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Abstract

There is increasing demand to extend Object Request Bro-
ker (ORB) middleware to support applications with stringent
quality of service (QoS) requirements. However, conventional
ORBs do not define standard features for specifying or enforc-
ing end-to-end QoS for applications with deterministic real-
time requirements. This paper describes the design and per-
formance of a real-time I/O (RIO) subsystem optimized for
QoS-enabled ORB endsystems that support high-performance
and real-time applications running on off-the-shelf hardware
and software. The paper illustrates how integrating a real-
time ORB with a real-time I/O subsystem can reduce latency
bounds on end-to-end communication between high-priority
clients without unduly penalizing low-priority and best-effort
clients.

Keywords: Real-time CORBA Object Request Broker, Qual-
ity of Service for OO Middleware, Real-time I/O Subsystems.

1 Introduction

Object Request Broker (ORB) middleware like CORBA [1]
and DCOM [2] is well-suited for request/response applica-
tions with best-effort quality of service (QoS) requirements.
However, ORB middleware has historically been unsuited for
performance-sensitive, distributed real-time applications. In
general, conventional ORBs suffer from (1) lack of QoS spec-
ification interfaces, (2) lack of QoS enforcement, (3) lack of
real-time programming features, and (4) lack of performance
optimizations [3].

To address these shortcomings, we have developedThe ACE
ORB(TAO) [4]. TAO is a high-performance, real-time ORB

�This work was supported in part by Boeing, NSF grant NCR-9628218,
DARPA contract 9701516, and Sprint.

endsystem targeted for applications with deterministic and sta-
tistical QoS requirements, as well as best effort requirements.
The TAO ORB endsystem contains the network interface, OS,
communication protocol, and CORBA-compliant middleware
components and features shown in Figure 1.
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Figure 1: Components in the TAO Real-time ORB Endsystem

TAO’s real-time I/O (RIO) subsystem runs in the OS ker-
nel. It uses a pool of real-time threads to send/receive requests
to/from clients across high-speed networks or I/O backplanes.
TAO’s ORB Core, Object Adapter, and servants run in user-
space. TAO’s ORB Core contains a pool of real-time threads
that are co-scheduled with the RIO subsystem’s thread pool.
Together, these threads process client requests in accordance
with their QoS requirements. TAO’s Object Adapter uses per-
fect hashing [5] and active demultiplexing [6] to demultiplex
these requests to application-level servant operations in con-
stant,O(1) time.

We have used TAO to research key dimensions of high-
performance and real-time ORB endsystem design including
static [4] and dynamic [7] scheduling, request demultiplex-
ing [6], event processing [8], ORB Core connection and con-
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currency architectures [9], IDL compiler stub/skeleton opti-
mizations [10], and ORB performance [11]. This paper fo-
cuses on an essential, and previously unexamined, dimen-
sion in the real-time ORB endsystem design space:the de-
velopment and analysis of a real-time I/O (RIO) subsystem
that supports QoS requirements for real-time CORBA appli-
cations. This paper extends results in [12] that focus solely
on I/O subsystem performance to illustrate empirically how
the TAO real-time ORB endsystem benefits from our RIO en-
hancements to the Solaris 2.5.1 OS kernel.

The paper is organized as follows: Section 2.2 describes
how the RIO subsystem enhances the Solaris 2.5.1 OS kernel
to support end-to-end QoS for TAO applications; Section 3
presents empirical results from systematically benchmarking
the efficiency and predictability of TAO and RIO over an ATM
network; Section 4 compares RIO with related work; and Sec-
tion 5 presents concluding remarks. For completeness, Ap-
pendix A presents a synopsis of the Solaris real-time schedul-
ing model and communication I/O subsystem.

2 The Design of TAO’s Real-time I/O
Subsystem on Solaris over ATM

In this section, we examine the components that affect the per-
formance and determinism of the RIO subsystem. The main
focus of our research is on alleviating key sources of ORB
endsystem priority inversion to increase application and mid-
dleware determinism.

2.1 Pros and Cons of Solaris for Real-time
ORB Middleware

Below, we outline the pros and cons of using Solaris for real-
time ORB middleware.

2.1.1 Motivation for Using Solaris

TAO’s original real-time I/O subsystem ran over a proprietary
VME backplane protocol integrated into VxWorks running on
a 200 MHz PowerPC CPU [8]. All protocol processing was
performed at interrupt-level in a VxWorks device driver. This
design was optimized for low latency,e.g., one-way ORB
operations were�300 �secs end-to-end, with�100 �secs
spent in the ORB and�secs spent in the OS and VME back-
plane [13].

Unfortunately, the VME backplane driver is not portable to
a broad range of real-time systems. Moreover, it is not suit-
able for more complex transport protocols, such as TCP/IP,
which cannot be processed entirely at interrupt-level without
incurring excessive priority inversion [14]. Therefore, we de-
veloped a real-time I/O (RIO) subsystem that is integrated into

a standard protocol processing framework: theSTREAMS[15]
communication I/O subsystem on Solaris.

We used Solaris as the basis for our research on TAO and
RIO for the following reasons:

Real-time support: Solaris attempts to minimize dispatch
latency [16] for real-time threads. Moreover, its fine-grained
locking of kernel data structures allows bounded thread pre-
emption overhead.

Multi-threading support: Solaris supports a scalable
multi-processor architecture, with both kernel-level (kthreads)
and user-level threads.

Dynamic configurability: Most Solaris kernel components
are dynamically loadable modules, which simplifies debug-
ging and testing of new kernel modules and protocol imple-
mentations.

Compliant to open system standards: Solaris supports the
POSIX 1003.1c [17] real-time programming application pro-
gramming interfaces (APIs), as well as other standard POSIX
APIs for multi-threading [18] and communications.

Tool support: There are many software tools and li-
braries [19] available to develop multi-threaded distributed,
real-time applications on Solaris.

Availability: Solaris is widely used in research and industry.

Kernel source: Sun licenses the source code to Solaris,
which allowed us to modify the kernel to support the multi-
threaded, real-time I/O scheduling class described in Sec-
tion 2.2.

In addition to Solaris, TAO runs on a wide variety of
real-time operating systems, such as LynxOS, VxWorks, and
Sun/Chorus ClassiX, as well as general-purpose operating sys-
tems with real-time extensions, such as Digital UNIX, Win-
dows NT, and Linux. We plan to integrate the RIO subsystem
architecture described in this section into other operating sys-
tems that implement theSTREAMSI/O subsystem architecture.

2.1.2 Limitations of Solaris for Real-time ORB Middle-
ware

Below, we review the limitations of Solaris when it is used as
the I/O subsystem for real-time ORB endsystems.1 These lim-
itations stem largely from the fact that the Solaris RT schedul-
ing class is not well integrated with the SolarisSTREAMS-
based network I/O subsystem. In particular, Solaris only sup-
ports the RT scheduling class for CPU-bound user threads,
which yields the priority inversion hazards for real-time ORB
endsystems described in Sections 2.1.2 and 2.1.2.

1Appendix A outlines the structure and functionality of the existing Solaris
2.5.1 scheduling model and communication I/O subsystem.
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Thread-based priority inversions: Thread-based priority
inversion can occur when a higher priority thread blocks await-
ing a resource held by a lower priority thread [20]. In Solaris,
this type of priority inversion generally occurs when real-time
user threads depend on kernel processing that is performed at
the SYS or INTR priority levels [16, 14, 20]. Priority in-
version may not be a general problem for user applications
with “best-effort” QoS requirements. It is problematic, how-
ever, for real-time applications that require bounded process-
ing times and strict deadline guarantees.

The SolarisSTREAMS framework is fraught with opportu-
nities for thread-based priority inversion, as described below:

� STREAMs-related svc threads: When used inappro-
priately, STREAMS svc functions can yield substantial un-
bounded priority inversion. The reason is thatsvc functions
are called from a kernelsvc thread, known as theSTREAMS

background thread. This thread runs in the SYS scheduling
class with a global priority of 60.

In contrast, real-time threads have priorities ranging from
100 to 159. Thus, it is possible that a CPU-bound RT thread
can starve thesvc thread by monopolizing the CPU. In this
case, thesvc functions for the TCP/IP modules and multi-
plexors will not run, which can cause unbounded priority in-
version.

For example, consider a real-time process control applica-
tion that reads data from a sensor at a rate of 20 Hz and sends
status messages to a remote monitoring system. Because this
thread transmits time-critical data, it is assigned a real-time
priority of 130 by TAO’s run-time scheduler. When this thread
attempts to send a message over a flow-controlled TCP con-
nection, it will be queued in theTCPmodule for subsequent
processing by thesvc function.

Now, assume there is another real-time thread that runs
asynchronously for an indeterminate amount of time respond-
ing to external network management trap events. This asyn-
chronous thread has an RT priority of 110 and is currently ex-
ecuting. In this case, the asynchronous RT thread will prevent
the svc function from running. Therefore, the high-priority
message from the periodic thread will not be processed until
the asynchronous thread completes, which can cause the un-
bounded priority inversion depicted in Figure 2.

In addition, two otherSTREAMS-related system kthreads
can yield priority inversions when used with real-time appli-
cations. These threads run with a SYS priority of 60 and han-
dle the callback functions associated with thebufcall and
qtimeout system functions described in Section A.2. This
problem is further exacerbated by the fact that the priority of
the thread that initially made the buffer request is not consid-
ered when thesesvc threads process the requests on their re-
spective queues. Therefore, it is possible that a lower priority
connection can receive buffer space before a higher priority
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Interrupt thread - protocol processing for low-priority thread

Preempts

High Priority I/O-bound RT thread (130)
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STREAMS thread at SYS priority (60)

Depends on

Figure 2: Common Sources of Priority Inversion in Solaris

connection.

� Protocol processing with interrupt threads: Another
source of thread-based priority inversion in SolarisSTREAMS

occurs when protocol processing of incoming packets is per-
formed in interrupt context. Traditional UNIX implementa-
tions treat all incoming packets with equal priority, regardless
of the priority of the user thread that ultimately receives the
data.

In BSD UNIX-based systems [21], for instance, the in-
terrupt handler for the network driver deposits the incoming
packet in the IP queue and schedules a software interrupt that
invokes theip input function. Before control returns to the
interrupted user process, the software interrupt handler is run
andip input is executed. Theip input function executes
at the lowest interrupt level and processes all packets in its in-
put queue. Only when this processing is complete does control
return to the interrupted process. Thus, not only is the process
preempted, but it will be charged for the CPU time consumed
by input protocol processing.

In STREAMS-based systems, protocol processing can either
be performed at interrupt context (as in Solaris) or withsvc
functions scheduled asynchronously. Usingsvc functions
can yield the unbounded priority inversion described above.
Similarly, processing all input packets in interrupt context can
cause unbounded priority inversion.

Modern high-speed network interfaces can saturate the sys-
tem bus, memory, and CPU, leaving little time available for
application processing. It has been shown that if protocol pro-
cessing on incoming data is performed in interrupt context this
can lead to a condition known asreceive [14]. Livelock is a
condition where the overall endsystem performance degrades
due to input processing of packets at interrupt context. In ex-
treme cases, an endsystem can spend the majority of its time
processing input packets, resulting in little or no useful work
being done. Thus, input livelock can prevent an ORB endsys-
tem from meeting its QoS commitments to applications.

Packet-based priority inversions: Packet-based priority in-
version can occur when packets for high-priority applications
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are queued behind packets for low-priority user threads. In the
Solaris I/O subsystem, for instance, this can occur as a result
of serializing the processing of incoming or outgoing network
packets. To meet deadlines of time-critical applications, it is
important to eliminate, or at least minimize, packet-based pri-
ority inversion.

Although TCP/IP in Solaris is multi-threaded, it incurs
packet-based priority inversion because it enqueues network
data in FIFO order. For example, TAO’s priority-based ORB
Core, described in [12], associates all packets destined for a
particular TCP connection with a real-time thread of the ap-
propriate priority. However, different TCP connections can be
associated with different thread priorities. Therefore, packet-
based priority inversion will result when the OS kernel places
packets from different connections in the same queue and pro-
cesses sequentially. Figure 10 depicts this case, where the
queues shared by all connections reside in the IP multiplexor
and interface driver.

To illustrate this problem, consider an embedded system
where Solaris is used for data collection and fault man-
agement. This system must transmit both (1) high-priority
real-time network management status messages and (2) low-
priority bulk data radar telemetry. For the system to operate
correctly, status messages must be delivered periodically with
strict bounds on latency and jitter. Conversely, the bulk data
transfers occur periodically and inject a large number of radar
telemetry packets into the I/O subsystem, which are queued at
the network interface.

In Solaris, the packets containing high-priority status mes-
sages can be queued in the network interfacebehindthe lower
priority bulk data radar telemetry packets. This situation yields
packet-based priority inversion. Thus, status messages may ar-
rive too late to meet end-to-end application QoS requirements.

2.2 RIO – An Integrated I/O Subsystem for
Real-time ORB Endsystems

Meeting the requirements of distributed real-time applications
requires more than defining QoS interfaces with CORBA IDL
or developing an ORB with real-time thread priorities. Instead,
it requires the integration of the ORB and the I/O subsystem
to provide end-to-end real-time scheduling and real-time com-
munication to CORBA applications. This section describes
how we have developed a real-time I/O (RIO) subsystem for
TAO that alleviates the limitations of Solaris described in Sec-
tion 2.1 by customizing the Solaris 2.5.1 OS kernel to support
real-time network I/O over ATM/IP networks [22].

Enhancing a general-purpose OS like Solaris to support the
QoS requirements of a real-time ORB endsystem like TAO
requires the resolution of the following design challenges:

1. Creating an extensible and predictable I/O subsystem
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Figure 3: Architecture of the RIO Subsystem and Its Relation-
ship to TAO

framework that can integrate seamlessly with a real-time
ORB.

2. Alleviating key sources of packet-based and thread-based
priority inversion.

3. Implementing an efficient and scalable packet classifier
that performs early demultiplexing in the ATM driver.

4. Supporting high-bandwidth network interfaces, such as
the APIC [23].

5. Supporting the specification and enforcement of QoS re-
quirements, such as latency bounds and network band-
width.

6. Providing all these enhancements to applications via the
standardSTREAMSnetwork programming APIs [24].

This section describes the RIO subsystem enhancements
we applied to the Solaris 2.5.1 kernel to resolve these de-
sign challenges. Our RIO subsystem enhancements provide
a highly predictable OS run-time environment for TAO’s inte-
grated real-time ORB endsystem architecture, which is shown
in Figure 3.

Our RIO subsystem enhances Solaris by providing QoS
specification and enforcement features that complement
TAO’s priority-based concurrency and connection architec-
ture [25]. The resulting real-time ORB endsystem contains
user threads and kernel threads that can be scheduled stat-
ically. As described in [4], TAO’s static scheduling service
runs off-line to map periodic thread requirements and task de-
pendencies to a set of real-time global thread priorities. These
priorities are then used on-line by the Solaris kernel’s run-time
scheduler to dispatch user and kernel threads on the CPU(s).

To develop the RIO subsystem and integrate it with TAO,
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we extended our prior work on ATM-based I/O subsystems to
provide the following features:

Early demultiplexing: This feature associates packets with
the correct priorities and a specificSTREAM early in the
packet processing sequence,i.e., in the ATM network inter-
face driver [23]. RIO’s design minimizes thread-based prior-
ity inversion by vertically integrating packets received at the
network interface with the corresponding thread priorities in
TAO’s ORB Core.

Schedule-driven protocol processing: This feature per-
forms all protocol processing in the context of kernel threads
that are scheduled with the appropriate real-time priorities [26,
27, 28, 14]. RIO’s design schedules network interface band-
width and CPU time to minimize priority inversion and de-
crease interrupt overhead during protocol processing.

Dedicated STREAMS: This feature isolates request pack-
ets belonging to different priority groups to minimize FIFO
queueing and shared resource locking overhead [29]. RIO’s
design resolves resource conflicts that can otherwise cause
thread-based and packet-based priority inversions.

A complete description of RIO’s RIO’s components and
features appears in [12]. Section 3.4 summarizes how the fea-
tures in RIO alleviate the limitations with the original Solaris’
I/O subsystem outlined in Section 2.1.

3 Empirical Benchmarking Results

Our earlier work [12] measured the performance of the RIO
subsystem in isolation. This section combines RIO and TAO
to create a vertically integrated real-time ORB endsystem
and then measures the impact on end-to-end performance
when run with prototypical real-time ORB application work-
loads [9].

3.1 Hardware Configuration

Our experiments were conducted using a FORE Systems
ASX-1000 ATM switch connected to two SPARCs: a uni-
processor 300 MHz UltraSPARC2 with 256 MB RAM and a
170 MHz SPARC5 with 64 MB RAM. Both SPARCs ran So-
laris 2.5.1 and were connected via a FORE Systems SBA-200e
ATM interface to an OC3 155 Mbps port on the ASX-1000.
The testbed configuration is shown in Figure 4.
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Figure 4: End-to-End ORB Endsystem Benchmark

3.2 Measuring the End-to-end Real-time Per-
formance of the TAO/RIO ORB Endsystem

3.2.1 Benchmark Design

The benchmark outlined below was performed twice: (1) with-
out RIO,i.e., using the unmodified default Solaris I/O subsys-
tem and (2) using our RIO subsystem enhancements. Both
benchmarks recorded average latency and the standard devi-
ation of the latency values,i.e., jitter. The server and client
benchmarking configurations are described below.

Server benchmarking configuration: As shown in Fig-
ure 4, the server host is the 170 MHz SPARC5. This host runs
the real-time ORB with two servants in the Object Adapter.
The high-priority servant runs in a thread with an RT prior-
ity of 130. Thelow-priority servant runs in a lower priority
thread with an RT thread priority of 100. Each thread pro-
cesses requests sent to it by the appropriate client threads on
the UltraSPARC2. The SPARC5 is connected to a 155 Mpbs
OC3 ATM interface so the UltraSPARC2 can saturate it with
network traffic.

Client benchmarking configuration: As shown in Fig-
ure 4, the client is the 300 MHz, uni-processor UltraSPARC2,
which runs the TAO real-time ORB with one high-priority
client C0 andn low-priority clients,C1. . . Cn. The high-
priority client is assigned an RT priority of 130, which is the
same as the high-priority servant. It invokes two-way CORBA
operations at a rate of 20 Hz.

All low-priority clients have the same RT thread priority of
100, which is the same as the low-priority servant. They in-
voke two-way CORBA operations at 10 Hz. In each call the
client thread sends a value of typeCORBA::Octet to the
servant. The servant cubes the number and returns the result.

The benchmark program creates all the client threads at
startup time. The threads block on a barrier lock until all client
threads complete their initialization. When all threads inform
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the main thread that they are ready, the main thread unblocks
the clients. The client threads then invoke 4,000 CORBA two-
way operations at the prescribed rates.

RIO subsystem configuration: When the RIO subsystem is
used, the benchmark has the configuration shown in Figure 5.
With the RIO subsystem, high- and low-priority requests are

IP IP
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ORB Core
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High Priority VCI = 130

TCP TCP
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Figure 5: ORB Endsystem Benchmarking Configuration

treated separately throughout the ORB and I/O subsystem.
Low-priority client threads transmit requests at 10 Hz.

There are several ways to configure the RIO kthreads. For in-
stance, we could assign one RIO kthread to each low-priority
client. However, the number of low-priority clients varies from
0 to 50. Plus all clients have the same period and send the same
number of requests per period, so they have the same priori-
ties. Thus, only one RIO kthread is used. Moreover, because it
is desirable to treat low-priority messages as best-effort traffic,
the RIO kthread is placed in the system scheduling class and
assigned a global priority of 60.

To minimize latency, high-priority requests are processed
by threads in the Interrupt (INTR) scheduling class. Therefore,
we create two classes of packet traffic: (1) low-latency, high
priority and (2) best-effort latency, low-priority. The high-
priority packet traffic preempts the processing of any low-
priority messages in the I/O subsystem, ORB Core, Object
Adapter, and/or servants.

3.3 Benchmark Results and Analysis

This experiment shows how RIO increases overall determin-
ism for high-priority, real-time applications without sacrific-
ing the performance of best-effort, low-priority, and latency-
sensitive applications. RIO’s impact on overall determinism
of the TAO ORB endsystem is shown by the latency and jitter
results for the high-priority clientC0 and the average latency
and jitter for 0 to 49 low-priority clients,C1 . . . Cn.

Figure 6 illustrates the average latency results for the high-
and low-priority clients both with and without RIO. This figure
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Figure 6: Measured Latency for All Clients with and without
RIO

shows how TAO eliminates many sources of priority inversion
within the ORB. Thus, high-priority client latency values are
relatively constant, compared with low-priority latency values.
Moreover, the high-priority latency values decrease when the
the RIO subsystem is enabled. In addition, the low-priority
clients’ average latency values track the default I/O subsys-
tems behavior, illustrating that RIO does not unduly penalize
best-effort traffic. At 44 and 49 low-priority clients the RIO-
enabled endsystem outperforms the default Solaris I/O subsys-
tem.

Figure 7 presents a finer-grained illustration of the round-
trip latency and jitter values for high-priority client vs. the
number of competing low-priority clients. This figure illus-
trates how not only did RIO decrease average latency, but its
jitter results were substantially better, as shown by the error
bars in the figure. The high-priority clients averaged a 13%
reduction in latency with RIO. Likewise, jitter was reduced by
an average of 51%, ranging from a 12% increase with no com-
peting low-priority clients to a 69% reduction with 44 compet-
ing low-priority clients.

In general, RIO reduced average latency and jitter because
it used RIO kthreads to process low-priority packets. Con-
versely, in the default SolarisSTREAMS I/O subsystem, ser-

6



1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

0 5 10 15 20 25 30 35 40 45 50

m
ic

ro
se

co
nd

s

Number of Clients

Default High Priority Clients
RIO High Priority Client
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vant threads are more likely to be preempted because threads
from the INTR scheduling class are used for all protocol pro-
cessing. Our results illustrate how this preemption can signif-
icantly increase latency and jitter values.

Figure 8 shows the average latency of low-priority client
threads. This figure illustrates that the low-priority clients in-
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Figure 8: Low-priority Client Latency

curred no appreciable change in average latency. There was a
slight increase in jitter for some combinations of clients due to
the RIO kthreads dispatch delays and preemption by the higher
priority message traffic. This result demonstrates how the RIO
design can enhance overall end-to-end predictability for real-
time applications while maintaining acceptable performance
for traditional, best-effort applications.

3.4 Summary of Empirical Results

Our empirical results presented in Section 3 illustrate how RIO
provides the following benefits to real-time ORB endsystems:

1. Reduced latency and jitter: RIO reduces round-trip la-
tency and jitter for real-time network I/O, even during high
network utilization. RIO prioritizes network protocol process-
ing to ensure resources are available when needed by real-time
applications.

2. Enforced bandwidth guarantees: The RIO periodic pro-
cessing model provides network bandwidth guarantees. RIO’s
schedule-driven protocol processing enables an application to
specify periodic I/O processing requirements which are used
to guarantee network bandwidth.

3. Fine-grained resource control: RIO enables fine-
grained control of resource usage,e.g., applications can set
the maximum throughput allowed on a per-connection basis.
Likewise, applications can specify their priority and process-
ing requirements on a per-connection basis. TAO also uses
these specifications to create off-line schedules for statically
configured real-time applications.

4. End-to-end priority preservation: RIO preserves end-
to-end operation priorities by co-scheduling TAO’s ORB Re-
actor threads with RIO kthreads that perform I/O processing.

5. Supports best-effort traffic: RIO supports the four
QoS features described above without unduly penalizing best-
effort, i.e., traditional network traffic. RIO does not mo-
nopolize the system resources used by real-time applica-
tions. Moreover, because RIO does not use a fixed allocation
scheme, resources are available for use by best-effort applica-
tions when they are not in use by real-time applications.

4 Related Work on I/O Subsystems

Our real-time I/O (RIO) subsystem incorporates advanced
techniques [30, 23, 28, 29, 31] for high-performance and real-
time protocol implementations. This section compares RIO
with related work on I/O subsystems.

I/O subsystem support for QoS: The Scout OS [32, 33]
employs the notion of apath to expose the state and resource
requirements of all processing components in aflow. Simi-
larly, our RIO subsystem reflects the path principle and in-
corporates it with TAO and Solaris to create a vertically inte-
grated real-time ORB endsystem. For instance, RIO subsys-
tem resources like CPU, memory, and network interface and
network bandwidth are allocated to an application-level con-
nection/thread during connection establishment, which is sim-
ilar to Scout’s binding of resources to a path.

Scout represents a fruitful research direction, which is com-
plementary with our emphasis on demonstrating similar ca-
pabilities in existing operating systems, such as Solaris and
NetBSD [26]. At present, paths have been used in Scout
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largely for MPEG video decoding and display and not for pro-
tocol processing or other I/O operations. In contrast, we have
successfully used RIO for a number of real-time avionics ap-
plications [8] with deterministic QoS requirements.

SPIN [34, 35] provides an extensible infrastructure and a
core set of extensible services that allow applications to safely
change the OS interface and implementation. Application-
specific protocols are written in a typesafe language,Plexus,
and configured dynamically into the SPIN OS kernel. Because
these protocols execute within the kernel, they can access net-
work interfaces and other OS system services efficiently. To
the best of our knowledge, however, SPIN does not support
end-to-end QoS guarantees.

Enhanced I/O subsystems: Other related research has fo-
cused on enhancing performance and fairness of I/O subsys-
tems, though not specifically for the purpose of providing real-
time QoS guarantees. These techniques are directly applicable
to designing and implementing real-time I/O and providing
QoS guarantees, however, so we compare them with our RIO
subsystem below.

[29] applies several high-performance techniques to a
STREAMS-based TCP/IP implementation and compares the
results to a BSD-based TCP/IP implementation. This work
is similar to RIO, because Roca and Diot parallelize their
STREAMS implementation and use early demultiplexing and
dedicatedSTREAMS, known as Communication Channels
(CC). The use of CC exploits the built-in flow control mech-
anisms ofSTREAMS to control how applications access the
I/O subsystem. This work differs from RIO in that it focuses
entirely on performance issues and not sources of priority in-
version. For example, minimizing protocol processing in in-
terrupt context is not addressed.

[14, 28] examines the effect of protocol processing with in-
terrupt priorities and the resulting priority inversions and live-
lock [14]. Both approaches focus on providing fairness and
scalability under network load. In [28], a network I/O sub-
system architecture calledlazy receiver processing(LRP) is
used to provide stable overload behavior. LRP uses early
demultiplexing to classify packets, which are then placed
into per-connection queues or on network interface channels.
These channels are shared between the network interface and
OS. Application threads read/write from/to network interface
channels so input and output protocol processing is performed
in the context of application threads. In addition, a scheme
is proposed to associate kernel threads with network interface
channels and application threads in a manner similar to RIO.
However, LRP does not provide QoS guarantees to applica-
tions.

[14] proposed a somewhat different architecture to min-
imize interrupt processing for network I/O. They propose a
polling strategy to prevent interrupt processing from consum-

ing excessive resources. This approach focuses on scalability
under heavy load. It did not address QoS issues, however, such
as providing per-connection guarantees for fairness or band-
width, nor does it charge applications for the resources they
use. It is similar to our approach, however, in that (1) inter-
rupts are recognized as a key source of non-determinism and
(2) schedule-driven protocol processing is proposed as a solu-
tion.

While RIO shares many elements of the approaches de-
scribed above, we have combined these concepts to create the
first vertically integrated real-time ORB endsystem. The re-
sulting ORB endsystem provides scalable performance, peri-
odic processing guarantees and bounded latency, as well as an
end-to-end solution for real-time distributed object computing
middleware and applications.

5 Concluding Remarks

This paper focuses on the design and performance of a real-
time I/O (RIO) subsystem that enhances the Solaris 2.5.1 ker-
nel to enforce the QoS features of the TAO ORB endsystem.
RIO provides QoS guarantees for vertically integrated ORB
endsystems in order to increase (1) throughput and latency per-
formance and (2) end-to-end determinism. RIO supports peri-
odic protocol processing, guarantees I/O resources to applica-
tions, and minimizes the effect of flow control in aSTREAM.

A novel feature of the RIO subsystem is its integration of
real-time scheduling and protocol processing, which allows
RIO to support guaranteed bandwidth and low-delay applica-
tions. To accomplish this, we extended the concurrency archi-
tecture and thread priority mechanisms of TAO into the RIO
subsystem. This design minimizes sources of priority inver-
sion that cause non-determinism.

We learned the following lessons from our integration of
RIO and TAO:

Vertical integration of ORB endsystems is essential for
end-to-end priority preservation: Conventional operating
systems and ORBs do not provide adequate support for the
QoS requirements of distributed, real-time applications. Meet-
ing these needs requires a vertically integrated ORB endsys-
tem that can deliver end-to-end QoS guarantees at multiple
levels. The ORB endsystem described in this paper addresses
this need by combining a real-time I/O (RIO) subsystem with
the TAO ORB Core [9] and Object Adapter [36], which are
designed explicitly to preserve end-to-end QoS properties in
distributed real-time systems [10].

Schedule-driven protocol processing reduces jitter signifi-
cantly: After integrating RIO with TAO, we measured a sig-
nificant reduction in average latency and jitter. Moreover, the
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latency and jitter of low-priority traffic were not affected ad-
versely. Our results illustrate how configuring asynchronous
protocol processing [37] strategies in the Solaris kernel can
provide significant improvements in ORB endsystem behav-
ior, compared with the conventional Solaris I/O subsystem.
As a result of our RIO enhancements to Solaris, TAO is the
first ORB to support end-to-end QoS guarantees over ATM/IP
networks [22].

The TAO and RIO integration focused initially on stati-
cally scheduled applications with deterministic QoS require-
ments. we have subsequently extended the TAO ORB end-
system to support dynamic scheduling [7] and applications
with statistical QoS requirements. The C++ source code
for ACE, TAO, and our benchmarks is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html . The RIO
subsystem is available to Solaris source licensees.

The TAO research effort has influenced the OMG Realtime
CORBA specification [38], which was recently adopted as a
CORBA standard. We continue to track the process of this
standard and to contribute its evolution.
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A Overview of Solaris

The Solaris kernel is apreemptive, multi-threaded, real-time,
and dynamically loadedimplementation of UNIX SVR4 and
POSIX. It is designed to work on uni-processors and shared
memory symmetric multi-processors. Solaris contains a real-
time nucleus that supports multiple threads of control in the
kernel. Most control flows in the kernel, including interrupts,
are threaded [39]. Below, we summarize the Solaris schedul-
ing model and communication I/O subsystem.

A.1 Synopsis of the Solaris Scheduling Model

Scheduling classes: Solaris extends the traditional UNIX
time-sharing scheduler [21] to provide a flexible framework
that allows dynamic linking of customscheduling classes. For
instance, it is possible to implement a new scheduling policy
as a scheduling class and load it into a running Solaris kernel.
By default, Solaris supports the four scheduling classes shown
ordered by decreasing global scheduling priority below:

Scheduling Class Priorities Typical purpose

Interrupt (INTR) 160-169 Interrupt Servicing
Real-Time (RT) 100 - 159 Fixed priority scheduling
System (SYS) 60-99 OS-specific threads
Time-Shared (TS) 0-59 Time-Shared scheduling

The Time-Sharing (TS)2 class is similar to the traditional
UNIX scheduler [21], with enhancements to support interac-
tive windowing systems. The System class (SYS) is used to
schedule system kthreads, including I/O processing, and is not
available to user threads. The Real-Time (RT) scheduling class
uses fixed priorities above the SYS class. Finally, the highest
system priorities are assigned to the Interrupt (INTR) schedul-
ing class [39].

By combining a threaded, preemptive kernel with a fixed
priority real-time scheduling class, Solaris attempts to pro-
vide a worst-case bound on the time required to dispatch user
threads or kernel threads [16]. The RT scheduling class sup-
ports both Round-Robin and FIFO scheduling of threads. For
Round-Robin scheduling, a time quantum specifies the maxi-
mum time a thread can run before it is preempted by another
RT thread with the same priority. For FIFO scheduling, the
highest priority thread can run for as long as it chooses, until
it voluntarily yields control or is preempted by an RT thread
with a higher priority.

Timer mechanisms: Many kernel components use the So-
laris timeout facilities. To minimize priority inversion, So-
laris separates its real-time and non-real-time timeout mecha-
nisms [16]. This decoupling is implemented via two callout
queue timer mechanisms: (1)realtime timeout , which
supports real-time callouts and (2)timeout , which supports
non-real-time callouts.

The real-time callout queue is serviced at the lowest inter-
rupt level, after the current clock tick is processed. In con-
trast, the non-real-time callout queue is serviced by a thread
running with a SYS thread priority of 60. Therefore, non-real-
time timeout functions cannot preempt threads running in the
RT scheduling class.

A.2 Synopsis of the Solaris Communication I/O
Subsystem

The Solaris communication I/O subsystem is an enhanced
version of the SVR4STREAMS framework [15] with proto-
cols like TCP/IP implemented usingSTREAMS modules and
drivers.STREAMSprovides a bi-directional path between user
threads and kernel-resident drivers. In Solaris, theSTREAMS

framework has been extended to support multiple threads of
control within aSTREAM [40].

Below, we outline the key components of theSTREAMS

framework and describe how they affect communication I/O
performance and real-time determinism.

2In this discussion we include the Interactive (IA) class, which is used
primarily by Solaris windowing systems, with the TS class because they share
the same range of global scheduling priorities.
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General structure of a STREAM: A STREAM is composed
of a STREAM head, a driver and zero or more modules linked
together by read queues (RQ) and write queues (WQ), as
shown in Figure 9. TheSTREAM head provides an interface
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Figure 9: General Structure of a STREAM

between a user process and a specific instance of aSTREAM

in the kernel. It copies data across the user/kernel boundary,
notifies user threads when data is available, and manages the
configuration of modules into aSTREAM.

Each module and driver must define a set of entry points that
handleopen /close operations and processSTREAM mes-
sages. The message processing entry points areput andsvc ,
which are referenced through the read and write queues. The
put function provides the mechanism to send messagessyn-
chronouslybetween modules, drivers, and theSTREAM head.

In contrast, thesvc function processes messagesasyn-
chronouslywithin a module or driver. A background thread
in the kernel’s SYS scheduling class runssvc functions at
priority 60. In addition,svc functions will run after certain
STREAMS-related system calls, such asread , write , and
ioctl . When this occurs, thesvc function runs in the con-
text of the thread invoking the system call.

Flow control: Each module can specify a high and low wa-
termark for its queues. If the number of enqueued messages
exceeds theHIGH WATERMARK theSTREAM enters the flow-
controlled state. At this point, messages will be queued up-
stream or downstream until flow control abates.

For example, assume aSTREAM driver has queued
HIGH WATERMARK+1 messages on its write queue. The first
module atop the driver that detects this will buffer messages
on its write queue, rather than pass them downstream. Be-
cause theSTREAM is flow-controlled, thesvc function for
the module will not run. When the number of messages on
the driver’s write queue drops below theLOW WATERMARK

theSTREAM will be re-enable automatically. At this point, the
svc function for this queue will be scheduled to run.

STREAM Multiplexors: Multiple STREAMS can be linked
together using a special type of driver called amultiplexor.
A multiplexor acts like a driver to modules above it and as
a STREAM head to modules below it. Multiplexors enable
theSTREAMSframework to support layered network protocol
stacks [24].

Figure 10 shows how TCP/IP is implemented using the So-
laris STREAMS framework. IP behaves as a multiplexor by
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Figure 10: Conventional Protocol Stacks in SolarisSTREAMS

joining different transport protocols with one or more link
layer interfaces. Thus, IP demultiplexes both incoming and
outgoing datagrams.

Each outgoing IP datagram is demultiplexed by locating
its destination address in the IP routing table, which deter-
mines the network interface it must be forwarded to. Likewise,
each incoming IP datagram is demultiplexed by examining the
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transport layer header in aSTREAMS message to locate the
transport protocol and port number that designates the correct
upstream queue.

Multi-threaded STREAMs: Solaris STREAMS allows mul-
tiple kernel threads to be active inSTREAMS I/O modules,
drivers, and multiplexors concurrently [41]. This multi-
threadedSTREAMSframework supports several levels of con-
currency, which are implemented using theperimeters[40]
shown below:

Per-module with single threading
Per-queue-pair single threading
Per-queue single threading
Any of the above with unrestrictedput and svc
Unrestricted concurrency

In Solaris, the concurrency level of IP is “per-module” with
concurrentput , TCP andsockmod are “per-queue-pair,”
and UDP is “per-queue-pair” with concurrentput . These
perimeters provide sufficient concurrency for common use-
cases. However, there are cases where IP must raise its locking
level when manipulating global tables, such as the IP routing
table. When this occurs, messages entering the IP multiplexor
are placed on a special queue and processed asynchronously
when the locking level is lowered [40, 39].

Callout queue callbacks: The SolarisSTREAMSframework
provides functions to set timeouts and register callbacks. The
qtimeout function adds entries to the standard non-real-
time callout queue. This queue is serviced by a system thread
with a SYS priority of 60, as described in Section A.1. So-
laris TCP and IP use this callout facility for their protocol-
specific timeouts, such as TCP keepalive and IP fragmenta-
tion/reassembly.

Another mechanism for registering a callback function is
bufcall . Thebufcall function registers a callback func-
tion that is invoked when a specified size of buffer space be-
comes available. For instance, when buffers are unavailable,
bufcall is used by aSTREAM queue to register a function,
such asallocb , which is called back when space is available
again. These callbacks are handled by a system thread with
priority SYS 60.

Network I/O: The Solaris network I/O subsystem provides
service interfaces that reflect the OSI reference model [24].
These service interfaces consist of a collection of primitives
and a set of rules that describe the state transitions.

Figure 10 shows how TCP/IP is structured in the Solaris
STREAMSframework. In this figure, UDP and TCP implement
the Transport Protocol Interface (TPI) [42], IP the Network
Provider Interface (NPI) [43] and ATM driver the Data Link
Provider Interface (DLPI) [44]. Service primitives are used
(1) to communicate control (state) information and (2) to pass

data messages between modules, the driver, and theSTREAM

head.
Data messages (as opposed to control messages) in the So-

laris network I/O subsystem typically follow the traditional
BSD model. When a user thread sends data it is copied into
kernel buffers, which are passed through theSTREAM head to
the first module. In most cases, these messages are then passed
through each layer and into the driver through a nested chain
of put s [40]. Thus, the data are sent to the network interface
driver within the context of the sending process and typically
are not processed asynchronously by modulesvc functions.
At the driver, the data are either sent out immediately or are
queued for later transmission if the interface is busy.

When data arrive at the network interface, an interrupt is
generated and the data (usually referred to as a frame or
packet) is copied into kernel buffer. This buffer is then passed
up through IP and the transport layer in interrupt context,
where it is either queued or passed to theSTREAM head via
the socket module. In general, the use ofsvc functions is
reserved for control messages or connection establishment.
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