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There is increasing demand to extend Object Request Bro
ker (ORB) middleware to support applications with stringen
quality of service (QoS) requirements. However, conventionz
ORBs do not define standard features for specifying or enforc-
ing end-to-end QoS for applications with deterministic real- Y
time requirements. This paper describes the design and per- IDL
formance of a real-time I/O (RIO) subsystem optimized for
QoS-enabled ORB endsystems that support high-performa
and real-time applications running on off-the-shelf hardwarg
and software. The paper illustrates how integrating a real
time ORB with a real-time I/O subsystem can reduce lateng
bounds on end-to-end communication between high-priori
clients without unduly penalizing low-priority and best-effort]
clients.
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Figure 1: Components in the TAO Real-time ORB Endsystem
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1 Introduction TAO's real-time /0O (RIO) subsystem runs in the OS ker-
nel. It uses a pool of real-time threads to send/receive requests

Object Request Broker (ORB) middleware like CORBA [Ih/from clients across high-speed networks or 1/0 backplanes.
and DCOM [2] is well-suited for request/response applicga0's ORB Core, Object Adapter, and servants run in user-
tions with best-effort quality of service (QoS) requirementgpace. TAO's ORB Core contains a pool of real-time threads
However, ORB middleware has historically been unsuited f@iat are co-scheduled with the RIO subsystem’s thread pool.
performance-sensitive, distributed real-time applications. f8gether, these threads process client requests in accordance
general, conventional ORBs suffer from (1) lack of QoS spegith their QoS requirements. TAO's Object Adapter uses per-
ification interfaces, (2) lack of QoS enforcement, (3) lack @dct hashing [5] and active demultiplexing [6] to demultiplex
real-time programming features, and (4) lack of performangrse requests to application-level servant operations in con-
optimizations [3]. stant,0(1) time.

To address these shortcomings, we have develdpedCE e have used TAO to research key dimensions of high-
ORB(TAO) [4]. TAO is a high-performance, real-time ORByerformance and real-time ORB endsystem design including

*This work was supported in part by Boeing, NSF grant NCR—962821.%t,atiC [4] and dynamip [7] scheduling, request Qemultiplex-
DARPA contract 9701516, and Sprint. ing [6], event processing [8], ORB Core connection and con-




currency architectures [9], IDL compiler stub/skeleton optstandard protocol processing framework: sheEAMS[15]
mizations [10], and ORB performance [11]. This paper faommunication I/O subsystem on Solaris.
cuses on an essential, and previously unexamined, dimenAle used Solaris as the basis for our research on TAO and
sion in the real-time ORB endsystem design spabe: de- RIO for the following reasons:
velopment and analysis of a real-time 1/0O (RIO) subsystﬁn
I
t

that supports QoS requirements for real-time CORBA a €al-time support Solaris attempts to m‘”".“‘”? dispa.tch
PP Q d b ency [16] for real-time threads. Moreover, its fine-grained

cations. This paper extends results in [12] that focus sole@ Ki f Kk | data struct I bounded thread
on 1/O subsystem performance to illustrate empirically ho £King of kernel data structures aflows bounded thread pre-

the TAO real-time ORB endsystem benefits from our RIO eﬂr_nptmn overhead.

hancements to the Solaris 2.5.1 OS kernel. Multi-threading support:  Solaris supports a scalable
The paper is organized as follows: Section 2.2 describgglti-processor architecture, with both kernel-level (kthreads)

how the RIO subsystem enhances the Solaris 2.5.1 OS ke#pel user-level threads.

to support end-to-end QoS for TAO applications; Section 3 ] ) B )

presents empirical results from systematically benchmarkiRynamic configurability: - Most Solaris kernel components

the efficiency and predictability of TAO and RIO over an ATM€ dynamically loadable modules, which simplifies debug-

network; Section 4 compares RIO with related work; and S&Ng and testing of new kernel modules and protocol imple-

tion 5 presents concluding remarks. For completeness, Apgntations.

pendix A presents a synopsis of the Solaris real-time schedtmpliant to open system standards: Solaris supports the
ing model and communication I/O subsystem. POSIX 1003.1c [17] real-time programming application pro-
gramming interfaces (APIs), as well as other standard POSIX

2 The Design of TAO’s Real-time 1/O APIs for multi-threading [18] and communications.

: Tool support: There are many software tools and li-
SUbSyStem on Solaris over ATM braries [19] available to develop multi-threaded distributed,

In this section, we examine the components that affect the ﬂgﬁl't'me applications on Solaris.

formance and determinism of the RIO subsystem. The maiilability: ~ Solaris is widely used in research and industry.
focus of our research is on alleviating key sources of ORB

endsystem priority inversion to increase application and mf§emel source:  Sun licenses the source code to Solaris,
dleware determinism. which allowed us to modify the kernel to support the multi-

threaded, real-time 1/0O scheduling class described in Sec-

) . tion2.2.
2.1 Pros and Cons of Solaris for Real-time on

ORB Middleware In addition to Solaris, TAO runs on a wide variety of
. _ _ real-time operating systems, such as LynxOS, VxWorks, and
Below, we outline the pros and cons of using Solaris for re@yn/Chorus ClassiX, as well as general-purpose operating sys-

time ORB middleware. tems with real-time extensions, such as Digital UNIX, Win-
dows NT, and Linux. We plan to integrate the RIO subsystem
2.1.1 Motivation for Using Solaris architecture described in this section into other operating sys-

e . . __temsthatimplement th€rREAMSI/O subsystem architecture.
TAQ's original real-time I/O subsystem ran over a proprietary

VME backplane protocol integrated into VxWorks running on

a 200 MHz PowerPC CPU [8] All protoco' processing We%lz Limitations Of Solaris for Real'time ORB M|dd|e-
performed at interrupt-level in a VxWorks device driver. This ware

design was optimized for low latencg.g, one-way ORB
operations were~300 usecs end-to-end, with-100 psecs
spent in the ORB angsecs spent in the OS and VME bac

plane [13]. in . : . .
. g class is not well integrated with the SolaBSREAMS
Unfortunately, the VME backplane driver is not portable tfi’ased network 1/0 subsystem. In particular, Solaris only sup-

a broad range of real-time systems. Moreover, it is not S'&?rts the RT scheduling class for CPU-bound user threads,

ab[e for more complex transpo_rt proto_cols, such as TCP hich yields the priority inversion hazards for real-time ORB
which cannot be processed entirely at interrupt-level witho : in Sections 2.1.2 and 2.1.2

incurring exceS_Sive priority inversion [14]. Thgrgfore, we C_Ie' 1Appendix A outlines the structure and functionality of the existing Solaris
veloped a real-time 1/0O (RIO) subsystem that is integrated irz6.1 scheduling model and communication 1/O subsystem.

Below, we review the limitations of Solaris when it is used as
the 1/0 subsystem for real-time ORB endsystéridhiese lim-
itations stem largely from the fact that the Solaris RT schedul-



Thread-based priority inversions: Thread-based priority| |nterrupt INTR)

. ) - o - élnterrupt thread - protocol processing for low-priority thread
inversion can occur when a higher priority thread blocks aw

ing a resource held by a lower priority thread [20]. In Solar . Preempts
this type of priority inversion generally occurs when real-tin  R€a-Tme RT) | L i Vombound RT thread (130)
user threads depend on kernel processing that is performe Depends o

- éLow-Priority CPU-bound RT thread (110)

the SYS or INTR priority levels [16, 14, 20]. Priority ini
version may not be a general problem for user applicati{ gysiem (sys)
with “best-effort” QoS requirements. It is problematic, hov
ever, for real-time applications that require bounded proceg Time-Shared (TS)
ing times and strict deadline guarantees.

_The SolarissTREAMS framework is fraught with opportu- g e 2: common Sources of Priority Inversion in Solaris
nities for thread-based priority inversion, as described below:

- gSTREAMS thread at SYS priority (60)

e STREAMs-related svc threads: When used inappro- .nnection.
priately, STREAMS svc functions can yield substantial un- _ o
bounded priority inversion. The reason is teat functions  Protocol processing with interrupt threads: ~ Another
are called from a kernavc thread, known as theTREams Source of thread-based priority inversion in Sol&TREAMS
background thread. This thread runs in the SYS schedulffgurs when protocol processing of incoming packets is per-
class with a global priority of 60. formed in interrupt context. Traditional UNIX implementa-

In contrast, real-time threads have priorities ranging froli@ns treat all incoming packets with equal priority, regardless
100 to 159. Thus, it is possible that a CPU-bound RT thregfjthe priority of the user thread that ultimately receives the
can starve thevc thread by monopolizing the CPU. In thidlata. _ _
case, thesvc functions for the TCP/IP modules and multi- " BSD UNIX-based systems [21], for instance, the in-
plexors will not run, which can cause unbounded priority iterrupt handler for the network driver deposits the incoming
version. packet in the IP queue and schedules a software interrupt that

For example, consider a real-time process control app"&\(okes thdp _input function. Before cpntrol returns to the
tion that reads data from a sensor at a rate of 20 Hz and sdRiTUPted user process, the software interrupt handler is run
status messages to a remote monitoring system. Becaus -input is executed. Thip -input  function executes
thread transmits time-critical data, it is assigned a real-tirfdgthe lowestinterrupt level and processes all packets in its in-
priority of 130 by TAO's run-time scheduler. When this threal/t quéue. Only when this processing is complete does control
attempts to send a message over a flow-controlled TCP c&furm to the interrupted process. Thus, not only is the process
nection, it will be queued in th&CP module for subsequentPréempted, butit will be charged for the CPU time consumed

processing by thevc function. by input protocol processing.

Now, assume there is another real-time thread that rﬁnén STREAMSbased systems, protocol processing can either

asynchronously for an indeterminate amount of time respo &_performed at interrupt context (as in Solaris) or vetie

ing to external network management trap events. This as _ctipns scheduled asynchronogsly. ps'mgp fqnctions
chronous thread has an RT priority of 110 and is currently an yield the unbounded priority inversion described above.

ecuting. In this case, the asynchronous RT thread will prevatiilarty. processing all input packets in interrupt context can
thesvc function from running. Therefore, the high-priorit)Pause unbounded priority inversion.

message from the periodic thread will not be processed untiModern high-speed network interfaces can saturate the sys-

the asynchronous thread completes, which can cause the'gfi. Pus, memory, and CPU, leaving little time available for

bounded priority inversion depicted in Figure 2. application processing. It has been shown that if protocol pro-

In addition, two othersTREAMS-related system kthreag<€SSINg onincoming data is performed in interrupt context this

can yield priority inversions when used with real-time appﬁ:—an lead to a condition known asceive [14]. Livelockis a

cations. These threads run with a SYS priority of 60 and hE%-:;gndition where the overall endsystem performance degrades

dle the callback functions associated with thécall and 9Y€ to input processing of packets at interrupt context. In ex-

gtimeout system functions described in Section A.2. Thigeme cases, an endsystem can spend the majority of its time

problem is further exacerbated by the fact that the priority Eiocessmg input packets, resulting in little or no useful work

the thread that initially made the buffer request is not cons 2ing done. Thus,. input livelock can prevent an OR_B endsys-
ered when thessvc threads process the requests on their rlg_m from meeting its Q0S commitments to applications.
spective queues. Therefore, it is possible that a lower priofRgcket-based priority inversions: Packet-based priority in-
connection can receive buffer space before a higher priofsrsion can occur when packets for high-priority applications



are queued behind packets for low-priority user threads. Inftbg-time
Solaris I/0 subsystem, for instance, this can occur as a ré4tgtEndsystem TSClass TS Class
of serializing the processing of incoming or outgoing network

3 3
packets. To meet deadlines of time-critical applications, it is I?rlgﬁ]ge?,\k,)c',?kpmmo I

important to eliminate, or at least minimize, packet-based fiing =y ] i WBestEﬁo,&‘ X
ority inversion. RIO uDPrTCP uoprice| [ UBRTCP] [ uberrce
. . . . . <timers> <timers> < > < >
Although TCP/IP in Solaris is multi-threaded, it incur wQ 1Q wQ_1Q ve 19 wQ_Q
packet-based priority inversion because it enqueues Netw (s eauer ¢ ¢ ¢ ¢ \ \ / /
data in FIFO order. For example, TAO's priority-based OR | RuSieep Queugs  [w@  1Q wQ 5 wtipleror 0
. . . . thread0 IP - Mod IP - Mod (routing tables)
Core, described in [12], associates all packets destined f¢| |Theads wQ 1
particular TCP connection with a real-time thread of the g| = $ Tg ha i T ez ¢ ii Yool
propriate priority. However, different TCP connections can HoH O Ho
associated with different thread priorities. Therefore, pack | rio scheduier \\ ...... ///7
based priority inversion will result when the OS kernel plac APIC flow demux

packets from different connections in the same queue and pro-
cesses sequentially. -Figure ,10 deplgts 'Fh's case, wh.ere re 3: Architecture of the RIO Subsystem and Its Relation-
gueues shared by all connections reside in the IP mult|ple§ﬂ
. . p to TAO
and interface driver.
To illustrate this problem, consider an embedded system
where Solaris is used for data collection and fault man- framework that can integrate seamlessly with a real-time
agement. This system must transmit both (1) high-priority ORB.
re?‘".“me network management status messages and (2) IO\%' Alleviating key sources of packet-based and thread-based
priority bulk data radar telemetry. For the system to operate”™ .~ " )
. o .~ priority inversion.
correctly, status messages must be delivered periodically with . N B
strict bounds on latency and jitter. Conversely, the bulk dat&. Implementing an efficient and scalable packet classifier
transfers occur periodically and inject a large number of radar that performs early demultiplexing in the ATM driver.
telemetry packets into the I/O subsystem, which are queued gt sypporting high-bandwidth network interfaces, such as
the network interface. the APIC [23].
In Solaris, the packets containing high-priority status mes- ) o
sages can be queued in the network intertaefgindthe lower 5. Su_pportlng the specification and enforcement of QoS re-
priority bulk data radar telemetry packets. This situation yields duirements, such as latency bounds and network band-
packet-based priority inversion. Thus, status messages may ar- width.
rive too late to meet end-to-end application QoS requirements. Providing all these enhancements to applications via the
standards TREAMS network programming APls [24].

2.2 RIO — An Integrated l/O Subsystem for This section describes the RIO subsystem enhancements

Real-time ORB Endsystems we applied to the Solaris 2.5.1 kernel to resolve these de-

Meeting the requirements of distributed real-time applicatiof§n challenges. Our RIO subsystem enhancements provide
requires more than defining QoS interfaces with CORBA |D& highly predictable OS run-time environment for TAO’s inte-
or developing an ORB with real-time thread priorities. Instea@fated real-time ORB endsystem architecture, which is shown
it requires the integration of the ORB and the 1/0 subsystdfFigure 3.
to provide end-to-end real-time scheduling and real-time com©Our RIO subsystem enhances Solaris by providing QoS
munication to CORBA applications. This section describ&Becification and enforcement features that complement
how we have developed a real-time 1/0 (RIO) subsystem foAO’s priority-based concurrency and connection architec-
TAO that alleviates the limitations of Solaris described in Selgire [25]. The resulting real-time ORB endsystem contains
tion 2.1 by customizing the Solaris 2.5.1 OS kernel to suppdger threads and kernel threads that can be scheduled stat-
real-time network I/0 over ATM/IP networks [22]. ically. As described in [4], TAO's static scheduling service
Enhancing a general-purpose OS like Solaris to support fH8s off-line to map periodic thread requirements and task de-
QoS requirements of a real-time ORB endsystem like TAT®ndencies to a set of real-time global thread priorities. These

requires the resolution of the f0||owing design Cha”enges: priorities are then used on-line by the Solaris kernel's run-time
scheduler to dispatch user and kernel threads on the CPU(s).

1. Creating an extensible and predictable 1/0 subsystenTo develop the RIO subsystem and integrate it with TAO,



we extended our prior work on ATM-based 1/O subsystem:
provide the following features: }

Early demultiplexing:  This feature associates packetsw |__LI—|
the correct priorities and a specif&€rREAM early in the ST
packet processing sequence,, in the ATM network inter- Ultra e
face driver [23]. RIO’s design minimizes thread-based pri )
ity inversion by vertically integrating packets received at 1 ATM Switch
network interface with the corresponding thread priorities
TAO'’s ORB Core.

0C3
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Schedule-driven protocol processing: This feature per-
forms all protocol processing in the context of kernel threads ~Figure 4: End-to-End ORB Endsystem Benchmark
that are scheduled with the appropriate real-time priorities [26,

27, 28, 14]. RIO’s design schedules network interface bang- . .
width and CPU time to minimize priority inversion and de-r}g2 Measuring the End-to-end Real-time Per-

crease interrupt overhead during protocol processing. formance of the TAO/RIO ORB Endsystem
3.2.1 Benchmark Design

Dedicated STREAMS:  This feature isolates request pacghe benchmark outlined below was performed twice: (1) with-

ets be_Iongmg to different priority groups to minimize FIF ut RIO,i.e,, using the unmodified default Solaris 1/0 subsys-
gueueing and shared resource locking overhead [29]. RIO’S .

. . : em and (2) using our RIO subsystem enhancements. Both
design resolves resource conflicts that can otherwise ¢

use .
thread-based and packet-based priority inversions. efchmarks recorded average latency and the standard devi-

ation of the latency values.e,, jitter. The server and client

. benchmarking configurations are described below.
A complete description of RIO’s RIO’s components and g g

features appears in [12]. Section 3.4 summarizes how the f@arver benchmarking configuration: As shown in Fig-
tures in RIO alleviate the limitations with the original Solarigire 4, the server host is the 170 MHz SPARCS. This host runs
I/O subsystem outlined in Section 2.1. the real-time ORB with two servants in the Object Adapter.
The high-priority servant runs in a thread with an RT prior-
ity of 130. Thelow-priority servant runs in a lower priority
o . thread with an RT thread priority of 100. Each thread pro-
3 Emplrlcal Benchmarklng Results cesses requests sent to it by the appropriate client threads on
the UltraSPARC2. The SPARCS is connected to a 155 Mpbs

Our earlier work []_2] measured the performance of the R@:; ATM interface so the UltraSPARC2 can saturate it with
subsystem in isolation. This section combines RIO and TA®twork traffic.
to create a vertically integrated real-time ORB endsyste®jont benchmarking configuration: As shown in Fig-
and then measures the impact on end-to-end performafee, the client is the 300 MHz, uni-processor UltraSPARC2,
when run with prototypical real-time ORB application workg hich runs the TAO real-time ORB with one high-priority
loads [9]. client Cy andn low-priority clients, C... C,. The high-
priority client is assigned an RT priority of 130, which is the
same as the high-priority servant. It invokes two-way CORBA
3.1 Hardware Configuration operations at a rate of 20 Hz.
All low-priority clients have the same RT thread priority of
Our experiments were conducted using a FORE Systeh®, which is the same as the low-priority servant. They in-
ASX-1000 ATM switch connected to two SPARCs: a univoke two-way CORBA operations at 10 Hz. In each call the
processor 300 MHz UltraSPARC2 with 256 MB RAM and alient thread sends a value of ty@ORBA::Octet to the
170 MHz SPARCS5 with 64 MB RAM. Both SPARCs ran Soservant. The servant cubes the number and returns the result.
laris 2.5.1 and were connected via a FORE Systems SBA-200€he benchmark program creates all the client threads at
ATM interface to an OC3 155 Mbps port on the ASX-100Gtartup time. The threads block on a barrier lock until all client
The testbed configuration is shown in Figure 4. threads complete their initialization. When all threads inform



the main thread that they are ready, the main thread unblodk8 Benchmark Results and Analysis

the clients. The client threads then invoke 4,000 CORBA two- . . . .
way operations at the prescribed rates. This experiment shows how RIO increases overall determin-

ism for high-priority, real-time applications without sacrific-
RIO subsystem configuration: When the RIO subsystem ising the performance of best-effort, low-priority, and latency-
used, the benchmark has the configuration shown in Figure@nsitive applications. RIO’s impact on overall determinism
With the RIO subsystem, high- and low-priority requests apéthe TAO ORB endsystem is shown by the latency and jitter
results for the high-priority clienf, and the average latency
Ultra2 SPARC5 and jitter for O to 49 low-priority clients(; ... C,,.

Client Application Figure 6 illustrates the average latency results for the high-
Server ORB Core L . . . .
e e and low-priority clients both with and without RIO. This figure
ORB Core - - 12000 '
Deffaul} High Pri JrityC:iems B
Default Law Priority Clients,
’El‘ 10000 [0 HigH P |or|{y Client =&
' — ; : » 8000
TCP TCP TCP TCP ©
(o]
(5]
Q/ \L $ d/ /P i/ $ g 6000
L ¥
IP IP IP IP E 4000 P T ES :
/r /r /r 2000 o
RT RT P o 5 M B g R
0
0 5 10 15 20 25 30 35 40 45 50
. ATM Driver Number of Low Priority Clients
AQKV \ \ /// Figure 6: Measured Latency for All Clients with and without
RIO

High Priority VCI = 130 shov_vs how TAO eIiminatgs many sources of priority inversion
Low Priority VCI = 100 within the ORB. Thus, high-priority client latency values are
relatively constant, compared with low-priority latency values.
Figure 5: ORB Endsystem Benchmarking Configuration Moreover, the high-priority latency values decrease when the
the RIO subsystem is enabled. In addition, the low-priority
treated separately throughout the ORB and I/O subsystemclients’ average latency values track the default I/O subsys-
Low-priority client threads transmit requests at 10 Hiems behavior, illustrating that RIO does not unduly penalize
There are several ways to configure the RIO kthreads. Forlest-effort traffic. At 44 and 49 low-priority clients the RIO-
stance, we could assign one RIO kthread to each low-priofyabled endsystem outperforms the default Solaris 1/0 subsys-
client. However, the number of low-priority clients varies frortem.
0to 50. Plus all clients have the same period and send the sankégure 7 presents a finer-grained illustration of the round-
number of requests per period, so they have the same priwifp latency and jitter values for high-priority client vs. the
ties. Thus, only one RIO kthread is used. Moreover, becausatitnber of competing low-priority clients. This figure illus-
is desirable to treat low-priority messages as best-effort traffigtes how not only did RIO decrease average latency, but its
the RIO kthread is placed in the system scheduling class dittdr results were substantially better, as shown by the error
assigned a global priority of 60. bars in the figure. The high-priority clients averaged a 13%
To minimize latency, high-priority requests are processegtluction in latency with RIO. Likewise, jitter was reduced by
by threads in the Interrupt (INTR) scheduling class. Therefos# average of 51%, ranging from a 12% increase with no com-
we create two classes of packet traffic: (1) low-latency, higkting low-priority clients to a 69% reduction with 44 compet-
priority and (2) best-effort latency, low-priority. The highing low-priority clients.
priority packet traffic preempts the processing of any low-In general, RIO reduced average latency and jitter because
priority messages in the I/O subsystem, ORB Core, Objéctised RIO kthreads to process low-priority packets. Con-
Adapter, and/or servants. versely, in the default SolarisTREAMS I/O subsystem, ser-




2100 Defautt High Priority Chents —— | 1. Reduced latency and jitter: RIO reduces round-trip la-
2000 RIO-High-Priority-Client tency and jitter for real-time network 1/O, even during high
1900 network utilization. RIO prioritizes network protocol process-
1800 ing to ensure resources are available when needed by real-time

) applications.

g 1700

8 1600 2. Enforced bandwidth guarantees: The RIO periodic pro-

$ 1500 cessing model provides network bandwidth guarantees. RIO’s

€ schedule-driven protocol processing enables an application to
1400 specify periodic 1/0 processing requirements which are used
1300 I to guarantee network bandwidth.
1200 L 3. Fine-grained resource control: RIO enables fine-
1100 o 5 10 15 20 25 30 35 a0 45 5o 9rained .control of resource usageg, applications can set

Number of Clients the maximum throughput allowed on a per-connection basis.

Figure 7: High-priority Client Latency and Jitter Likewise, applications can specify their priority and process-

ing requirements on a per-connection basis. TAO also uses

] these specifications to create off-line schedules for statically
vant threads are more likely to be preempted because threggigured real-time applications.

from the INTR scheduling class are used for all protocol pro- o _

cessing. Our results illustrate how this preemption can sigrftf- End-to-end priority preservation: RIO preserves end-

icantly increase latency and jitter values. to-end operation priorities by co-scheduling TAO's ORB Re-
Figure 8 shows the average latency of low-priority clie@ctor threads with RIO kthreads that perform I/O processing.

threads. This figure illustrates that the low-priority clients irg Supports best-effort traffic: RIO supports the four

QoS features described above without unduly penalizing best-

16009 Default Low Priority Glients +=— ] effort, i.e,, traditional network traffic. RIO does not mo-
14000 RIO Low Priority Client = nopolize the system resources used by real-time applica-
12000 tions. Moreover, because RIO does not use a fixed allocation
10000 scheme, resources are available for use by best-effort applica-

8 tions when they are not in use by real-time applications.

S 8000

3

S 6000

2 oo 4 Related Work on I/O Subsystems
2000 |5 % Our real-time 1/0 (RIO) subsystem incorporates advanced

techniques [30, 23, 28, 29, 31] for high-performance and real-

0

time protocol implementations. This section compares RIO
-2000 . ;
0 5 10 15 20 25 30 35 40 a5 5o  Withrelated work on I/O subsystems.
Number of Clients

Figure 8: Low-priority Client Latency

I/O subsystem support for QoS: The Scout OS [32, 33]

employs the notion of pathto expose the state and resource

curred no appreciable change in average latency. There w. %aénrements of all processing components rﬂow Simi- .
ly, our RIO subsystem reflects the path principle and in-

slightincrease in jitter for some combinations of clients due . . . .
the RIO kthreads dispatch delays and preemption by the hig?]%rrp orates 't. with TAO and Solaris 1o cr_eate a vertically inte-
priority message traffic. This result demonstrates how the ted real—t|me. ORB endsystem.  For Instance, RIO subsys-
design can enhance overall end-to-end predictability for reteﬁ[n resources I_|ke CPU, memory, and netvxllork. interface and
time applications while maintaining acceptable performanr&%twork bandmdth are aIIocaFed to an gpphcatlon—l.evc—:tl con-
for traditional, best-effort applications. pectlon/thread qlur!ng connection establishment, which is sim-
ilar to Scout’s binding of resources to a path.

Scout represents a fruitful research direction, which is com-

3.4 Summary of Empirical Results plementary with our emphasis on demonstrating similar ca-

. ) ) ) abilities in existing operating systems, such as Solaris and
Our_emplrlcal resullts presenFedln Sect|.0n3lllustrate how Ri&tBSD [26]. At present, paths have been used in Scout
provides the following benefits to real-time ORB endsystems:

7



largely for MPEG video decoding and display and not for praig excessive resources. This approach focuses on scalability
tocol processing or other 1/0O operations. In contrast, we hauweder heavy load. It did not address QoS issues, however, such
successfully used RIO for a number of real-time avionics as providing per-connection guarantees for fairness or band-
plications [8] with deterministic QoS requirements. width, nor does it charge applications for the resources they
SPIN [34, 35] provides an extensible infrastructure anduge. It is similar to our approach, however, in that (1) inter-
core set of extensible services that allow applications to saféipts are recognized as a key source of non-determinism and
change the OS interface and implementation. Applicatioi@) schedule-driven protocol processing is proposed as a solu-
specific protocols are written in a typesafe langudgjexus tion.
and configured dynamically into the SPIN OS kernel. BecauseNhile RIO shares many elements of the approaches de-
these protocols execute within the kernel, they can access setibed above, we have combined these concepts to create the
work interfaces and other OS system services efficiently. fligt vertically integrated real-time ORB endsystem. The re-
the best of our knowledge, however, SPIN does not suppsutting ORB endsystem provides scalable performance, peri-
end-to-end QoS guarantees. odic processing guarantees and bounded latency, as well as an

end-to-end solution for real-time distributed object computing
Enhanced I/O subsystems: Other related research has fomigdleware and applications.

cused on enhancing performance and fairness of I/O subsys-
tems, though not specifically for the purpose of providing real-

time QoS guarantees. These techniques are directly applicgjle Concluding Remarks
to designing and implementing real-time 1/0O and providing

QoS guarantees, however, so we compare them with our %JIQS paper focuses on the design and performance of a real-

subsystem pelow. . , time 1/O (RIO) subsystem that enhances the Solaris 2.5.1 ker-
[29] applies several hlgh-performgnce techniques to &1 to enforce the QoS features of the TAO ORB endsystem.
STREAMSbased TCP/IP implementation and compares t provides QoS guarantees for vertically integrated ORB

resqltgl toa BFig-bbased TCPFélP |mpI3m§ntat|on.”Tlh|s Vﬁoé dsystems in order to increase (1) throughputand latency per-
IS simifar _to » Decause Roca an lot paralielize ]l mance and (2) end-to-end determinism. RIO supports peri-
STREAMS implementation and use early demultiplexing a

i o ic protocol processing, guarantees I/O resources to applica-
dedicated STREAMS knowr? as COrF‘”?””'Ca“O” Channel ons, and minimizes the effect of flow control irs@REAM.
(CC). The use of CC exploits the built-in flow control mech- o .
A novel feature of the RIO subsystem is its integration of

anisms OfSTREAMS to control how applications access th(raeal—time scheduling and protocol processing, which allows
I/0 subsystem. This work differs from RIO in that it focuse 9 b b 9.

. : CUSER |10 to support guaranteed bandwidth and low-delay applica-
entirely on performance issues and not sources of priority I, lish thi ded th bi
version. For example, minimizing protocol processing in o To accomplis t 1S, We exten' edthe concurrency archi-

) . ' tecture and thread priority mechanisms of TAO into the RIO
terrupt context is not addressed.

. : ... .Subsystem. This design minimizes sources of priority inver-
[14, 28] examines the effect of protocol processing with o0 %/hat cause non—degterminism P y

terrupt priorities and the resulting priority inversions and live- We leamed the following lessons from our integration of
lock [14]. Both approaches focus on providing fairness apﬁo and TAO:

scalability under network load. In [28], a network I/O sub- '

system architecture callddzy receiver processing RP) is vertical integration of ORB endsystems is essential for
used to provide stable overload behavior. LRP uses eaiy to-end priority preservation: Conventional operating
demultiplexing to classify packets, which are then placggstems and ORBs do not provide adequate support for the
into per-connection queues or on network interface channeiys requirements of distributed, real-time applications. Meet-
These channels are shared between the network interfacejggdhese needs requires a vertically integrated ORB endsys-
OS. Application threads read/write from/to network interfaggm that can deliver end-to-end QoS guarantees at multiple
channels so inputand output protocol processing is performags. The ORB endsystem described in this paper addresses
in the context of application threads. In addition, a schemgs need by combining a real-time 1/0 (RIO) subsystem with
is proposed to associate kernel threads with network interfgge TA0 ORB Core [9] and Object Adapter [36], which are

channels and application thregds in a manner similar to R@signed explicitly to preserve end-to-end QoS properties in
However, LRP does not provide QoS guarantees to appligéstributed real-time systems [10].

tions.

[14] proposed a somewhat different architecture to miSchedule-driven protocol processing reduces jitter signifi-
imize interrupt processing for network I/O. They proposecantly: After integrating RIO with TAO, we measured a sig-
polling strategy to prevent interrupt processing from consumificant reduction in average latency and jitter. Moreover, the



latency and jitter of low-priority traffic were not affected adu3]
versely. Our results illustrate how configuring asynchronous
protocol processing [37] strategies in the Solaris kernel can
provide significant improvements in ORB endsystem beha4
ior, compared with the conventional Solaris /0 subsystem.
As a result of our RIO enhancements to Solaris, TAO is t g
first ORB to support end-to-end QoS guarantees over ATM/IP
networks [22]. [16]

The TAO and RIO integration focused initially on stati-
cally scheduled applications with deterministic QoS requitg?]
ments. we have subsequently extended the TAO ORB end-
system to support dynamic scheduling [7] and applicatio[qgl
with statistical QoS requirements. The C++ source code
for ACE, TAO, and our benchmarks is freely available #t9]
www.cs.wustl.edu/ ~schmidt/TAO.html . The RIO
subsystem is available to Solaris source licensees.

The TAO research effort has influenced the OMG Realtime
CORBA specification [38], which was recently adopted as%!
CORBA standard. We continue to track the process of this
standard and to contribute its evolution. [21]
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A Overview of Solaris non-real-time callouts.
The real-time callout queue is serviced at the lowest inter-
The Solaris kernel is preemptive, multi-threaded, real-timerupt level, after the current clock tick is processed. In con-
and dynamically loadednplementation of UNIX SVR4 and trast, the non-real-time callout queue is serviced by a thread
POSIX. It is designed to work on uni-processors and sha@@ning with a SYS thread priority of 60. Therefore, non-real-

memory symmetric multi-processors. Solaris contains a reghe timeout functions cannot preempt threads running in the
time nucleus that supports multiple threads of control in tiger scheduling class.

kernel. Most control flows in the kernel, including interrupts,
are threaded [39]. Below, we summarize the Solaris schedul-
ing model and communication I/O subsystem.
A.2 Synopsis of the Solaris Communication I/O

A.1 Synopsis of the Solaris Scheduling Model Subsystem

Scheduling classes: Solaris extends the traditional UNIXThe Solaris communication I/O subsystem is an enhanced
time-sharing scheduler [21] to provide a flexible framewonersion of the SVR4sTREAMS framework [15] with proto-
that allows dynamic linking of custostheduling classegor cols like TCP/IP implemented usingrREAMS modules and
instance, it is possible to implement a new scheduling polidsivers. STREAMS provides a bi-directional path between user
as a scheduling class and load it into a running Solaris kerttieieads and kernel-resident drivers. In Solaris,SMREAMS

By default, Solaris supports the four scheduling classes shdvamework has been extended to support multiple threads of
ordered by decreasing global scheduling priority below:  control within asTREAM [40].

Below, we outline the key components of tsgREAMS

[|_Scheduling Class| Priorities | Typical purpose | framework and describe how they affect communication 1/O
Interrupt (INTR) | 160-169 | Interrupt Servicing performance and real-time determinism.
Real-Time (RT) 100-159 | Fixed prlgrlty scheduling 2In this discussion we include the Interactive (IA) class, which is used
S_yStem (SYS) 60-99 O_S'SPeC'f'C threads _ primarily by Solaris windowing systems, with the TS class because they share
Time-Shared (TS) 0-59 Time-Shared scheduling the same range of global scheduling priorities.
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General structure of aSTREAM: A STREAM is composed For example, assume &TREAM driver has queued

of aSTREAM head, a driver and zero or more modules linked GH_WATERMARK +1 messages on its write queue. The first
together by read queues (RQ) and write queues (WQ),nasdule atop the driver that detects this will buffer messages
shown in Figure 9. ThsTREAM head provides an interfaceon its write queue, rather than pass them downstream. Be-
cause thesTREAM is flow-controlled, thesvc function for

the module will not run. When the number of messages on
the driver’'s write queue drops below thew_WATERMARK
thesTREAM will be re-enable automatically. At this point, the
svc function for this queue will be scheduled to run.

STREAM Multiplexors:  Multiple STREAMS can be linked
together using a special type of driver callednaltiplexor
A multiplexor acts like a driver to modules above it and as
a STREAM head to modules below it. Multiplexors enable
the sTREAMS framework to support layered network protocol
stacks [24].

Figure 10 shows how TCP/IP is implemented using the So-
laris STREAMS framework. IP behaves as a multiplexor by

1

N
‘\\\
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DOWNSTREAM
WVAYLSd

NETWORK INTERFACE
OR PSEUDO-DEVICES("

QUEUE QUEUE kernel STREAM head STé\fAThead STIi\l/éAhThead
Figure 9: General Structure of aBEAM UDP/TCP UDP/TCP UDP/TCH
<timers> <timers> <timers>
e wQ rQ wQ rQ wQ rQ
between a user process and a specific instancesoR&AM A
in the kernel. It copies data across the user/kernel boundary,
notifies user threads when data is available, and manages the V
configuration of modules into STREAM. Scheduler wQrQwWQ rQ wQ rQ
Each module and driver must define a set of entry points that Run/Sleep Queugs 'F’(r'o L?{';'g“ﬁ’i’l‘g;)
handleopen/close operations and processTREAM mes- %‘f:gc?l wQ  1Q
sages. The message processing entry poinisareandsvc , Thread3 Protocol Processing
which are referenced through the read and write queues. The Calloat Queues in Interrupt Context
put function provides the mechanism to send messages [RT A
chronouslhybetween modules, drivers, and theReAM head. WQHFO Queuifn%
In contrast, thesvc function processes messagesyn- ,
L . ATM Driver
chronouslywithin a module or driver. A background thread

in the kernel's SYS scheduling class russ functions at
priority 60. In addition,svc functions will run after certain rigyre 10: Conventional Protocol Stacks in Solai®EAMS
STREAMSrelated system calls, such esad , write , and
ioctl . When this occurs, thevc function runs in the con-

, ; joining different transport protocols with one or more link
text of the thread invoking the system call.

layer interfaces. Thus, IP demultiplexes both incoming and
Flow control:  Each module can specify a high and low wasutgoing datagrams.

termark for its queues. If the number of enqueued messageBach outgoing IP datagram is demultiplexed by locating
exceeds thellGH_WATERMARK the STREAM enters the flow- its destination address in the IP routing table, which deter-
controlled state. At this point, messages will be queued upines the network interface it must be forwarded to. Likewise,
stream or downstream until flow control abates. each incoming IP datagram is demultiplexed by examining the
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transport layer header in STREAMS message to locate thedata messages between modules, the driver, angTiREAM
transport protocol and port number that designates the cortesdd.

upstream queue. Data messages (as opposed to control messages) in the So-
. ] . laris network 1/0 subsystem typically follow the traditional
Multi-threaded STREAMS:  Solaris STREAMS allows mul- BSD model. When a user thread sends data it is copied into

g;r)il\;ee:(serr;er: dthrrfjﬂsé?@t;g 232\(/:32;?'\[/'481]”0 ?ﬁgu:ﬁi’mkernel buffers, which are passed through $T&@EAM head to
' P y ) the first module. In most cases, these messages are then passed
threadedsTREAMS framework supports several levels of co

currency, which are implemented using therimeters{40] r}'hrough each layer and into the driver through a nested chain
shown gélow- P 9 of put s [40]. Thus, the data are sent to the network interface

driver within the context of the sending process and typically

Per-module with single threading are not processed asynchronously by moduie functions.
Per-queue-pair single threading At the driver, the data are either sent out immediately or are
Per-queue single threading queued for later transmission if the interface is busy.

Any of the above with unrestrictedput and svc When data arrive at the network interface, an interrupt is
Unrestricted concurrency generated and the data (usually referred to as a frame or

packet) is copied into kernel buffer. This buffer is then passed
In Solaris, the concurrency level of IP is “per-module” witlyp through IP and the transport layer in interrupt context,

concurrentput , TCP andsockmod are “per-queue-pair,” where it is either queued or passed to #T®REAM head via

and UDP is “per-queue-pair” with concurreptit . These the socket module. In general, the useswt functions is

perimeters provide sufficient concurrency for common useserved for control messages or connection establishment.

cases. However, there are cases where IP must raise its locking

level when manipulating global tables, such as the IP routing

table. When this occurs, messages entering the IP multiplexor

are placed on a special queue and processed asynchronously

when the locking level is lowered [40, 39].

Callout queue callbacks: The SolarisTREAMSframework
provides functions to set timeouts and register callbacks. The
gtimeout function adds entries to the standard non-real-
time callout queue. This queue is serviced by a system thread
with a SYS priority of 60, as described in Section A.1. So-
laris TCP and IP use this callout facility for their protocol-
specific timeouts, such as TCP keepalive and IP fragmenta-

tion/reassembly.
Another mechanism for registering a callback function is
bufcall . Thebufcall function registers a callback func-

tion that is invoked when a specified size of buffer space be-
comes available. For instance, when buffers are unavailable,
bufcall  is used by &sTREAM queue to register a function,
such aglloch , which is called back when space is available
again. These callbacks are handled by a system thread with
priority SYS 60.

Network I/O:  The Solaris network 1/0O subsystem provides
service interfaces that reflect the OSI reference model [24].
These service interfaces consist of a collection of primitives
and a set of rules that describe the state transitions.

Figure 10 shows how TCP/IP is structured in the Solaris
STREAMSframework. In this figure, UDP and TCP implement
the Transport Protocol Interface (TPI) [42], IP the Network
Provider Interface (NPI) [43] and ATM driver the Data Link
Provider Interface (DLPI) [44]. Service primitives are used
(1) to communicate control (state) information and (2) to pass
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