
Using Design Patterns to Evolve

System Software from UNIX to Windows NT

Douglas C. Schmidt Paul Stephenson
schmidt@cs.wustl.edu ebupsn@ebu.ericsson.se

Department of Computer Science Ericsson, Inc.

Washington University, St. Louis, MO 63130 Cypress, CA 90630

An earlier version of the paper appeared in the March/April
1995 issue of the C++ Report magazine.

1 Introduction

Developing system software that is reusable across OS plat-
forms is challenging. Due to constraints imposed by the
underlying OS platforms, it is often impractical to directly
reuse existing algorithms, detailed designs, interfaces, or im-
plementations. This article describes our experiences using
a large-scale reuse strategy for system software based on de-
sign patterns. Design patterns capture the static and dynamic
structures of solutions that occur repeatedly when producing
applications in a particular context [1, 2]. Design patterns
are an important technique for improving system software
quality since they address a fundamental challenge in large-
scale software development: communication of architectural
knowledge among developers [3].

This article describes our experiences with a large-scale
reuse strategy based upon design patterns. We have used this
strategy at Ericsson to facilitate the development of efficient
OO telecommunication system software. In this article, we
present a case study that describes the cross-platform evolu-
tion of portions of an OO framework called the ADAPTIVE
Service eXecutive (ASX) [4]. The ASX framework is an inte-
grated collection of components that collaborate to produce
a reusable infrastructure for developing distributed applica-
tions.

This article focuses on the ASX framework’s support for
event-driven distributed applications. One of the key com-
ponents in the ASX framework is the Reactor class cat-
egory [5]. The Reactor integrates the demultiplexing of
events and the dispatching of the corresponding event han-
dlers. Event handlers are triggered by various types of events
such as timers, synchronization objects, signals, or I/O oper-
ations.

We recently ported theASX framework from several UNIX
platforms to the Windows NT platform. These OS platforms
possess significantly different mechanisms for event demul-
tiplexing and I/O. To meet our performance requirements, it
was not possible to directly reuse many of the components
in the ASX framework across the OS platforms. However, it

was possible to reuse the underlyingdesign patterns that were
embodied in the ASX framework, thereby reducing project
risk.

The remainder of the article is organized as follows: Sec-
tion 2 outlines the background of our work using OO frame-
works for telecommunications system softare; Section 3.1
presents an overview of the design patterns that are the focus
of this article; Section 4 examines the issues that arose as
we ported the components in the Reactor framework from
several UNIX platforms to the Windows NT platform; Sec-
tion 5 summarizes the experience we gained, both pro and
con, while deploying a design pattern-based system devel-
opment methodology in a production software environment;
and Section 6 presents concluding remarks.

2 Background

The design patterns and framework described in this arti-
cle are currently being applied at Ericsson on a family of
distributed applications [6]. These applications use ASX
framework as the basis for a highly flexible and extensi-
ble telecommunication system management framework. The
ASX framework enhances the flexibility and reuse of sys-
tem software that monitors and manages telecommunication
switch performance across multiple hardware and software
platforms.

The system software we are developing provides essential
services and mechanisms used by higher-level application
software. Our system software frameworks are comprised
of components that access and manipulate hardware devices
(such as telecommunication switches) and software mecha-
nisms residing within an OS kernel (such as alarms, interval
timers, synchronization objects, communication ports, and
signal handlers).

In general, developing system software that is capable of
being directly reused on different OS platforms is challeng-
ing. Several factors complicating cross-platform reuse of
system software are outlined below:

�Efficiency: Since applications and other reusable compo-
nents will be layered upon system software, the techniques
used to develop system software must not degrade perfor-
mance significantly. Otherwise, developers will reinvent

1

special-purpose code rather than reuse existing components,
thereby defeating a major benefit of reuse.

� Portability: In order to meet performance and function-
ality requirements, system software often must access non-
portable mechanisms and interfaces (such as device registers
within a network link-layer controller or event demultiplex-
ing mechanisms) provided by the underlying OS and hard-
ware platform.

� Lack of functionality: many OS platforms do not pro-
vide adequate functionality to develop portable, reusable
system components. For example, the lack of kernel-level
multi-threading, explicit dynamic linking, and asynchronous
exception handling (as well as robust compilers that interact
correctly with these features) greatly increases the complex-
ity of developing and porting reusable system software.

� Need to master complex concepts: Successfully devel-
oping robust, efficient, and portable system software requires
intimate knowledge of complex mechanisms (such as concur-
rency control, interrupt handling, and interprocess communi-
cation) offered by multiple OS platforms. It is also essential
to understand the performance costs associated with using al-
ternative mechanisms (such as shared memory vs. message
passing) on different OS platforms.

There are trade-offs among the factors described above that
further complicate the reuse of system software across OS
platforms. Often, it may be difficult to develop portable sys-
tem software that does not significantly degrade efficiency or
subtly alter the semantics and robustness of commonly used
operations. For instance, many traditional OS kernels do not
support pre-emptive multi-threading. Therefore, writing a
portable user-level threads mechanism may be less efficient
than programming with thread mechanisms supported by the
kernel [7]. Likewise, user-level threads may reduce robust-
ness by restricting the use of OS features such as signals or
synchronous I/O operations.

3 Design Pattern Overview

A design pattern is a recurring architectural theme that pro-
vides a solution to a set of requirements within a particu-
lar context [1]. Design patterns facilitate architectural level
reuse by providing “blueprints” or guidelines for defining,
composing, and reasoning about the key components in a
software system. In general, a large amount of reuse is pos-
sible at the architectural level. However, reusing design pat-
terns does not necessarily result in direct reuse of algorithms,
detailed designs, interfaces, or implementations.

OO frameworks typically embody a wide range of design
patterns. For example, the ET++ graphical user-interface
(GUI) framework [8] incorporates design patterns (such as
Abstract Factory [1]) that hide the details of creating user-
interface objects. This enables an application to be portable
across different window systems (such as X windows and Mi-
crosoft Windows). Likewise, the InterViews [9] GUI frame-
work contains design patterns (such as Strategy and Iterator

[1]) that allow algorithms and/or application behavior to be
decoupled from mechanisms provided by the reusable GUI
components.

In the context of distributed applications, OO toolkits such
as the Orbix CORBA object request broker [10] and the
ADAPTIVE Service eXecutive (ASX) framework [4] em-
body many common design patterns. These design patterns
express recurring architectural themes (such as event demul-
tiplexing, connection establishment, message routing, pub-
lish/subscribe communication, remote object proxies, and
flexible composition of hierarchically-related services) found
in most distributed applications.

This article focuses on two specific design patterns (the
Reactor [5] and Acceptor patterns) that are implemented by
the ASX framework. Components in the ASX framework
have been ported to a number of UNIX platforms, as well
as Windows NT. The ASX components, and the Reactor and
Acceptor design patterns embodied by these components,
are currently used in a number of production systems. These
systems include the Bellcore Q.port ATM signaling software
product, the system control segment for the Motorola Iridium
global personal communications system, and a family of sys-
tem/network management applications for Ericsson telecom-
munication switches [6].

The design patterns described in the followingsection pro-
vided a concise set of architectural blueprints that guided our
porting effort from UNIX to Windows NT. In particular, by
employing the patterns, we did not have to rediscover the
key collaborations between architectural components. In-
stead, our development task focused on determining a suit-
able mapping of the components in the pattern onto the mech-
anisms provided by the different OS platforms. Finding an
appropriate mapping was non-trivial, as we describe below.
Nevertheless, our knowledge of the design patterns signifi-
cantly reduced redevelopment effort and minimized the level
of risk in our projects.

3.1 The Reactor Pattern

The Reactor pattern is an object behavioral pattern [1]. This
pattern simplifies the development of event-driven applica-
tions (such as a CORBA ORB [10], an X-windows host
resource manager, or a distributed logging service [5]). The
Reactor pattern provides a common infrastructure that in-
tegrates event demultiplexing and the dispatching of event
handlers. Event handlers perform application-specific pro-
cessing operations in response to various types of events.
An event handler may be triggered by different sources of
events (such as timers, communication ports, synchroniza-
tion objects, and signal handlers) that are monitored by an
application. The callback-driven programming style pro-
vided by a Motif or Windows application is a prime example
of the Reactor pattern.

The Reactor pattern provides several major benefits for
event-driven distributed applications:

2

Reactor

register_handler(h)

remove_handler(h)

dispatch()

Event_Handler

handle_event()

handle_close()

get_handle()

A

Concrete

Event_Handler

n1

select (handlers);

foreach h in handlers loop

 if (h->handle_event (h) == FAIL)

 h->handle_close (h);

end loop

Figure 1: The Structure of Participants in the Reactor Pattern

� Improve performance: it enables an application to wait
for activity to occur on multiple sources of events simultane-
ously without blocking or continuously polling for events on
any single source.

� Minimize synchronization complexity: it provides ap-
plications with a low-overhead, coarse-grained form of con-
currency control. The Reactor pattern serializes the invoca-
tion of event handlers at the level of “event demultiplexing
and dispatching” within a single process or thread. For many
applications, this eliminates the need for more complicated
synchronization or locking.

� Enchance reuse: it decouples application-specific
functionality from application-independent mechanisms.
Application-specific functionality is performed by user-
defined methods that override virtual functions inherited from
an event handler base class. Application-independent mech-
anisms are reusable components that demultiplex events and
dispatch pre-registered event handlers.

Figure 1 illustrates the structure of participants in the Reac-
tor pattern.1 TheReactor class defines an interface for reg-
istering, removing, and dispatching Event Handler ob-
jects. An implementation of the Reactor pattern provides
application-independent mechanisms that perform event de-
multiplexing and dispatch application-specific concrete event
handlers. The Reactor class contains references to objects
of Concrete Event Handler subclasses. These sub-
classes are derived from theEvent Handler abstract base
class, which defines virtual methods for handling events. A
Concrete Event Handler subclass may override these
virtual methods to perform application-specific functionality
when the corresponding events occur.

1Relationships between components are illustrated throughout the arti-
cle via Booch notation [11]. Dashed clouds indicate classes; non-dashed
directed edges indicate inheritance relationships between classes; dashed
directed edges indicate a template instantiation relationship; and an undi-
rected edge with a solid bullet at one end indicates a composition relation.
Solid clouds indicate objects; nesting indicates composition relationships
between objects; and undirected edges indicate some type of link exists
between objects.

The Reactor triggers Event Handler methods in re-
sponse to events. These events may be associated with
handles that are bound to sources of events (such as
I/O ports, synchronization objects, or signals). To bind
the Reactor together with these handles, a subclass of
Event Handlermust override theget handlemethod.
When the Reactor registers an Event Handler sub-
class object, the the object’s handle is obtained by invok-
ing its Event Handler::get handle method. The
Reactor then combines this handle with other registered
Event Handlers and waits for events to occur on the
handle(s).

The code annotation in Figure 1 outlines the behav-
ior of the dispatch method. When events occur, the
Reactor uses the handles activated by the events as keys
to locate and dispatch the appropriate Event Handler
methods. The handle event method is then invoked
by the Reactor as a “callback.” This method per-
forms application-specific functionality in response to an
event. If a call to handle event fails, the Reactor
invokes the handle close method. This method per-
forms any application-specific cleanup operations. When the
handle closemethod returns, theReactor removes the
Event Handler subclass object from its internal tables.

An alternative way to implement event demultiplexingand
dispatching is to use multi-tasking. In this approach, an ap-
plicationspawns a separate thread or process that monitors an
event source. Every thread or process blocks until it receives
an event notification. At this point, the appropriate event
handler code is executed. Certain types of applications (such
as file transfer, remote login, or teleconferencing) benefit
from multi-tasking. For these applications, multi-threading
or multi-processing helps to reduce development effort, im-
proves application robustness, and transparently leverages
off of available multi-processor capabilities.

Using multi-threading to implement event demultiplexing
has several drawbacks, however. It may require the use
of complex concurrency control schemes; it may lead to
poor performance on uni-processors [4]; and it may not be
available on widely available OS platforms (such as many
variants of UNIX). In these cases, the Reactor pattern may
be used in lieu of, or in conjunction with, OS multi-threading
or multi-processing mechanisms, as described in Section 3.2.

3.2 The Acceptor Pattern

The Acceptor pattern is an object creational pattern [1]
that decouples the act of establishing a connection from
the service(s) provided after a connection is established.
Connection-oriented services (such as file transfer, remote
login, distributed logging, and video-on-demand) are partic-
ularly amenable to this pattern. The Acceptor pattern sim-
plifies the development of these services by allowing the
application-specific portion of a service to be modified inde-
pendently of the mechanism used to establish the connection.
The UNIX “superserver” inetd is a prime example of an
application that uses the Acceptor pattern.

3

new SVC_HANDLER();

Reactor
Event

Handler
A

Svc

Handler

Acceptor

open()

handle_event()

get_handle()

SVC

HANDLER

Instantiated

Acceptor

Svc

Handler

1 n

Figure 2: The Structure of Participants in the Acceptor Pat-
tern

To build upon the interfaces and mechanisms already pro-
vided by the Reactor pattern, the Acceptor class inherits
the Event Handler’s demultiplexing and dispatching in-
terface (shown in Figure 1). Figure 2 illustrates the structure
of participants in the Acceptor pattern. The open method
in template class Acceptor initializes a communication
endpoint and listens for incoming connection requests from
clients. The get handle method returns the I/O handle
corresponding to the communication endpoint.

When a connection request arrives from a client
the Reactor triggers a callback on the Acceptor’s
handle event method. This method is a factory that
dynamically produces a new SVC HANDLER object In the
example in Figure 2, SVC HANDLER is a formal param-
eterized type argument in the Acceptor template class.
The Instantiated Acceptor class supplies an actual
Svc Handler class parameter. The Svc Handler pa-
rameter implements a particular application-specific service
(i.e., transferring a file, permitting remote login, receiving
logging records, sending a video sequence, etc.).

Note that the Acceptor pattern does not dictate the behavior
or concurrency dynamics of the Svc Handler service it
creates. In particular, a dynamically created Svc Handler
service may be executed in any of the following ways:

� Run in the same thread of control: This approach
may be implemented by inheriting the Svc Handler
from Event Handler and registering each newly cre-
ated Svc Handler object with the Reactor. Thus, each
Svc Handler object is dispatched in the same thread of
control as an Acceptor object. The implementation de-
scribed in Section 4 uses this single-threaded behavior.

� Run in a separate thread of control: In this ap-
proach, the Reactor serves as the master connection dis-
patcher within an application. When a client connects, the

Acceptor’s handle event method spawns a separate
thread of control. The Svc Handler object then processes
messages exchanged over the connection within the new
slave thread. Threads are useful for cooperating services that
frequently reference common memory-resident data struc-
tures shared by the threads within a process address space
[7].

� Run in a separate OS process: This approach is similar
in form to the previous bullet. However, a separate process
is created rather than a separate thread. Network services
that base their security and protection mechanisms on pro-
cess ownership are typically executed in separate processes
to prevent accidental or intentional access to unauthorized
resources. For example, the standard UNIX superserver,
inetd, uses the Acceptor pattern in this manner to execute
the standard Internet ftp and telnet services in separate
processes [12].

TheASX framework described in [4] provides mechanisms
that support all three of these types of concurrency dynamics.
Moreover, the selection of concurrency mechanism may be
deferred until late in the design, or even until run-time. This
flexibility increases the range of design alternatives available
to developers.

In addition, the Acceptor pattern may be used to develop
highly extensible event handlers that may be configured into
an application at installation-time or at run-time. This enables
applications to be updated and extended without modifying,
recompiling, relinking, or restarting the applications at run-
time. Achieving this degree of flexibility and extensibility
requires the use of OO language features (such as templates,
inheritance, and dynamic binding), OO design techniques
(such as the Factory Method or Abstract Factory design pat-
terns [1]), and advanced operating system mechanisms (such
as explicit dynamic linking and multi-threading [4]).

4 Evolving Design Patterns Across OS
Platforms

4.1 Motivation

Based on our experience at Ericsson, explicitly modeling
design patterns is a very beneficial activity. In particular,
design patterns focus attention on relatively stable aspects of
a system’s software architecture. They also emphasize the
strategic collaborations between key participants in the ar-
chitecture without overwhelming developers with excessive
detail. Abstracting away from low-level implementation de-
tails is particularly important for system software since OS
platform constraints often preclude direct reuse of system
components.

In our experience, it is essential to illustrate how design
patterns are realized in actual systems. One observation we
discuss in Section 5 is that existing design pattern catalogs
[1, 2] do not present “wide spectrum” coverage of patterns.
Often, this makes it difficult for novices to recognize how to

4

apply patterns in practice on their projects. We believe the de-
velopment sequence that unfolds in this section will provide
a technically rich, motivating, and detailed (yet comprehensi-
ble) roadmap to help shepard other developers into the realm
of patterns.

With these goals in mind, this section outlines how the
Reactor and Acceptor design patterns were implemented and
evolved on BSD and System V UNIX, as well as on Win-
dows NT. The discussion emphasizes the relevant functional
differences between the various OS platforms and describes
how these differences affected the implementation of the de-
sign patterns. To focus the discussion below, C++ is used as
the implementation language. However, the principles and
concepts underlying the Reactor and Acceptor patterns are
independent of the programming language, the OS platform,
and any particular implementation. Readers who are not
interested in the lower-level details of implementing design
patterns may wish to skip ahead to Section 5, where we sum-
marize the lessons we learned from using design patterns on
several projects at Ericsson.

4.2 The Impact of Platform Demultiplexing
and I/O Semantics

The implementation of the Reactor pattern was affected sig-
nificantly by the semantics of the event demultiplexing and
I/O mechanisms in the underlying OS. In general, there are
two types of demultiplexing and I/O semantics: reactive and
proactive. Reactive semantics allow an application to in-
form the OS which I/O handles to notify it about when an
I/O-related operation (such as a read, write, and connection
request/accept) may be performed without blocking. Subse-
quently, when the OS detects that the desired operation may
be performed without blocking on any of the indicated han-
dles, it informs the application that the handle(s) are ready.
The application then “reacts” by processing the handle(s)
accordingly (such as reading or writing data, accepting con-
nections, etc.). Reactive demultiplexing and I/O semantics
are provided on standard BSD and System V UNIX systems
[12].

In contrast, proactive semantics allow an application
to proactively initiate I/O-related operations (such as a
read, write, or connection request/accept) or general-purpose
event-signaling operations (such as a semaphore lock being
acquired or a thread terminating). The invoked operation pro-
ceeds asynchronously and does not block the caller. When an
operation completes, it signals the application. At this point,
the application runs a completion routine that determines the
exit status of the operation and potentially starts up another
asynchronous operation. Proactive demultiplexing and I/O
semantics are provided on Windows NT [13] and VMS.

For performance reasons, we were not able to completely
encapsulate the variation in behavior between the UNIX and
Windows NT demultiplexing and I/O semantics. Thus, we
could not directly reuse existing C++ code, algorithms, or
detailed designs. However, it was possible to capture and

reuse the concepts that underlay the Reactor and Acceptor
design patterns.

4.3 UNIX Evolution of the Patterns

4.3.1 Implementing the Reactor Pattern on UNIX

The standard demultiplexing mechanisms on UNIX operat-
ing systems provide reactive I/O semantics. For instance,
the UNIX select and poll event demultiplexing sys-
tem calls inform an application which subset of handles
within a set of I/O handles may send/receive messages or
request/accept connections without blocking. Implementing
the Reactor pattern using UNIX reactive I/O is straightfor-
ward. After select or poll indicate which I/O handles
have become ready, the Reactor object reacts by invoking
the appropriate Event Handler callback methods (i.e.,
handle event or handle close).

One advantage of the UNIX reactive I/O scheme is that it
decouples (1) event detection and notification from (2) the
operation performed in response to the triggered event. This
allows an application to optimize its response to an event by
using context information available when the event occurs.
For example, when select indicates a “read” event is pend-
ing, a network server might check to see how many bytes are
in a socket receive queue. It might use this information to
optimize the buffer size it allocates before making a recv
system call. A disadvantage of UNIX reactive I/O is that
operations may not be invoked asynchronously with other
operations. Therefore, computation and communication may
not occur in parallel unless separate threads or processes are
used.

The original implementation of the Reactor pattern
provided by the ASX framework was derived from the
Dispatcher class category available in the InterViews
OO GUI framework [9]. The Dispatcher is an OO in-
terface to the UNIX select system call. InterViews uses
theDispatcher to define an application’s main event loop
and to manage connections to one or more physical window
displays. The Reactor framework’s first modification to
theDispatcher framework added support for signal-based
event dispatching. TheReactor’s signal-based dispatching
mechanism was modeled closely on the Dispatcher’s ex-
isting timer-based and I/O handle-based event demultiplexing
and event handler dispatching mechanisms.2

The next modification to the Reactor occurred when
porting it from SunOS 4.x (which is based primarily on BSD
4.3 UNIX) to SunOS 5.x (which is based primarily on System
V release 4 (SVR4) UNIX). SVR4 provides another event
demultiplexing system call named poll. Poll is similar
to select, though it uses a different interface and provides
a broader, more flexible model for event demultiplexing that
supports SVR4 features such as STREAM pipe band-data
[12].

2The Reactor’s interfaces for signals and timer-based event handling
are not shown in this article due to space limitations.

5

The SunOS 5.x port of the Reactor was enhanced to
support either select or poll as the underlying event
demultiplexer. Although portions of the Reactor’s inter-
nal implementation changed, its external interface remained
the same for both the select-based and the poll-based
versions. This common interface improves networking ap-
plication portability across BSD and SVR4 UNIX platforms.

A portion of the public interface for the BSD and SVR4
UNIX implementation of the Reactor pattern is shown below:

// Bit-wise "or" these values to check
// for multiple activities per-handle.
enum Reactor_Mask { READ_MASK = 01,
WRITE_MASK = 02, EXCEPT_MASK = 04 };

class Reactor
{
public:
// Register an Event_Handler object according
// to the Reactor_Mask(s) (i.e., "reading,"
// "writing," and/or "exceptions").
virtual int register_handler (Event_Handler *,

Reactor_Mask);

// Remove the handler associated with
// the appropriate Reactor_Mask(s).
virtual int remove_handler (Event_Handler *,

Reactor_Mask);

// Block process until I/O events occur or
// a timer expires, then dispatch Event_Handler(s).
virtual int dispatch (void);

// ...
};

Likewise, the Event Handler interface for UNIX is de-
fined as follows:

typedef int HANDLE; // I/O handle.

class Event_Handler
{
protected:
// Returns the I/O handle associated with the
// derived object (must be supplied by a subclass).
virtual HANDLE get_handle (void) const;

// Called when an event occurs on the HANDLE.
virtual int handle_event (HANDLE, Reactor_Mask);

// Called when object is removed from the Reactor.
virtual int handle_close (HANDLE, Reactor_Mask);

// ...
};

The next major modification to the Reactor extended
it for use with multi-threaded applications on SunOS 5.x
using Solaris threads [7]. Adding multi-threading support
required changes to the internals of both the select-based
and poll-based versions of the Reactor. These changes
involved a SunOS 5.x mutual exclusion mechanism known
as a “mutex.” A mutex serializes the execution of multiple
threads by defining a critical section where only one thread
executes the code at a time [7]. Critical sections of the
Reactor’s code that concurrently access shared resources
(such as the Reactor’s internal dispatch table containing
Event Handler objects) are protected by a mutex.

The standard SunOS 5.x synchronization type (mutex t)
provides support for non-recursive mutexes. The SunOS 5.x

non-recursive mutex provides a simple and efficient form
of mutual exclusion based on adaptive spin-locks. How-
ever, non-recursive mutexes possess the restriction that the
thread currently owning a mutex may not reacquire the mu-
tex without releasing it first. Otherwise, deadlock will occur
immediately.

While developing the multi-threadedReactor, it quickly
became obvious that SunOS 5.x mutex variables were in-
adequate to support the synchronization semantics required
by the Reactor. In particular, the Reactor’s dispatch
interface performs callbacks to methods of pre-registered,
application-specific event handler objects as follows:

void Reactor::dispatch (void)
{
for (;;) {

// Block until events occur.
this->wait_for_events (this->handler_set);
// Obtain the mutex.
this->lock->acquire ();

// Dispatch all the callback methods
// on handlers who contain active events.
foreach handler in this->handler_set {

if (handler->handle_event
(handler, mask) == FAIL)

// Cleanup on failure.
handler->handle_close (handler);

}
// Release the mutex.
this->lock->release ();

}
}

Callback methods (such as handle event and
handle close) defined by Event Handler subclass
objects may subsequently re-enter the Reactor object by
calling its register handler and remove handler
methods as follows:

// Global per-process instance of the Reactor.
extern Reactor reactor;

// Application-specific method called
// back by the Reactor.

int Acceptor::handle_event (HANDLE handle,
Reactor_Mask)

{
Concrete_Event_Handler *new_handler =

new Concrete_Event_Handler;

*new_handler = this->accept (handle);

// Re-enter the Reactor object.
reactor.register_handler (new_handler,

READ_MASK);
// ...

}

In the code fragment shown above, non-recursive mu-
texes will result in deadlock since (1) the mutex within
the Reactor’s dispatch method is locked throughout
the callback and (2) the Reactor’s register handler
method tries to acquire the same mutex.

One solution to this problem involved recoding the
Reactor to release its mutex lock before invokingcallbacks
to application-specific Event Handler methods. How-
ever, this solution was tedious and error-prone. It also in-
creased synchronization overhead by repeatedly releasing

6

NETWORKCLIENT

: Reactor

: Logging

Acceptor

: Logging

Handler : Logging

Handler

SERVER

LOGGING DAEMON

LOGGING

RECORDS

LOGGING

RECORDS

CONNECTION

REQUEST

CLIENT

CLIENT

SERVER

Figure 3: The Distributed Logging Service

and reacquiring mutex locks. A more elegant and effi-
cient solution used recursive mutexes to prevent deadlock
and to avoid modifying the Reactor’s concurrency control
scheme. A recursive mutex allows calls to its acquire
method to be nested as long as the thread that owns the lock
is the one attempting to re-acquire it.

The current implementation of the UNIX-based Reactor
pattern is about 2,400 lines of C++ code (not including com-
ments or extraneous whitespace). This implementation is
portable between both BSD and System V UNIX variants.

4.3.2 Implementing the Acceptor Pattern on UNIX

To illustrate the Reactor and Acceptor patterns, consider
the event-driven server for a distributed logging service
shown in Figure 3. Client applications use this service to log
information (such as error notifications, debugging traces,
and status updates) in a distributed environment. In this ser-
vice, logging records are sent to a central logging server. The
logging server outputs the logging records to a console, a
printer, a file, or a network management database, etc.

In the architecture of the distributed logging service, the
logging server shown in Figure 3 handles logging records
and connection requests sent by clients. These records and
requests may arrive concurrently on multiple I/O handles.
An I/O handle identifies a resource control block managed
by the operating system.3

The logging server listens on one I/O handle for connection
requests to arrive from new clients. In addition, a separate
I/O handle is associated with each connected client. Input
from multiple clients may arrive concurrently. Therefore,
a single-threaded server must not block indefinitely reading
from any individual I/O handle. A blocking read on one

3Different operating systems use different terms for I/O handles. For
example, UNIX programmers typically refer to these as file descriptors,
whereas Windows programmers typically refer to them as I/O HANDLEs.
In both cases, the underlying concepts are the same.

handle may significantly delay the response time for clients
associated on other handles.

A highly modular and extensible way to design the server
logging daemon is to combine the Reactor and Accep-
tor patterns. Together, these patterns decouple (1) the
application-independent mechanisms that demultiplex and
dispatch pre-registered Event Handler objects from (2)
the application-specific connection establishment and log-
ging record transfer functionality performed by methods in
these objects.

Within the server logging daemon, two subclasses of
theEvent Handler base class (Logging Handler and
Logging Acceptor) perform the actions required to pro-
cess the different types of events arriving on different I/O
handles. The Logging Handler event handler is respon-
sible for receiving and processing logging records transmit-
ted from a client. Likewise, theLogging Acceptor event
handler is a factory that is responsible for accepting a new
connection request from a client, dynamically allocating a
new Logging Handler event handler to handle logging
records from this client, and registering the new handler with
an instance of a Reactor object.

The following code illustrates an implementation the
server logging daemon based upon the Reactor and Ac-
ceptor patterns. An instance of the Logging Handler
template class performs I/O between the server logging
daemon and a particular instance of a client logging dae-
mon. As shown in the code below, theLogging Handler
class inherits from Event Handler. Inheriting from
Event Handler enables a Logging Handler object
to be registered with the Reactor. This inheritance also
allows a Logging Handler object’s handle event
method to be dispatched automatically by a Reactor ob-
ject to process logging records when they arrive from clients.
The Logging Handler class contains an instance of the
template parameter PEER IO. The PEER IO class provides
reliable TCP capabilities used to transfer logging records be-
tween an application and the server. The use of templates
removes the reliance on a particular IPC interface (such as
BSD sockets or System V TLI).

template <class PEER_IO>
class Logging_Handler
: public Event_Handler

{
public:
// Callback method that handles the reception
// of logging transmissions from remote clients.
// Two recv()’s are used to maintain framing
// across a TCP bytestream.

virtual int handle_event (HANDLE, Reactor_Mask) {
long len;
// Determine logging record length.
long n = this->peer_io_.recv (&len, sizeof len);

if (n <= 0) return n;
else {

Log_Record log_record;

// Convert from network to host byte-order.
len = ntohl (len);
// Read remaining data in record.
this->peer_io_.recv (&log_record, len);

7

// Format and print the logging record.
log_record.decode_and_print ();
return 0;

}
}

// Retrieve the I/O handle (called by Reactor
// when Logging_Handler object is registered).

virtual HANDLE get_handle (void) const {
return this->peer_io_.get_handle ();

}

// Close down the I/O handle and delete the
// object when a client closes the connection.

virtual int handle_close (HANDLE,
Reactor_Mask) {

delete this;
return 0;

}

private:
// Private ensures dynamic allocation.
˜Logging_Handler (void) {
this->peer_io_.close ();

}

// C++ wrapper for data transfer.
PEER_IO peer_io_;

};

The Logging Acceptor template class is shown in the
C++ code below. It is a generic factory that performs the
steps necessary to (1) accept connection requests from client
logging daemons and (2) create SVC HANDLER objects that
are used to perform an actual application-specific service
on behalf of clients. Note that the Logging Acceptor
object and theSVC HANDLERobjects it creates run within the
same thread of control. Logging record processing is driven
reactively by method callbacks triggered by the Reactor.

The Logging Acceptor subclass inherits from
the Event Handler class. Inheriting from the
Event Handler class enables an Logging Acceptor
object to be registered with the Reactor. The Reactor
subsequently dispatches the Logging Acceptor object’s
handle event method. This method then invokes
SOCK Acceptor::accept, which accepts a new client
connection. The Logging Acceptor class also contains
an instance of the template parameter PEER Acceptor.
The PEER Acceptor class is a factory that listens for
connection requests on a well-known communication port
and accepts connections when they arrive on that port from
clients.

// Global per-process instance of the Reactor.
extern Reactor reactor;

// Handles connection requests
// from a remote client.

template <class SVC_HANDLER,
class PEER_Acceptor,
class PEER_ADDR>

class Logging_Acceptor
: public Event_Handler

{
public:

// Initialize the Acceptor endpoint.

Logging

Server

REGISTER HANDLER

START EVENT LOOP

CONNECTION EVENT

CREATE HANDLER

AND ACCEPT

CONNECTION

FOREACH EVENT DO

EXTRACT HANDLE

INITIALIZE

la :

Logging_Acceptor

dispatch()

handle_event()

handle_close()

reactor :

Reactor

get_handle()

Reactor::Reactor()

register_handler(la)

select()

lh :

Logging_Handler

handle_event()

lh = new Logging_Handler;

la.accept (*lh);

lh->open (la);

get_handle()
EXTRACT HANDLE

DATA EVENT

CLIENT SHUTDOWN

print()
PROCESS RECORD

SERVER SHUTDOWN
handle_close()

register_handler(lh)REGISTER HANDLER

FOR CLIENT I/O

I
N

I
T

I
A

L
I
Z

A
T

I
O

N

P
H

A
S

E

E
V

E
N

T

H

A
N

D
L

I
N

G

P
H

A
S

E

C
O

N
N

E
C

T
I
O

N

A
C

C
E

P
T

A
N

C
E

P

H
A

S
E

Figure 4: Server Logging Daemon Interaction Diagram

Logging_Acceptor (PEER_ADDR &addr)
: peer_Acceptor_ (addr) {}

// Callback method that accepts a new
// connection, creates a new SVC_HANDLER object
// to perform I/O with the client connection,
// and registers the new object with the Reactor.

virtual int handle_event (HANDLE, Reactor_Mask) {
SVC_HANDLER *handler = new SVC_HANDLER;

this->peer_Acceptor_.accept (*handler);
reactor.register_handler (handler, READ_MASK);
return 0;

}

// Retrieve the I/O handle (called by Reactor
// when an Logging_Acceptor object is registered).

virtual HANDLE get_handle (void) const {
return this->peer_Acceptor_.get_handle ();

}

// Close down the I/O handle when the
// Logging_Acceptor is shut down.

virtual int handle_close (HANDLE,
Reactor_Mask) {

return this->peer_Acceptor_.close ();
}

private:
// Factory that accepts client connections.
PEER_Acceptor peer_Acceptor_;

};

The C++ code shown below illustrates the main entry
point into the server logging daemon. This code creates
a Reactor object and an Logging Acceptor object
and registers the Logging Acceptorwith theReactor.
Note that the Logging Acceptor template is instantiated
with theLogging Handler class, which performs the dis-
tributed logging service on behalf of clients. Next, the main
program calls dispatch and enters the Reactor’s event-
loop. The dispatchmethod continuously handles connec-
tion requests and logging records that arrive from clients.

The interaction diagram shown in Figure 4 illustrates the
collaboration between the various objects in the server log-
ging daemon at run-time. Note that once the Reactor ob-

8

ject is initialized, it becomes the primary focus of the control
flow within the server logging daemon. All subsequent ac-
tivity is triggered by callback methods on the event handlers
controlled by the Reactor.

// Global per-process instance of the Reactor.
Reactor reactor;

// Server port number.
const unsigned int PORT = 10000;

// Instantiate the Logging_Handler template.
typedef Logging_Handler <SOCK_Stream>

LOGGING_HANDLER;

// Instantiate the Logging_Acceptor template.
typedef Logging_Acceptor<LOGGING_HANDLER,

SOCK_Acceptor,
INET_Addr>

LOGGING_Acceptor;

int
main (void)
{

// Logging server address and port number.
INET_Addr addr (PORT);
// Initialize logging server endpoint.
LOGGING_Acceptor Acceptor (addr);

reactor.register_handler (&Acceptor, READ_MASK);

// Main event loop that handles client
// logging records and connection requests.
reactor.dispatch ();
/* NOTREACHED */
return 0;

}

The C++ code example shown above uses templates to
decouple the reliance on the particular type of IPC inter-
face used for connection establishment and communication.
The SOCK Stream, SOCK Acceptor and INET Addr
classes used in the template instantiations are part of the
SOCK SAP C++ wrapper library [14]. SOCK SAP encap-
sulates the SOCK STREAM semantics of the socket trans-
port layer interface within a type-secure, OO interface.
SOCK STREAM sockets support the reliable transfer of
bytestream data between two processes, which may run on
the same or on different host machines in a network [12].

By using templates, it is relatively straightforward to in-
stantiate a different IPC interface (such as the TLI SAPC++
wrappers that encapsulate the System V UNIX TLI interface).
Templates trade additional compile-time and link-time over-
head for improved run-time efficiency. Note that a similar
degree of decoupling also could be achieved via inheritance
and dynamic binding by using the Abstract Factory or Factory
Method patterns described in [1].

4.4 Evolving the Design Patterns to Windows
NT

This section describes the Windows NT implementation of
the Reactor and Acceptor design patterns performed at the
Ericsson facility in Cypress, California. Initially, we at-
tempted to evolve the existing Reactor implementation
from UNIX to Windows NT using the select function

from the Windows Sockets (WinSock) library.4 This ap-
proach failed because the WinSock version of select does
not interoperate with standard Win325 I/O HANDLEs. Our
applications required the use of Win32 I/O HANDLEs to
support network protocols (such as Microsoft’s NetBIOS
Extended User Interface (NetBEUI)) that are not supported
by WinSock version 1.1. Next, we tried to reimplement
the Reactor interface using the Win32 API system call
WaitForMultipleObjects. The goal was to maintain
the original UNIX interface, but transparently supply a dif-
ferent implementation.

Transparent reimplementation failed to work due to fun-
damental differences in the proactive vs. reactive I/O se-
mantics on Windows NT and UNIX outlined in Section 4.
We initially considered circumventing these differences by
asynchronously initiating a 0-sized ReadFile request on
an overlapped I/O HANDLE. Overlapped I/O is an Win32
mechanism that supports asynchronous input and output. An
overlapped event signals an application when data arrives,
allowingReadFile to receive the data synchronously. Un-
fortunately, this solution doubles the number of system calls
for every input operation, creating unacceptable performance
overhead. In addition, this approach does not adequately
emulate the reactive output semantics provided by the UNIX
event demultiplexing and I/O mechanisms.

It soon became clear that directly reusing class method
interfaces, attributes, detailed designs, or algorithms was not
feasible under the circumstances. Instead, we needed to el-
evate the level of abstraction for reuse to the level of design
patterns. Regardless of the underlying OS event demulti-
plexing I/O semantics, the Reactor and Acceptor patterns are
applicable for event-driven applications that must provide
different types services that are triggered simultaneously by
different types of events. Therefore, although OS platform
differences precluded direct reuse of implementations or in-
terfaces, the design knowledge we had invested in learn-
ing and documenting the Reactor and Acceptor patterns was
reusable.

The remainder of this section describes the modifications
we made to the implementations of the Reactor and Acceptor
design patterns in order to port them to Windows NT.

4.4.1 Implementing the Reactor Pattern on Windows
NT

Windows NT provides proactive I/O semantics that are typ-
ically used in the following manner. First, an application
creates a HANDLE that corresponds to an I/O channel for
the type of networking mechanism being used (such as named
pipes or sockets). The overlapped I/O attribute is specified
to the HANDLE creation system call (WinSock sockets are
created for overlapped I/O by default). Next, an application
creates a HANDLE to a Win32 event object and uses this

4WinSock is a Windows-oriented transport layer programming interface
based on the BSD socket paradigm.

5Win32 is the 32-bit Windows subsystem of the Windows NT operating
system.

9

event object HANDLE to initialize an overlapped I/O struc-
ture. The HANDLE to the I/O channel and the overlapped I/O
structure are then passed to the WriteFile or ReadFile
system calls to initiate a send or receive operation, respec-
tively. The initiated operation proceeds asynchronously and
does not block the caller. When the operation completes, the
event object specified inside the overlapped I/O structure is
set to the “signaled” state. Subsequently, Win32 demulti-
plexing system calls (such as WaitForSingleObject or
WaitForMultipleObjects) may be used to detect the
signaled state of the Win32 event object. These calls indicate
when an outstanding asynchronous operation has completed.

The Win32 WaitForMultipleObjects system call
is functionally similar to the UNIX select and poll
system calls. It blocks on an array of HANDLEs wait-
ing for one or more of them to signal. Unlike the two
UNIX system calls (which wait only for I/O handles),
WaitForMultipleObjects is a general purpose routine
that may be used to wait for any type of Win32 object (such as
a thread, process, synchronization object, I/O handle, named
pipe, socket, or timer). It may be programmed to return to
its caller either when any one of the HANDLEs becomes
signaled or when all of the HANDLEs become signaled.
WaitForMultipleObjects returns the index location
in the HANDLE array of the lowest signaled HANDLE.

Windows NT proactive I/O has both advantages and dis-
advantages. One advantage over UNIX is that Windows NT
WaitForMultipleObjects provides the flexibility to
synchronize on a wide range Win32 objects. Another ad-
vantage is that overlapped I/O may improve performance by
allowing I/O operations to execute asynchronously with re-
spect to other computation performed by applications or the
OS. In contrast, the reactive I/O semantics offered by UNIX
do not support asynchronous I/O directly (threads may be
used instead).

On the other hand, designing and implementing the Reac-
tor pattern using proactive I/O on Windows NT turned out
to be more difficult than using reactive I/O on UNIX. Sev-
eral characteristics of WaitForMultipleObjects sig-
nificantly complicated the implementation of the Windows
NT version of the Reactor pattern.

First, applications that must synchronize simultaneous
send and receive operations on the same I/O channel are
more complicated to program on Windows NT. For exam-
ple, to distinguish the completion of a WriteFile op-
eration from a ReadFile operation, separate overlapped
I/O structures and Win32 event objects must be allocated
for input and output. Furthermore, two elements in the
WaitForMultipleObjects HANDLE array (which is
currently limited to a rather small maximum of 64 HAN-
DLEs) are consumed by the separate event object HANDLEs
dedicated to the sender and the receiver.

Second, Each Win32 WaitForMultipleObjects
call only returns notification on a single HANDLE. There-
fore, to achieve the same behavior as the UNIX select
and poll system calls (which return a set of activated
I/O handles), multiple WaitForMultipleObjects

must be performed. In addition, the semantics of
WaitForMultipleObjects do not result in a fair dis-
tribution of notifications. In particular, the lowest signaled
HANDLE in the array is always returned, regardless of how
long other HANDLEs further back in the array may have
been pending.

The implementation techniques required to deal with
these characteristics of Windows NT were rather com-
plicated. Therefore, we modified the NT Reac-
tor by creating a Handler Repository class that
shields the Reactor from this complexity. This class
stores Event Handler objects that registered with a
Reactor. This container class implements standard op-
erations for inserting, deleting, suspending, and resum-
ing Event Handlers. Each Reactor object contains
a Handler Repository object in its private data por-
tion. A Handler Repository maintains the array of
HANDLEs passed to WaitForMultipleObjects and
it also provides methods for inserting, retrieving, and “re-
prioritizing” the HANDLE array. Re-prioritizationalleviates
the inherent unfairness in the way that the Windows NT
WaitForMultipleObjects system call notifies appli-
cations when HANDLEs become signaled.

The Handler Repository’s re-prioritization method
is invoked by specifying the index of the HANDLE which
has signaled and been dispatched by the Reactor. The
method’s algorithm moves the signaled HANDLE toward
the end of the HANDLE array. This allows signaled HAN-
DLEs that are further back in the array to be returned by
subsequent calls to WaitForMultipleObjects. Over
time, HANDLEs that signal frequently migrate to the end of
the HANDLE array. Likewise, HANDLES that signal in-
frequently migrate to the front of the HANDLE array. This
algorithm ensures a reasonably fair distribution of HANDLE
dispatching.

The implementation techniques described in the previ-
ous paragraph did not affect the external interface of the
Reactor. Unfortunately, certain aspects of Windows NT
proactive I/O semantics, coupled with the desire to fully
utilize the flexibility of WaitForMultipleObjects,
forced visible changes to the Reactor’s external interface.
In particular, Windows NT overlapped I/O operations must
be initiated immediately. Therefore, it was necessary for
the Windows NT Event Handler interface to distinguish
between I/O HANDLEs and synchronization object HAN-
DLES, as well as to supply additional information (such as
message buffers and event HANDLEs) to the Reactor. In
contrast, the UNIX version of theReactor does not require
this information immediately. Therefore, it may wait until
it is possible to perform an operation, at which point addi-
tional informationmay be available to help optimize program
behavior.

The following modifications to the Reactor were re-
quired to support Windows NT I/O semantics. The
Reactor Mask enumeration was modified to include a
new SYNC MASK value to allow the registration of an
Event Handler that is dispatched when a general Win32

10

synchronizationobject signals. Thesendmethod was added
to the Reactor class to proactively initiate output opera-
tions on behalf of an Event Handler.

// Bit-wise "or" these values to
// check for multiple activities per-handle.
enum Reactor_Mask { READ_MASK = 01,
WRITE_MASK = 02, SYNC_MASK = 04

};

class Reactor
{
public:
// Same as UNIX Reactor...

// Initiate an asynchronous send operation.
virtual int send (Event_Handler *,

const Message_Block *);

// ...
};

Likewise, the Event Handler interface for Windows NT
was also modified as follows:

class Event_Handler
{
protected:
// Returns the Win32 I/O HANDLE
// associated with the derived object
// (must be supplied by a subclass).
virtual HANDLE get_handle (void) const;

// Allocates a message for the Reactor.
virtual Message_Block *get_message (void);

// Called when event occurs.
virtual int handle_event (Message_Block *,

Reactor_Mask);

// Called when object is removed from Reactor.
virtual int handle_close (Message_Block *,

Reactor_Mask);

// Same as UNIX Event_Handler...
};

When a derived Event Handler is registered for in-
put with the Reactor an overlapped input operation is
immediately initiated on its behalf. This requires the
Reactor to request the derived Event Handler for an
I/O mechanism HANDLE, destination buffer, and a Win32
event object HANDLE for synchronization. A derived
Event Handler returns the I/O mechanism HANDLE via
its get handle method and returns the destination buffer
location and length information via the Message Block
abstraction described in [4].

The current implementation of the Windows NT-based
Reactor pattern is about 2,600 lines C++ code (not in-
cluding comments or extraneous whitespace). This code
is approximately 200 lines longer than the UNIX ver-
sion. The additional code primarily ensures the fairness
ofWaitForMultipleObjects event demultiplexing, as
discussed above. Although Windows NT event demultiplex-
ing is more complex than UNIX, the behavior of Win32
mutex objects eliminated the need for the separate Mutex
interface with recursive-mutex semantics discussed in Sec-
tion 4.3.1. Under Win32, a thread will not be blocked if it
attempts acquire a mutex specifying the HANDLE to a mutex
that it already owns. However, to release its ownership, the

thread must release a Win32 mutex once for each time that
the mutex was acquired.

4.4.2 Implementing the Acceptor Pattern on Windows
NT

The following example C++ code illustrates an implemen-
tation of the Acceptor pattern based on the Windows NT
version of the Reactor pattern.

template <class PEER_IO>
class Logging_Handler : public Event_Handler
{
public:
// Callback method that handles the
// reception of logging transmissions from
// remote clients. The Message_Block object
// stores a message received from a client.

virtual int handle_event (Message_Block *msg,
Reactor_Mask) {

Log_Record *log_record =
(Log_Record *) msg->get_rd_ptr ();

// Format and print logging record.
log_record.format_and_print ();
delete msg;
return 0;

}

// Retrieve the I/O HANDLE (called by Reactor
// when a Logging_Handler object is registered).

virtual HANDLE get_handle (void) const {
return this->peer_io_.get_handle ();

}

// Return a dynamically allocated buffer
// to store an incoming logging message.

virtual Message_Block *get_message (void) {
return new Message_Block (sizeof (Log_Record));

}

// Close down I/O handle and delete
// object when a client closes connection.
virtual int handle_close (Message_Block *msg,

Reactor_Mask) {
delete msg;
delete this;
return 0;

}

private:
// Private ensures dynamic allocation.
˜Logging_Handler (void) {

this->peer_io_.close ();
}

// C++ wrapper for data transfer.
PEER_IO peer_io_;

}

TheLogging Acceptor class is essentially the same as
the one illustrated in Section 4.3.2. Likewise, the interaction
diagram that describes the collaboration between objects in
the server logging daemon is also very similar to the one
shown in Figure 4.

The application is the same server logging daemon pre-
sented in Section 4.3.2. The primary difference is that
Win32 Named Pipe C++ wrappers are used instead of the
SOCK SAP socket C++ wrappers in the main program as
shown below:

11

// Global per-process instance of the Reactor.
Reactor reactor;

// Server endpoint.
const char ENDPOINT[] = "logger";

// Instantiate the Logging_Handler template.
typedef Logging_Handler <NPipe_IO>

LOGGING_HANDLER;

// Instantiate the Logging_Acceptor template.
typedef Logging_Acceptor<LOGGING_HANDLER,

NPipe_Acceptor,
Local_Pipe_Name>

LOGGING_Acceptor;

int
main (void)
{

// Logging server address.
Local_Pipe_Name addr (ENDPOINT);
// Initialize logging server endpoint.
LOGGING_Acceptor Acceptor (addr);

reactor.register_handler (&Acceptor,
SYNC_MASK);

// Arm the proactive I/O handler.
Acceptor.initiate ();

// Main event loop that handles client
// logging records and connection requests.
reactor.dispatch ();
/* NOTREACHED */
return 0;

}

The Named Pipe Acceptor object (Acceptor) is regis-
tered with the Reactor to handle asynchronous connection
establishment. Due to the semantics of Windows NT proac-
tive I/O, the Acceptor object must explicitly initiate the
acceptance of a Named Pipe connection via an initiate
method. Each time a connection acceptance is completed,
the Reactor dispatches the handle event method of the
Named Pipe version of the Acceptor pattern to create a new
Svc Handler that will receive logging records from the
client. The Reactor will also initiate the next connection
acceptance sequence asynchronously.

5 Lessons Learned

Our group at Ericsson has been developing OO frameworks
based on design patterns for the past two years [6]. During
this time, we have identified a number of pros and cons
related to using design patterns as the basis for our system
design, implementation, and documentation. We have also
formulated a number of “workarounds” for the problems we
observed using design patterns in a production environment.
This section discusses the lessons we have learned thus far.

5.1 Pros and Cons of Design Patterns

Ironically, many pros and cons of using design patterns are
“duals” of each other, representing “two sides of the same
coin:”

�Patterns are underspecified: they generally do not over-
constrain an implementation. This is beneficial since it per-

mits flexible solutions that may be customized according to
application requirements and the constraints imposed by the
OS platform and network environment.

On the other hand, it is important for developers and man-
agers to recognize that understanding a collection of design
patterns is no substitute for design and implementation skills.
Unfortunately, patterns often lead developers to think they
know more about the solution to a recurring problem than
they actually do. For example, recognizing the structure and
participants in a pattern (such as the Reactor or Acceptor
patterns) is only the first step. As we describe in Section 4,
a major development effort is often required to fully realize
the pattern correctly and efficiently.

�Patterns enable large-scale architectural reuse: even if
reuse of algorithms, implementations, interfaces, or detailed
designs is not feasible. Understanding these benefits was
crucial in the design evolution we presented in Section 4.
Our task became much simpler when we recognized how to
leverage off our prior development effort and reduce risk by
reusing the Reactor and Acceptor patterns across UNIX and
Windows NT.

It is important, however, to manage the expectations of
developers and managers, who may have misconceptions
about the fundamental contribution of design patterns to a
project. In particular, patterns do not lead to automated code
reuse. Neither do they guarantee flexible and efficient design
and implementation. As always, there is no substitute for
creativity and diligence on the part of developers.

� Patterns capture knowledge that is implicitly under-
stood: our experience has been that once developers are
exposed to, and properly motivated by, the concepts of design
patterns, they are generally very eager to adopt the nomen-
clature and methodology. Patterns tend to codify knowledge
that is already understood intuitively. Therefore, once basic
concepts, notations, and pattern template formats are mas-
tered, it is straightforward to document and reason about
many portions of a system’s architecture and design using
patterns.

The downside of the intuitive nature of patterns is a phe-
nomenon we termed “pattern explosion.” In this situation,
all aspects of a project become expressed as patterns, which
often leads to relabeling existing development practices with-
out significantly improving them. We also noticed a tendency
for developers to spend considerable time formalizing rela-
tively mundane concepts (such as binary search, a linked list,
or opening a file) as patterns. Although this may be intellec-
tually satisfying, it does not necessarily improve productivity
or software quality.

� Patterns help improve communication within and
across software development teams: developers share a
common vocabulary and a common conceptual “gestalt.” By
learning the key recurring patterns in their application do-
main, developers at Ericsson elevated the level of abstraction
by which they communicated with their colleagues. For ex-
ample, once our team understood the Reactor and Acceptor

12

patterns, they began to use them in many other projects that
benefited from these architectures.

As usual, however, restraint and a good sense of aesthetics
is required to resist the temptation of elevating complex con-
cepts and principles to the level of “buzz words” and hype.
We noticed a tendency for many developers to get locked into
“pattern-think,” where they would try to apply patterns that
were inappropriate simply because they were familiar with
the patterns. For example, the Reactor pattern is often an
inefficient event demultiplexing model for a multi-processor
platform since it serializes application concurrency at a very
coarse-grained level.

� Patterns promote a structured means of documenting
software architectures: this documentation may be writ-
ten at a high-level of abstraction, which captures the essential
architectural interactions while suppressing unnecessary de-
tails.

One drawback we observed with much of the existing pat-
tern literature [1, 2], however, is that it is often too abstract.
Abstraction is a benefit in many cases since it avoids inun-
dating a casual reader with excessive details. However, we
found that in many cases that overly abstract pattern descrip-
tions made it difficult for developers to understand and apply
a particular pattern to systems they were building.

5.2 Solutions and Workarounds

Based on our experiences, we recommend the following so-
lutions and workarounds to the various traps and pitfalls with
patterns mentioned above.

� Expectation management: many of the problems with
patterns we discussed above are related to managing the ex-
pectations of development team members. As usual, patterns
are no silver bullet that will magically absolve managers and
developers from having to wrestle with tough design and im-
plementation issues. At Ericsson, we have worked hard to
motivate the genuine benefits from patterns, without hyping
them beyond their actual contribution.

� Wide-spectrum pattern exemplars: based on our ex-
perience using design patterns as a documentation tool, we
believe that pattern catalogs should include more than just
object model diagrams and structured prose. Although these
notations are suitable for a high-level overview, we found in
practice that they are insufficient to guide developers through
difficult design and implementation tradeoffs. Therefore, it
is very useful to have concrete source code examples to sup-
plement the more abstract diagrams and text.

Hyper-text browsers, such as Mosaic and Windows Help
Files, are particularly useful for creating compound docu-
ments that possess multiple levels of abstraction. Moreover,
in our experience, it was particularly important to illustrate
multiple implementations of a pattern. This helps to avoid
“tunnel vision” and over-constrained solutions based upon a
limited pattern vocabulary. The extended discussion in Sec-
tion 4 is one example of a wide-spectrum exemplar using

this approach. This example contains in-depth coverage of
tradeoffs encountered in actual use.

� Integrate patterns with OO frameworks: Ideally, ex-
amples in pattern catalogs [2, 1] should reference (or better
yet, contain hyper-text links to) source code that comprises
an actual OO framework. We have begun building such an
environment at Ericsson, in order to disseminate our pat-
terns and frameworks to a wider audience. In addition to
linking on-line documentation and source code, we have had
good success with periodic design reviews where developers
throughout the organization present interesting patterns they
have been working on. This is another technique for avoiding
“tunnel vision” and enhancing the pattern vocabulary within
and across development teams.

6 Concluding Remarks

Design patterns facilitate the reuse of abstract architectures
that are decoupled from concrete realizations of these archi-
tectures. This decoupling is useful when developing sys-
tem software components and frameworks that are reusable
across OS platforms. This article describes two design pat-
terns, Reactor and Acceptor, that are commonly used in dis-
tributed system software. These design patterns characterize
the collaboration between objects that are used to automate
common activities (such as event demultiplexing, event han-
dler dispatching, and connection establishment) performed
by distributed applications. Using the design pattern tech-
niques described in this article, we successfully reused major
portions of our telecommunication system software develop-
ment effort across several diverse OS platforms.

This case study describes how an OO framework based on
the Reactor and Acceptor design patterns evolved from sev-
eral UNIX platforms to the Windows NT Win32 platform.
Due to fundamental differences between the platforms, it
was not possible to directly reuse the algorithms, detailed de-
signs, interfaces, or implementations of the framework across
the different OS platforms. In particular, performance con-
straints and fundamental differences in the I/O mechanisms
available on Windows NT and UNIX platforms prevented us
from encapsulating event demultiplexing functionality within
a directly reusable framework. However, we were able to
reuse the underlying design patterns, which reduced project
risk significantly and simplified our re-development effort.

Our experiences with patterns reinforce the observation
that the transition from OO analysis to OO design and im-
plementation is challenging [11]. Often, the constraints of
the underlying OS and hardware platform influence design
and implementation details significantly. This is particularly
problematic for system software, which is frequently targeted
for particular platforms with particular non-portable charac-
teristics. In such circumstances, reuse of design patterns may
be the only viable means to leverage previous development
expertise.

The UNIX version of the ASX framework components de-
scribed in this article are freely available via anonymous ftp

13

from the Internet host ics.uci.edu (128.195.1.1) in the
file gnu/C++ wrappers.tar.Z. This distribution con-
tains complete source code, documentation, and example
test drivers for the C++ components developed as part of the
ADAPTIVE project [4] at the Universityof California, Irvine
and Washington University.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1994.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns. Wileys and Sons, to appear 1996.

[3] J. O. Coplien, “A Development Process Generative Pattern
Language,” in Pattern Languages of Programs (J. O. Coplien
and D. C. Schmidt, eds.), Reading, MA: Addison-Wesley, June
1995.

[4] D. C. Schmidt, “ASX: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[5] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[6] D. C. Schmidt and P. Stephenson,“An Object-Oriented Frame-
work for Developing Network Server Daemons,” in Proceed-
ings of the 2nd C++ World Conference, (Dallas, Texas), SIGS,
Oct. 1993.

[7] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

[8] A. Weinand, E. Gamma, and R. Marty, “ET++ - an object-
oriented application framework in C++,” in Proceedings of
the Object-Oriented Programming Systems, Languages and
Applications Conference, pp. 46–57, ACM, Sept. 1988.

[9] M. A. Linton, J. Vlissides, and P. Calder, “Composing User
Interfaces with InterViews,” IEEE Computer, vol. 22, pp. 8–
22, February 1989.

[10] S. Vinoski, “Distributed Object Computing with CORBA,”
C++ Report, vol. 5, July/August 1993.

[11] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[12] W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

[13] H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[14] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

14

