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Abstract

A communication subsystem consists of protocol functions
and operating system mechanisms that support the imple-
mentation and execution of protocol stacks. To effectively
parallelize a communication subsystem, careful considera-
tion must be given to the process architecture used to struc-
ture multiple processing elements. A process architecture
bindsoneor more processing e ementswith the protocol tasks
and messages associated with protocol stacks in a commu-
nication subsystem. This paper outlines the two fundamen-
tal types of process architectures (task-based and message-
based) and describes performance experiments conducted
on three representative examples of these two types of pro-
cess architectures— Layer Parallelism, whichisatask-based
process architecture, and Message-Parallelismand Connec-
tional Parallelism, which are message-based process archi-
tectures. These experiments measure the impact of the pro-
cess architecture on connectionless and connection-oriented
protocol stacks (based upon UDP and TCP) in a shared-
memory multi-processor operating system. The results from
these experiments indicate that the choice of process archi-
tecture significantly affects communication subsystem per-
formance.

1 Introduction

Advances in VLS| and fiber optic technology are shifting
performance bottlenecks from the underlying networks to
the communi cation subsystem. A communication subsystem
consists of protocol functions (such as connection manage-
ment, end-to-end flow control, remote context management,
segmentation/reassembly, demultiplexing, message buffer-
ing, error protection, session control, and presentation con-
versions) and operating system mechanisms (such as pro-
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cess management, asynchronous event invocation, message
buffering, and layer-to-layer flow control) that support the
implementation and execution of communication protocol
stacks composed of protocol functions.

Executing protocol functions and OS mechanisms in par-
allel on multi-processor platforms is a promising technique
for increasing protocol processing rates and reducing latency.
To significantly increase communication subsystem perfor-
mance on shared memory multi-processor platforms, how-
ever, the speed-up obtained from parallelism must outweight
the context switching and synchronization overhead associ-
ated with parallel processing. A context switch is triggered
when an executing process relinquishes its associated pro-
cessing e ement (PE) voluntarily or involuntarily. Depend-
ing on the underlying OS and hardware platform, performing
acontext switch may involve dozens to hundreds of instruc-
tionsto flush register windows, memory caches, instruction
pipelines, and tranglation look-aside buffers. Synchroniza
tion overhead arises from locking mechanisms that seriaize
access to shared objects (such as messages, message queues,
protocol connection records, and demultiplexingtables) used
when processing protocolsin parallel.

A number of process architectures have been proposed
as the basis for paralelizing communication subsystems
[1, 2, 3, 4]. There are two fundamental types of process
architectures. task-based and message-based. Task-based
process architectures are formed by binding one or more
PEs to units of protocol functionality (such as presentation
layer formatting or transport layer segmentation/reassembly,
acknowledgment processing, end-to-end flow control, and
retransmission timer processing). In a task-based process
architecture, paralelism is achieved by executing protocol
tasks in separate PES and passing data messages and control
messages between thetasks/PES. In contrast, message-based
process architectures are formed by binding the PEs to data
messages and control messages received from applications
and network interfaces. In a message-based process archi-
tecture, paralelism is achieved by escorting multiple data
messages and control messages on separate PES through a
stack of protocol tasks.

Protocol suites (such as the Internet and 1SO OS| refer-
ence models) may be implemented using either task-based
or message-based process architectures. However, these two



types of process architectures exhibit significantly different
performance characteristics that are affected by the underly-
ing operating system and hardwareplatform. For instance, on
shared memory multi-processor platforms, task-based pro-
cess architectures often result in high data movement and
context switching overhead [5]. Likewise, in a message-
passing transputer multi-processor environment, message-
based process architecturestypically result in high levels of
synchronization overhead [2].

Existing research has generally selected a single type of
process architecture (either task-based or message-based) and
studieditinisolation. Moreover, since different studies have
been performed on different OS and hardware platforms, us-
ing different protocols and implementation techniques, it is
difficult to compare the results obtained from these studies
in acontrolled manner. This paper describes results obtained
from systematic comparisons of the performance impact of
task-based and message-based process architectures. These
resultswereobtai ned using an obj ect-oriented framework that
facilitates controlled experimentswith alternative process ar-
chitectures on shared memory multi-processor platforms[6].
The framework controls for a number of key confounding
factors (such as protocol functionality, concurrency control
schemes, and application traffic characteristics) in order to
precisely measure the performance impact of different pro-
cess architectures for parallelizing communication protocol
stacks.

This paper isorganized as follows: Section 2 outlinesthe
fundamental types of process architectures and compares re-
lated work accordingly; Section 3 describes the design and
implementation of the protocol stacks and process architec-
tures used in the experiments reported in Section 4; and
Section 5 presents concluding remarks.

2 Alternative Process Architectures

Figure 1 (1) illustrates the basic elements that form the
foundation of a process architecture:

o Control messages and data messages — which are sent
and received from oneor more appli cationsand network
devices

e Protocol processing tasks—which aretheunitsof proto-
col functionality that process the control messages and
data messages

e Processing elements (PES) — which execute protocol
tasks

There are two fundamental types of process architectures
(task-based and message-based) that structure these basic
elements differently. Task-based process architectures bind
one or more PESs to protocol processing tasks. In this ar-
chitecture, tasks are the active e ements, whereas messages
processed by the tasks are the passive elements (shown in
Figure 1 (2)). Conversdly, message-based process architec-
tures bind the PEs to the control messages and data messages

received from applications and network interfaces. In this
architecture, messages are the active elements and tasks are
the passive elements (shown in Figure 1 (3)).

The remainder of this section briefly examines severd a-
ternative process architecturesin each category.

2.1 Task-based Process Architectures

Task-based process architectures associate processes® with
clusters of one or more protocol tasks. Two representa
tive examples of task-based process architectures are the
Layer Parallelismand Functional Parallelism process archi-
tectures. The primary difference between these two process
architecturesinvolvesthe granularity of the protocol process-
ing tasks. Layers are more “coarse-grained” than functions
since they cluster multiple protocol tasks together to form a
composite service (such as the end-to-end transport service
provided by the OSI transport layer).

Layer Parallelism associates a separate process with each
layer (e.g., the presentation, transport, and network layers)
in a protocol stack. Certain protocol header and data fields
in the outgoing and incoming messages may be processed in
parallel asthey flow through a pipeline of protocol stack lay-
ers. Buffering and flow control are generally necessary since
processing activities in each layer may execute at different
rates.

Functional Parallelism associates a separate process with
each protocol function (such as header composition, ac-
knowledgement, retransmission, segmentation, reassembly,
and routing). Theseprotocol functionsexecutein parale and
communi cate by passing control messages and datamessages
to each other.

In general, implementing pipelined task-based process ar-
chitecturesisrelatively straightforward. Task-based process
architecturesmap directly onto conventional layered commu-
nication models using well-structured “ producer/consumer”
designs. Moreover, minima synchronization mechanisms
are necessary within a layer or function since parale pro-
cessing istypically serialized at a service access point (such
as the transport layer or application layer interface). How-
ever, as shown in Section 4, task-based process architectures
are susceptible to high context switching overhead on shared
memory platforms. This problem is exacerbated when the
number of protocol tasks exceeds the number of PES, dueto
the context switching performed when transferring messages
between protocol tasks.

2.2 Message-based Process Architectures

Message-based process architectures associate processes
with messages rather than protocol layers or functions. Two
common examples of message-based process architectures

2In thispaper, theterm “ process” isused to refer to aseriesof instructions
executing within an address space; this address space may be shared with
other processes. Different terminology (such as lightweight processes[6] or
threads[7]) has also been used to denote the same basic concepts. Our use
of the term processis consistent with the definition adoptedin [8].
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are Connectional Parallelismand Message Parallelism. The
primary difference between these approaches involves the
granularity at which messages are demultiplexed onto pro-
cesses.  Connectiona Parallelism demultiplexes all mes-
sages bound for the same connection onto the same process,
whereas Message Parallelism demultiplexes messages onto
any available process.

Connectiona Parallelism uses aseparate processto handle
themessages associ ated with each open connection. Withina
connection, aseries of protocol processing tasks are invoked
sequentially on each message as it flows through a proto-
col stack. Outgoing messages generaly borrow the thread
of control from the application process and use it to escort
messages down a protocol stack. For incoming messages, a
network interface or packet filter typically performs demulti-
plexing operationsto determine the correct process for each

message.

Message Parallelism associates a separate process with
every incoming or outgoing message. A process receives a
message from an application or network interface and escorts
the message through the protocol processing tasks in the
protocol stack. Aswith Connectional Parallelism, outgoing
messages generally borrow the thread of control from the
application that initiated the message transfer.

In general, alarge degree of potential paralelism exists
with the message-based process architectures. The degree of
parallelism depends on characteristics that change dynami-
caly (such as messages or connections), rather than on the
relatively static characteristics (such as the number of lay-
ersor protocol functions) that are associated with task-based
process architectures. Depending on other communication
subsystem characteristics (such as memory and bus band-
width), this dynamism may enable message-based process
architecturesto effectively use alarger number of PEs.

2.3 Reated Work

A number of studies have investigated the performance char-
acteristics of task-based process architectures developed to
run on either message passing or shared memory platforms.
[5] measures the impact of several implementations of the
transport and session layers in the OS| reference model us-
ing an ADA-likerendezvous-style of Layer Paralldismin a
nonuniform access shared memory environment. [9] mea
sures the performance of a Functional Parallelism process
architecture for presentation layer and transport layer func-
tionality on ashared memory multi-processor. [10] measures
the performance of a de-layered, function-oriented transport
system[11] using Functional Perallelism on a message pass-
ing transputer multi-processor platform. An earlier study
[2] measured the performance of the OS| transport layer and
network layer in asimilar transputer environment. [12] also
uses a multi-processor transputer platform to measure the
performance of severa data-link layer protocols.

Other studies haveinvestigated message-based process ar-
chitectures. All these studies utilize shared memory plat-
forms. [13] measured the performance of the TCP, UDP, and
IP protocols using a Message Parallelism process architec-
ture on a uniprocessor platform running the x-kernel. [1]
mesasures the impact of synchronization on Message Para-
[elism implementations of TCP and UDP transport protocols
built within a multi-processor version of the x-kernel. [8]
measures the performance of the Nonet transport protocol on
a multi-processor version of Plan 9 STREAMS developed
using Message Paralldism. [3] measures the performance
of the OS| protocol stack, focusing primarily on the presen-
tation and transport layers using Message Parallelism. [14]
mesasures the performance of the TCP/IP protocol stack us-
ing Connectiona Parallelism in amulti-processor version of
SystemV STREAMS.

The work presented in this paper extends existing work
by measuring a number of task-based and message-based
process architectures in a controlled environment. Our ex-
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Figure2: Componentsinthe ADAPTIVE Service eXecutive
Framework

periments consider the impact of both synchronization and
context switching overhead. In addition to measuring data
link, network, and transport layer performance, our experi-
ments also investigate presentation layer performance. The
presentation layer is widely considered to be one of the pri-
mary bottlenecks in high-performance communication sub-
systems.

3 Structure of the Experiments

This section describes the object-oriented framework, com-
munication protocols, and process architectures we devel-
oped and used in the performance experiments reported in
Section 4.

3.1 The ADAPTIVE Service eXecutive
Framewor k

The communication protocol sand process architecturesin
this study were devel oped using components provided by the
ADAPTIVE Server eXecutive (ASX) framework [15]. The
ASX framework contains an integrated set of object-oriented
components that facilitate experimentation with task-based
and message-based process architectures on shared memory
multi-processor platforms.

Components in the ASX are responsible for coordinating
one or more Streams. A Stream is an object used to con-
figure and execute protocol-specific functionality in the ASX
framework run-timeenvironment. Asillustrated in Figure 2,

a Stream contains a series of inter-connected Modul es that
may be linked together by devel opers at installation-time or
by applicationsat run-time. Modul es areobjectsthat devel -
opers use to decompose the architecture of a protocol stack
into a series of inter-connected, functionally distinct layers.
Each layer implements a cluster of related protocol-specific
functions (such as an end-to-end transport service, a presen-
tation layer formatting service, or a red-time PBX signal
routing service). Every Mbdul e contains a pair of Queue
objectsthat partitionalayer into its constituent read-side and
write-side protocol -specific processing functionality.

Any layer that performs multiplexing and demultiplexing
of message objects between related Streams may be devel-
oped usingaMul ti pl exor object. A Mul ti pl exor is
a C++ template-based container class that provides mecha
nisms to route messages between Modul es in a collection
of related Streams. A complete Stream is represented as an
inter-connected series of Modul e objects that communicate
by exchanging messages with adjacent objects. Modul es
and Mul ti pl exor s may be joined together in essentially
arbitrary configurations in order to satisfy application re-
guirements and enhance component reuse.

The ASX framework employs anumber of object-oriented
design techniques (such as design patterns [16] and hier-
archica decomposition) and C++ language features (such
as inheritance, dynamic binding, and parameterized types).
These design techniques and language features enable de-
velopersto incorporate protocol-specific functionality into a
Stream without modifying the protocol-independent frame-
work components. For example, incorporating a new level
of protocol functionality into a Stream at installation-timeor
at run-timeinvolvesthe following steps:

1. Inheriting from the Queue interface and selectively
overriding severad methods (described below) in the
Queue subclass to implement protocol -specific func-
tionality

2. Allocating a new Modul e that contains two instances
(onefor the read-side and one for the write-side) of the
protocol-specific Queue subclass

3. Inserting the Mbdul e into a Stream object at the ap-
propriate level (e.g., the transport layer, network layer,
data-link layer, etc.)

The ASX framework incorporates concepts from several
other modular communi cation frameworksincluding System
V STREAMS [17], the x-kernel [13], and the Conduit [18]
(asurvey of these and other communication frameworks ap-
pearsin [19]). These frameworks al contain features that
support the flexible configuration of communication sub-
systems by inter-connecting building-block protocol compo-
nents. Theseframeworksencouragethe devel opment of stan-
dard reusable protocol components by decoupling protocol -
specific processing functional ity from the surrounding frame-
work infrastructure. I1n addition to supplying building-block
protocol and service components, the ASX framework also
extends the existing communication frameworks by provid-



ing additional components that decouple protocol function-
ality from the following configuration decisions:

e The type of locking mechanisms used to synchronize
access to shared objects

¢ The use of message-based and task-based process archi-
tectures

o Theuse of kernel-level vs. user-level execution agents

3.2 Communication Protocols

Two typesof protocol stacksareused inthe experiments. One
protocol stack is based on the connectionless UDP transport
protocol. Theother protocol stack isbased on theconnection-
oriented TCP transport protocol. The protocol stacks contain
the datarlink, network, transport, and presentation layers.
The presentation layer isincluded in the experiments since
it represents a major bottleneck in high-performance com-
munication subsystems, due primarily to the large amount of
data movement overhead it often incurs.

Both the connectionless and connection-oriented protocol
stacks were devel oped by specidizing reusable components
in the ASX framework via inheritance and parameterized
types. Inheritance and parameterized types are used to hold
the protocol functionality constant whilesystematically vary-
ing the process architecture. Each layer in aprotocol stack is
implemented as a Mbdul e whose read-side and write-side
bothinherit interfaces and implementationsfrom the Queue
class described in [15]. The necessary synchronization and
demultiplexing mechanisms are parameterized using C++
template arguments that are instantiated based on the type
of process architecture being tested.

Data-link layer processing in each protocol stack is per-
formed by the DLP Mbdul e. ThisModul e transforms net-
work packets received from a network interface into the
canonical message format used internally by the Stream
components.® The network and transport layer components
of the protocol stacks are based on the IP, UDP, and TCP
implementation in the BSD 4.3 Reno release. The 4.3 Reno
TCP implementation contains the TCP header prediction en-
hancements, as well as the slow start agorithm and conges-
tion avoidance features. The UDP and TCP transport pro-
tocols are configured into the ASX framework via the UDP
and TCP Modul es. Network layer processing is performed
by the | P Modul e. This Modul e performs routing and
segmentation/reassembly of Internet Protocol (IP) packets.

Presentation layer functionality is implemented in the
XDR Modul e using marshalling routines produced by the
ONC eXterna Data Representation (XDR) stub generator
(r pcgen). The ONC XDR stub generator automatically

SPreliminary tests using the widely-availablet t cp benchmarking tool
indicated that the PE, bus, and memory performance of the SunOS multi-
processor platform used in the experimentswas capable of processing mes-
sages through the protocol stack at a much faster rate than the 10 Mbps
Ethernet network interface was capable of handling. Therefore, for our pro-
cess architecture experiments, the network interface was simulated with a
single-copy pseudo-devicedriver operating in loop-back mode.
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Figure 3: Layer Parallelism

trandates a set of type specifications into marshalling rou-
tines. These routines encode/decode implicitly-typed mes-
sages before/after they are exchanged among hosts that may
possess heterogeneous processor byte-orders. The ONC pre-
sentation layer conversion mechanisms consist of a type
specification language (XDR) and a set of library routines
that implement the appropriate encoding and decoding rules
for built-in integral types (e.g., char, short, int, and long)
and red types (eg., float and double). In addition, these
library routines may be combined to produce marshalling
routines for arbitrary user-defined composite types (such as
record/structures, unions, arrays, and pointers). Messages
exchanged via XDR are implicitly-typed, which improves
marshalling performance at the expense of run-time flexibil-
ity. The XDR functions selected for both the connectionless
and connection-oriented protocol stacks convert incoming
and outgoing messages into and from variable-sized arrays
of structures containing both integral and real values. This
conversion processing involves byte-order conversions, as
well as dynamic memory allocation and deallocation.

3.3 Process Architectures

Theremainder of thissection outlinesthe structure of connec-
tionless and connection-oriented protocol stacks devel oped
using task-based and message-based process architectures.

3.3.1 Structure of the Task-based Process Architecture
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o Layer Parallelism: Figure 3 illustrates the ASX frame-
work components that implement a Layer Parallelism pro-
cess architecture for the TCP-based connection-oriented
and UDP-based connectionless protocol stacks. Protocol-
specific processing at each protocol layer isperformed viathe
Queue: : svc method. Thismethodisinvoked by adaemon
process associated withtheModul e thatimplementsthepro-
tocol layer (e.g., LP_XDR, LP_TCP, LP_I P, and LP_DLP).
These dagmon processes cooperate in a producer/consumer
manner, operating on the header and data fiel ds of messages
corresponding to their particular protocol layer in paraldl.
Each svc method performs its protocol functions before
passing the message to an adjacent Modul e that runs asyn-
chronously in a separate dagmon process. Since daemon
processes all share a common address space, messages are
not copied when passed between adjacent Modul es. How-
ever, moving messages between processes may invalidate
per-PE data caches.

The connectionless and connection-oriented Layer Paral-
Ielism process architecture protocol stacks are designed in a
similar manner. The primary difference is that the objects
in the connectionlesstransport layer Modul e implement the
simpler UDP functionality. UDP does not generate acknowl -
edgements, keep track of round-trip time estimates, or man-
age congestion windows, etc.

3.3.2 Structure of the M essage-based Process Architec-
tures
¢ Connectional Parallelism: The protocol stack depicted
in Figure 4 (1) illustrates an ASX-based implementation of
the Connectional Parallelism process architecture. Each con-
nectionisassoci ated with aseparate processthat performsthe
data-link, network, transport, and presentation | ayer function-
ality for that connection. Protocol tasks are divided into four

inter-connected Modul es, corresponding to the datalink,
network, transport, and presentation layers in the ISO OSI
communication model. Data-link processing isperformedin
the CP_DLP Modul e. ThisModul e usesitsread-sidesvc
method to (1) transform network messages into the canoni-
cal internal message format that is processed by higher-level
componentsin a Stream and (2) demultiplex incoming mes-
sages onto the appropriatetransport layer connection.* Once
amessage has been demultiplexed onto aconnection, all that
connection’scontextinformationisdirectly accessible within
theaddress space of the associated process. Thisisbeneficial
since (1) pointersto messages may be passed between proto-
col layersviasimple procedure calls (rather than using more
complicated and costly interprocess communication mecha-
nisms used for Layer Parallelism process architecture), (2)
cache affinity propertiesmay be preserved since messagesare
processed largely within a single PE cache, and (3) minimal
internal locking isrequired withinaconnection. Therefore, a
process may operate onitsconnection’s messages without in-
curring additional demultiplexing, synchronization, and con-
text switching overhead. The CP_I P, CP_TCP, and CP_XDR
Modul esall performtheir processing synchronoudly intheir
respective put methods.

o Message Parallelism:  Figure4 (2) illustratesa message-
based process architecture for the connection-oriented proto-
col stack. When an incoming message arrives, it is handled
by theMP_DLP: : svc method, which manages apool of pre-
spawned threads. Each message isassociated with a separate
thread that escorts the message synchronously through a se-
riesof inter-connected QueuesinaStream. Each layer of the
protocol stack performsitsprotocol functionsand then makes

4The connection-oriented implementation of Connectional Parallelism
performs*“ eager demultiplexing” viaa packet filter at the data-link layer.



an upcall to the next adjacent layer in the protocol stack by
invoking the Queue: : put method in that layer. The put

method executes the protocol tasks associated with itslayer.
For instance, the MP_TCP: : put method utilizesmutual ex-
clusion (mutex) obj ectsthat serializeaccessto per-connection
control blocks as separate messages from the same connec-
tion ascend the protocol stack in paralléel.

The connectionless message-based protocol stack is struc-
tured in a similar manner, though it performs the simpler set
of UDP functionality. Unlike the MP_TCP: : put method,
the MP_UDP: : put method handles each message concur-
rently and independently, without explicitly preserving inter-
message ordering. This reduces the number of synchro-
nization operations required to locate and update shared re-
sources, which improves performance.

4 Communication Subsystem Perfor-
mance Experiment Results

This section describes experiments that measure the per-
formance impact of different combinations of the protocol
stacks and process architectures described above. The multi-
processor platform and the measurement tools used in the
experiments are also discussed.

4.1 Multi-processor Platform

All experiments were conducted on an otherwise idle Sun
690MP SPARCserver, which contains 4 SPARC 40 MHz
processing elements (PES), each capable of performing at 28
MIPs. The memory bandwidth of the SPARCserver plat-
form was measured at approximately 150 Mbits/sec, which
represents an upper limit on protocol processing throughput.
Protocol processing throughput is also significantly affected
by context switching and synchronization overhead exhibited
by the different task-based and message-based process archi-
tectures. The costs of context switching and synchronization
overhead inthe SPARCserver platform are described bel ow.

The operating system used for the experiments is release
5.3 of SunOS, which provides a multi-threaded kernel that
allowsmultiple system calls and deviceinterruptsto execute
in parallel [6]. All the process architectures in these exper-
iments execute protocol tasks in separate unbound threads
multiplexed over 1, 2, 3, or 4 SunOS lightweight processes
(LWPs) within a process. SunOS 5.3 maps each LWP di-
rectly onto a separate kernel thread. Since kernel threads
are the units of PE scheduling and execution in SunQS, this
mapping enables multiple LWPs (each executing protocol
processing tasks in an unbound thread) to run in paralel on
the SPARCserver’s PEs.

Rescheduling and synchronizing a SunOS LWP involves
a kernel-level context switch. The time required to per-
form a context switch between two LWPs was measured
to be approximately 30 usecs. During this time, the OS
performs system-related overhead (such as flushing register
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windows, instruction and data caches, instruction pipelines,
and trandation lookaside buffers) on the PE and therefore
does not process protocol tasks. Measurements also revealed
that it requires approximately 2 usecs to acquire or release a
Mut ex object implemented using a SunOS spin-lock. Like-
wise, measurements indicated that approximately 90 usecs
are required to synchronize two LWPs using Condi ti on
objects implemented using SunOS sleep-locks. The larger
amount of overhead for the Condi t i on object operations
compared with the Mut ex object operationsoccurs from the
more complex locking algorithms involved, as well as the
additional context switching incurred by SunOS sl eep-locks.

4.2 Measurement Results

This section presents results obtained by measuring the
datareception portion of the connecti on-oriented and connec-
tionless protocol stacks implemented using the Layer Paral-
lelism task-based process architecture and the Connectiona
Parallelism and Message Parallelism message-based process
architectures. Three types of measurements were obtained
for each combination of process architecture and protocol
stack: total throughput, context switching overhead, and syn-
chronization overhead.

Total throughput was measured by holding the protocol
functionality, application traffic patterns, and network in-
terfaces constant and systematically varying the process ar-
chitecture to determine the resulting performance impact.
Each benchmarking session consisted of transmitting 10,000
4 Kbyte messages through an extended version of the widely
available t t cp protocol benchmarking tool. The origina
tt cp tool measures the processing resources and overall



user and system time required to transfer data between a
transmitter process and a receiver process communicating
viaTCP or UDP The flow of dataisuni-directiona, with the
transmitter flooding the receiver with a user-specified num-
ber of data buffers. Various sender and receiver parameters
(such as the number of data buffers transmitted and the size
of data buffers and protocol windows) may be selected at
run-time.

The version of tt cp used in our experiments was en-
hanced to alow a user-specified number of communicating
applications to be measured simultaneoudly. This feature
measured the impact of multiple connections on the per-
formance of process architectures (the connection-oriented
process architecture testswere run using 4 connections). The
t t cp tool was also modified to use the ASX-based protocol
stacks configured according to the process architectures de-
scribed in Section 4.2. To measure the impact of parallelism
on throughput, each test was run using 1, 2, 3, and 4 PEs.
Furthermore, each test was performed multiple times to de-
tect the amount of spuriousinterference incurred from other
internal OS tasks (the variance between test runs proved to
be insignificant).

Context switching and synchronization measurements
were obtained to help explain differences in the through-
put results. These metricswere obtained from the SUnOS 5.3
/ pr oc file system, which records the number of voluntary
and involuntary context switches incurred by threads in a
process, aswell asthe amount of time spent waitingto obtain
and release locks on Mut ex and Condi t i on objects.

Figure 5 illustrates throughput (measured in Mbitg/sec)
as a function of the number of PEs for the task-based and
message-based process architectures used to implement the
connection-oriented (CO) and connectionless (CL) protocol
stacks.® The results in this figure indicate that increasing
the number of PEs improves throughput for al the process
architectures. However, the message-based process archi-
tectures significantly outperformed their task-based coun-
terparts as the number of PEs increased from 1 to 4. For
example, the performance of the connection-oriented task-
based process architecture was only dightly better using 4
PEs (approximately 16 Mbits/sec, or 1.92 milliseconds per-
message processing time) than the message-based process
architecture was using 2 PEs (14 Mbits/sec, or 2.3 millisec-
onds per-message processing time). Moreover, if a larger
number of PEs had been available, it appears likely that the
performance improvement gained from parallel processing
in the task-based process architectures would have leveled
off sooner than the message-based tests dueto the higher rate
of growth for context switching and synchronization shown
inFigure6 and Figure 7.

The Connection Parallelism process architecture exhibited
the highest levels of throughput for the connection-oriented
protocol stacks when the number of PEs equaled the num-
ber of connections. The major limitation with Connectional

5The Connectional Parallelism process architecture does not support the
connectionless protocol stack.
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Paralelism, however, is that it only utilizes paraldism to
improve aggregate end-system performance since each in-
dividual connection still executes sequentially. In contrast,
Message Parallelism also utilizesmultiple PEs effectively for
asingle connection.

Figure 6 illustrates the number of involuntary and volun-
tary context switches incurred by the process architectures
mesasured inthisstudy. Aninvoluntary context switch occurs
when the OS kernel preempts a running thread. For exam-
ple, the OS preempts running threads periodically when their
LWP time-dlice expires in order to schedule other threads
to execute. A voluntary context switch is triggered when
athread puts itself to deep until certain resources (such as
I/O devices or synchronization |ocks) become available. For
example, when a protocol task attemptsto acquire aresource
that may not become availableimmediately (such as obtain-
ing a message from an empty list of messages in aQueue),
the protocol task puts itself to deep by invoking the wai t
method of aCondi t i on object. This action causes the OS
kernel to preempt the current thread and perform a context
switch to another thread that is capabl e of executing protocol
tasksimmediately.

As shown in Figure 6, The Layer Parallelism task-based
process architectures exhibited dlightly higher levels of in-
voluntary context switching than the message-based process
architectures. This is due mostly to the fact that the Layer
Parallelism tests required more time to process the 10,000
messages and were therefore pre-empted a greater number
of times. Furthermore, the task-based process architectures
also incurred significantly more voluntary context switches,
which accounts for the substantial improvement in overall
throughput exhibited by the message-based process architec-



o 4500 —
Q ]

=
§ 4000 [ CL Layer E
3500 i 1600 T— H
E [ CO Connectional ]
2000 1400 — 4
E CO Message ] ]
2500.] 9 12003 I H
E O CO Layer 1000 || 1

Il CL Message E —

2000
1800 i

2000
15003

1000

Number of Involuntary Context S

500

o
[

Number of Processing Elements

800 3
600 ]
400
200 4

Number of Voluntary Context Switches

Number of Processing Elements

Figure 6: Process Architecture Context Switching Overhead

tures. The primary reason for the increased context switch-
ing is that the locking mechanisms used by the message-
based processarchitectures utilize adaptive spin-locks (which
rarely trigger a context switch), rather than the sleep-locks
used by task-based process architectures (which do trigger a
context switch). Note that the Connectional Parallelism pro-
cess architectureincurred the least amount of context switch-
ing for the connection-oriented protocol stacks.

Figure 7 indicates the amount of execution time that the
/ pr oc metrics reported as being devoted to waiting to ac-
quireand release locksin the connectionless and connection-
oriented benchmark programs. As with context switching
benchmarks, the message-oriented process architectures in-
curred considerably less synchronization overhead, particu-
larly when 4 PEs were used. Aswith context switching, the
spin-locks used by message-based process architecture re-
duce the amount of time spent synchronizing, in comparison
with the deep-locks used by the task-based process architec-
tures.

5 Concluding Remarks

Despite an increase in the availability of operating system
and hardware platformsthat support networking and parallel
processing, developing communication subsystems that ef-
fectively utilize paralel processing remains a complex and
challenging task. A key aspect of communication subsys-
tem performance involves the type of process architecture
selected to structure parallel processing of protocol tasks.
M easurement resultsreported in this paper indicate that task-
based process architectures incur much higher levels of con-
text switching and synchronization overhead on a shared
memory platform, which significantly reduces performance.
Conversdly, the message-based process architectures (par-
ticularly Connectional Parallelism) incur much less context
switching and synchronization, and therefore exhibit higher
performance.

The ASX framework contributed to these performance
experiments by helping to decouple the protocol-specific
functionality from the underlying of process architecture.

This decoupling increased reuse and simplified develop-
ment, configuration, and experimentation with parallel pro-
tocol stacks. Componentsin the ASX framework are freely
available via anonymous ftp from i ¢cs. uci . edu in the
file gnu/ C++_wr apper s. t ar. Z. This distribution con-
tains complete source code, documentation, and example
test drivers for the C++ components. Components in the
ASX framework have been ported to both UNIX and Win-
dows NT. The ASX framework is currently being used in a
number of commercia productsincluding the AT& T Q.port
ATM signaling software product, the Ericsson EOS family of
PBX monitoring applications, and the network management
portion of the Motorolalridium mobile communi cations sys-
tem.

References

[1] MatsBjorkmanand Per Gunningberg, “Locking Strate-
gies in Multiprocessor Implementations of Protocols,”
in Proceedings of the Symposium on Communications
Architectures and Protocols (S GCOMM), (San Fran-
cisco, Cdifornia), ACM, 1993.

[2] M. Zitterbart, “High-Speed Transport Components,”
|EEE Network Magazine, pp. 54-63, January 1991.

[3] M. Goldberg, G. Neufeld, and M. Ito, “A Pardle
Approach to OSI Connection-Oriented Protocols,” in
Proceedings of the 3"¢ IFIP Workshop on Protocols
for High-Speed Networks, (Stockholm, Sweden), May
1992,

[4] J. Jain, M. Schwartz, and T. Bashkow, “Transport Pro-
tocol Processing at GBPS Rates,” in Proceedings of the
Symposi um on Communi cationsArchitectures and Pro-
tocols (SGCOMM), (Philadelphia, PA), pp. 188199,
ACM, Sept. 1990.

[5] C. M. Woodside and R. G. Franks, “Alternative Soft-
ware Architecturesfor Parallel Protocol Executionwith
Synchronous IPC,” IEEE/ACM Transactions on Net-
working, vol. 1, Apr. 1993.

[6] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shiv-
alingiah, M. Smith, D. Stein, J. Voll, M. Weeks, and



(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

D. Williams, “Beyond Multiprocessing... Multithread-
ing the SUNOS Kernel,” in Proceedings of the Summer
USENIX Conference, (San Antonio, Texas), June 1992.

A. Tevanian, R. Rashid, D. Golub, D. Black, E. Cooper,
and M. Young, “Mach Threads and the Unix Ker-
nel: The Battle for Control,” in Proceedings of the
USENIX Summer Conference, USENIX Association,
August 1987.

D. Presotto, “Multiprocessor Streams for Plan 9,” in
Proceedings of the United Kingdom UNIX User Group
Summer Proceedings, (London, England), Jan. 1993.

B. Lindgren, B. Krupczak, M. Ammar, and K. Schwan,
“Parallelism and Configurability in High Performance
Protocol Architectures,” in Proceedings of the Sec-
ond Workshop on the Architecture and Implementa-
tion of High Performance Communi cation Subsystems,
(Williamsburg, Virgina), | EEE, September 1993.

T. Braun and M. Zitterbart, “Paralel Transport System
Design,” in Proceedings of the 4" IFIP Conference on
High Performance Networking, (Belgium), |FIP, 1993.

M. Zitterbart, B. Stiller, and A. Tantawy, “A Mode
for High-Performance Communication Subsystems,”
IEEE Journal on Selected Areas in Communication,
vol. 11, pp. 507-519, May 1993.

D. Giarrizzo, M. Kaiserswerth, T. Wicki, and
R. Williamson, “High-Speed Pardle Protocol Imple-
mentations,” in Proceedings of the 1st International
Workshop on High-Speed Networks, pp. 165-180, May
1989.

N. C. Hutchinson and L. L. Peterson, “The x-kerndl:
An Architecturefor Implementing Network Protocols,”
|EEE Transactions on Software Engineering, vol. 17,
pp. 64—76, January 1991.

S. Saxena, J. K. Peacock, F. Yang, V. Verma, and M. Kr-
ishnan, “Pitfals in Multithreading SVR4 STREAMS
and other Weightless Processes,” in Proceedings of the
Winter USENIX Conference, (San Diego, CA), pp. 85—
106, Jan. 1993.

D. C. Schmidt and T. Suda, “The ADAPTIVE Service
eXecutive: an Object-Oriented Architecture for Con-
figuring Concurrent Distributed Applications,” in Pro-
ceedings of the 8" International Working Conference
on Upper Layer Protocols, Architectures, and Applica-
tions, Barcelona, Spain: North-Holland, June 1994.

D. C. Schmidt, “Reactor: An Object Behavioral Pat-
tern for Concurrent Event Demultiplexing and Event
Handler Dispatching,” in Pattern Languages of Pro-
gram Design (J. O. Coplien and D. C. Schmidt, eds)),
Reading, MA: Addison-Wesley, 1995.

D. Ritchie, “A Stream Input—Output System,” AT&T
Bell Labs Technical Journal, vol. 63, pp. 311-324, Oct.
1984.

J.- M. Zweig, “The Conduit: a Communication Abstrac-
tionin C++,” in Proceedings of the 2°¢ USENIX C++
Conference, pp. 191-203, USENIX Association, April
1990.

D. C. Schmidt and T. Suda, “Transport System Ar-
chitecture Services for High-Performance Communi-
cations Systems,” |EEE Journal on Selected Areas in
Communication, vol. 11, pp. 489-506, May 1993.

10



