and dynamic approaches may be used to
combine the benefits of both. Multi-level scheduling integrates
different approaches at different schedulinglevels. One ex-
ample is two-level hierarchical scheduling, which allows real-
time applications to coexist with non-real-time applications
in an open OS environment [11]. Another is standardized in
the ARINC Avionics Application Software Standard Interface
(APEX) for Integrated Modular Avionics (IMA) [12]. One
level consists ofpartitions, which are executed cyclically and
scheduled statically and off-line. Within each partition, appli-
cationprocessesare scheduled using potentially more flexible
approaches.

Each task in a partition is characterized statically by pe-
riod (for periodic tasks), deadline within the period, and worst-
case execution time. Aperiodic tasks are supported; Auds-
ley and Wellings offer an analysis approach assuming mini-
mum arrival time for aperiodic task periods [13]. TAO used
this same approach initially to handle aperiodic tasks with rate
monotonic scheduling and analysis.

APEX Partitions are scheduled cyclically. Each parti-
tion is characterized statically by parameters including criti-
cality level, period, and duration. Therefore, a straightforward
static scheduling approach can be used.

The APEX approach provides static schedulability
analysis and fault tolerance across partitions. However, it suf-
fers from the drawbacks of static scheduling described in Sec-
tion 2.1. In particular, it is not clear how APEX can apprecia-
bly improve resource utilization when compared to conven-
tional static scheduling approaches. For instance, jitter may
be high when the the period of a task is not a multiple of its
partition’s period [13]. In that case, the task could become
ready to run at a time when another partition was executing,
and therefore would have to wait for its partition’s activation.

3 Dynamic Scheduling Overhead

To assess the run-time cost of dynamic schedul-
ing, we used an experimental setup based on TAO’s Event
Channel [14]. It consisted of a single high-priority sup-
plier/consumer pair, and a varied number of low-priority event
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suppliers and consumers. We measured the latency in event
delivery between the high-priority supplier and consumer.
This latency included the time required for the TAO run-
time scheduler to satisfy the Event Channel dispatch module
scheduling request.

The test was run on a Sun Ultra 30 in the RealTime
scheduling class, with a single 300 MHz UltraSPARC CPU,
for two different scheduling strategies. The static scheduling
strategy used off-line RMS and table lookup at runtime. The
dynamic strategy used MUF, and therefore required an addi-
tional laxity calculation at runtime.

As shown in Figure 3, there appears to be a small (up
to 10 percent) overhead for dynamic scheduling.
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Figure 3: The Cost of Dynamic Scheduling

4 Concluding Remarks

As mission system computing evolves to address in-
creasingly complex user requirements, run-time variation and
non-periodic activities will become increasingly common. In
addition, required system flexibility, in support of changing
mission conditions, will no longer be achievable with static
modal behavior. Conventional static approaches to scheduling
mission computer activities will not support these increasingly
complex behaviors.

Dynamic scheduling approaches offer potential solu-
tions to these increasingly complex requirements, but at some
run-time cost. The contribution of this work has been the
implementation and analysis of selected dynamic scheduling
algorithms within a strategized scheduling framework. From
this work, we have concluded that the Maximum Urgency First
scheduling algorithm has desirable properties for use within a
mission computing application and acceptable run-time over-
head.

In future work, we plan to measure the run-time cost
of dynamic scheduling in TAO’s scheduling service under a

variety of of operational conditions. Further work will also
explore scheduling in distributed systems. Dynamic schedul-
ing appears to be a prerequisite for distributed system schedul-
ing, due to the loose coupling between operations on separate
processors.
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