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Abstract

System execution modeling (SEM) tools provide an effec-
tive means to evaluate the quality of service (QoS) of enter-
prise distributed real-time and embedded (DRE) systems.
SEM tools facilitate testing and resolving performance is-
sues throughout the entire development life-cycle, rather
than waiting until final system integration. SEM tools have
not historically focused on effective testing. New techniques
are therefore needed to help bridge the gap between the
early integration capabilities of SEM tools and testing so
developers can focus on resolving strategic integration and
performance issues, as opposed to wrestling with tedious
and error-prone low-level testing concerns.

This paper provides two contributions to research on us-
ing SEM tools to address enterprise DRE system integration
challenges. First, we evaluate several approaches for com-
bining continuous integration environments with SEM tools
and describe CiCUTS, which combines the CUTS SEM tool
with the CruiseControl.NET continuous integration envi-
ronment. Second, we present a case study that shows how
CiCUTS helps reduce the time and effort required to man-
age and execute integration tests that evaluate QoS met-
rics for a representative DRE system from the domain of
shipboard computing. The results of our case study show
that CiCUTS helps developers and testers ensure the per-
formance of an example enterprise DRE system is within
its QoS specifications throughout development, instead of
waiting until system integration time to evaluate QoS.

1 Introduction

Challenges of developing enterprise distributed real-
time and embedded (DRE) systems. Enterprise DRE
systems, such as supervisory control and data acquisition
(SCADA) systems, air traffic control systems, and ship-
board computing environments, are increasingly being de-
veloped using service-oriented architectures (SOAs), such
as the Lightweight CORBA Component Model (CCM),
Microsoft .NET, and J2EE. SOAs address certain soft-
ware development challenges, such as reusing core applica-

tion logic or improving application scalability and reliabil-
ity [19]. They still, however, often incur unresolved prob-
lems, such as “serialized phasing” [11], where application
level components are not tested until long after infrastruc-
ture level components.

System execution modeling (SEM) tools [5, 8, 11] are
a promising technology for addressing serialized phasing
problems of SOA-based enterprise DRE systems. SEM
tools help to (1) capture computational workloads, resource
utilizations and requirements, and communication of appli-
cation and infrastructure-level components using domain-
specific modeling languages [15], (2) emulate the captured
system specifications on actual infrastructure components
and hardware in production runtime environments to de-
termine their impact on QoS properties, such as measur-
ing the performance impact of dynamically managing ship-
board computing environment resources, and (3) process
QoS metrics and provide informative analysis to enhance
the system’s architecture and components to improve QoS.

Although SEM tools assist with developing enterprise
DRE systems, they historically focused on performance
analysis [22] rather than efficient testing. Moreover, due
to the inherit complexities of serialized phasing (e.g., por-
tions of the system being developed in phases defer QoS
testing until integration testing) it is hard to use SEM tools
continuously to test for QoS throughout the entire devel-
opment lifecycle. New techniques are therefore needed to
enhance the capabilities of existing SEM tools to improve
their testing capabilities throughout the entire development
lifecycle.

Solution Approach→ Integrate SEM tools with con-
tinuous integration environments. Continuous integra-
tion [9] environments, such as CruiseControl (cruise-
control.sourceforge.net ), Build Forge (www.
buildforge.com ), and DART (public.kitware.
com/Dart ), continuously exercise the build cycle of soft-
ware to validate its quality by (1) performing automated
system builds upon source code check in or successful ex-
ecution and evaluation of prior events, (2) executing suites
of unit tests to validate basic system functionality, (3) eval-
uating source code to ensure it meets coding standards, and
(4) executing code coverage analysis.
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This paper describes the design ofCiCUTS, which com-
bines the CruiseControl.NET continuous integration envi-
ronment the Component Workload Emulator (CoWorkEr)
Utilization Test Suite (CUTS) [11], which is a SEM tool that
enables developers to evaluate system QoS in the target do-
main before system integration time. CiCUTS tests are de-
ployed into the target domain to enable system QoS testing.
These tests are managed by CruiseControl.NET and dictate
the behavior of CUTS, as shown in Figure 1. This process is

CiCUTS
(CUTS + CruiseControl.NET)

Figure 1. CiCUTS: Combining SEM Tools with
Continuous Integration Environments

repeated continuously to help developers and testers ensure
system QoS meets—or is close to meeting—its specifica-
tion throughout the development lifecycle.

This paper also describes how we applied CiCUTS to
a representative DRE system case study from the domain
of shipboard computing. The results from our case study
show how combining continuous integration environments
with SEM tools enabled CiCUTS to address the following
requirements:

1. Management and execution of large numbers of
testsby allowing system developers and testers to fo-
cus on systematic creation of test scenarios instead of
expending time and effort building a custom testing
framework. System developers and testers can create
scenarios via CiCUTS’s SEM tool and use its contin-
uous integration environment to manage and execute
them.

2. Creation of realistic scenariosby providing the capa-
bility of chaining scenarios that exercise multiple as-
pects of the DRE system and target environment’s ex-
pected behavior. System testers can use CiCUTS to
create tests and compose them into more complex/re-
alistic tests scenarios that are managed and executed
by its continuous integration environment.

3. Automated processing and feedback of resultsusing
graphical displays that visualize simple and detailed
views of active and completed test scenarios. System
developers and testers can use CiCUTS to ensure sys-

tem performance is within QoS specification through-
out the development lifecycle.

Paper organization. The remainder of this paper is
organized as follows: Section 2 introduces our enterprise
DRE system case study from the domain of shipboard com-
puting; Section 3 describes how CiCUTS combines SEM
tools with a continuous integration environment; Section 4
shows how we used CiCUTS to evaluate the QoS of our
case study system; Section 5 compares our work on Ci-
CUTS with related work; and Section 6 presents concluding
remarks and lessons learned.

2 The RACE DRE System Case Study

This section describes a SOA-based enterprise DRE sys-
tem case study from the domain of shipboard computing
to motivate the need for, operation of, and benefits pro-
vided by CiCUTS. This case study is based on theResource
Allocation and Control Engine(RACE) [21], which is an
open-source distributed resource manager system we devel-
oped using the CIAO [7] implementation of the Lightweight
CORBA Component Model (CCM) [18] over the past
several years in conjunction with Lockheed Martin and
Raytheon. RACE deploys and manages Lightweight CCM
application component assemblies (henceforth calledop-
erational strings) based on specifications of their resource
availability/usage and QoS requirements [21].

2.1 Overview of RACE

Figure 2 shows the architecture of RACE, which is com-
posed of four components assemblies (Input Adapter, Plan
Analyzer, Planner Manager, andOutput Adapter) that col-
laborate to manage operational strings for the target domain.
RACE is designed to perform two types of deployment

Application Layer

Infrastructure Layer

Resource Layer

RACE

Input 
Adapter

Planner 
Analyzer

Planner 
Mgr

Output 
Adapter

(to Resource Layer)

Operational String

Target Domain

Figure 2. Architecture of RACE

strategies—static anddynamic—for DRE systems. Static
deployments are operational strings created offline by hu-
mans or automated planners. RACE uses the information
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specified in a static deployment plan to map each com-
ponent to its associated target host during the deployment
phase of a DRE system. A benefit of RACE’s static deploy-
ment strategy is its low runtime overhead since deployment
decisions are made offline; a drawback is its lack of flexi-
bility since deployment decisions cannot adapt to changes
at runtime.

Dynamic deployments, in contrast, are operational
strings generated online by humans or automated planners.
In dynamic deployments, components are not given a target
host. Instead, the initial deployment plan contains compo-
nent metadata (e.g., connections, CPU utilization, and net-
work bandwidth) that RACE uses to map components to
associated target hosts during the runtime phase of a DRE
system. A benefit of RACE’s dynamic deployment strat-
egy is its flexibility since deployment decisions can adapt
to runtime changes (e.g., variation in resource availability);
a drawback is its higher runtime overhead.

2.2 RACE’s Baseline Scenario

The case study in this paper focuses on RACE’sbaseline
scenario. This scenario exercises RACE’s ability to evalu-
ate resource availability (e.g., CPU utilization and network
bandwidth) with respect to environmental changes (e.g.,
node failure/recovery). Moreover, it evaluates RACE’s
ability to ensure lifetime of higher importance operational
strings deployed dynamically is greater than or equal to the
lifetime of lesser importance operational strings deployed
statically based on resource availability.

Since RACE performs complex distributed resource
management services—and thus took several years to
develop—we wanted to avoid the serialized phasing prob-
lem outlined in Section 1. In particular, we did not want
to wait until final system integration to determine whether
RACE could evaluate resource availability with respect
to environmental changes to properly manage operational
strings deployed dynamically versus those deployed stati-
cally. Our prior experience [11] with distributed resource
management services indicated that deferring QoS testing
until final system integration requires much more effort to
rectify the inevitable performance problems uncovered dur-
ing integration testing.

To avoid the problems outlined above, we used
CUTS [11] to analyze RACE’s ability to manage the opera-
tional strings with respect to resource availability and envi-
ronmental changes well before system integration to deter-
mine if we are meeting its QoS requirements. Moreover, to
continuously ensure we are meeting the QoS requirements
for RACE as we developed it, we combined CUTS with the
CruiseControl.NET continuous integration environment to
create CiCUTS. The remainder of this paper describes Ci-
CUTS and the results of our experiments that apply it to

evaluate RACE’s baseline scenario throughout its develop-
ment lifecycle.

3 Combining System Execution Modeling
Tools with Continuous Integration Envi-
ronments

This section discusses the design of CiCUTS and ex-
plains how it enables continuous system QoS testing from
design-time to system integration time.

3.1 Overview of CiCUTS

CiCUTS is a combination of the CruiseControl.NET
continuous integration environment and the CUTS SEM
tool, which work individually as follows:

• CruiseControl.NET monitors source code repositories
for changes at predefined intervals. When changes are
detected, it executes NAnt scripts that contain subtasks
for performing work, such as building the application
or executing unit tests. CruiseControl.NET then uses
the return status of the NAnt scripts, which is based
on the return value of the individual subtasks, to deter-
mine the success or failure of the entire process for the
detected modification.

• CUTS uses profiling techniques to capture perfor-
mance metrics of executing systems. It uses intru-
sive [17] and non-intrusive [16,20] monitoring to cap-
ture metrics such as the service times of events in a
component, the number of events received on each in-
dividual port of a component, or the execution time of
a database query.

By combining CruiseControl.NET with CUTS, CiCUTS
provides developers and testers with tools and analysis ca-
pabilities to improve testing features offered by system ex-
ecution modeling tools. Developers and testers createCi-
CUTS tests(see Figure 1), which are NAnt subtasks that
drive CUTS and the testing environment to create realis-
tic scenarios (Requirement 2 in Section 1). CruiseCon-
trol.NET then continuously manages and executes CiCUTS
tests throughout the development lifecycle (Requirement 1
in Section 1). Consequently, developers and testers can fo-
cus on resolving performance issues identified by CiCUTS
instead of spending time and effort manually deploying and
analyzing performance tests (Requirement 3 of Section 1).

3.2 Evaluating Design Alternatives for Ci-
CUTS

Successfully combining SEM tools like CUTS with
a continuous integration environment like CruiseCon-
trol.NET requires developers and testers to agree upon the
following profiling decisions: (1) what type of metrics to
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collect from the instrumented system being analyzed, (2)
how to capture the performance metrics efficiently, and (3)
how to present the metrics to a continuous integration envi-
ronment so it can determine the testing result,e.g., success
or failure, of the system being analyzed. When developing
CiCUTS we identified several ways to combine SEM tools
with continuous integration environments. Below we logi-
cally evaluate the pros and cons of three design alternatives
we considered.

Alternative 1: Extend profiling infrastructure of SEM
tools to capture domain-specific metrics.

Approach. SEM tools provide profiling infrastructures
to collect predefined performance metrics, such as execu-
tion times of events/function calls or values of method ar-
guments. As shown in Figure 3, it may be feasible to extend
the profiling infrastructure,i.e., the SEM data collector, to
capture domain-specific metrics, such as the amount of time
needed to deploy an operational string.

Figure 3. Conceptual model of design alter-
native 1

Evaluation.A benefit of this approach is that it simplifies
development of a complete profiling framework. System
developers and testers can leverage the SEM tool’s existing
infrastructure to collect and present domain-specific met-
rics to the continuous integration environment. Moreover, it
simplifies deciding how to capture the metrics because the
existing profiling infrastructure already has a predetermined
method and format for collecting performance metrics. De-
velopers and testers need only convert their target metrics
into a format understood by the SEM profiling infrastruc-
ture.

A drawback with this approach, however, is that it re-
quires system developers and testers to ensure their domain-
specific extensions to the SEM tool do not incur additional
performance overhead on the instrumented system. For ex-
ample, testers may collect metrics from complex data types,
such as nested structures, that must be iterated in their en-
tirety to obtain concrete data, but the runtime complexity of
iteration process can adversely affect performance. More-
over, this approach may not be feasible if a SEM tool is pro-
prietary, such that its profiling abilities cannot be extended
by users.

Alternative 2: Capture domain-specific performance
metrics in format understood by continuous integration
environments.

Approach. A continuous integration environment typi-
cally uses a predetermined format, such as verbose XML
log files, to record and analyze the results of tests it man-
ages. As shown in Figure 4, it may be feasible to capture
target performance metrics outside of the profiling infras-
tructure using domain-specific data collectors and present
performance metrics in the format understood by the con-
tinuous integration environment.

continuous 
integration 

format

Figure 4. Conceptual model of design alter-
native 2

Evaluation. A benefit of this approach is that it sim-
plifies integrating continuous integration environments with
SEM tools because a understood format is used to present
collected metrics. The continuous integration environment
therefore already knows how to analyze the collected met-
rics and present the results.

A drawback with this approach, however, is that addi-
tional effort is required to develop a custom testing frame-
work to collect performance metrics and feed them to the
continuous integration environment. Moreover, this ap-
proach couples SEM tools with the continuous integration
environment. If the project changes to a different contin-
uous integration environment, then developers and testers
must reimplement the testing framework to present metrics
in a format understood by the new continuous integration
environment.

Alternative 3: Capture domain-specific performance
metrics in an intermediate format.

Approach. SEM tools and continuous integration envi-
ronments each have their own method and format for col-
lecting and using performance metrics. As shown in Fig-
ure 5, it may be feasible to collect performance metrics out-
side of the existing profiling infrastructure—similar to alter-
native 2—but capture domain-specific metrics in a interme-
diate format that is not bound to any SEM tool or continuous
integration environments format

Evaluation. This approach applies the Bridge pat-
tern [10] to capture metrics in an intermediate format, such
as XML or a BLOB in a centralized database, that is nei-
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Figure 5. Conceptual model of design alter-
native 3

ther bound to a SEM tool’s nor the continuous integration
environment format. A benefit of this approach is that it
decouples the SEM tools from the continuous integration
environment. Instead of presenting domain-specific perfor-
mance metrics in a format understood by the continuous in-
tegration environment, developers and tester simply extend
the continuous integration environment to understand the
intermediate format for processing and analyzing results.
Likewise, developers and testers can use any data collec-
tion technique, such as logging intercepters [13], to collect
domain-specific performance metrics as long as they can
transform the metrics into the intermediate format. Finally,
the data collection technique does not interfere with the ex-
isting profiling infrastructure of the SEM tool.

A drawback with this approach, however, is that devel-
opers and testers must agree on the intermediate format to
represent the data. Likewise, they must extend the continu-
ous integration environment to understand the intermediate
format for analyzing collected metrics. In practice, how-
ever, these drawbacks are not problematic because agree-
ing on an intermediate format is straightforward. Moreover,
continuous integration environments are used in industrial
development [4, 12] and can thus be extended for domain-
specific needs, such as evaluating the success of results gen-
erated by domain-specific extensions.

3.3 The Structure and Functionality of
CiCUTS

After evaluating the pros and cons of the various ap-
proaches described above, we chose alternative 3 for
CiCUTS because it strongly decoupled of CUTS from
CruiseControl.NET. As a result, if project collaborators de-
cide to change to a different continuous integration envi-
ronment they are not bound to using CruiseControl.NET.
Likewise, if portions of RACE were redeveloped using a
different SOA technology (e.g., Microsoft.NET or J2EE),
CruiseControl.NET could still be applied since it operates
on the intermediate format, not the SEM tools’s format.
Moreover, testers and developers can use any data collec-
tion technique specific to the target SOA technology, such

as the Java Messaging Service [24] for J2EE applications,
as long as collected performance metrics can be converted
to the intermediate format. It is clear that alternative 3 offers
the most flexibility when integrating CUTS with CruiseC-
ontrol.NET to create CiCUTS.

Logger
CUTS

CruiseControl.NET

intermediate database

polls

CiCUTS->log (“deploying operational
             string: %s\n”, opstr_name);

1

2

3

Benchmark Node Controller

Benchmark Node Controller

Logger

4

Figure 6. Structure of CiCUTS

Figure 6 shows the structure of CiCUTS, which is
composed of the following elements: (1)loggers, which
are domain-specific extensions to logging interceptors that
transparently collect domain-specific performance metrics,
(2) an intermediatedatabasethat stores performance met-
rics collected by the loggers, (3)CruiseControl.NET, which
is CiCUTS’s default continuous integration environment
that manages and executes tests based on analyzed perfor-
mance metrics, and (4)Benchmark Node Controllers, which
execute commands directed by continuous integration envi-
ronments, such as terminating container applications that
host deployed operational strings. The loggers and interme-
diate database in the CiCUTS infrastructure enable the com-
bination of CUTS with CruiseControl.NET without tightly
coupling one to the other.

To use CiCUTS, developers must instrument their source
code with log messages,e.g., debug statements, that capture
performance metrics. Likewise, testers create CiCUTS test
scenarios using NAnt scripts that exercise different envi-
ronment and system events, such as terminating/recovering
nodes that affect the lifetime of deployed operational strings
(i.e., Requirement 2 in Section 1). Finally, testers instruct
CruiseControl.NET to manage and execute the CiCUTS
tests (i.e, Requirement 1 in Section 1) by (1) monitoring the
source code repository for modifications, (2) updating the
testing environment with the latest development snapshot,
(3) executing the CUTS tests scenarios, and (4) analyzing
metrics in the intermediate database collected by the CUTS
loggers (i.e., Requirement 3 in Section 1).

5



4 Experiment Results Using CiCUTS to
Evaluate System QoS

This section shows the design and results of experiments
that applied CiCUTS to evaluate the QoS of RACE’sbase-
line scenariodescribed in Section 2.2. These experiments
evaluated the following hypotheses: (H1) CiCUTS allows
developers to understand the behavior and performance of
infrastructure-level applications, such as RACE, before sys-
tem integration; and (H2) CiCUTS allows developers to en-
sure that the QoS performance of infrastructure-level appli-
cations is within performance specifications throughout the
development lifecycle more efficiently and effectively than
waiting until system integration to evaluate performance.

4.1 Experiment Design

To evaluate the two hypotheses in the context of the
RACE baseline scenario, we constructed 10 operational
strings. Each string was composed of the same compo-
nents and port connections, but had different importance
values and resource requirements to reflect varying resource
requirements and functional importance between opera-
tional strings that accomplish similar tasks, such as a pri-
mary and secondary tracking operation. Figure 7 shows
a PICML1 model for one of the baseline scenario’s op-

Figure 7. Graphical Model of the Replicated
Operational String for the Baseline Scenario

erational strings—which was replicated 10 times to cre-
ate the 10 operational strings in the baseline scenario—
consisting of 15 interconnected components represented by
the rounded boxes.

The four components on the left side of the operational
string in Figure 7 are sensor components that monitor en-
vironment activities, such as tracking objects of importance
using a radar. The four components in the top-middle of
Figure 7 are system observation components that monitor

1The Platform Independent Component Modeling Language
(PICML) [2] is a domain-specific modeling language for modeling
compositions, deployments, and configurations of Lightweight CCM
applications.

the state of the system. The four linear components in
the bottom-center of Figure 7 are planner components that
receive information from both the system observation and
sensor components and analyze the data,e.g., determine if
the object(s) detected by the sensor components are of im-
portance and how to (re)configure the system to react to the
detected object(s). The planner components then send their
analysis results to the three components on the right side of
Figure 7, which are effector components that react as stated
by the planner components (e.g., start recording observed
data).

To prepare RACE’s baseline scenario for CiCUTS usage
(see Section 3.3), we used PICML to construct the 10 op-
erational strings described above. We then used the CUTS
SEM tool portion of CiCUTS to generate Lightweight CCM
compliant emulation code that represented each component
in the operational string managed by RACE (see Figure 7)
in the baseline scenario. We also used PICML to gener-
ate the operational strings’ deployment and configuration
descriptors for RACE. The deployment for each string used

Table 1. Importance Values of the Baseline
Scenario Operational Strings

Operational String Importance Value
A – H 90
I – J 2

the strategy specified in Table 1. The importance values2 as-
signed to each operational string reflects its mission-critical
ranking with respect to other operational strings. We chose
extreme importance values because RACE was in its initial
stages of development and we wanted to ensure that it hon-
ored importance values when managing operational strings.
Finally, we annotated RACE’s source code with the logging
mechanisms described in Section 3.1 to collect information,
such as time of operational string deployment/teardown or
time of node failure recognition.

To run the experiments using CiCUTS, we created NAnt
scripts that captured the serialized flow of each experi-
ment. The NAnt scripts contained commands that (1) sig-
naled RACE to deploy/teardown operational strings, (2)
sent commands to individual nodes to cause environmental
changes, and (3) queried the logging database for test re-
sults. The CruiseControl.NET part of CiCUTS then used
the NAnt scripts to manage and execute the experiments
many times,e.g., every 30 minutes CruiseControl.NET
checked for modifications in the RACE source code reposi-
tory and, if so, executed the NAnt scripts.

When the RACE baseline scenario tests are executed un-

2These values are not OS priorities; instead, they are values that specify
the significance of operational strings to each other.
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der control of CruiseControl.NET, log messages contain-
ing the information outlined above were generated when
the RACE’s runtime execution reached that point of ex-
ecution. These log messages were stored in a database
by the CUTS logger’s in CiCUTS for offline analysis by
CruiseControl.NET,e.g., calculating the lifetime of opera-
tional strings or amount to time to deploy operational strings
and representing it as an integer value. The collected log
messages were also transformed into a graphically display
(e.g., see Figure 8) to show whether the lifetime of dy-
namic deployments exceed the lifetime of static deploy-
ments based on resource availability with respect to envi-
ronmental changes.

4.2 Experiment Results

This section presents the results of experiments that val-
idate H1 and H2 about CiCUTS (see Section 4) when eval-
uating the QoS of the RACE baseline scenario.

4.2.1 Using CiCUTS to Understand the Behavior and
Performance of Infrastructure-level Applications

H1 conjectured that CiCUTS will assist in understanding
the behavior and performance of infrastructure-level appli-
cations, such as RACE, well before system integration. Fig-
ure 8 shows an example result set for the RACE baseline
scenario (i.e., measuring the lifetime of operational strings
deployed dynamically vs. operational strings deployed stat-
ically) where 2 hosts were taken offline to simulate a node
failure. The graphs in Figure 8—which are specific to

Lifetime of Dynamic Deployments

Lifetime of Static Deployments

Running (lesser importance)
Running (greater impotance)

Swapped Out
Failed

Legend

node 
failures

node 
failures

node 
failures

operational 
string 

swapout

operational 
string 

swapout

operational 
string 

swapout

node 
failures

Figure 8. Graphical Analysis of Static Deploy-
ments (bottom) vs. Dynamic Deployments
(top) using RACE

RACE—were generated from the log messages stored in the
database by the CUTS loggers in CiCUTS described in Sec-
tion 3.2. The x-axis in both graphs is the timeline for the test
in seconds and each horizontal bar represents the lifetime of
an operational string,i.e., operational string A-J.

The graph at the bottom of Figure 8 depicts RACE’s
behavior when deploying and managing human-generated
static deployment of operational string A-J. The graph at
the top of Figure 8 depicts RACE’s behavior when deploy-
ing and managing RACE-generated dynamic deployment of
operational string A-J. At approximately 100 and 130 sec-
onds into the test run we instructed the Benchmark Node
Controller to randomly kill 2 nodes hosting the higher im-
portance operational strings, which is highlighted by the
“node failures” callout.

As shown in the static deployment (bottom graph) of Fig-
ure 8, static deployments are not aware of the environmental
changes. All operational strings on failed nodes (i.e., oper-
ational string A-G) therefore remain in the failed state until
they are manually redeployed. In this test run, however, we
did not redeploy the operational strings hosted on the failed
nodes because the random “think time” required to manu-
ally create a deployment and configuration for the 7 failed
operational strings exceeded the duration of the test. This
result signified that in some cases it is too hard to derive
new deployments due to stringent resource requirements
and scarce resource availability.

The behavior of dynamic deployment (top graph) is dif-
ferent than the static deployment (bottom graph) behavior.
In particular, when the Benchmark Node Controller kills the
same nodes at approximately the same time (i.e., section
highlighted by the “node failure” callout), RACE’s mon-
itoring agents detect the environmental changes. RACE
then quickly tears down the lower importance operational
strings (i.e., the section highlighted by the “operational
string swapout”) and redeploys the higher importance op-
erational strings in their place (e.g., the regions after the
“node failure” regions).

The test run shown in Figure 8, however, does not
recover the failed nodes to emulate the condition where
the nodes cannot be recovered (e.g., due to faulty hard-
ware). This failure prevented RACE from redeploying the
lower importance operational strings because there were not
enough resources available. Moreover, RACE has to ensure
the lifetime of the higher importance operational strings is
greater than lower importance operational strings (see Sec-
tion 2). Figure 8 also shows the lifetime of higher impor-
tance operational strings was approximately 15% greater
than lower importance operational string. This test case
showed that RACE can improve the lifetime of operational
strings deployed and managed dynamically vs. statically.

The results described above validate H1,i.e., that Ci-
CUTS enables developer to understand the behavior and
performance of infrastructure-level applications. Without
CiCUTS, we would have usedad hoctechniques, such as
manually scrubbing execution trace logs distributed across
multiple hosts, to determine the exact behavior of RACE.
By using CiCUTS, however, we collected the necessarylog
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messagesin a central location and used them to determine
the exact behavior of RACE. Moreover, the collected log
messages helped determine if RACE was performing close
to its QoS specifications. Without CiCUTS, not only would
we have had to rely onad hoctechniques to understand the
behavior of RACE and evaluate its performance, we would
not have been able to do so well in advance of final system
integration.

4.2.2 Using CiCUTS to Ensure Performance is Within
QoS Specifications

H2 conjectured that CiCUTS would help developers ensure
the QoS of infrastructure-level applications is within its per-
formance specifications throughout the development lifecy-
cle. The results described in Section 4.2.1, however, repre-
sent a single test run of the baseline experiment. Although
this result is promising, it does not conclusively show that
CiCUTS is able to ensure RACE is within its QoS specifi-
cations as we develop and release revisions of RACE

We therefore used the CruiseControl.NET portion of Ci-
CUTS to continuously execute variations of the experiment
previously discussed while we evolved RACE. Figure 9
highlights the maximum number of tests we captured from
the baseline scenario presented in Figure 8 after it was ex-
ecuted approximately 427 times over a 2 week period. The

Figure 9. Overview Analysis of Continuously
Executing the RACE Baseline Scenario

number of executions corresponds to the number of times
a modification (such as a bug fix or an added feature to
RACE) was detected in the source code repository at 30
minute intervals.

The vertical bars in Figure 9 represent the factor of im-
provement of dynamic deployments vs. static deployments.
The heights of the bars in this figure are low on the left
side and high on the right side, which stem from the fact
that the initial development stages of RACE had limited
capability to handle dynamic (re-)configuration of opera-
tional strings. As RACE’s implementation improved—and
the modified code was committed to the RACE source code
repository—the CruiseControl.NET portion of CiCUTS up-
dated the testing environment automatically. The results in
Figure 9 show how the CruiseControl.NET part of CiCUTS
manages and executes tests of RACE’s baseline scenario ef-
ficiently because it automatically monitors the source code
repository and reruns the tests if modifications are detected.

The results in Figure 9 also show how CiCUTS allows
developers to keep track of RACE’s performance through-
out its development. As the performance of RACE im-
proved between source code modifications, the vertical bars
increased in height. Likewise, as the performance of RACE
decreased between source code modifications, the vertical
bars decreased in height. Lastly, since each vertical bar cor-
responds to a single test run, if the performance of RACE
changed between tests runs, developers could look at the
graphical display for a single test run (see Figure 8) to fur-
ther investigate RACE’s behavior.

The results described above validate H2,i.e., that Ci-
CUTS helps developers ensure the QoS of infrastructure-
level applications is within its performance specifications
throughout the development lifecycle. As modifications
where checked into the source code repository, the CruiseC-
ontrol.NET portion of CiCUTS detected the modifications
and reran the QoS tests. As shown in Figure 9, each set of
modifications within a predefined time period (e.g., every
30 minutes) corresponded to a single tests run. If perfor-
mance improved or declined, then developers could locate
which modifications resulted in the changes.

Conducting this process without CiCUTS is hard be-
cause it required testers to manually monitor the source
code repository, manually update the testing environment,
manually rerun the performance tests, and manually asso-
ciate the test results with detected modifications. In con-
trast, CiCUTS helped ensure the system performance is
within is QoS specifications more efficiently and effectively
by automating the testing process and autonomously pro-
viding feedback about the system being within its QoS spec-
ification.

5 Related Work

This section compares our work on CiCUTS with other
related works on continuous integration environments and
SEM tools.

5.1 Integrating SEM tools with Continu-
ous Integration Environments

Little prior work has evaluated techniques for integrating
continuous integration environments with SEM tools, nor
has prior work evaluated integrating SEM tools and con-
tinuous integration environments with an emphasis on im-
proving test management. Bowyer [4] et al discuss their ex-
perience using continuous integration environments to as-
sess undergraduates experience using test-driven develop-
ment (TDD) [14]. CiCUTS extends their effort by evaluat-
ing different techniques for integrating continuous integra-
tion environments with external processes/tools. Moreover,
CiCUTS automatically processes collected metrics to sim-
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plify the analysis process, which Bowyer mentions as future
work.

Prior work has also explored the benefits of using con-
tinuous integration environments, such as automating the
build process [4], only releasing modules after they pass
all automated test cases [23], and reducing integration risk
by finding errors earlier in the lifecycle [12]. Our work on
CiCUTS also shows the benefits of using continuous inte-
gration environments to automate key aspects of the testing
process. CiCUTS, however, extends prior work by show-
ing how to combine SEM tools with continuous integra-
tion environments to manage and execute performance tests
that evaluate QoS. This combination allows developers and
testers to focus on resolving performance issues instead of
managing and executing custom test frameworks.

5.2 End-to-end Performance Testing

The design and application of an end-to-end integra-
tion test suite for J2EE is discussed in [1, 25]. Although
CiCUTS also focuses on end-to-end integration testing, it
combines continuous integration environments and SEM
tools instead of implementing a custom environment for
end-to-end system integration. CiCUTS also extends the
work in [1, 25] by focusing on automating the execution of
a large number of tests to increase the fidelity of the QoS
results, whereas [1, 25] focus on validating functional cor-
rectness.

Real-time Technology Solutions (RTTS) [3] discusses
how to achieve end-to-end testing of applications by test-
ing at the component-level and system level throughout de-
velopment. CiCUTS is similar to RTTS in that it validates
if an analyzed system satisfies its functional and perfor-
mance requirements. Likewise, both RTTS and CiCUTS
achieve end-to-end testing by combining preexisting testing
tools, such as SEM tools and continuous integration envi-
ronments. CiCUTS, however, extends the RTTS work by
focusing on an environment for systematically executing a
large numbers of tests to validate system QoS.

6 Concluding Remarks

This paper described the design and application of Ci-
CUTS, which combines the CUTS system execution mod-
eling (SEM) tools with the CruiseControl.NET continuous
integration environment. We evaluated the design alterna-
tives we considered when integrating CUTS with CruiseC-
ontrol.NET and explained the structure and functionality of
the approach we selected. We also presented a case study
that applied CiCUTS to a representative enterprise DRE
system—called RACE—to evaluate its QoS and perform
integration testing continuously throughout its development
process to validate how well revisions to the RACE software
met—or did not meet—their QoS requirements.

Our case study showed how CUTS leveraged CruiseC-
ontrol.NET’s continuous integration capabilities to enhance
its testing capabilities. Moreover, instead of spending time
implementing a custom testing framework, we focused on
developing test scenarios that systematically exercised var-
ious static and dynamic deployment capabilities of RACE.
To improve our quantitative analysis of RACE we used Ci-
CUTS to generate and analyze a large number of test results
during a short period of time as RACE evolved. We were
therefore able to ensure RACE was within its QoS specifica-
tions throughout its development lifecycle, rather than wait-
ing until final system integration when it would be harder to
resolve problems related to RACE meeting its QoS specifi-
cations.

Based on our experience devising and running the
RACE experiments using CiCUTS, we learned the follow-
ing lessons:

• CiCUTS improved quantitative testing of perfor-
mance requirements.Before we had CiCUTS it was
hard to produce and analyze large numbers of tests be-
cause developers and testers had to implement a cus-
tom testing framework to collect performance metrics
and analyze the results manually. With CiCUTS, de-
velopers and testers could focus on resolving system
performance issues instead of wrestling with low-level
testing issues. Moreover, testing could occur at all
hours of the day, especially during off-peak develop-
ment hours (e.g., from late at night to early morning)
when the most testing resources were available.

• CiCUTS improved qualitative testing of perfor-
mance requirements. Prior to the creation of Ci-
CUTS, we could not perform integration testing
throughout the development phase. With CiCUTS, we
could focus on improving the quality of RACE during
its early stages of development instead of waiting un-
til final integration time when the entire system (i.e.,
infrastructure and application components) was com-
plete.

• CiCUTS lacks support for third-party component
development.CiCUTS uses logging messages to col-
lect performance metrics about systems it is analyzing.
Although this approach simplifies the collection pro-
cess it does not work well if the analyzed components
(e.g., third-party components available only in binary
format) do not generate the necessary log messages.
Moreover, it may be undesirable to augment source
code with log messages because it may negatively im-
pact system performance, especially in mission-critical
DRE systems. In future work we are integrating var-
ious interception techniques, such as dynamic instru-
mentation and analysis [6,26], to capture metrics from
such components transparently so they can be used
within CiCUTS.

9



CiCUTS and RACE are available in open-source format
and can be downloaded fromwww.dre.vanderbilt.
edu/CUTS and www.dre.vanderbilt.edu/CIAO ,
respectively.
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