
ESTC 2006 Paper A7P1

 Onboard Processing using the Adaptive Network Architecture

Dipa Suri and Adam Howell
Advanced Technology Center (ATC)

Lockheed Martin Space Systems Company
3251 Hanover Street
Palo Alto, CA 94304

Nishanth Shankaran, John Kinnebrew, Will Otte,
Doug Schmidt and Gautam Biswas

Institute for Software Integrated Systems (ISIS)
Vanderbilt University

2015 Terrace Place
Nashville, TN 37203

Manuscript received May 19, 2006. This work was supported in part by the NASA Advanced Information Systems Technology (AIST) Program under

Contract NNA04AA69C.

Abstract— Many future earth and space science missions will
be composed of multiple spacecraft requiring autonomous ca-
pabilities for both opportunistic and coordinated science
observations. The Adaptive Network Architecture (ANA) is a
software framework composed of multiple, heterogeneous
software agents designed for real-time operation of
constellations or formations of spacecraft. The ANA is built
upon mature terrestrial standards and best practices for
software development, including CORBA Component
middleware designed for distributed real-time embedded
systems. In this paper we present the further development of the
ANA’s Science Agent to include a hierarchical computational
architecture for reconfigurable onboard science processing.
The architecture allows for runtime reconfiguration and/or re-
deployment of software components across a set of processors
based on the available computational resources and changes in
operating mode. Application of the science data processing
framework to the upcoming Magnetospheric Multi-Scale
(MMS) mission is also discussed.

I. INTRODUCTION

Future space missions will rely on constellations of space-
craft with heterogeneous sensor/instrument suites to coopera-
tively meet their mission objectives. However, the traditional
stovepipe operations model cannot sustain the increased com-
plexity associated with these multi-spacecraft missions. This
problem can be addressed by increasing the amount of on-
board data processing and autonomy to reduce the ground
operator’s workload. Example tasks include sensor and com-
puting resource management and the scheduling, execution,
and monitoring of activities. Software agent technology pro-
vides a level of abstraction that is ideal for the distributed
autonomy needed for spacecraft constellations.

The Adaptive Network Architecture (ANA) is a software
framework composed of multiple, heterogeneous software
agents designed to run integrated Guidance Navigation &
Control (GNC), data collection, analysis, compression, and
data streaming operations on constellations or formations of
spacecraft. It provides a foundation for real-time autono-

mous responses to environmental events and ground user
requests for managing
• The efficient allocation of computing and sensor re-

sources
• Instrument reconfiguration as part of either current mis-

sion needs or fault management
• Distributed science processing and data aggregation.

The ANA is built upon mature terrestrial standards and
best practices for software development, including the Com-
ponent Integrated ACE ORB (CIAO) and the Deployment
and Configuration Engine (DaNCE). CIAO and DaNCE are
open source implementations of Object Management Group’s
(OMG) Lightweight Common Object Request Broker Archi-
tecture (CORBA) Component Model (CCM) [1] and De-
ployment and Configuration (D&C) [2] specifications. Com-
ponent-based technologies are increasingly used in large-
scale distributed real-time and embedded (DRE) systems,
such as shipboard computing environments [3], avionics mis-
sion computing systems [4], and intelligence, surveillance
and reconnaissance systems [5]. In these systems, applica-
tions can be viewed as workflow sequences of domain-
related tasks. These workflow sequences are represented as
operational strings, which are sequences of tasks (sequential
and parallel with temporal constraints) that can be imple-
mented by software components. Software components are
defined units of implementation and composition that contain
parameterized executable code with quality of service (QoS)
requirements (such as maximum latency and minimum
throughput values) and resource consumption profiles (such
as expected CPU and memory usage).

In this paper, we describe our recent work in reconfigur-
able onboard science processing within the ANA framework
using this concept of operational strings. Deployment and
run-time management of the operational strings is achieved
through the incorporation two key technologies:

ESTC 2006 Paper A7P1

• A computationally efficient Spreading Activation Partial
Order Planner (SA-POP) [6] for dynamic (re)planning
under uncertainty into the ANA’s Science Agent, and

• A Resource Allocation Control Engine (RACE) [7] for
allocating computational resources and enforcing QoS
requirements.

The remainder of the paper is organized as follows;
Section II provides an overview of the ANA software frame-
work and it’s underlying component middleware infrastruc-
ture; Section III covers the Science Agent and the computa-
tional architecture used for onboard science processing in
more detail; Section IV will describe the application of ANA
in the context of managing and executing mission goals for a
simplified representation of the upcoming Magnetospheric
Multi-Scale (MMS) Mission; Section V compares our work
with related research; and Section VI presents concluding
remarks.

II. ADAPTIVE NETWORK ARCHITECTURE OVERVIEW

A. Overview
The ANA is constructed using agent technology to provide

autonomous reconfigurability of on-board resources to ensure
improved science data returns to users. The ANA agents are
themselves a heterogeneous suite i.e. specific roles and re-
sponsibilities are distributed such that the various on-board
functions of a science mission ranging from guidance, atti-
tude control, communication, and health management to data
collection, analysis, and streaming are properly addressed.
The intent is that although each agent type has its own tasks
to perform, more complex processes are achieved through
interactions and collaborations of multiple agents [8].

The ANA, along with the underlying CCM and D&C lay-
ers, provides additional flexibility by allowing different con-
figurations of agents to be instantiated at system initialization
or runtime, depending on the desired functionality. Figure 1
shows a schematic of the ANA architecture, which is com-
posed of a set of heterogeneous agents that rely on several
CORBA services for agent discovery and inter-agent com-
munication. All agents contain a common basic level of
functionality such as messaging, health reporting, and te-
lemetry handling. These fundamental capabilities are pro-
vided for each specific agent through inheritance from a par-
ent ‘BaseAgent’ class. The set of agents resident on a
spacecraft include:
• Executive (Exec) Agent, which is responsible for over-

all health management
• Communication (Comm) Agent, which is responsible

for collecting and formatting local telemetry streams and
transmitting it to the Interface Agent

• Gizmo Agent(s), which manage the operation and con-
trol of “negotiable” physical devices, such as the payload
sensors.

• Guidance Navigation & Control (GNC) Agent, which
is responsible for spacecraft guidance, navigation, and
attitude control along with its set of specialized Gizmo
agents.

• Science Agent(s), which uses a planning and scheduling
mechanism, discussed in section III, to generate the op-
erational strings that define the sequence of tasks to be
executed in order to meet the science goals of the mis-
sion. The agent also has a task map, which it then uses
to allocate the tasks in the operational strings to the
GNC, Comm, and other Gizmo agents.

The ground set is comprised of an Interface Agent that
handles the telemetry processing and display and command-
ing of the space agents.

B. ANA’s Middleware and Modeling Infrastructure
The ANA is developed in accordance with the OMG’s

Lightweight CCM [1]. This specification standardizes the
development, configuration, and deployment of component-
based applications that are not tied to any particular lan-
guage, OS platform, or network. Components in Lightweight
CCM are implemented by executors and collaborate with
other components via the following types of ports:
• Facets, which define an interface that accepts point-to-

point method invocations from other components.
• Receptacles, which indicate a dependency on point-to-

point method interface provided by another component.
• Event sources/sinks, which indicate a willingness to

exchange typed messages with one or more components.
The CCM implementation used for ANA is the Component

Integrated ACE ORB (CIAO) and the Deployment and Con-
figuration Engine (DAnCE). CIAO and DAnCE are open-
source (all open-source middleware and modeling tools de-
scribed in this paper can be downloaded from

Sensors

Actuators

Science
Instrument

Science
Payload

SpaceWire/ USB/
802.11/Legacy

Gizmo
Agent

CCM Layer

CORBA Real Time
Event Service
(Data/Message

Filtering
for local Delivery)

CORBA
Federated Naming Service

(Agent Locator)

Agent
Registration

InterAgent

Messages
(FIPA
ACL)

SpaceWire/USB

802.11/Legacy

Gizmo
Agent

CCM Layer

CORBA Real Time
Event Service
(Data/Message

Filtering
for Remote Delivery)

GNC
Agent

CCM Layer

Executive
Agent

CCM Layer

Comm.
Agent

CCM Layer

Science
Agent

CCM Layer

Sensors

Actuators

Science
Instrument

Science
Payload

SpaceWire/ USB/
802.11/Legacy

Gizmo
Agent

CCM Layer

CORBA Real Time
Event Service
(Data/Message

Filtering
for local Delivery)

CORBA
Federated Naming Service

(Agent Locator)

Agent
Registration

InterAgent

Messages
(FIPA
ACL)

SpaceWire/USB

802.11/Legacy

Gizmo
Agent

CCM Layer

CORBA Real Time
Event Service
(Data/Message

Filtering
for Remote Delivery)

GNC
Agent

CCM Layer

Executive
Agent

CCM Layer

Comm.
Agent

CCM Layer

Science
Agent

CCM Layer

Fig. 1 The ANA is composed of a set of heterogeneous agents that rely on
several CORBA services for agent discovery and interagent

communication.

ESTC 2006 Paper A7P1

www.dre.vanderbilt.edu.) QoS-enabled component middle-
ware built atop The ACE ORB (TAO). TAO is a highly con-
figurable, open-source Real-time CORBA Object Request
Broker (ORB) that implements key patterns to meet the de-
manding QoS requirements of DRE systems.

CIAO extends TAO by abstracting key QoS concerns
(such as priority models, thread-to-connection bindings, and
timing properties) into elements that can be configured de-
claratively via metadata (such as standards for specifying,
implementing, packaging, assembling, and deploying com-
ponents). Promoting these QoS concerns as metadata disen-
tangles code for controlling these non-function concerns
from code that implements the application logic, thus making
space system development more flexible and productive.
DAnCE extends TAO by allowing application deployers to
specify how existing components should be packaged, as-
sembled, and customized into reusable services.

In addition to QoS-enabled middleware, ANA also uses
Model-Driven Engineering (MDE) technologies that combine
• Domain-Specific Modeling Languages (DSMLs) whose

type systems formalize the application structure, behav-
ior, and requirements within particular domains, such as
software defined radios, avionics mission computing,
satellite constellations, online financial services, ware-
house management, or even the domain of middleware
platforms. DSMLs are described using metamodels,
which define the relationships among concepts in a do-
main and precisely specify the key semantics and con-
straints associated with these domain concepts. Develop-
ers use DSMLs to build applications using elements of
the type system captured by metamodels and express de-
sign intent declaratively rather than imperatively.

• Transformation engines and generators that analyze cer-
tain aspects of models and then synthesize various types
of artifacts, such as source code, simulation inputs, XML
deployment descriptions, or alternative model represen-
tations. The ability to synthesize artifacts from models
helps ensure the consistency between application imple-
mentations and analysis information associated with
functional and QoS requirements captured by models.
This automated transformation process is often referred
to as “correct-by-construction,” as opposed to conven-
tional handcrafted “construct-by-correction” software
development processes that are tedious and error-prone.

The MDE tool suite used in ANA is called Component
Synthesis using Model Integrated Computing (CoSMIC),
which is an integrated set of DSMLs that support the devel-
opment, deployment, configuration, and evaluation of enter-
prise DRE systems based on Real-time CCM. CoSMIC is
implemented using the Generic Modeling Environment
(GME), which is an open-source MDE toolkit for creating
and using DSMLs.

By combining CIAO, DAnCE, and CoSMIC as the infra-
structure for ANA, we tackled many integration challenges
associated with configuring and deploying space systems by

leveraging MDE tools to enforce correct-by-construction
design. For example, we used CoSMIC’s model interpreters
to generate Real-time CCM XML configuration files auto-
matically and CIAO’s DAnCE to deploy the resulting com-
ponent assemblies on space system nodes, as shown in Fig. 2.

C. Base Agent Implementation
The adoption of CIAO, DaNCE, and RACE provides dy-

namic re-configurability, and the new Base Agent definition
has to be cast as a CORBA component. While CORBA 2
(used in the previous version of the ANA) shields applica-
tions from dependencies that arise from the use of heteroge-
neous platforms, e.g. language, operating system, and net-
work protocols, it does not handle the requirement that
multiple interacting objects may be deployed on diverse plat-
forms for DRE systems. The advantage this new scheme
offers in the ANA context is the ability to assemble the
agents and algorithms, into logical sets that can be dynami-
cally (re)deployed by DaNCE across the network of space-
craft and ground nodes based upon the resource monitoring
results from RACE. A more detailed discussion is presented
in later sections of the paper.

Integration into the CCM framework required the agent de-
scription to be based on the Component Interface Definition
Language (CIDL) shown in Table 1. The ‘provides’ clause
in the Agent_Base component illustrates the use of facets, the
‘uses’ clause in the ExecAgent component illustrates the use
of receptacles, and the ‘publishes’ and ‘consumes’ clauses in
the Agent_Base component illustrates the use of event
sources/sinks.

The Base Agent structure remains largely the same as pre-
sented in [6], but agent communication is conducted via Mes-
sages now defined as a CCM event type. The routing, trans-
mission, and reception of these messages are handled by the
CIAO middleware, thus shielding the developer from having
to manage the requisite internal “plumbing”. Further exten-
sion and specialization is provided by a distribution of func-

Fig. 2 Integrating CIAO, DAnCE, and CoSMIC.

ESTC 2006 Paper A7P1

tionality between the ‘Agent’ interface and the component
‘Agent_Base’. All derived Agent Types in the ANA now
inherit from the component Agent_Base. An example inheri-
tance that illustrates this well is shown in Table 2. The Ex-
ecutive Agent encapsulated in the ExecAgent component
provides run time connectivity to other agents local to a
given host via the ‘uses multiple’ clause for the receipt of
Heartbeat messages. This connectivity is handled by the
CIAO middleware at system initialization including the rout-
ing of messages via the TAO Real Time Event Service [9],
much of which was previously handled directly by the
Comm. Agent.

III. ONBOARD SCIENCE PROCESSING VIA THE SCIENCE AGENT

The Science Agent is responsible for performing the on-
board data processing required to achieve pre-defined science
mission goals for the spacecraft. These goals are typically
chosen by the mission planners and scientists on the ground,
or potentially other spacecraft when performing missions
requiring distributed observations and measurements. The
goals are communicated to the Science Agent using the
Foundation for Intelligent Physical Agents (FIPA) standard-
ized Messages [10] and Interaction Protocols [11] (e.g. Re-
quests, Informs, or Publish/Subscribe) containing an Agent
Communication Language predefined by the Science Agent
developers.

The Science Agent employs the computational architecture
shown in Fig. 3 to achieve its goals. The architecture is com-
posed of two primary subsystems: (1) the SA-POP planner
and scheduler that generate the operational strings directed to
solving the specified goals, and (2) the RACE framework that
monitors and manages runtime resource allocation to enforce
QoS requirements.

A. SA-POP
To generate an operational string that achieves a given set

of goals, e.g. study the physics of plasma reconnection and
charged particle acceleration for the MMS mission, the SA-
POP planner, shown in Fig. 4, first generates partial order
task sequences that achieve specified goals using a spreading
activation mechanism [12]. Individual tasks in the generated
sequences are then mapped to available executable software
components, e.g. the planner may pick a data compression
task and then select an appropriate component implementa-
tion for a chosen compression algorithm. The planner uses a
task network, which is a directed graph that represents both
tasks and conditions (preconditions, data input, effects, and
data output), to establish the preconditions required for a task
component to execute successfully, the input data stream and
the output that will be generated from this data stream, and
other post condition effects resulting from their operation.

TABLE 1: ANA BASE AGENT CIDL
 // Assumes all messages are passed through the event channel
 // Modified FIPA ACL message structure
 eventtype Message
 {
 public PerformativeList performatives;

 // AgentName of sender
 public string sender;

 // AgentName of receiver
 public string receiver;

 // AgentName of agent to reply to
 public string reply_to;

 // Time stamp of message
 public long time_stamp;

 // Content of the message.
 public any content;

 // Internal id to relate message -> conversation
 public string conversation_id;
 };

 // Heartbeat message is just the state and sender name
 struct HeartBeat
 {
 string sender;
 StateType CurrentState;
 };

 // Standardized agent interface
 interface Agent
 {
 readonly attribute string AgentName;
 readonly attribute AgentClasses AgentType;

 attribute float HeartBeatRate;

 //Request agent becomes dormant
 boolean Doze();

 //Request agent becomes active
 void Wakeup();
 };

 component Agent_Base
 {
 // Name of the agent.
 attribute string AgentName;

 // Type of the agent.
 readonly attribute AgentClasses AgentType;

 // Provides a facet to control the state of the agent.
 provides Agent agent_interface;

 // Publishes messages.
 publishes Message outgoing_message;

 // Subscribes messages.
 consumes Message incoming_message;
 };

 home BaseAgentHome manages Agent_Base{ };
};

ESTC 2006 Paper A7P1

The output generated by a component is a function of the
input and environmental conditions during the actual opera-
tion. Other computational properties of the component, e.g.
the throughput and the quality of the output, depend on the
available computational resources. As a result, there is un-
certainty as to whether the component will produce the de-
sired output. This uncertainty is captured by conditional
probabilities associated with the component definitions. To-
gether, the task-component relations and the conditional
probability of success of components defines the functional
signature of the task. Different parameterizations of a given
component may produce different functional signatures.
Conversely, different components that have the same func-
tional signature may vary in time to completion, resource
usage, and QoS parameters.

We define a task as one or more parameterized compo-
nents with a single functional signature. The functional sig-
nature of each task is also captured in the task network. With
the task network whose links encode the requisite probability
of success information, and a given set of utility values for
goal conditions and/or data, the planner computes expected
utility values for each task using the spreading activation
mechanism.[12]

To ensure applications do not violate resource constraints,
the planner also requires knowledge of each task’s resource
consumption and execution time, i.e. its resource signature.
A given task may be associated with multiple parameterized
components, each with different resource signatures. SA-
POP and RACE therefore use a shared task map that maps
each task to a set of parameterized components and their as-
sociated resource signatures. The combination of functional
and resource signatures in a task sequence defines an opera-
tional string, which specifies the tasks, a suggested imple-
mentation for each task, the control (ordering) dependencies,
the data (producer and/or consumer) dependencies, and re-
quired start and end times for tasks, if any. These operational
strings are given as input to RACE for deployment and run-
time monitoring.

B. RACE
The Resource Allocation and Control Engine (RACE) is a

reusable framework that separates resource allocation and
control algorithms from the underlying middleware deploy-
ment, configuration, and control mechanisms so that different
algorithms can reuse these common middleware mechanisms
to (re)deploy components onto nodes and manage the node’s
resources among competing applications. RACE provides a
range of resource allocation and control algorithms that use
the middleware deployment and configuration mechanisms of

TABLE 2: ANA EXECUTIVE AGENT CIDL

module ANA
{
 module ExecModule
 {
 component ExecAgent : Agent_Base
 {
 uses multiple Agent local_agent;
 };

 home ExecAgentHome manages ExecAgent
 {
 };

 };

};

Fig. 3 The computational architecture for onboard science processing
involves the SA-POP embedded in the Science Agent, RACE, and the

CIAO/DaNCE middleware infrastructure

Fig. 4 SA-POP Planner.

ESTC 2006 Paper A7P1

the OMG D&C specification to allocate resources to opera-
tional strings and control system performance after opera-
tional strings have been deployed.

RACE’s algorithms determine how to deploy and redeploy
operational strings of application components at system ini-
tialization and during runtime. Its allocation algorithms de-
termine the initial component deployment using a bin pack-
ing algorithm that maps these components to the appropriate
target nodes based on available system resources. For exam-
ple, an allocation algorithm could apportion CPU resources
to components in such a way that avoids saturating these re-
sources.

Likewise, RACE’s control algorithms adapt the execution
of an operational string’s components at runtime in response
to changing environmental conditions and variations in re-
source availability and/or demand. For example, a control
algorithm could (1) modify an application’s current operating
mode, (2) dynamically update component implementations,
and/or (3) redeploy all or part of an operational string’s com-
ponents to other target nodes to meet end-to-end QoS re-
quirements.

The RACE architecture consists of the entities shown in
Figure 5. These entities are implemented as CCM compo-
nents using CIAO and are deployed via DAnCE. The key
entities in RACE are described below:
• Application QoS Monitors are CCM components that

track the performance of application components by ob-
serving QoS properties, such as throughput and latency.
One or more Application QoS Monitors are associated
with each type of application component.

• The Target Manager is a CCM component defined in
the D&C specification [2] that receives periodic resource
utilization updates from resource monitors within a do-
main. It uses these updates to track resource usage of all
resources within the domain. The Target Manager pro-
vides a standard interface for retrieving information per-
taining to resource consumption of each component and
an assembly in the domain, as well as the domain's over-
all resource utilization. The Target Manager provides in-

formation on resource utilization component ports in op-
erational strings.

• The Deployment Manager is an assembly of CCM
components that encapsulates and coordinates one or
more allocation and control algorithms. This manager
deploys assemblies by allocating resources to individual
components in an assembly. After assemblies are de-
ployed, the Deployment Manager manages the perform-
ance of (1) operational strings and (2) domain resource
utilization. This manager ensures desired performance of
the operational strings by performing the following ac-
tions to the components that make up the operational
strings: (1) (re)allocating resources to the component, (2)
modifying component parameters such as execution
mode, and/or (3) dynamic replacing the component im-
plementations.

IV. APPLICATION TO THE MMS MISSION

The upcoming NASA MMS mission was chosen as an ex-
emplar application to assess the effectiveness and perform-
ance of both the onboard science processing framework and
the ANA as a whole. Although the mission does not cur-
rently require distributed processing or high levels of auton-
omy, the mission does have many characteristics (e.g. multi-
ple spacecraft and heterogeneous sensors, multiple operating
modes, etc.) that the ANA was designed to address. First, an
overview of the MMS mission will be presented, followed by
a description of how the onboard processing can be con-
ducted using the ANA.

A. Mission Overview
The goal of the MMS mission is to study the microphysics

of three fundamental plasma processes in the Earth’s magne-
tosphere; magnetic reconnection, particle acceleration and
turbulence [13]. MMS consists of a constellation of four
identical spacecraft that maintain a tetrahedral formation in
specific regions of scientific interest (ROI) within the con-
stellation’s orbit, as shown in Fig. 6. Furthermore, each
spacecraft has a suite of four primary payload sensor pack-
ages, i.e. FPI, FIELDS, HPCA, and EPD, which have varying
data rate, data size, and compression requirements [14].

Since the plasma processes are inherently transient (espe-
cially magnetic reconnection), MMS requires reactive on-
board autonomy to enable the spacecraft to transition be-
tween three modes of operation; slow survey, fast survey, and
burst. Slow survey mode is entered outside the ROI’s and
enables only a minimal set of data acquisition (primarily for
health monitoring). The fast survey mode is entered when
the spacecraft are within a ROI, which enables data acquisi-
tion for all payload sensors at a moderate rate. While in fast
survey mode, the data from a subset of the payload sensors is
analyzed onboard to compute a quality value indicating the
likelihood of a transient plasma event as determined by Fig. 5 The RACE Architecture

ESTC 2006 Paper A7P1

changes in particle, ion, and field measurements. This qual-
ity value is communicated to the other spacecraft in the con-
stellation via crosslinks. A set of rules on each spacecraft
determines when burst mode should be entered based upon a
weighted combination of the local and remote quality values.
Once entered, burst mode enables all payload instruments to
acquire data at high rates (up to ~1.6 Mb/s), however this
mode can be entered for at most 17.5 minutes per day be-
cause of onboard storage limitations [14].

B. Science Processing using the ANA
With the above concept of operations, we have a mission

configuration that is well-suited to demonstrate the utility of
the ANA. Each MMS spacecraft has multiple payload sen-
sors interfaced to a payload processor, while the spacecraft
bus functions are handled by a bus processor. The agent
components are logically packaged into two separate CCM
assemblies as shown in Fig. 7. The assemblies are initially
deployed by DaNCE on the two target processors based on
the division of functionality between the payload and bus,
however the deployment can change at runtime based on user
needs or resource constraints. The payload processor assem-
bly contains the Science Agent supported by Gizmo Agents
to provide a direct interface to the payload sensors. In addi-
tion, the task library contains multiple data compression algo-
rithms that RACE can employ as directed by the SA-POP.
Executive and Communication Agents are resident on both
nodes. The bus processor assembly contains the GNC Agent
that provides orbital information to the Science Agent on the
payload processor to determine the entry/exit from ROI’s.
The Science Agent(s) on all spacecraft have mission goals
that represent user or other Science Agent requests for the
times and types of data to be acquired.

Using this MMS Mission configuration, several scenarios
have been developed to exercise the ANA. While the follow-
ing scenarios have not been fully tested to date, individual

subsets of the technologies have been demonstrated. Fur-
thermore, we are progressing towards an end-to-end demon-
stration in our Distributed Systems Laboratory on multiple
robots - developed in house - as a representative 2D simula-
tion of a spacecraft constellation. Each robot hosts two dif-
ferent processor and operating system families representing
the payload and bus processor. We also provide a simulated
ground control station with a GUI and an interface agent for
command/telemetry processing.

A nominal day-in-the-life scenario is to be exercised start-
ing from system initialization through autonomous exit/entry
into Fast Survey Mode, followed by the detection of an event
that causes a transition to Burst Mode. RACE will continu-
ally monitor resource use and provide feedback to SA-POP.
The SA-POP can then change the active operational strings,
e.g. swap in a different compression algorithm, if user-
specified resource constraints are violated. The SA-POP can
similarly alter the data acquisition and processing parameters
to ensure acceptable data quality is maintained. This interac-
tion is shown in Fig. 8.

Potential off-nominal scenarios range from (among many)
fault conditions such as (1) a lack of local storage capacity
leading to compressed data being transmitted for storage to
another spacecraft in the constellation, to (2) a catastrophic
payload processor failure leading to a redeployment of the
payload agent assembly on the spacecraft processor with
minimal degradation in science data returns to the users.

V. RELATED WORK

As component middleware becomes more pervasive, there
has been an increase in focus on technologies, platforms, and
tools for deploying components effectively within distributed
systems. We compare our work on ANA, SA-POP, and
RACE with related efforts.

The Autonomic Deployment and Management Engine
(ADME) [16] provides a framework for deploying and

Glemo
Agent

Science
Agent

Comm
Agent

Exec
Agent

Glemo
Agent

Comm
Agent

Exec
Agent

GNC
Agent

Bus Processor
(VxWorks Node)

Payload
Processor

(Linux Node)

Altitude
Control
System

Science

Procedure
Library

Algorithm

Algorithm

Fig. 7 ANA Agents packaged as logical CCM assemblies divided between

the Payload and Bus processors. Simulators for the Payload sensors are
executed on a separate processor.

Fig. 6 An artist’s rendering of the MMS spacecraft in the tetrahedral
formation. Courtesy of the SWRI [15].

ESTC 2006 Paper A7P1

autonomically managing application components in distrib-
uted systems. Allocating resources to application components
in ADME is framed as a constraint solving problem, where
domain resources are allocated to application components,
subject to specified constraints. ADME uses a domain-
specific constraint language called ``DEclarative Language
for Describing Autonomic Systems'' (DELDAS) to specify
desired system performance as goals at design time. At run-
time, the ADME infrastructure deploys and manages applica-
tion components to satisfy these goals. RACE has similar
motivations as ADME, though RACE provides a pluggable
framework where multiple resource allocation and control
algorithms can be (re)configured at runtime. RACE also fo-
cuses more on the (re)deployment and (re)configuration of
QoS-enabled applications executing in DRE systems.

Plaint [7] is a tool that uses a temporal planner to manage
and reconfigure a software system. A plan is defined as a
sequence of execution steps that ensures desired system perf

ormance. Plaint generates to types of plans: (1) deploy-
ment plans that allocate resources to application components,
and (2) reconfiguration plans that dynamically reconfigure
systems in response to changes in their operation that may be
attributed to factors such as external attacks that result in loss
of critical application components. The output from various
planning techniques can be viewed as deployment plans and
control plans that RACE can execute to ensure desired sys-
tem performance. RACE also augments this planning ap-

proach to system reconfiguration by providing the capability
to link and unlink various planning mechanisms at runtime to
handle system reconfiguration more transparently.

VI. CONCLUSION

It is recognized that autonomy is an important feature of
future science missions that will involve networked space,
airborne, terrestrial, and oceanic resources. Any real-life
system that provides autonomy involves multiple entities that
require collaborative interactions and intelligent behavior in
order to meet their own specific as well as overall mission
goals. Although designing systems of such complexity is
hard, agent technology and multi-agent systems show prom-
ise in helping to alleviate development issues. The ANA
provides many key elements needed for autonomous opera-
tions of NASA missions.

This paper describes the design and application of the
Spreading Activation Partial Order Planner (SA-POP) and
the Resource Allocation and Control Engine (RACE). RACE
manages system resource utilization and ensures QoS re-
quirements of operational strings are met even under varying
operational contexts and/or varying resource require-
ment/availability.

REFERENCES
[1] Object Management Group. Light Weight CORBA Component Model

Revised Submission, OMG Document realtime/03-05-05 edition, May
2003.

[2] Object Management Group. Deployment and Configuration Adopted
Submission, OMG Document ptc/03-07-08 edition, July 2003.

[3] D. C. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp, and L. Di-
Palma. Towards Adaptive and Reflective Middleware for Network-
Centric Combat Systems. CrossTalk – The Journal of Defense Soft-
ware Engineering, Nov. 2001.

[4] D. C. Sharp and W. C. Roll. Model-Based Integration of Reusable
Component-Base Avionics System. In Proc. of the Workshop on
Model-Driven Embedded Systems in RTAS 2003. May 2003.

[5] P. Sharma, J. Loyall, G. Heineman, R. Schantz, R. Shapiro and G.
Duzan. Component-Based Dynamic QoS Adaptations in Distributed
Real-time and Embedded Systems. In Proc. of the Intl. Symp. On Dist.
Objects and Applications (DOA ‘04), Agia Napa, Cyprus, Oct. 2004.

[6] N. Shankaran, J. Balasubramanian D. Schmidt, G. Biswas, P. Lardieri,
E. Mulholland, and T.Damiano, A Framework for (Re)Deploying
Components in Distributed Realtime and Embedded Systems, poster
paper at the Dependable and Adaptive Distributed Systems, Track of
the 21st ACM Symposium on Applied Computing, April 23 -27, 2006,
Bourgogne University, Dijon, France.

[7] N. Arshad, D. Heimbigner, and A. L. Wolf. Deployment and Dynamic
Reconfiguration Planning For Distributed Software Systems. In Proc.
of the 15th IEEE International Conference on Tools With Artificial In-
telligence (ICTAI 2003), Sacramento, CA, USA, Nov. 2003.

[8] D. Suri, A. Howell. The Adaptive Network Architecture for formations
of heterogeneous spacecraft. In Proc. of the Earth-Sun System Tech-
nology Conference (ESTC2005), 2005.

[9] T. H. Harrison, D. L. Levine, D. C. Schmidt, “The Design and Per-
formance of a Real-time CORBA Event Service, Proceedings of ACM
OOPSLA '97 conference, Atlanta, GA, October 1997.

[10] Foundation for Intelligent Physical Agents. FIPA ACL Message Struc-
ture Specification, 2002. Available:
http://www.fipa.org/specs/fipa00061/index.html.

Fig. 8 Onboard science processing for the MMS mission using the
computational architecture described in Section III.

ESTC 2006 Paper A7P1

[11] Foundation for Intelligent Physical Agents. FIPA Interaction Protocol
Specifications. Available: http://www.fipa.org/repository/ips.php3.

[12] S. Bagchi, G. Biswas and K. Kawamura. Task Planning under Uncer-
tainty using a Spreading Activation Network. IEEE Transactions on
Systems, Man, and Cybernetics, 30(6):639-650, Nov. 2000.

[13] The Magnetospheric Multiscale Mission - Resolving Fundamental
Processes in Space Plasmas. Report of the NASA Science and Tech-
nology Definition Team for the Magnetospheric Multiscale (MMS)
Mission, December 1999. Available:
http://stp.gsfc.nasa.gov/missions/mms/mms_documents.htm.

[14] Southwest Research Institute. SMART Proposal and Concept Report,
2003. Available: http://mms.space.swri.edu/proposal+CSR.html

[15] Southwest Research Institute. MMS-SMART Homepage. Available:
http://mms.space.swri.edu

[16] A. Dearle, G. N. C. Kirby, and A. J. McCarthy. A Framework for Con-
straint-Based Deployment and Autonomic Management of Distributed
Applications. In ICAC, pages 300-301. IEEE Computer Society, 2004.

[17] J. Kinnebrew, N. Shankaran, G. Biswas, and D. Schmidt, A Decision-
Theoretic Planner with Dynamic Component Reconguration for Dis-
tributed Real-Time Applications,. In Proceedings of Twenty-First Na-
tional Conference on Artificial Intelligence, July 16 20, 2006, Boston,
Massachusetts.

