
Design and Performance Evaluation of an Adaptive Resource Management

Framework for Distributed Real-time and Embedded Systems

Nishanth Shankaran†, Nilabja Roy†, Douglas C. Schmidt†,

Xenofon D. Koutsoukos†,Yingming Chen‡, and Chenyang Lu‡

†Dept. of EECS ‡Dept. of Computer Science and Engineering,

Vanderbilt University, Nashville, TN Washington University, St. Louis

Abstract

Achieving end-to-end quality of service (QoS) in distributed real-time embedded (DRE) systems require QoS support and

enforcement from their underlying operating platforms that integrates many real-time capabilities, such as QoS-enabled

network protocols, real-time operating system scheduling mechanisms and policies, and real-time middleware services. As

standards-based quality of service (QoS)-enabled component middleware automates integration and configuration activities,

it is increasingly being used as a platform for developing open DRE systems that execute in environments where operational

conditions, input workload, and resource availability cannot be characterized accurately a priori. Although QoS-enabled

component middleware offers many desirable features, however, it historically lacked the ability to allocate resources effi-

ciently and enable the system to adapt to fluctuations in input workload, resource availability, and operating conditions.

This paper presents three contributions to research on adaptive resource management for component-based open DRE

systems. First, we describe the structure and functionality of the Resource Allocation and Control Engine (RACE), which is

an open-source adaptive resource management framework built atop standards-based QoS-enabled component middleware.

Second, we demonstrate and evaluate the effectiveness of RACE in the context of a representative open DRE system: NASA’s

Magnetospheric Multi-scale Mission system. Third, we present an empirical evaluation of RACE’s scalability as the number

of nodes and applications in a DRE system grows. Our results show that RACE is a scalable adaptive resource management

framework and yields a predictable and high performance system, even in the face of changing operational conditions and

input workload.

1 Introduction

Distributed real-time and embedded (DRE) systems form the core of many large-scale mission-critical domains. In these

systems, achieving end-to-end quality of service (QoS) requires integrating a range of real-time capabilities, such as QoS-



enabled network protocols, real-time operating system scheduling mechanisms and policies, and real-time middleware ser-

vices, across the system domain. Although existing research and solutions [1, 2] focus on improving the performance and

QoS of individual capabilities of the system (such as operating system scheduling mechanism and policies), they are not

sufficient for DRE systems as these systems require integrating a range of real-time capabilities across the system domain.

Conventional QoS-enabled middleware technologies, such as Real-time CORBA [3] and the Real-time Java [4], have been

used extensively as an operating platforms to build DRE systems as they support explicit configuration of QoS aspects (such

as priority and threading models), and provide many desirable real-time features (such as priority propagation, scheduling

services, and explicit binding of network connections).

QoS-enabled middleware technologies have traditionally focused on DRE systems that operate in closed environments

where operating conditions, input workloads, and resource availability are known in advance and do not vary significantly at

runtime. An example of a closed DRE system is an avionics mission computer [5], where the penalty of not meeting a QoS

requirement (such as deadline) can result in the failure of the entire system or mission. Conventional QoS-enabled middleware

technologies are insufficient, however, for DRE systems that execute in open environments where operational conditions,

input workload, and resource availability cannot be characterized accurately a priori. Examples of open DRE systems

include shipboard computing environments [6], multi-satellite missions [7], and intelligence, surveillance and reconnaissance

missions [8].

Specifying and enforcing end-to-end QoS is an important and challenging issue for open systems DRE due to their unique

characteristics, including (1) constraints in multiple resources (e.g., limited computing power and network bandwidth) and

(2) highly fluctuating resource availability and input workload. At the heart of achieving end-to-end QoS are resource

management techniques that enable open DRE systems to adapt to dynamic changes in resource availability and demand. In

earlier work we developed adaptive resource management algorithms (such as EUCON [9], DEUCON [10], HySUCON [11],

and FMUF [12]) and architectures, such as HiDRA [13] based on control-theoretic techniques. We then developed FC-

ORB [14], which is a QoS-enabled adaptive middleware that implements the EUCON algorithm to handle fluctuations in

application workload and system resource availability.

A limitation with our prior work, however, is that it tightly coupled resource management algorithms within particular

middleware platforms, which made it hard to enhance the algorithms without redeveloping significant portions of the mid-

dleware. For example, since the design and implementation of FC-ORB was closely tied to the EUCON adaptive resource

management algorithm, significant modifications to the middleware was needed to support other resource management al-

gorithms, such as DEUCON, HySUCON, or FMUF. Object-oriented frameworks have traditionally been used to factor out

many reusable general-purpose and domain-specific services from DRE systems and applications [15]; however, to alleviate

the tight coupling between resource management algorithms and middleware platforms and improve flexibility, this paper

presents a adaptive resource management framework for open DRE systems. Contributions of this paper to the study of

adaptive resource management solutions for open DRE systems include:

• The design of a Resource Allocation and Control Engine (RACE), which is a fully customizable and configurable

adaptive resource management framework for open DRE systems. RACE decouples adaptive resource management algo-

rithms from the middleware implementation, thereby enabling the usage of various resource management algorithms without

2



the need for redeveloping significant portions of the middleware. RACE can be configured to support a range of algorithms

for adaptive resource management without requiring modifications to the underlying middleware. To enabling the seamless

integration of resource allocation and control algorithms into DRE systems, RACE enables the deployment and configuration

of feedback control loops. RACE therefore complements theoretical research on adaptive resource management algorithms

that provide a model and theoretical analysis of system performance.

As shown in Figure 1, RACE provides (1) resource monitors that track utilization of various system resources, such as

CPU, memory, and network bandwidth, (2) QoS monitors that track application QoS, such as end-to-end delay, (3) resource

allocators that allocate resource to components based on their resource requirements and current availability of system re-

sources, (4) configurators that configure middleware QoS parameters of application components, (5) controllers that compute

end-to-end adaptation decisions based on control algorithms to ensure that QoS requirements of applications are met, and (6)

effectors that perform controller-recommended adaptations.

Allocators Controllers

Applications with time-varying 
resource and QoS requirements

System
Resource
Utilization

Application
QoS

System domain with time-varying
resource availability 

QoS-enabled Component Middleware 
Infrastructure (CIAO/DAnCE)

RACE
Configurators

Component Deployment Plan

Deploy Components

Effectors

Resource
Monitors

QoS
Monitors

Figure 1: A Resource Allocation and Control Engine (RACE) for Open DRE Systems

• Evaluate the effectiveness of RACE in the context of NASA’s Magnetospheric Multi-scale System (MMS) mission,

which is representative open DRE system. The MMS mission system consists of a constellation of spacecrafts that maintain

a specific formation while orbiting over a region of scientific interest. In these spacecrafts, availability of resource such as

processing power (CPU), storage, network bandwidth, and power (battery) are limited and subjected to runtime variations.

Moreover, resource utilization by, and input workload of, applications that execute in this system can not be accurately

characterized apriori. This paper evaluates the adaptive resource management capabilities of RACE in the context of this

representative open DRE system. Our results demonstrate that when adaptive resource management algorithms for DRE

systems are implemented using RACE, they yield a predictable and high performance system, even in the face of changing

operational conditions and workloads.

• The empirical evaluation of RACE’s scalability as the number of nodes and applications in a DRE system grows.

Scalability is an integral property of a framework as it determines the framework’s applicability. Since open DRE systems

comprise large number of nodes and applications, to determine whether RACE can be applied to such systems, we empirically

3



evaluate RACE’s scalability as the number of applications and nodes in the system increases. Our results demonstrate that

RACE scales well as the number of applications and nodes in the system increases, and therefore can be applied to a wide

range of open DRE systems.

The remainder of the paper is organized as follows: Section 2 compares our research on RACE with related work; Section 3

motivates the use of RACE in the context of a representative DRE system case study; Section 4 describes the architecture of

RACE and shows how it aids in the development of the case study described in Section 3; Section 5 empirically evaluates

the performance of the DRE system when control algorithms are used in conjunction with RACE and also presents an

empirical measure of RACE’s scalability as the number of applications and nodes in the system grows; and Section 6 presents

concluding remarks.

2 Research Background and Related Work Comparison

This section presents an overview of existing middleware technologies that have been used to develop open DRE system

and also compares our work on RACE with related research on building open DRE systems. As in Figure 2 and described

below, we classify this research along two orthogonal dimensions: (1) QoS-enabled DOC middleware vs. QoS-enabled com-

ponent middleware and (2) design-time vs. run-time QoS configuration, optimization, analysis, and evaluation of constraints,

such as timing, memory, and CPU.

D
es

ig
n 

T
im

e
R

un
 T

im
e

Distributed Objects

Middleware Technology

A
pp

lic
ab

ili
ty

Components

RapidSched PERTS
PICML Cadena

VEST AIRES

Kokyu QARMA QuO Qoskets

Figure 2: Taxonomy of Related Research

2.1 Overview of Conventional and QoS-enabled DOC Middleware

Conventional middleware technologies for distributed object computing (DOC), such as The Object Management Group

(OMG)’s CORBA [16] and Sun’s Java RMI [17], encapsulates and enhances native OS mechanisms to create reusable net-

4



work programming components. These technologies provide a layer of abstraction that shields application developers from

the low-level platform-specific details and define higher-level distributed programming models whose reusable APIs and

components automate and extend native OS capabilities.

Conventional DOC middleware technologies, however, address only functional aspects of system/application development

such as how to define and integrate object interfaces and implementations. They do not address QoS aspects of system/-

application development such as how to (1) define and enforce application timing requirements, (2) allocate resources to

applications, and (3) configure OS and network QoS policies such as priorities for application processes and/or threads. As a

result, the code that configures and manages QoS aspects often become entangled with the application code. These limitations

with conventional DOC middleware have been addressed by the following run-time platforms and design-time tools:

• Run-time. Early work on resource management middleware for shipboard DRE systems presented in [18, 19] motivated

the need for adaptive resource management middleware. This work was further extended by QARMA [20], which provides

resource management as a service for existing QoS-enabled DOC middleware, such as RT-CORBA. Kokyu [21] also enhances

RT-CORBA QoS-enabled DOC middleware by providing a portable middleware scheduling framework that offers flexible

scheduling and dispatching services. Kokyu performs feasibility analysis based on estimated worst case execution times of

applications to determine if a set of applications is schedulable. Resource requirements of applications, such as memory and

network bandwidth, are not captured and taken into consideration by Kokyu. Moreover, Kokyu lacks the capability to track

utilization of various system resources as well as QoS of applications. To address these limitations, research presented in [22]

enhances QoS-enabled DOC middleware by combining Kokyu and QARMA.

• Design-time. RapidSched [23] enhances QoS-enabled DOC middleware, such as RT-CORBA, by computing and en-

forcing distributed priorities. RapidSched uses PERTS [24] to specify real-time information, such as deadline, estimated

execution times, and resource requirements. Static schedulability analysis (such as rate-monotonic analysis) is then per-

formed and priorities are computed for each CORBA object in the system. After the priorities are computed, RapidSched

uses RT-CORBA features to enforce these computed priorities.

2.2 Overview of Conventional and QoS-enabled Component Middleware

Conventional component middleware technologies, such as the CORBA Component Model (CCM) [25] and Enterprise

Java Beans [26, 27], provide capabilities that addresses the limitation of DOC middleware technologies in the context of sys-

tem design and development. Examples of additional capabilities offered by conventional component middleware compared

to conventional DOC middleware technology include (1) standardized interfaces for application component interaction, (2)

model-based tools for deploying and interconnecting components, and (3) standards-based mechanisms for installing, ini-

tializing, and configuring application components, thus separating concerns of application development, configuration, and

deployment.

Although conventional component middleware support the design and development of large scale distributed systems,

they do not address the address the QoS limitations of DOC middleware. Therefore, conventional component middleware

can support large scale enterprise distributed systems, but not DRE systems that have the stringent QoS requirements. These

5



limitations with conventional component-based middleware have been addressed by the following run-time platforms and

design-time tools:

Run-time. QoS provisioning frameworks, such as QuO [28] and Qoskets [29, 8, 30] help ensure desired performance of

DRE systems built atop QoS-enabled DOC middleware and QoS-enabled component middleware, respectively. When appli-

cations are designed using Qoskets (1) resources are dynamically (re)allocated to applications in response to changing oper-

ational conditions and/or input workload and (2) application parameters are fine-tuned to ensure that allocated resource are

used effectively. With this approach, however, applications are augmented explicitly at design-time with Qosket components,

such as monitors, controllers, and effectors. This approach thus requires redesign and reassembly of existing applications

built without Qoskets. When applications are generated at run-time (e.g., by intelligent mission planners [31]), this approach

would require planners to augment the applications with Qosket components, which may be infeasible since planners are

designed and built to solve mission goals and not perform such platform-/middleware-specific operations.

Design-time. Cadena [32] is an integrated environment for developing and verifying component-based DRE systems by

applying static analysis, model-checking, and lightweight formal methods. Cadena also provides a component assembly

framework for visualizing and developing components and their connections. VEST [33] is a design assistant tool based on

the Generic Modeling Environment [34] that enables embedded system composition from component libraries and checks

whether timing, memory, power, and cost constraints of real-time and embedded applications are satisfied. AIRES [35] is

a similar tool that provides the means to map design-time models of component composition with real-time requirements

to run-time models that weave together timing and scheduling attributes. The research presented in [36] describes a design

assistant tool, based on MAST [37], that comprises a DSML and a suite of analysis and system QoS configuration tools and

enables composition, schedulability analysis, and assignment of operating system priority for application components.

Some design-time tools, such as AIRES, VEST, and those presented in [36], use estimates, such as estimated worst case

execution time, estimated CPU, memory, and/or network bandwidth requirements. These tools are targeted for systems that

execute in closed environments, where operational conditions, input workload, and resource availability can be characterized

accurately a priori. Since RACE tracks and manages utilization of various system resources, as well as application QoS, it

can be used in conjunction with these tools to build open DRE systems.

2.3 Comparing RACE with Related Work

Our work on RACE extends earlier work on QoS-enabled DOC middleware by providing an adaptive resource manage-

ment framework for open DRE systems built atop QoS-enabled component middleware. DRE systems built using RACE

benefit from (1) adaptive resource management capabilities of RACE and (2) additional capabilities offered by QoS-enabled

component middleware compared to QoS-enabled DOC middleware, as discussed in Section 2.2.

Compared to related research presented in [18, 19, 20], RACE is an adaptive resource management framework that can be

customized and configured using model-driven deployment and configuration tools such as the Platform-Independent Com-

ponent Modeling Language (PICML) [38]. Moreover, RACE provides adaptive resource and QoS management capabilities

more transparently and non-intrusively than Kokyu, QuO and Qoskets. In particular, it allocates CPU, memory, and network-

6



ing resources to application components and tracks and manages utilization of various system resources, as well as application

QoS. In contrast to our own earlier work on QoS-enabled DOC middleware, such as FC-ORB [14] and HiDRA [13], RACE

is a QoS-enabled component middleware framework that enables the deployment and configuration of feedback control loops

in DRE systems.

In summary, RACE’s novelty stems from its combination of (1) design-time model-driven tools that can both design

applications and customize and configure RACE itself, (2) QoS-enabled component middleware run-time platforms, and

(3) research on control-theoretic adaptive resource management. RACE can be used to deploy and manage component-

based applications that are composed at design-time via model-driven tools, as well as at run-time by intelligent mission

planners [39], such as SA-POP [31].

3 Case Study: Magnetospheric Multi-scale (MMS) Mission DRE System

This section presents an overview of NASA’s Magnetospheric Multi-scale (MMS) mission [40] as a case study to motivate

the need for RACE in the context of open DRE systems. We also describe the resource and QoS management challenges

involved in developing the MMS mission using QoS-enabled component middleware.

3.1 MMS Mission System Overview

NASA’s MMS mission system is a representative open DRE system consisting of several interacting subsystems (both

in-flight and stationary) with a variety of complex QoS requirements. As shown in Figure 3, the MMS mission consists of

a constellation of five spacecrafts that maintain a specific formation while orbiting over a region of scientific interest. This

constellation collects science data pertaining to the earth’s plasma and magnetic activities while in orbit and send it to a

ground station for further processing. In the MMS mission spacecrafts, availability of resource such as processing power

(CPU), storage, network bandwidth, and power (battery) are limited and subjected to runtime variations. Moreover, resource

utilization by, and input workload of, applications that execute in this system can not be accurately characterized a priori.

These properties make the MMS mission system an open DRE system.

Applications executing in this system can be classified as guidance, navigation, and control (GNC) applications and

science applications. The GNC applications are responsible for maintaining the spacecraft within the specified orbit. The

science applications are responsible for collecting science-data, compressing and storing the data, and transmitting the stored

data to the ground station for further processing.

As shown in Figure 3, GNC applications are localized to a single spacecraft. Science applications tend to span the entire

spacecraft constellation, i.e., all spacecrafts in the constellation have to coordinate with each other to achieve the goals of

the science mission. GNC applications are considered hard real-time applications (i.e., the penalty of not meeting QoS

requirement(s) of these applications is very high, often fatal to the mission), where as science applications are considered soft

real-time applications (i.e., the penalty of not meeting QoS requirement(s) of these applications is high, but not fatal to the

mission).

7



Science-Applications GNC-Applications

Figure 3: MMS Mission System

Science applications operate in three modes: slow survey, fast survey, and burst mode. Science applications switch from

one mode to another in reaction to one or more events of interest. For example, for a science application that monitors the

earth’s plasma activity, the slow survey mode is entered outside the regions of scientific interests and enables only a minimal

set of data acquisition (primarily for health monitoring). The fast survey mode is entered when the spacecrafts are within

one or more regions of interest, which enables data acquisition for all payload sensors at a moderate rate. If plasma activity

is detected while in fast survey mode, the application enters burst mode, which results in data collection at the highest data

rates. Resource utilization by, and importance of, a science application is determined by its mode of operation, which is

summarized by Table 1.

Mode Relative Importance Resource Consumption

Slow survey Low Low

Fast survey Medium Medium

Burst High High

Table 1: Characteristics of Science Application

Each spacecraft consists of an on-board intelligent mission planner, such as the spreading activation partial order planner

(SA-POP) [31] that decomposes overall mission goal(s) into GNC and science applications that can be executed concurrently.

SA-POP employs decision-theoretic methods and other AI schemes (such as hierarchical task decomposition) to decompose

mission goals into navigation, control, data gathering, and data processing applications. In addition to initial generation of

GNC and science applications, SA-POP incrementally generates new applications in response to changing mission goals

and/or degraded performance reported by on-board mission monitors.

We have developed a prototype implementation of the MMS mission systems in conjunction with our colleagues at Lock-

8



heed Martin Advanced Advanced Technology Center, Palo Alto, California. In our prototype implementation, we used the

Component-Integrated ACE ORB (CIAO) [41] and Deployment and Configuration Engine (DAnCE) [42] as the QoS-enabled

component middleware platform. Each spacecraft uses SA-POP as its on-board intelligent mission planner.

3.2 Adaptive Resource Management Requirements of the MMS Mission System

As discussed in Section 2.2, the use of QoS-enabled component middleware to develop open DRE systems, such as the

NASA MMS mission, can significantly improve the design, development, evolution, and maintenance of these systems. In

the absence of an adaptive resource management framework, however, several key requirements remain unresolved when

such systems are built in the absence of a adaptive resource management framework. To motivate the need for RACE, the

remainder of this section presents the key resource and QoS management requirements that we addressed while building our

prototype of the MMS mission DRE system.

3.2.1 Requirement 1: Resource Allocation To Applications

Applications generated by SA-POP are resource sensitive, i.e., QoS is affected significantly if an application does not receive

the required CPU time and network bandwidth within bounded delay. Moreover, in open DRE systems like the MMS mission,

input workload affects utilization of system resources and QoS of applications. Utilization of system resources and QoS of

applications may therefore vary significantly from their estimated values. Due to the operating conditions for open DRE

systems, system resource availability, such as available network bandwidth, may also be time variant.

A resource management framework therefore needs to (1) monitor the current utilization of system resources, (2) allocate

resources in a timely fashion to applications such that their resource requirements are met using resource allocation algorithms

such as PBFD [43], and (3) support multiple resource allocation strategies since CPU and memory utilization overhead might

be associated with implementations of resource allocation algorithms themselves and select the appropriate one(s) depending

on properties of the application and the overheads associated with various implementations. Section 4.2.1 describes how

RACE performs on-line resource allocation to application components to addresses this requirement.

3.2.2 Requirement 2: Configuring Platform-specific QoS Parameters

The QoS experienced by applications depend on various platform-specific real-time QoS configurations including (1) QoS

configuration of the QoS-enabled component middleware, such as priority model, threading model, and request process-

ing policy, (2) operating system QoS configuration, such as real-time priorities of the process(es) and thread(s) that host

and execute within the components respectively, and (3) networks QoS configurations, such as diffserv code-points of

the component interconnections. Since these configurations are platform-specific, it is tedious and error-prone for system

developers or SA-POP to specify them in isolation.

An adaptive resource management framework therefore needs to provide abstractions that shield developers and/or SA-

POP from low-level platform-specific details and define higher-level QoS specification models. System developers and/or

intelligent mission planners should be able to specify QoS characteristics of the application such as QoS requirements and

9



relative importance, and the adaptive resource management framework should then configure the platform-specific parameters

accordingly. Section 4.2.2 describes how RACE provides higher a level abstractions and shield system developers and SA-

POP from low-level platform-specific details to addresses this requirement.

3.2.3 Requirement 3: Enabling Dynamic System Adaptation and Ensuring QoS Requirements are Met

When applications are deployed and initialized, resources are allocated to application components based on the estimated

resource utilization and estimated/current availability of system resources. In open DRE systems, however, actual resource

utilization of applications might be significantly different than their estimated values, as well as availability of system re-

sources vary dynamically. Moreover, for applications executing in these systems, the relation between input workload,

resource utilization, and QoS cannot be characterized a priori.

An adaptive resource management framework therefore needs to provide monitors that track system resource utilization,

as well as QoS of applications, at run-time. Although some QoS properties (such as accuracy, precision, and fidelity of

the produced output) are application-specific, certain QoS (such as end-to-end latency and throughput) can be tracked by

the framework transparently to the application. However, customization and configuration of the framework with domain

specific monitors (both platform specific resource monitors and application specific QoS monitors) should be possible. In

addition, the framework needs to enable the system to adapt to dynamic changes, such as variations in operational conditions,

input workload, and/or resource availability. Section 4.2.3 demonstrates how RACE performs system adaptation and ensures

QoS requirements of applications are met to address this requirement.

4 Structure and Functionality of RACE

This section describes the structure and functionality of RACE. RACE supports open DRE systems built atop CIAO, which

is an open-source implementation of Lightweight CCM. All entities of RACE themselves are designed and implemented

as CCM components, so RACE’s Allocators and Controllers can be configured to support a range of resource

allocation and control algorithms using model-driven tools, such as PICML.

4.1 Design of RACE

Figure 4 elaborates the earlier architectural overview of RACE in Figure 1 and shows how the detailed design of RACE is

composed of the following components: (1) InputAdapter, (2)CentralMonitor , (3)Allocators, (4)Configurators,

(5) Controllers, and (6) Effectors. RACE monitors application QoS and system resource usage via its Resource

Monitors, QoS-Monitors, Node Monitors and CentralMonitor. Each component in RACE is described below

in the context of the overall adaptive resource management challenge it addresses.

4.1.1 Challenge 1: Domain Specific Representation of Application Metadata

Problem. End-to-end applications can be composed either at design time or at runtime. At design time, CCM based

end-to-end applications are composed using model-driven tools, such as PICML; and at runtime, they can be composed by

10



CIAO/DAnCE

Allocators Controllers

Configurators

Central Monitor

System
Resource
Utilization

Input Adapter

System domain with time-varying
resource availability 

QoS
Monitors

Resource
Monitors

DeploymentPlan

Deploy Components

RACE

Application
QoS

Applications with time-varying
resource and QoS requirements

Figure 4: Detailed Design of RACE

intelligent mission planners like SA-POP. When an application is composed using PICML, metadata describing the applica-

tion is captured in XML files based on the PackageConfiguration schema defined by the Object Management Group’s

Deployment and Configuration specification [44]. When applications are generated during runtime by SA-POP, metadata is

captured in an in-memory structure defined by the planner.

Solution: Domain-specific customization and configuration of RACE’s adapters. During design time, RACE can be

configured using PICML and an InputAdapter appropriate for the domain/system can be selected. For example, to

manage a system in which applications are constructed at design-time using PICML, RACE can be configured with the

PICMLInputAdapter; and to manage a system in which applications are constructed at runtime using SA-POP, RACE

can be configured with the SAPOPInputAdapter. As shown in Figure 5, the InputAdapter parses the metadata that

describes the application into an in-memory end-to-end (E-2-E) IDL structure that is internal to RACE. Key entities of the

E-2-E IDL structure are shown in Figure 6.

The E-2-E IDL structure populated by the InputAdapter contains information regarding the application, including

(1) components that make up the application and their resource requirement(s), (2) interconnections between the components,

11



SA-POP Application E-2-E
Input

Adapter CIAO/DAnCE

Central
Monitor

Allocator

Resource
Utilization

Component
Node

Mapping

Filter CommAnalysisGizmo

Filter AnalysisGizmo Ground

Comm Ground

Gizmo Filter Analysis

Gizmo Filter Analysis

Figure 5: Resource Allocation to Application Components Using RACE

+UUID : string(idl)
+name : string(idl)
+priority : long(idl)

E-2-E

+node : string(idl)
+name : string(idl)

Component

+type : string(idl)
+amount : double(idl)

ResourceRequirement

1

*

1*

+name : string(idl)
+value : any(idl)

Property

1 *

+name : string(idl)
+value : any(idl)

Property

1 *
+name : string(idl)
+value : any(idl)
+MonitorID : string(idl)

QoSRequirement
1*

Figure 6: Main Entities of RACE’s E-2-E IDL Structure

(3) application QoS properties (such relative priority) and QoS requirement(s) (such as end-to-end delay), and (4) mapping

components onto domain nodes. The mapping of components onto nodes need not be specified in the metadata that describes

the application which is given to RACE. If an mapping is specified, it is honored by RACE; if not, a mapping is determined

at runtime by RACE’s Allocators.

4.1.2 Challenge 2: Efficient Monitoring of System Resource Utilization and Application QoS

Problem. In open DRE systems, input workload, application QoS, and utilization and availability of system resource are

subject to dynamic variations. In order to ensure application QoS requirements are met, as well as utilization of system

resources are within specified bounds, application QoS and utilization/availability of system resources are to be monitored

periodically. The key challenge lies in designing and implementing a resource and QoS monitoring architecture that scales

well as the number of applications and nodes in the system increase.

12



Solution: Hierarchical QoS and resource monitoring architecture. RACE’s monitoring framework is composed of

the Central Monitor, Node Monitors, Resource Monitors, and QoS Monitors. These components track

resource utilization by, and QoS of, application components. As shown in Figure 7, RACE’s Monitors are structured

in the following hierarchical fashion. A Resource Monitor collects resource utilization metrics of a specific resource,

Central
Monitor

Node Node
Monitor

Resource
Monitor

QoS
Monitor

E-2-E
Application

System Resource Utilization & QoS

Figure 7: Architecture of Monitoring Framework

such as CPU or memory. A QoS Monitor collects specific QoS metrics of an application, such as end-to-end latency or

throughput. A Node Monitor tracks the QoS of all the applications running on a node as well as the resource utilization of

that node. Finally, a Central Monitor tracks the QoS of all the applications running the entire system, which captures

the system QoS, as well as the resource utilization of the entire system, which captures the system resource utilization.

Resource Monitors use the operating system facilities, such as /proc file system in Linux/Unix operating

systems and the system registry in Windows operating systems, to collect resource utilization metrics of that node. As

the resource monitors are implemented as shared libraries that can be loaded at runtime, RACE can be configured with

new/domain-specific resource monitors without making any modifications to other entities of RACE. QoS Monitors are

implemented as software modules that collect end-to-end latency and throughput metrics of an application and are dynami-

cally installed into a running system using DyInst [45]. This approach ensure rebuilding, re-implementation, or re-starting of

already running application components is not required. Moreover, with this approach, QoS Monitors can be turned on

or off on demand at runtime.

The primary metric that we use to measure the performance of our monitoring framework is monitoring delay, which is

defined as the time taken to obtain a snapshot of the entire system in terms of resource utilization and QoS. To minimize

the monitoring delay and ensure that RACE’s monitoring architecture scales as the number of applications and nodes in

the system increase, the RACE’s monitoring architecture is structured in a hierarchical fashion. We validate this claim in

Section 5.

13



4.1.3 Challenge 3: Resource Allocation

Problem. Applications executing in open DRE systems are resource sensitive and require multiple resources such as mem-

ory, CPU, and network bandwidth. In open DRE systems, resources allocation cannot be performed during design time

as system resource availability may be time variant. Moreover, input workload affects the utilization of system resources

by already executing applications. Therefore, the key challenge lies in allocating various systems resources to application

components in a timely fashion.

Solution:On-line Resource allocation. RACE’s Allocators implement resource allocation algorithms and allocate

various domain resources (such as CPU, memory, and network bandwidth) to application components by determining the

mapping of components onto nodes in the system domain. For certain applications, static mapping between components

and nodes may be specified at design-time by system developers. To honor these static mappings, RACE therefore provides

a static allocator that ensures components are allocated to nodes in accordance with the static mapping specified in the

application’s metadata. If no static mapping is specified, however, dynamic allocators determine the component to node

mapping at runtime based on resource requirements of the components and current resource availability on the various

nodes in the domain. As shown in Figure 5, input to Allocators include the E-2-E IDL structure corresponding to the

application and the current utilization of system resources.

The current version of RACE provides the following Allocators: (1) a single dimension bin-packer [46] that makes al-

location decisions based on either CPU, memory, or network-bandwidth requirements and availability, (2) a multi-dimensional

bin-packer – partitioned breadth first decreasing allocator [43] – that makes allocation decisions based on CPU, memory,

and network-bandwidth requirements and availability, and (3) a static allocator. Metadata is associated with each allocator

and captures its type (i.e., static, single dimension bin-packing, or multi-dimensional bin-packer ) and associated resource

overhead (such as CPU and memory utilization). Since Allocators themselves are CCM components, RACE can be

configured with new Allocators by using PICML.

4.1.4 Challenge 4: Accidental Complexities in Configuring Platform-specific QoS Parameters

Problem. As described in Section 3.2.2, real-time QoS configuration of the underlying component middleware, operating

system, and network affects the QoS of applications executing in open DRE systems. Since these configurations are platform-

specific, it is tedious and error-prone for system developers or SA-POP to specify them in isolation.

Solution: Automate configuration of platform-specific parameters. As shown in Figure 8, RACE’s Configurators

determine values for various low-level platform-specific QoS parameters, such as middleware, operating system, and network

settings for an application based on its QoS characteristics and requirements such as relative importance and end-to-end de-

lay. For example, the MiddlewareConfigurator configures component Lightweight CCM policies, such as threading

policy, priority model, and request processing policy based on the class of the application (important and best-effort). The

OperatingSystemConfigurator configures operating system parameters, such as the priorities of the Component

14



Figure 8: QoS Parameter Configuration with RACE

Servers that host the components based on Rate Monotonic Scheduling (RMS) [46] or based on criticality (relative impor-

tance) of the application. Likewise, the NetworkConfigurator configures network parameters, such as diffserv

code-points of the component interconnections. Like other entities of RACE, Configurators are implemented as CCM

components, so new configurators can be plugged into RACE by configuring RACE at design-time using PICML.

4.1.5 Challenge 5: Computation of System Adaptation Decisions

Problem. In open DRE systems, resource utilization of applications might be significantly different than their estimated

values and availability of system resources may be time-variant. Moreover, for applications executing in these systems, the

relation between input workload, resource utilization, and QoS cannot be characterized a priori. Therefore, in order to ensure

that QoS requirements of applications are met, and utilization system resources are within the specified bounds, the system

must be able to adapt to dynamic changes, such as variations in operational conditions, input workload, and/or resource

availability.

Solution: Control-theoretic adaptive resource management algorithms. RACE’s Controllers implement various

Control-theoretic adaptive resource management algorithms such as EUCON [9], DEUCON [10], HySUCON [11], and

FMUF [12], thereby enabling open DRE systems to adapt to changing operational context and variations in resource availabil-

ity and/or demand. Based on the control algorithm they implement, Controllersmodify configurable system parameters,

such as execution rates and mode of operation of the application, real-time configuration settings – operating system priorities

of component servers that host the components – and network difserv code-points of the component interconnections. As

shown in Figure 9, input to the controllers include current resource utilization and current QoS. Since Controllers are

implemented as CCM components RACE can be configured with new Controllers by using PICML.

15



Controller Central Effector
Central
Monitor

Per Node 
System

Parameters

System Resource Utilization & QoS

System Wide
Adaptation
Decisions

Node Effector Node Monitor
E-2-E

Application

Figure 9: RACE’s Feedback Control Loop

4.1.6 Challenge 6: Efficient Execution of System Adaptation Decisions

Problem. Although control-theoretic adaptive resource management algorithms compute system adaptation decisions, one

of the challenges we faced in building RACE is the design and implementation of effectors – entities that modify system

parameters in order to achieve the controller recommended system adaptation. The key challenge lies in designing and

implementing the effector architecture that scales well as the number of applications and nodes in the system increase.

Solution: Hierarchical effector architecture. Effectors modify system parameters, including resources allocated to com-

ponents, execution rates of applications, and OS/middleware/network QoS setting for components, to achieve the controller

recommended adaptation. As shown in Figure 9, Effectors are designed hierarchically. The Central Effector first

computes the values of various system parameters for all the nodes in the domain to achieve the Controller recommended

adaptation. The computed values of system parameters for each node are then propagated to Effectors located on each

node, which then modify system parameters of its node accordingly.

The primary metric that is used to measure the performance of a monitoring effectors is actuation delay, which is defined

as the time taken to execute controller recommended adaptation throughout the system. To minimize the actuation delay and

ensure that RACE scales as the number of applications and nodes in the system increase, the RACE’s effectors are structured

in a hierarchical fashion. We validate this claim in Section 5.

Since the elements of RACE are developed as CCM components, RACE itself can be configured using model-driven tools,

such as PICML. Moreover, new and/or domain specific entities such asInputAdapters, Allocators, Controllers,

Effectors, Configurators, QoS Monitors, and Resource Monitors, can be plugged directly into RACE

without modifying RACE’s existing architecture.

16



4.2 Addressing MMS Mission Requirements Using RACE

Section 4.1 provides a detailed overview of various adaptive resource management challenge of open DRE systems and

how RACE addresses these challenges. We now describe how RACE was applied to our MMS mission case study from

Section 3 and show how it addressed key resource allocation, QoS configuration, and adaptive resource management require-

ments that we identified in Section 3.

4.2.1 Addressing Requirement 1: Resource Allocation to Applications

RACE’s InputAdapter parses the metadata that describes the application to obtain the resource requirement(s) of com-

ponents that make up the application and populates the E-2-E IDL structure. The Central Monitor obtains system

resource utilization/availability information for RACE’s Resource Monitors, and using this information along with

the estimated resource requirement of application components captured in the E-2-E structure, the Allocators map

components onto nodes in the system domain based on runtime resource availability.

RACE’s InputAdapter, Central Monitor, and Allocators coordinate with one another to allocate resources

to applications executing in open DRE systems, thereby addressing the resource allocation requirement for open DRE systems

identified in Section 3.2.1.

4.2.2 Addressing Requirement 2: Configuring Platform-specific QoS Parameters

RACE shields application developers and SA-POP from low-level platform-specific details and defines a higher-level QoS

specification model. System developers and SA-POP specify only QoS characteristics of the application, such as QoS

requirements and relative importance, and RACE’s Configurators automatically configures platform-specific parameters

appropriately.

For example, consider two science applications – one executing in fast survey mode and one executing in slow survey

mode. For these applications, middleware parameters configured by the Middleware Configurator includes: (1)

CORBA end-to-end priority, which is configured based on execution mode (fast/slow survey) and application period/deadline,

(2) CORBA priority propagation model (CLIENT PROPAGATED / SERVER DECLARED), which is configured based on

the application structure and inter-connection, and (3) threading model (single threaded / thread-pool / thread-pool with

lanes), which is configured based on number of concurrent peer-components connected to a component. The Middleware

Configurator derives configuration for such low level platform-specific parameters from application end-to-end structure

and QoS requirements.

RACE’s Configurators provides higher level abstractions and shield system developers and SA-POP from low-level

platform-specific details, thus addressing the requirements associated with configuring platform-specific QoS parameters

identified in Section 3.2.2.

17



4.2.3 Addressing Requirement 3: Monitoring End-to-end QoS and Ensuring QoS Requirements are Met

When resources are allocated to components at design-time by system designers using PICML, i.e. mapping of application

components to nodes in the domain are specified, these operations are performed based on estimated resource utilization of

applications and estimated availability of system resources. Allocation algorithms supported by RACE’s Allocators allo-

cate resources to components based on current system resource utilization and component’s estimated resource requirements.

In open DRE systems, however, there is often no accurate a priori knowledge of input workload, the relationship between

input workload and resource requirements of an application, and system resource availability.

To address this requirement, RACE’s control architecture employs a feedback loop to manage system resource and ap-

plication QoS and ensures (1) QoS requirements of applications are met at all times and (2) system stability by maintaining

utilization of system resources below their specified utilization set-points. RACE’s control architecture features a feedback

loop that consists of three main components: Monitors, Controllers, and Effectors, as shown in Figure 9.

Monitors are associated with system resources and QoS of the applications and periodically update the Controller

with the current resource utilization and QoS of applications currently running in the system. The Controller imple-

ments a particular control algorithm such as EUCON [9], DEUCON [10], HySUCON [11], and FMUF [12], and computes

the adaptations decisions for each (or a set of) application(s) to achieve the desired system resource utilization and QoS.

Effectors modify system parameters, which include resource allocation to components, execution rates of applications,

and OS/middleware/network QoS setting of components, to achieve the controller recommended adaptation.

As shown in Figure 9, RACE’s monitoring framework, Controllers, and Effectors coordinate with one another

and the aforementioned entities of RACE to ensure (1) QoS requirements of applications are met and (2) utilization of system

resources are maintained within the specified utilization set-point set-point(s), thereby addressing the requirements associated

with runtime end-to-end QoS management identified in Section 3.2.3. We empirically validate this in Section 5.

5 Empirical Results and Analysis

This section presents the design and results of experiments that evaluate the performance and scalability of RACE in our

prototype of the NASA MMS mission system case study described in Section 3. These experiments validate our claims in

Section 4 and Section 4.2 that RACE is an scalable adaptive resource management framework and can perform effective end-

to-end adaptation and yield a predictable and scalable DRE system under varying operating conditions and input workload.

5.1 Hardware and Software Testbed

Our experiments were performed on the ISISLab testbed at Vanderbilt University (www.dre.vanderbilt.edu/

ISISlab). The hardware configuration consists of six nodes, five of which acted as spacecrafts and one that acted as

a ground station. The hardware configuration of all the nodes was a 2.8 GHz Intel Xeon dual processor, 1 GB physical

memory, 1GHz Ethernet network interface, and 40 GB hard drive. The Redhat Fedora Core release 4 OS with real-time

preemption patches [47] was used for all the nodes.

18



Our experiments also used CIAO/DAnCE 0.5.10, which is our open-source QoS enabled component middleware that

implements the OMG Lightweight CCM [48] and Deployment and Configuration [44] specifications. RACE and our DRE

system case study are built upon CIAO/DAnCE.

5.2 MMS DRE System Implementation

Science applications executing atop our MMS DRE system are composed of the following components:

• Plasma sensor component, which manages and controls the plasma sensor on the spacecraft, collects metrics corre-

sponding to the earth’s plasma activity.

• Camera sensor component, which manages and controls the high-fidelity camera on the spacecraft and captures

images of one or more star constellations.

• Filter component, which processes the data from the sensor components to remove any extraneous noise in the col-

lected data/image.

• Analysis component, which processes the collected data to determine if the data is of interest or not. If the data is of

interest, the data is compressed and transmitted to the ground station.

• Compression component, which uses loss-less compression algorithms to compresses the collected data.

• Communication component, which transmits the compressed data to the ground station periodically.

• Ground component, which received the compressed data from the spacecrafts and stores it for further processing.

All these components—except for the ground component—execute on the spacecrafts.1 Table 2 summarizes the number of

lines of C++ code of various entities in our middleware, RACE, and our prototype implementation of the MMS DRE system

case study, which were measured using SLOCCount (www.dwheeler.com/sloccount).

Entity Total Lines of Source Code

MMS DRE System 19,875

RACE 157,253

CIAO/DAnCE 511,378

Table 2: Lines of Source Code for Various System Elements

5.3 Evaluation of RACE’s Scalability

Sections 4.1.2 and 4.1.6 claimed that the hierarchical design of RACE’s monitors and effectors enables RACE to scale

as the number of applications and nodes in the system grows. We validated this claim by studying the impact of increasing

1Our experiments used component emulations that have the same resource utilization characteristics as the original components.

19



number of nodes and applications on RACE’s monitoring delay and actuation delay when RACE’s monitors and effectors are

configured hierarchically and non-hierarchically. As described in Sections 4.1.2 and 4.1.6, monitoring delay is defined as the

time taken to obtain a snapshot of the entire system in terms of resource utilization and QoS and actuation delay is defined

as the time taken to execute controller recommended adaptation throughout the system.

To measure the monitoring and actuation delays, we instrumented RACE’s Central Monitor andCentral Effector,

respectively, with high resolution timers – ACE High Res Timer [15]. The timer in the Central Monitor measured

the time duration from when requests were sent to individual Node Monitors to the time instant when replies from all

Node Monitors were received and the data (resource utilization and application QoS) were assembeled to obtain a snap-

shot of the entire system. Similarly, the timer in the Central Effector measured the time duration from when system

adaptation decisions were received from the Controller to the time instant when acknowledgment indicating successful

execution of node level adaption from individual Effectors (located on each node) were received.

5.3.1 Experiment 1: Constant Number of Application and Varying Number of Nodes

This experiment studied the impact of varying number of nodes in the system domain on RACE’s monitoring and actuation

delay. We present the results obtained from running the experiment with a constant of five applications, each composed of

six components (plasma-sensor/camera-sensor, analysis, filter, analysis, compression, communication, and ground), and a

varying number of nodes.

Experiment configuration. We varied the number of nodes in the system from one to six. A total of 30 application

components were evenly distributed among the nodes in the system. The experiment was composed of two scenarios: (1)

hierarchical and (2) non-hierarchical configuration of RACE’s monitors and effectors. Each scenario was comprised of seven

runs, and number of nodes in the system during each run was constant2. During each run, monitoring delay and actuation

delay was collected over 50,000 iterations.

Analysis of results. Figures 10a and 10b compare the impact of increasing the number of nodes in the system on RACE’s

monitoring and actuation delay, respectively, under the two scenarios. Figures 10a and 10b show that monitoring and ac-

tuation delays are significantly lower in the hierarchical configuration of RACE’s monitors and effectors compared to the

non-hierarchical configuration. Moreover, as the number of nodes in the system increases, the increase in monitoring and

actuation delays are significantly (i.e., 18% and 29%, respectively) lower in the hierarchical configuration compared to the

non-hierarchical configuration. This result occurs because individual node monitors and effectors execute in parallel when

monitors and effectors are structured hierarchically, thereby significantly reducing monitoring and actuation delay, respec-

tively.

Figures 10a and 10b show the impact on monitoring and actuation delay when the monitors and effectors are structured

hierarchically and the number of nodes in the system increase. Although individual monitors and effectors execute in parallel,

resource data aggregation and computation of per-node adaptation decisions are centralized by the Central Monitor and

2As we varied the number of nodes from one to six each scenario had a total of seven runs.

20



0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6

No of Nodes

T
im

e 
(m

ic
ro

 s
ec

)

Hierarchical Non Hierarchical

(a) Monitoring Delay vs Number of Nodes

0

500

1000

1500

2000

2500

1 2 3 4 5 6

No of Nodes

T
im

e 
(m

ic
ro

 s
ec

)

Hierarchical Non Hierarchical

(b) Actuation Delay vs Number of Nodes

Figure 10: Impact of Increase in Number of Nodes on Monitoring and Actuation Delay

Central Effector, respectively. The results show that this configuration yields a marginal increase in the monitoring

and actuation delay (i.e., 6% and 9%, respectively) as the number of nodes in the system increases.

Figures 10a and 10b show that when there is only one node in the system, the performance of the hierarchical configura-

tion of RACE’s monitors and effectors is worse than the non-hierarchical configuration. This result measures the overhead

associated with the hierarchical configuration. As shown in Figures 10a and 10b, however, as the number of nodes in the

system increase, the benefit of the hierarchical configuration outweighs this overhead.

5.3.2 Experiment 2: Constant Number of Nodes and Varying Number of Applications

This experiment studied the impact of varying the number of applications on RACE’s monitoring and actuation delay. We

now present the results obtained from running the experiment with six nodes in the system and varying number of applications

(from one to five), each composed of six components (plasma-sensor/camera-sensor, analysis, filter, analysis, compression,

21



communication, and ground).

Experiment configuration. We varied the number of applications in the system from one to five. Once again, the applica-

tion components were evenly distributed among the six nodes in the system. This experiment was composed of two scenarios:

(1) hierarchical and (2) non-hierarchical configuration of RACE’s monitors and effectors. Each scenario was comprised of

five runs, with the number of applications used in each run held constant. As we varied the number of applications from one

to five, for each scenario we had a total of five runs. During each run, monitoring delay and actuation delay was collected

over 50,000 iterations.

Analysis of results. Figures 11a and 11b compare the impact on increase in number of applications on RACE’s monitoring

and actuation delay, respectively, under the two scenarios. Figures 11a and 11b show that monitoring and actuation delays are

significantly lower under the hierarchical configuration of RACE’s monitors and effectors compared with the non-hierarchical

configuration. These figures also show that under the hierarchical configuration, there is a marginal increase in the monitoring

delay and negligible increase in the actuation delay as the number of applications in the system increase.

These results show that RACE scales well with as the number of nodes and applications in the system increase. The

results also show that RACE’s scalability is primarily due to the hierarchical design of RACE’s monitors and effectors, there

by validating our claims in Sections 4.1.2 and 4.1.6.

5.4 Evaluation of RACE’s Adaptive Resource Management Capabilities

We now evaluate the adaptive resource management capabilities of RACE under two scenarios: (1) moderate workload,

and (2) heavy workload. Applications executing on our prototype MMS mission DRE system were periodic, with deadline

equal to their periods. In both the scenarios, we use the deadline miss ratio of applications as the metric to evaluate system

performance. For every sampling period of RACE’s Controller, deadline miss ratio for each application was computed

as the ratio of number of times the application’s end-to-end latency 3 was greater than its deadline to the number of times the

application was invoked.

5.4.1 Summary of Evaluated Scheduling Algorithms

We studied the performance of the prototype MMS system under various configurations: (1) a baseline configuration with-

out RACE and static priority assigned to application components based on Rate Monotonic Scheduling (RMS) [46], (2) a

configuration with RACE’s Maximum Urgency First (MUF) Configurator, and (3) a configuration with RACE’s MUF

Configurator and Flexible MUF (FMUF) [12] Controller. The goal of these experiments is not to compare the

performance of various adaptive resource management algorithms, such as EUCON [9], DEUCON [10], HySUCON [11],

or FMUF. Instead, the goal is to demonstrate how RACE can be used to implement these algorithms and there by meet the

system adaptation requirements of open DRE systems.

3The end-to-end latency of an application was obtained from RACE’s QoS Monitors.

22



0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5

No. of Applications

T
im

e 
(m

ic
ro

 s
ec

)

Hierarchical Non Hierarchical

(a) Monitoring Delay vs Number of Applications

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5

No. of Applications

T
im

e 
(m

ic
ro

 s
ec

)

Hierarchical Non Hierarchical

(b) Actuation Delay vs Number of Applications

Figure 11: Impact of Increase in Number of Application on Monitoring and Actuation Delays

A disadvantage of RMS scheduling is that it cannot provide performance isolation for higher importance applications [49].

During system overload caused by dynamic increase in the workload, applications of higher importance with a low rate may

miss deadlines. Likewise, applications with medium/lower importance but high rates may experience no missed deadlines.

In contrast, MUF provides performance isolation to applications of higher importance by dividing operating system and/-

or middleware priorities into two classes [49]. All components belonging to applications of higher importance are assigned

to the high-priority class, while all components belonging to applications of medium/lower importance are assigned to the

low-priority class. Components within a same priority class are assigned operating system and/or middleware priorities based

on the RMS policy. Relative to RMS, however, MUF may cause priority inversion when an higher importance application

has a lower rate than medium/lower importance applications. As a result, MUF may unnecessarily cause an application of

medium/lower importance to miss its deadline, even when all tasks are schedulable under RMS.

To address limitations with MUF, RACE’s FMUF Controller provides performance isolation for applications of higher

23



importance while reducing the deadline misses of applications of medium/lower importance. While both RMS and MUF as-

sign priorities statically at deployment time, the FMUF Controller adjusts the priorities of applications of medium/lower

importance dynamically based on performance feedback. The FMUF Controller can reassign applications of medi-

um/lower importance to the high-priority class when (1) all the applications currently in the high-priority class meet their

deadlines while (2) some applications in the low-priority class miss their deadlines. Since the FMUF Controller moves

applications of medium/lower importance back to the low-priority class when the high-priority class experiences deadline

misses it can effectively deal with workload variations caused by application arrivals and changes in application execution

times and invocation rates.

5.4.2 Experiment 1: Moderate Workload

Experiment configuration. The goal of this experiment configuration was to evaluate RACE’s system adaptation capabili-

ties under a moderate workload. This scenario therefore employed two of the five emulated spacecrafts, one emulated ground

station, and three periodic applications. One application was initialized to execute in fast survey mode and the remaining

two were initialized to execute in slow survey mode. As described in Section 3.1, applications executing in fast survey mode

have higher relative importance and resource consumption than applications executing in slow survey mode. Each applica-

tion is subjected to an end-to-end deadline equal to its period. Table 3 summarizes application periods and the mapping of

components/applications onto nodes.

Application Component Allocation Period Mode

Spacecraft Ground (msec)

1 2 Station

1 Communication Analysis Ground 1000 Fast Survey

Plasma-sensor Compression

2 Analysis Communication Ground 900 Slow Survey

Camera-sensor Compression

Filter

3 Plasma-sensor Communication Ground 500 Slow Survey

Camera-sensor Compression

Filter

Table 3: Application Configuration under Moderate Workload

The experiment was conducted over 1,400 seconds, and we emulated variation in operating condition, input workload

and a mode change by performing the following steps. At time T = 0sec, we deployed applications one and two. At time

T = 300sec, the input workload for all the application were reduced by ten percent, and at time T = 700sec we deployed

application three. At T = 1000sec, application three switched mode from slow survey to fast survey. To emulate this mode

change, we increased the rate (i.e. reduced the period) of application three by twenty percent. Since each application was

subjected to an end-to-end deadline equal to its period, to evaluate the performance of RACE, we monitored the deadline

miss ratio of all applications that were deployed.

24



RACE’s FMUF Controller was used for this experiment since the MMS mission applications described above do not

support rate adaptation. RACE is a framework, however, so other adaptation strategies/algorithms, such as HySUCON [11],

can be implemented and employed in a similar way. Below, we evaluate the use of FMUF for end-to-end adaptation. Since

this paper focuses on RACE—and not the design or evaluation of individual control algorithms—we use FMUF as an example

to demonstrate RACE’s ability to support the integration of feedback control algorithms for end-to-end adaptation in DRE

systems. RACE’s FMUF controller was configured with the following parameters: sampling period = 10 seconds, N = 5,

and threshold = 5%.

Analysis of results. Figures 12a, 12b, and 12c show the deadline miss ratio of applications when the system was operated

under baseline configuration, with RACE’s MUF Configurator, and with RACE’s MUF Configurator along with

FMUF Controller, respectively. These figures show that under all the three configurations, deadline miss ratio of ap-

plications (1) reduced at T = 300sec due to the decrease in the input work load, (2) increased at T = 700sec due to the

introduction of new application, and (3) further increased at T = 1, 000sec due to the mode change from slow survey mode

to fast survey mode. These results demonstrates the impact of fluctuation in input workload and operating conditions on

system performance.

Figure 12a shows that when the system was operated under the baseline configuration, deadline miss ratio of medium

importance applications (applications executing in fast survey mode) were higher than that of low importance applications

(applications executing in slow survey mode) due to reasons explained in Section 5.4.1. Figures 12b and 12c show that when

RACE’s MUF Configurator is used (both individually and along with FMUF Controller), deadline miss ratio of

medium importance applications were nearly zero throughout the course of the experiment. Figures 12a and 12b demonstrate

that RACE improves QoS of our DRE system significantly by configuring platform-specific parameters appropriately.

As described in [12], the FMUF Controller responds to variations in input workload and operating conditions (in-

dicated by deadline misses) by dynamically adjusting the priorities of the low importance applications (i.e., moving low

importance applications into or out of the high-priority class). Figures 12a and 12c demonstrate the impact of the RACE’s

Controller on system performance.

5.4.3 Experiment 2: Heavy Workload

Experiment configuration. The goal of this experiment configuration was to evaluate RACE’s system adaptation capabil-

ities under a heavy workload. This scenario therefore employed all five emulated spacecrafts, one emulated ground station,

and ten periodic applications. Four of these applications were initialized to execute in fast survey mode and the remain-

ing six were initialized to execute in slow survey mode. Table 4 summarizes the application periods and the mapping of

components/applications onto nodes.

The experiment was conducted over 1,400 seconds, and we emulated the variation in operating condition, input workload,

and a mode change by performing the following steps. At time T = 0sec, we deployed applications one through six. At time

T = 300sec, the input workload for all the application were reduced by ten percent, and at time T = 700sec we deployed

applications seven through ten. At T = 1, 000sec, applications two through five switched modes from slow survey to fast

25



Application Component Allocation Period Mode

Spacecraft Ground (msec)

1 2 3 4 5 Station

1 Communication Analysis Filter Compression Ground 1000 Fast Survey

Plasma-sensor

2 Camera-sensor Filter Communication Ground 900 Slow Survey

Compression Analysis

3 Camera-sensor Plasma-sensor Communication Analysis Filter Ground 500 Slow Survey

Compression

4 Communication Filter Plasma-sensor Compression Ground 800 Slow Survey

Analysis

5 Communication Camera-sensor Analysis Compression Ground 1200 Slow Survey

Filter

6 Analysis Filter Communication Compression Plasma-sensor Ground 700 Slow Survey

7 Plasma-sensor Plasma-sensor Communication Analysis Filter Ground 600 Fast Survey

Compression

8 Communication Plasma-sensor Compression Ground 700 Slow Survey

Filter Analysis

9 Communication Camera-sensor Analysis Compression Ground 400 Fast Survey

Filter Plasma-sensor

10 Compression Communication Plasma-sensor Ground 700 Fast Survey

Filter Analysis

Table 4: Application Configuration under Heavy Workload

survey. To emulate this mode change, we increased the rate of applications two through five by twenty percent. RACE’s

FMUF controller was configured with the following parameters: sampling period = 10 seconds, N = 5, and threshold = 5%.

Analysis of results. Figure 13a shows that when the system was operated under the baseline configuration, the deadline

miss ratio of the medium importance applications were again higher than that of the low importance applications. Figures 13b

and 13c show that when RACE’s MUF Configurator is used (both individually and along with FMUF Controller),

deadline miss ratio of medium importance applications were nearly zero throughout the course of the experiment. Figures 13a

and 13b demonstrate how RACE improves the QoS of our DRE system significantly by configuring platform-specific param-

eters appropriately. Figures 12a and 12c demonstrate that RACE improves system performance (deadline miss ratio) even

under heavy workload.

These results show that RACE improves system performance by performing adaptive management of system resources

there by validating our claim in Section 4.2.3.

26



5.5 Summary of Experimental Analysis

This section evaluated the performance and scalability of the RACE framework by studying the impact of increase in

number of nodes and applications in the system on RACE’s monitoring delay and actuation delay. We also studied the

performance of our prototype MMS DRE system with and without RACE under varying operating condition and input

workload. Our results show that RACE is a scalable adaptive resource management framework and performs effective end-

to-end adaptation and yields a predictable and high-performance DRE system.

From analyzing the results in Sections 5.3 we observe that RACE scales well as the number of nodes and applications in the

system increases. This scalability stems from RACE’s the hierarchical design of monitors and effectors, which validates our

claims in Sections 4.1.2 and 4.1.6. From analyzing the results presented in Section 5.4, we observe that RACE significantly

improves the performance of our prototype MMS DRE system even under varying input workload and operating conditions,

thereby meeting the requirements of building component-based DRE systems identified in Section 3.2. These benefits result

from configuring platform-specific QoS parameters appropriately and performing effective end-to-end adaptation, which

were performed by RACE’s Configurators and Controllers, respectively.

6 Concluding Remarks

Open DRE systems require end-to-end QoS enforcement from their underlying operating platforms to operate correctly.

These systems often run in environments where resource availability is subject to dynamic changes. To meet end-to-end

QoS in these dynamic environments, open DRE systems can benefit from adaptive resource management frameworks that

monitors system resources, performs efficient application workload management, and enables efficient resource provision-

ing for executing applications. Resource management algorithms based on control-theoretic techniques are emerging as a

promising solution to handle the challenges of applications with stringent end-to-end QoS executing in open DRE systems.

These algorithms enable adaptive resource management capabilities in open DRE systems and adapt gracefully to fluctuation

in resource availability and application resource requirement at runtime.

This paper described the Resource Allocation and Control Engine (RACE), which is our adaptive resource management

framework that provides end-to-end adaptation and resource management for open DRE systems built atop QoS-enabled

component middleware. Open DRE systems built using RACE benefit from the advantages of component-based middleware,

as well as QoS assurances provided by adaptive resource management algorithms. We demonstrated how RACE helped

resolve key resource and QoS management challenges associated with a prototype of the NASA MMS mission system. We

also analyzed results from performance in the context of our MMS mission system prototype.

Since the elements of the RACE framework are CCM components, RACE itself can be configured using model-driven

tools, such as PICML [38]. Moreover, new InputAdapters, Allocators, Configurators, and Controllers

can be plugged into RACE using PICML without modifying its architecture. RACE can also be used to deploy, allocate

resources to, and manage performance of, applications that are composed at design-time and runtime.

The lessons learned in building RACE and applying to our MMS mission system prototype thus far include:

27



• Challenges involved in developing open DRE systems. Achieving end-to-end QoS in open DRE systems requires

adaptive resource management of system resources, as well as integration of a range of real-time capabilities. QoS-

enabled middleware, such as CIAO/DAnCE, along with the support of DSMLs and tools, such as PICML, provide an

integrated platform for building such systems and are emerging as an operating platform for these systems. Although

CIAO/DAnCE and PICML alleviate many challenges in building DRE systems, they do not addresses the adaptive

resource management challenges and requirements of open DRE systems. Adaptive resource management solutions

are therefore needed to ensure QoS requirements of applications executing atop these systems are met.

• Decoupling middleware and resource management algorithms. Implementing adaptive resource management al-

gorithms within the middleware tightly couples the resource management algorithms within particular middleware

platforms. This coupling makes it hard to enhance the algorithms without redeveloping significant portions of the

middleware. Adaptive resource management frameworks, such as RACE, alleviate the tight coupling between resource

management algorithms and middleware platforms and improve flexibility.

• Design of a framework determines its performance and applicability. The design of key modules and entities of the

resource management framework determines the scalability, and therefore the applicability, of the framework. To apply

a framework like RACE to a wide range of open DRE system, it must scale as the number of nodes and application in the

system grows. Our empirical studies on the scalability of RACE showed that structuring and designing key modules

of RACE (e.g., monitors and effectors) in a hierarchical fashion not only significantly improves the performance of

RACE, but also improves its scalability.

• Need for configuring/customizing the adaptive resource management framework with domain specific monitors.

Utilization of system resources, such as CPU, memory, and network bandwidth, and system performance, such as

latency and throughput, can be measured in a generic fashion across various system domains. In open DRE systems,

however, the need to measure utilization of domain-specific resources, such as battery utilization, and application-

specific QoS metrics, such as the fidelity of the collected plasma data, might occur. Domain-specific customization and

configuration of an adaptive resource management framework, such as RACE, should therefore be possible. RACE

supports domain-specific customization of its Monitors. In future work, we will empirically evaluate the ease of

integration of these domain-specific resource entities.

• Need for selecting an appropriate control algorithm to manage system performance. The control algorithm that

a Controller implements relies on certain system parameters that can be fine-tuned/modified at runtime to achieve

effective system adaptation. For example, FMUF relies on fine-tuning operating system priorities of processes hosting

application components to achieve desired system adaptation; EUCON relies on fine-tuning execution rates of end-to-

end applications to achieve the same. The applicability of a control algorithm to a specific domain/scenario is therefore

determined by the availability of these runtime configurable system parameters. Moreover, the responsiveness of a

control algorithm and the Controller in restoring the system performance metrics to their desired values determines

the applicability of a Controller to a specific domain/scenario. During system design time a Controller should

28



be selected that is appropriate for the system domain/scenario.

• Need for distributed/decentralized adaptive resource management. It is easier to design, analyze, and implement

centralized adaptive resource management algorithms that manage an entire system than it is to design, analyze, and

implement decentralized adaptive resource management algorithms. As a the size of a system grows, however, central-

ized algorithms can become bottlenecks since the computation time of these algorithms can scale exponentially as the

number of end-to-end applications increases. One way to alleviate these bottlenecks is to partition system resources

into resource groups and employ hierarchical adaptive resource management, as shown in Figure 14. In our future

work we plan to enhance RACE so that a local instance of the framework can manage resource allocation, QoS config-

uration, and runtime adaption within a resource group, whereas a global instance can be used to manage the resources

and performance of the entire system.

RACE, CIAO, DAnCE, and PICML are available in open-source form for download at deuce.doc.wustl.edu/

Download.html.

References

[1] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic Integrated Scheduling of Hard Real-Time, Soft

Real-Time and Non-Real-Time Processes,” in Proceedings of the 24th IEEE International Real-Time Systems

Symposium (RTSS ’03). Washington, DC, USA: IEEE Computer Society, 2003, p. 396.

[2] P. Marti, C. Lin, S. A. Brandt, M. Velasco, and J. M. Fuertes, “Optimal State Feedback Based Resource Allocation for

Resource-Constrained Control Tasks,” in Proceedings of the 25th IEEE International Real-Time Systems Symposium

(RTSS’04). Washington, DC, USA: IEEE Computer Society, 2004, pp. 161–172.

[3] Real-time CORBA Specification, OMG Document formal/05-01-04 ed., Object Management Group, Aug. 2002.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin, and M. Turnbull, The Real-time Specification for

Java. Addison-Wesley, 2000.

[5] D. C. Sharp and W. C. Roll, “Model-Based Integration of Reusable Component-Based Avionics System,” in IEEE

Real-time and Embedded Technology and Applications Symposium. Washington, DC: IEEE Computer Society, May

2003.

[6] D. C. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp, and L. DiPalma, “Towards Adaptive and Reflective

Middleware for Network-Centric Combat Systems,” CrossTalk - The Journal of Defense Software Engineering, Nov.

2001.

[7] D. Suri, A. Howell, N. Shankaran, J. Kinnebrew, W. Otte, D. C. Schmidt, and G. Biswas, “Onboard Processing using

the Adaptive Network Architecture,” in Proceedings of the Sixth Annual NASA Earth Science Technology Conference,

College Park, MD, June 2006.

29



[8] P. Sharma, J. Loyall, G. Heineman, R. Schantz, R. Shapiro, and G. Duzan, “Component-Based Dynamic QoS

Adaptations in Distributed Real-time and Embedded Systems,” in Proceedings of the International Symposium on

Distributed Objects and Applications (DOA), Agia Napa, Cyprus, Oct. 2004.

[9] C. Lu, X. Wang, and X. Koutsoukos, “Feedback Utilization Control in Distributed Real-time Systems with End-to-End

Tasks,” IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 6, pp. 550–561, 2005.

[10] X. Wang, D. Jia, C. Lu, and X. Koutsoukos, “Decentralized utilization control in distributed real-time systems,” in

RTSS ’05: Proceedings of the 26th IEEE International Real-Time Systems Symposium. Washington, DC, USA: IEEE

Computer Society, 2005, pp. 133–142.

[11] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu, “Hybrid Supervisory Control of Real-time Systems,” in IEEE

Real-time and Embedded Technology and Applications Symposium. San Francisco, California: IEEE Computer

Society, Mar. 2005.

[12] Y. Chen and C. Lu, “Flexible Maximum Urgency First Scheduling for Distributed Real-Time Systems,” Washington

University in St. Louis, Tech. Rep. WUCSE-2006-55, October 2006.

[13] N. Shankaran, X. Koutsoukos, C. Lu, D. C. Schmidt, and Y. Xue, “Hierarchical Control of Multiple Resources in

Distributed Real-time and Embedded Systems,” in Proceedings of the Euromicro Conference on Real-Time Systems

(ECRTS 06), Dresden, Germany, July 2006.

[14] X. Wang, C. Lu, and X. Koutsoukos, “Enhancing the Robustness of Distributed Real-Time Middleware via

End-to-End Utilization Control,” in RTSS ’05: Proceedings of the 26th IEEE International Real-Time Systems

Symposium. Washington, DC, USA: IEEE Computer Society, 2005, pp. 189–199.

[15] D. C. Schmidt and S. D. Huston, C++ Network Programming, Volume 2: Systematic Reuse with ACE and

Frameworks. Reading, Massachusetts: Addison-Wesley, 2002.

[16] Common Object Request Broker Architecture Version 1.3, OMG Document formal/2004-03-12 ed., Object

Management Group, Mar. 2004.

[17] SUN, “Java Remote Method Invocation (RMI) Specification,”

java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html, 2002.

[18] B. Ravindran, L. Welch, and B. Shirazi, “Resource Management Middleware for Dynamic, Dependable Real-Time

Systems,” Real-Time Syst., vol. 20, no. 2, pp. 183–196, 2001.

[19] L. R. Welch, B. A. Shirazi, B. Ravindran, and C. Bruggeman, “DeSiDeRaTa: QoS Management Technology for

Dynamic, Scalable, Dependable Real-time Systems,” in IFACs 15th Workshop on Distributed Computer Control

Systems (DCCS98). IFAC, Sept. 1998.

30



[20] D. Fleeman, M. Gillen, A. Lenharth, M. Delaney, L. R. Welch, D. W. Juedes, and C. Liu, “Quality-Based Adaptive

Resource Management Architecture (QARMA): A CORBA Resource Management Service,” in 18th International

Parallel and Distributed Processing Symposium (IPDPS 2004). IEEE Computer Society, 2004.

[21] C. D. Gill, “Flexible Scheduling in Middleware for Distributed Rate-Based Real-time Applications,” Ph.D.

dissertation, Department of Computer Science, Washington University, St. Louis, 2002.

[22] K. Bryan, L. C. DiPippo, V. Fay-Wolfe, M. Murphy, J. Zhang, D. Niehaus, D. T. Fleeman, D. W. Juedes, C. Liu, L. R.

Welch, and C. D. Gill, “Integrated CORBA Scheduling and Resource Management for Distributed Real-Time

Embedded Systems,” in RTAS ’05: Proceedings of the 11th IEEE Real Time on Embedded Technology and

Applications Symposium. Washington, DC, USA: IEEE Computer Society, 2005, pp. 375–384.

[23] V. F. Wolfe, L. C. DiPippo, R. Bethmagalkar, G. Cooper, R. Johnston, P. Kortmann, B. Watson, and S. Wohlever,

“RapidSched: Static Scheduling and Analysis for Real-Time CORBA,” in WORDS ’99: Proceedings of the Fourth

International Workshop on Object-Oriented Real-Time Dependable Systems. Washington, DC, USA: IEEE

Computer Society, 1999, p. 34.

[24] J. W. Liu, J. Redondo, Z. Deng, T. Tia, R. Bettati, A. Silberman, M. Storch, R. Ha, and W. Shih, “PERTS: A

Prototyping Environment for Real-Time Systems,” Champaign, IL, USA, Tech. Rep., 1993.

[25] CORBA Components, OMG Document formal/2002-06-65 ed., Object Management Group, June 2002.

[26] Sun Microsystems, “Enterprise JavaBeans Specification,” java.sun.com/products/ejb/docs.html, Aug. 2001.

[27] Anne Thomas, Patricia Seybold Group, “Enterprise JavaBeans Technology,”

java.sun.com/products/ejb/white paper.html, Dec. 1998, Prepared for Sun Microsystems, Inc.

[28] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for Quality of Service for CORBA Objects,” Theory

and Practice of Object Systems, vol. 3, no. 1, pp. 1–20, 1997.

[29] R. Schantz, J. Loyall, M. Atighetchi, and P. Pal, “Packaging Quality of Service Control Behaviors for Reuse,” in

Proceedings of the 5
th IEEE International Symposium on Object-Oriented Real-time Distributed Computing (ISORC),

Crystal City, VA, April/May 2002, pp. 375–385.

[30] P. Manghwani, J. Loyall, P. Sharma, M. Gillen, and J. Ye, “End-to-End Quality of Service Management for Distributed

Real-Time Embedded Applications,” in 18th International Parallel and Distributed Processing Symposium (IPDPS

2005), vol. 03, Los Alamitos, CA, USA, 2005.

[31] J. Kinnebrew, N. Shankaran, G. Biswas, and D. Schmidt, “A Decision-Theoretic Planner with Dynamic Component

Reconguration for Distributed Real-Time Applications,” in Poster paper at the Twenty-First National Conference on

Artificial Intelligence, Boston, MA, July 2006.

31



[32] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Cadena: An Integrated Development, Analysis, and

Verification Environment for Component-based Systems,” in Proceedings of the 25th International Conference on

Software Engineering, Portland, OR, May 2003.

[33] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey, and B. Ellis, “VEST: An Aspect-Based

Composition Tool for Real-Time Systems,” in RTAS ’03: Proceedings of the The 9th IEEE Real-Time and Embedded

Technology and Applications Symposium. Washington, DC, USA: IEEE Computer Society, 2003, p. 58.

[34] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle, and G. Karsai, “Composing Domain-Specific

Design Environments,” IEEE Computer, pp. 44–51, November 2001.

[35] S. Kodase, S. Wang, Z. Gu, and K. G. Shin, “Improving Scalability of Task Allocation and Scheduling in Large

Distributed Real-time Systems using Shared Buffers,” in Proceedings of the 9th Real-time/Embedded Technology and

Applications Symposium (RTAS 2003). Washington, DC: IEEE, May 2003.

[36] P. Lopez, J. L. Medina, and J. M. Drake, “Real-Time Modelling of Distributed Component-Based Applications,”

Proceedings 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO

06), pp. 92–99, 2006.

[37] M. G. Harbour, J. J. G. Garcı́a, J. C. P. Gutiérrez, and J. M. D. Moyano, “MAST: Modeling and Analysis Suite for Real

Time Applications,” in Proceedings of the 13th Euromicro Conference on Real-Time Systems (ECRTS ’01).

Washington, DC, USA: IEEE Computer Society, 2001, p. 125.

[38] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and D. C. Schmidt, “A Platform-Independent

Component Modeling Language for Distributed Real-Time and Embedded Systems,” in RTAS ’05: Proceedings of the

11th IEEE Real Time on Embedded Technology and Applications Symposium, Los Alamitos, CA, USA, 2005, pp.

190–199.

[39] S. Bagchi, G. Biswas, and K. Kawamura, “Task Planning under Uncertainty using a Spreading Activation Network,”

IEEE Transactions on Systems, Man, and Cybernetics, vol. 30, no. 6, pp. 639–650, Nov. 2000.

[40] S. Curtis, “The Magnetospheric Multiscale Mission...Resolving Fundamental Processes in Space Plasmas,” NASA

STI/Recon Technical Report N, pp. 48 257–+, Dec. 1999.

[41] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan, J. P. Loyall, R. E. Schantz, and C. D. Gill,

“QoS-enabled Middleware,” in Middleware for Communications, Q. Mahmoud, Ed. New York: Wiley and Sons,

2004, pp. 131–162.

[42] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and A. Gokhale, “DAnCE: A QoS-enabled Component

Deployment and Configuration Engine,” in Proceedingds of the 3rd Working Conference on Component Deployment

(CD 2005), Grenoble, France, Nov. 2005, pp. 67–82.

32



[43] D. de Niz and R. Rajkumar, “Partitioning Bin-Packing Algorithms for Distributed Real-time Systems,” International

Journal of Embedded Systems, 2005.

[44] Deployment and Configuration Adopted Submission, OMG Document mars/03-05-08 ed., Object Management Group,

July 2003.

[45] B. Buck and J. K. Hollingsworth, “An API for Runtime Code Patching,” Int. J. High Perform. Comput. Appl., vol. 14,

no. 4, pp. 317–329, 2000.

[46] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling Algorithm: Exact Characterization and Average

Case Behavior,” in RTSS’ 89, 1989, pp. 166–171.

[47] I. Molnar, “Linux with Real-time Pre-emption Patches,” http://people.redhat.com/mingo/realtime-preempt/, Sep 2006.

[48] Light Weight CORBA Component Model Revised Submission, OMG Document realtime/03-05-05 ed., Object

Management Group, May 2003.

[49] D. B. Stewart and P. K. Khosla, “Real-time Scheduling of Sensor-Based Control Systems,” in Real-time Programming,

W. Halang and K. Ramamritham, Eds. Tarrytown, NY: Pergamon Press, 1992.

33



 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s 
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(a) Baseline (RMS)

 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s 
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(b) MUF Configurator

 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s 
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(c) MUF Configurator + FMUF Controller

Figure 12: Deadline Miss Ratio Under Moderate Workload

34



 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s 
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(a) Baseline (RMS)

 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s 
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(b) MUF Configurator

 0

 0.2

 0.4

 0.6

 0.8

 1

12001000800600400200

M
is

s 
R

at
io

Time (sec)

Medium Importance
Applications

Low Importance
Applications

(c) MUF Configurator + FMUF Controller

Figure 13: Deadline Miss Ratio under Heavy Workload

35



RACE

RACE

Node Node Node

Resource Group

RACE

Node Node Node

Resource Group

RACE

Node Node Node

Resource Group

System Domain

Figure 14: Hierarchical Composition of RACE

36


